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Abstract

Modeling and Simulation of Electrical Breakdown in DC for Dielectric-Loaded Systems
with Non-Orthogonal Boundaries Including the Effects of Space-Charge and Gaseous

Collisions

by

Manuel Thomas Pangelinan Aldan III
Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor John P. Verboncoeur, Co-Chair
Professor Ka-Ngo Leung, Co-Chair

Improved modeling of angled-dielectric insulation in high-voltage systems is described
for use in particle-in-cell (PIC) simulations. Treatment of non-orthogonal boundaries is
a significant challenge in modeling angled-dielectric flashover, and conditions on bound-
aries are developed to maintain uniform truncation error in discretized space across the
dielectric angles studied. Extensive effort was expended in isolating particular operating
regimes to illustrate fundamental phenomenological surface effects that drive the dis-
charges studied herein; consequently, this document focuses on the phenomenology of two
specific dielectric angles at 6.12∘ for multiplicative breakdown (the so-called single-surface
multipactor) and 22.9∘ for a non-multiplicative discharge that evolves into a dark current
at steady state.

Phenomenological results for simulations in vacuum through “ultra-low pressures” on
the order of a few hundred mTorr are presented. A multipactor front forms via net emis-
sion of electrons from impact on the dielectric surface, where emission leads to saturated
field conditions in the wake of the front, producing a well-defined forward-peaked wave.
A treatment of the gain and saturation characteristics is presented, isolating the surface
electric fields as the driving contributor to both metrics. Physical models include often-
neglected effects such as space-charge, dielectric-surface charging, and particle distribu-
tions in energy and space. For the discharges treated in this study, breakdown voltages
of the typical Paschen form are not applicable, since multiplicative conditions are driven
primarily by surface effects.

Phenomenological results are also presented for simulations at low pressure (∼ 1 Torr),
which is shown to be a transitional limit where volume effects become appreciable com-
pared to surface effects. A coupling between space charge and surface charge is shown
to lead to oscillatory effects in otherwise DC discharges. Surface multipactor leads to in-
creased ionization and space charge, and the ensuing space-charge momentum alters what
would have been a steady-state saturation as in the case of vacuum-like discharges. Models
for diffusive outgassed species are developed and implemented, extending the capabilities
of the PIC suite.

The overarching theme of this study is to communicate the dependence of multiplica-
tive discharges dominated by surface effects on near-surface electric field conditions. It
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is shown through various examples from vacuum through low pressures, and in diffusive
gases, that single-surface multipactor conditions can be expressed solely in terms of the
dielectric surface field angles. This treatment lays the foundation for a novel extension
of RF breakdown susceptibility theory [1] to the DC regime, grounding breakdown sus-
ceptibility to the well-established fundamentals on secondary emission [2, 3]. This theory
shows that breakdown characteristics can be modeled in an a-priori framework, hence
the lack of a Paschen-type curve.

Finally, the effect of the seed source on discharge characteristics is also studied. A
comparison between a constant-waveform source, a Fowler-Nordheim source, and an ap-
plication of a modified source based on theoretical treatment from [4] are presented,
showing that the seed is a necessary but insufficient condition for surface flashover, where
the dominant contributor is the configuration of the surface fields downstream of the seed
source. While the seed can influence upstream conditions to alter the injected current,
the gain characteristics of the downstream region are still well described by the framework
developed in the remainder of this document.
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Chapter 1

Introduction

1.1 Purpose and Scope
The purpose of this study is to develop a baseline physical understanding of electrical

breakdown using new and existing analytical and numerical tools to properly order and
further characterize various contributions to electrical breakdown. This study will focus
on phenomenology of fundamental processes in breakdown, limited to dielectric-surface
phenomena, volume gas effects, and the influence of seed electrons, all operating under
DC conditions. The overarching goal of this research is to develop the predictive capa-
bility that will allow control or elimination of breakdown over a range of parameters and
system characteristics using the understanding developed here as a physics basis; however,
this particular study will not directly address methods for breakdown suppression, and
will instead concentrate on phenomenological characterization and analysis of systems in
breakdown. Furthermore, this study will target discharges dominated by surface effects,
addressing volume phenomena in the context of limits between breakdown dominated by
surface effects against breakdown dominated by volume effects (e.g. ionization and dif-
fusion). The well-known technique of particle-in-cell (PIC) simulation with Monte-Carlo
collisions (MCC) [5, 6] is used to model idealized systems in this study, where an exist-
ing 2D PIC suite called XOOPIC (X-windows object-oriented particle-in-cell) is enhanced
and employed [7]. Figure 1.1 details the target geometry: a simple, azimuthally-symmetric
diode loaded with an angled dielectric in vacuum through atmospheric pressure of select
gases in an asymptotically semi-infinite formulation, generically representing common con-
figurations for a wide array of systems discussed in Section 1.3. The idealized geometry
is shown in Figure 1.1a, and a discretized representation of this configuration is shown in
Figure 1.1b, taken directly from the diagnostics in XOOPIC.

The remainder of this chapter will discuss motivation and general characteristics of
electrical breakdown via gas discharges, starting with a brief overview of initial motivating
studies in Section 1.2. A review of target systems of interest and their applications is pro-
vided in Section 1.3. Section 1.3.1 discusses the phenomenon of electrical breakdown, its
effects, and its role in modern research and engineering, highlighting key conditions and
parameters of concern in this study. Section 1.3.2 provides phenomenological details on
single-surface multipactor, an avalanche process requiring secondary-emission from sur-
faces that is largely considered the most fundamental effect responsible for catastrophic
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(a) Ideal model. (b) Discrete model.

Figure 1.1: Ideal and discrete representations of the target system. (a) Idealized two-
electrode model with an angled dielectric, a biased cathode, and grounded anode; and (b)
a representation of the discretized form of (a) taken from XOOPIC. The constraints on
the discrete model and the reasons for rotating the geometry are detailed in Section 2.2.
Standard 𝑥-𝑦 Cartesian coordinates used.

breakdown through exponential growth [2, 3, 8, 9]. Section 1.3.3 contains a brief discus-
sion of gaseous volume avalanches, which is treated here as a higher mode of growth,
but discharge characteristics can effectively evolve via competing effects between volume
growth and surface growth. Finally, an overview of PIC is given in Section 1.4, covering
the basics of the method and mathematical techniques.

Chapter 2 provides a brief description of XOOPIC and major considerations and ad-
ditions. Vacuum and low-collisionality electrical breakdown are discussed in Chapter 3,
outlining general phenomenology and basic scaling of ideal characteristics, such as multi-
pactor gain. Gaseous breakdown up to low pressure is outlined in Chapter 4, discussing
the influence of bulk ionization and volume charging in the system while exploring addi-
tional oscillatory effects as a result of coupling between volume space-charge and surface
charge. An extension of gaseous breakdown including diffusive outgassed species from the
dielectric surface is also delineated in Chapter 4, illustrating the influence of additional
neutral species that can move through a vacuum system over timescales on the order
of the discharge time. Chapter 5 details a novel breakdown susceptibility theory in DC
mapping surface-field conditions to secondary-emission models, leveraging work from the
University of Michigan [1, 10, 11] and key fundamental phenomena from the literature
[2, 3] to provide baseline characteristics of breakdown susceptibility. Chapter 6 looks
at the influence of the electron-current source, comparing a constant-waveform source, a
field-emission model, and a generic wedge model based on the work of Schächter [4]. Fi-
nally, Chapter 7 outlines the major results and conclusions of this study. Chapter-specific
supporting material are provided in corresponding appendices.
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1.2 Initial Motivation
This work started as an extension of previous developments from the University of

Michigan, in which N.M. Jordan, under the supervision of Dr. Y.Y. Lau, detailed limits
on field parameters for the occurrence of a single-surface multipactor avalanche [12], a
process further described in Section 1.3.2. In Jordan’s work, the first-orbit of a seed
electron emitted from the so-called triple-point (the junction between metal, dielectric,
and vacuum, noted in Figure 1.1b) was analyzed to give a range of dielectric angles
that were likely to produce avalanche, i.e. breakdown, conditions. These breakdown
conditions were limited to the first-impact characteristics of the primary seed-electron in
which the impact energy and angle would have to be sufficient to fall between the first-
and second-crossover energies of the impacted dielectric according to the applied theory
on secondary-emission, where the particular model used in this study is described in [2, 3]
and further delineated in Section 2.3. Such a condition on the first-impact would produce
a net emission of electrons from the impacted dielectric surface and it was presumed
this would be indicative of a successfully-seeded multipactor avalanche. Jordan’s results
were analyzed for DC discharges and argued to be extensible through RF via quasistatic
arguments, which is a similar approach to that taken in this study. To first order, the
work presented here simply extends Jordan’s theories to more general conditions, which
is a hallmark of using simulation techniques to study physical phenomena.

Additional works have guided the development goals of this study where significant
holes and nuances in the theory of electrical breakdown are under active investigation. A
number of academic institutions and national labs have substantial theoretical and em-
pirical programs studying breakdown, including Texas Tech University (Texas Tech), the
University of California at Berkeley, the University of Michigan (as mentioned above),
Lawrence Berkeley National Laboratories (LBNL), and Sandia National Laboratories,
among others. One of the major areas of interest at Texas Tech’s Center for Pulsed
Power and Power Electronic is dielectric-window breakdown in high-power microwave
(HPM) systems, covering extensive empirical measurements and imaging [13–15] as well
as considerable computational work using Monte-Carlo and general finite-difference time-
domain (FDTD) methods with scaling laws to characterize various breakdown parame-
ters [16, 17]. Their work mostly focuses on late-discharge characteristics excluding volume
space-charge with methods well-suited to longer time scales, while the work presented here
can model the early transient with space-charge effects while also modeling fundamental
processes as a general characteristic of PIC methods rather than relying on scaling laws
for particle interactions. Michigan has published a number of theoretical developments
over the years, characterizing breakdown phenomena for various systems, including the
limits for triple-point seeded multipactor breakdown mentioned earlier [12] and suscepti-
bility characteristics of dielectric-loaded RF systems [1], largely excluding the effects of
space charge and (in the former) particle distributions in energy and space, which the
PIC methods used in this study are well-suited to include. Finally, at the microscopic
level, extensive work has been done at Sandia characterizing and imaging breakdown
damage to microswitches with small actuation distances capable of high-voltage standoff
[18, 19]. Experiments at high pressure show that breakdown follows a modified Paschen
curve in submicron gaps due to favoring of vacuum-arc processes over gaseous-avalanche
processes. This work can characterize these effects in simulation by directly modeling par-
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ticle interactions and fundamental processes, including the transition from field-emission
vacuum-arc processes to Townsend avalanches.

Much of the theory to understand various contributions neglects important phenomena
such as space charge, surface-charge, particle distributions in energy and space, scattered
and reflected primaries, and the influence of the background gas in an effort to develop
tractable relations and a practicable understanding of complex phenomena. As noted
earlier, while individual contributions have been studied extensively, there remains no
consensus on the ordering of various phenomena, making breakdown notoriously difficult
to predict or control under general conditions and parameters. From the examples above,
it is clear that the problem of electrical breakdown affects a considerable number of
disciplines that would benefit greatly from deeper understanding of such a fundamental
problem, and the focus of this work has ultimately evolved into a study on extending
the existing knowledge-base of the physics of electrical breakdown and developing the
analytical tools capable of handling a wide array of parameters while including neglected
effects; furthermore, the tools developed in this study will be of critical importance for
engineering methods to control/eliminate breakdown under general conditions.

Processes such as secondary emission depend critically on impact energy and angle;
however, modeling angled-dielectric systems with discrete methods is difficult due to the
distortion of non-orthogonal boundaries, particularly those boundaries undergoing parti-
cle impact. The first task is therefore to improve the modeling scheme for angled dielectric
insulators in PIC simulations and quantify baseline behavior of systems in DC vacuum
breakdown. The geometry of Figure 1.1b is typically attributed to Bergeron [20], hav-
ing studied similar configurations in the late 1970’s. This study employs and extends
the model developed by S. Taverniers, et al. [21], at Berkeley in which XOOPIC was
applied to a preliminary study of dielectric-loaded systems with non-orthogonal bound-
aries. Taverniers’ model was developed to reduce numerical grid errors at the dielectric
so that the physics of fundamental surface effects could be modeled with minimal error.
The next task is to verify and enhance the existing models in XOOPIC to appropriately
model the regimes and parameters of interest. There exists a concerted effort to develop
the understanding between gaseous-volume effects and surface effects, as experiments and
simulations show substantial coupling between volume and surface growth [22, 23], so
the capacity to model target volume effects will be developed, adding new capabilities
as needed. Experiments are often affected by undesirable outgassing [13, 24], so develop-
ment of diffusive outgassing from surfaces will follow as a natural extension to developing
volume gaseous effects, allowing a surface-emitted flux of embedded species to diffuse into
the existing model of stationary gas. The influence of the seed electron and the char-
acteristics of the seed source have not been studied extensively, so the final task in this
study is to provide a fundamental base to build the understanding of triple-point seeded
discharges.

1.3 Vacuum to Gas Discharges and their Applications
The target application for this study was originally high-power microwave (HPM)

components and physics. The interest in HPM has grown considerably in recent years,
with typical applications in communication, large-scale research ventures, and military
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defensive weaponry, with a number of institutions researching various aspects, including
theoretical considerations at the University of Michigan [1, 12, 25], experimental develop-
ments and imaging at Texas Tech [15, 22, 24, 26], experiments in alternative configura-
tions and techniques for breakdown control at Rafael Laboratories [27–29], and numerical
simulation techniques at the University of California at Berkeley [7, 30, 31] and Sandia
National Laboratories [32]. The tools developed in this work will aid in determination
of characteristic operating conditions such as HPM component failure modes, sources of
key limiting problems in HPM such as pulse shortening and the processes that contribute
to such limitations, while also providing the extensibility to determine key parameters
such as power and energy efficiency. While the primary target application is HPM, basic
results are rooted in first principles, with the configuration of Figure 1.1 generally repre-
senting a high-standoff, biased system with parametrically variable dielectric properties.
Results herein can therefore be extended to numerous applications across multiple scales
and operating conditions with appropriate assumptions, including microelectromechani-
cal systems (MEMS) at the micro-scale [18, 19], detectors and amplifiers at the research
laboratory scale [33], lithography on the high-capacity commercial scale [34], high-current
and high-field applications at deployable military scales [9, 35–37], accelerator and plasma
heating technologies at the large research scale [38–40], pylons and space applications at
the large commercial scale [8, 41], and dissipation and rerouting of lightning at very-large
scales for protection of weapons and national interests [42, 43].

The last century has seen substantial research in vacuum discharges, gaseous dis-
charges, and the fundamental processes that induce discharges, both desirable and dele-
terious. The wide range of practical uses for high-standoff, dielectric-loaded systems are
all invariably plagued by similar problems rooted in operational fundamentals, where one
of the most pervasive and practical problems for all applications is the phenomenon of
electrical breakdown.

1.3.1 Electrical Breakdown

The role of breakdown in electrical systems has been studied concurrently with ap-
plications research in the areas described above, but the ordering of various phenomena
contributing to electrical breakdown remains largely undetermined [8, 9]. Much of the
existing understanding of breakdown and motivation for studying the phenomenon is
summarized in seminal review texts such as [8, 9], and this section will highlight some
key points that contributed to the motivation for this work.

As noted above, the problem of electrical breakdown pervades many disciplines and
applications over a wide range of parameters. Some examples of electrical breakdown are
shown in Figure 1.2. Figure 1.2a is the simplest example of a static discharge that is
typically characterized as breakdown in atmospheric air seeded in a number of ways, e.g.
physical contact between disparately-charged objects or collisions of particles with sur-
rounding gases that causes avalanche breakdown between such objects. Static discharges
are known to cause damage to consumer electronic components on the small scale, but is
more commonly observed as lightning at the much larger, natural scales. PIC is readily
capable of modeling particle-seeded avalanche breakdown with appropriate cross sections
and collision models, but the original XOOPIC code base at the start of this study lacked
appropriate gas models to simulate atmospheric air, and so the interest here is to include
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such models. A corollary concern is how the discharges are seeded, and interest lies in
adding fundamental models for seeding discharges to get closer to first principles while
providing the capability to cover a range of possible scenarios.

Figure 1.2b is an example of an arc discharge formed by gaseous breakdown between
two graphite electrodes, where a plasma has formed between the electrodes, providing a
continuous path for current to flow. Arc discharges are an example of useful breakdown
behavior, having been employed in early light and projection technologies and widely
used in modern arc-welding methods [44], but the effect can also be deleterious by con-
suming and damaging materials where arcs are undesirable, sometimes readily observed
in large-scale transmission lines in atmosphere and poorly-designed circuitry in consumer
electronics where sudden current cutoff leads to arc formation. Again, PIC methods are
well suited to modeling early-transient characteristics of arc discharges, and can be ex-
tended to longer times as necessary (which are often characteristically steady-state and
may be less interesting as a result), but the XOOPIC code base lacked appropriate models
for target atmospheric gases.

Figure 1.2c is a reproduction of a work from Texas Tech University [22] investigating
HPM-window breakdown in which J.T. Krile imaged the surface flashover of a Lexan
dielectric surface between two electrodes in atmosphere, which usually occurs through
various avalanche effects over the surface and in the bulk gas. Typical contributions to
electrical breakdown in this regime include multipactor, Townsend avalanche, ionization-
enhanced effects with volume-bulk gas and/or near-surface outgassing, among other ef-
fects. The evolution of the discharge depends on the gas, where electron arcs in nitrogen
are known to detach from the surface while arcs in electronegative oxygen gases surpris-
ingly leads a surface-conforming discharge. In principle, the simulation methods used in
this study have the capacity to simulate such effects, but again, require additional gas
models and diffusive emission models from the surface.

Finally, Figure 1.2d shows an imaging example of micron-scale breakdown reproduced
from work by Strong at Sandia [18, 19]. Strong’s work effectively showed that there is
a modified Paschen curve when dealing with very small scales, where high-fields across
small gaps can lead to vacuum-like arcs even at high pressures due to competing scale
lengths where the mean free path of gaseous collisions can be much larger than the system
length. Again, since the mean free path is a function of the cross sections, PIC methods
are well-suited to reproduce such behavior, so interest is in providing tools to further
understand how such discharges progress. Another interest for micron-scale structures is
in the geometric variation, which can be complex structures designed over a single sub-
strate, possibly adding costly design constraints to limit component failure by breakdown
and reduce the need to remanufacture. Advancing the tools to simulate complex, non-
orthogonal boundaries is a particular area of interest to enable study of more variable
geometries that could potentially reduce engineering costs for many applications.

The leading-order concerns for electrical breakdown are largely in the deleterious ef-
fects caused by a breakdown condition, including decreased power output by saturated
system potential, increased local pressure due to desorption from particle interactions
with surfaces (and subsequent effects), damage to windows and components in acceler-
ators and microwave sources which could lead to catastrophic failure in the worst case,
among other concerns largely motivating the need to eliminate breakdown in certain sys-
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(a) Static discharge. (b) Arc discharge.

(c) Dielectric-window
breakdown [22], c○2005
IEEE.

(d) Micron-scale break-
down [18], c○2005 IEEE.

Figure 1.2: Examples of various forms of breakdown. (c) is reproduced from [22], with
permission, c○2005 IEEE. (c) is reproduced from [18], with permission, c○2006 IEEE.

tems. However, there is also interest in being able to induce breakdown for the purpose
of creating particle sources or protecting radiation sources for communications and other
applications, motivating the interest in developing both the capacity to eliminate break-
down as well as to control it when desired. The tools developed and general understanding
obtained in this study should be able to address many key, fundamental concerns in all
applications mentioned; however, not all of the problems and parameters addressed above
will be directly studied in this work due to the considerable range of the parameter space.

1.3.2 Single-Surface Multipactor

In attempting to focus efforts in understanding contributions to electrical breakdown
and the ordering of such contributions, this work assumes the most fundamental effect is
the single-surface multipactor avalanche, herein referred to as simply “multipactor”. The
possibility of breakdown via multipactor is present at all pressures with no limitations on
mean free path as exists for Townsend-like avalanches, even though the required energies
to sustain growth can be higher than ionization energies that might trigger Townsend
breakdown. Most importantly, multipactor is the most likely candidate for an initial
avalanche in all scenarios with configurations similar to that in Figure 1.1 owing to the
existence of the triple point. Developments such as [4] show that the composition and
geometry of the triple point result in local fields that can diverge sufficiently to provide
seed electrons via field emission without enhancement factors. Consequently, multipactor
is described in this section as a phenomenological baseline by considering the fundamental
processes of secondary emission, which is highly sensitive to impact energy and angle. A
general schematic of the single-surface multipactor process is shown in Figure 1.3, while a
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plot of the secondary-emission coefficient as a function of impact energy for various angles
is shown in Figure 2.9 of Section 2.3.

Figure 1.3: Single-surface multipactor schematic. A rotated Bergeron geometry is em-
ployed, consisting of an angled-dielectric between two electrodes in vacuum. In principle,
multipactor can be initiated by a single seed electron from the triple point. A secondary
cascade can form until current is developed at the anode comprising an 𝑛th generation of
secondary electrons.

With sufficient energy for a given impact angle, electrons incident on system bound-
aries may initiate secondary-electron emission, which was well characterized through semi-
empirical formulations by Vaughan [2, 3], further elaborated in Section 2.3. If a net num-
ber of electrons are emitted from the dielectric surface, a corresponding electric field is
generated between the net positive charge left on the dielectric and the negatively-charged
secondary-electron cloud just over the surface. The field induced by secondary emission
pulls secondaries back to the surface, and if the secondaries gain sufficient energy in their
trajectory, another net generation of secondaries (i.e. tertiaries) can be produced that in-
duces similar phenomena downstream, pulling new secondaries back to the surface to lead
to a surface-driven cascade. Secondaries are generally low-energy, and therefore remain
relatively close to the dielectric surface with a short flight time. The impact characteris-
tics are consequently driven by the near-surface, quasistatic fields, implying that another
way to think of the cascade is to consider that if near-surface fields are of sufficient mag-
nitude and phase to give newly-generated secondaries the necessary energy to produce
net secondaries through a significant fraction of the surface, the electron population will
be able to exponentially cascade from cathode to anode on a short timescale (typically
fractions of nanoseconds for the systems studied here), hence flashover. Of course, with
the inclusion of gases, another kind of avalanche can develop that may be driven by the
same initiating factor as multipactor, i.e. a triple-point seed, but obviously requires the
existence of gaseous species to be able to proceed. In principle, Townsend-like avalanches
can compete for growth, and interesting characteristics start to develop as a function of
this competition, to be explored in Chapters 3 and 4.
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1.3.3 Gaseous Electron Avalanche

Gaseous avalanches are a form of cascading multiplication seeded by initial ionization
of bulk gases in a number of ways, e.g. ionizing radiation, where charged product species
gain energy through acceleration in background fields, proceeding to further ionize neutral
species if impacting energies are above the ionization energy. A common form of gaseous
avalanche dominated by electron interactions with neutrals is the so-called Townsend
avalanche, and is considered second-order with respect to multipactor in this study. In
general, self-sustaining avalanche breakdown between electrodes in gas can be described
by the empirically-derived Paschen curve, which describes the breakdown voltage as a
function of pressure, 𝑝, and gap length, 𝐷gap:

𝑉𝑏 =
𝐴gas · 𝑝𝐷gap

log

(︂
𝐵gas · 𝑝𝐷gap

log(1 + 1/𝛾ion)

)︂ , (1.1)

where 𝐴gas and 𝐵gas are gas-dependent constants, and 𝛾ion is the secondary-emission yield
for the cathode material resulting from ion bombardment (as opposed to the typical
secondary-emission yield resulting from electron bombardment with which this study is
particularly concerned). Paschen’s original work revealed that breakdown strength (the
highest voltage at which a circuit can withstand electrical breakdown) was a function
of the product of pressure and gap distance, 𝑝𝐷gap. Qualitatively, at the higher pres-
sures studied by Paschen, reduction of the gap distance at fixed pressure and voltage led
to reduced breakdown strength (breakdown is initiated at lower voltages) since average
electron energy, �̄�𝑒 = 𝑞𝑉/𝐷gap, increases at fixed voltage, allowing electrons to ionize
neutrals (with sufficient energy, �̄�𝑒 > ℰ𝑖𝑧). Alternatively, reduction of the system pres-
sure at constant gap distance and voltage would also lead to reduced breakdown strength
since the average collision frequency is reduced with reduced pressure, increasing average
electron energy and allowing electrons to further ionize neutrals with sufficient energy as
above. Subsequent works would reveal a minimum after which further reduction in gap
distance led to increased breakdown strength (breakdown is initiated at higher voltages)
[18, 19]. Further reduction of the pressure or the gap width past the minimum leads to
an inversion of the mean free path length to the gap width. The interaction frequency
is reduced in the region prior to the breakdown-voltage minimum because either neutral
species are rarefied or the gap length is on the order of the mean free path or smaller, and
the likelihood of breakdown is reduced, i.e. breakdown strength increases. Physically, this
means that there is a minimum breakdown voltage required to have a sustained Townsend
avalanche for any case, which can be found by differentiating Equation (1.1):

𝑑𝑉𝑏

𝑑(𝑝𝐷gap)
= 0 ⇒ (𝑝𝐷gap)min =

𝑒 log (1 + 1/𝛾ion)

𝐵gas
. (1.2)

Figure 1.4 plots Equation (1.1) for various gases of interest, showing the minima described
by Equation (1.2). It should be noted that Pashens’s law, particularly in the form of Equa-
tion (1.1), describes the start of a self-sustaining discharge balancing secondary emission
from the cathode and ionization in the volume, limiting the applicability of Paschen’s law
to such discharges. An initial source of ionization is assumed such that ions can produce
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the necessary secondary electrons for self-sustainment, where 𝛾ion plays a significant but
relatively weak functional role in the breakdown-voltage characteristic. Paschen’s law
does not generally consider the formation of classically-defined regions in DC discharges
such as the sheath, dark spaces, or the positive column [34, 44], and other effects can
influence breakdown conditions such as external sources of free-electrons, e.g. thermionic
emission or field emission. Such sources are important at very small gaps, where Pashen’s
law would predict a breakdown voltage approaching infinity, while field-enhanced seeding
would lead to vacuum-like arcing even at very high pressures [18, 19].

Figure 1.4: Paschen curves for various gases of interest. Plotting Equation (1.1) using
values for 𝐴gas and 𝐵gas from [34], with 𝛾𝑖 = 0.20. Minima correspond to Equation (1.2).

1.4 Overview of Particle In Cell
Seminal texts and review articles exist covering the basic principles of PIC techniques,

such as [5, 6, 45], with the primary reference to XOOPIC in [7]. PIC models plasmas
as a collection of discrete macro-particles (i.e. particles representing many elementary
particles; macro-particles will typically be referred to as simply “particles”) subject to
electromagnetic forces in a discrete-space formulation [7], with linear-weighting of particles
to the nearest grid points [5] and an MCC scheme for particle collisions [6, 46]. The basic
flow-chart of the PIC model is shown in Figure 1.5, starting from (1) weighting of particles
to the numerical grid, (2) integration of Poisson and fields, (3) weighting of fields back
to particle positions, (4) application of forces on charged particles via fields, (5) collisions
via MCC, (6) emission/collection at boundaries and surfaces, and finally iterating back
to (1).
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Figure 1.5: Schematic of the main PIC loop. Particle indices are denoted by index 𝑖,
while grid indices are denoted by (𝑗, 𝑘).

As noted earlier, weighting of particles to the grid is done through bi-linear weighting
to the nearest grid point in this work, as in Figure 1.6, where the relative weighting of the
particle to each of the neighboring grid points is shown schematically, and can be thought
of as the ratio of the corresponding areas (i.e. a → A) to the total area in the cell for the
case of Cartesian coordinates employed in this study (n.b. this does necessarily hold true
for all coordinate systems and frames, particularly in a curvilinear system with cell sides
defined parametrically, e.g. 𝑠 = 𝑓(𝑟, 𝜃), where 𝑠 is a line element in cylindrical coordinates
in the (𝑟, 𝜃) plane). This study will be limited to the electrostatic approximation, which
essentially means there are no time-varying contributions to the electric field, which is
generally a good approximation in DC and for slowly-developing discharges at higher
pressures. In other words, considering Maxwell’s equations, the partial differentials in
time are assumed slow enough to neglect:

∇ · �⃗� =
�⃗�

𝜀
,

∇ · �⃗� = 0,

∇× �⃗� = −𝜕�⃗�

𝜕𝑡
⇒ ∇× �⃗� = 0,

∇× �⃗� =
4𝜋𝑘

𝑐2
𝐽 +

1

𝑐2
𝜕�⃗�

𝜕𝑡
⇒ ∇× �⃗� =

4𝜋𝑘

𝑐2
𝐽.

(1.3)

However, magnetic fields will generally be ignored for this study, and Ampere’s law will
therefore not be treated in any case. Integration of the potential is typically done through
high-order schemes, such as the unconditionally-stable dynamic alternating-directions im-
plicit (DADI) method [47, 48]. The primary numerical method used in this study for inte-
grating the field equations is DADI, which attempts to solve the elliptic PDE with linear
operator 𝐿 operating on some function 𝑢:

𝐿(𝑢) ≡ (𝐴 + 𝐵)𝑢 = 𝑓 → ∇ · (𝜖∇)𝜑 = 𝜌, (1.4)
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by converting to the parabolic PDE:

𝑢𝑡 = (𝐴 + 𝐵)𝑢− 𝑓 → 𝜑𝑡 = ∇ · (𝜖∇)𝜑− 𝜌, (1.5)

and solving Equation (1.5) to a steady-state value within specified error limits. Typically,
ADI is obtained by writing Equation (1.5) in a Crank-Nicolson form, expanding the linear
operator, and ignoring higher-order terms in 𝒪(∆𝑡2) (which also happens to contain
cross terms in space) to be able to write a spatially-separable form, hence alternating
directions. The general premise of DADI is to vary the (pseudo-)timesteps to quickly
converge to a solution, using small timesteps to damp high-order components and large
timesteps to damp low-order components until a steady-state solution is achieved, varying
the timesteps according to a test parameter that effectively estimates the truncation error,
maintaining suitably small error throughout the operation [49].

Electric fields are calculated in a finite-difference manner in the well-known Yee mesh
configuration, and interpolated back to particle positions for the particle move. In the
electrostatic approximation, the potential difference across grid notes is calculated first,
and then normalized to the grid as needed in a forward difference with respect to the
nodes, but centered with respect to the Yee mesh where fields are calculated between
nodes:

𝑏∫︁
𝑎

�⃗� · 𝑑ℓ⃗ = 𝑉 (𝑎) − 𝑉 (𝑏) ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐸𝑥,𝑗+1/2,𝑘

=
𝑉𝑗,𝑘 − 𝑉𝑗+1,𝑘

∆𝑥

𝐸𝑦,𝑗,𝑘+1/2
=

𝑉𝑗,𝑘 − 𝑉𝑗,𝑘+1

∆𝑦

. (1.6)

A leap-frog scheme is typically employed to move particles, where position in space and
velocity are advanced at interleaved time points, i.e. position is advanced at integer time
steps while velocity is advanced at a half time step off of the position-advance time step.
A general formulation for a leap-frog scheme is:

𝑑𝑣

𝑑𝑡
⇒ 𝑣𝑡+Δ𝑡/2 − 𝑣𝑡−Δ𝑡/2

∆𝑡
= 𝐹 (𝑡) ,

𝑑𝑥

𝑑𝑡
⇒ 𝑥𝑡 − 𝑥𝑡−Δ𝑡

∆𝑡
= 𝑣𝑡+Δ𝑡/2,

(1.7)

where 𝐹 (𝑡) is the force at time, 𝑡. Typically, Equation (1.7) requires the velocity be
pulled back in time by a half time step before advancement begins to correctly model
the initial conditions while maintaining second-order accuracy for the leap-frog scheme.
It should be noted that any temporal pull-back is done only once, and methods such as
those in [50] may be employed to maintain the accuracy of the scheme. The primary
benefits of using leap-frog are that the method is time-reversible, symplectic (i.e. energy-
conserving), stable at constant time step as long as the fastest time-varying component is
resolved, explicit, and second-order accurate. The specific method used in the XOOPIC
implementation is the Boris Push [5].

Collisions are implemented by the well-known Monte-Carlo collision method, calcu-
lating the probability for collisions based on cell densities of neutrals, using a random-
number generator to determine if collisions occurred. Collection is monitored at all bound-
aries, with options to retain charge at dielectric surfaces. Finally, emission of particles
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Figure 1.6: Schematic of bi-linear weighting of standard PIC techniques. Weighting is
done for particle 𝑖 to the neighboring grid points indexed with (𝑗, 𝑘), fields are integrated
via densities and currents calculated on the grid, and fields are interpolated back to
particle positions to move particles via fields. Weights at each labeled point, e.g. A, are
effectively the ratios of each area, e.g. area a, to the total area of the cell.

is done through various algorithms as necessary, with models for monoenergetic beams,
distributed-energy injection, isotropic emission, etc.

Again, the this work enhances and employs XOOPIC, a PIC-MCC code suite designed
with the modularity of the object-oriented coding paradigm. XOOPIC was originally de-
signed and developed at the University of California at Berkeley via the Plasma Theory
and Simulation Group (PTSG) in the mid-1990’s to provide the physics-simulation de-
velopment community a modular environment to add new physics on the fly [7], using a
platform-independent front-end [51], making XOOPIC the ideal base code for this study.
Chapter 2 covers specific implementation details of XOOPIC and the particular models
used in this study.
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Chapter 2

Models and Methods

This chapter details the physical and numerical models used in this work, key additions
and modifications, and considerations for future modeling. As mentioned previously, the
simulation package used in this study is XOOPIC [7], which was written to be a modular
code where new models could be added with relative ease. This work leverages the
modularity of XOOPIC to add models for secondary emission from dielectrics, the triple-
point source, various gas models for collisional effects, and outgassing from the dielectric
surface. Additionally, careful consideration was taken when reviewing existing models,
where key changes and enhancements will be noted in the following sections.

Section 2.1 discusses space charge, which is the most important aspect of using PIC
methods in studying potentially fast-growing discharges since space charge is notoriously
difficult to model generally and theoretically over the temporal ranges and physical do-
main (charge densities, size, pressure, etc.) studied here. Section 2.2 details steps taken in
minimizing modeling errors for non-orthogonal boundaries, discussing the numerical grid
in Section 2.2.1 with an error analysis in Section 2.2.2. Secondary emission models are
discussed in Section 2.3. Section 2.3.1 notes the model implemented in the base XOOPIC
package [3], herein called the “metal model” as it is more readily able to model secondary
emission from metallic surfaces, while Section 2.3.2 delineates the changes made to allow
better fits to dielectric data, herein referred to as the “dielectric extension”. The implemen-
tation of seed-current models are discussed in Section 2.5, where the constant-waveform
source noted in Section 2.5.1 and the Fowler-Nordheim source noted in Section 2.5.2 were
previously implemented as part of the base XOOPIC package, while the triple-point source
delineated in Section 2.5.3 was added to approach a first-principles implementation. Seed
models are used in Chapter 6 to assess the influence of seed characteristics on discharges
dominated by surface effects. Outgassing and diffusion models are outlined in Section 2.4
for use in Chapter 4. Notable modifications to the XOOPIC suite, otherwise not requiring
a separate section herein, are delineated in Section 2.6. Finally, a summary of standard
parameters and reduced parameters used in this study is provided in Section 2.7, where
reduced parameters are used in cases where control of surface gain is required to mitigate
limitations in computational resources, relegating to vacuum or near-vacuum conditions
where concerns for collisional effects are negligible.
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2.1 Space Charge
Space charge is an often neglected effect in theoretical treatments of breakdown, but

it influences the probability for breakdown by affecting local fields and hence the forces on
charged particles that ultimately determine whether impacts lead to secondary emission,
ionization, and other effects. Space-charge effects are included in the standard PIC scheme
via coupling of charged-species densities to the field solve [6, 7]. Using the electrostatic
approximation:

∇⃗ · (𝜀[𝑥, 𝑦]∇⃗𝑉 [𝑥, 𝑦, 𝑡]) = −
(︂
𝜌[𝑥, 𝑦, 𝑡] +

𝜎[𝑥, 𝑦, 𝑡]

∆𝑦

)︂
. (2.1)

Equation (2.1) is written for the 2D Cartesian case, where the effect of surface charge
on the dielectric is made explicit via the surface-charge density, 𝜎 (as opposed to volume
charge and its associated density, 𝜌), written for the surface charge in a cell associated
with geometry in Figure 1.1b. Permittivity, 𝜀(𝑥, 𝑦), is spatially dependent, The charge
density is conformal to the 𝑥 axis in this case, c.f. Figure 1.1b. In the implemented
PIC model, charge impacts are collected on the dielectric surface and linearly weighted
to the numerical grid as noted in Section 1.4. In the context of multipactor, space-charge
affects impact energy and particle flux on flight to the dielectric, since seed electrons
and subsequent secondaries may not see the full applied potential, or may see a modified
local potential that drastically alters particle characteristics and subsequent discharge
evolution. The timescale of surface charging is much shorter than the dielectric relaxation
time for non-conducting materials, so the charging transient is very important to the
calculation of the local field, with implications for global fields as well. Local variations in
potential are further exacerbated by the presence of ambient gas and desorbed species in
the system, where volume ionization could lead to local shielding in quasineutral regions
such that collective behavior becomes prominent in the so-called Debye sphere. The
Debye sphere is simply a region where the influence of local charges dominates, and
charges beyond the length-scale called the Debye length are effectively screened out in a
Yukawa-like potential, a common treatment found in classic texts such as [52, 53]. In a
cold plasma with relatively immobile ions and Boltzmann electrons, the Debye length is:

𝜆𝐷 =

√︃
𝜀0𝑘𝐵𝑇𝑒

𝑛𝑒𝑞2𝑒
. (2.2)

Finally, it should be noted that space charge limits the current which can be propagated
through a voltage drop V over a distance 𝑑 as per the Child-Langmuir law [34]:

𝐽CL =
4𝜀0
9

√︂
2𝑒

𝑚

𝑉 3/2

𝑑2
(2.3)

2.2 Taverniers’ Model
Taverniers’ model for implementing PIC in non-orthogonal boundaries is discussed in

this section, providing further details than that provided in [21].
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2.2.1 The Numerical Grid

As noted earlier, the representation of the ideal system requires careful treatment of
the discretization scheme. Moving from a continuous-space model to a discrete-space
model introduces numerical grid effects that generally affect the physics of boundary-
coupled phenomena, including emission, desorption, charge accumulation, fields and field
angles, etc. Other effects include numerical heating and particle diffusion [5, 45, 54, 55],
which will not be covered in this work since the interest here is in general modeling of
non-orthogonal boundaries. Spatial discretization inherent in any numerical boundary
can lead to “snapping” to the nearest grid node and “stair-stepping” of boundaries, il-
lustrated in Figures 2.1a and 2.1b, respectively. Snapping affects the representation of
real-boundary characteristics, e.g. length and angle with respect to fixed axes. More sub-
tly, snapping also perturbs derived quantities such as electric fields that rely on boundary
characteristics relative to other boundaries. Stair-stepping further adds perturbations to
derived quantities like the solution of the fields, affecting physics by propagating errors in
boundary characteristics and phenomena (e.g. applied voltage, accumulated charge, etc.)
through the whole grid. Of course, snapping and stair-stepping may occur in tandem,
introducing higher-order errors by coupling the above effects.

   

User-defined 
line with 
specified length 
and angle. 

 “Snapped” to 
nearest node, 
perturbing 
length and 
angle. 

(a) Grid-snapping.

gapD

gapD

gapD

(b) Stair-stepping.

Figure 2.1: Schematic examples of typical grid errors when discretizing problems in con-
tinuous space. (a) illustrates the perturbation of physical lines as they are “snapped” to
the grid, creating errors in characteristics and relative positions of boundaries. (b) illus-
trates the effect of stair-stepping on non-orthogonal boundaries that leads to varying gap
widths, i.e. 𝐷gap ̸= 𝐷′

gap ̸= 𝐷′′
gap. Note that any apparent regularity is not general, and

snapping will produce further variations in the stair-stepped boundaries of (b).

The representation of impact surfaces is of particular importance when minimizing
errors in the physics of secondary emission, which is, again, herein assumed the most
fundamental effect for growth. The grid introduces key errors in electron-impact char-
acteristics, particularly impact energy, denoted in this work as 𝑊imp, and impact angle,
denoted as 𝜃imp, with respect to the impacted-surface normal. The solution developed in
this work builds upon work done by Taverniers, et al. [21], where the geometry is rotated
so that the dielectric surface is conformal to the numerical grid. While this solves the
issue of calculating the correct impact trajectory and energy, there are now perturbations
introduced in the calculation of the electric field on the grid. To minimize errors, limits
are set on the allowable values for the angle of the dielectric and the grid dimensions. A
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general schematic for the rotated system is shown in Figure 2.2, on which the discretized
representation in Figure 1.1b is based.
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Figure 2.2: General schematic for rotating the target two-electrode system. The cathode
is at FD, and the anode at EC. A voltage of 𝑉0 is applied across the gap width, which
is denoted by 𝐷gap. The origin at O is located symmetrically between FD and EC, but
may be offset from boundaries EF and CD.

All subscripted 𝑚’s in Figure 2.2 indicate a number of independent, user-defined,
integer values used in calculating the allowable set of angles and end-points for a given
discrete mesh. The task here is to limit the domain space of each parameter under
consideration for restricting errors in field calculations. 𝑑1 and 𝑑2 are the distances of
finite boundaries CD and EF from the origin. These boundaries are required to define
the finite computational domain. The system is rotated with an angle 𝛼, and the center
of the gap width, 𝐷gap, is placed at point O.

To ensure a gap width of 𝐷gap through the origin, O, point A is limited to a distance
𝐷gap/2 from the origin and restricted to 𝑚5 node points in the 𝑥 direction and 𝑚6 node
points in the 𝑦 direction, expressed as:

𝑥𝐴 =
𝐷gap

2
cos (𝛼) = 𝑚5𝑑𝑥,

𝑦𝐴 = −𝐷gap

2
sin (𝛼) = −𝑚6𝑑𝑦.

(2.4)

Similar, symmetric relations can be written for point B. In general, this treatment can be
made more arbitrary by choosing different values of 𝑑𝑥 and 𝑑𝑦, but this work constrains
𝑑𝑥 = 𝑑𝑦 for this initial analysis. Following from Equation (2.4), the dielectric angle, 𝛼 is
then:

𝛼 = arctan

(︂
𝑚6

𝑚5

)︂
, (2.5)

which precludes the use of arbitrary 𝛼 since both 𝑚5 and 𝑚6 are integers with limited
practical domain, since computational resources do not allow arbitrarily large (𝑚5,𝑚6).
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Setting 𝑚5 and 𝑚6 sets 𝑑𝑥 (and by extension 𝑑𝑦):

𝑑𝑥 =
𝐷gap

2

cos (𝛼)

𝑚5

= 𝑑𝑦. (2.6)

The interest here is to ensure that measurements of the electric field magnitude and angle
are done to the same accuracy across all implemented dielectric angles. Recalling �⃗� is
calculated by finite difference methods across grid nodes, ensuring uniform accuracy of
the electric field requires 𝑑𝑥 (and, again, by extension 𝑑𝑦) be invariant with rotation of
the system. The metric for limiting the (𝑚5,𝑚6) parameter space can be expressed as
limiting the error in 𝑑𝑥 as the system is rotated. Consider the error in 𝑑𝑥 with respect to
an arbitrary reference at 45∘; additionally, consider an arbitrary reference for 𝑚5 and 𝑚6

to be 20 for baseline comparison. The working error condition is therefore:

𝑒𝑑𝑥 (𝑚5,𝑚6) =
𝑑𝑥 (𝑚5,𝑚6) − 𝑑𝑥 (20, 20)

𝑑𝑥 (20, 20)
< 0.01 = 1 %. (2.7)

The diode is closed on both “sides” with the boundaries CD and EF as per Figure 2.2,
where points C, D, E, and F lie on mesh nodes. For the purposes of this study, 𝑑 is
restricted by looking for integers 𝑚1 and 𝑚2 such that point C follows:

𝑥𝐶 = 𝑑 sin(𝛼) = 𝑚1𝑑𝑥,

𝑦𝐶 = 𝑑 cos(𝛼) = 𝑚2𝑑𝑦.
(2.8)

Letting 𝑑 be some integer multiple, 𝑛, of 𝐷/2 as a baseline reference:

𝑥𝐶 = 𝑚1𝑑𝑥 = 𝑛
𝐷gap

2
sin(𝛼) = 𝑛𝑚6𝑑𝑥,

𝑦𝐶 = 𝑚2𝑑𝑦 = 𝑛
𝐷gap

2
cos(𝛼) = 𝑛𝑚5𝑑𝑦.

(2.9)

where the last equality is from Equations (2.8). A suitable 𝑛 is required to match:

𝑚1 = 𝑛𝑚6,

𝑚2 = 𝑛𝑚5.
(2.10)

The dielectric region in this model fills the diode gap from cathode to anode and the
half-space below 𝑦 = 0, so point C should be above the dielectric surface and point F
should be below. This condition requires AC to be a minimum length of:

|AC|min =
𝐷gap

2
tan(𝛼). (2.11)

Testing this condition for 𝛼 = 45∘ means |AG| = 𝐷/2, and since |AC| = |AG| + |GC|,
values for 𝑛 require:

|AC| = 𝑛
𝐷gap

2
= |AC| + |GC| =

𝐷gap

2
tan(45∘) + |GC|. (2.12)

Varying 𝑑 in 𝑛 integer multiples of 𝐷gap/2, the magnitude of 𝐸 and its angle with
respect to the dielectric surface can be measured and convergence of the metrics described
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above (electric field and angle above and below the dielectric surface) can be tested to
find a suitable lower limit for 𝑛. It should be noted that electric field can be measured
via existing diagnostics for 𝐸𝑥 and 𝐸𝑦, so the metrics to compare are simply:

𝐸 =
√︁
𝐸2

𝑥 + 𝐸2
𝑦 ,

𝜒𝐸 = arctan

(︂
𝐸𝑦

|𝐸𝑥|

)︂
.

(2.13)

where 𝜒𝐸 is measured with respect to the −𝑥 axis in the configuration of Figure 2.2. A
final convergence test can be formed recalling the dielectric interface boundary conditions,
which must be satisfied at all interfaces for finite fields:

𝐸dielectric,𝑡 = 𝐸vacuum,𝑡,

𝜀𝑟𝜀0𝐸dielectric,𝑛 = 𝜀0𝐸vacuum,𝑛,
(2.14)

where 𝜀𝑟 is the relative permittivity of the dielectric, and subscripted 𝑛 and 𝑡 refer to
“normal” and “tangential” components, respectively. Reducing 𝑑𝑥 and 𝑑𝑦 in simulation
means the diagnostics in XOOPIC for the component-fields are measuring progressively
closer to the dielectric-surface and should therefore converge to the limits of the dielectric
boundary conditions:

𝜀𝑟𝜀0𝐸𝑦,dielectric

𝐸𝑥,dielectric
=

𝜀0𝐸𝑦,vacuum

𝐸𝑥,vacuum
⇒ lim

𝑑𝑥⇒0

tan(𝜒vacuum)

tan(𝜒dielectric)
= 𝜀𝑟, (2.15)

In the context of classical treatments for the dielectric boundary conditions, 𝐸𝑥 is the
tangential field, 𝐸𝑡, and 𝐸𝑦 is the normal field, 𝐸𝑛. Again, note explicitly that tangential
fields in the context of this development are with respect to the −𝑥 direction and normal
fields are with respect to the +𝑦 direction.

2.2.2 Analysis of Rotated-Grid Geometry

Continuing with Equation (2.7), limiting the grid error at the dielectric center, 𝑒𝑑𝑥, to
less than 1 %, where the shape of the relative errors as a function of 𝑚5 and parameterized
with a subset of 𝑚6 is shown in Figure 2.3a. Sampling the (𝑚5,𝑚6) domain from [1, 30]
for each parameter, provides a good sampling of the angles from 0∘ to 90∘ that meet the
condition of Equation (2.7). The space of (𝑚5,𝑚6) with acceptably low error is shown in
Figure 2.3b. The values that are used in this study are summarized in Table 2.1 with the
associated dielectric angles, 𝛼, in degrees.

As noted in Section 2.2.1, the electric field components are measured one cell above and
one cell below the origin, O (cf. Figure 2.2), for various values of 𝜀𝑟 (relative permittivity)
with an applied voltage of −2400 V on the cathode, ground on the anode, and a gap
width of 2 mm. From Figure 2.4a and Figure 2.4b for the vacuum dielectric case (i.e.
the dielectric region has dielectric properties equivalent to vacuum with 𝜀𝑟 = 1) the
nominal fields are 1.2 MV

m
, as expected. Increasing the dielectric constant, the electric

field in vacuum is expected to be larger than the field in the dielectric from the boundary
conditions of Equation (2.14). Physically, this is due to bound charges setting up fields
that oppose the applied field; consequently, the electric fields in the dielectric region are
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Figure 2.3: Grid errors in (𝑚5,𝑚6). Curves in (a) are parameterized for various values
of 𝑚6. A relative error of 1 % is marked for reference in (a), where all points below the
1 % line meet the condition in Equation (2.7). All points satisfying 1 % relative error are
replotted in the (𝑚5,𝑚6)-space in (b), showing the associated dielectric angle, 𝛼, and the
effective coverage of the domain for 𝛼.
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(b) 𝐸 fields below the dielectric.

Figure 2.4: Reference electric-field values above and below the dielectric. Fields are
measured in vacuum, one cell above (or below) the dielectric surface at the origin, O, of
Figure 2.2.
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Table 2.1: Discrete parameters for meeting minimum-error conditions. Values of 𝑚5 and
𝑚6, the associated dielectric angle, 𝛼, and the error in 𝑑𝑥 such that 𝑒(𝑚5,𝑚6) is less than
unity are shown.

𝑚5,𝑚6 𝛼[deg] 𝑒(𝑚5,𝑚6) 𝑚5,𝑚6 𝛼[deg] 𝑒(𝑚5,𝑚6)

1,28 87.95 9.5e-01 21,19 42.14 1.2e-01
2,28 85.91 7.6e-01 22,18 39.29 5e-01
3,28 83.88 4.4e-01 23,16 34.82 9.5e-01
4,28 81.87 5.8e-14 24,15 32.01 6.2e-02
5,28 79.88 5.6e-01 25,13 27.47 3.8e-01
8,27 73.50 4.4e-01 26,11 22.93 1.9e-01
9,27 71.57 6.2e-01 27,9 18.43 6.2e-01
11,26 67.07 1.9e-01 27,8 16.50 4.4e-01
13,25 62.53 3.8e-01 28,5 10.12 5.6e-01
15,24 57.99 6.2e-02 28,4 8.13 1.9e-14
16,23 55.18 9.5e-01 28,3 6.12 4.4e-01
18,22 50.71 5.0e-01 28,2 4.09 7.6e-01
19,21 47.86 1.3e-01 28,1 2.05 9.5e-01
20,20 45.00 0.0e+00

driven down compared to the base 𝜀𝑟 = 1 case while fields in the vacuum region must
grow accordingly to ensure Equation (2.14) is satisfied.

Figure 2.5a and Figure 2.5b are the analogous plots of Figure 2.4a and Figure 2.4b
for the electric-field angle. For the vacuum dielectric case, 𝜒𝐸 = 𝛼, as expected since
the boundary incurs no discontinuity in the matched permittivity case. In the case of
𝜀𝑟 > 1, the dielectric boundary conditions of Equation (2.14) require 𝜒𝐸 approaching the
dielectric surface from the vacuum side should be larger than the 𝜒𝐸 from the dielectric
side; from Figure 2.5a and Figure 2.5b, it is shown that this is indeed the case.

Having verified accurate behavior of the electric-field magnitude and angle, the place-
ment of the boundaries CD and EF of Figure 2.2 must now be determined to correctly
model the asymptotically semi-infinite system. A reference case at 45∘ with 𝜀𝑟 = 1 is
plotted for 𝐸 and 𝜒𝐸 as a function of 𝑛 in Figure 2.6a and Figure 2.6b, respectively. Plots
are shown measuring their respective metrics one cell above the dielectric surface and one
cell below.

Figure 2.6a and Figure 2.6b shows convergence for the calculation of the electric-field
magnitude and angle for 𝑛 = 2, or 𝑑/𝐷 = 1. For the formulation in Equation (2.12), this
condition is met with:

|GC| > 𝐷

2
, (2.16)



22

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

 []

 E
,a

bo
ve

 [
]

 

 

r=1 

r=2 

r=8 

r=10 

(a) 𝐸-field angles above the dielectric.
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(b) 𝐸-field angles below the dielectric.

Figure 2.5: Reference electric-field angles above and below the dielectric. Field angles are
measured in vacuum, one cell above (or below) the dielectric surface at the origin, O, of
Figure 2.2.
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Figure 2.6: Convergence plots for (a) electric fields and (b) electric-field angles as a
function of the half-gap multiple, 𝑛. 𝛼 = 45∘ in a vacuum dielectric, 𝜀𝑟 = 1, with
𝐸0 = 1.2 MV

m
, and 𝜒0 = 45∘. Looking for convergence with 𝑛 from Equation (2.12).
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or, more generally, by inspection: ,

𝑛
𝐷

2
= |AG| + |GC| ≥ 𝐷

2
tan(45∘) +

𝐷

2
⇒𝑛 ≥ tan(45∘) + 1.

(2.17)

Taking this to be the condition for arbitrary 𝛼, the general requirement for 𝑛 is to be the
smallest integer such that:

𝑛 ≥ 1 + tan(𝛼). (2.18)

It should be noted that the fields both saturate to slightly greater than 1 % in Figure 2.6a
of the expected value, which can be understood as the propagation of all boundary errors
since the fields in Figure 2.6a are effectively a solution to the Laplace equation, which
averages all nearby cells for a given cell to find a global minimum; any boundary errors
are consequently propagated through the field-solve averaging. Similar characteristics can
be said for Figure 2.6b, which has a smaller saturation error, and incidentally will be an
important characteristic as field angles at the dielectric surface will be shown to play a
significant role in the systems of interest for this study.

Another numerical concern in correctly modeling the semi-infinite problem is to iden-
tify an appropriate boundary condition for CD and EF of Figure 2.2 to allow invariant and
accurate vacuum fields at reference points above and below the dielectric boundary. Two
standard types of boundary conditions are considered: Neumann (𝐸⊥ = 0 and Dirichlet
(linearly varying potential). Table 2.2 shows the measurements for the electric field above
and below the origin, O, in Figure 2.2, as well as the relative error from the exact solution
of 1.2 MV

m
in the vacuum-dielectric case of 𝜀𝑟 = 1.

Table 2.2: Comparison of boundary conditions for modeling a two-electrode system. Mag-
nitude of the electric field measured one cell above (𝐸𝑎) and one cell below (𝐸𝑏) the origin,
O, of Figure 2.2 for Neumann and Dirichlet conditions on CD and EF. 𝐸0 = 1.2MV/m,
𝑒rel = ∆𝐸/𝐸0 = |𝐸𝑎 − 𝐸𝑏|/𝐸0. Vacuum dielectric (𝜀𝑟 = 1) is used. Dielectric angle,
𝛼 = 45∘.

Boundary Type 𝐸𝑎[MV/m] 𝐸𝑏[MV/m] 𝑒rel

Neumann 1.213757 1.205849 6.59 × 10−3

Dirichlet 1.215135 1.215195 5.00 × 10−5

The relative error (𝑒rel) in Table 2.2 illustrates the invariance of the field. Again, the
field should be precisely 1.2 MV

m
in the vacuum case and any error in the magnitude here

is introduced from the finite difference scheme in the Poisson solve using stair-stepped
boundaries and the designated boundary type. From Table 2, the Dirichlet condition is
more suitable for maintaining a constant potential across the gap, with 𝑒rel two orders of
magnitude smaller than Neumann. Moreover, forcing the linear potential at the boundary
maintains the linear relation at points far from the origin, as it should for the semi-
infinite system modeled in this study. Inspection of Table 2.2 suggests that Neumann
could be better for reproducing the target magnitude of 1.2 MV

m
at the reference points,

but the deviation from the exact case is around an acceptable 1 % for both Neumann and
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Dirichlet. Dirichlet is chosen for this study due to better characteristics in maintaining
field invariance, allowing for more uniform errors in simulation.

The final numerical consideration is in the convergence of the dielectric boundary
condition as 𝑑𝑥 is reduced, verifying accuracy of the numerical model near the dielectric
surface. In the limit 𝑑𝑥→0, the ratio of the electric-field angle above and below the
dielectric should approach 𝜀𝑟 as designated by Equation (2.15). Figure 2.7 illustrates the
deviation in Equation (2.15) from 𝜀𝑟 with decreasing grid size for the case of a dielectric
with 𝜀𝑟 = 4.1. At the largest 𝑑𝑥 = 35.5 µm, the error is on the order of 6 %, and by the
smallest 𝑑𝑥 = 3.55 µm, the error is below 1 %. Correlation of the error in Equation (2.15)
is equivalent to a truncation error on the field, and Figure 2.7 shows the error to be
first-order with grid size as expected for the linear interpolation schemes used in PIC.
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Figure 2.7: Convergence of permittivity with grid size in discrete system. Deviation in
𝜀𝑟 from 𝜀𝑟 = 4.1 calculated with Equation (2.15). The fit noted in the plot shows a
first-order dependence of the error with grid size.

2.3 Secondary Emission

2.3.1 Metal Model

The process of secondary emission in XOOPIC is modeled by semi-empirical rela-
tions developed by Vaughan [2, 3], defining the so-called secondary-emission coefficient,
𝛿(𝑊imp, 𝜃imp), which is the ratio of the average number of secondary electrons emitted
from an impacted surface to the number of primary electrons impacting the surface, per
unit energy and unit angle. 𝛿 is dependent on impact energy, 𝑊imp and impact angle, 𝜃imp,
with respect to the surface normal; the shape of 𝛿(𝑊imp, 𝜃imp) is dependent on the material
and is fitted against empirical data via a number of fitting parameters. Data for Teflon
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is used in this study for practical reasons, particularly for considerations of planned ex-
periments. The working model in XOOPIC for secondary-emission from metallic surfaces
is:

𝛿(𝑊imp, 𝜃imp) = 𝛿max,0

(︂
1 + 𝑘𝑠𝑑

𝜃2imp

2𝜋

)︂
𝑊 (𝑤) (2.19)

where

𝑊 (𝑤) =

{︃
(𝑤 exp(1 − 𝑤))𝑘 𝑤 < 3.6

1.125𝑤−0.35 𝑤 > 3.6

𝑤 =
𝑊imp − 𝐸0

𝐸max,0(1 + 𝑘𝑠𝑤𝜃2imp/2𝜋) − 𝐸0

𝑘 =

{︃
0.56 𝑤 < 1

0.25 1 ≤ 𝑤 ≤ 3.6

(2.20)

𝐸0 is the secondary-emission threshold energy (12.5 eV for this study), 𝐸max,0 is the
energy at the peak of secondary-emission, 𝛿max,0 is the peak secondary-emission coefficient,
and 0 < 𝑘𝑠𝑑 < 2, 0 < 𝑘𝑠𝑤 < 2 are empirical surface-roughness coefficients where the
highest value indicates a highly polished surface. This model emits true secondaries with
an isotropic Maxwell-Boltzmann distribution, and also allows a user-defined fraction of
reflected and scattered electrons. The shape of the secondary-emission curve is assumed
universal across materials. A typical plot is provided in Figure 2.8
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Figure 2.8: Secondary-emission coefficient, 𝛿, from base XOOPIC model, for various
impact angles, 𝜃imp. 𝛿 is shown as a function of impact energy plotted for various impact
angles. Specifically plotting Equation (2.19) with data for copper.

2.3.2 Dielectric Extension

The most pertinent characteristics of the secondary-emission process are the locations
of the first and second crossover energies, denoted by 𝑊1 and 𝑊2, respectively. Between



26

the crossover energies, secondary-electron emission per primary-electron impact is greater
than unity (i.e. 𝛿 > 1), so multiplication is expected. Values for 𝑊1 are relatively
material-independent, with typical magnitudes of a few tens of eV; however, 𝑊2 spans
a large, material-dependent range, with magnitudes below a few thousands of eV for
dielectrics and up to tens of thousands of eV for metals. As observed in Figure 2.8, the
original implementation in XOOPIC was not well-suited to match dielectric data, so a
version of the Vaughan model [2] was implemented with a non-linear fitting routine to
fit the smaller window of net secondary-emission for dielectrics. The working form of
Vaughan’s equations are:

𝛿max = 𝛿𝑚0

(︂
1 + 𝑘𝑠

𝜃2

2𝜋

)︂
,

𝑉max = 𝑉𝑚0

(︂
1 + 𝑘𝑠

𝜃2

2𝜋

)︂
,

𝑧max = (𝑛 + 1) exp (−𝑧𝑛+1) − 𝑛
(︀
𝑧(−𝑛−1)

)︀
(1 − exp (−𝑧𝑛+1)) ,

𝑣𝑖 =
𝑉𝑖 − 𝑉0

𝑉max − 𝑉0

,

𝑘 =

{︃
𝑘1 𝑣𝑖 < 1

𝑘2 𝑣𝑖 > 1
,

𝛿low = 𝛿max (𝑣𝑖 exp (1 − 𝑣𝑖))
𝑘 ,

𝑔 (𝑧, 𝑛) =
1 − exp (−𝑧𝑛+1)

𝑧𝑛
,

𝛿high = 𝛿max
1

𝑔 (𝑧max, 𝑛)
𝑔

(︂
𝑧max

𝑉𝑖

𝑉max

, 𝑛

)︂
,

(2.21)

where 𝑘𝑠, 𝑘1, 𝑘2, 𝑛, and 𝑤 are free parameters. The usual material-dependent parameters
still apply, with 𝛿𝑚0 representing the maximum secondary-emission coefficient at normal
incidence and 𝑉𝑚0 representing the impact voltage at which 𝛿𝑚0 occurs. 𝑘𝑠 also remains
the smoothness parameter as before. The parameterization for 𝛿 is done over two regions:
a low-impact-energy region, denoted by 𝛿low, where 𝑘1 and 𝑘2 apply; and a high-impact-
energy region, denoted by 𝛿high, where 𝑛 applies. Vaughan provides a continuous form for
determining the 𝑘 parameter:

𝑘 =
𝑘1 + 𝑘2

2
− 𝑘1 − 𝑘2

𝜋
tan−1 (𝜋 log (𝑣𝑖)) . (2.22)

In any case, the sensitivity of the fit to 𝑘1 occurs prior to the peak 𝛿 while sensitive to 𝑘2
occurs past the peak. The demarcation between the low and high region, 𝑤 is somewhat
arbitrary, and can, in principle, be extended to the non-linear regression applied here;
however, the increase in parameter space makes finding a global minimum increasingly
difficult, so the fit parameters are limited to 𝑘1 and 𝑘2 for minimizing the low-impact-
energy residuals, while 𝑛 is used to minimize the high-impact-energy residuals. Typical
values are shown in Table 2.3.
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Table 2.3: Typical values for Equation (2.21). See the text on a note about setting static
𝑘1.

Parameter Variable Typical Range Notes

Smoothness parameter 𝑘𝑠 1 to 2 Typically set to 1.
First 𝛿low factor 𝑘1 0 to 2 Typically static at 0.5.
Second 𝛿low factor 𝑘2 0 to 2 Floating to fit.
𝛿high factor 𝑛 0 to 2 Floating to fit.
𝛿low → 𝛿high cutoff 𝑤 1 to 4 Typically set to 2.

Two predictor functions are used of the following form:

𝐴low =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝛿low

𝜕𝑘1

⃒⃒⃒⃒
𝑥1,𝜆

𝜕𝛿low

𝜕𝑘2

⃒⃒⃒⃒
𝑥1,𝜆

𝜕𝛿low

𝜕𝑘1

⃒⃒⃒⃒
𝑥2,𝜆

𝜕𝛿low

𝜕𝑘2

⃒⃒⃒⃒
𝑥2,𝜆

...
...

𝜕𝛿low

𝜕𝑘1

⃒⃒⃒⃒
𝑥𝑚,𝜆

𝜕𝛿low

𝜕𝑘2

⃒⃒⃒⃒
𝑥𝑚,𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐴high =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝛿high

𝜕𝑛

⃒⃒⃒⃒
𝑥1𝜆

𝜕𝛿high

𝜕𝑛

⃒⃒⃒⃒
𝑥2𝜆...

𝜕𝛿high

𝜕𝑛

⃒⃒⃒⃒
𝑥𝑚𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.23)

evaluated for all points 𝑥1, 𝑥2, . . . , 𝑥𝑚 for 𝑚 points, and for the set of parameters 𝜆 =
(𝑘1, 𝑘2), (𝑛). After considerable algebra, the final form of the partials used in minimizing
the fit residuals is:

𝜕𝑓

𝜕𝑘1
= 𝛿max (𝑣 exp (1 − 𝑣))𝑘 log (𝑣 exp (1 − 𝑣))

(︂
1

2
− 1

𝜋
tan−1 [𝜋 log (𝑣)]

)︂
,

𝜕𝑓

𝜕𝑘2
= 𝛿max (𝑣 exp (1 − 𝑣))𝑘 log (𝑣 exp (1 − 𝑣))

(︂
1

2
+

1

𝜋
tan−1 [𝜋 log (𝑣)]

)︂
,

𝜕𝑓

𝜕𝑛
= 𝛿max

⎛⎜⎜⎝
−1

[𝑔 (𝑧max, 𝑛)]2

[︂
𝜕

𝜕𝑛
𝑔 (𝑧max, 𝑛)

]︂
𝑔

[︂
𝑧max

𝑉𝑖

𝑉max

, 𝑛

]︂
+

1

𝑔 [𝑧max, 𝑛]

[︂
𝜕

𝜕𝑛
𝑔

(︂
𝑧max

𝑉𝑖

𝑉max

, 𝑛

)︂]︂
⎞⎟⎟⎠ ,

𝜕𝑔

𝜕𝑛
=

𝑧2𝑛+1 log (𝑧) exp (−𝑧𝑛+1) − 𝑧𝑛 log (𝑧) [1 − exp (−𝑧𝑛+1)]

𝑧2𝑛
.

(2.24)

The residuals to minimize for a given set of data to fit, �⃗�, and the calculated set of
secondary-emission coefficients from Vaughan, 𝛿, are then just:

𝑑�⃗� = �⃗� − �⃗� (2.25)

As with the metal model, the shape of the secondary-emission curve is assumed uni-
versal across materials. A typical plot based on polytetrafluoroethylene (PTFE) data is
illustrated in Figure 2.9.
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(b) 𝑊1 region.

Figure 2.9: Updated secondary-emission coefficient model. 𝛿 is shown as a function of
impact energy plotted for various impact angles. Specifically plotting Equation (2.19),
where the baseline orthogonal-impact curve is fitted against data from seminal studies on
PTFE [56, 57], and all other curves are produced via the theory described in Section 2.3.

It is obvious from comparison of Figure 2.8a and Figure 2.9a that the growth window in
the dielectric extension is dramatically reduced. This has obvious implications in modeling
growth transients and saturation characteristics, where the metal model would lead to
excessive growth with increased applied voltage, or growth with applied voltages that
would otherwise not be present with the dielectric extension. At higher applied voltages
(i.e. higher impact energies on average), the characteristics of the secondary-emission
curve for the metal model imply that saturation would occur earlier in the discharge as
well. At lower applied voltages (i.e. lower impact energies on average), characteristics
can be similar since the shape of the curves in the metal model and dielectric extension
appear similar; however, saturation sensitivity is important in this region since it will be
shown, particularly in Chapters 3 to 5, that the 𝑊1 region is of particular importance to
the discharge evolution as surface-field characteristics tend to move the discharge towards
an average impact energy of 𝑊1.

It should be noted that the Vaughan model could have some difficulty in modeling
the 𝑊1 region, which is apparent in Figure 2.8b where it is qualitatively expected that
impacts approaching grazing incidence (i.e. 𝜃imp → 90∘) should produce more secondaries
as a result of increased tangential velocity that reduces impinging distance into the surface,
consequently leading to smaller escape distance for secondaries or scattered and reflected
particles. In terms of first crossover, 𝑊1 will occur at a lower energy since the required
energy to gain unit growth is smaller with reduced escape path. This characteristic
tends to be neglected since the range of first-crossover energies is evidently very small
compared to the range of second-crossover energies, c.f. Figures 2.8a and 2.9a where
the 𝑊1 region is obscured at the lower energies due to dominance of the 𝑊2 region at
this scale. For this study, it should be noted that the parameter 𝑘1 was observed to
be most sensitive parameter to this characteristic, where a value of 𝑘1 > 0.5 produces
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aberrant behavior. Limiting to 𝑘1 = 0.5 as in Table 2.3 generally solves the issue, and is
taken as standard for this study, producing the ordering in Figure 2.9b. The conditional
form of setting 𝑘 via Equation (2.21) is favored over the use of Equation (2.22) for this
implementation; however, it must be stressed that the 𝑊1 region should be monitored
in general use, with static parameters chosen accordingly if the fit does not generate
acceptable crossover behavior. Lastly, it should be noted that there are two discontinuities
in this model, one occurring within the low-energy region when switching between 𝑘1 and
𝑘2, but as noted in [2], the form of 𝑣𝑖 in Equation (2.21) makes 𝛿low insensitive to 𝑘
when 𝑣𝑖 → 1, i.e. 𝛿low → 𝛿max. The discontinuity between the low-energy and high-
energy regions in the form of 𝑤 can pose a problem when modeling at higher energies by
underestimating growth, and Figure 2.9a shows that the discontinuity gets exacerbated
towards grazing angles; however, this will generally not be a problem for near-surface
phenomena that tends to the 𝑊1 limit, which will be shown to be the case for much of the
phenomena of interest herein. That said, careful consideration of the high-energy region
for configurations favoring 𝑊2 should be admonished.

One final note to consider is that recent advances have been made in alternative models
that consider the low-energy region in more detail, namely the Furman model [58], and
active research is being done in comparing and implementing new models for multipactor
research [59]. Furman’s model provides a probabilistic approach to the low-energy region
that leads to non-zero emission at energies where Vaughan’s model would predict zero
emission via a cutoff energy. As per the issues seen above with the Vaughan model,
such a change in modeling the low-energy region would have implications for further
growth around 𝑊1, shown herein to be a sensitive regime in which to operate. This work
does not consider the Furman model further, but it must be stressed that current work
is investigating effects of such alternative models, and, in principle, the insights herein
should provide guidance concerning expected behavior on the shift to new models.

2.4 Outgassing and Diffusion Models
Outgassing is implemented as a zero-velocity flux for this study, where the neutral-gas

density (NGD) is treated as a fluid following the existing NGD model. This treatment
is best considered as an infinite-source, adsorbed layer just over the dielectric surface,
where the only mechanism for excursion is diffusion, isolating diffusive effects. Theoretical
and implementational considerations follow insights from [13, 24, 60], using tabulated
data from [60] for specific materials. The outgassing rate is treated as either a fixed
flux or as dependent on electron impact. The outgassing rate is chosen as a constant
flux due to the lack of general models for a-priori emission. Models for emission as a
function of the surface temperature or the energy deposited on the surface from, e.g.
primary impact, are employed, informed by empirical observations [24, 60–62]; however,
the aforementioned zero-velocity characteristic will be maintained in all cases to isolate
the diffusion phenomenon.

A diffusion model is implemented that operates independently of all other effects, just
prior to the particle-species move and associated collision models. The basic assumption
in this kind of treatment is that all associated effects can be decoupled within a sufficiently
fine spatial grid over a given time step; this assumption typically applies to excursions
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that are well resolved, and this study will be careful to ensure such criteria is met. The
diffusion model follows classical treatment for variable diffusivity [63–65], using a form of
alternating directions implicit (ADI) for variable coefficients that averages the functional
coefficients (in this case, diffusivity) in both space and time at each step (looking in the
backward direction in each dimension) [66]. This section summarizes the analytical details
provided in Appendix 2.B for the diffusion model. The physics of interest to this study
are encapsulated in the so-called Malthus reaction-diffusion equation:

𝜕𝑛diff

𝜕𝑡
= ∇ · (Ddiff (�⃗�, 𝑡)∇𝑛diff) − 𝐿 (�⃗�, 𝑡) + 𝐺 (�⃗�, 𝑡) , (2.26)

where Ddiff is the diffusion coefficient, i.e. diffusivity, written here as spatially and tempo-
rally dependent, although Ddiff is treated in this study as state-dependent and therefore
only implicitly dependent on space and time; 𝐿(�⃗�, 𝑡) is a loss (sink) term, limited in this
study to losses through ionization; and 𝐺(�⃗�, 𝑡) is a gain term, neglected in this study, but
may include reintroduction of neutrals by recombination, e.g. oxygen.

The diffusivity is evaluated in the form from [64], which will be referred to herein as
the “BSL diffusivity”, good for low pressures and acceptable up to one atmosphere with
∼ 8 % error:

Ddiff

[︂
cm2

s

]︂
= 𝐶1

(︃
𝑇 [K]√︀
𝑇𝑐,A𝑇𝑐,B

)︃𝐶2

(𝑇𝑐,A𝑇𝑐,B)5/12
(︂

1

𝑀A

+
1

𝑀B

)︂1/2√𝑝𝑐,A𝑝𝑐,B

𝑝 [atm]
. (2.27)

𝐶1 and 𝐶2 are gas-dependent constants, but are typically set to values in Table 2.4 for
non-polar gas pairs. 𝑝𝑐𝑠 is the critical pressure for species 𝑠 in atm, 𝑇𝑐𝑠 is the critical
temperature for species 𝑠 in K, and 𝑀𝑠 is the molecular mass for species 𝑠 in u (i.e.,
amu). Common values for all parameters used in this study are summarized in Table 2.4.

Table 2.4: Parameters for the BSL diffusivity of Equation (2.27).

Variable Value Units Notes

𝐶1 2.745 × 10−4 u1/2(1/K)5/12cm2/s Diffusivity pre-factor
𝐶2 1.823 (unitless) Temperature exponent

Argon, Ar
𝑝𝑐,Ar 48.0 atm Critical pressure
𝑇𝑐,Ar 151.0 K Critical temperature
𝑀Ar 39.948 u Molecular mass

Hydrogen, H2

𝑝𝑐,H2 12.80 atm Critical pressure
𝑇𝑐,H2 33.3 K Critical temperature
𝑀H2 2.016 u Molecular mass

It will generally be assumed that the spatial variation in Ddiff is negligible for theo-
retical considerations, and can therefore be pulled out of the divergence term; however,
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this assumption does not hold well under outgassing in very low pressures, i.e. in the
presence of large density gradients where diffusivity varies greatly with variations in low
pressure (c.f. Figure 2.17), and numerical treatment will address variations as needed.
The so-called “Crank-Nicolson” (CN) scheme [47] is a common approach to solving PDE’s
of the type in Equation (2.26), written in matrix and vector form:⎛⎜⎝ I +

𝑘𝑛𝑒𝜎𝑖𝑧𝑣𝑒
2

+

−Ddiff
𝑘

2

∑︀
𝛽

𝐷+𝛽𝐷−𝛽

⎞⎟⎠n𝑖+1
diff =

⎛⎜⎝ I− 𝑘𝑛𝑒𝜎𝑖𝑧𝑣𝑒
2

+

Ddiff
𝑘

2

∑︀
𝛽

𝐷+𝛽𝐷−𝛽

⎞⎟⎠n𝑖
diff . (2.28)

where superscripted 𝑖’s are time indices, 𝑘 is the time-step, 𝐷+𝛽 is the forward finite-
difference scheme in the direction 𝛽, and 𝐷−𝛽 is the backward finite-difference scheme in
the direction 𝛽, the summation is over orthogonal directions, and I is the identity matrix,
with further details are provided in Appendix 2.B.2. This study assumes 𝑣rel = 𝑣𝑒 in
common practice for cases where electron velocities are much larger than ion or neutral
background-gas velocities, i.e. 𝑣𝑒 >> 𝑣𝑖 > 𝑣bg.

The terms in parentheses in Equation (2.28) are just matrix operators, with the term
operating on the forward time typically denoted as the implicit operator, while the term
operating on the current time is the explicit operator. In the one-dimensional case, rewrit-
ing to solve for the solution n𝑖+1, Equation (2.28) becomes:

n𝑖+1
diff =

(︀
A𝑦

impl

)︀−1
B𝑦

expln
𝑖
diff (2.29)

where the direction chosen here is the 𝑦 direction with respect to the typical configuration
of Figure 2.2. Aimpl and Bexpl are the implicit and explicit matrix operators, respectively,
written for the 1-D case in Equation (2.100) and Equation (2.101) in Appendix 2.B.2.

2.5 Seed-Current Models

2.5.1 Constant-Waveform Source

XOOPIC’s original models for the source current did not have a direct, self-consistent
model for the triple-point primary seed current, so early studies were seeded with electrons
from existing emission models, particularly a constant-waveform (CW) seed source which
is not influenced by the local potential. This poses some interesting physical phenomena
since the source is neither enhanced nor quenched (as long as the system remains below
space-charge limited current) by changes in the local electric field as would normally
be expected for sources akin to field emission. The constant-amplitude model can be
interpreted as representing strong thermionic sources that are not affected by local changes
in the fields, although thermal effects are not modeled for this study. Charges are emitted
uniformly in time as a Maxwellian flux, where particles are emitted from an infinite
reservoir and integration of the flux in any direction produces the characteristics of the
well-known Maxwellian distribution. Injection of particles is achieved by inversion of a
cumulative distribution function [5, 67].
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2.5.2 Fowler-Nordheim Source

Field emission is a well-known electron-emission phenomenon characterized by quan-
tum tunneling of electrons from a solid surface; the treatment of field-emission sources
were characterized in the 1920’s by Fowler and Nordheim [68] discussed in classical texts,
such as [8], and valid for low-temperature emission where a relatively small number of
states above the Fermi level are occupied. Field-emission sources will be referred to in
this work as Fowler-Nordheim (FN) sources. A field-enhanced FN emitter that is part
of the base XOOPIC package is employed for this study. The working relation for the
current density in XOOPIC is:

𝐽FN = 𝐴FN
(|𝛽FN𝐸|)2

𝜑𝑤

exp

(︂
−𝐵FN𝑣 [𝑦]𝜑1.5

𝑤

|𝛽FN𝐸|

)︂
, (2.30)

where 𝐸 is the electric field and definitions of all other factors with typical values are
listed in Table 2.5. The field-enhancement factor, 𝛽FN, is the most crucial parameter for
this study, as it tends to be highly empirical and is part of both the exponential term and
a growing pre-exponential factor, i.e. 𝛽FN contributes significantly to the non-linearity of
FN sources. The most significant difference in moving to the FN emitter compared from
the CW source is that local field variations influence the magnitude of the emitted current
in the FN model.

Table 2.5: Factors for Fowler-Nordheim emitter, Equation (2.30), used in this study.

Variable Value Units Notes

𝐴FN 1.5414 × 10−6 A · eV/V2

𝛽FN 10 [unitless] Field-enhancement factor
𝜑𝑤 4.4 eV Work-function (in this case, copper)
𝐵FN 6.8308 × 109 V/(m · V1.5)

𝑦(𝐸) 𝐶𝑦,FN

√︀
|𝛽FN𝐸|
𝜑𝑤

[unitless]

𝑣(𝑦) 1 − 𝐶𝑣,FN𝑦
2 [unitless] Valid for 2 × 109 ≤ 𝐸 ≤ 5 × 109 V/m

𝐶𝑣,FN 1.062 [unitless]
𝐶𝑦,FN 3.79 × 10−5 V/

√︀
V/m

2.5.3 Schächter Source

The implementation of the Schächter seed-current model is an attempt to approach
first principles, effectively using the configuration geometry to approach first-principles
treatment of seed-current sources in the triple-point region. The Schächter model is
technically a field-emission variant following the FN model, but it requires fewer semi-
empirical parameters than the FN model in the base XOOPIC package, and happens
to provide an intermediate model between FN models and current limited models as
illustrated in Figure 2.10. The Schächter current source is treated with a Fowler-Nordheim
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form and presumed to be the most fundamental emitter used in this study. The form of the
Schächter current in this study applies an analysis of the triple-point fields, the associated
charge on the conductors as a result of the polarization in the dielectric medium, and
integration of the current density over a finite region near the triple point. It should be
noted that there is no automatic space-charge limit. Full details for this development are
provided in Appendix 2.A, with the most pertinent details outlined here.

The Schächter current density is written in a simplified FN form:

𝐽 ≃ 𝑘1𝐸
2 exp

(︂
−𝑘2
𝐸

)︂
(2.31)

where parameters are listed in Table 2.6, and the differences between this form and the
FN form of Equation (2.30) with 𝛽 = 1 are shown in Figure 2.10, using the relations of
Section 2.A.3 for the fields and charge.

Table 2.6: Factors for Schächter FN emitter model, Equation (2.31)

Variable Value Units Notes

𝑘1
1.5414 × 10−6

𝜑𝑤

A/V2

𝑘2 6.8308 × 109𝜑1.5
𝑤 V/m

The pre-factor in [4] was two orders of mag-
nitude smaller, so there will be differences in
shape and magnitude in this treatment.

𝜑𝑤 4.4 eV Work-function (in this case, copper)

This study is largely concerned with configurations where voltage biases are held
constant; therefore, a framework with constant effective voltage is employed, but the
framework for constant electrode charge is outlined in Appendix 2.A.7. The metric for
effective voltage is taken directly from the electrostatic energy in the fields per unit charge
in the integrated region, delineated in Appendix 2.A.6:

𝑉eff =
𝑊𝐸

𝑄total
=

𝜈2𝐴1𝑅
𝜈

𝜒 (𝜈)
. (2.32)

where:

𝜒 (𝜈) =
2𝜈 sin

(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁(︁
sin
[︁
𝜈
(︁𝜋

2
+ 𝛼

)︁]︁
+ 𝜀𝑟 sin

[︁
𝜈
(︁𝜋

2
− 𝛼

)︁]︁)︁
(︁𝜋

2
− 𝛼

)︁
sin2

(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
+
(︁𝜋

2
+ 𝛼

)︁
𝜀𝑟sin

2
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁ . (2.33)

This interpretation of effective voltage is in keeping with the equivalent metric of simple
circuit analysis for effective voltage of a time-varying source, written as the average power
multiplied by the inverse of the effective current in the circuit, ultimately reducing to the
familiar RMS voltage in the latter case. For Equation (2.32), the electrostatic energy in
the fields, 𝑊𝐸, is the effective equivalent to integrated power, and the total charge on the
electrode is simply the effective current multiplied by the integration time. The charge in
this case is induced by the applied fields interacting with the dielectric.
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Figure 2.10: Comparison of Schächter, Fowler-Nordheim with parameters from Table 2.5,
and Child-Langmuir, for 𝛼 = 6.12∘. Specifically plotting Schächter as implemented in
this work via Equation (2.34), FN in the form of Equation (2.30), and Child-Langmuir
from Equation (2.3).

Integrating the current density, worked out in Appendix 2.A.8, the final result is copied
from Equation (2.87) here for the purposes of exposition:

𝐼𝑉eff
top = 𝐼1

𝜒2 (𝜈)

𝜈2 (2𝜈 − 1)

⎡⎣exp

(︂
− 𝑏0𝜈

𝜒 (𝜈)

)︂
+

𝑏0𝜈

𝜒 (𝜈)

1∫︁
0

𝑦−
2𝜈−1
𝜈−1 exp

(︂
− 𝑏0𝜈

𝜒 (𝜈)
𝑦

)︂
𝑑𝑦

⎤⎦ . (2.34)

The form presented in [4] is as follows:

𝐼
𝑉eff ,[4]
top = 𝐼1

𝜒2 (𝜈)

2𝜈 − 1

⎡⎣exp

(︂
− 𝑏0
𝜒 (𝜈)

)︂
+

𝑏0
𝜒 (𝜈)

1∫︁
0

𝑦−
2𝜈−1
𝜈−1 exp

(︂
− 𝑏0
𝜒 (𝜈)

𝑦

)︂
𝑑𝑦

⎤⎦ (2.35)

Equation (2.35) differs from Equation (2.34) with an additional 1/𝜈2, and an additional
𝜈 accompanying all 𝑏0/𝜒(𝜈) terms. Equation (2.34) is inverted in the code rather than
the published form of Equation (2.35) to maintain consistency of analysis herein. A com-
parison of Equations (2.34) and (2.35) is provided in Figure 2.11, showing the difference
is within a factor of two for the particular configuration shown, but does increase non-
linearly at higher fields. The model implemented for this work, Equation (2.34), provides
a slightly larger current overall, but remains close to The published for in the applied
voltages of interest, typically less than a few hundred V/m.



35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105

1

2

3

4

5

6

7

8

x 1011

Applied field, E0 [MV/m]

In
te

gr
at

ed
 c

ur
re

nt
, I

 [A
]

 

 

Schächter published form 
Form used in this work 

Figure 2.11: Comparison of Schächter integrated current from [4] to the development in
this work. Specifically comparing Equations (2.34) and (2.35). The solid, red curve is the
form implemented in this work.

2.6 Notable Corrections and Additions
The earliest notable error found in XOOPIC through the course of this study was a

bug in the MaxwellianFlux class causing significant errors in preliminary results due to
an incorrect modeling of emission from a given surface. Prior to correction of the model,
emission for a Maxwellian flux was typically set with a null velocity in the direction
normal to the emitting surface, i.e. �⃗� · �̂� = 0. Careful inspection revealed that this
was the result of a poor initialization for the MaxwellianFlux class in the code, and the
corrected model does indeed produce a Maxwellian distribution with sufficient statistics,
as shown in Figure 2.12.

Additionally, as the development of XOOPIC is continually “in-progress”, several mod-
ules were completed only as need dictates, e.g. the original coders of the boundary class
assumed that orthogonal boundaries would be the only definitions needed for simulation
of a typical system, so the original definition of the boundary normal was coded for the
whole boundary. While the original definition for the normals was consistent inasmuch
as a positive normal is up/right and negative normal is left/down as illustrated in Fig-
ure 2.13a, the concept of boundary “sides” is not consistent, and actually requires negated
normals for adjacent segments, as illustrated in Figure 2.13b. The need to create non-
orthogonal boundaries required defining normals on a piece-wise basis to maintain the
usual definitions of “sides” for a boundary, since the original definition for the normals
lead to emission errors at various boundaries as emission modules typically rely on the
normal definition to decide in which direction to emit. Recasting the normal in terms
of boundary segments was necessary to allow “one-sided” emission from non-orthogonal
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Figure 2.12: Maxwellian flux model error and correction. Original code effectively had
an implementation error that led to an incorrect velocity in the direction normal to the
emission surface.
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Figure 2.13: Schematic of original boundary normal and modified boundary normals in
code. Original coding of boundary normals did not account for non-orthogonal boundaries,
which lead to incorrect emission modeling in some cases.

Other minor but notable additions include the completion of some missing dump-
file routines that lead to infinite-loop errors in code and the addition of a text export
function in XGRAFIX to allow faster post-processing in external visualization and analysis
programs, particularly with the current popularity of interpreted languages such as Python
and Matlab as a front-end for both on-the-fly post-processing (mostly in the case of
Python) and creation of highly customizable, publication-caliber figures.
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2.7 Standard Parameters and Reduced Parameters
Two main parameter sets for gap width and applied voltage were used in the course

of this study to accommodate difficulties in modeling gain conditions. The standard
parameter set used for much of this study is summarized in Table 2.7, showing basic
metrics for numerical consideration.

Table 2.8 shows the reduced parameter set that was used in cases where the gain was
deliberately limited to reduce particle population. The reduced parameter set posed a few
physical caveats, most notably the ratio of mean free path to gap length could approach
unity and therefore present a different operating regime (vis-à-vis breakdown) than those
that would otherwise be encountered at high pressures in the standard parameter set.
Due to the smaller time steps, a reduced mass ratio is also used to allow observation of
ion momentum over a shorter time period.

2.A Schächter Formulation

2.A.1 The Triple Point

The triple point is defined as the junction between metal, dielectric, and vacuum, and
can be shown to have divergent fields under certain boundary conditions. The following
sub-sections will detail treatment of the triple-point potential and fields, considering the
geometry in Figure 2.14. The cathode and 𝛼 are shown conformal with Figure 1.1b; the
“bottom” electrode is taken to be the half of the cathode below the dielectric-vacuum
boundary, and the “top” electrode is the half above the boundary. This treatment is
background primarily for developments in Section 2.5.3, largely following developments
in [4, 12, 69] and completing details otherwise not available in such references.




Figure 2.14: Geometry for deriving triple-point potentials.

As noted in Section 3.8, it must be cautioned that the results of Chapter 3 suggest
that the characteristics of the seed source is irrelevant since the evolution of the discharges
were highly dependent on the characteristics of the surface-field conditions, relegating the
beam-like source to a necessary (in terms of being a seed source, not a triple-point source)
but insufficient condition for breakdown to occur. The seed in Chapter 3 is a highly
idealized source, which is not influenced by local field conditions and has a highly formed,
beam-like distribution that influences surface-field characteristics in different ways than
a more distributed source would.
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Table 2.7: General parameters for standard simulation system. These are uniform values
for parameters, where variations are listed as needed. SE=“Secondary Emission”. SE
parameters quoted for PTFE [57]. Symbols are mapped to the schematic of Figure 2.2.
The ratio of the number of physical to computational particles is denoted as “np2c”,
otherwise understood as the macroparticle weighting.

Physical Parameter Symbol Value
Dielectric angle 𝛼 6.12∘ or 22.9∘

Dielectric permittivity 𝜖𝑟 2.1
Max (normal) SE coefficient 𝛿max 2.95
Energy at 𝛿max 𝑊max 600 eV

SE threshold energy 𝑉th 12.5 eV

SE emission-energy mode 𝑊emitmode 1.85 eV

SE average emission energy 𝑊avg 2.36 eV

Gap width 𝐷gap 2 mm

Source current 𝐼0 1 A

Source-current temperature 𝑇0 0.025 eV

Seed drift velocity in 𝑥 𝑣𝑑,𝑥 (𝑊max
imp − 𝑞𝑒𝐸𝛿𝑦) cos(𝜋/2 − 𝜃imp) eV

Seed drift velocity in 𝑦 𝑣𝑑,𝑦 (𝑊max
imp − 𝑞𝑒𝐸𝛿𝑦) sin(𝜋/2 − 𝜃imp) eV

Fraction scattered 𝑓Scattered 0 or 0.07
Fraction reflected 𝑓Reflected 0 or 0.03
Mass ratio 𝜉mass 1 (unitless)
Subcycle 𝑁subcycle 1 (ion cycles)/(electron cycles)
Averaged cross section ⟨𝜎𝑖𝑧⟩ 2.74 × 10−20 m2

Pressure 𝑝bg 0 mTorr

Applied voltage 𝑉0 3500 V

Pressure 𝑝bg 1 Torr

Applied voltage 𝑉0 8500 V

Mean free path 𝑟mfp 1.095 mm

Collision ratio 𝑟mfp/𝐷gap 0.548 (unitless)

Numerical Parameter Symbol Value
Integer discretization in 𝑥 𝑚5 28 (6.12∘) or 25 (22.9∘)
Integer discretization in 𝑦 𝑚6 3 (6.12∘) or 11 (22.9∘)
Macro-particle weighting np2c 6 × 105

Time-step ∆𝑡 1 ps

Grid-size 𝑑𝑥 and 𝑑𝑦 35.5 µm
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Table 2.8: Reduced parameter set used to limit surface gain. Showing only parameters
that have changed from Table 2.7. Although not explicitly delineated herein, numbers are
included for test systems at 1 Torr, facilitating discussion of reduced systems at pressures
greater than VULP.

Parameter Symbol Value

Gap width 𝐷gap 0.2 µm

Pressure 𝑝 1 Torr

Applied voltage 𝑉0 8500 V

Mean free path 𝑟mfp 1.095 mm

Mass ratio 𝜉mass 40 (unitless)
Subcycle 𝑁subcycle 1 (ion cycles)/(electron cycles)
Collision ratio 𝑟mfp/𝐷gap 5.48e3 (unitless)

2.A.2 The Triple-Point Potential

The potential for the configuration of Figure 2.14, written in cylindrical coordinates
with 𝑧 conformal to the usual Cartesian 𝑧 used in this study, is given by:

Φ =

{︃
𝐴1 sin

(︀
𝜈
[︀
𝜑− 𝜋

2
+ 𝛼

]︀)︀
𝑟𝜈 + 𝑉0 0 < 𝜑 < 𝜋

2
− 𝛼

𝐴2 sin
(︀
𝜈
[︀
𝜑 + 𝜋

2
+ 𝛼

]︀)︀
𝑟𝜈 + 𝑉0 −𝜋

2
− 𝛼 < 𝜑 < 0.

(2.36)

The curvature parameter, 𝜈, is found by applying the dielectric-vacuum boundary condi-
tions. For the component tangential to the dielectric surface (equivalent to 𝑟 when along
the surface):

𝐸1𝑡 (𝑟, 0) = 𝐸2𝑡 (𝑟, 0) ⇒ 𝐸1𝑟 (𝑟, 0) = 𝐸2𝑟 (𝑟, 0) ,

−𝐴1𝜈 sin
(︀
𝜈
[︀
𝜋
2
− 𝛼

]︀)︀
𝑟𝜈−1 = +𝐴2𝜈 sin

(︀
𝜈
[︀
𝜋
2

+ 𝛼
]︀)︀

𝑟𝜈−1.
(2.37)

For the component normal to the dielectric surface (equivalent to 𝜑 when along the sur-
face):

𝜀0𝐸1𝑛 (𝑟, 0) = 𝜀0𝜀𝑟𝐸2𝑛 (𝑟, 0) ⇒ 𝐸1𝜑 (𝑟, 0) = 𝜀𝑟𝐸2𝜑 (𝑟, 0) ,

𝐴1𝜈 cos
(︀
𝜈
[︀
𝜋
2
− 𝛼

]︀)︀
𝑟𝜈−1 = 𝜀𝑟𝐴2𝜈 cos

(︀
𝜈
[︀
𝜋
2

+ 𝛼
]︀)︀

𝑟𝜈−1.
(2.38)

Eliminating constants gives:

𝜀𝑟 tan
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁
= − tan

(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
. (2.39)

The range for 𝜈 as a function of 𝜀𝑟 can be derived by looking at the limits for 𝜀. In
the case of 𝜀𝑟 = 1, pulling the negative into the transcendental and applying a periodic
offset of 𝑚𝜋 (letting 𝑚 = 1 for this treatment) to preclude the trivial solution of 𝜈 = 0:

𝜀𝑟 = 1 ⇒ tan
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁
= tan

(︁
−𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
,

𝜈
[︁𝜋

2
− 𝛼

]︁
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[︁𝜋
2
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]︁
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[︁𝜋

2
+ 𝛼

]︁
+ (1)𝜋(︁
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[︁𝜋

2
− 𝛼 +

𝜋

2
+ 𝛼

]︁
= 𝜈

[︁𝜋
2

+
𝜋

2

]︁
= 𝜈𝜋

)︁
= 𝜋

⎫⎬⎭⇒ 𝜈 =
𝜋

𝜋
= 1.

(2.40)
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Similarly for 𝜀𝑟 → ∞, applying the same periodic offset, 𝑚𝜋, with 𝑚 = 1:

𝜀𝑟 → ∞ ⇒ − tan
(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
→ ∞,

𝜈
[︁𝜋

2
+ 𝛼

]︁
= −𝜋

2
+ 𝑚𝜋 = −𝜋

2
+ (1)𝜋

𝜈 = +
𝜋

2

1[︁𝜋
2

+ 𝛼
]︁ =

𝜋

2
𝜋

2
+ 2𝛼

=
𝜋

𝜋 + 2𝛼
=

1

1 + 2𝛼/𝜋

⎫⎪⎪⎬⎪⎪⎭⇒ 𝜈 =
1

1 + 2𝛼/𝜋
.

(2.41)

The full relation can be plotted for 𝜈 (𝜀𝑟, 𝛼) as in Figure 2.15 using 𝛼 = 6.12∘ and
𝛼 = 22.9∘, where the limit for 𝜀𝑟 → ∞ varies per dielectric angle.
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Figure 2.15: 𝜈 as a function of 𝜀𝑟. When 𝜈 is less than unity, as is the case for all values
of 𝜀𝑟 for the angles shown above, the electric-field values can diverge on the approach to
the triple point.

The equipotentials of 𝛼 = 6.12∘ configuration is shown in Figure 2.16.
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Figure 2.16: Equipotentials near the triple-point for 𝛼 = 6.12∘. −3500 kV applied at
the cathode. The lower half-space (yellow shaded) is the bulk dielectric, and the upper
half-space is vacuum.

2.A.3 The Triple-Point Fields and Charge

Following from the potential form in Equation (2.36), the electric field takes the form:

�⃗� = −∇⃗Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−𝐴1𝜈 sin
(︁
𝜈
[︁
𝜑− 𝜋

2
+ 𝛼

]︁)︁
𝑟𝜈−1𝑟−
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𝜈
[︁
𝜑− 𝜋

2
+ 𝛼

]︁)︁
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2
− 𝛼
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(︁
𝜈
[︁
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2
+ 𝛼

]︁)︁
𝑟𝜈−1𝑟−
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(︁
𝜈
[︁
𝜑 +

𝜋

2
+ 𝛼

]︁)︁
𝑟𝜈−1𝜑

−𝜋
2
− 𝛼 < 𝜑 < 0.

(2.42)

The displacement field for a linear medium in this configuration is given by:

𝐷𝜑 = 𝜀𝐸𝜑 = −
{︃

𝜀0𝐴1𝜈 cos
(︀
𝜈
[︀
𝜑− 𝜋

2
+ 𝛼

]︀)︀
𝑟𝜈−1 0 < 𝜑 < 𝜋

2
− 𝛼

𝜀0𝜀𝑟𝐴2𝜈 cos
(︀
𝜈
[︀
𝜑 + 𝜋

2
+ 𝛼

]︀)︀
𝑟𝜈−1 −𝜋

2
− 𝛼 < 𝜑 < 0.

(2.43)

The charge on the electrode can then be written as:

𝑄 =

∮︁
𝑆

�⃗� · 𝑑�⃗� =

∮︁
𝑆

�⃗�𝜑 · 𝑑𝑎𝜑. (2.44)
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The charge on the top electrode for a finite cylinder of height ∆𝑧 is:

𝑄top =

Δ𝑧
2∫︁

−Δ𝑧
2

𝑅∫︁
0

�⃗� ·
(︁
−𝑑𝑟𝑑𝑧𝜑

)︁
= −∆𝑧

𝑅∫︁
0

𝑑𝑟𝐷𝜑

(︁
𝑟,
𝜋

2
− 𝛼

)︁

= ∆𝑧𝜀0𝜈𝐴1
𝑅𝜈

𝜈
= ∆𝑧𝜀0𝑅

𝜈𝐴1.

(2.45)

while the charge on the bottom electrode is:

𝑄bottom =

Δ𝑧
2∫︁

−Δ𝑧
2

𝑅∫︁
0

�⃗� ·
(︁
𝑑𝑟𝑑𝑧𝜑

)︁
= ∆𝑧

𝑅∫︁
0

𝑑𝑟𝐷𝜑

(︁
𝑟,−𝜋

2
− 𝛼

)︁
=

= −∆𝑧𝜀0𝜀𝑟𝐴2𝜈
𝑅𝜈

𝜈
= −∆𝑧𝜀0𝜀𝑟𝑅

𝜈𝐴2.

(2.46)

and, finally, the total charge for a finite cylinder of height ∆𝑧 is:

𝑄total = 𝑄top + 𝑄bottom = ∆𝑧𝜀0𝑅
𝜈𝐴1 − ∆𝑧𝜀0𝜀𝑟𝑅

𝜈𝐴2 = ∆𝑧𝜀0𝑅
𝜈 (𝐴1 − 𝜀𝑟𝐴2) . (2.47)

2.A.4 Electrostatic Energy Around the Triple Point

The electrostatic energy by integrating the energy density:

𝑊𝐸 =
1

2

∫︁
�⃗� · �⃗�𝑑𝜏 =

1

2

∫︁
𝜀�⃗� · �⃗�𝑑𝜏 , (2.48)

where the last equality assumes a linear dielectric so that the constitutive relation, �⃗� = 𝜀�⃗�
applies. Noting that the field is piecewise for this configuration, so that the integral
of Equation (2.48) also requires piecewise treatment, where the energy density for the
vacuum region is:

𝜀0
2
�⃗�1 · �⃗�1 =

𝜀0
2

(︃
[−𝐴1𝜈 sin (𝜈 [𝜑− 𝜋/2 + 𝛼]) 𝑟𝜈−1]

2
+

[−𝐴1𝜈 cos (𝜈 [𝜑− 𝜋/2 + 𝛼]) 𝑟𝜈−1]
2

)︃
=

𝜀0
2
𝐴2

1𝜈
2𝑟2𝜈−2, (2.49)

and the energy density for the linear dielectric region is:

𝜀

2
�⃗�2 · �⃗�2 =

𝜀

2

(︃
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𝜀

2
𝐴2

2𝜈
2𝑟2𝜈−2. (2.50)

Integrating over the finite cylinder noted at the beginning of this development and ex-
panding 𝜀 = 𝜀0𝜀𝑟:
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(2.51)
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and finally:

𝑊𝐸 =
1

4
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. (2.52)

2.A.5 Capacitance of the Triple-Point Region

The capacitance is defined by:

𝐶 =
𝑄2

total

2𝑊𝐸

. (2.53)

Pulling in Equation (2.47) and Equation (2.52) gives:
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(2.54)

Recalling the boundary conditions from Equations (2.37) and (2.38), the constants can
be defined as a ratio of sinusoidal terms:
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In particular, using the sinus ratio, i.e. the tangential boundary condition:
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)︁]︁)︁2
⎛⎝ 1

sin
[︁
𝜈
(︁𝜋

2
− 𝛼

)︁]︁
⎞⎠2
⎛⎜⎝
[︁𝜋

2
− 𝛼

]︁ [︁
sin
(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁]︁2
+[︁𝜋

2
+ 𝛼

]︁
𝜀𝑟

[︁
sin
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁]︁2
⎞⎟⎠

(2.56)

and finally:

𝐶 =
1

𝜈
𝜀0∆𝑧

2
(︁

sin
[︁
𝜈
(︁𝜋

2
+ 𝛼

)︁]︁
+ 𝜀𝑟 sin

[︁
𝜈
(︁𝜋

2
− 𝛼

)︁]︁)︁2
(︁𝜋

2
− 𝛼

)︁
sin2

(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
+
(︁𝜋

2
+ 𝛼

)︁
𝜀𝑟sin

2
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁ . (2.57)
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It should be noted that following this treatment using the geometry from Schächter leads
to a form for Equation (2.57) that does not include the 1/𝜈 factor, which is apparently a
mistake on the part of the formulation in [4]. This work will follow the formulation here
to maintain consistency.

2.A.6 The Effective Voltage of the Triple-Point Region

The effective voltage in the region is defined by:

𝑉eff ≡ 𝑄total

𝐶
, (2.58)

where the total charge in the triple-point region is from Equation (2.47), and the capaci-
tance is from Equation (2.57). Substituting into Equation (2.58) gives:

𝑉eff =
∆𝑧𝜀0𝑅

𝜈 (𝐴1 − 𝜀𝑟𝐴2)

1

𝜈
𝜀0∆𝑧

2
(︁

sin
[︁
𝜈
(︁𝜋

2
+ 𝛼

)︁]︁
+ 𝜀𝑟 sin

[︁
𝜈
(︁𝜋

2
− 𝛼

)︁]︁)︁2
(︁𝜋

2
− 𝛼

)︁
sin2

(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
+
(︁𝜋

2
+ 𝛼

)︁
𝜀𝑟sin

2
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁
. (2.59)

The majority of the denominator in Equation (2.59) can be collected into a function 𝜉(𝜈):

𝜉 (𝜈) =

(︁𝜋
2
− 𝛼

)︁
sin2

(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
+
(︁𝜋

2
+ 𝛼

)︁
𝜀𝑟sin

2
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁
2𝜈
(︁

sin
[︁
𝜈
(︁𝜋

2
+ 𝛼

)︁]︁
+ 𝜀𝑟 sin

[︁
𝜈
(︁𝜋

2
− 𝛼

)︁]︁)︁2 , (2.60)

so that:
𝑉eff = 𝐴1𝜈

2𝑅𝜈

(︂
1 − 𝐴2

𝐴1

𝜀𝑟

)︂
𝜉 (𝜈)

= 𝜈2𝐴1𝑅
𝜈

⎛⎝1 −

⎡⎣−sin
(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁
sin
(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
⎤⎦ 𝜀𝑟

⎞⎠ 𝜉 (𝜈)

= 𝜈2𝐴1𝑅
𝜈
sin
(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
+ 𝜀𝑟 sin

(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁
sin
(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁ 𝜉 (𝜈) ,

(2.61)

where the tangential boundary condition from Equation (2.55) was employed again. In
keeping with the definitions in [4], another function, 𝜒(𝜈), can be defined:

𝜒 (𝜈) =
1

𝜉 (𝜈)

sin
(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
sin
(︁
𝜈
[︁𝜋

2
+ 𝛼

]︁)︁
+ 𝜀𝑟 sin

(︁
𝜈
[︁𝜋

2
− 𝛼

]︁)︁ . (2.62)

Finally, the effective voltage can be written simply as:

𝑉eff =
𝜈2𝐴1𝑅

𝜈

𝜒 (𝜈)
, (2.63)

This, again, differs from the developments in [4] by a factor of 𝜈 due to the initial error
in the formulation of capacitance.
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2.A.7 Integrated Current with Constant Charge

The current itself will take the form of a Fowler-Nordheim (FN) source with constant
coefficients using the field calculated directly from Equation (2.42), rather than the fields
by finite difference solution, in which the spatial discretization always models the metal
boundary as orthogonal or conformal to the dielectric at the intersection of the boundaries.
The FN form used here is:

𝐽 ≃ 𝑘1𝐸
2 exp

(︂
−𝑘2
𝐸

)︂
, (2.64)

where the coefficients are:

𝑘1 =
1.54 × 10−6

𝜑𝑤

[︂
A

V2

]︂
; 𝑘2 = 6.83 × 109𝜑1.5

𝑤

[︂
V

m

]︂
;𝜑𝑤 ≡ work function [eV] . (2.65)

The work function, 𝜑𝑤, is for the cathodic material where emission occurs, and is typically
assumed a metal such as copper with 𝜑𝑤 = 4.4 eV. The total integrated current over the
cathodic region in the finite region mentioned at the beginning of this section is given by:

𝐼
𝑄top

top = 𝑘1

Δ𝑧/2∫︁
−Δ𝑧/2

𝑅∫︁
0

𝐸2
1 exp

(︂
− 𝑘2
𝐸1

)︂
𝑑𝑟𝑑𝑧

= 𝑘1∆𝑧

𝑅∫︁
0

𝐴2
1𝜈

2𝑟2𝜈−2 exp

(︃
− 𝑘2√︀

𝐴2
1𝜈

2𝑟2𝜈−2

)︃
𝑑𝑟

= 𝐴2
1𝜈

2𝑘1∆𝑧

𝑅∫︁
0

𝑟2𝜈−2 exp

(︂
− 𝑘2
𝐴1𝜈

1

𝑟𝜈−1

)︂
𝑑𝑟.

(2.66)

Only the field in the vacuum region is required for the integrated current in Equa-
tion (2.66). A few substitutions are used for non-dimensionalization:

𝑎0 [unitless] =
𝑘2

𝐸eff,Q

, (2.67)

𝐸eff,Q

[︂
V

m

]︂
=

𝑄top

𝜀0𝑅∆𝑧

, (2.68)

𝑄top [C] = 𝐴1𝜀0∆𝑧𝑅
𝜈 . (2.69)

This development will use two, more-direct substitutions. The first is a minor manipula-
tion of Equation (2.67):

𝑎0 =
𝑘2

𝐸eff,Q

⇒ 𝑎0
𝜈

=
𝑘2

𝜈𝐸eff,Q

=
𝑘2
𝜈

𝜀0𝑅∆𝑧

𝑄top

=
𝑘2
𝜈

𝜀0𝑅∆𝑧

𝐴1𝜀0∆𝑧𝑅𝜈
=

𝑘2
𝐴1𝜈

𝑅

𝑅𝜈

⇒ 𝑎0
𝜈

[unitless] =
𝑘2
𝐴1𝜈

𝑅

𝑅𝜈
, (2.70)
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and the other is a multiplicative factor in units of current:

𝐼0 = ∆𝑧𝑅𝑘1𝐸
2
eff,Q = ∆𝑧𝑅𝑘1

(︂
𝑄top

𝜀0𝑅∆𝑧

)︂2

= ∆𝑧𝑅𝑘1

(︂
𝐴1𝜀0∆𝑧𝑅

𝜈

𝜀0𝑅∆𝑧

)︂2

= ∆𝑧𝑅𝑘1

(︂
𝐴1𝑅

𝜈

𝑅

)︂2

= ∆𝑧𝑅𝑘1
𝐴2

1𝑅
2𝜈

𝑅2

⇒ 𝐼0 [A] = 𝐴2
1𝑘1∆𝑧

𝑅2𝜈

𝑅
, (2.71)

Schächter also employs a substitution of the form:

− 𝑘2
𝐴1𝜈

1

𝑟𝜈−1
= −𝑎0

𝜈
𝑦, (2.72)

where 𝑦 is simply a non-dimensionalized radius, i.e.:

𝑦 =
𝑘2
𝐴1𝜈

𝑟

𝑟𝜈
𝜈

𝑎0
=

𝑘2
𝐴1𝜈

𝑟

𝑟𝜈
𝐴1𝜈𝑅

𝜈

𝑘2𝑅
=

𝑘2
𝑘2

𝐴1𝜈

𝐴1𝜈

𝑟

𝑟𝜈
𝑅𝜈

𝑅
=

𝑟

𝑅

𝑅𝜈

𝑟𝜈
=

𝑟1−𝜈

𝑅1−𝜈
. (2.73)

The differential on Equation (2.73) is:

𝑑𝑦 = (1 − 𝜈)
𝑟−𝜈

𝑅1−𝜈
𝑑𝑟 = (1 − 𝜈)

𝑅𝜈

𝑅

1

𝑟𝜈
𝑑𝑟, (2.74)

and to get rid of the 𝑟 on the right-hand side of Equation (2.74), simply rearrange Equa-
tion (2.73) to get:

𝑦 =
𝑟1−𝜈

𝑅1−𝜈
⇒ 𝑟1−𝜈 = 𝑅1−𝜈𝑦 ⇒ 𝑟 =

(︀
𝑅1−𝜈𝑦

)︀ 1
1−𝜈 = 𝑅

1−𝜈
1−𝜈 𝑦

1
1−𝜈 = 𝑅𝑦

1
1−𝜈 . (2.75)

Substituting Equation (2.75) into Equation (2.74) and rearranging to obtain 𝑑𝑟 directly:

𝑑𝑦 = (1 − 𝜈)
𝑅𝜈

𝑅

1

𝑟𝜈
𝑑𝑟 ⇒ 𝑑𝑟 =

1

1 − 𝜈

𝑅

𝑅𝜈
𝑟𝜈𝑑𝑦 =

1

1 − 𝜈

𝑅

𝑅𝜈
𝑅𝜈𝑦

𝜈
1−𝜈 𝑑𝑦 =

𝑅

1 − 𝜈
𝑦

𝜈
1−𝜈 𝑑𝑦

𝑑𝑟 =
𝑅

1 − 𝜈
𝑦

𝜈
1−𝜈 𝑑𝑦. (2.76)

Going back to the current in Equation (2.66) and padding with unit terms for normaliza-
tion:

𝐼
𝑄top

top = 𝐴2
1𝑘1∆𝑧𝜈

2

𝑅∫︁
0

𝑟2𝜈

𝑟2

(︂
𝑅2

𝑅2𝜈

𝑅2𝜈

𝑅2

)︂
exp

(︂
− 𝑘2
𝐴1𝜈

𝑅

𝑅𝜈

𝑅𝜈

𝑅

𝑟

𝑟𝜈

)︂
𝑑𝑟, (2.77)
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and substituting with Equations (2.69) to (2.72) and (2.76):

𝐼
𝑄top

top =

(︂
𝐴2

1𝑘1∆𝑧
𝑅2𝜈

𝑅

)︂
⏟  ⏞  

≡𝐼0

𝜈2

𝑅

𝑅∫︁
0

𝑟2𝜈

𝑟2
𝑅2

𝑅2𝜈⏟  ⏞  
≡1/𝑦2

exp

⎛⎜⎜⎜⎝− 𝑘2
𝐴1𝜈

𝑅

𝑅𝜈⏟  ⏞  
≡𝑎0/𝜈

𝑟

𝑟𝜈
𝑅𝜈

𝑅⏟  ⏞  
≡𝑦

⎞⎟⎟⎟⎠ 𝑑𝑟

= 𝐼0
𝜈2

𝑅

𝑅∫︁
0

𝑦−2 exp
(︁
−𝑎0

𝜈
𝑦
)︁(︂ 𝑅

1 − 𝜈
𝑦

𝜈
1−𝜈 𝑑𝑦

)︂
⏟  ⏞  

𝑑𝑟

= 𝐼0
𝜈2

𝑅

𝑅

− (𝜈 − 1)

𝑅∫︁
0

𝑦
−2(1−𝜈)+𝜈

1−𝜈 exp
(︁
−𝑎0

𝜈
𝑦
)︁
𝑑𝑦

= −𝐼0
𝜈2

𝜈 − 1

𝑦=1∫︁
𝑦=0

𝑦
3𝜈−2
1−𝜈 exp

(︁
−𝑎0

𝜈
𝑦
)︁
𝑑𝑦.

(2.78)

Classically integrating by parts with:

∫︁
𝑢𝑑𝑣 = 𝑢𝑣 −

∫︁
𝑣𝑑𝑢

⎧⎨⎩ 𝑢 = exp
(︁
−𝑎0

𝜈
𝑦
)︁

𝑑𝑢 = −𝑎0
𝜈

exp
(︁
−𝑎0

𝜈
𝑦
)︁
𝑑𝑦

𝑑𝑣 = 𝑦
3𝜈−2
1−𝜈 𝑑𝑦

𝑣 =

(︂
1 − 𝜈

2𝜈 − 1

)︂
𝑦

2𝜈−1
1−𝜈

. (2.79)

After some manipulation of terms, the integration produces:

𝐼
𝑄top

top = 𝐼0
𝜈2

2𝜈 − 1

⎡⎣exp
(︁
−𝑎0

𝜈

)︁
+

𝑎0
𝜈

1∫︁
0

𝑦−
2𝜈−1
𝜈−1 exp

(︁
−𝑎0

𝜈
𝑦
)︁
𝑑𝑦

⎤⎦ . (2.80)

It should be noted that this is precisely the form presented in [4]; however, the form for
the current by effective voltage has a slightly different form as a result of the error in
the capacitance which was not used in the form of the current by constant charge on the
electrode.

2.A.8 Integrated Current with Constant Effective Voltage

The electric field in this case is defined in terms of constant 𝑉eff from Equation (2.63),
which can be rewritten as:

𝑉eff =
𝜈2𝐴1𝑅

𝜈

𝜒 (𝜈)
⇒ 𝐴1𝜈 =

𝑉eff𝜒 (𝜈)

𝜈𝑅𝜈
,

so that the electric field can be written:

𝐸1 = 𝐴1𝜈𝑟
𝜈−1 =

𝑉eff𝜒 (𝜈)

𝜈𝑅𝜈
𝑟𝜈−1. (2.81)
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Recalling the normalization from Equation (2.73), Equation (2.81) can be multiplied by
𝑅/𝑅 to give:

𝐸1 =
𝑉eff𝜒 (𝜈)

𝜈𝑅𝜈
𝑟𝜈−1𝑅

𝑅
=

𝑉eff

𝑅

𝜒 (𝜈)

𝜈

𝑟𝜈−1

𝑅𝜈/𝑅

=
𝑉eff

𝑅

𝜒 (𝜈)

𝜈

𝑟−(1−𝜈)

𝑅−(1−𝜈)
=

𝑉eff

𝑅

𝜒 (𝜈)

𝜈

⎛⎜⎜⎝ 𝑟1−𝜈

𝑅1−𝜈⏟  ⏞  
≡𝑦

⎞⎟⎟⎠
−1

=
𝑉eff

𝑅

𝜒 (𝜈)

𝜈
𝑦−1.

(2.82)

Using two additional definitions for constants:

𝐼1 = ∆𝑧𝑅𝑘1

(︂
𝑉eff

𝑅

)︂2

, (2.83)

𝑏0 =
𝑘2

𝑉eff/𝑅
, (2.84)

the FN current density from Equation (2.64) can be integrated again using the substitu-
tions from Equation (2.82) and Equation (2.76) for the differential:

𝐼𝑉eff
top = 𝑘1

Δ𝑧/2∫︁
−Δ𝑧/2

𝑅∫︁
0

𝐸2
1 exp

(︂
− 𝑘2
𝐸1

)︂
𝑑𝑟𝑑𝑧

= 𝑘1∆𝑧

𝑦=1∫︁
𝑦=0

(︂
𝑉eff

𝑅

𝜒 (𝜈)

𝜈
𝑦−1

)︂2

exp

(︃
− 𝑘2

𝑉eff

𝑅
𝜒(𝜈)
𝜈
𝑦−1

)︃
𝑅

1 − 𝜈
𝑦

𝜈
1−𝜈 𝑑𝑦

= ∆𝑧𝑅𝑘1

(︂
𝑉eff

𝑅

)︂2

⏟  ⏞  
≡𝐼1

𝜒2 (𝜈)

𝜈2 (1 − 𝜈)

𝑅∫︁
0

𝑦
𝜈

1−𝜈
−2 exp

⎛⎜⎜⎜⎝− 𝑘2
𝑉eff/𝑅⏟  ⏞  

≡𝑏0

𝜈

𝜒 (𝜈)
𝑦

⎞⎟⎟⎟⎠ 𝑑𝑦

= 𝐼1
𝜒2 (𝜈)

𝜈2 (− [𝜈 − 1])

𝑅∫︁
0

𝑦
𝜈

1−𝜈
− 2−2𝜈

1−𝜈 exp

(︂
−𝑏0

𝜈

𝜒 (𝜈)
𝑦

)︂
𝑑𝑦

= −𝐼1
𝜒2 (𝜈)

𝜈2 (𝜈 − 1)

𝑅∫︁
0

𝑦
3𝜈−2
1−𝜈 exp

(︂
−𝑏0

𝜈

𝜒 (𝜈)
𝑦

)︂
𝑑𝑦.

(2.85)

Again, classical integration by parts as in Equation (2.79):

𝑢 = exp

(︂
− 𝑏0𝜈

𝜒 (𝜈)
𝑦

)︂
,

𝑑𝑢 = − 𝑏0𝜈

𝜒 (𝜈)
exp

(︂
𝑏0𝜈

𝜒 (𝜈)
𝑦

)︂
𝑑𝑦,

𝑑𝑣 = 𝑦
3𝜈−2
1−𝜈 𝑑𝑦,

𝑣 =

(︂
1 − 𝜈

2𝜈 − 1

)︂
𝑦

2𝜈−1
1−𝜈 ,

(2.86)
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and with some manipulation of terms, integration gives:

𝐼𝑉eff
top = 𝐼1

𝜒2 (𝜈)

𝜈2 (2𝜈 − 1)

⎡⎣exp

(︂
− 𝑏0𝜈

𝜒 (𝜈)

)︂
+

𝑏0𝜈

𝜒 (𝜈)

1∫︁
0

𝑦−
2𝜈−1
𝜈−1 exp

(︂
− 𝑏0𝜈

𝜒 (𝜈)
𝑦

)︂
𝑑𝑦

⎤⎦ . (2.87)

Again, it must be stressed that this form differs from that presented in [4] as a result
of an error in the capacitance calculation, which shows in both Equation (2.87) and the
definition of 𝜒(𝜈) in Equation (2.62).

2.B Diffusion Model
The theory presented herein will formulate a basic first-principles assessment of diffu-

sive transport of a fixed-flux outgassing species with constant flux from a surface, with
the possibility of further outgassing from electron bombardment, and a single loss term
in the form of ionization of the outgassing species. Ionized species will be subject to
electromagnetic forces that are of greater significance than diffusive processes in cases of
interest, and so ions will be considered a loss in the frame of the diffusive species. The
procedure consists of the following:

1. Assume a constant flux from a plane dielectric surface following insights and develop-
ments from [13, 24, 64, 65]. (Other boundary conditions should be set as appropriate,
e.g. open boundary conditions at the semi-infinite boundary.)

2. Apply diffusivity forms from [64].

3. Find Fick’s second law analog: the time derivative of the density is the negative
of the gradient of the particle flux rate minus any losses and plus any gains. This
development will not consider gains, but will consider ionization losses.

4. Find Fick’s first law analog for a gaseous discharge by looking at the concentration-
basis flux relations for a 1-D plane in a 2-D volume [63].

5. Add relations for outgassing by electron bombardment following [70].

The diffusion coefficient from Item 2 is spatially dependent due to the variation in pressure
(and possibly gas constituents depending on model; this study assumes diffusivity based
on binary species) and therefore will generally require a gradient treatment that will be
addressed numerically, but theoretical treatment will neglect this for tractability. The
sink term used herein is also spatially dependent but will be averaged out in theoretical
treatment. Item 3 is formulated by looking at the particle continuity through a volume.
Item 4 is technically just applied following classical treatment, e.g. [63], with the added
assumption that diffusivity is spatially dependent. Finally, Item 5 is just a straightforward
application of emission models following bombardment. The numerical treatment takes
a two-step approach that is not strictly equivalent to the typical reaction-diffusion model
discussed here since densities are not updated synchronously; furthermore, the approach
of using a loss rate dependent on distribution-average quantities might have difficulty
modeling large local gradients, and will presume a Maxwellian distribution that is known
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to not hold generally. In principle, a basic assumption for this treatment is that the
gradients are sufficiently resolved over a grid size, and care will simply be taken to ensure
that this condition is true for operating conditions of interest such that arguments for
linearity may be applied.

2.B.1 Derivation of a 1-D Diffusion Relation

Returning to Item 3, and restricting this treatment to 1-D diffusion for now, Fick’s
second law for the typical configuration and physics processes considered here is derived
from particle continuity through a volume, in this case taken as 𝐴·𝛿𝑦, with the area-normal
conformal with the 𝑦 axis as per Figure 4.20:

𝛿𝑛diff

[︂
particles

m3

]︂
=

⎛⎜⎜⎜⎜⎜⎝
[𝑗diff (𝑦) − 𝑗diff (𝑦 + 𝛿𝑦)]

[︂
particles

m2 · s

]︂
· 𝛿𝑡 [s] · 𝐴 [m2]

𝐴 [m2] 𝛿𝑦 [m]

−𝐾𝐿

[︂
m3

s

]︂
𝑛𝑒

[︂
electrons

m3

]︂
𝑛diff

[︂
particles

m3

]︂
𝛿𝑡 [s]

⎞⎟⎟⎟⎟⎟⎠ , (2.88)

where 𝑛diff is the number density of diffusing species, 𝑗diff is the flux across an areal region,
𝐴, in a volume with with thickness 𝛿𝑦, 𝐾𝐿 is the reaction rate constant for the loss term,
assuming reaction of the diffusing species with electrons only, hence 𝑛𝑒. The change in
flux across the volume faces is:

𝑗diff (𝑦 + 𝛿𝑦) = 𝑗diff (𝑦) +
𝜕𝑗diff
𝜕𝑦

𝛿𝑦. (2.89)

The reaction rate constant for the loss term is taken as the distribution-averaged reaction
rate constant following classical treatment, e.g. [34], limiting to ionization:

𝐾𝐿 = 𝐾𝑖𝑧 = ⟨𝜎𝑖𝑧𝑣⟩ . (2.90)

Particle continuity from Equation (2.88) then reduces to:

𝛿𝑛diff =

[︂
−𝜕𝑗diff

𝜕𝑦
𝛿𝑦

]︂
· 𝛿𝑡 · 𝐴

𝐴𝛿𝑦
− ⟨𝜎𝑖𝑧𝑣⟩𝑛𝑒𝑛diff𝛿𝑡.

(2.91)

Moving 𝛿𝑡 and taking limits of 𝛿 quantities to differential quantities, Equation (2.91)
becomes the form of Fick’s second law for use herein:

𝜕𝑛diff

𝜕𝑡
= −𝜕𝑗diff

𝜕𝑦
− 𝑛𝑒𝑛diff ⟨𝜎𝑖𝑧𝑣⟩ . (2.92)

In the event that Fick’s first law is written for homogeneous, isotropic diffusion such that:

𝑗diff = −Ddiff
𝑑𝑛

𝑑𝑦
, (2.93)

so that Equation (2.92) becomes:

𝜕𝑛diff

𝜕𝑡
= Ddiff

𝜕2𝑛diff

𝜕𝑦2
− 𝑛𝑒𝑛diff ⟨𝜎𝑖𝑧𝑣⟩ . (2.94)
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Equation (2.94) is the so-called Malthus reaction-diffusion equation, accounting for a sin-
gle loss term via ionization, no gain term (although the boundary conditions can introduce
a constant flux of 𝑛), and, again, homogeneous, isotropic diffusion conditions. This form
is most valid at higher background pressures where the introduction of additional gaseous
species via outgassing does not significantly alter the local diffusion constant. At low pres-
sures, Equation (2.94) will likely be a problem vis-à-vis Equation (2.93), typically derived
from free-energy formulations and, again, tacitly assuming homogeneity. The diffusivity
is evaluated using [64], Equation 16.3-1, as noted in Section 2.4, c.f. Equation (2.27),
although Lennard-Jones might be more accurate if parameters are available as per [64].
Figure 2.17 shows the diffusion constant normalized to the diffusivity at atmospheric pres-
sure, i.e. 760 Torr. From 100 Torr and up, the gradient is shallower, dropping by less than
a decade from 100 Torr to atmosphere, while the gradient climbs relatively quickly at
lower pressures, and becomes exacerbated when moving from vacuum to regions suddenly
populated by (relatively) high-density outgassed diffusive species.
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Figure 2.17: Diffusivity vs. pressure, normalized to diffusivity at atmospheric pressure.
This study is particularly interested in vacuum to lower pressures, where the gradient is
much steeper. From vacuum to 100 Torr and up, the diffusivity reduces by roughly two
orders of magnitude. From 100 Torr and up, the diffusivity decreases by less than an order
of magnitude. Arbitrarily using values for argon diffusing through argon.
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2.B.2 Crank-Nicolson in 1-D

A common technique used to obtain a numerical solution to parabolic PDE’s is to mix
explicit and implicit discretization, covered extensively in standard texts such as [47, 71]:

n𝑖+1
diff − n𝑖

diff

𝑘
= Ddiff

∑︁
𝛽

𝐷+𝛽𝐷−𝛽

(︀
𝛾n𝑖+1

diff + [1 − 𝛾]n𝑖
diff

)︀
− 𝐿, (2.95)

where superscripted 𝑖’s are time indices; 𝑘 is the time-step; the summation is done over
all directions, 𝛽, in an orthogonal coordinate system; 𝐷+𝛽 is the forward finite-difference
scheme in the direction 𝛽; and 𝐷−𝛽 is the backward finite-difference scheme in the direction
𝛽. Using 𝛾 = 1/2 in Equation (2.95) gives the so-called “Crank-Nicolson” (CN) scheme:(︃

I− Ddiff
𝑘

2

∑︁
𝛽

𝐷+𝛽𝐷−𝛽

)︃
n𝑖+1

diff =

(︃
I + Ddiff

𝑘

2

∑︁
𝛽

𝐷+𝛽𝐷−𝛽

)︃
n𝑖

diff − 𝑘𝐿, (2.96)

where I is the identity matrix. The loss term for ionization can be written:

𝐿 ≡ 𝑛𝑒 (�⃗�, 𝑡)ndiff𝜎𝑖𝑧 (𝑣rel) 𝑣rel ≈ 𝑛𝑒 (�⃗�, 𝑡)

(︂
n𝑖+1

diff + n𝑖
diff

2

)︂
𝜎𝑖𝑧 (𝑣rel) 𝑣rel, (2.97)

where ndiff was written as a time average, 𝑛𝑒 is the electron density, 𝜎𝑖𝑧 is the ionization
cross section, and 𝑣rel is the relative velocity between projectile and target particles. This
study assumes 𝑣rel = 𝑣𝑒 in common practice for cases where electron velocities are much
larger than ion or neutral background gas velocities, i.e. 𝑣𝑒 >> 𝑣𝑖 > 𝑣bg.

𝐷+𝛽𝐷−𝛽 in Equation (2.96) can be written more explicitly with the forward/backward
shift operators, 𝑆±𝛽 in the direction 𝛽, e.g. 𝑆+𝑥𝑢≡𝑢𝑗+1,𝑥−𝑢𝑗,𝑥. Equation (2.96), plugging
in Equation (2.97) and rearranging, is then written:⎛⎜⎝ I +

𝑘𝑛𝑒𝜎𝑖𝑧𝑣𝑒
2

+

−Ddiff
𝑘

2

∑︀
𝛽

𝑆+𝛽 − 2I + 𝑆−𝛽

ℎ2
𝛽

⎞⎟⎠n𝑖+1
diff =

⎛⎜⎝ I− 𝑘𝑛𝑒𝜎𝑖𝑧𝑣𝑒
2

+

Ddiff
𝑘

2

∑︀
𝛽

𝑆+𝛽 − 2I + 𝑆−𝛽

ℎ2
𝛽

⎞⎟⎠n𝑖
diff . (2.98)

where ℎ𝛽 is the spatial discretization in the direction 𝛽. Implicit and explicit matrix
operators can be defined to write Equation (2.98) in the following manner:

Aimpln
𝑖+1
diff = Bexpln

𝑖
diff (2.99)

Aimpl and Bexpl are defined to denote the implicit and explicit matrix operators. For
further notional simplicity define 𝜆𝛽≡𝑘/(2ℎ2

𝛽) in the direction 𝛽, and 𝜅𝑖𝑧≡𝑘𝑛𝑒𝜎𝑖𝑧𝑣𝑒/2.
Writing Equation (2.96) in the 𝑦 direction only gives, for the implicit matrix:

Aimpl,𝑦 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

𝜆𝑦 (1 + 𝜅𝑖𝑧 + 2𝜆𝑦) −𝜆𝑦

. . . . . . . . .

𝜆𝑦 (1 + 𝜅𝑖𝑧 + 2𝜆𝑦) −𝜆𝑦

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.100)
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and the explicit matrix is:

Bexpl,𝑦 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−𝜆𝑦 (1 − 𝜅𝑖𝑧 − 2𝜆𝑦) 𝜆𝑦

. . . . . . . . .

−𝜆𝑦 (1 − 𝜅𝑖𝑧 − 2𝜆𝑦) 𝜆𝑦

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.101)

and the density vectors at current and forward time, respectively are:

n𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛𝑖
0

𝑛𝑖
1
...

𝑛𝑖
𝑁−1

𝑛𝑖
𝑁 = 𝑛𝐵

⎤⎥⎥⎥⎥⎥⎥⎦ ; n𝑖+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛𝑖+1
0 = 𝑛𝑖

0 +
Γ𝑦0

Ddiff
𝑛𝑖+1
1
...

𝑛𝑖+1
𝑁−1

𝑛𝑖+1
𝑁 = 𝑛𝐵

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.102)

Note Aimpl,𝑦 and Bimpl,𝑦 are written for Dirichlet conditions at the boundary, and 𝑛𝐵 is
the boundary value at the semi-infinite boundary , and the dielectric-boundary value, 𝑛0,
is set at the forward time to be the previous boundary value with the addition of the flux,
Γ, from the boundary, assumed constant for this study. Inverting the implicit matrix
gives the solution at the next time step, i.e. Equation (2.29).

2.B.3 Extending to 2-D with ADI

The extension to 2-D is done in typical manner following the standard treatment [47]
by applying a Crank-Nicolson implicit operator in the spatial finite-difference scheme,
expanding, and ignoring terms of higher order in 𝑘:

I± 𝑘

2

∑︁
𝛽

𝐷+𝛽𝐷−𝛽 =
∏︁
𝛽

(︂
I +

𝑘

2
𝐷+𝛽𝐷−𝛽

)︂
+

𝑘2

4

∏︁
𝛽,𝛾
𝛽 ̸=𝛾

𝐷+𝛽𝐷−𝛽𝐷+𝛾𝐷−𝛾 + · · ·

≈
∏︁
𝛽

(︂
I +

𝑘

2
𝐷+𝛽𝐷−𝛽

)︂
.

(2.103)

Neglecting higher orders of 𝑘 maintains the same order of truncation, but allows the matrix
operation for each direction to be separated and applied individually in tri-diagonal form,
similar to Equations (2.100) and (2.101):∏︁

𝛽

Aimpl,𝛽𝑛
𝑖+1
diff =

∏︁
𝛽

Bexpl,𝛽𝑛
𝑖
diff (2.104)
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Furthermore, it is common to write the scheme with the operators explicitly separated,
operating on meta-vectors over 𝛽 directions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂
𝐼 − 𝑘

2
𝐷+2𝐷−2

)︂
𝑢
𝑛+

1
𝛽 =

(︂
𝐼 +

𝑘

2
𝐷+1𝐷−1

)︂
𝑢𝑛(︂

𝐼 − 𝑘

2
𝐷+3𝐷−3

)︂
𝑢
𝑛+

2
𝛽 =

(︂
𝐼 +

𝑘

2
𝐷+2𝐷−2

)︂
𝑢
𝑛+

1
𝛽

...(︂
𝐼 − 𝑘

2
𝐷+𝛽𝐷−𝛽

)︂
𝑢
𝑛+

𝛽−1
𝛽 =

(︂
𝐼 +

𝑘

2
𝐷+[𝛽−1]𝐷−[𝛽−1]

)︂
𝑢
𝑛+

𝛽−2
𝛽(︂

𝐼 − 𝑘

2
𝐷+1𝐷−1

)︂
𝑢𝑛+1 =

(︂
𝐼 +

𝑘

2
𝐷+𝛽𝐷−𝛽

)︂
𝑢
𝑛+

𝛽−1
𝛽

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.105)

This is the general form of the so-called alternating directions implicit (ADI) scheme,
which is an unconditionally stable method, amounting to a Crank-Nicolson method in
multiple dimensions consisting of a half explicit operator and half implicit operator on
the solution.

2.B.4 Extending to Spatially-Varying Diffusivity

Finally, the particular form of ADI used for this implementation is attributed to Dendy
[66]: (︂

𝐼 − 𝑘

2
𝐴𝑛

𝑥

)︂
(𝑛diff)(𝑛+1)*

𝑖,𝑗 = 𝑘𝑓𝑛
𝑖,𝑗 + 𝑘𝐴𝑛

𝑦 (𝑛diff)𝑛𝑖,𝑗 +

(︂
𝐼 +

𝑘

2
𝐴𝑛

𝑥

)︂
(𝑛diff)𝑛𝑖,𝑗 ,(︂

𝐼 − 𝑘

2
𝐴𝑛

𝑦

)︂
(𝑛diff)𝑛+1

𝑖,𝑗 = (𝑛diff)(𝑛+1)*

𝑖,𝑗 − 𝑘

2
𝐴𝑛

𝑦 (𝑛diff)𝑛𝑖,𝑗 ,

(2.106)

where (𝑛 + 1)* is a meta-vector. For this study, the forcing function, 𝑓 (relating to the
ionization losses, in this case), is shown in Equation (2.106) for completion, but will be
set to zero and treated via a separate MCC module for this study; this technique could
pose problems if the diffusion mechanism is too quick such that the rate of diffusion
and the rate of reaction become highly disparate in a single time step. This will not
be a problem for the modest rates expected in this study, but in cases where this does
become an issue, typical techniques such as reducing the time step or spatial scales can
mitigate some of these concerns at the expense of computational efficiency. The method in
Equation (2.106) accounts for the variable diffusivity, i.e. variable coefficients, by applying
a weighted backward difference in time and an average in space in the parameters for the
functional form of diffusivity. Defining directional operators:

𝐴𝑛
𝑥 = 𝐷+

𝑥

(︀
D̄𝑥

diff

(︀
�̃�𝑛

diff,𝑖,𝑗

)︀
𝐷−

𝑥 ·
)︀
,

𝐴𝑛
𝑦 = 𝐷+

𝑦

(︀
D̄𝑦

diff

(︀
�̃�𝑛

diff,𝑖,𝑗

)︀
𝐷−

𝑦 ·
)︀
,

(2.107)

where:
(�̃�diff)𝑛𝑖,𝑗 =

3

2
(𝑛diff)𝑛𝑖,𝑗 −

1

2
(𝑛diff)𝑛−1

𝑖,𝑗 , (2.108)
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is a weighted backward difference in time (via the index 𝑛) at each node point (via the
indices [𝑖, 𝑗]), accounting for the temporal variability in the coefficients. Spatial variability
is treated via an average of the pressure in each direction using a one-step method, which
is then used as a parameter for the diffusivity:

D̄𝑥
diff (𝑛diff) = Ddiff

(︂
1

2

[︁
(𝑛diff)𝑖,𝑗 + (𝑛diff)𝑖−1,𝑗

]︁)︂
D̄𝑦

diff (𝑛diff) = Ddiff

(︂
1

2

[︁
(𝑛diff)𝑖,𝑗 + (𝑛diff)𝑖,𝑗−1

]︁)︂
.

(2.109)

Noting:
(𝑛diff)𝑛𝑖,𝑗 = 𝑛diff (𝑖ℎ, 𝑗ℎ, 𝑛𝑘) , (2.110)

the first step is done using the differential equation itself in standard practice:

(𝑛diff)1𝑖,𝑗 = (𝑛diff)0𝑖,𝑗 + 𝑘

⎡⎣𝐷+
𝑥

(︁
D̄𝑥

diff

[︁
(𝑛diff)0𝑖,𝑗

]︁
𝐷−

𝑥 [𝑛diff ]0𝑖,𝑗

)︁
+

𝐷+
𝑦

(︁
D̄𝑦

diff

[︁
(𝑛diff)0𝑖,𝑗

]︁
𝐷−

𝑦 [𝑛diff ]0𝑖,𝑗

)︁
⎤⎦+

𝑘𝑓
(︁
𝑖ℎ, 𝑗ℎ, 𝑡 = 0, [𝑛diff ]0𝑖,𝑗 , 𝐷

0
𝑥 [𝑛diff ]0𝑖,𝑗 , 𝐷

0
𝑦 [𝑛diff ]0𝑖,𝑗

)︁
.

(2.111)
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Chapter 3

Vacuum and Ultra-low Pressure
Breakdown

This chapter focuses on the treatment of discharges in vacuum through ultra-low
pressure (VULP) of a background gas up to a few hundred mTorr with weak collisionality,
leading to a discharge dominated by single-surface multipactor with minor space-charge
effects.

3.1 Ideal Multipactor Breakdown
The early theoretical development in this chapter regarding ideal multipactor break-

down in VULP focuses on single-particle dynamics; therefore, the schematic of Figure 1.3
for a dielectric-loaded diode is most relevant to the following treatment and is reproduced
in Figure 3.1b using the geometry for this chapter. A more general schematic is provided
in Figure 3.1a to accommodate additional discussion in Section 3.1.1, particularly with
respect to Equation (3.13) describing a source-sink treatment of the anode current.

3.1.1 VULP Theoretical Gain

The process of VULP breakdown is largely dominated by the single-surface multipactor
for the geometry of Figure 3.1. Typically, multipactor is driven by an external RF source
[9], but the underlying phenomena, particularly the physics described in Section 1.3.2 and
Section 2.3, are relevant to VULP DC discharges. The extension from RF to DC can be
understood as the limit at which a particle undergoes unidirectional transit and does not
experience an applied retarding/reversing potential during its excursion in an RF system;
in terms of the parameters relevant to this work, the equivalent RF system would have
a characteristics length, 𝐿 = 𝑣avg · (𝑇RF/2), where 𝑣avg is the average particle speed, and
𝑇RF is the RF period.

This section will develop the expected theoretical gain by distilling a number of non-
linearities near the dielectric surface to simpler single-particle physics, starting with the
electrostatic forces on a particle, separating into component directions perpendicular and
parallel to the dielectric surface for convenience. Assuming static fields, neglecting space
charge and magnetic fields, and treating collisionality as negligible, the forces on a particle
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(a) Generalized multipactor schematic for source-
sink formulation.

(b) Reproduction of Figure 1.3 for simplified
source-output formulation.

Figure 3.1: Generalized single-surface multipactor schematic for VULP breakdown, with
reproduction of Figure 1.3 for convenience. The more general schematic of (a) suggests
a source-sink perspective would be more useful in characterizing the discharge behavior
and output current. Considerations for ionization electrons, the energy distribution of
emitted secondaries, and the variation in 𝛿 per impact are explicitly shown. In the case of
a constant-waveform (CW) current with uniform 𝛿 for all impacts, the simplified schematic
of (b) is sufficient to characterize the output-current relation.

near the dielectric surface subjected to an applied DC field for the schematic of Figure 3.1
are:

𝐹 = 𝑚�⃗� = 𝑞�⃗� = 𝑞
(︁
�⃗�⊥ + �⃗�‖

)︁
. (3.1)

The lifetime of the particle, 𝑡life, is found from the perpendicular force:

𝐹⊥ = 𝑞𝐸⊥ = 𝑚
𝑑𝑣⊥
𝑑𝑡

⇒
−𝑣⊥0∫︁
𝑣⊥0

𝑑𝑣⊥ =

𝑡life∫︁
0

𝑞

𝑚
𝐸⊥𝑑𝑡 ⇒ 𝑣⊥0 = −1

2

𝑡life∫︁
0

𝑞

𝑚
𝐸⊥𝑑𝑡,

where the limits on perpendicular velocity are equal and opposite, assuming conservative
forces only with, again, negligible collisional effects. Also, assuming quasistatic conditions
(slowly varying perpendicular fields):

𝑡life = −2𝑚𝑣⊥0

𝑞𝐸⊥
. (3.2)

The force parallel to the dielectric surface provides the energy gain in vacuum:
𝑣‖𝑓∫︁

𝑣‖0

𝑑𝑣‖ =

𝑡life∫︁
0

𝑞

𝑚
𝐸‖𝑑𝑡,

where the assumption of quasistatic fields, again, simplifies the particle energy gain as:

𝑣‖𝑓 − 𝑣‖0 =
𝑞

𝑚
𝐸‖𝑡life. (3.3)
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Combining the quasistatic solutions above gives:

𝑣‖𝑓 − 𝑣‖0 =
𝑞

𝑚
𝐸‖

(︂
−2𝑚

𝑞

𝑣⊥0

𝐸⊥

)︂
= −2𝑣⊥0

𝐸‖
𝐸⊥

⇒ 𝑣‖𝑓 = 𝑣‖0 − 2𝑣⊥0

𝐸‖
𝐸⊥

, (3.4)

for which the impact energy is:

𝑊imp =
1

2
𝑚
(︀
𝑣2‖𝑓 + 𝑣2⊥𝑓

)︀
=

1

2
𝑚

[︃(︂
𝑣‖0 − 2𝑣⊥0

𝐸‖
𝐸⊥

)︂2

+ 𝑣2⊥0

]︃

=
1

2
𝑚

[︃(︂
𝑣‖0 −

2𝑣⊥0

tan (𝜒𝐸)

)︂2

+ 𝑣2⊥0

]︃
,

(3.5)

and the impact angle, with respect to the surface normal, is:

𝜃imp = tan−1

(︂
𝑣‖𝑓
𝑣⊥𝑓

)︂
. (3.6)

The impact energy and angle ultimately determine the number of secondaries emitted
per impact, as discussed in Section 2.3. Equation (3.5) states that the impact energy is
related only to the initial energy of emitted secondaries (mostly a material property unless
secondaries are scattered or reflected) and the surface-field angle. It must be stressed that
the impact energy is related to the ratio of the surface-field components (i.e. the surface-
field angle relative to the surface tangent), suggesting that the influence of parallel and
perpendicular fields on particle dynamics are coupled and their individual magnitudes are
insufficient to characterize VULP breakdown behavior.

Returning to Equation (3.5), additional insight can be gained by assuming initial
emission with velocity only in the perpendicular direction, i.e. 𝑣⊥0 = 𝑣0 so that lifetime
is maximized:

𝑊max-life
imp =

1

2
𝑚

[︃(︂
0 − 2𝑣0

tan (𝜒𝐸)

)︂2

+ 𝑣20

]︃
= 𝑊0

4 + tan2 (𝜒𝐸)

tan2 (𝜒𝐸)
, (3.7)

where 𝑊0 = 1
2
𝑚𝑣20 is the initial energy of emitted secondaries. In the interest of developing

a sense for the distribution behavior, representative metrics for the emitted distribution
are chosen as characteristic in an average or most-probable sense. The choice of normal
emission is further justifiable with this consideration, since the emission-angle spectrum
is peaked normal to the surface in a cosine distribution, effectively condensing emission
characteristics in the sense of most-probable characteristics. A typical value for 𝑊0 in
Equation (3.7) can be taken to be the most-probable energy of the emitted distribution;
for PTFE, 𝑊mode

emit = 1.85 eV [57].
The impact energy of Equation (3.7) can now be plotted as a function of the electric-

field angle, 𝜒𝐸, as in Figure 3.2. 𝜒𝐸 in Figure 3.2 ranges from 0∘ to 90∘ with respect to the
−𝑥 direction for the typical configuration as in the schematic of Figure 3.1, looking only at
downstream-oriented forces that return electrons to the surface; the full domain of 𝜒𝐸 is, of
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course, 0∘ to 360∘. It must be stressed that 𝜒𝐸 is the electric-field angle at the surface of the
dielectric, it is not the dielectric angle with respect to the electrode, 𝛼, nor is it the impact
angle with respect to the dielectric normal, 𝜃imp; furthermore, 𝜒𝐸 is not generally related
to 𝛼 and 𝜃imp past the initial conditions. The effect of scattered and reflected particles is
neglected. Figure 3.2 shows Equation (3.7) plotted with 𝑊1 and 𝑊2 for PTFE [2, 3, 57]
from normal through grazing incidence (regions noted as “𝛿 = 1”), denoting field-angle
regions in which multipactor may or may not occur depending on downstream surface
conditions coupled with characteristics of the impacting distribution. The region noted as
the “multiplicative region” is bounded by the 𝛿 = 1 regions, and illustrates impact energies
for which multipactor conditions are met for all impacts. “Absorption regions” are noted
for cases when impact energies are too low or too high to generate net secondaries. Below
𝑊1, multiplicative growth is not expected and steady-state dark-current can develop with
sufficient time. A saturated state with impact energies averaging 𝑊2 is not observed since
surface conditions do not support lifetimes and energy gains sufficient to push particles to
𝑊2 at the discharge onset. For an electron impacting the dielectric at normal incidence,
i.e. 𝜃imp = 0 with respect to the surface normal, 𝑊1(𝜃imp = 0) = 38.45 eV and the field
angle necessary for the model electrons to impact with 𝑊1 is 𝜒𝐸 = 𝜒1(𝜃imp = 0) = 24.20∘.
For an electron impacting the dielectric at grazing incidence, 𝑊1(𝜃imp = 𝜋/2) = 6.24 eV
and 𝜒1(𝜃imp = 𝜋/2) = 24.88∘. High-energy analogs for normal and grazing incidence are
𝑊2(𝜃imp = 0) = 2165.2 eV and 𝑊2(𝜃imp = 𝜋/2) = 5007.7 eV, respectively; the required 𝜒𝐸

can be read from Figure 3.2a to be < 5∘.

(a) Showing 𝑊1 and 𝑊2 regions. (b) Enlarged 𝑊1 region for illustration.

Figure 3.2: Impact energy, 𝑊imp, vs. electric-field angle, 𝜒𝐸, for VULP breakdown. Model
secondary-emission electrons are at 𝜃mode

emit = 𝜋/2 with respect to the surface tangent, with
𝑊mode

emit = 𝑊0 = 1.85 eV. 𝜒𝐸 = [0∘, 90∘] for this plot, overlaid on regions demarcated by
𝑊1 and 𝑊2. The intersection of 𝑊imp with 𝑊1 and 𝑊2 for grazing and normal incidence
indicate crossover points into various operating regions noted in the legend and further
delineated in the text. (b) is provided to clarify the small 𝑊1 region in (a) since it is most
relevant to phenomena discussed in this chapter.

Equation (3.5) suggests a strong dielectric-material dependence on VULP break-
down, since the emission energy of secondaries and initial surface-field angle are material-
dependent. In principle, VULP can therefore be predicted by the solution of the gen-
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eralized Poisson equation with the dielectric boundary conditions ultimately dictating
surface-field conditions:

∇2𝜑 (𝑥, 𝑦) +
(∇ · 𝜀 [𝑥, 𝑦])∇𝜑 (𝑥, 𝑦)

𝜀 (𝑥, 𝑦)⏟  ⏞  
𝜌𝑠,bound

= −𝜌𝑠,free (𝑥, 𝑦)

𝜀 (𝑥, 𝑦)
− 𝜌vol (𝑥, 𝑦)

𝜀 (𝑥, 𝑦)
,

lim
𝑦→0

(︀
𝐷⊥

𝑦>0 −𝐷⊥
𝑦<0

)︀
= 𝜌𝑠,free,

lim
𝑦→0

(︁
𝐷

‖
𝑦>0 −𝐷

‖
𝑦<0

)︁
= 𝑃

‖
𝑦>0 − 𝑃

‖
𝑦<0,

(3.8)

where this study is concerned with linear dielectrics with polarization, 𝑃 = 𝜀0(𝜀𝑟 − 1)�⃗�,
and the constitutive relation, �⃗� = 𝜀�⃗�. The boundary condition for the field parallel to the
surface then simplifies to the familiar form: lim

𝑦→0

(︁
�⃗�

‖
𝑦>0 − �⃗�

‖
𝑦<0

)︁
= 0. Equation (3.8), of

course, simplifies to the Laplace form in the absence of volume charge, 𝜌vol, and free surface
charge, 𝜌𝑠,free, prior to the discharge onset, although bound charge, 𝜌𝑠,bound, in the presence
of applied potential still remains, manifesting as net charge at the boundaries of dielectric
media by the usual dipole alignment. With such simplifications, Equation (3.8) can
be solved easily with simple numerical relaxation techniques in steady-state conditions;
XOOPIC can be readily employed for more complex, dynamic conditions, although the
same error restrictions across angles as described in Section 2.2.2 apply.

Returning to Equation (3.1) assuming quasistatic fields, the perpendicular-field rela-
tion with initial conditions 𝑣⊥(𝑡 = 0) = 𝑣⊥0 and 𝑦(𝑡 = 0) = 𝑦0 gives the displacement in
𝑦:

𝐹⊥ = 𝑞𝐸⊥ = 𝑚
𝑑𝑣⊥
𝑑𝑡

⇒ 𝑦(𝑡) − 𝑦0 =
𝑞𝐸⊥
2𝑚

𝑡2 + 𝑣⊥0𝑡, (3.9)

and the parallel field with 𝑣‖(𝑡 = 0) = 𝑣‖0 and 𝑥(𝑡 = 0) = 𝑥0 gives the range:

𝐹‖ = 𝑞𝐸‖ = 𝑚
𝑑𝑣‖
𝑑𝑡

⇒ 𝑥(𝑡) − 𝑥0 =
𝑞𝐸‖
2𝑚

𝑡2 + 𝑣‖0𝑡. (3.10)

The usual configuration for this study sets 𝑦0 = 0. Since the early-transient field conditions
are similar over the whole surface, the total excursion, 𝑥−𝑥0, is uniform as measured from
all downstream impact points for the characteristic particle through a particle lifetime
at both the early transient and at steady state. 𝑥 − 𝑥0 is more useful expressed as the
excursion over the particle lifetime, recalling 𝑡life from Equation (3.2):

𝑥 (𝑡life) − 𝑥0 =
2𝑚𝑣⊥0

𝑞𝐸⊥

(︂
𝑣⊥0

𝐸‖
𝐸⊥

− 𝑣‖0

)︂
. (3.11)

For the gains in this ideal example, particle populations are relatively low in the
early discharge (typically less than a few hundred picoseconds for systems in this study);
consequently, subsequent generations of particles in unsaturated regions will be influenced
largely by the applied potential. The number of impacts during transit to the anode can
therefore be calculated trivially with the background fields by:

𝑁imp =
dielectric surface length

single-particle excursion length
=

𝐷/cos (𝛼)

𝑥 (𝑡life) − 𝑥0

=
𝑞𝐸⊥𝐷

2𝑚𝑣⊥0 cos (𝛼)
(︁
𝑣⊥0

𝐸‖
𝐸⊥

− 𝑣‖0
)︁ . (3.12)
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Knowing the number of impacts allows for the calculation of the idealized theoretical
gain for the initial discharge conditions. The electric-current gain must be quantified
at this point, but since 𝛿 is a function of the impacting particle characteristics, not the
impacting current, the development of electric-current gain starts from the development
of the particle population across boundaries and should apply distribution metrics where
appropriate. A general formulation of the output current at the anode as a summation
of particle sources and sinks at the dielectric boundary is employed and detailed in Sec-
tion 3.A with the aid of Figure 3.1a. Note particularly that this treatment is primarily
valid for the initial discharge conditions, which saturate quickly as shown in Section 3.4.1.
The working form for the anodic current used in this study is:

𝐼anode =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

source
via seed⏞ ⏟ 
𝐼0 +

source via secondaries, 𝐼𝑚,
traceable to seed⏞  ⏟  

𝑁imp∑︁
1

𝛿𝑖 (𝑊imp, 𝜃imp) 𝐼𝑖−1 +

sink via dielectric absorption, 𝐼𝑎,
traceable to seed⏞  ⏟  ⎛⎝−

𝑁imp∑︁
1

(1 − 𝑓SRP) 𝐼𝑖−1

⎞⎠+

𝐼*0⏟ ⏞ 
source via
ionization

+

𝑁*
loci∑︁
1

𝑁*
imp∑︁
1

𝛿*𝑖 (𝑊imp, 𝜃imp) 𝐼*𝑖−1⏟  ⏞  
source via secondaries, 𝐼*𝑚,
traceable to ionization loci

+

⎛⎝−
𝑁*

imp∑︁
1

(1 − 𝑓SRP) 𝐼*𝑖−1

⎞⎠
⏟  ⏞  
sink via dielectric absorption, 𝐼*𝑎 ,

traceable to ionization loci

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.13)

where 𝐼anode is the anodic output current; 𝐼0 is the seed current from the cathode; the
𝑖th impact consists of a secondary-emission coefficient dependent on 𝑊imp and 𝜃imp as
per Section 2.3; 𝑓SRP = 𝑓scattered + 𝑓reflected is the total fraction of scattered and reflected
particles (SRP) per impact, which reduces the number absorbed per impact sink; and
𝑁imp is the number of generational particle impacts on the dielectric. Equation (3.13)
includes two terms for multiplicative current growth: 𝐼𝑚 accounts for contributions via
pure-multipactor growth that are traceable back to the seed with no contributions from
ionization, and 𝐼*𝑚 accounts for currents traceable to ionization locus points (ILP’s) in
the volume. Current impact sinks are similarly divided into 𝐼𝑎 traceable to the seed and
𝐼*𝑎 traceable to ILP’s. In the vacuum case, the growing current from impacting particles
can be approximated by a localized current, 𝐼𝑖 = 𝛿𝑖𝐼𝑖−1, where the 𝑖th impacting current
is dependent on the previous generation, or (𝑖 − 1)th current. In practice, this study
assumes that 𝐼* is negligible compared to the overall multiplicative growth. For the
limited ionization that does occur in VULP, particularly with the relatively low energy
of secondaries in the distribution such that only high-energy electrons will contribute
significantly to ionization, treatment of generations 𝐼*𝑖−1→𝐼*𝑖 can be written similar to
those from pure multipactor, i.e. 𝐼*𝑖 = 𝛿𝑖𝐼

*
𝑖−1 in the limit of weak collisionality. A more

thorough development of 𝐼* is presented in Section 4.1. Another simplifying assumption
can be made noting that 𝑣‖𝑓 >> 𝑣⊥𝑓 for practically all impacts in weak-collisionality
discharges, corroborated in Figure 3.8b for vacuum and in Figure 3.21b for ultra-low
pressure, where the impact angle is largely grazing, i.e. 𝑣 is mostly in the direction
parallel to the surface. 𝑣‖𝑓 >> 𝑣⊥𝑓 means Equation (3.6) can be taken to the maximum
𝜃imp, i.e. 𝜃imp = 𝜋/2 or 90∘ from the surface normal, letting all impacting particles
emit secondaries according to the grazing-incidence curve of Figure 2.9. In the case of
a continuous-waveform (CW) current for the 𝑖th impact, the 𝑖th current can be written
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as 𝐼𝑖 =
𝑖∏︀
1

𝛿𝑗(𝑊imp, 𝜃imp)𝐼0. With all the assumptions above, Equation (3.13) ultimately

reduces to a pure multipactor current in the following form:

𝐼anode = 𝐼0

𝑁imp∏︁
1

𝛿i ≡ 𝐼𝑚. (3.14)

In the case of a uniform distribution for 𝛿 at all impacts, Equation (3.14) reduces to an
exponential form that is readily pulled from the schematic of Figure 3.1b:

𝐼𝑚 = 𝐼0𝛿
𝑁imp . (3.15)

General characteristics of discharge behavior can now be considered with the aid
of Equation (3.15). Average behavior can be studied in terms of an ensemble-average
secondary-emission coefficient, 𝛿ens

avg. In practice, 𝛿ens
avg, would be calculated at simulation

time since it necessarily evolves with the growing ensemble in time, but Equation (3.15)
can be leveraged a-posteriori to calculate 𝛿ens

avg at peak current, 𝑡 = 𝑡peak, which is the edge
of when 𝑁imp from Equation (3.12) is still relevant:

𝛿ens
avg(𝑡peak) =

[︂
𝐼𝑚(𝑡peak)

𝐼0

]︂ 1
𝑁imp

. (3.16)

As will be shown, impact energies in discharges of interest to this study typically asymp-
tote to the first crossover, 𝑊1; consequently, 𝛿ens

avg asymptotes to unity and the output
current similarly asymptotes to 𝐼0. Formally:

lim
𝛿ens
avg→1

𝐼𝑚,avg = lim
𝛿ens
avg→1

𝐼0(𝛿
ens
avg)

𝑁ss
imp = 𝐼0, (3.17)

where the number of impacts is represented by 𝑁 ss
imp to emphasize that the discharge is

approaching steady-state; the number of impacts at steady state is generally not equivalent
to the number of impacts at the initial transient, noting that the growth of surface charge
and volume charge in the multipactor front effectively decreases particle lifetime and
range, which increases 𝑁imp while decreasing 𝛿ens

avg. Although not explicitly treated, 𝑁imp

is an implicit function of time since the single-particle excursion length of Equation (3.12)
is a function of time, depending on the evolution of the near-surface fields. The maximum
emission of secondaries for grazing incidence can be used in Equation (3.15) to facilitate
discussion of the gain limit, although it must be understood that the distribution of
energies for generated secondaries and the drive to saturation will generally not lead to
impacting secondaries with maximum gain. Some generality can be gained by effectively
dividing out the integration time for the current:

𝐼max/𝐼0 = 𝑁max
sec /𝑁max

0 = (𝛿ens
max)

𝑁imp , (3.18)

where 𝑁max
0 is the maximum number of primaries over a normalized seed-current integra-

tion time, 𝑁max
sec is the maximum number of secondaries over the same integration time, and

𝛿ens
max is the ensemble gain coefficient, which may be replaced with 𝛿global

max = 𝛿max(𝜃imp = 90∘)
(explicitly taking the global maximum of the Vaughan model) if interested in the gain
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limit. Information about local electric-current magnitudes is lost in the form of Equa-
tion (3.18), but since Equation (3.18) is simply counting particles, the relation should hold
for all scenarios. Note particularly that the development of Equations (3.13) to (3.15) tac-
itly assumes that all electrons from a given generation are absorbed at the same boundary
per impact, i.e. only the dielectric or only the anode as per the schematic of Figure 3.1b.
Further note that the neglected energy and spatial spread of the particle distributions will
markedly affect the output current, particularly over local integration times. Inclusion of
the distribution is best represented by 𝛿ens

avg in this framework.
A typical discharge case for this study includes a dielectric-loaded diode with gap-width

𝐷 = 2 mm, dielectric permittivity 𝜀𝑟 = 2.1, dielectric angle 𝛼 = 6.12∘, and applied voltage
of 𝑉 = −3500 V; the largely uniform initial surface fields as calculated with XOOPIC are
𝐸⊥ = 2.54 × 105 V/m and 𝐸‖ = −1.75 × 106 V/m, taken at the center of the dielectric.
The largest variation in the fields occur near the electrodes (∼ 30 % of 𝐸0 at maximum
for 6.12∘ with typical parameters) largely a result of the discretization and necessarily
stair-stepped Dirichlet condition at the electrode boundaries, as well as the influence of
the wedge characteristics (outlined in Appendix 2.A via theoretical considerations for the
Schächter source). Assuming all of the secondary-electron emission energy is associated
with the perpendicular velocity to give the longest lifetime and setting the most-probable
emission energy 𝑊mode

emit = 1.85 eV ⇒ 𝑣⊥0 = 8.07 × 105 m/s, the number of impacts over
the surface is:

𝑁imp =
(−1.602 × 10−19 C)

(︀
2.54 × 105 V

m

)︀
(0.002 m)⎡⎢⎢⎣

2
(︀
9.11 × 10−31 kg

)︀ (︁
8.07 × 105 m

s

)︁
cos (6.12∘) ·(︃[︁

8.07 × 105 m

s

]︁ −1.75 × 106 V
m

2.54 × 105 V
m

− 0

)︃
⎤⎥⎥⎦

∼ 10 impacts.

(3.19)

The limiting particle gain can be calculated from Equation (3.18) using a 𝛿global
max ∼ 4 for

PTFE:
𝑁max

sec /𝑁max
0 =

(︀
𝛿global
max

)︀𝑁imp = (4)10 ∼ 1 × 106. (3.20)

As will be described in Section 3.4.1, Equation (3.20) really applies to a region in the
discharge described in this study as the “multipactor front”, where the calculation for
𝑁imp largely holds until saturation cuts off the front. As parts of the dielectric approach
steady state, field conditions evolve to support impact energies at 𝑊1, 𝑁imp reaches a
steady-state as noted previously, and output current saturates to the input current in
typical cases.

3.1.2 Single-Particle Test

To verify the behavior of the single-particle approximation of Section 3.1.1, a simple
test at 6.12∘ is conducted in XOOPIC for a current low enough to ensure that any arcs
will be completed before the next primary is injected; for this particular case, the number
of particles injected is one (macro)particle every nanosecond. Parameters specific to this
section are summarized in Table 3.1, and otherwise standard parameters are listed in
Table 2.7.
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Table 3.1: General parameters for single-particle verification test in vacuum through ultra
low pressure (VULP) conditions. These parameters are used to illustrate agreement with
ideal gain described in Section 3.1.1. Other parameters are taken from Table 2.7.

Physical Parameter Symbol Value
Dielectric angle (with respect to electrode normal) 𝛼 6.12∘

Global max SE coefficient 𝛿global
max 4

𝛿max at normal incidence (for variable 𝛿 test) 𝛿max 2.95
Cathode voltage 𝑉cathode = −𝑉0 −3500 V

Gap width 𝐷gap 2 mm

Background pressure 𝑝bg 0 mTorr

Source current 𝐼0 1.602 × 10−10 A

Fraction scattered 𝑓Scattered 0
Fraction reflected 𝑓Reflected 0

Numerical Parameter Symbol Value
Macro-particle weighting np2c 1

Growth characteristic Symbol Value
Number of impacts (Equation (3.12)) 𝑁imp 10
Theoretical max gain (Equation (3.18)) 𝑁max

sec /𝑁max
0 1048576

The most pertinent diagnostics are summarized in Figure 3.3: number plots as a func-
tion of time are shown for a number of cases to verify Section 3.1.1, particularly Equa-
tion (3.18) and Equation (3.20). The closest to the ideal setup of Section 3.1 is Figure 3.3a,
with vertically emitted, monoenergetic secondaries (𝑊mode

emit = 1.85 eV) and a constant
𝛿 = 𝛿global

max for all impacts. A slight variation on the ideal case is shown Figure 3.3b with
vertically emitted, monoenergetic secondaries emitted according to the Vaughan model as
a function of impact energy and angle, 𝛿 = 𝛿(𝑊imp, 𝜃imp) using 𝛿max at normal incidence
as a parameter. Secondaries in Figure 3.3c are vertically emitted, Maxwellian-flux secon-
daries with 𝛿 = 𝛿(𝑊imp, 𝜃imp), adding particle-distribution characteristics in energy and
space. Finally, the most general case of semi-isotropic, Maxwellian-flux secondaries are
shown in Figure 3.3d, adding additional spatial distribution via a range of emission angles.
Note that in cases of Maxwellian-flux secondaries, a random sampling of a Maxwellian
distribution is implemented, which could require longer observation times to generate a
full arc; consequently, all plots are shown for 1 µs to facilitate reasonable statistics. In
all cases, the characteristics of a fully developed arc can be directly compared to Equa-
tion (3.20), or more generally with Equation (3.18) to gain insight into the sensitivity of
ideal results to increasingly general forms of secondary emission.

Recall that the analysis in Section 3.1 neglects particle distributions, which invariably
affects the growth rate and subsequent current via emission energy and energy gain/loss
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(a) Vertical emission, monoenergetic, 𝛿 = 𝛿max. (b) Vertical emission, monoenergetic, 𝛿 =
𝛿(𝑊imp, 𝜃imp).

(c) Vertical emission, Maxwellian flux, 𝛿 =
𝛿(𝑊imp, 𝜃imp).

(d) Semi-isotropic emission, Maxwellian flux, 𝛿 =
𝛿(𝑊imp, 𝜃imp).

Figure 3.3: Low-current multipactor test for a multiplicative discharge at 6.12∘. Number
plots are shown for: [Note bold text below indicates the change from the previous subfig-
ure.] (a) vertically emitted, monoenergetic (1.85 eV) secondaries at constant 𝛿 = 𝛿global

max ,
with inset showing details of growth through initial 5 ns; (b) vertically emitted, monoener-
getic secondaries at variable 𝛿 = 𝛿(𝑊imp, 𝜃imp); (c) vertically emitted, Maxwellian-flux
secondaries at variable 𝛿 = 𝛿(𝑊imp, 𝜃imp); (d) semi-isotropic, Maxwellian-flux secon-
daries at variable 𝛿 = 𝛿(𝑊imp, 𝜃imp).
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during excursion. It is clear that Figure 3.3a is in good agreement with the results of
Equation (3.18) to within a factor of four (pertinent growth characteristics are listed at
the bottom of Table 3.1), or more specifically by a factor of 𝛿 = 𝛿global

max
|𝑁actual

imp −𝑁estimate
imp | as

the number of impacts was overestimated by one impact (not shown, but evident when
tracing the configuration-space plots) as a result of near-electrode fields elongating early
and late trajectories due to the expected aberration in the fields approaching the elec-
trodes, resulting from the metallic boundary conditions and wedge characteristics of the
triple-point [4, 12] noted above. The agreement of Figure 3.3a with Equation (3.18) is
expected since this run directly uses ideal parameters. For the discharge represented by
Figure 3.3b, 𝛿ens

avg∼ 3.21 (not shown explicitly) at the peak anodic current, which marks
quenching of upstream growth. 𝛿ens

avg is measured from code diagnostics, where 𝛿 is now
determined by the characteristics of particles impacting the surface rather than being set
to a constant as in Figure 3.3a. Equation (3.18) for 10 bounces then gives ∼ 1.17 × 105,
which is consistent with the maximum gain in Figure 3.3b to within a factor of two, while
comparison with ideal growth from Figure 3.3a shows a reduction by ∼ 1 − 3 orders of
magnitude, depending on comparison with measured or theoretical gain. It is apparent
that multipactor gain is highly sensitive and non-linear with respect to distribution char-
acteristics where slight variations can alter both the number of impacts and 𝛿ens

avg from
ideal. Particles are still emitted vertically with the same energy, and particle secondary
yield is now a function of impacting characteristics. Low space-charge is not expected
to affect trajectories with the modest gains here, as per Equation (3.27). For the case
of vertically emitted, Maxwellian-flux secondaries in Figure 3.3c, 𝛿ens

avg∼ 3.07 for a fully
developed discharge, so the expected gain is ∼ 7.44 × 104, which overestimates the peak
growth in Figure 3.3c by about an order of magnitude. After sufficient statistics build up,
the ratio of the number of particles emitted with energies greater than kinetic temperature
(most-probable energy) to the number of particles emitted with energies less than kinetic
temperature is about three. 𝛿ens

avg is expected to vary considerably from the characteristics
of Figures 3.3a and 3.3b, where particles are emitted with the equivalent of most-probable
energy, or half kinetic temperature in 2-D, for the distribution used in Figure 3.3c. The
large reduction of particle gain from ideal gain despite a comparable 𝛿ens

avg at peak current
is a useful illustration of the sensitivity of multipactor characteristics to 𝑁imp. With more
particles emitted with higher energies, 𝑁imp is reduced on average, so gain is reduced.
For the case of semi-isotropic, Maxwellian-flux secondaries in Figure 3.3d, 𝛿ens

avg∼ 2.12 for
a fully developed discharge, so the expected gain is ∼ 1.83 × 103, which is about an order
of magnitude below theoretical estimates but roughly consistent with the average peak
gain per growth period. The wide domain of emission angles maps to a larger trajectory
space, which, in the case of Figure 3.3d, leads to reduced 𝛿ens

avg and a range of 𝑁imp that is
convoluted with each generation’s spatial trajectory. It must be stressed that non-linear
effects, e.g. space-charge and variations from particle distributions, introduced upstream
are amplified when they occur nearer the cathode since these variations will experience
more of the exponential characteristic for growth during a longer downstream excursion.
Finally, note that Figure 3.3a illustrates the gain limit in Equation (3.20), serving as an
upper bound for the other cases.
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3.2 Pressure Limits of VULP Breakdown
As will be shown, the general phenomena seen in vacuum discharges and described

in Section 3.4 is valid through ultra-low pressures up to a few hundred mTorr. This
treatment will concentrate on the ionization of background gas in the Thomson model
for generalization, although individual gas cross sections may be used for specific appli-
cations. In particular, single-ionization of an argon (Ar) background will be considered
in simulation, and comparison with the Thomson model is provided in Section 3.B.

The limit between VULP breakdown and low-pressure breakdown (when collisionality
can no longer be neglected) is determined by comparing multipactor growth rates to
other growth mechanisms. In the ideal case, the front growth as a function of 𝑥 along
the dielectric is readily obtained from Equation (3.18). The multipactor growth rate 𝑅𝑚

under negligible contributions from ionization is:

𝑅𝑚 =
𝐼 (𝑥)

𝑞𝑒
=

𝐼0
𝑞𝑒

(︀
𝛿ens
avg

)︀𝑁imp . (3.21)

The largest growth rate will be downstream towards the anode, so a lower limit can
be obtained by using 𝑁imp as calculated with Equation (3.12) and looking for a sufficient
background-gas pressure to match the near-anode growth rate. A general ionization-
collision rate can be calculated by integrating the usual Thomson cross section:

𝜎𝑖𝑧 (𝑊 ) =

⎧⎪⎨⎪⎩ 𝜋

(︂
𝑒2

4𝜋𝜀0

)︂2
1

𝑊

(︂
1

𝑈𝑖𝑧

− 1

𝑊

)︂
𝑊 ≥ 𝑈𝑖𝑧

0 𝑊 < 𝑈𝑖𝑧

, (3.22)

where 𝑈𝑖𝑧 ≡ ionization energy and 𝑊 = (1/2)𝑚𝑣2.
The collision frequency, 𝜈𝑖𝑧 is the ionization rate to be equated to the multipactor

growth rate:

𝜈𝑖𝑧 = 𝐾𝑖𝑧𝑛𝑔 = 𝜎0𝑣𝑒

(︂
1 +

2T𝑒

ℰ𝑖𝑧

)︂
exp

(︂
−ℰ𝑖𝑧

T𝑒

)︂
𝑛𝑔, (3.23)

where 𝐾𝑖𝑧 = 𝜎𝑖𝑧 (𝑣) 𝑣 is the ionization coefficient, and 𝑛𝑔 is the neutral-gas density. Note
that this treatment characterizes discharge behavior in an average sense, and that Equa-
tion (3.23) is a function of temperature, having integrated over energies of the particle
distribution. Setting Equation (3.21) equal to Equation (3.23) and solving for density
gives the critical density at which anodic ionization starts to become appreciable, on the
order of multipactor growth:

𝑛crit
𝑔 = 𝑅𝑚/𝐾𝑖𝑧 =

𝐼0
𝑞𝑒

(︀
𝛿ens
avg

)︀𝑁imp(𝑥)

𝜎0𝑣𝑒

(︂
1 +

2T𝑒

ℰ𝑖𝑧

)︂
exp

(︂ℰ𝑖𝑧
T𝑒

)︂ . (3.24)

The typical parameters from Section 3.3 give a 𝛿ens
avg∼ 1.095 at current onset, and

assuming most particles undergo the impacts calculated from Equation (3.19), the mul-
tipactor growth rate in the ideal case is 𝑅𝑚∼ 2.58 × 1013 s−1. It is observed that the
average energy for electrons in the volume is ∼ 130 eV. Assuming a 2-D Maxwellian
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distribution in the volume, the temperature is the distribution average and the most-
probable energy is ∼ 65 eV; however, it should be noted that while emission is Maxwellian,
bulk-volume characteristics are not generally Maxwellian, so distribution quantities are
not necessarily related to each other in the way that is being assumed here. The ion-
ization constant with an ionization energy of 15.79 eV is 𝐾𝑖𝑧∼ 111.73. The critical
gas density is 𝑛crit

𝑔 ∼ 7.11 × 1017 m−3 and, assuming ideal gas, a critical gas pressure of
∼ 1.28 × 105 mTorr. This is about two orders of magnitude higher than pressures ob-
served at which large oscillatory behavior due to space-charge coupling starts to be-
come significant, observed at < 1000 mTorr and illustrated in Chapter 4. Much of the
discrepancy is attributable to space-charge effects, which were neglected in the theo-
retical gain. Additionally, knowledge of growth-sensitive quantities such as 𝛿ens

avg (pro-
vided above via in-situ diagnostics in simulation) are difficult to obtain a-priori. 𝑅𝑚

and 𝜈𝑖𝑧 can be estimated directly in simulation using the usual parameters from Sec-
tion 3.3 and a 500 mTorr background gas for electron growth rate near the anode, giving
𝑅𝑚∼ 9.65 × 1013 s−1 and 𝜈𝑖𝑧∼ 2.65 × 1013 s−1. Using these measured values, the critical
gas density is 𝑛crit

𝑔 ∼ 1.01 × 1017 m−3. Assuming ideal gas, this represents a critical gas
pressure of ∼ 1821 mTorr. This is about a factor of two from the nominal 1000 mTorr
crossover observed in simulations.

3.3 VULP General Parameters
The general phenomenology of VULP breakdown will be described through a few

examples using the parameters listed in Table 2.7. This section will focus on two dielectric
angles, 6.12∘ and 22.9∘, representing multiplicative breakdown and a dark-current steady-
state breakdown, respectively, where dark-current steady-state breakdown is defined as
a non-multiplicative arc with an average output-current magnitude equal to the seed-
current magnitude for an unperturbed seed source. Extending the following results to
other angles listed in Section 2.2.2 is straightforward, with the main differences across
angles being the initial conditions over the dielectric surface and the length of the surface
over which breakdown occurs, which affects the gain magnitude and time to steady-state.

Dielectric properties and secondary-emission properties are taken for polytetrafluo-
roethylene (PTFE), largely because it is a common material that would be suitable for
extending these results to benchtop experiments. Applied voltages were chosen to ensure
initial multiplication upon first impact as well as uniform initial conditions, eliminating
concerns for delay times. The gap width is arbitrarily set to 2 mm, providing sufficiently
large fields over moderate voltage drops; results can be linearly extended to variable gap
widths in the operating regimes presented in this section. The seed source is a specified
continuous-waveform (CW) injection with a 1-A magnitude at standard room tempera-
ture (0.025 eV). This source provides sufficient current to measure the gain in reasonable
simulation time. The reflected and scattered fractions have been set to zero for most
cases, as they have been observed to provide minor influence to general phenomenology.
For cases that treat SRP, the scattered and reflected fractions are set to typical values of
7% and 3%, respectively [45].
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3.3.1 Grid Resolution in Vacuum

The original grid described in Section 2.2 was developed largely under the assumption
of linear variation across a sufficiently resolved spatial grid. The assumption of linearity
is certainly valid at the beginning of all discharges (when charged-particle populations
are low) for the modest permittivities studied here. Linearity is also likely to remain
valid at saturation assuming relatively small saturated populations and uniform densities
everywhere. However, during the transient phase, the growth of particle populations
(with distributions in energy and space) and the inclusion of space-charge could lead to
significant nonlinearities near the surface and therefore a markedly different gain than
that suggested by Section 3.1.1 treating single-particle motion in vacuum. The gain of
six orders of magnitude suggested by Equation (3.20) is reduced for typical parameters in
simulation by ∼ 1 − 2 orders of magnitude, c.f. Figure 3.11, due to similar contributions
from energy and spatial distributions seen in Section 3.1.2, while some low-pressure gas
cases show a gain of up to 2 orders of magnitude with slower rise-times to peak current
due to space-charge effects creating more distributed volume characteristics, covered in
detail in Chapter 4. An analysis of particle excursions through the grid suggest that
better resolution could be required, particularly where larger voltages are needed to be
able to produce an adequate seed with sufficient energy to generate net secondaries on first
impact, and where sufficient near-surface plasma cause significant shielding and under-
resolved, small-scale trajectories, e.g. gyro-motion, that are not represented by the applied
field. This section details some considerations regarding the grid.

For an idealized single-particle implementation of the typical system using the param-
eters of Table 2.7, the number of grid cells traversed for the maximum vertical excursion is
shown in Figure 3.4, where additional simplifying assumptions include: vertical emission
from the dielectric surface with an energy of 1.85 eV, no space charge, and no spatial or
energy distribution. Figure 3.4 shows that as the field angles get larger, the particle does
not sample the grid often for a parameter set that would allow the largest sampling in the
vertical direction, i.e. with all initial velocity in the vertical direction only. The horizontal
trajectory samples the grid infrequently with increasing field angle as well. While this
does not pose a particular problem for VULP where the influence of space charge is rela-
tively small, particularly at the start of the discharge and during saturation, there could
be issues in resolving local field and particle behaviors that do not conform with the initial
assumption of linearity. This problem could be more considerable in gaseous discharges,
when space charge is both non-linear and non-uniform. As in [5], a grid size of at least
one-third the Debye length for a gaseous discharge is typically recommended to capture
the relevant local physics. Further comments regarding resolution of particle excursions
in higher pressure regimes are provided in Section 4.2. Of course, a reduction in the grid
size will require consideration of the particle-Courant condition for the leap-frog method,
written for 2D discrete problems:

𝐶 =
𝑢𝑥,max∆𝑡

∆𝑥
+

𝑢𝑦,max∆𝑡

∆𝑦
< 𝐶max. (3.25)

where 𝐶max = 1 for leap-frog, allowing the particle to sufficiently sample the grid in a
timestep.
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Figure 3.4: Maximum excursions of electrons in Cartesian coordinates, normalized to
standard grid size. Applied voltage is 3500 V, initial velocity is only in the vertical direc-
tion, and emission energy is 1.85 eV. The grid sampling in 𝑦 can be small with increasingly
orthogonal field angle, 𝜒𝐸, which could pose problems when nonlinear effects become sig-
nificant. Horizontal sampling is finer than vertical sampling, but could also suffer from
undersampling at higher 𝜒𝐸.

3.3.2 Quasistatic Considerations

The development of Section 3.1.1 assumes quasistatic conditions where a simple metric
to ensure such conditions can be written as:

𝜑𝑞𝑠 =
1

𝐸

𝜕𝐸

𝜕𝑡
𝑡life << 1, (3.26)

expressing the normalized change in the field over a particle lifetime. Assuming a 1-D
Poisson equation solved over the width of the multipactor front, 𝑤front = 𝑥2 − 𝑥1, an ap-
proximation can be made of the required density for the background field to be influenced
by a fraction 𝑝, assuming uniform charge density over 𝑤front:

𝜌𝑝(𝑥2) = −2𝑝(𝑥2)𝜀0𝐸0

𝑥2 − 𝑥1

. (3.27)

Setting a desired fractional change, 𝑝(𝑥2), in 𝐸0 at 𝑥2 will allow Equation (3.27) to be
written:

𝜑𝑞𝑠(𝑥2) =
1

𝐸0(𝑝 + 1)

[︂
−𝜌 (𝑥2)

𝜀0

(︂[︂
𝑥2 − 𝑥1

2

]︂
𝛿 − 1

𝑡life
+ 𝑣front

avg

)︂]︂
𝑡life. (3.28)

As a benchmark consideration, for 𝑝 = 1 %, 𝜑𝑞𝑠(𝑥2)∼ 0.04, and Equation (3.27) gives
an electron number density, 𝑛 = 𝜌/𝑞𝑒∼ 5 × 1015/m3. For the configurations used in this
chapter at 𝛼 = 6.12∘ and standard parameters from Table 2.7, this 𝑛 is typical for the
densities produced by the seed-current. For the secondaries, low-density early transients
lead to 𝑛∼ 5 × 1016/m3, affecting the field by ∼ 10 % and giving 𝜑𝑞𝑠∼ 0.3. At steady-
state, 𝜑𝑞𝑠 = 0, of course. At the front, 𝑛∼ 3 × 1017/m3 and 𝜑𝑞𝑠∼ 1.5 near the anode and
rapidly reverts to steady-state as the front passes. As expected, quasistatic conditions
hold much better for early transients than at the fully developed front due to the density
gain that changes rapidly over a particle lifetime. Typically, 𝜑𝑞𝑠 at the front starts to climb
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significantly above early-transient values after about half the time to the fully developed
front; however, it will be shown that the front has a relatively small width, isolating the
phenomenon to a short time (less than ∼ 100 ps) relative to the time for the front to
fully develop (∼ 500 ps to peak current). The analysis of Section 3.1 therefore remains
applicable through roughly 80% of the discharge time.

Further details on Equations (3.27) and (3.28) are provided in Section 3.C.

3.4 VULP General Phenomenology
This section will detail the behavior of typical operating regimes in vacuum through

ultra-low pressures of weakly collisional discharges, including: (1) a transient, multiplica-
tive regime in vacuum, (2) a non-multiplicative, dark-current regime in vacuum, and (3)
parametric variations of (1) and (2) with scattered and reflected particles (SRP) and
increased pressure up to a few hundred mTorr of stationary background Ar gas.

A particularly important point to note is that these simulations are seeded so that
the energy of the initial primary impact produces net emission from the dielectric for
all cases. This procedure provides uniform initial conditions, which facilitates direct
comparison of surface physics across various angles without convoluting the delay time
resulting from increasingly oblique angles. Setting the initial impact characteristics in
this way should not be construed as a necessary condition for breakdown; if the initial
impact characteristics do not support a multipactor avalanche, negative charging will
occur near the triple-point, resulting in elongated lifetimes until the initial impact energy
is pushed to at least 𝑊1 or above. Once a seed is achieved, either multiplicative or
non-multiplicative arcs are possible depending on the downstream surface conditions,
as will be shown. Applied voltage can then be adjusted and observed to identify the
representative regime. While these considerations are necessary to generate an appropriate
seed for general comparison across angles, enforcing the seed condition exacerbates the
grid problems delineated in Section 3.3.1 since larger applied voltages lead to reduced
grid sampling. Again, while grid sampling does not pose a significant problem in the
linear regime, space-charge and rapid development of the multipactor front could lead
to insufficient resolution of the near-surface dynamics and must be accounted for on a
case-by-case basis. For the cases shown in this chapter, the effect of grid resolution is
minimal.

3.4.1 Multipactor-Dominated Breakdown

Multipactor dominates discharge physics for pressures up to a few hundred mTorr
where interactions with background gas are small compared to surface phenomena. If the
discharge is seeded with a current and field geometry that favors secondary emission, an
electron cloud will develop over the dielectric surface and leave behind a positive charge on
the surface. With sufficient positive surface charge coupled with the negative secondary-
electron cloud, the strength of the electric field normal to the dielectric surface increases
and ultimately shortens the lifetimes of new, low-energy (on average) secondaries which
do not gain sufficient energy in transit to further multiply. Multipactor is reduced to a
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steady-state non-multiplicative arc as secondaries impact with energies around the first-
crossover energy. The following section details the factors driving this phenomenology.

Snapshots of the typical configuration-space for primary electrons and secondary elec-
trons for a system with dielectric angle 𝛼 = 6.12∘ are shown in Figure 3.5. The fast
transient is shown in Figure 3.5a, taken at 100 ps (peak anode current occurs at ∼ 300 ps),
while steady-state is shown in Figure 3.5b, taken at 5 ns. Primaries impact the dielec-
tric, and if their energies are between 𝑊1 and 𝑊2, as described in Section 2.3, then at
least one electron will be emitted per absorbed electron, leading to the possibility of
multipactor if downstream surface-field conditions support multiplication, as they do at
𝛼 = 6.12∘, discussed later in the context of Figure 3.10 for the electric-field angle. The
transient is characterized by a growing-density front followed by a steady-state tail. The
configuration-space plot in Figure 3.5a does not show particularly pronounced variations
in the field, as they do in Figure 3.12a for the dark-current case, and it is difficult to see
the formation of the front in the view presented; however, further exposition below will
make the formation of the front more apparent. The particle excursion in 𝑦 is clearly
larger in Figure 3.5a than in Figure 3.5b, which is a subtle but non-trivial difference that
will be evident in the discussion of near-surface fields vis-á-vis Figure 3.10.

(a) Growing discharge, 𝑡 = 0.1 ns. (b) Steady-state discharge, 𝑡 = 5ns.

Figure 3.5: Configuration-space example of VULP breakdown at 6.12∘. Primary and
secondary electrons moving from the lower cathode potential on the left to higher anode
potential on the right. Primary electrons are absorbed at the dielectric (shaded region,
𝑦 < 0), emitting secondaries according to the theory outlined in Section 2.3. Time in (a)
is 100 ps, and time in (b) is 5 ns. The grid shown corresponds to the numerical grid, with
a square-grid spacing of 35.5 µm in 𝑥 and 𝑦. Green arrows correspond to the magnitude
and direction of �⃗� at the displayed time. No SRP.

The dielectric surface charging for a discharge at 𝛼 = 6.12∘ through 5 ns is shown
in Figure 3.6. Figure 3.6b is a contour view of the dielectric charging, emphasizing
the dominant positive charging for most of the surface for the full discharge time. The
relatively large positive charging localized near the cathode is the initial-impact region
for primaries, which has some finite width due to the beam characteristics of the seed
current. The region immediately downstream of the initial-impact region is typically
characterized as a charge sink relative to the initial-impact region; in Figure 3.6a, this
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region is characterized by obviously reduced charge by an order of magnitude compared to
the initial-impact region, and often charges negatively due to short-lived secondaries that
do not gain sufficient energy in their excursion to further multiply. The characterization
of the immediate-downstream region can be defined by the maximum range for a particle
with the most-probable characteristics in vacuum fields to impact with energy just below
𝑊1, where details are provided in Section 3.D. In short, 𝑊mode

emit is sufficient to define the
width of immediate-downstream region, giving ∼ 73 µm by leveraging Equation (3.4) and
Equation (3.11) with fields taken from diagnostics. Although not shown, after ∼ 12 ns, the
reduced-charged region from the diagnostic of Figure 3.6 develops a negative charge that is
localized around 70 µm from the initial-impact peak, with a width of < 100 µm, consistent
with the width noted above using 𝑊mode

emit . Sufficient charging immediately downstream
the initial-impact region could lead to migration of the initial-impact region upstream as
a result of space-charge interaction between the negative surface charge and the beam
source. This particular configuration does not see significant migration of the initial-
impact region. In the presence of upstream migration, the immediate-downstream region
would also migrate up, reducing the positive charge at the original region of initial impact.
The effect of initial-impact-region migration could lead to reduced steady-state current if
electrons are collected at the cathode as a result of upstream trajectories, although this is
not explicitly shown in this exposition; parameters could be set to effectively demonstrate
this effect, most easily by manually shifting the location of the seed and initial-impact
region further upstream.

(a) Dielectric-charge full profile. (b) Dielectric charge contour in 𝑥 against 𝑡.

Figure 3.6: Characteristic dielectric-surface charging for a multipactoring discharge at
6.12∘. Positive charging is shown over a large region of the dielectric, indicating surface
characteristics sufficient for multiplicative breakdown.

Figure 3.6a shows a large positive charging near the anode at ∼ 1 mm; this is a result
of net emission from the dielectric near the anode that is simply collected at the anode
boundary without returning to the dielectric. The near-anode positive charge could serve
as a potential well for some particles with sufficient charge, but excessive electron collec-
tion in the positive region is not observed for this configuration. Furthermore, the charge
at the near-anode region is not expected to be significant to the discharge characteristics



74

because a sufficiently positive charge that reduces near-anode lifetimes will eventually col-
lect sufficient electrons to increase lifetimes again. In principle, the near-anode dielectric
charge could fluctuate with long-enough discharge times, but this is not observed for the
configurations studied. Also of note is that the exponential growth along the path as a
function of the number of impacts means that the growth rate is itself exponential, so
downstream growth rates and dielectric-charging rates are generally larger than upstream
rates with the possible exception of the initial-impact region, which has a growth rate
and dielectric-charging rate proportional to the seed current and initial 𝛿, recalling that
the primary impact is specified to emit near 𝛿max(𝜃imp), with 𝜃imp∼ 30∘.

Figure 3.7a shows the primary impact energy distribution over the dielectric surface,
indicating sufficient energy to be near the maximum secondary emission for the initial im-
pact angle, in this case, 𝜃imp∼ 30∘ from the dielectric normal; in Figure 3.8, the primaries
are essentially all particles clustered near the peak of the secondary-emission line plotted
at 𝜃imp = 32.0∘. Subsequent impacts from secondaries on the dielectric cover a range
of energies due to the thermal distribution of emission energies and associated range of
energy gains for the various lifetimes experienced by individual particles in the distribu-
tion, illustrated in Figure 3.7b. Figure 3.8 further indicates that most of the secondary
impacts approach grazing incidence as most of the energy is attributed to gains from fields
parallel to the dielectric surface; consequently, most secondaries are following the curve
associated with the global maximum yield from Figure 2.9, justifying the approximation
with 𝛿global

max in Equation (3.18). However, it must be noted that, while secondaries follow
the near-grazing curve, the majority of particles do not emit at 𝛿global

max due to limited gain.
Further note that much of the spread in the angular distribution shown in Figure 3.8 is
occurring at the low-energy end, and is about five orders of magnitude smaller than the
peak at 𝜃imp = 80∘.

(a) Primary-electron EDF. (b) Secondary-electron EDF.

Figure 3.7: Primary-electron and secondary-electron energy distributions functions
(EDFs) on the dielectric surface for 6.12∘. These plots are cumulative over the whole
discharge. (a) shows the primaries impact nearly monoenergetically. (b) shows secon-
daries impact with a range of energies due to the initial distribution and lifetime ranges.

Figure 3.9 illustrates the formation of the multipactor front via the weighted average
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(a) Secondary-emission coefficient vs. impact energy at various impact angles.

(b) Impact angular distribution.

Figure 3.8: Reconstructed secondary-emission curve from simulation for 6.12∘. Simulation
time is 5 ns. (a) shows the impacting energies for primaries (green) and secondaries
(magenta) in the circular (o) marker plotted against the theoretical Vaughan curve [2] at
various angles. (b) shows the impact angular distribution, where the peak near 32.0∘ is
largely composed of primaries while the rest of the distribution is composed of secondaries.

density for secondary electrons over the dielectric surface as a function of time:

𝑛𝑤(𝑥, 𝑡)
[︀
m−3

]︀
=

∫︀ 𝑛(𝑥,𝑦,𝑡)
Γ

exp(−𝑦/Γ𝑤)𝑑𝑦∫︀
exp(−𝑦/Γ𝑤)𝑑𝑦

, (3.29)

where 𝑦 is in m. The weighting scheme was chosen to emphasize near-surface contributions
to the volume density using the empirical factor Γ𝑤. Since growth can be exponential
within a small volume, linear weighting over all 𝑦 would lead to excessive smoothing
of density data, incorrectly showing uniform density over the surface with time. Γ𝑤 is
varied from large values (excessive smoothing) and reduced until the observed near-surface
structure in time is returned. A factor of Γ∼ 1/1000 m is found to be sufficient for the
purposes of this study, which may be interpreted as indicating the influence of near-surface
phenomena is limited to an effective depth of 1 mm in this metric, noting that this is only
for diagnostic purposes and not a strict definition of the sphere of influence of near-surface
phenomena. Further note that this study does not use the weighted diagnostic for physical
applications. If such an application is desired, mass must be considered in the grid scheme
so that proper weighting is applied without destroying mass or improperly locating mass
on the grid. Since physical application of this scheme is not treated in this study, grid
correction is not applied.
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The multipactor front develops from an initially growing electron density, leaving
positive charge on the dielectric surface that subsequently leads to unfavorable surface
conditions for secondary emission due to a coupling of the positive surface charge with
the negative secondary-electron cloud, creating a growing, peaked secondary density front
with steady-state wake. Lifetimes of new secondaries and the amount of energy new sec-
ondaries can gain in a lifetime are ultimately reduced in the wake of the front. Following
time in Figure 3.9a, the secondary density markedly increases across the dielectric surface,
with a weighted density ranging over about five orders of magnitude between minimum
(1011 m−3) and maximum (1016 m−3), and roughly one order of magnitude between steady-
state average (1015 m−3) and maximum. When surface-field angles are saturated consistent
with Figure 3.2b, further multipactor growth is quenched and steady-state dark current
develops over the surface with 𝛿ens

avg∼ 1 and roughly uniform secondary-electron density
over the dielectric surface as in Figure 3.9 past 1000 ps with the fully developed front
evacuating at the anode; after 1000 ps, the system has reached the steady-state described
in Equation (3.17), with 𝑁 ss

imp∼ 33, showing the expected increase compared to Equa-
tion (3.19). Figure 3.9b shows the fast development and quenching of the multipactor
front, with most of the front dumping on the anode in less than ∼ 100 ps. The speed of the
front is largely defined by the average velocity tangential to the surface for multipactor
secondaries in the system; the bulk-volume velocity is a weak function of the emission
energy and angle, and a strong function of applied voltage and surface-field conditions.
Assuming quasi-static fields and recalling the low average emission energies, most of the
energy is attributed to the tangential velocity, and the average total energy can therefore
be used to estimate the speed of the front. For the case shown, simulation-time diagnostics
show secondaries have an average, bulk-volume energy of ∼ 136.5 eV during the transient
(peaked in the average, before the steady-state wake starts contributing significantly to
the average), for a multipactor-front velocity of ∼ 6.9 × 106 m/s, roughly equivalent to
that shown in Figure 3.9b, estimated to be about 𝑣front = 2.0 mm/320 ps = 6.3 × 106 m/s
using the time to peak density as labeled.

The drive to saturation can also be shown via surface electric-field diagnostics as
shown in the representative case of Figure 3.10, plotting the surface-field angle for the
center of the dielectric. The field shows a slight initial dip resulting from the buildup
of the multipactor front upstream of the dielectric center. The development of a min-
imum field angle shown around 0.13 ns is indicative of an upstream multipactor front;
after 0.13 ns, the front has passed the dielectric center and the field angle increases until
saturation at ∼ 1 ns. Figure 3.2b suggests the expected saturation field angle, 𝜒𝐸,center,
should range from 24.20∘ to 24.88∘; Figure 3.10 corroborates the expected general trend
with a saturation around 𝜒𝐸,center∼ 20.8∘, albeit roughly ∼ 20 % off from theoretical limit.
It should be noted that one of the main contributors to this discrepancy is the assumption
that secondaries in the volume are Maxwellian. Observation of the secondary distribu-
tion during simulation will show that this is not the case; however, the general trend in
this framework is captured, suggesting the distribution is at least “close to” Maxwellian.
Another contributor to the ∼ 20 % discrepancy is related to the distributed steady-state
density near the surface, averaging ∼ 1015 m−3. As the secondaries are weighted to the
grid, the calculation of the field angle sees most of the particles weighted towards the
surface rather than the grid-points above, meaning the calculation of field angles will bias
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(a) Number-density surface plot. (b) Number-density plot, 𝑥 vs. 𝑡.

Figure 3.9: Plots of the weighted-average density,𝑛𝑤, for secondary electrons over the
dielectric surface at 𝛼 = 6.12∘. (a) clearly shows the evolution of the multipactor front as
it grows from discharge onset until the front evacuates at the anode around ∼ 300 ps with
a slow decay until ∼ 2 ns. The cathode is at ∼ −1 mm and the anode is at ∼ 1 mm. (b)
clearly shows the speed of the front, which can be characterized by the average energy of
the ensemble (at the front).

towards smaller 𝜒𝐸. It should be noted that the saturation angle is expected to approach
the grazing limit at 24.88∘, saturating slightly lower considering the average impact is
closer to 𝜃imp∼ 80∘ from Figure 3.8. The saturation field-angle would move to the left
along the curve of Figure 3.2b.

Figure 3.11b shows the characteristic markers for a multipactoring discharge with
𝛼 = 6.12∘, showing 𝛿avg (the secondary-emission coefficient averaged over all impacting
electrons) in the solid line and the anode (output) current in the dashed line. Figure 3.11b
effectively summarizes Figure 3.9 in terms of the output current. 𝛿avg shows an initial spike
followed by a slowly decaying tail. The anodic current develops with 𝛿avg > 1, indicating a
multiplicative discharge has developed as a result of secondary emission from the dielectric;
a slowly decaying 𝛿avg is therefore a good indicator that a multipactor current will be
observed. The anodic-current peaks at ∼ 0.3 ns with a magnitude ∼ 250× larger than the
1 A seed current at the cathode, indicating significant multiplicative growth at “modest”
input voltage of 1.75 MV/m (compared to typical breakdown voltages of > 10 MV/m for
common systems and studies [20]). The multipactor current is seen as a fast-growing
initial current spike, with most of the current rise-time integrating over ∼ 50 ps with the
standard 10 % to 90 % rise-time definition. The current decays over ∼ 50 ps as well, with a
90 % to 10 % fall-time definition, and continues to decay until ∼ 1 ns. After ∼ 1 ns, surface
field angles have saturated, leading to the steady-state dark current with average current-
magnitude equal to the seed (input) current and 𝛿avg asymptotically approaching unity,
as described in Section 3.1.1. The maximum gain in terms of particle number is roughly
conformal with Figure 3.3d, although the current at the anode is reduced by ∼ 2 − 3 orders
of magnitude from the maximum gain seen in Figure 3.3d. Equation (3.18) suggests the
gains in number and current should be comparable, but the basic assumption made in
Equation (3.18) that number and current growth comprises a single generation collected
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(a) Electric-field plot. (b) Electric-field schematic.

Figure 3.10: Electric-field angle, 𝜒𝐸 at the center of the dielectric surface vs. time for
6.12 deg. The minimum in (a) is indicative of an approaching multipactor front, and 𝜒𝐸

grows after the front passes the center until saturation is reached around 1.5 ns, consistent
with Figure 3.11.

at a single surface does not hold for a general discharge with distributions in energy and
space; consequently, the gain seen in number is reduced down when integrating over finite
time, consisting of a variety of generations at varying energies. The initial seeding is
a broad beam (in both energy and space) rather than the single-particle seed used in
Figure 3.3.

(a) Scaled number (of computational particles). (b) Anode current and 𝛿avg.

Figure 3.11: Particle number plots and average secondary-emission coefficient, 𝛿avg, and
anode current, 𝐼anode, for the case of 𝛼 = 6.12∘ in VULP breakdown. Note the time;scale
is from 0 ns to 5 ns for later comparison.
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3.4.2 Dark-Current Steady-State

Increasing the angle of the dielectric will eventually lead to surface-field conditions
that cannot support net multiplicative growth past the seeding of a discharge, solely
by the field geometry downstream of the initial impact region. Such surface conditions
are noted by all regions excluding the “multiplicative region” of Figure 3.2a. In such
cases, it is observed that the dielectric charges negative due to the coupled conditions of
short lifetimes and low impact energies for emitted secondary electrons, even if there is
positive charging enforced upon initial impact. Sufficient negative surface charging results
in field reversal and surface-charge repulsion of newly generated secondaries immediately
downstream of the initial impact region, leading to highly elongated lifetimes; an arc is
formed as evident in the configuration-space plots of Figure 3.12. Figure 3.12a is taken at
4 ns (peak output current starts at ∼ 18 ns), and Figure 3.12b is taken at 50 ns, showing
the fully developed steady-state discharge. Unlike the characteristics of Figure 3.5, it is
apparent that the conditions of the discharge significantly affect the field characteristics
much earlier than dark-current develops, and trajectory evolution is highly apparent.

(a) Initial, non-multiplicative discharge. (b) Steady-state discharge.

Figure 3.12: Configuration-space example of VULP breakdown at 22.9∘. Primary and
secondary electrons move from the lower cathode potential on the left to higher anode
potential on the right. Primary electrons are absorbed at the dielectric (shaded region,
𝑦 < 0), emitting secondaries according to the theory outlined in Section 2.3. Time in (a)
is 8 ns, and time in (b) is 50 ns. The grid shown corresponds to the numerical grid, with
a square-grid spacing of 35.5 µm in 𝑥 and 𝑦. No SRP.

Figure 3.13 illustrates the positive charging at the initial-impact site, and the more
obvious existence of the negatively charged immediate-downstream region noted in Fig-
ure 3.13 for 6.12∘, followed by largely negative surface charging for the remainder of the
dielectric. The charging behavior near initial impact is dependent on the initial condi-
tions of the seed, so there will be similarities in the early features in Figure 3.13 (at
the picosecond scale) compared with Figure 3.6. Field reversal at the initial-impact re-
gion generates an arc over the surface with a width of ∼ 0.5 mm at 50 ns, interestingly
flanked by the immediate-downstream region of the initial-impact on the upstream side,
and an analogous region of low-energy absorption that migrates with the arc on the down-
stream side. The arc generally consists of longer-lived particles with higher energies, so
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distributed particles outlying the main arc that impact the dielectric will likely lead to
positive charging, hence the region below the arc is positively charged. Past the arc,
downstream surface-field conditions dominate discharge evolution, and the remainder of
the surface charges negatively due to short lifetimes with minimal energy gain, consistent
with the predictions of Figure 3.2a.

(a) Dielectric-charge full profile. (b) Dielectric charge contour in 𝑥 against 𝑡.

Figure 3.13: Characteristic dielectric-surface charging for a non-multipactoring discharge
at 22.9∘. Parameters from Table 2.7 are used. 50 ns are plotted. Negative charging is
shown for most of the dielectric, indicating surface characteristics that are insufficient
for multiplicative breakdown. This plot is the analog to Figure 3.6 for the case of non-
multiplicative, dark-current steady-state discharge.

Figure 3.14 shows the electron energy distribution functions for the discharge at 22.9∘.
Figure 3.14a simply confirms the initial conditions where the seed is guaranteed to gen-
erate secondaries upon initial impact. Figure 3.14b is the analog to Figure 3.7b, showing
significant variations in energy characteristics as initial downstream conditions differ sub-
stantially. Secondary energy distributions at emission are specified, so the differences in
secondary EDF’s are a function of surface conditions. The conditions for the discharge in
Figure 3.7b allow for longer secondary lifetimes and consequent energy gain, producing
secondaries with energies up to applied voltage. The highest energies in Figure 3.14 are
a result of the arc, mentioned above, while the remainder of the downstream surface cor-
roborates the limited lifetimes and consequent energy gain. In principle, sufficient surface
charge could create an arc from initial impact directly to the anode, or from cathode seed
directly to anode (leading to a vacuum arc); however, neither of these effects have been
observed in typical configurations for this study.

Analogous to Figure 3.8, Figure 3.15 shows the primary cluster around the peak of the
𝛿(𝜃imp = 32.0∘) curve, while the secondaries are impacting largely at grazing incidence.
The angular distribution characteristics in Figure 3.15 are very similar to that shown
in Figure 3.8, with most secondary impacts approaching grazing incicidence, primaries
impacting at ∼ 30∘, and a similar spread down to smaller angles as in Figure 3.8 occurring
at the low-energy end, about five orders of magnitude smaller than the peak at 𝜃imp = 80∘.
Similarities are largely a consequence of low emission energy, again, typically in the eV
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(a) Primary-electron EDF. (b) Secondary-electron EDF.

Figure 3.14: Primary-electron and secondary-electron energy distributions functions
(EDFs) on the dielectric surface for 22.9∘. The primary EDF in (a) shows the largely
monoenergetic beam consistent with initial conditions. The secondary EDF in (b) is
more distributed than the primaries, similar to Figure 3.7b since secondaries are emitted
with the same distribution parameters.

range for dielectrics so that typical energy gains are often translated to grazing incidence.

(a) Secondary-emission coefficient vs. impact energy at various impact angles.

(b) Impact angular distribution.

Figure 3.15: Reconstructed secondary-emission curve from simulation for 22.9∘. This plot
is the dark-current analog to Figure 3.8, plotted for a simulation time of 50 ns (10× longer
than Figure 3.8).

Figure 3.16 illustrates the formation of the near-surface secondary-electron density,
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which remains relatively low throughout the discharge by about two orders of magnitude
at peak compared to the 𝛼 = 6.12∘ case of Figure 3.11. Net negative charging results
from impact energies with 𝛿 < 1 along the surface until surface-field angle conditions
are reduced sufficiently in accordance with the discussion of Section 3.1.1. The non-
multiplicative, negative-charge front slowly creeps downstream as the surface is saturated
until ∼ 20 ns when steady-state dark current has fully developed. The influence of the
arc characteristic in Figure 3.12 are also observable in Figure 3.16b with the evacuated
density region between that grows along 𝑥 and shows a saturating characteristic with a
width of ∼ 0.41 mm (between ∼ −1 mm and ∼ −0.59 mm) at 50 ns. Similar to the 6.12∘

discharge, the system eventually reaches a steady-state over the surface with roughly
uniform secondary-electron density (albeit, past the arc), but the discharge takes signif-
icantly longer to reach steady-state conditions; the fully saturated surface conditions in
Figure 3.16 after 20 ns have similar magnitudes to the fully developed dark-current steady
state after 2 ns in Figure 3.9, averaging ∼ 1015 m−3, as should be expected for an ensemble
unit gain of a similar seed. It is obvious that the multipactor front of Figure 3.9 does not
form in cases of larger dielectric angles, as in Figure 3.16, but is replaced by a creeping
front that is effectively pushed downstream after sufficient upstream charge has pushed
fields to support emission at unit gain.

(a) Number-density surface plot. (b) Number-density plot, 𝑥 vs. 𝑡.

Figure 3.16: Plots of the weighted average density, 𝑛𝑤, for secondary electrons over the
dielectric surface at 𝛼 = 22.9∘. Notice the lack of a multipactor front development and
evolution as there was for 𝛼 = 6.12∘ in Figure 3.9. The cathode is at ∼ −1.1 mm and the
anode is at ∼ 1.1 mm. The appearance of a clear front is not seen in (a) nor in (b), and
the development of anodic current can be seen in (b) to start at ∼ 15 ns, reaching peak
steady-state current at ∼ 20 ns.

It is, again, possible to visualize the drive to steady-state via surface-field diagnostics
as shown in Figure 3.17, plotting the temporal evolution of the surface-field angle at the
center of the dielectric analogous to Figure 3.10. It is evident that the initial surface-
field angle is well within the “absorption region” of Figure 3.2. The discharge evolution
brings the field angle down until saturation is reached at 𝜒𝐸,center∼ 20.5∘, where most
secondaries are impacting with energies around 𝑊1. Again Figure 3.2 suggests saturation
around 𝜒𝐸,center∼ 24.88∘, for grazing-impact characteristics. As is the case for 6.12∘, the
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saturation angle in Figure 3.17 is otherwise lower than formally expected from, considering
the average impact is similarly closer to 𝜃imp∼ 80∘ from Figure 3.15. Similar to the
6.12∘-case, the saturation field angle would be slightly larger than 𝜒𝐸,center∼ 20.5∘, again,
moving to the right along the curve of Figure 3.2b. The contributors to this discrepancy
remains the same as the 6.12∘-case, i.e. secondaries are not Maxwellian in the volume,
and weighting of secondaries to the grid leads to a field biased towards smaller 𝜒𝐸.

(a) Electric-field plot. (b) Electric-field schematic.

Figure 3.17: Electric-field angle, 𝜒𝐸 at the center of the dielectric surface vs. time for
22.9 deg. This temporal profile is characteristic of much of the dielectric, where the field
starts off well in the region of non-multiplicative conditions as noted in Figure 3.2. As the
dielectric is charged more negatively, the field angle is reduced, creating longer lifetimes
and saturating impact energies at 𝑊1 once the (slow, non-multiplicative) front passes at
∼ 10 ns.

Figure 3.18b for 𝛼 = 22.9∘ shows the characteristic markers for a discharge dominated
by a non-multiplicative dark-current steady-state. Dielectric-surface field conditions lead
to short lifetimes for the, on average, low-energy secondaries, resulting in rapid decay times
for the 𝛿avg diagnostic that quickly decays below unity due to short-lived secondaries.
Low-energy secondaries are absorbed almost immediately at the dielectric, noting that
much of the surface is in the “absorption region” of Figure 3.2. 𝛿avg is slowly driven up
with sufficient negative charging on the dielectric surface, leading to longer lifetimes and
higher energy gain. A dark current is eventually observed at the anode, saturating with
an average magnitude equal to the seed current. A multipactor front never forms in
this case, but a non-multiplicative front slowly creeps towards the anode as the surface
field angles reduce to support secondary emission at 𝛿∼ 1 with impact energies at 𝑊1.
The immediate drop of 𝛿avg below unity as in Figure 3.18b is a good indicator that this
discharge will not undergo multipactor growth.

It is of interest to note that the drive to steady-state in the 6.12∘ case is faster than
the 22.9∘ case, paying particular attention to the time scales between Figure 3.11 and Fig-
ure 3.18. This difference is a result of faster surface charging in multipactor, proportional
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(a) Scaled number (of computational particles). (b) Anode current and 𝛿avg.

Figure 3.18: Particle number plots and average secondary-emission coefficient, 𝛿avg, and
anode current, 𝐼anode, for the case of 𝛼 = 22.9∘ in VULP breakdown. Analogous plot to
Figure 3.11 for a dielectric angle 𝛼 = 22.9∘. Note the time scale is from 0 ns to 50 ns, ten
times as long as for Figure 3.11.

to both the seed current and an exponential growth factor with 𝛿avg > 1, as in Equa-
tion (3.18), rather than, effectively, just the seed current in the dark-current dominated
regime.

3.5 The Influence of Scattered and Reflected Particles
As per [45], the SRP fractions are set to 7 % and 3 %, respectively. SRP is impor-

tant because of the myriad of possible influences downstream as a result of larger average
energies in the SRP group with associated longer lifetimes and larger impact energies.
SRP can initiate microsites of multiplication and dielectric charge forward of the main
multipactor front while also carrying significant energy downstream. SRP carry a spec-
trum of energies that can lead to positive or negative charging of the dielectric depending
on subsequent impact characteristics. Reflected particles will carry the full energy of the
original particle, which can be relatively high (continually gaining energy via effectively
prolonged excursions in the applied field) and is more likely to contribute to ionization
and outgassing further downstream (treated in Chapter 4) that seeds additional reac-
tions. In the case of VULP, the phenomenological influence of SRP is minimal, leading
to minor variations in key characteristics. Figure 3.19 shows 𝛿avg with the anode current,
showing similar characteristics to Figure 3.11b but with a smaller peak magnitude and a
slightly longer rise time. The peak current is reduced by ∼ 25 %, largely explained by an
overall reduced density in the peak since the multipactoring population is reduced by the
percentage of particles undergoing scattering and reflection. Effectively, the secondary
population is more distributed spatially and energetically, with 10 % of the population
effectively integrated over a different temporal range than their otherwise low-energy
analogs in Figure 3.11b.

The electric-field angle is shown in Figure 3.20, to be compared directly to Figure 3.10.
The minimum field angle and time-to-minimum are similar, while moving into a steady-
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Figure 3.19: Average secondary-emission coefficient, 𝛿avg, and anode current, 𝐼anode, for
the case of 𝛼 = 6.12∘ in VULP breakdown with SRP. Note the time scale is from 0 ns to
5 ns.

state discharge shows some minor variations in field-angle magnitude and saturation char-
acteristics around 5 % with respect to the case without SRP. Interestingly, the saturation
angle in Figure 3.20 with SRP is slightly higher than in Figure 3.10 without SRP. This
is likely a numerical effect where an increased number of particles in the SRP case are
further away from the dielectric surface in the volume and accordingly weighted to the
grid, increasing the field angle; this is in the same vein as the generally reduced angles
from that predicted in Figure 3.2b, resulting from numerical weighting to the surface that
biases all angles down.

Figure 3.20: Electric-field angle, 𝜒𝐸 at the center of the dielectric surface vs. time for
6.12 deg with SRP. The minimum is indicative of an approaching multipactor front, and 𝜒𝐸

grows after the front passes the center until saturation is reached around 1.5 ns, consistent
with Figure 3.11b.

3.6 The Influence of Ionization on VULP Breakdown
As noted in Section 3.3, the background pressure for the discharges in this section

is 𝑝bg = 500 mTorr. For Section 3.6.1 and Section 3.6.2 ion collisions are neglected, but
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reintroduced for discussion in Section 3.6.3.

3.6.1 Multiplicative Transient

Similar to Section 3.4.1, this section details discharges with an early, fast transient
largely composed of multipactoring electrons via the seed, followed by a slower transient
composed of both multipactoring electrons via the seed and additional ionization elec-
trons. Dielectric-surface field conditions during the early transient are similar to those
encountered in Section 3.4.1 even with low collisionality inducing some minor space-charge
variations. As will be shown, field conditions are in the multiplicative region of Figure 3.2
through the early transient until space-charge becomes significant with sufficient ioniza-
tion, leading to additional ionization-assisted multiplication until saturation.

Ionization introduces charged-particle species into the bulk volume that, of course,
have implications for space charge and local-field variations not seen in the pure vacuum
case; additionally, new electrons from ionization can contribute to secondary-emission
growth at all surfaces. Unlike the multipactor front coupled to the initial seed, ionization
electrons have a broader impact-energy spectrum with trajectories that differ significantly
from the trajectories of electrons coupled to the initial seed. Figure 3.21 most importantly
illustrates that although the impact angular space is sampled more than in Figure 3.8 (i.e.
particles impact with a broader spectrum in 𝜃imp), the majority of secondaries impacting
the surface still approach grazing incidence (upwards of two orders of magnitude larger
in 𝑓(𝜃imp)) and the discharge evolution is largely understood through the mechanisms
encountered and discussed in Section 3.4. There is a clear upper limit for the secondaries
in terms of impact energy, which is the order of the applied voltage, since secondaries
typically start with energies in the eV range; on the other hand, primaries are injected
with a few hundred eV, so deflected primaries that span the full gap width can reach an
upper energy limit of the injected energy plus applied voltage.

The evolution of the electric-field angle, shown in Figure 3.22 for a characteristic sur-
face point at the dielectric center, is consistent with the theory of Section 3.1.1. Similar to
Figure 3.10, the early transient shows a slight, initially increased favoring of multipactor-
ing conditions prior to ∼ 150 ps due to an upstream increase in electrons and consequent
reduction of 𝜒𝐸 that can push the discharge further into the multiplicative region of Fig-
ure 3.2. Figure 3.10 past 2 ns is in saturation (recalling that the saturation angle is roughly
consistent with the expected angle in Figure 3.2 at grazing incidence), with similar charac-
teristics for the initial transient in Figure 3.22a up to 5 ns. Past 5 ns in Figure 3.22b, ions
have built significant momentum towards the cathode, and the coupling of the evacuating
ion cloud (via the cathode) with positive charging on the surface results in surface-field
conditions that move towards the multiplicative region in Figure 3.2, and can approach
initial conditions with sufficient ion momentum. Ion-assisted multiplication follows, lead-
ing to additional anodic current past the initial transient as shown in Figure 3.23b, where
the current past 5 ns is not seen in Figure 3.11b for vacuum at 6.12∘. Particle fluxes
to the boundaries eventually equilibrate with particle sources in the volume, leading to
population saturation after ∼ 200 ns as in Figure 3.24; additionally, the electric-field angle
in Figure 3.22 saturates at ∼ 20.7∘ as it does for Figure 3.10. Of note is the tracking of
electron population with ion species after the initial fast transient in Figure 3.24a, even
in the case of primaries, which results from collisions spreading the spatial distribution
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(a) Secondary-emission coefficient vs. impact energy at various impact angles.

(b) Impact angular distribution.

Figure 3.21: Reconstructed secondary-emission curve from simulation for 6.12∘ with back-
ground pressure of 500 mTorr. Simulation time is 5 ns. Analogous to Figure 3.8 for higher
collisionality, but still negligible compared to the multipactor effect in the early transient.
(b) shows that 𝜃imp clearly samples more of the impact-angle domain than in Figure 3.8,
but most particles are still impacting with grazing incidence.

of primaries and growing local space charge near the cathode elongating lifetimes. An
envelope function is fitted to the peaks using non-linear regression, following a simple
exponential model with non-zero steady-state tail:

𝑁 = 𝑁0 exp

(︂
− 𝑡

𝜏

)︂
+ 𝑁ss (3.30)

The fit is plotted in Figure 3.24b. The pre-exponential, 𝑁0, is 2.318 × 105, the steady-state
constant, 𝑁ss, is 1.022 × 105, and the damping time constant, 𝜏 , is ∼ 92.91 ns. It is clear
that the 6.12∘ discharge is underdamped about the steady-state number in Figure 3.24b.

Finally, it must be noted that the oscillations are driven by the ion momentum and
ion plasma frequency, as evidenced by Figure 3.25. Figure 3.25a shows the Fourier-
transformed number plot, showing primary frequencies in the MHz range, while Fig-
ure 3.25b shows that electron plasma frequencies are in the GHz range and Ar plasma
frequencies are in the MHz range.

3.6.2 Non-Multiplicative Transient

Similar to Section 3.4.2, this section details discharges lacking early, fast transients that
are typical of the discharges in Section 3.4.1 and Section 3.6.1. Noted in Section 3.4.2, the
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(a) Up to 5 ns. (b) Up to 1000 ns = 1 µs.

Figure 3.22: Electric-field angle, 𝜒𝐸 at the center of the dielectric surface vs. time for
6.12 deg, 500 mTorr. No ion collisions. These plots are analogous to Figure 3.10 for the
vacuum case. Saturation characteristics are to be compared to Figure 3.2 in Section 3.1.1.

(a) Up to 5 ns. (b) Up to 1000 ns = 1 µs.

Figure 3.23: Average secondary-emission coefficient, 𝛿avg, and anode current, 𝐼anode, for
the case of 𝛼 = 6.12∘ in VULP breakdown, 500 mTorr. No ion collisions. Note the time
scale for (a) is from 0 ns to 5 ns, to be compared directly to Figure 3.11. The time scale
for (b) is from 0 ns to 1 µs to illustrate ion-assisted multiplicative growth.
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(a) Scaled number (of computational particles). (b) Argon with fit.

Figure 3.24: Particle number plots for computational particles from simulation for 6.12∘

with background pressure of 500 mTorr. No ion collisions. Oscillations driven by ion
momentum and population. Saturation after 600 ns results from equilibrated particle cre-
ation (via seed, secondary emission, and ionization) with particle losses to the boundaries.
Damping is characterized in (b), using Ar number since oscillations are driven by the Ar
plasma frequency. Oscillations in number for 6.12∘ are underdamped.

(a) Ar number in frequency space. (b) Electron and ion plasma frequencies.

Figure 3.25: Fourier transform of Ar+ number history compared to electron and ion
plasma frequencies. Neutral argon pressure is 500 mTorr, with no ion collisions, and
𝛼 = 6.12∘. Characteristic frequencies in Figure 3.25a match the ion plasma frequency in
Figure 3.25b; therefore, oscillations are driven by ion momentum and population.



90

initial dielectric-surface field conditions do not favor surface growth, with field angles in
the non-multiplicative regions of Figure 3.2. With sufficient ionization and subsequent ion
momentum leading to distributed space-charge, field conditions evolve to allow dielectric-
surface multiplication through a slow transient, similar to the slow transient seen in
Section 3.6.1 past 2 ns when the early, fast transient has effectively saturated out.

Figure 3.26 is the analog to Figure 3.15 at 500 mTorr. Some similarities in impact
characteristics are seen compared to Figure 3.21 at 6.12∘, such as a larger impact-angle
spectrum compared to the analogous plot without ionization (Figure 3.15) while main-
taining mostly grazing incidence. However, the early discharge characteristics at 22.9∘

are dominated by non-multiplicative conditions with particles in the absorption regions
of Figure 3.2, corroborated with Figure 3.27a. Coupling of surface charge and ionization
(with momentum) pushes the dielectric-surface field conditions into the multiplicative re-
gions of Figure 3.2 in a similar way to that shown in Figure 3.22b; however, the time to
the slow-transient, ion-assisted buildup takes longer than the analogous buildup in Fig-
ure 3.22b due to reduced gain from surface multipactor at 22.9∘, hence fewer electrons at
the surface to seed ion-assisted gain in the volume.

(a) Secondary-emission coefficient vs. impact energy at various impact angles.

(b) Impact angular distribution.

Figure 3.26: Reconstructed secondary-emission curve from simulation for 22.9∘ with back-
ground pressure of 500 mTorr. Simulation time is 50 ns. Analogous to Figure 3.15 for
higher collisionality, but still negligible compared to the multipactor effect in the early
transient. 𝜃imp is more distributed here than in Figure 3.15, but most particles are im-
pacting with grazing incidence.

Again, similar to Figure 3.18, the output current in Figure 3.28a does not show an early
transient with 𝛿ens

avg < 1 still applicable to the early discharge characteristics without being
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(a) Up to 50 ns. (b) Up to 1000 ns = 1 µs.

Figure 3.27: Electric-field angle, 𝜒𝐸 at the center of the dielectric surface vs. time for
22.9 deg, 500 mTorr. No ion collisions. These plots are analogous to Figure 3.17 for the
vacuum case. Saturation characteristics are to be compared to Figure 3.2 in Section 3.1.1.

dominated by ion-assisted growth. Ion-assisted current does develop in this discharge with
sufficient time (∼ 18 ns to peak current), and experiences smaller oscillatory behavior than
that shown at 6.12∘. The output current saturates to the input current with sufficient
time as in Figure 3.28b with population saturation as in Figure 3.29, occurring with
equilibrated ionization and removal at the boundaries.

(a) Up to 50 ns. (b) Up to 1000 ns = 1 µs.

Figure 3.28: Average secondary-emission coefficient, 𝛿avg, and anode current, 𝐼anode, for
the case of 𝛼 = 22.9∘ in VULP breakdown, 500 mTorr. No ion collisions. Note the time
scale for (a) is from 0 ns to 50 ns, to be compared directly to Figure 3.18b. The time scale
for (b) is from 0 ns to 1 µs to illustrate ion-assisted multiplicative growth.

As in Figure 3.24a, the tracking of electron population with the ions, particularly
noting the primaries, is evident in Figure 3.29a and incidentally clearer due to the lack of
the fast transient. An envelope function is, again, fitted to Ar number peaks using non-
linear regression, following Equation (3.30). The fit is plotted in Figure 3.24b, with 𝑁0 =
2.435 × 105, 𝑁ss = 2.687 × 103, and 𝜏 = 25.64 ns. The 22.9∘ discharge is underdamped
about the steady-state number in Figure 3.29b, taking shorter time to approach 𝑁ss than
at 6.12∘.
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(a) Scaled number (of computational particles). (b) Argon with fit.

Figure 3.29: Particle number plots for computational particles from simulation for 22.9∘

with background pressure of 500 mTorr. No ion collisions. Large amplitude driven by
ion momentum and population. Although not apparent at the scale shown, the temporal
characteristic of each number plot is a highly damped oscillation. Damping is character-
ized in (b), using Ar number since oscillations are driven by the Ar plasma frequency;
22.9∘ is underdamped as in 6.12∘, c.f. Figure 3.24b.

3.6.3 The Effect of Ion Collisions

Ion collisions effectively create a drag on ion momentum, reducing the magnitude
of the oscillatory transient, but overall maintaining the general behavior described in
Section 3.6.1 and Section 3.6.2. In the case of 𝛼 = 6.12∘, plots analogous to Figure 3.24 but
including Ar+ collisions (elastic scattering and charge-exchange) are shown in Figure 3.30.
As expected, magnitudes in the number plot of Figure 3.30a with ion collisions are slightly
larger at all times compared to the collisionless case since reduced ion momentum allows
more ions to remain in the volume longer. From the characteristics of the envelope function
in Figure 3.30b, steady-state number is increased by roughly a factor of two while the
decay time constant in the envelope function is also increased significantly as the reduced
momentum pulls decay further out in time.

Similarly analogous plots to Figure 3.29 but including Ar+ collisions are shown in
Figure 3.31. As with Figure 3.31, the case of 𝛼 = 22.9∘ shows increased overall magnitudes
of the total electron and Ar+ number in the volume, increased steady-state values by a
similar factor of two as was the case for 6.12∘, and increased decay time-constant in the
envelope function consistent with reduced ion momentum.

One final note is that the inclusion of drag breaks the simple model of Equation (3.30).
Peaks in Figure 3.31b are markedly harder to identify, so the decay constant should be
taken with some caution.

3.7 Comments on Methods for VULP Suppression
Although this study will not directly address suppression, it must be emphasized that

the results in this chapter indicate that the dielectric-surface conditions are the driving
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(a) All species, scaled. (b) Argon with fit.

Figure 3.30: Particle number plots from simulation for 6.12∘ with background pressure
of 500 mTorr, including ion collisions. Analogous plot to Figure 3.24, but including Ar+

elastic collision and charge exchange. Damping is characterized in (b), showing reduced
damping resulting from slower ion momentum. 6.12∘ still remains underdamped compared
to 22.9∘, c.f. Figure 3.31b.

(a) All species, scaled. (b) Argon with fit.

Figure 3.31: Particle number plots from simulation for 22.9∘ with background pressure
of 500 mTorr, including ion collisions. Analogous plot to Figure 3.29, but including Ar+

elastic collision and charge exchange. Damping is characterized in (b), showing reduced
damping resulting from slower ion momentum. 22.9∘ is underdamped as in 6.12∘, c.f.
Figure 3.24b.
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factor of multiplicative discharges with negligible collisionality compared to multipactor
growth. The nature of the imposed beam-like seed current suggests that the seed can
initially impact anywhere along the dielectric, and as long as dielectric-surface field con-
ditions are sufficient for growth according to Section 3.1.1, particularly Figure 3.2, multi-
pactor will occur. In principle, this is a more general condition than that presented in [12],
which focused on field conditions and characteristics near the triple-point to determine
likelihood of breakdown as discussed in Section 1.3.1.

From considerations in Section 3.1.1, these results support techniques for surface-
charge preconditioning whereby either positive or negative initial surface charge can be
used to push the system into non-multiplicative regimes of Figure 3.2. 𝑊1-saturation
would be achieved with an initial positive-charge preconditioning over the surface that
shortens lifetimes and reduces energy gains to accelerate saturation to 𝑊1 while 𝑊2-
saturation would be achieved with an initial negative-charge preconditioning over the
dielectric surface that elongates lifetimes and increases energy gain. Surface precondi-
tioning extends to discharges with background gas in low collisionality as long as surface
conditions are met; however, as seen in Figure 3.22b, sufficient ionization with longer
discharge times could lead to ion-assisted multiplication due to field variations via ion
momentum and population. In principle, ion-assisted multiplication would be pushed out
further in time with surface preconditioning since electron populations would be reduced.
Ion-population saturation can then be forced into saturation as in Figure 3.24 by engi-
neering methods, reducing the likelihood of ion-assisted growth. Recombination can be
leveraged to reduce ion populations, or a bleed to the boundaries might be induced to
quickly equilibrate population growth rates.

3.8 Chapter 3 Conclusions
A vacuum multipactor discharge is characterized by a multiplicative front that quickly

saturates early in the discharge. Lifetimes and impact energies of new secondaries are
coupled via surface fields, and discharges of interest tend to evolve towards impact energies
averaging first crossover. Since secondary-emission characteristics, particularly at first
crossover, do not vary significantly for dielectric materials of interest to this study [57],
the observation that steady-state impacts average first crossover means there is relatively
little dependence on material; this is less true of second crossover, which tends to have a
larger range, but this characteristic is largely not applicable since discharges of interest
do not steady-state to second crossover. In cases dominated by dark-current discharges,
the multipactor front does not form and saturation times are much longer than cases
dominated by multipactor. Section 3.3 outlined specific conditions and parameters to be
included in this study in an attempt to define fundamental contributions to breakdown;
therefore, it should be clear that steady-state conditions are limited to that described by
Equation (3.17) by virtue of the restricted inclusion of various effects. Equation (3.17) is,
by no means, a general condition for all discharges, particularly being valid for conditions
of low collisionality with minor volume-charge build-up and assuming additional effects
are negligible, e.g. outgassing.

As noted, previous studies have focused largely on the triple-point conditions for
breakdown [12], whereas this chapter shows that more emphasis should be on the sur-
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face conditions and secondary-emission characteristics to understand the physical limit of
breakdown. Breakdown can be seeded by any source as long as downstream surface-field
conditions provide adequate multiplication given the conditions of secondary emission,
e.g. dielectric secondary-emission characteristics and typical impacting characteristics for
new generations. In other words, a seed source is a necessary but insufficient condition for
breakdown to occur, and the nature of the seed can be anything that does not immedi-
ately affect the downstream conditions even if upstream conditions are altered during an
early transient. A distributed seed source (discussed further in Chapter 6) might interact
with a larger portion of the upstream surface than the beam source used here, but it does
not alter downstream conditions prior to the seeding of the first multipactor generation.
As long as the source can seed the first secondary generation under the surface conditions
outlined in this chapter, multipactor, will occur, hence breakdown. The CW source of
this chapter is related to thermally emitted sources in that the seed is not affected by the
local fields, but the relatively high and uniform energies of the injected electrons means
the injected source is more typical of external injection of accelerated particles into the
configuration volume.

An important corollary result to the deterministic characterization of breakdown pre-
sented in this chapter is that there will be no breakdown voltage curve as typically pre-
sented in works such as [20]. More details of this characteristic are treated in Chapter 5.
The results delineated here are therefore to be interpreted as conditions on the discharge
physics rather than conditions on operating conditions of real systems. The source used
in this study isolates the fundamental discharge characteristics without convoluting other
intricacies typical of real systems, such as delay times that would result from distributed
or low-energy sources that otherwise do not have the required initial characteristics to
seed the first secondary generation, but might gain them with, for example, sufficient
negative charging. Such operating characteristics ultimately distract from the principal
contributors to breakdown, and are therefore separated from this study.

Finally, suggestions for further study include variations of the dielectric material, in-
clusion of an RF field in place of or on top of the DC applied field, a study of discharge
delay times with beam-like sources that are not deliberately injected with sufficient en-
ergy to multiply, and testing of the notes and suggestions on multipactor suppression in
Section 3.7.

3.A Source-Sink Simplification
Since the secondary-emission coefficient, 𝛿, depends on particle characteristics at the

boundaries, the initial development for the electric-current gain should start with discrete
particle counting across boundaries. In this case, the anode is chosen as the reference
boundary, and sources and sinks are developed to account for contributing particles to
the net current at the anode. Counting all relevant sources and sinks as a result of
interaction with the dielectric over a finite time, ∆𝑡, gives a finite charge, ∆𝑄, summed
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over all boundaries:

∆𝑄

∆𝑡
=

𝑞𝑒𝑁anode

∆𝑡
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

source
via seed⏞  ⏟  
𝑞𝑒𝑁0

∆𝑡
+

source via secondaries traceable to seed⏞  ⏟  
𝑁imp∑︁
1

𝛿𝑖 (𝑊imp, 𝜃imp)
𝑞𝑒𝑁𝑖−1

∆𝑡
+⎛⎝−

𝑁imp∑︁
1

(1 − 𝑓SRP)
𝑞𝑒𝑁𝑖−1

∆𝑡

⎞⎠
⏟  ⏞  

sink via dielectric absorption traceable to seed

+

source via
ionization⏞  ⏟  
𝑞𝑒𝑁

*
0

∆𝑡
+

source via secondaries traceable to ionization loci⏞  ⏟  
𝑁*

loci∑︁
1

𝑁*
imp∑︁
1

𝛿*𝑖 (𝑊imp, 𝜃imp)
𝑞𝑒𝑁

*
𝑖−1

∆𝑡
+⎛⎝−

𝑁*
imp∑︁
1

(1 − 𝑓SRP)
𝑞𝑒𝑁

*
𝑖−1

∆𝑡

⎞⎠
⏟  ⏞  

sink via dielectric absorption traceable to ionization loci

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.31)

where 𝑁anode is the total particle count at the anode via multipactor gain or direct arc,
all 𝑁𝑖 terms including 𝑁0 are electron population counts traceable to the seed, 𝑁imp is
the number of impacts on the dielectric, 𝑁*

loci is the number of ionization locus points
(ILP’s), all 𝑁*

𝑖 terms including 𝑁*
0 are electron population counts traceable to ILP’s ,

𝑁*
imp is the number of impacts on the dielectric by primaries and secondaries traceable

to ILP’s, 𝑊imp and 𝜃imp is the impact energy and angle, respectively, for the impacting
electron, and 𝑓SRP = 𝑓scattered + 𝑓reflected is the fraction of scattered and reflected particles
(SRP) per impact. Note that ionization quantities can be written in terms of cross
sections, which will be further discussed in Chapter 4, where first-order approximations
in the limit of weak collisionality are made for this chapter. It must also be stressed
that while quantities in Equation (3.31) are tracked via interactions at the dielectric,
the summation of all sources and sinks occurs at the anode. Noting that secondary-
emission coefficients and SRP fractions are not functions of time, assuming 𝛿 represents
the secondary-emission coefficient for the population impacting the boundary over small
∆𝑡, and taking ∆ quantities sufficiently small to produce differentials in charge and time
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will give the current at the anode:

lim
Δ𝑄→𝑑𝑄
Δ𝑡→𝑑𝑡

∆𝑄

∆𝑡
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼0 +

𝑁imp∑︁
1

𝛿𝑖 (𝑊imp, 𝜃imp) 𝐼𝑖−1+⎛⎝−
𝑁imp∑︁
1

(1 − 𝑓SRP) 𝐼𝑖−1

⎞⎠+

𝐼*0 +

𝑁*
loci∑︁
1

𝑁*
imp∑︁
1

𝛿*𝑖 (𝑊imp, 𝜃imp) 𝐼*𝑖−1+⎛⎝−
𝑁*

imp∑︁
1

(1 − 𝑓SRP) 𝐼*𝑖−1

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝐼anode (3.32)

In principle, all currents could be functions of time; however, this analysis will typically
assume uniform current, constant-waveform (CW) current.

Consider Equation (3.32) without ionization, some notable limiting cases are: (1) no
dielectric impacts leads to a vacuum arc: 𝐼anode = 𝐼0; (2) no secondaries with primary
impact and 𝑓SRP = 0 leads to zero anodic current: 𝐼anode = 𝐼0 − (1 − 𝑓SRP)𝐼0 = 0; (3)
no secondaries with primary impact and 𝑓SRP = 1 leads to a scattered arc: 𝐼anode =
𝐼0 − (1− 𝑓SRP)𝐼0 = 𝐼0. Further simplifying Equation (3.32) by neglecting SRP reduces to
Equation (3.13):

𝐼anode =

primary
current⏞ ⏟ 
𝐼0 +

emitted secondary current, 𝐼𝑒⏞  ⏟  
𝑁imp∑︁
1

𝛿𝑖 (𝑊imp, 𝜃imp) 𝐼𝑖−1⏟  ⏞  
source

+

absorbed current,
𝐼𝑎, at dielectric⏞  ⏟  ⎛⎝−

𝑁imp∑︁
1

𝐼𝑖−1

⎞⎠
⏟  ⏞  

sink

.

The assumption of CW current for all impacts alluded to above allows expansion of all
currents in terms of 𝐼0:

𝐼anode = 𝐼0 +
(︀
𝛿1𝐼0 + 𝛿2𝐼1 + · · · + 𝛿𝑁imp𝐼𝑁imp−1

)︀
−
(︀
𝐼0 + 𝐼1 + 𝐼2 + · · · + 𝐼𝑁imp−1

)︀

=

⎡⎢⎢⎢⎢⎢⎣
𝐼0 +

(︃
𝛿1𝐼0 + 𝛿2 [𝛿1𝐼0] + · · · + 𝛿𝑁imp

[︃
𝑁imp−1∏︀

1

𝛿𝑖

]︃
𝐼0

)︃

−

⎛⎝𝐼0 + 𝛿1𝐼0 + 𝛿2𝛿1𝐼0 + · · · +

⎡⎣𝑁imp−1∏︁
1

𝛿𝑖

⎤⎦ 𝐼0

⎞⎠

⎤⎥⎥⎥⎥⎥⎦

= 𝐼0

⎡⎢⎢⎢⎢⎢⎢⎣
1 + 𝛿1 + 𝛿2 [𝛿1] + · · · +

⎡⎣𝑁imp−1∏︁
1

𝛿𝑖

⎤⎦+

𝑁imp∏︁
1

𝛿𝑖

− 1 − 𝛿1 − 𝛿2𝛿1 − · · · −

⎡⎣𝑁imp−1∏︁
1

𝛿𝑖

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Clearly, all but one of the product terms in the brackets cancels, leaving a pure multipactor
current:

𝐼anode = 𝐼multipactor = 𝐼0

𝑁imp∏︁
1

𝛿i. (3.33)

If all 𝛿𝑖 terms are set to 𝛿max for all impacts, Equation (3.14) further simplifies to:

𝐼max
multipactor = 𝐼0

𝑁imp∏︁
1

𝛿max = 𝐼0 (𝛿max)𝑁imp , (3.34)

which is Equation (3.18) in Section 3.1.1, used to facilitate discussion of maximum gain.
Similarly, in the limit that 𝛿 can be written as an average of the particle ensemble im-
pacting the dielectric, Equation (3.14) can be written in terms of an ensemble-average
secondary-emission coefficient for all impacts:

𝐼avg
multipactor = 𝐼0

𝑁imp∏︁
1

𝛿ens
avg = 𝐼0

(︀
𝛿ens
avg

)︀𝑁imp . (3.35)

It must be stressed that Equation (3.35) is very sensitive to 𝑁imp, and the temporal
characteristics of the discharge will vary 𝑁imp appreciably; Equation (3.35) therefore has
limited use in the transient, but does asymptotically represent the steady-state limit with
appropriately tracked 𝑁imp and 𝛿ens

avg.

3.B Thomson-Model Ionization and VULP Pressure Limit
The classic Rapp-Golden empirical model [72] for Ar ionization used in XOOPIC is:

𝜎𝑖𝑧 (𝐸) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2.648 × 10−18

(︂ℰ − ℰ𝑖𝑧
ℰ2

)︂
log (0.0344ℰ) ℰ > ℰupper

1.7155 × 10−18

(︂ℰ − ℰ𝑖𝑧
ℰ2

)︂
log (0.0634ℰ) ℰupper > ℰ > ℰ𝑖𝑧

0 ℰ < ℰ𝑖𝑧

, (3.36)

where the ionization cross section, 𝜎𝑖𝑧, is in m2, energy units are in eV, ℰ𝑖𝑧 = 15.79 eV,
and ℰupper = 79 eV. Cross sections for alternative gases should be used when needed. The
Thomson model is an otherwise appropriate collisional model to use for general, first-order
treatment of ionization processes as found in Section 3.2 to find the pressure limit between
vacuum-like behavior and the space-charge coupled behavior discussed in Chapter 4, i.e.
the upper limit where the discussions in this chapter remain valid [34]. The Thomson
cross section is given by:

𝜎𝑖𝑧 (ℰ) =

⎧⎪⎨⎪⎩ 𝜋

(︂
𝑒

4𝜋𝜀0

)︂2
1

ℰ

(︂
1

ℰ𝑖𝑧
− 1

ℰ

)︂
ℰ ≥ ℰ𝑖𝑧

0 ℰ < ℰ𝑖𝑧
, (3.37)
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As integration of Equation (3.37) in the equation for the reaction-rate constant likely leads
to a form with an exponential integral, expansions of Equation (3.37) are employed to
attain a tractable, analytic solution. The 𝑛th-order Taylor expansion for Equation (3.37)
around ℰ𝑖𝑧 can be written in the following form:

𝜎𝑖𝑧 = 𝜋

(︂
𝑒

4𝜋𝜀0

)︂2
1

ℰ

(︂
1

ℰ𝑖𝑧
− 1

ℰ

)︂
= 𝜎𝑖𝑧 (ℰ𝑖𝑧) +

𝜎′ (ℰ𝑖𝑧)
1!

(ℰ − ℰ𝑖𝑧) +
𝜎′′ (ℰ𝑖𝑧)

2!
(ℰ − ℰ𝑖𝑧)2 + · · ·

= 0 + 𝜋

(︂
𝑒

4𝜋𝜀0

)︂2
1

ℰ2
𝑖𝑧⏟  ⏞  

≡𝜎0

(ℰ − ℰ𝑖𝑧)
ℰ𝑖𝑧

+
1

2

⎡⎢⎢⎢⎣−4𝜋

(︂
𝑒

4𝜋𝜀0

)︂2
1

ℰ2
𝑖𝑧⏟  ⏞  

≡𝜎0

⎤⎥⎥⎥⎦ (ℰ − ℰ𝑖𝑧)2
ℰ2
𝑖𝑧

+ · · ·

=
∞∑︁
𝑗=1

(−1)𝑛−1𝑗𝜎0
(ℰ − ℰ𝑖𝑧)𝑗

ℰ 𝑗
𝑖𝑧

(3.38)

The first-order approximation is therefore:

𝜎𝑖𝑧 ≈ 𝜎0

(︂ℰ − ℰ𝑖𝑧
ℰ𝑖𝑧

)︂
(3.39)

The variations between Rapp/Golden, full Thomson, and first-order Thomson cross-
sections are shown in Figure 3.32a, and the relative error with respect to the Rapp/Golden
empirical model is shown in Figure 3.32b. While the cross sections themselves can vary
significantly, the reaction-rate constants are not necessarily affected by the cross-section
errors at higher energies since contributions can be small as a result of distribution char-
acteristics. It should be cautioned that the use of a higher-order expansion from Equa-
tion (3.38) could lead to larger errors at higher energies as a result of slow convergence
of the Taylor expansion about ℰ𝑖𝑧 and subsequent divergent error in higher orders terms
that could grow faster than the exponentially decaying term in Equation (3.40).

This study deals with distributions of particles, so the reaction-rate constant, 𝐾, for
a reaction with cross-section, 𝜎(ℰ), can be calculated by taking the average over the
distribution [34].

𝐾 (𝑇 ) =
(︁ 𝑚

2𝜋𝑘𝑇

)︁3/2 8𝜋

𝑚2

∞∫︁
0

𝜎 (ℰ) exp

(︂
− 𝑒ℰ
𝑘𝑇

)︂
𝑒ℰ𝑑 (𝑒ℰ). (3.40)

Again, expansions on the cross section are typically required to obtain tractable analytic
solutions to Equation (3.40). Applying Equation (3.39) for ionization, replacing the lower
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(a) Cross sections. (b) Relative errors.

Figure 3.32: Comparison of Thomson, first-order Thomson, and Rapp/Golden ionization
cross sections for Ar. First-order Thomson is expanded about the ionization energy, ℰ𝑖𝑧.
Errors in (b) are with respect to the Rapp/Golden empirical model.

limit with ℰ𝑖𝑧, and integrating over energy in a straightforward manner gives:

𝐾𝑖𝑧 (T) =
(︁ 𝑚

2𝜋𝑒T

)︁3/2 8𝜋

𝑚2

∞∫︁
ℰ𝑖𝑧

𝜎0

(︂ℰ − ℰ𝑖𝑧
ℰ𝑖𝑧

)︂
exp

(︂
− 𝑒ℰ
𝑒T

)︂
𝑒ℰ𝑑 (𝑒ℰ)

= 𝜎0

√︂
𝑚3

23𝜋3𝑒3T3

82𝜋2

𝑚4
𝑒4

T
ℰ𝑖𝑧
(︀
Tℰ𝑖𝑧 + 2T2)︀ exp

[︂
−ℰ𝑖𝑧

T

]︂
= 𝜎0

√︂
8𝑒T
𝜋𝑚⏟  ⏞  

≡𝑣𝑒

(︂
1 +

2T
ℰ𝑖𝑧

)︂
exp

[︂
−ℰ𝑖𝑧

T

]︂
.

(3.41)

Assuming the emission temperature for secondary electrons is the volume temperature
(while also noting that this is not generally the case) so that 𝑒T = 1.85 eV, the reaction-
rate constants are given in Table 3.2, using Equation (3.41) for first-order Thomson and
a simple composite-Simpson integrator on Equation (3.40) for the full Thomson form and
Rapp/Golden . The constant calculated with the first-order expansion of the Thomson
cross section differs from the constant calculated with Rapp/Golden by a reasonably small
factor of ∼ 2. At least 99.7 % of the integral for all cross sections is captured with an
upper integral limit of less than ∼ 35 eV, corroborated with Figure 3.33a. Although the
Rapp/Golden cross section can be larger than the Thomson models at higher energies, the
typical energies accessed for this simple test are in the low-energy region where Thomson
happens to be higher than Rapp/Golden, where Figure 3.33b shows the integrands of
Equation (3.40) for the various models in Figure 3.33b.
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Table 3.2: Comparison of reaction-rate constants, 𝐾𝑖𝑧 using Equation (3.40) with Thom-
son, first-order Thomson, and Rapp/Golden. Relative error in the reaction-rates using the
specified cross-section model are given with respect to the Rapp/Golden empirical model.
This error is not to be confused with the errors in cross sections from Figure 3.32b.

Cross-section model 𝐾𝑖𝑧 [1/s/m3] Relative error [%]

Thomson 1.017 × 10−8 33.2

First-order Thomson 1.509 × 10−8 97.7

Rapp/Golden 7.630 × 10−9 0

(a) Cross sections at low energy. (b) Integrands for various models.

Figure 3.33: Cross sections at low energies with reaction-rate constant integrands from
Equation (3.40) for Ar. Reaction rates are dominated by contributions at energies less
than ∼ 35 eV. Despite the overall larger cross sections for Rapp/Golden at higher energies
compared to the full Thomson model, Rapp/Golden reaction rates are smaller due to the
electrons’ accessible energy domain.

3.C 1-D Fractional Change in 𝐸

For an arbitrary width of the multipactor front, 𝑤front = 𝑥2 − 𝑥1, assuming uniform
density across a typically small 𝑤front, the 1-D potential is:

𝜑 = −
(︂
𝜌𝑥2

2𝜀0
+ 𝐶1𝑥 + 𝐶2

)︂
. (3.42)

Letting 𝜑(𝑥1) = −𝑉1 and 𝜑(𝑥2) = −𝑉2:

𝜑 (𝑥 = 𝑥1) = −𝑉1 = −
(︁

𝜌
2𝜀0

(𝑥1)
2 + 𝐶1 (𝑥1) + 𝐶2

)︁
⇒ −𝑉1 = − 𝜌

2𝜀0
𝑥2
1 − 𝐶1𝑥1 − 𝐶2 ⇒ 𝐶2 = 𝑉1 − 𝜌

2𝜀0
𝑥2
1 − 𝐶1𝑥1,

𝜑 (𝑥 = 𝑥2) = −𝑉2 = −
(︁

𝜌
2𝜀0

(𝑥2)
2 + 𝐶1 (𝑥2) + 𝐶2

)︁
⇒ −𝑉2 = − 𝜌

2𝜀0
𝑥2
2 − 𝐶1𝑥2 − 𝐶2 ⇒ 𝐶2 = 𝑉2 − 𝜌

2𝜀0
𝑥2
2 − 𝐶1𝑥2.

(3.43)
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The integration constants are then:

𝐶1 =
[︁
𝑉2−𝑉1

𝑥2−𝑥1
− 𝜌(𝑥2+𝑥1)

2𝜀0

]︁
,

𝐶2 = 𝑉1 − 𝜌
2𝜀0

𝑥2
1 −

[︁
𝑉2−𝑉1

𝑥2−𝑥1
− 𝜌(𝑥2+𝑥1)

2𝜀0

]︁
𝑥1.

(3.44)

and the 1-D potential over the multipactor front is:

𝜑 = −

⎛⎝ 𝜌𝑥2

2𝜀0
+
[︁
𝑉2−𝑉1

𝑥2−𝑥1
− 𝜌(𝑥2+𝑥1)

2𝜀0

]︁
𝑥+

𝑉1 − 𝜌
2𝜀0

𝑥2
1 −

[︁
𝑉2−𝑉1

𝑥2−𝑥1
− 𝜌(𝑥2+𝑥1)

2𝜀0

]︁
𝑥1

⎞⎠ . (3.45)

The electric field is then:

𝐸 =
𝑑𝜑

𝑑𝑥
= −

(︂
𝜌

𝜀0

[︂
𝑥− 𝑥2 + 𝑥1

2

]︂
+

𝑉2 − 𝑉1

𝑥2 − 𝑥1

)︂
. (3.46)

A simplifying approximation can also be made by assuming that the initial-transient
and steady-state potential profiles are roughly similar so that 𝑥1 and 𝑥2 bound, i.e. define,
the front with 𝐸(𝑥1) ≈ 𝐸0(𝑥1) and 𝐸(𝑥2) ≈ 𝐸0(𝑥2). Observing that the notation here
means that a finite-difference approximation to the electric field would be:

𝐸 ≈
(︂−𝑉𝑖 − (−𝑉𝑖−1)

𝑥𝑖 − 𝑥𝑖−1

)︂
= −

(︂
𝑉𝑖 − 𝑉𝑖−1

𝑥𝑖 − 𝑥𝑖−1

)︂
⇒ 𝐸0 ≈ −

(︂
𝑉2 − 𝑉1

𝑥2 − 𝑥𝑥

)︂
.

The interest is in how the field at the edge of the front, 𝑥2 (presumably where the highest
density is located, although this formulation does assume uniform density through 𝑤front):

𝐸 (𝑥2) = −
(︂

𝜌

𝜀0

[︂
𝑥2 −

𝑥2 + 𝑥1

2

]︂
+

𝑉2 − 𝑉1

𝑥2 − 𝑥1

)︂
= −

(︂
𝜌

𝜀0

[︂
𝑥2 − 𝑥1

2

]︂
− 𝐸0

)︂
. (3.47)

The fractional change in 𝐸 from the background applied field, 𝐸0, is defined by:

𝑝(𝑥2) =
𝐸 (𝑥2) − 𝐸0

𝐸0

= − 𝜌

𝜀0𝐸0

[︂
𝑥2 − 𝑥1

2

]︂
. (3.48)

Equation (3.48) can be rearranged to get the density required to change the field by a
fraction 𝑝:

𝜌𝑝(𝑥2) = −2𝑝(𝑥2)𝜀0𝐸0

𝑥2 − 𝑥1

. (3.49)

The temporal change in the electric field, applied to Equation (3.46), is given by:

𝑑𝐸

𝑑𝑡
= − 𝜕

𝜕𝑡

(︂
𝜌

𝜀0

[︂
𝑥− 𝑥2 + 𝑥1

2

]︂
+

𝑉2 − 𝑉1

𝑥2 − 𝑥1

)︂
≈ −

(︂
𝑥− 𝑥2 + 𝑥1

2

)︂
1

𝜀0

𝜕𝜌

𝜕𝑡
+

𝜌

𝜀0

𝑑𝑥

𝑑𝑡
.

(3.50)

Equation (3.50) is in the lab frame, so 𝑑𝑥/𝑑𝑡 can be approximated as the average velocity
of the front, 𝑣avg

front, which can further be calculated from the (non-relativistic) average
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emission energy for secondaries. Additionally, from Equation (3.48), the electric field
after a fractional gain of 𝑝 can be written as:

𝐸 (𝑥2) = 𝐸0 (𝑝 + 1) . (3.51)

Finally, for any 𝑝, the quasistatic metric at the multipactor front edge, 𝑥2, can be
written as:

1

𝐸(𝑥2)

𝑑𝐸(𝑥2)

𝑑𝑡
𝑡life ≈

1

(𝐸0𝑝(𝑥2) + 1)

[︂
−𝜌𝑝(𝑥2)

𝜀0

(︂[︂
𝑥2 − 𝑥1

2

]︂
𝛿 − 1

𝑡life
+ 𝑣avg

front

)︂]︂
𝑡life. (3.52)

3.D Definition of the Immediate-Downstream Region
The characteristics of initial impact for the typical beam-like source used in this chap-

ter are specified to guarantee net emission and subsequent positive dielectric charge for the
discharges in this chapter. Low-energy impacts from the distributed secondaries emitted
after initial impact do not generate net secondaries in a region “immediately downstream”
of the initial-impact region leading to a pocket of negative charge near initial impact as
in Figure 3.6 and Figure 3.13. The interest here is to characterize the typical emission
energy of the first generation of secondaries from the initial impact that would lead to a
subsequent impact at first crossover, 𝑊1. The energy will then give the range from the
single-particle treatment in Section 3.4.1. The impact energy has to be less than or equal
to first crossover, 𝑊imp≤𝑊1, where 𝑊imp is found with Equation (3.4); it is still valid to
assume that most of the impact energy is from the velocity parallel to the surface when
considering impact at 𝑊1, despite a relatively low energy of 𝑊1(𝜃imp = 0∘) = 38.45 eV.
Assuming all the impact energy is attributable to parallel velocity at impact while all the
emission energy is attributable to normal velocity at emission, Equation (3.4) gives:

1

2
𝑚𝑣2‖𝑓 =

1

2
𝑚

(︂
[0] − 2𝑣⊥0

𝐸‖
𝐸⊥

)︂2

⇒ 𝑊𝑓 = 4𝑊init

(︂
𝐸‖
𝐸⊥

)︂2

≈ 𝑊imp, (3.53)

Setting Equation (3.53) equal to 𝑊1 gives the required initial energy, 𝑊init:

𝑊init + ∆𝑊 = 𝑊1 ⇒ 𝑊init =
𝑊1[︂

4
(︁

𝐸‖
𝐸⊥

)︁2
+ 1

]︂ . (3.54)

Having obtained 𝑊init, the range is simplified from Equation (3.11):

∆𝑥 =
4𝑊init

𝑞𝐸⊥

𝐸‖
𝐸⊥

(3.55)

Equation (3.55) does have a range since there is a range for the first-crossover energies;
the range in 𝑊1 is only ∼ 10 %, so the variation in immediate-downstream width using
Equation (3.55) is the same order. As an example, returning to typical conditions for
the discharge at 𝛼 = 6.12∘ described in Section 3.4.1, initial vacuum fields are 𝐸‖0 =
−1.76 MV/m and 𝐸⊥0 = 0.42 MV/m, and assuming 𝑊1 = 𝑊1(𝜃imp = 90∘) = 6.24 eV,
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Equation (3.54) gives 𝑊init∼ 1.40 eV, amounting to an excursion of ∼ 55 µm from Equa-
tion (3.55). The energies returned from Equation (3.54) are sufficiently close to the
specified most-probable energy, 𝑊mode

emit , for the emitted distribution, so it is sufficient to
characterize the range for the immediate-downstream region using 𝑊mode

emit rather than
Equation (3.54) for the typical emission parameters of this study.

Finally, the common assumption made in this chapter of grazing impact is not partic-
ularly true at the early discharge near initial impact since lower-energy emitted particles
do not gain sufficient parallel velocity in their relatively short lifetimes to make the as-
sumption of grazing impact valid. This discrepancy does not affect the calculation for the
range, but is worth noting.
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Chapter 4

Gaseous Breakdown and Diffusion in
Multipactor

This chapter will focus on gaseous breakdown (GB) as it pertains to the evolution of
multipactor discharges heretofore discussed. Effects in low pressure (nominally, ∼ 1 Torr)
are covered in this chapter. This document will not treat general gaseous breakdown,
which may be reviewed in any of the standard texts [8, 9, 34, 73] and which was discussed
briefly in Section 1.3.3. Discharges beyond low pressure and approaching atmospheric
pressure (760 Torr) will be dominated by volume effects, where surface multipactor may
seed volume breakdown but will not drive growth since surface effects are generally lower
order compared to volume effects. An assessment of the critical pressure past which vol-
ume effects dominate surface growth was given in Section 3.2, which can be used to clearly
illustrate the dominance of volume growth rates beyond the critical pressure. Again, it
was shown in Chapter 3 that there is no Paschen-like curve in the surface-dominated
breakdown regime, while volume growth at pressures approaching atmospheric can be
modeled with the classical Paschen curve. Recall the exposition of Chapter 3 focused
on pure vacuum discharges to communicate general phenomenology, but the results of
that chapter are valid in any pressure regime where surface effects dominate up to a few
hundred mTorr; consequently, the more general phrase “vacuum-like effects” will be used
when referencing results of Chapter 3 to encompass the extended validity of those results.

A discussion extending VULP effects into the gaseous regime is given in Section 4.1.1,
including delineation of the gain characteristics in Section 4.1, and considerations for the
grid in Section 4.2 following from Section 3.3.1. General parameters for this chapter are
discussed in Section 4.3. The bulk of this chapter will detail discharge behavior near
the critical pressure at 1 Torr in Section 4.4. Finally, summary treatment of diffusive
outgassing is given in Section 4.5.

4.1 Theoretical Gain in Gaseous Discharges
Gaseous collisional effects studied herein are limited to excitation and single ionization

of neutral background argon (Ar) gas. Generalization to other species and reactions will
require incorporating additional considerations for growth characteristics that will not be
covered here, but may be considered extensions of considerations for sources and sinks
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added to the formulations of Section 3.A. For example, in cases including oxygen gas,
volume recombination reduces space charge and alters the coupling characteristics between
surface charge and space charge (to be discussed in this chapter), requiring treatment of
space-charge characteristics that essentially evolve with opposing gradients compared to
discharges studies herein. In principle, it is difficult to obtain an a-priori estimate of the
gain for the gaseous discharges studied in this chapter due to the inclusion of space charge
effects and distribution characteristics of all species in the discharge. Multipactor seeds
volume growth while space charge couples to the saturated surface to induce non-linear
effects not otherwise seen treated in classical formulations of diode-type problems. With
these considerations in mind, this section will provide an upper estimate of the expected
gain characteristics, making a number of assumptions about the interacting species to
make such a formulation tractable.

4.1.1 Extension from VULP

As was thoroughly delineated in Chapter 3, single-surface multipactor discharges are
forward peaked with a downstream densities at least two orders of magnitude larger than
the upstream tail, c.f. Figure 3.9 in the 6.12∘ case. It is sufficient to follow the front to get
an estimate of the growth, particularly through the fast transient phase, where surface
multipactor is clearly dominant, as will be shown. The ionization reaction rate will vary
according to the local density and energy of electrons, the density of neutral gas species,
and the type of gas present. The ionization rate at the multipactor peak, limiting to
single ionization of neutral background argon, is:

𝑅𝑖𝑧 = 𝐾𝑖𝑧𝑛𝑒,front(𝑡)𝑛𝑔, (4.1)

where 𝑛𝑒,front(𝑡) is the time-dependent electron density (at the multipactor front); 𝑛𝑔 is
the neutral background density, typically treated with ideal gas so that 1 Torr Ar gas =
3.329 × 1022 1/m3; and the ionization rate constant, 𝐾𝑖𝑧, is distribution averaged, where
it is assumed electron velocity is much larger than the neutral velocity:

𝐾𝑖𝑧 = ⟨𝜎𝑖𝑧𝑣𝑒⟩ =

∞∫︁
−∞

𝑑3𝑣𝑒 (𝜎𝑖𝑧𝑣𝑒) 𝑓𝑒𝑛 (𝑣𝑒) = 4𝜋

∞∫︁
−∞

𝑣2𝑒𝑑𝑣𝑒 (𝜎𝑖𝑧𝑣𝑒) 𝑓𝑒𝑛 (𝑣𝑒). (4.2)

Equation (4.1) can be integrated over the time for volume electrons to traverse the di-
electric surface, giving an approximate total gain from multipactor and ionization events,
where the time for front propagation is simply the time for average secondaries to reach
the anode at average secondary velocity:

𝑡front =
𝐷gap

cos(𝛼)
· 1

⟨𝑣sec⟩
, (4.3)

where ⟨𝑣sec⟩ is the distribution average velocity of emitted secondaries. At this point, the
difficulties with identifying a-priori metrics becomes apparent with consideration of ⟨𝑣sec⟩.
One of the major assumptions made throughout this document is that the secondaries in
the volume are Maxwellian, which is known to be inaccurate by observation of simulation.
Injection of secondaries is via a Maxwellian flux, but exposure to the gap potential causes
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the initial Maxwellian distribution to deviate towards smaller energies due to varying (and
largely short) lifetime and gain characteristics. For tractability, this study will simply
assume a measured average kinetic energy of ∼ 25 eV, observed in simulation for the both
multiplicative and non-multiplicative discharges, c.f. Figures 4.9 and 4.17. Consequently,
the numbers in this treatment are not general, but will provide necessary foundation to
discuss the results of Section 4.4.

Recall that XOOPIC uses the Rapp-Golden ionization cross section for Ar, shown in
Equation (3.36) and plotted in Figure 3.32a as a function of energy. For completion, the
Rapp-Golden cross section is plotted against electron speed in Figure 4.1a. Also recall
the normalized distribution function:

𝑓𝑒𝑛 (𝑣𝑒) =
(︁ 𝑚𝑒

2𝜋𝑘𝑇

)︁3/2
exp

(︂
−𝑚𝑒𝑣

2
𝑒

2𝑘𝑇

)︂
, (4.4)

and the normalization criterion,
∫︀
𝑑3𝑣𝑒𝑓𝑒𝑛 (𝑣𝑒) = 1. Equation (4.4) is plotted in Fig-

ure 4.1b with the assumption of ⟨𝐸⟩ ∼ 25 eV.

(a) Rapp-Golden vs. electron velocity. (b) Normalized Maxwellian.

Figure 4.1: Ionization cross section and electron distribution for use in reaction rate
calculations. (a) is the Rapp-Golden cross section from Equation (3.36), plotted against
electron velocity, and (b) is the normalized Maxwellian speed distribution assuming an
average energy of ∼ 25 eV as per observations of simulations, c.f. Figures 4.9 and 4.17.

With Equations (4.2) and (4.4), the reaction rate can be found with Equation (4.1)
to be 𝑅𝑖𝑧 = 1.837 × 1036 1/m3/s. Rather than using Equation (4.3) directly, since initial
secondary characteristics are relatively uniform through the fast transient, growth can
be estimated per bounce, allowing for simple integration of ionization and multipactor
contributions per bounce. With typical parameters used in the gaseous studies here (i.e.
𝑝Ar = 1 Torr background gas at 𝑉0 = 8500 V applied voltage), the number of bounces
at 6.12∘ is ∼ 24, found from applying Equation (3.12) with measured values of the field
in simulation. The time per bounce is then 𝑡bounce = 𝑡front/24. Assuming an initial
electron density injection of 𝑛𝑒,0, which can be derived from the injected current, or
simply measured via simulation, the gain at each bounce is given by:

𝜒𝑖 =
𝑛𝑖
𝑒

𝑛𝑒,0

= 𝛿𝑖(1 + 𝐾𝑖𝑧𝑛𝑔∆𝑡bounce)
𝑖, (4.5)
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for the 𝑖th bounce, relative to the initial (primary) injected density. It is assumed in
Equation (4.4) that the fully realized secondary population is emitted at 𝑖× 𝑡bounce, and it
is furthermore tacitly assumed that the volume into which density is integrated remains
uniform at every bounce; due to the particle distribution, there will be a temporal and
spatial spread through the bounce time that is neglected in this treatment. Furthermore,
Equation (4.4) assumes that the whole ionization electron population undergo multipactor
at the same gain as pure secondaries, which is not representative of ionization electrons
in any regime, since impact energies will vary greatly from the secondary cascade; this is
made clear in diagnostics for the average kinetic energy of the various electron populations,
c.f. Figures 4.9 and 4.17. The assumption of maximum gain may be construed as having
an large safety factor for engineering applications, or otherwise providing a necessary
upper bound on gain characteristics.

Figure 4.2: Ideal gaseous gain vs time. Total time is the required time for full dielectric-
surface excursion of average fast-transient secondaries.

It will be shown that this estimate is several orders of magnitude (∼ 15 orders) larger
than observed in simulation, where the discussion in Section 3.1 can account for at least
∼ 6 orders of magnitude difference from pure surface growth, c.f. Figure 3.3 where
ideal multipactor growth is suppressed with the introduction of the distribution. Assum-
ing similar characteristics of secondary growth, where ideal growth was characterized by
𝛿ens
avg∼ 4, and the fully implemented distribution was characterized by 𝛿ens

avg∼ 2.12, the ratio
of gains over 24 bounces gives 424/2.1224 ∼ 4.1 × 106, hence the ∼ 6 orders of magni-
tude mentioned previously. A large part of the discrepancy in order of magnitude will
be attributable to the aforementioned assumption of uniformity over the density volume
from the primary source, which is known to be an inaccurate representation since primary
injection properties are specified while secondary injection properties are determined by
a Maxwellian flux over a finite integration time. Again, Equation (4.5) should be con-
sidered carefully, particularly when estimating gains based on densities, which may limit
engineering applicability. Generality can be assumed in a similar way to Equation (3.18),
where the integration time was integrated out to get to a ratio of particle numbers rather
than current; the analog for Equation (4.5) would be to integrate out the density volume
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to get back to number, i.e. 𝑁 =
∫︀
𝑛𝑑𝑉 , where careful consideration of the integration

operation will account for discrepancies to produce less conservative gain estimates for
wider engineering applicability.

4.2 Grid Resolution in Gaseous Discharges
Pressure regimes for this study range from vacuum through low pressure, nominally

1 Torr. As noted in Section 3.3.1, the recommended grid-size limit for accurately cap-
turing the local physics in a space-charge region is one-third of a Debye length [5]. Grid
resolution must therefore be revisited to ensure that local fields are accurately sampled
and represented. Figure 4.3 shows the Debye length over several decades of electron den-
sity, up to the maximum gain from Section 4.1. The Debye length in a (cold) plasma is
typically written in the form:

𝜆𝐷 =

√︃
𝜀0𝑘𝐵/𝑞2𝑒
𝑛𝑒/𝑇𝑒

=

√︃
𝜀0𝑘𝐵𝑇𝑒 [K] /𝑞2𝑒

𝑛𝑒

=

√︃
𝜀0𝑒T𝑒 [eV] /𝑞2𝑒

𝑛𝑒

, (4.6)

where 𝜀0 is vacuum permittivity in SI units, 𝑘𝐵 is the Boltzmann constant in J/K, and
𝑇𝑒 is the electron temperatures in K. Recalling that typical parameters used herein
result in a grid resolution of ∼ 35.5 µm, it is clear that the maximum gain would not well
resolved; however, observation of simulation results, c.f. Figures 4.8 and 4.16 suggests that
electron densities peak around 1 × 1016 1/m3, giving a Debye length of 200 µm, within the
suggested resolution limit of 66.7 µm by nearly a factor of two.

Figure 4.3: Debye length at various pressures. Maximum ionization rates are used for Ar
background gas with a usual CW seed at 1 A.

4.3 Gaseous Breakdown General Parameters
The general phenomenology of gaseous breakdown will be described through a few

examples using the general parameters listed in Table 2.7 for the 1 Torr case. As for the
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VULP discharges, this chapter will focus on two angles, 6.12∘ and 22.9∘, representing
otherwise multiplicative surface breakdown and dark-current steady-state surface break-
down, respectively. All definitions remain the same, where multiplicative breakdown
refers to surface-dominated growth only, and dark-current steady-state is defined as a
non-multiplicative surface arc with an average magnitude equal to the seed-current mag-
nitude for an unperturbed seed source. Similarly, extending the following results to other
angles listed in Section 2.2.2 is straightforward, with the main differences across angles
being the gain magnitude and time to steady-state, along with a change in the ratio of
mean free path to excursion length.

4.4 Low-Pressure Breakdown
In low pressure breakdown, growth rates in surface multipactor are comparable to

growth rates in the volume, previously shown in Section 3.2. It will be shown that the
appreciable ionization at low pressures coupled with the surface charge resulting from
multipactor leads to oscillatory effects in otherwise DC discharges, which are simply ex-
tensions of the underdamped oscillations studied in Section 3.6. The following results are
valid for background-gas pressures ∼ 1 Torr, where collisional effects are comparable to
surface growth rates, but do not dominate the discharge duration.

4.4.1 Multiplicative Breakdown in Low Pressure Gas

This section details a gaseous discharge at 1 Torr with surface field conditions that
lead to multiplicative surface growth. Primary and secondary electrons from the surface
seed volume growth, which affect the conditions of the surface fields, most importantly
the field angle as a result of coupling between volume charge and surface charge.

This exposition will follow a format similar to Section 3.4.1. Figure 4.4 is a collection of
snapshots in phase space illustrating the evolution of the discharge, similar to Figure 3.5,
with electrons moving towards the positively biased anode at the right, and with the
addition of slow ion species moving primarily to the negatively biased cathode at the
left. Figure 4.4a at 100 ps shows the initially multiplicative discharge in near-vacuum
conditions (where the background gas has not sufficiently ionized to affect the vacuum-like
early transient), analogous to Figure 3.5a. Figure 4.4b at 5 ns shows the discharge past the
early transient, towards what would otherwise be saturation of the discharge, analogous
to Figure 3.5b. A vacuum-like discharge would simply stop evolving past Figure 4.4b, but
the introduction of the volume ionic charge couples with the surface charge as ions move
towards the cathode due to the potential across the gap. Figure 4.4c at 25 ns shows volume
saturation of ions at roughly the peak of ionization events, just before ion momentum
becomes appreciable. Finally, Figure 4.4d at 75 ns shows the end of the initial bulk ion
evacuation cycle, with ions removed from the system at the cathode. Apparent ion striping
(i.e. regions of varying ion density) is a result of field conditions through the volume that
cause ions to gain more momentum in the striped region, which can be seen in the vector
magnitude of the fields in Figure 4.4d, where the low argon ion density region is clearly
larger than nearby fields up until the cathode region (left boundary). Field conditions are
sufficiently restored into the multiplicative regime, starting a new multipactor cycle, albeit
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with conditions that are not as favorable to growth as the initial discharge conditions,
leading to reduced current and longer growth and decay times compared to the fast
transient, but still appreciable growth characteristics that could be sufficiently large to
require additional engineering consideration for failure modes.

(a) Vacuum-like fast transient, 𝑡 = 100 ps. (b) Post fast transient, 𝑡 = 5ns.

(c) Volume saturation, 𝑡 = 25ns. (d) Volume ion evacuation, 𝑡 = 75ns.

Figure 4.4: Configuration-space example of VULP breakdown at 6.12∘ in 1 Torr back-
ground argon gas. Primary, secondary, and ionization electrons move from the lower
cathode potential on the left to higher anode potential on the right. Primary electrons
are absorbed at the dielectric (shaded region, 𝑦 < 0), emitting secondaries according to
the theory outlined in Section 2.3. Single ionization in argon produces additional volume
electrons. The grid shown corresponds to the numerical grid, with a square-grid resolution
of 35.5 µm in 𝑥 and 𝑦. Green arrows correspond to the magnitude and direction of �⃗� at
the displayed time. No SRP.

Dielectric charging on the surface for the discharge is shown in Figure 4.5. Compar-
ing Figure 3.6a for vacuum-like discharges to Figure 4.5a for low pressure shows similar
positive charging characteristics for the initial-impact and immediate-downstream regions
near the cathode. Oscillations present in Figure 4.5a are the result of coupling between
volume charge due to ions and surface charge due to net emission of electrons (recall lead-
ing to positive surface charging), where ion momentum causes surface field conditions to
fluctuate between into and out of multiplicative conditions, which will be more clear when
looking at the surface field conditions in Figure 4.10, discussed further below. The con-
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tour plot in Figure 4.5b shows the oscillations in surface-charge magnitude more clearly,
which occur on the order of the ion plasma frequency, which is ∼ MHz.

(a) Dielectric-charge full profile. (b) Dielectric charge contour in 𝑥 against 𝑡.

Figure 4.5: Characteristic dielectric-surface charging for a multipactoring discharge at
6.12∘ in 1 Torr background argon gas. Positive charging is shown over a large region
of the dielectric, indicating surface characteristics sufficient for multiplicative breakdown.
Oscillations are a result of ionic volume charge coupling to positive surface charge, allowing
the surface to go into and out of multiplicative conditions.

Figure 4.6a clarifies the impact characteristics for the primaries, showing a peak at the
intended initial impact energy around ∼ 750 eV, which was a clearly more defined peak in
the vacuum-like discharge of Figure 3.7a. Recall that the peak in the EEDF deliberately
corresponds to the peak in the secondary-emission curve (at a specified impact angle
of ∼ 32∘, although there is some spread due to space-charge interactions over time) to
intentionally emit the maximum number of secondaries at first impact. This is clear for
the vacuum-like discharges (c.f. Figure 3.8) since primaries remain largely monoenergetic
through the discharge. The primaries are clearly more distributed in Figure 4.6a as a
result of volume collisions and scattering leading to variations in lifetimes and impact
energies. The primary electron distribution everywhere other than the peak is ∼ 4 orders
of magnitude lower than the peak. The secondary electron distribution in Figure 4.6b is
similarly more distributed than the vacuum-like discharges in Figure 3.7b due to volume
collisions. Figure 4.7 is another view of the broader impact characteristics for these low
pressure discharges, while retaining important metrics for growth. Figure 4.7a is the
analogous secondary-emission curve from Figure 3.8a for 1 Torr. The secondary curve is
clearly more sampled than previously seen.

Number density plots for secondary electrons are shown in Figure 4.8, showing similar
development of the multipactor front through the early transient, followed by similarly
oscillatory densities throughout the discharge time that mirrors the dielectric charging.
The speed of the fast-transient multipactor front is determined as in Section 3.4.1, ref-
erencing Figure 3.9b and using the average velocity of the emitted secondary electrons.
The average velocity of the emitted secondaries can be obtained by the average kinetic
energy in the bulk volume, which is ∼ 140 eV from Figure 4.9, giving a front velocity of
∼ 4.962 × 106 m/s. The speed of the multipactor front is also readily estimated in Fig-
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(a) Primary-electron EDF. (b) Secondary-electron EDF.

Figure 4.6: Primary-electron and secondary-electron energy distributions functions
(EDFs) on the dielectric surface for 6.12∘. These plots are cumulative over the whole
discharge. (a) shows a peak in the energy distribution, resulting from the specified in-
jection, while the large spread is a result of interaction with space charge not present
in Figure 3.7a. (b) shows secondaries impact with a range of energies due to the initial
distribution and lifetime ranges, broader than the analogous Figure 3.7b.

ure 4.8b from the time to peak current across the full excursion length (i.e. the length of
the dielectric surface), Figure 4.8b, as 2.002 mm/211 ps = 9.483 × 106 m/s, which differs
from the kinetic energy estimate by a factor of 2.

The electric field plot for what has been taken as the characteristic center point in this
study shown in Figure 4.10 is an extension of what was shown in Figure 3.10 for vacuum-
like discharges. Figure 4.10 has a characteristic “overshoot” in the field angle, approaching
closer to orthogonal angles than vacuum-like discharges. Recall the expected saturation
angle is 𝜒𝐸 = 𝜒1(𝜃imp = 𝜋/2) = 24.88∘ for an electron at grazing incidence, discussed in
Section 3.1.1 and valid here. The electric field angle in Figure 4.10 peaks at nearly double
the saturation angle, well into the region of 𝛿 < 1, assisted by the additional electron
species from volume ionization. As the discharge evolves, the positive surface charging
reduces from subsequent secondary electron impacts where field conditions support 𝛿 <
1 (noting that this may not be the case for volume ionization electrons). For these
parameters, electron population and average secondary electron energy are not sufficient to
generate significant ions until ion momentum pushes fields into the multiplicative region,
where new secondaries have sufficient lifetime to gain the required ionization energy while
multiplying to sufficient quantities that support bulk ionization.

Finally, discharge evolution characteristics are clearly illustrated in Figure 4.11, where
the species numbers oscillate in a closely coupled manner. Scaling for each species number
in Figure 4.11a is the ratio of the species peak number to the secondary peak number,
which conveniently gives the growth ratio from primaries to secondaries for the fast tran-
sient, since the peak secondary number occurs during the fast transient. As mentioned
in Section 4.1.1, this gain is orders of magnitude smaller than the ideal gain from Equa-
tion (4.5), shown as ∼ 10 × 1012 in Figure 4.2. Past the fast-transient (∼ ps time frame),
the secondaries precede the Ar+ and ionization electrons, as expected, since the secondary
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(a) Secondary-emission coefficient vs. impact energy at various impact angles.

(b) Impact angular distribution.

Figure 4.7: Reconstructed secondary-emission curve from simulation for 6.12∘ at 1 Torr.
Simulation time is 400 ns, showing only a fifth of the total impacts (memory limited).
(a) shows the impacting energies for primaries (green) and secondaries (magenta) in the
circular (o) marker plotted against the theoretical Vaughan curve [2] at various angles.
(b) shows the impact angular distribution, where the peak near 39∘ (migrated from the
initial specification of 32∘ due to space-charge) is largely composed of primaries while the
rest of the distribution is composed of secondaries. Ionization electrons are not included.

avalanche is the dominant seed for bulk volume ionization with these parameters. Ioniza-
tion electrons closely follow the Ar+ number, but have a much faster decay time due to
the large electron mobility. The decay time on the ionization electrons is ∼ 25 ns, while
Ar+ decays with ∼ 50 ns. Rise times for both the Ar+ and ionization electron species
is ∼ 20 ns, as expected, since volume ionization creates both species at the same time.
The characteristic behavior for the ensemble secondary emission coefficient, 𝛿avg > 1, dis-
cussed in Section 3.4.1 vis-á-vis Figure 3.11b is still valid for Figure 4.11b during the fast
transient time frames (∼ ps) due to the dominance of surface growth. More precisely,
the criterion for 𝛿avg > 1 is valid in all cases where ionization has not reached significant
coupling to the surface charge. Beyond the fast transient in low pressure cases, 𝛿avg is
not a viable diagnostic since the discharge is not dominated by pure secondary-electron
growth. Beyond the fast transient, ionization electrons are broadly distributed in energy
such that growth characteristics are no longer a-priori with respect to surface fields. As
seen in Figure 4.11b, oscillations are apparent, and although there is growth past the
fast-transient, the criterion for 𝛿avg > 1 does not hold beyond the fast transient.



115

(a) Logarithmic surface plot, fast transient. (b) Linear 3-D plot, fast transient.

(c) Logarithmic surface plot, ion-assisted regime. (d) Linear 3-D plot, ion-assisted regime.

Figure 4.8: Plots of the weighted-average density, 𝑛𝑤, for secondary electrons over the
dielectric surface at 𝛼 = 6.12∘ in 1 Torr background argon gas. (a) and (b) are plots for
the fast transient regime. (c) and (d) are plots for the ion-assisted regime. Both plots
show the evolution of the multipactor front as it grows from discharge onset until the front
evacuates at the anode, ∼ 200 ps for the fast transient and ∼ 20 ns for the ion-assisted
regime. Recalling the cathode is at ∼ −1 mm and the anode is at ∼ 1 mm, the speed of
the front can be calculated by inspection.
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Figure 4.9: Plot of the species average kinetic energy for 𝛼 = 6.12∘ in 1 Torr background
argon gas. Appreciable ionization is induced with sufficient electron lifetime, but as the
discharge evolves, there are time ranges in which field conditions can do not support
secondary average energies to induce further volume growth. Ion momentum partially
restores conditions supporting surface growth, elongating lifetimes and consequently pro-
ducing average kinetic energies that support further ionization.

4.4.2 Dark-Current Multipactor in Low Pressure Gas

This section details gaseous discharges at 1 Torr with surface field conditions that
would otherwise lead to the development of anodic dark-current. Electrons in the dis-
charge can still seed volume growth, which can affect the conditions of the surface fields,
most importantly the field angle. As for Section 4.4.1, this exposition will follow a format
similar to the analogous Section 3.4.2 for vacuum-like discharges.

Figure 4.12 is a collection of snapshots in phase space, analogous to Figure 4.4, but for
the case of a discharge that would otherwise result in dark-current steady-state conditions.
The initial discharge clearly follows the vacuum-like characterization in Figure 4.12a,
where the fast-transient does not occur over the early discharge. Again, electrons move
towards the anode at the right, and slow ions primarily move to the cathode boundary
at the left. Figure 4.12a at 100 ps is the phase space for 22.9∘ at a time analogous to
Figure 4.4a. Similar to the vacuum-like case of Figure 3.12a, the initial discharge crawls
towards the anode with 𝛿avg < 1, which is still a valid diagnostic for the initial discharge
as it was for the vacuum-like discharge of Section 3.4.2, noted further below. Figure 4.12b
at 30 ns shows a time analogous to Figure 3.12b, which is well into a regime of ion-assisted
growth that was simply not present in the vacuum-like discharges of Section 3.4.2. Fig-
ure 4.12c at 63 ns is towards the end of the ion-assisted growth phase, showing volume
saturation of electrons and ions. A new growth cycle starts past 63 ns, where ions have suf-
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Figure 4.10: Electric-field angle, 𝜒𝐸 at the center of the dielectric surface vs. time for
6.12 deg in 1 Torr of background argon gas. Fast-transient characteristics are generally
similar to Figure 3.10a, while post fast-transient field angles are pushed beyond the ∼ 22.2∘

maximum for the vacuum case due to the presence of further negative charging. Peak
field angle is 44.1∘, and oscillates about ∼ 20.2∘. The schematic behavior in the presence
of volume charge is similar to Figure 3.10b, albeit with positive charge also existing in
the volume.

(a) Scaled number (of computational particles). (b) Anode current and 𝛿avg.

Figure 4.11: Particle number plots and average secondary-emission coefficient, 𝛿avg, and
anode current, 𝐼anode, for the case of 𝛼 = 6.12∘ in 1 Torr background argon gas. Note the
time scale is from 0 ns to 400 ns, ∼ 100× longer than the VULP analog in Figure 3.11.
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ficiently evacuated such that the coupling of volume and surface charge has pushed surface
fields into multiplicative growth, increasing the electron population and thus ionization.

(a) Vacuum-like slow transient, 𝑡 = 100 ps. (b) Volume saturation, 𝑡 = 30ns.

(c) Volume ion evacuation, 𝑡 = 63ns.

Figure 4.12: Configuration-space example of VULP breakdown at 22.9∘ in 1 Torr back-
ground argon gas. Primary, secondary, and ionization electrons move from the lower
cathode potential on the left to higher anode potential on the right. Primary electrons
are absorbed at the dielectric (shaded region, 𝑦 < 0), emitting secondaries according to
the theory outlined in Section 2.3. Single ionization in argon produces additional volume
electrons. The grid shown corresponds to the numerical grid, with a square-grid resolution
of 35.5 µm in 𝑥 and 𝑦. Green arrows correspond to the magnitude and direction of �⃗� at
the displayed time. No SRP.

Charging on the dielectric surface is shown in Figure 4.13. As for the vacuum-like dis-
charges, the initial-impact region shows positive surface charging due to the intentional
injection of primary electrons consistent with maximum secondary emission on first im-
pact clearly shown in Figure 4.13a. The remainder of the surface is negatively charged
during the early discharge (up to ∼ 20 ns), most apparent in Figure 4.13b. Past ∼ 20 ns),
ion-assisted growth pushes the surface into a multiplicative discharge regime, leading to
positive charging on the surface, although of smaller magnitude compared to the initial
impact region and compared to the initially multiplicative discharge at 6.12∘ due to the
initial negative charging. A similar oscillatory phenomenon is clearly present, with a peri-
odicity of ∼ 70 ns, comparable to the ∼ 80 ns in the 6.12∘ case. Again, oscillations present
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in Figure 4.13a are the result of coupling between volume ionic charge due to ions and
surface charge due to electrons. The coupling in the 22.9∘ case is slightly different in that
the surface is negatively charged, but due to the strong applied bias, ion momentum is
still towards the cathode, and the potential depression left behind as the saturated ion
cloud evacuates the region near the surface leads to a similar effect as at 6.12∘, where
field conditions fluctuate into and out of the multiplicative regime near the first-impact
energy.

(a) Dielectric-charge full profile. (b) Dielectric charge contour in 𝑥 against 𝑡.

Figure 4.13: Characteristic dielectric-surface charging for a multipactoring discharge at
22.9∘ in 1 Torr background argon gas. Negative charging dominates through the early
discharge up to ∼ 20 ns, although difficult to see in this scale. More importantly, positive
charging is shown over a large region of the dielectric after the early discharge, when
space charge alters near surface conditions to support surface characteristics sufficient
for multiplicative breakdown. Oscillations are a result of ionic volume charge coupling
to the now-dominant positive surface charge, allowing the surface to go into and out of
multiplicative conditions.

Figure 4.14a clarifies the impact characteristics for the primaries, showing a peak at
the intended initial impact energy around ∼ 800 eV, which was a clearly more defined
peak in the vacuum-like discharge of Figure 3.14a. Recall that the peak in the EEDF
deliberately corresponds to the peak in the secondary-emission curve (at a specified impact
angle of ∼ 32∘) to intentionally emit the maximum number of secondaries at first impact.
Again, primaries in the vacuum-like discharges (c.f. Figure 3.15) are largely monoenergetic
through the discharge, while collisions distribute the primaries in the low pressure case
at all angles. As for the multiplicative case at 6.12∘, the primary electron distribution
everywhere other than the peak is ∼ 4 orders of magnitude lower than the peak. The
secondary electron distribution in Figure 4.14b is also distributed due to volume collisions.
Figure 4.15 is another view of the broader impact characteristics for these low pressure
discharges, but it is difficult to use this diagnostic due to the broad energy characteristics
that are difficult to illustrate in this view.

Number density plots for secondary electrons are shown in Figure 4.16, showing the
expected slow growth of electrons through the early discharge. Oscillatory behavior is
evident in the electron population on similar scales seen in Figure 4.8, past the fast
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(a) Primary-electron EDF. (b) Secondary-electron EDF.

Figure 4.14: Primary-electron and secondary-electron energy distributions functions
(EDFs) on the dielectric surface for 22.9∘. These plots are cumulative over the whole
discharge. As was the case at 6.12∘ in Figure 4.6a, (a) shows a peak in the energy
distribution, resulting from the specified injection, while the large spread is a result of
interaction with space charge not present in Figure 3.14a. (b) shows secondaries impact
with a range of energies due to the initial distribution and lifetime ranges, broader than
the analogous Figure 3.14b.

transient for the 6.12∘ case; in the case of 22.9∘, starting at ∼ 20 ns. As for the 6.12∘ case,
the average velocity of the emitted secondaries can be obtained by the average kinetic
energy in the bulk volume. While there is no multipactor front, there is a dark-current
developing on the surface that creeps towards the anode following similar treatment of the
average kinetic energy of the secondary species, which ranges significantly, but oscillates
around ∼ 25 eV, giving a dark-current creep velocity of ∼ 2.97 × 106 m/s.

Alternatively, the speed of the dark-current creep is readily estimated in Figure 4.16d
from the time to initial current across the full excursion length (i.e. the length of the
dielectric surface at 2.2 mm, giving 2.2 mm/(15 ns = 1.4 × 105 m/s, which is an order
of magnitude smaller, largely due to the treatment of the distribution, where a better
estimate may be obtained by integrating the energy distribution function with time infor-
mation, which is not readily available, but may be obtained. Similarly, the speed of the
ion-assisted multipactor front is readily estimated by following the peak density across
the full excursion length (again, 2.2 mm, assuming the discharge starts to multiply after
∼ 20 ns, giving 2.2 mm/(42 ns − 20 ns) = 1.0 × 105 m/s. Recall that the length of the di-
electric is longer in the 22.9∘ case, i.e. 𝑥exc,22.9∘/𝑥exc,6.12∘ = cos(6.12∘)/ cos(22.9∘) = 1.0794,
or 7.9 % longer. For these parameters, ion population is initially limited by the small num-
ber of electrons in the system (due to the 𝛿avg < 1), but ionization does occur in sufficient
amounts to create significant space charge. Ionization is expected with these parameters
since the average energy of bulk of electrons is greater than the ionization energy, i.e.
𝐾𝑒 > (ℰ𝑖𝑧 = 15.79 eV), for much of the discharge.

It is of interest to note that temporal gradient for the average kinetic energy (𝑑KEave/𝑑𝑡)
in the early discharge is negative for 6.12∘ (c.f. Figure 4.9, ∼ 0 ns to 20 ns) and positive
for 22.9∘ (c.f. Figure 4.17, ∼ 0 ns to 20 ns). This is a consequence of field conditions
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(a) Secondary-emission coefficient vs. impact energy at various impact angles.

(b) Impact angular distribution.

Figure 4.15: Reconstructed secondary-emission curve from simulation for 22.9∘. Simula-
tion time is 5 ns. (a) shows the impacting energies for primaries (green) and secondaries
(magenta) in the circular (o) marker plotted against the theoretical Vaughan curve [2] at
various angles. (b) shows the impact angular distribution, where the peak near 32.0∘ is
largely composed of primaries while the rest of the distribution is composed of secondaries.

evolving to support emission at first crossover in both cases, but from different sides of
the secondary-emission curve. In the 6.12∘ case, secondaries have longer lifetimes and
higher average energy during the fast transient until saturation in the wake of the mul-
tipactor front reduces particle lifetimes and energy, bringing the average kinetic energy
down on the approach to saturation. In the 22.9∘ case, average kinetic energies are low
because field conditions produce short-lived secondaries with low energy until sufficient
negative surface charging elongates secondary lifetime and energy, bringing the average
kinetic energy up.

As was the case for 6.12∘, the electric field plot for the characteristic center point shown
in Figure 4.18 is an extension of what was shown in Figure 3.17 for vacuum-like discharges.
The field angle evolves in a similar way to the vacuum-like discharges due to the lack of
surface growth and minimal ionization limited by the population of electrons. The field
angle is well into the absorption region most easily seen in Figure 3.2b, and negative
charging eventually brings field conditions into a regime where impact characteristics
support growth about first crossover, i.e. 𝑊1. As was the case with 6.12∘, the expected
saturation angle is 𝜒𝐸 = 𝜒1(𝜃imp = 𝜋/2) = 24.88∘ for an electron at grazing incidence,
since such energy treatments are independent of the dielectric angle. The electric field
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(a) Number-density surface plot. (b) Number-density plot, 𝑥 vs. 𝑡.

(c) Number-density surface plot. (d) Number-density plot, 𝑥 vs. 𝑡.

Figure 4.16: Plots of the weighted-average density,𝑛𝑤, for secondary electrons over the
dielectric surface at 𝛼 = 22.9∘ in 1 Torr background argon gas. (a) and (b) show the
equivalent of the fast-transient time frame at 6.12∘, comparing with Figures 4.8a and 4.8b.
(c) and (d) show the ion-assisted regime, to be compared with Figures 4.8c and 4.8d The
cathode is at ∼ −1.063 mm and the anode is at ∼ 1.098 mm, where asymmetry is just due
to the stair-stepped boundary representation which happens to vary by some multiple of
the grid size, in this case 1 × 𝑑𝑥. (d) clearly shows the speed of the ion-assisted front,
which can also be characterized by the average energy of the ensemble (at the front).
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Figure 4.17: Plot of the species average kinetic energy for 𝛼 = 22.9∘ in 1 Torr background
argon gas. Appreciable ionization is induced with sufficient electron lifetime and sec-
ondary population. While energies are typically above the ionization threshold, electron
population remains small due to the lack of surface growth. Growth starts to become
appreciable at (∼ 20 ns) when field conditions are at least favorable to unit secondary
emission, c.f. Figure 4.18.

angle in Figure 4.18 is actually peaked at the initial conditions, and the total discharge
experiences damped oscillations rather than the arguably uniform oscillations at 6.12∘ in
1 Torr, apparent in Figure 4.10. It is interesting to note that the average kinetic energy
never drops below ℰ𝑖𝑧 as it did for 6.12∘, which can largely be understood by comparing
Figure 4.10 and Figure 4.18. Overall, the 6.12∘ case sees larger field angles (i.e. field angles
approaching orthogonal) compared to the 22.9∘ case, particularly in the early discharge
prior to 100 ns. The 22.9∘ case sees generally shallower angles when ion-assisted growth
becomes appreciable, which means longer lifetimes and larger average energy.

Finally, discharge evolution characteristics are clearly illustrated in Figure 4.19, where
the species numbers oscillate in a closely coupled manner, approaching steady-state values
in unison. Characteristics from 6.12∘ beyond the fast transient and initial ion-assisted
growth (i.e. beyond 100 ns are otherwise similar, where secondaries precede the Ar+ and
ionization electrons, since secondaries are still seeding ionization for these parameters
and are simply in insufficient numbers to cause appreciable ionization through the early
discharge. Ionization electrons, again, closely follow the Ar+ number, but mobility causes
much faster decay times. As mobility is largely decoupled from local space charges in
these parameters, the decay and rise times for the ionization species remains the same as
the 6.12∘ case, i.e. ionization electron number decays over ∼ 25 ns, Ar+ number decays
with ∼ 50 ns, and rise times for both the ionization species is ∼ 20 ns. As for 6.12∘,
the characteristic behavior for the ensemble secondary emission coefficient, 𝛿avg < 1,
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Figure 4.18: Electric-field angle, 𝜒𝐸 at the center of the dielectric surface vs. time for
22.9 deg in 1 Torr of background argon gas. Clearly, the initial field angle does not support
multipactor growth, and oscillates around ∼ 19.4∘, tending to saturation. The schematic
behavior in the presence of volume charge is similar to Figure 3.17b, albeit with positive
charge also in the volume.

discussed in Section 3.4.2 vis-á-vis Figure 3.18b is still valid for Figure 4.19b during the
initial discharge over the first ∼ 25 ns. Again, when entering the ion-assisted regime,
𝛿avg is not a viable diagnostic since the discharge is not dominated by pure secondary-
electron growth. It is worth noting that growth and decay times in the ion-assisted growth
regions are comparable to the ion-assisted growth regions of Section 4.4.1. Ion-assisted
oscillatory phenomena can be considered partially decoupled from the physical dielectric
angle, while it should be clear that the phenomenon is not strictly decoupled since initial
surface charging will influence the long-term oscillatory behavior evident in the damped
oscillations at 22.9∘ that are not present at 6.12∘.

4.5 Outgassing and Diffusion
This section discusses the effect of outgassing on the evolution of otherwise VULP

discharges, where initially ultra-low pressures are targeted due to the relatively large
diffusivities, the presence of variable diffusivity due to large pressure gradients, and the
interest in discharges dominated by surface effects for this study. Outgassing can replenish
gas species near the dielectric surface, where multipactoring cascades would be subjected
to increased probability of ionization, further enhancing multiplication and altering the
time to saturation depending on local electric-field characteristics. This treatment will
focus on the fundamental effects of a diffusive outgassed source of neutral argon into a
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(a) Scaled number (of computational particles). (b) Anode current and 𝛿avg.

Figure 4.19: Particle number plots and average secondary-emission coefficient, 𝛿avg, and
anode current, 𝐼anode, for the case of 𝛼 = 22.9∘ in 1 Torr background argon gas. Note the
time scale is from 0 ns to 400 ns.

neutral argon background. Outgassed species are best considered a desorbed source of
argon, although the particular physics of adsorption/desorption, and the characteristic
motion of outgassed species are not treated in this study. A corollary intent for this
treatment is to lay the foundation for future work using XOOPIC to model a variety of
outgassing effects.

Section 4.5.1 outlines a simplified application of the Malthus diffusion equation in 1-D
for outgassed argon into background argon showing the baseline case for consideration
where diffusion can penetrate deeply on time scales of interest to this study. Section 4.5.2
compiles the results of applying the outgassing formulation detailed in Section 2.4 to
XOOPIC. Section 4.5.2.1 is the PIC treatment in 1-D for a constant-flux, zero-velocity
source of argon into argon, analogous to the system described in Section 4.5.1, showing
similar penetration characteristics. Section 4.5.2.2 extends the results of Section 4.5.2.1 to
include an impact-dependent flux, showing a significantly altered profile for the outgassing
species that expectedly tracks the multipactoring growth along the dielectric, and nec-
essarily means diffusive processes will be stronger towards the anode, where the gaseous
profile is of much higher density. Section 4.5.2.3 completes the treatment by including the
second spatial dimension, which can have the effect of reducing ionization probability in
some regions for otherwise similar outgassing conditions by expanding the spatial domain
while also increasing interaction probabilities further upstream by enhancing the presence
of gaseous species by diffusion of large downstream densities into the upstream region.
Section 4.6 outlines additional considerations for outgassing and the expected behavior
for the fully-realized discharge in 2-D, particularly noting that kinetic treatment should
be implemented for future studies.

4.5.1 The Malthus Diffusion Equation

This section outlines a first-order, 1-D analysis of diffusive outgassing in the typical
configurations for this study to develop an intuitive understanding of the behavior of



126

VULP discharges under diffusive conditions. A 1-D form of Equation (4.7) is used with
𝑦 as the spatial metric for a half-space slab with a one-way flux of electrons from the
surface, with an ionization loss term and no gain term:

𝜕𝑛A(�⃗�, 𝑡)

𝜕𝑡
= DAB (�⃗�, 𝑡)∇2𝑛A(�⃗�, 𝑡) − 𝑛𝑒 (�⃗�, 𝑡)𝑛A(�⃗�, 𝑡)𝜎(𝑣rel)𝑣rel, (4.7)

where 𝑛A is the density of gas A (i.e. the diffusing gas); DAB is a diffusion coefficient
denoting diffusion of gas A into another gas, B; and the right-most term represents a loss
term for the diffusing species (gas A). DAB is generally state dependent, i.e. dependent
on the local pressure, and implicitly dependent on space and time (but written here as
explicitly dependent on space and time).

Consider the operating schematic of Figure 4.20. For this first-order analysis, a region
near the surface is identified as an approximate multipactoring region of uniform electron
density, typically up to a few tens of microns thick where electrons could be in sufficient
density to cause significant ionization losses to the neutral population near the surface;
this is typical of steady-state conditions in VULP discharges as outlined in Chapter 3.
For the purposes of this study, the sink term is limited to ionization losses as written in
Equation (4.7); neutral species undergoing ionization are thereafter strongly affected by
local electrostatic forces and are thus removed from the diffusion process of the neutral
species. Depending on rates of outgassing and ionization, sheath formation and steady-
state conditions might also be affected. The velocity distribution of outgassed species is
neglected, isolating purely diffusive processes. Electrons from the triple point will impact
and multipactor along the dielectric, depositing energy on the serve and causing adsorbed
species to be emitted. Increases in the surface temperature from electron impact are
also neglected. There will, of course, be variability in the spatial profile of the diffusive
gas since the multipactor profile is peaked toward the anode. The scenario of uniform
gaseous profile is therefore more “severe”, since densities will be increased towards the
cathode where multiplication factors are low, i.e. there will be no loss in generality for
this treatment. Consider the following boundary conditions:

Γ𝑦 (𝑦 = 0, 𝑡)

[︂
neutrals
m2 · s

]︂
= Γ𝑦0 = DAB (𝑦, 𝑡)

𝜕𝑛A

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

𝑛total (𝑦, 𝑡 = 0)

[︂
neutrals

m3

]︂
= 𝑛bg

𝑛total (𝑦 → ∞, 𝑡)

[︂
neutrals

m3

]︂
= 𝑛bg

(4.8)

𝑛bg is the background gas pressure. Γ𝑦 is the flux of particles from the dielectric surface,
taken to be a one-way flux approximated from outgassing observations in [13]. 𝑛total is
the total neutral-gas density consisting of diffusive and background species, which is set
everywhere to the background gas density, 𝑛bg, at the initial time, 𝑡 = 0. 𝑛total(𝑦 → ∞) is
also set to 𝑛bg for all time. Generally, the asymptotically-infinite distance is chosen with
the practical considerations of Chapter 2, letting 𝑦 = 𝑛bdry𝐷/2 cos(𝛼); for the test case
to follow, 𝛼 = 0 and the boundary error index, 𝑛bdry, is set to 2.

𝜕𝑛total

𝜕𝑦

(︂
𝑥 = −𝐷

2
sec𝛼, 𝑡

)︂[︂
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m3

]︂
=

𝜕𝑛total

𝜕𝑦

(︂
𝑥 = +

𝐷

2
sec𝛼, 𝑡

)︂
= 0 (4.9)
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Furthermore, gas molecules will be of relatively low energy, so assume gas molecules
are reflected at the walls, so that the wall condition is a simple Neumann condition as in
Equation (4.9). For simplicity, it will generally be assumed that the semi-infinite condition
will be Dirichlet, set to the background gas density, which is equivalent to a bleed the
boundary that maintains the pressure out at the semi-infinite boundary. The case of an
open boundary condition may also be applied, and will generally just return the system
to the behavior of Chapter 4 since sufficiently long times will approach saturated densities
through the whole volume. It should be noted that the PIC treatment neglects electrode
boundaries as a matter of time constraints and current lack of general tools in XOOPIC for
dealing with non-orthogonal boundaries, but the effect should be minimal since reflected
particles at the boundaries would preferentially diffuse away from the surface in any case
that would reflect or scatter off boundaries.
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Figure 4.20: Simple 1-D test configuration for outgassing. Outgassed species interact
with near-surface electrons, indicated schematically by the region labeled “approximated
multipactoring region”, over short time periods.

The diffusion coefficient is taken from [64], reproduced in Equation (4.10).

DAB = 𝑎

(︂
𝑇√

𝑇𝑐A𝑇𝑐B

)︂𝑏

(𝑝𝑐A𝑝𝑐B))1/3 (𝑇𝑐A𝑇𝑐B)5/12
√︂

1

𝑀A
+

1

𝑀B

1

𝑝
(4.10)

For nonpolar gas pairs, 𝑎 = 2.745 × 10−4 and 𝑏 = 1.823. All quantities marked with a
subscripted ‘c’ denote ‘critical’ values. Finally, note that the “diffusion depth” is defined
as the location of the diffusion front, i.e. the spatial point closest to the surface where
𝑛total(𝑡) = 𝑛bg.

While this study will largely concentrate on an argon outgassed species into an argon
background (Ar-Ar), Figure 4.21 illustrates the differences between Ar-Ar and diatomic
hydrogen outgassing into an argon background (H2-Ar), showing penetration depths at
various times. Parameters are listed in Table 4.1, and the simple Crank-Nicolson scheme
from [47], detailed in Section 2.B.2, is used.

Figure 4.21, shows the Ar outgassing into Ar background penetrates the system up to
𝐿/2 after ∼ 1 ns, which is on the order of the VULP discharge times seen in Section 3.4;
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Table 4.1: Parameters for outgassing test problem.

Parameter Variable Value

(Near-surface) electron density 𝑛𝑒 1 × 1014 electrons/m3

System length 𝐿 2 mm

Outgassing flux Γ 1 × 1023 neutrals/m2/s

Background gas density 𝑛0 1 mTorr = 3 × 1019 neutrals/m3

Collisional cross section 𝜎 2 × 10−20 m2

however, normalized density is not significant compared to background. The density of
outgassed neutrals expectedly continues to increase near the surface up through ∼ 100 ns
shown in the plot. Since gaseous discharges can run up through several hundred ns, this
suggests that the edge condition should be treated with a Neumann condition rather
than the Dirichlet condition set for this test case in cases running out to such temporal
conditions. This treatment is concerned with how diffusive effects influence the scale of the
fast-transient time from Chapter 3, where growth characteristics are surface-dominated.

Figure 4.21: Crank-Nicolson solution to the 1-D Malthus diffusion equation, Equa-
tion (4.7), with no losses. Parameters used are those listed in Table 4.1. Ar-Ar and
H2-Ar are shown for various times, indicating significant diffusion through typical dis-
charge times.

Figure 4.22 shows the effect of including electron interactions near the surface for a
case with moderate electron population and interaction rates which do not significantly
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affect the diffusion characteristics; however, at (uniform) densities equivalent to the peak
multipactoring front, Figure 4.23 shows near-surface interactions could deplete neutrals
in the multipactoring region, causing bi-directional diffusion near the dielectric surface in
the worst case. Figure 4.23 is shown for illustrative purposes of the worst case scenario,
which is not expected for operational densities in this study, but should be noted. The
diffusivities are shown in Figure 4.22b and Figure 4.23b for the case of moderate loss
and large loss, respectively. Consistent with the basic illustration of diffusivity properties
in Figure 2.17, the higher the pressure, the lower the diffusivity. Flow will occur in
the direction of the pressure gradient, and will occur more strongly in regions of higher
diffusivity where pressure is low.
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(b) Diffusivity at all points through 100 ns

Figure 4.22: Solution to the Malthus diffusion equation with moderate loss over 100 ns.
The diffusion coefficient for each point at each time is shown.
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Figure 4.23: Solution to the Malthus diffusion equation with significant loss over 100 ns.
The diffusion coefficient for each point at each time is shown.
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4.5.2 Diffusive Outgassing in PIC

As noted in Section 2.4, the implementation in PIC is a two-step approach, where
diffusion is implemented first, and then collisions are implemented in the standard manner
already developed as part of the PIC-MCC model. The separation of these effects is
the primary distinction between the implementation in this section and the treatment
in Section 4.5.1, but diffusive effects are expected to be slower than the fast-transient
phenomena, so resolution of the fast transient (already established) is a sufficient condition
to presume that the diffusive phenomena will be well-resolved in this treatment.

4.5.2.1 Constant-Flux, 1-D Diffusive Outgassing

The case of constant-flux, diffusive outgassing is most similar to the studies of Sec-
tion 4.5.1, and would be the limiting case for Sections 4.5.2.2 and 4.5.2.3 when taken to
steady-state conditions with a sufficient uniform outgassed flux. Figure 4.24a shows the
profile of the number density at the end of this run at 5 ns, using similar densities to the
moderate ionization rates in Figure 4.22.

(a) Ar density. (b) Anode current.

Figure 4.24: Number density and anode current for constant flux of outgassed neutral
density in 1-D diffusion. Expected uniform profile, consistent with the characteristics
of Figure 4.22. Fast-transient and initial slow transient show similar characteristics to
the discharges of Chapter 4, while new, fast rise-time pulses are generated here due to
concentration of ionization near the surface and subsequent uniformity of multipactoring
electrons. Using direct XOOPIC diagnostic output for the gaseous region only.

The behavior metrics of the constant-flux discharge through the fast-transient follow
similar characteristics as the VULP discharges of Chapter 3 due to the relatively minor
variation from vacuum characteristics on the time scale of the fast transient, ∼ 500 ps. As
shown in Figure 4.24b, there is clear contrast in the rise times of the anodic current post
the initial fast transient and a slow current associated with the system in similar surface-
field conditions from Chapter 4, where electrons prior to saturation are generated further
away from the surface, leading to a broader energy spectrum. To recap Chapter 4, dis-
charges resulted in an early fast transient associated with surface-dominated multipactor,
followed by oscillations driven by ion momentum, where ionization occurred in a uniform
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background gas. As the gas peeled away from the surface, a restorative feedback on the
surface pushed the system back into a multiplicative regime, where electrons were inter-
acting with bulk volume gas throughout the volume. In contrast, ionization profiles in this
section are more concentrated towards the surface, which means the profile of electrons
undergoing multiplication at the surface can be much more uniform, since more ionization
events are closer to the surface. As was the case in Chapter 4, the frequency of oscillatory
pulses are driven by the slow ions, but the shape of the pulse is driven by the electron
profile through the volume. With higher concentrations of ionizations (thus electrons)
nearer to the surface, the lifetimes of electrons in the bulk are much more uniform than
in the cases in Chapter 4, leading to more uniform electron profiles on new multipactor
fronts post fast-transient. Uniform lifetimes lead to uniform velocity distributions for the
electrons, creating a faster pulse lead.

4.5.2.2 Impact-Dependent, 1-D Diffusive Outgassing

The clearest illustrations of the influence of impact-dependent flux is shown in the
profile of the neutral species and anode current, shown in Figure 4.25a and Figure 4.25b,
respectively. The neutral density tracks the multipactoring electrons, as expected, causing
a large density of neutrals at the anode to develop, increasing ionization towards the anode
and proportionately increasing the current. The peak anode current shown in Figure 4.25b
is higher by an order of magnitude than the case of Figure 3.11, which would be the
most relevant comparison. The variation would be dependent on the characteristic of
impact-dependent outgassing, but the main point is that the outgassing will track the
multipactoring growth.

(a) Ar density. (b) Anode current.

Figure 4.25: Number density and anode current for impact-dependent flux of outgassed
neutral density in 1-D diffusion. Number density profile tracks the multipactoring electron
density, as expected, peaking towards the anode. Fast-transient and initial slow transient
show similar characteristics to the discharges of Chapter 4, with pulse shape differences
due to ionization closer to the surface. Using direct XOOPIC diagnostic output for the
gaseous region only.
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4.5.2.3 2-D Diffusive Outgassing

As alluded to earlier, the diffusive process is relatively slow compared to the fast tran-
sient, so the 2-D diffusive outgassing generally looks similar to the 1-D process through
the fast transient. This is characteristic is most apparent comparing Figure 4.25a and
Figure 4.26a, where the peak density is practically identical due to the minimal diffusive
effects on the fast-transient time scale (noting the fact that the applied outgassing char-
acteristics are, of course, identical). Similarly, the anode current, comparing Figure 4.25b
and Figure 4.26b, shows comparable peak currents through the fast transient phase.

(a) Ar density. (b) Anode current.

Figure 4.26: Number density and anode current for impact-dependent flux of outgassed
neutral density in 2-D diffusion. Number density profile similarly tracks the multipactor-
ing electron density, as in expected, peaking towards the anode. Fast-transient and initial
slow transient show similar characteristics to the discharges of Chapter 4, with pulse
shape differences due to ionization closer to the surface. Using direct XOOPIC diagnostic
output for the gaseous region only.

4.5.2.4 Continuing Work in Diffusive Outgassing

The work in diffusive outgassing is presented to lay the foundation for future study
and further modeling, including kinetic collisions that have yet to be included in the
XOOPIC framework. This section illustrates that diffusive outgassing leads to expected
hybrid behavior, where the fast transient exists prior to sufficient outgassing, and the
proximity of outgassed species to the surface can influence the average energy of electrons
that impact the surface, causing altering ion-assisted growth to be characterized by faster
pulse rise times than seen in previous sections.

4.6 Future Work
This implementation lays the groundwork for future studies with outgassing on dielec-

tric surfaces. Much of the important phenomena have been neglected in order to generate
a baseline study, isolating diffusive phenomena that parallels the Malthus diffusion form of
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Equation (2.26). Future studies should implement complete physisorption and chemisorp-
tion models for extended applications. More complete models for electron-stimulated des-
orption should also be implemented. When applying temperature-dependent outgassing
models, the diffusion of generated heat should also be diffused into the dielectric and
vacuum, and direct application of the models developed here for neutral gas diffusion are,
of course, directly applicable and simply need to be repurposed for a globally tracked
heat variable. It was noted earlier that boundaries were neglected in the PIC treatment
due to the current lack of tools to identify and appropriate the correct elements in the
directional matrix operators, which just consist of unit elements at the appropriate points
in the matrix.

Recall that this work extends existing models for collisions between a specified particle
species and a fluid gas model where interactions are encapsulated in an MCC model. This
approach works very well for interactions where new or modified particles are created, but
is not suited for corollary interactions where particles are removed from simulation, e.g.
recombination of ionized oxygen with electrons. It is not sufficient to treat the new
ionized oxygen with a fluid model in this case due to the low statistical representation
upon creation, and treating a charged species as a fluid would nullify the benefits of the
PIC model by smoothing out kinetic effects. A proper kinetic, particle-particle treatment
should be implemented for corollary effects to further extend the utility of diffusive models.

Finally, improved solvers should be implemented in the case of higher densities, where
the matrices of Equation (2.106) can be poorly conditioned. This study limited to densities
where matrix conditioning was not observed, but future studies may be interested in worst-
case studies for operating conditions, e.g. cold shot operating conditions or conditions
where bake-out is not an option.

4.7 Chapter 4 Conclusions
It should be noted that a number of simplifications were made in theoretical treatment

to gain insight into the behavior of the system, including the lack of scattering, no gain
terms, no absorptive loss terms, and the inclusion of a single loss term in the Malthus
diffusion equation of Equation (4.7). Scattering is included in the standard MCC mod-
els for XOOPIC, and additional volumetric loss terms can be modeled in certain gases,
but general theoretical treatment still requires a number of assumptions, e.g. isotropic
scattering, to make solutions tractable. The theoretical treatment herein therefore covers
the most fundamental effect of diffusive flow by gradient concentration with the most
significant loss factor (ionization).

Uniform outgassing is typical of cold starts or dirty HPM systems where bake-out is not
an available option. The uniform outgassing case suggests a bridge between the vacuum-
like discharges of Chapter 3 and the oscillatory discharges of Chapter 4. Additional
effects on the pulse shape become apparent with the variation in spatial variation in
neutral density that causes near-surface electrons to add to the multipactoring electrons
in a way that causes fast rise times in subsequent pulses that are otherwise driven by ion
momentum.

The transition to impact-dependent outgassing turns out to be not as neatly consis-
tent with previous developments due to the large density neutral density buildup near
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the anode, tracking with the multipactor population. The increased neutral density near
the anode increases the anodic current by a few orders of magnitude from the standard
vacuum-like cases, but the overall characteristics still match the fast-transient character-
istics of Chapter 3, but enhanced due to the increased-near-surface ionization. The same
fast rise-time phenomenon seen in the late-stage 1-D uniform outgassing case is present
in the impact-dependent outgassing case for the same reason that new ionizations occur
close to the surface, leading to similar characteristics as the main multipactor seed and
thus a fast pulse. The extension to 2-D does not affect the fast-transient phenomena due
to the relatively slow characteristic of the diffusion process, but later times are affected
by the inclusion of the additional degree of freedom.

Discharges are still well described by the DC susceptibility theory of Chapter 5, where
surface effects are largely driving growth conditions in the early discharge. Susceptibil-
ity will capture the temporal hybrid characteristics noted above, transitioning between
surface-dominated effects at early times as in Chapter 3 into the space-charge coupled
discharges of Chapter 4, where oscillations develop dependent on ion characteristics. In
keeping with a-priori metrics, it is still advised to operate with limit lines drawn accord-
ing to the initial background density, which will generally overestimate the susceptibility
characteristics. In principle, this hybrid condition is as expected, but the success of
the DC susceptibility theory in describing discharge temporal evolution cannot be over-
stated, as it provides useful insights into how to leverage or mitigate growth from systems
that experience outgassing on longer timescales than those seen in Chapter 5, and may
also provide a diagnostic tool in cases of unexpected outgassing where the appearance of
space-charge coupled phenomena might be correlated to oscillatory behavior in diagnostic
susceptibility diagrams.
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Chapter 5

DC Breakdown Susceptibility

5.1 RF Susceptibility
The technique of breakdown susceptibility (herein referred to as simply “susceptibil-

ity”, not to be confused with the classical concept of “electrical susceptibility” describing
the tendency for a dielectric to polarize under external fields) was originally developed
under Dr. Y.Y. Lau via his former graduate student, Dr. R. Kishek, at the University
of Michigan [1, 10] studying breakdown in RF for high-power microwave (HPM) trans-
mission windows. The likelihood of discharges to undergo multiplicative breakdown in
RF systems is well characterized in the so-called “susceptibility diagram”, with the typical
form shown in Figure 5.1, reproduced from [1], for various values of 𝛿max,0, roughly rep-
resenting different materials for transmission windows. These diagrams show the limits
of multiplicative discharges against normalized field metrics: the driving field (parallel to
the surface in the typical configuration) plotted in the ordinate and the DC field (perpen-
dicular to the surface) plotted in the abscissa. Typically, a single macroparticle injected
with random energy from a predetermined distribution, typically Maxwellian, is tracked
for baseline construction of susceptibility diagrams (although other studies may consider
multiple-particle injection targeting bulk growth with consideration for associated statis-
tics of the injected distribution). Particles are tracked via Monte-Carlo simulation over
a statistically large number of injections to monitor exponential growth or decay of the
charge on impact. A growth of zero over a large number of impacts indicates the location
of the limits parameterized in 𝐸DC, 𝐸RF and 𝛿max,0. Typically, these diagrams are plotted
with the orientation of the target surface conformal to one of the axes so that the oppos-
ing axis is conformal to the surface normal; in this case, the dielectric is situated with
the surface vertical in a Cartesian space, and the electric-field normal is conformal to the
abscissa. This configuration rather conveniently gives the orientation of the field angle
relative to the surface tangent, a characteristic not leveraged in typical studies for suscep-
tibility, but does play a significant part in this study as Chapter 3 showed fundamental
multipactor effects are strong functions of the dielectric-surface field angle.

RF susceptibility is successful in communicating the evolution of RF discharges by
mapping field characteristics at the surface and tracing the evolution of the fields as
markers for surface growth. The typical behavior of discharges oscillating into and out of
breakdown is shown in Figure 5.2 (reproduced from [74] for a 1-D discharge with velocity
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Figure 5.1: RF susceptibility diagram example. Reprinted figure with permission from
[1]. Copyright 1998 by the American Physical Society. Limits are drawn by injecting a
macroparticle into a system in a Monte-Carlo simulation, varying fields and secondary-
emission yield, and tracing the macroparticle over a long time to measure exponential
growth or decay. A growth of zero results in the limits shown.

components in 3-D), where a Lissajous trajectory of the surface field ratios develops.
Outside the susceptibility limits at (1) in Figure 5.2, the applied RF driving field coupled
with the small DC field provides excessive energy to secondaries such that particles would
likely impact with energy above second crossover, causing net decay in charge and keeping
surface DC fields low. When the applied field reduces in magnitude, particles start to
impact with energies between first and second crossover. Near the first polar-reversed peak
at (2), growth is rapid as a result of favorable lifetime and impact characteristics that
support multiplicative secondary growth, and the surface DC field also grows accordingly
with increasing positive surface charge coupled to the growing electron cloud. With
excessively large DC fields at (3), lifetimes are reduced, moving particle impact energies
from the second crossover to the first crossover (and below). Particle growth is stifled,
pushing the system into a non-multiplicative region of the susceptibility plot (middle
region) until negative surface charging reduces the DC field and the RF driving field adds
sufficient energy to support impact at the first crossover (at minimum). Particles do
not enter the multiplicative region until field polar reversal near (4), and the process of
polar-peak rapid growth into DC saturation repeats beyond (4).

While RF susceptibility is successful in describing the evolution of RF-driven dis-
charges in breakdown, the interest in this chapter is to tie susceptibility to existing theory
via a-priori metrics on the distribution of emitted particles rather than to Monte-Carlo,
parametric simulations. This study will not treat RF directly, but the characteristics
developed here are directly applicable to RF in the same limit as previously described:
the characteristic length of the system should be, at most, 𝐿 = 𝑣avg · (𝑇RF/2), where 𝑇RF

is the RF period, and 𝑣avg = ⟨|�⃗�(𝑡 ∈ [𝑛, 𝑛 + 1]𝑇RF/2)|⟩ for 𝑛 ∈ [0,∞) is the average par-
ticle speed in a half period of non-retarding potential, limiting to unidirectional particle
excursion.
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Figure 5.2: RF susceptibility example with field trace in breakdown. Reprinted with per-
mission from [74] Copyright 2005, AIP Publishing LLC. RF driven at 𝑓rf,0 = 1 GHz with
amplitude 𝐸rf,0 = 3 MV

m
. Field tracing shows a Lissajous characteristic as the discharge

moves into and out of a multiplicative regime. Variations on frequency and amplitude of
the driving field will lead to lengthening or contracting of the drive to steady state out to
larger DC values, but will typically lead to Lissajous characteristics at steady-state [74].

5.2 DC Susceptibility
The most obvious difference between RF discharges and DC discharges is the absence

of the RF driving field, which can typically be treated as parameterized for a given study,
and is often conformal to the transmissive surface (n.b. this is for typical configurations,
and the transmissive surface could very well be situated at arbitrary angle to the RF
component). The presence of an RF driving field allows the lifetime and energy gain to be
effectively decoupled in typical configurations studied [1, 74], whereas the self-consistent
DC field in the discharges studied herein are responsible for both lifetime and energy
gain due to the angle of the dielectric, and the individual components typically do not
evolve independently, nor can they be parameterized. As demonstrated in Section 3.1.1,
particle dynamics are effectively defined by the field angle in Equation (3.5) for the ideal
vacuum case, i.e. the impact energy is defined by the coupled field components and not
the individual magnitudes.

This study flips the usual orientation for the fields on the axes. As noted previously,
typical RF susceptibility diagrams plot the driving RF field amplitude on the ordinate
and the otherwise DC field on the abscissa. In the modeled problem for this study, the
orientation is rotated so that the dielectric surface is conformal with the orientation of
the abscissa, and the field normal to the surface is plotted on the ordinate. The rotation
maintains the orientation of the fields relative to the surface, again, readily providing the
field angles with respect to the surface tangent. The fields are non-dimensionalized with
the following factor:

𝑠 ≡ 1

𝜀𝑟𝐸0

. (5.1)

where 𝜀𝑟 is the relative permittivity of the dielectric material, and 𝐸0 is the initial applied
field. 𝑠𝐸, where 𝐸 is the electric field, is therefore unitless. In principle, 𝑠 provides
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a normalization against material, which will not be explored in this study, but should
be noted for future work. Finally, time is normalized with a standard transit time for
a characteristic electron with energy equal to the most-probable energy of an emitted
secondary electron (a function of the dielectric material) across the full vacuum gap:

𝑡trans
gap =

𝐷gap√︂
2𝑊𝑝

𝑚𝑒

, (5.2)

where 𝐷gap is the gap width, 𝑊𝑝 is the most-probable energy of the electron, and 𝑚𝑒 is
the electron mass, taking non-relativistic relations, which is valid for parameters employed
herein. For the typical vacuum parameters of Chapter 3, listed in Table 2.7, the standard
transit time is 𝑡trans

gap ∼ 2.5 ns. Note that 𝑡trans
gap is roughly five times longer than the typical

fast-transient growth characteristic seen in breakdown discharges of Chapter 3.
The DC susceptibility of the dielectric surface to the formation of a multipactoring

discharge is described by a region in the 𝐸⊥/𝐸‖ plane over which a characteristic electron
can gain sufficient energy during its lifetime such that the impact energy is between
the first crossover, 𝑊1, and second crossover, 𝑊2, as described by Vaughan’s theory on
secondary emission outlined in Section 2.3. The following treatment will look at a general
form for particle dynamics with a simple treatment of collisions:

𝑚
𝑑𝑣

𝑑𝑡
= 𝑞𝐸 −𝑚𝑣𝜈𝛽, (5.3)

where 𝜈𝛽 = 𝐾𝛽𝑛𝑔 is the collision frequency related to some collisional event, 𝛽; 𝐾𝛽 is
the collision rate coefficient; and 𝑛𝑔 is the neutral gas density. Note that the form of
Equation (5.3) does not include space charge. Furthermore, it should be noted that the
velocity in the collisional component should be the relative velocity between projectile
and target particles, but the usual approximation that the electron speed is much greater
than the typical gas speed is employed here so that lim

𝑣𝑒≫𝑣𝑛
(𝑣𝑒 + 𝑣𝑛)→𝑣𝑒 = 𝑣 is used in

Equation (5.3), where 𝑣𝑒 is the electron speed and 𝑣𝑛 is the neutral speed. This treatment
springboards off the usual analysis from Section 3.1, applying a number of simplifying
assumptions to isolate the pertinent physics of various pressure regimes and to pull out
lifetime and impact energy relations as outlined in the following sections. Discharge
behavior will be described in terms of a characteristic particle encompassing distribution
metrics used in this study.

It must be stressed that DC susceptibility limits are drawn according to the charac-
teristic particle, but the limits are thereafter assumed to apply to the distribution as a
whole, keeping with the logical extension of characteristic metrics, e.g. temperature in
kinetic gas theory. This is a common source of confusion, as the characteristic particle
will have a deterministic impact angle, but the distribution will not, and can be effec-
tively parameterized with respect to the distribution. In principle, the limits drawn with
respect to the characteristic particle may be construed as being “fuzzy” limits, but the
intention of this study is to define a-priori behavior correlated to distribution metrics
and not to reintroduce distribution statistics. That said, limits can be drawn assuming
other characteristic quantities in the distribution functions, e.g. average velocity from
𝑓(𝑣), RMS average velocity from 𝑓(𝐸), averages in impact angle from 𝑓(𝜃imp), but the
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most-probable metrics have been observed to serve the purposes of this development. The
DC susceptibility regions defined here describe 𝐸⊥/𝐸‖ regions that lead to multiplicative
impact energies from the initial energy of the characteristic particle (again, representing
the distribution) assuming a single impact angle. Varying the field angle, i.e. 𝐸⊥/𝐸‖, is
not to be construed as varying the impact angle, but merely varying the impact energy ;
the ability to do this is a product of the assumption that 𝐸⊥/𝐸‖ limits are descriptive
of the distribution and not any single particle in the distribution. The impact angle can
now be parameterized to give the dependence on 𝜃imp as a theoretical limit. Recall the
observations and physical understanding of typical discharge behavior from Chapters 3
and 4 with respect to impact angle, where the 𝜃imp-space in vacuum cases is typically
sampled in a sparse manner, e.g. Figure 3.8, while the 𝜃imp-space for gaseous cases is
sampled in a peaked-distribution manner, e.g. Figure 3.21. Previous observations suggest
a wider variation in both the magnitude of 𝜃imp and in the temporal variation of 𝜃imp for
gaseous cases.

5.2.1 Vacuum Susceptibility

In the limit of zero collisionality, i.e. 𝜈𝛽 = 0 in Equation (5.3), the particle dynamics
from Section 3.1 apply, where the forces in terms of perpendicular and parallel fields near
the surface are reproduced here; the force due to the field perpendicular to the dielectric
is:

𝐹⊥ = 𝑞𝐸⊥ = 𝑚
𝑑𝑣⊥
𝑑𝑡

⇒
−𝑣⊥0∫︁
𝑣⊥0

𝑑𝑣⊥ =

𝑡life∫︁
0

𝑞

𝑚
𝐸⊥𝑑𝑡, (5.4)

and the force due to the field parallel to the dielectric surface is:

𝐹‖ = 𝑞𝐸‖ = 𝑚
𝑑𝑣‖
𝑑𝑡

⇒
𝑣‖𝑓∫︁

𝑣‖0

𝑑𝑣‖ =

𝑡life∫︁
0

𝑞

𝑚
𝐸‖𝑑𝑡. (5.5)

Since much of the discharge remains close to the dielectric as illustrated in Section 3.4,
the behavior of the discharge is dominated by the near-surface fields. As in Section 3.1,
assuming quasi-static fields with negligible space-charge and no external effects, e.g. colli-
sions, the perpendicular velocity at emission must be the (negated) perpendicular velocity
at impact, so Equation (5.4) is readily integrated to give the lifetime of the particle as in
Section 3.1:

𝑡life = −2𝑚𝑣⊥0

𝑞𝐸⊥
, (5.6)

and the change in velocity is
𝑣‖𝑓 − 𝑣‖0 =

𝑞

𝑚
𝐸‖𝑡life. (5.7)

Plugging in for 𝑡life in Equation (5.7), and solving for the final velocity, 𝑣‖𝑓 :

𝑣‖𝑓 = 𝑣‖0 − 2𝑣⊥0

𝐸‖
𝐸⊥

. (5.8)
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The impact energy is therefore:

𝑊imp =
1

2
𝑚
(︀
𝑣2‖𝑓 + 𝑣2⊥𝑓

)︀
=

1

2
𝑚

(︃[︂
𝑣‖0 − 2𝑣⊥0

𝐸‖
𝐸⊥

]︂2
+ 𝑣2⊥0

)︃
. (5.9)

Rearranging gives the ratio of perpendicular fields to parallel fields:

𝐸⊥
𝐸‖

=
2𝑣⊥0

𝑣‖0 −
√︂

2𝑊imp

𝑚
− 𝑣2⊥0

. (5.10)

The limits of Equation (5.10) at which multipactor is expected to occur via the Vaughan
model can be found by simply replacing 𝑊imp with 𝑊1 and 𝑊2. As shown in Section 3.4,
particles in vacuum discharges impact with most of their energy associated with the veloc-
ity parallel to the surface so that most impacts are grazing; therefore, the construction of
Figure 5.3 uses 𝑊1 and 𝑊2 for grazing impact. The region between the dashed lines rep-
resenting the 𝑊1 and 𝑊2 limits indicates multipactor conditions while non-multiplicative
conditions flank both sides of the multipactor region. A first-order interpretation of the
non-multiplicative region above the 𝑊1 limit is that lifetimes are too short with insuf-
ficient energy gain (i.e. larger 𝐸⊥ coupled with smaller 𝐸‖) to allow for multiplication,
hence impact energies are below first crossover. Similarly, the region below the 𝑊2 limit
can be understood as providing particles with too much energy over longer lifetimes (i.e.
smaller 𝐸⊥ coupled with larger 𝐸‖), hence impact energies are above second crossover.
Near-surface electric fields from simulation can be plotted on top of Figure 5.3, showing
the evolution of surface-field angle characteristics in time, e.g. Figure 5.11.

Figure 5.3 plots Equation (5.10) for a characteristic particle defined by the most-
probable emission energy. The use of a characteristic particle is necessary to define the
initial velocities in Equation (5.10). Emission is done by sampling a Maxwellian reservoir
with most-probable emission energy 𝑊mode

emit , where typical Maxwellian metrics apply over
sufficient emission. Empirically, it is observed that defining distribution characteristics
based on most-probable metrics allows temporal traces to approach closer to the limit
lines, suggesting the tendency for multiplicative breakdown is driven more by particle
population density rather than distribution moments (e.g. the first moment of the velocity
distribution, the square-root of the second moment, or the square-root of the energy
distribution, all giving various velocity averages, with the latter two being the root-mean
square velocity). Note that these relations are relevant to the emission characteristics,
which are, again, defined by the dielectric material. Furthermore, particles are emitted
in a half-space cosine distribution, peaked at normal emission. The general behavior
of a characteristic distribution may then be correlated to specific metrics, where proper
treatment, again, requires the most-probable metrics of the energy distribution rather
than average metrics. Some typical parameters for the target distribution are listed in
Table 5.1.

Recall crossover energies, 𝑊1 and 𝑊2, are a function of impact angle as described in
Section 2.3, so the limits drawn in Figure 5.3 should include the functional dependence on
function of impact angle as well. Varying 𝑊1 and 𝑊2 with impact angle creates a surface
as in Figure 5.4a. The susceptibility surface provides additional information about the
characteristics of the impact distribution, but the time evolution of surface fields becomes
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Figure 5.3: General form of a susceptibility diagram under vacuum conditions for grazing
incidence. 𝐸⊥ against 𝐸‖ is plotted, showing the form of 𝑊1 and 𝑊2 for the most-probable
particle with properties listed in Table 5.1. Note this diagram is the transpose of the usual
RF susceptibility diagrams, c.f. Figure 5.1, to show the electric-field angles relative to the
dielectric surface.

Table 5.1: Typical parameters used in constructing the baseline susceptibility curve.

Parameter Symbol Value

Emission temperature T 1.85 eV

Particle mass (electron) 𝑚𝑒 9.11 × 10−31 kg

Most-probable emission energy 𝑊 emit
mode 1.85 eV

Average speed 𝑣 9.4642 × 105 m/s

more difficult to track if the impact characteristics are highly distributed. In cases where
electrons are incident on the dielectric over a small range of impact angles, treatment
can approach the simplified version above while retaining some information about the
impact distribution with some modification to the interpretation of the susceptibility
plot: to first-order, impact-angle information from Figure 5.4a can be collapsed into
regions of probable multiplicative conditions as in Figure 5.4b rather than simply distinct
lines separating multiplicative and non-multiplicative regions as in Figure 5.3. Limited
ranges for impact angles can occur in vacuum discharges due to the relative uniformity of
emission characteristics and volume discharge evolution, as in the discharges of Chapter 3.
Collapsing the susceptibility surface of Figure 5.4a into the 𝐸⊥/𝐸‖-space is therefore
just a looser interpretation of the original susceptibility formulation above, defining three
regions (rather than two) of: (1) definite multiplicative growth, (2) probable multiplicative
growth, and (3) definite non-multiplicative growth.
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(a) Full susceptibility surface. (b) Susceptibility surface, collapsing 𝜃imp effects.

Figure 5.4: Field ratios, 𝐸⊥/𝐸‖, vs. impact angle, 𝜃imp, in vacuum. (a) illustrates the
minor dependence on 𝜃imp. The green region indicates susceptibility to multipactor. Lines
at select impact angles are for clarity. (b) is the reduced susceptibility surface, encom-
passing 𝜃imp-dependence in the yellow regions, further illustrating the minor dependence
on impact angle for typical parameters.

5.2.2 Low-Pressure Susceptibility

This section describes considerations for susceptibility at low pressures, on the order
of 1 Torr. Increasing the pressure introduces collisional and localized space-charge effects
that can invalidate the vacuum assumptions of quasi-static discharges influenced largely
by near-surface fields. In the case of low-pressure discharges where collisions start to
become appreciable while space-charge effects remain moderate (i.e. still assuming quasi-
static fields over relatively short time scales), the kinetic equation must also account for
collisional terms in the kinetic equations, i.e. Equation (5.3) must be used. Lifetimes and
impact energies are significantly altered, most easily seen through impact diagnostics, e.g.
Figure 3.21. Particle dynamics must therefore be treated more directly with more details
on the following exposition are available in Appendix 5.A. The perpendicular velocity
gives:

𝑣⊥ (𝑡) =
𝑑𝑦

𝑑𝑡
= 𝑒−𝜈𝛽𝑡

𝑡∫︁
0

𝑒𝜈𝛽𝑠
𝑞

𝑚
𝐸⊥𝑑𝑠 + 𝑣⊥0𝑒

−𝜈𝛽𝑡

⇒
𝑦∫︁

0

𝑑𝑟 =

𝑡∫︁
0

[︂
𝑞𝐸⊥
𝑚𝜈𝛽

(︀
1 − 𝑒−𝜈𝛽𝑠

)︀
+ 𝑣⊥0𝑒

−𝜈𝛽𝑠

]︂
𝑑𝑠,

(5.11)

and the parallel fields gives:

𝑣‖ (𝑡) =
𝑑𝑥

𝑑𝑡
= 𝑒−𝜈𝛽𝑡

𝑡∫︁
0

e𝜈𝛽𝑠
𝑞

𝑚
𝐸‖𝑑𝑠 + 𝑣‖0𝑒

−𝜈𝛽𝑡

⇒
𝑥∫︁

0

𝑑𝑟 =

𝑡∫︁
0

[︂
𝑞𝐸‖
𝑚𝜈𝛽

(︀
1 − 𝑒−𝜈𝛽𝑠

)︀
+ 𝑣‖0𝑒

−𝜈𝛽𝑠

]︂
𝑑𝑠.

(5.12)
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It should be noted that the limits of the integrals are taken from 0 to the dimension of
interest, implicitly stating that all impact points on the surface can be treated indepen-
dently, particularly at the discharge onset when field conditions are uniform. Furthermore,
the collision frequency was not split into component form, linearly affecting all directions
equally. Equation (5.11) can be used to obtain the trajectory in 𝑦:

𝑦 =
𝑞𝐸⊥
𝑚𝜈2

𝛽

(︀
𝜈𝛽𝑡 + 𝑒−𝜈𝛽𝑡 − 1

)︀
− 𝑣⊥0

𝜈𝛽

(︀
𝑒−𝜈𝛽𝑡 − 1

)︀
. (5.13)

Similarly, the particle range can be obtained from Equation (5.12):

𝑥 =
𝑞𝐸‖
𝑚𝜈2

𝛽

(︀
𝜈𝛽𝑡 + 𝑒−𝜈𝛽𝑡 − 1

)︀
− 𝑣‖0

𝜈𝛽

(︀
𝑒−𝜈𝛽𝑡 − 1

)︀
. (5.14)

The lifetime of a typical particle can be found by setting 𝑦(𝑡life) = 0 in Equation (5.13),
producing an implicit non-linear form for the particle lifetime:

0 =
𝑞𝐸⊥
𝑚𝜈2

𝛽

(︀
𝜈𝛽𝑡life + 𝑒−𝜈𝛽𝑡life − 1

)︀
− 𝑣⊥0

𝜈𝛽

(︀
𝑒−𝜈𝛽𝑡life − 1

)︀
⇒ 𝑒−𝜈𝛽𝑡life = 1 − 𝑞𝐸⊥𝜈𝛽

𝑞𝐸⊥ −𝑚𝜈𝛽𝑣⊥0

𝑡life.

(5.15)

At this point, it is necessary to outline gaseous discharge parameters to compute 𝜈𝛽.
The most fundamental target collision for this study is single-ionization of ground-state
argon background gas, i.e. 𝜈𝛽 = 𝜈𝑖𝑧, where 𝜈𝑖𝑧 is the ionization frequency for single
ionization of Ar:

𝜈𝑖𝑧 = 𝐾𝑖𝑧(T𝑒)𝑛𝑔, (5.16)

where the ionization constant in the Thomson model [34] is:

𝐾𝑖𝑧 (T𝑒) = 𝜎0𝑣𝑒

(︂
1 +

2T𝑒

ℰ𝑖𝑧

)︂
𝑒−

ℰ𝑖𝑧
T𝑒 , (5.17)

and the parameters in Equation (5.17) are:

𝜎0 = 𝜋

(︂
𝑒

4𝜋𝜀0ℰ𝑖𝑧

)︂2

,

𝑣𝑒 =

(︂
8𝑒T𝑒

𝜋𝑚

)︂1/2

, and

ℰ𝑖𝑧 = 15.79 V for Ar.

Assuming ideal gas for a 1 Torr Ar background, 𝑛𝑔 = 3.33 × 1022 m−3, and 𝜈𝑖𝑧 = 1.91 × 105 s−1.
It should be noted that the volume characteristic of the distribution is not well-represented
by the Maxwellian distribution, and the Thomson model can overestimate reaction rates
by at least a factor of two as shown in Appendix 3.B. In principle, a transfer function
might be devised to represent the volume distribution from the emitted Maxwellian, but
the evolution of the discharge is not well defined in the parameter space of interest, and
seeking out a general transfer function is outside the scope of this work. Additionally,
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seeking out a transfer function for a limited parameter set amounts to a-posteriori corre-
lation that is not consistent the intent of this a-priori diagnostic.

Using a simple iterative Newton solver on Equation (5.15), lifetimes can be obtained
from standard values used in this study. The lifetimes are shown in Figure 5.5 as a function
secondary emission angle, 𝜃emit, and surface field angle, 𝜒𝐸. The extremes of 𝜒𝐸 are not
shown due to divergent lifetime calculations approaching infinity. Assuming constant |�⃗�|,
for a constant 𝜒𝐸, lifetimes should be longest at normal emission, i.e. 𝜃emit = 0∘, since
the maximum energy is attributed to the vertical direction in such a case; alternatively,
for a constant 𝜃emit, lifetimes should be shortest for normal field angles, i.e. 𝜒𝐸 = 90∘,
since the electron experiences the maximum force in the perpendicular direction in such
a case.

The errors in expanding 𝑒𝜈𝛽𝑡life to first order for the lifetimes plotted in Figure 5.5
are shown in Figure 5.6. The extremes of 𝜒𝐸 are not shown due to divergent values,
since lifetimes approach infinity for 𝜒𝐸 → 0∘ and 𝜒𝐸 → 180∘ with respect to the surface
tangent in the direction of the cathode. The max norm of the error is < 1 % at 𝜒𝐸∼ 0.18∘

and 𝜒𝐸∼ 179.82∘. At atmospheric pressure, expansion errors grow considerably at the
extremes. It is worth noting that expansion errors may be acceptable at field angles
approaching normal to the surface (𝜒𝐸 → 90∘); however, it is not in the interest of this
study to maintain field angles at a specified orientation, so limiting the expansion error
by field angle is not an appropriate exploit here. The fact that the error is smallest at
field angles normal to the surface could be applied to multiple-stack configurations as a
means of simplifying theoretical dynamics near electrodes.

Figure 5.5: Low-pressure particle lifetimes from iterative solution of Equation (5.15),
𝑝bg = 1 Torr. Extreme values of 𝜒𝐸 are not shown due to divergent values of lifetime, i.e.
lifetimes approach infinity with zero perpendicular fields as 𝜒𝐸 → [0∘, 180∘], with respect
to the surface tangent in the direction of the cathode.
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(a) 𝑝bg = 1Torr. (b) 𝑝bg = 760Torr.

Figure 5.6: Errors for the first-order expansion of the exponential term in Equation (5.15).
N.b. this is the error in the expansion, not the particle lifetime, which is provided in
Figure 5.8 for 1 Torr and in Figure 5.9 for 760 Torr.

The error from the first-order expansion is acceptably low (much less than 1 %) for
most of the parameter space, with higher orders providing increasing smaller contributions
to the error. Equation (5.15) can therefore be simplified, cutting off at the second-order
term:

𝑒−𝜈𝛽𝑡life = 1 + (−𝜈𝛽𝑡life) +
(−𝜈𝛽𝑡life)

2

2!
+ · · · . (5.18)

Plugging in the expansion reduces the lifetime to a tractable form:

𝑡life =
2𝑚𝑣⊥0

𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥
. (5.19)

The approximate lifetime values for the case of 𝑝bg = 1 Torr are shown in Figure 5.7,
and the error between Equation (5.15) and Equation (5.19) is shown in Figure 5.8a,
i.e. the lifetime error as a function of emission angle, 𝜃emit, and electric-field angle, 𝜒𝐸.
From Figure 5.8a, the lifetime error is generally acceptable for all values of 𝜃emit and 𝜒𝐸,
except at the extreme values, which correspond to the longest lifetimes. Since 𝜃emit is a
cosine distribution in half-space emission, the lifetime error can be integrated with the
normalized cosine distribution to get a weighted lifetime error as a function of the field
angle, shown in Figure 5.8b. Errors in lifetime calculations are acceptably small for field
angles ranging |𝜒1%

𝐸 |∼ [0.18∘, 179.82∘] for the case of 1 Torr. The divergence of the lifetime
error for |𝜒𝐸| > |𝜒1%

𝐸 | is, again, a consequence of divergent lifetimes calculated with fields
parallel to the surface resulting in (locally) infinite lifetimes for emitted particles. For
most typical discharge parameters, the surface does not experience fields tangent to the
surface for most of the discharge time, unless the dielectric angle is orthogonal to the
electrodes, i.e. 𝛼 = 0∘. As discussed in Section 3.1.1, typical parameters in vacuum
tend to saturate around the 𝜒𝐸 = 15.6∘ limit. The divergent errors at infinite lifetimes
are therefore not expected to significantly influence the characterization of the discharge.
Finally, Figure 5.9b shows the lifetime errors and weighted lifetime error for the case of
𝑝bg = 760 Torr, showing that errors can become appreciable with higher collisionality.
Since fields evolve with the discharge, it is difficult to limit the error globally in time, but
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from Chapters 3 and 4, up through low pressure, it is observed that systems of interest
are not typically operating at field values consistent with divergent lifetime errors, so such
errors are not of general concern. Furthermore, the expansion employed in Equation (5.19)
provides a useful diagnostic to demarcate pressure regimes between what has ostensibly
been referred to as “low-pressure breakdown” and “high-pressure breakdown” in this work.
It is known that surface fields will tend to saturate to an equilibrium field angle, which
is 𝜒𝐸∼ 25∘ from Figure 3.2. Additionally, the initial conditions for the surface fields can
be calculated or measured, as in Figure 3.10 and Figure 3.17, with the shallowest field
angle at 𝜒𝐸∼ 8∘. Limiting the expansion error to 1 percent at the shallowest angle will
lead to a pressure limit of ∼ 50 Torr by iterative solution. However, since much of the
discharge time is not spent with 𝜒𝐸 at the shallowest angle, it will be sufficient to simply
limit the lifetime error to 1 % at 𝜒𝐸 = 25∘, giving a pressure limit of ∼ 140 Torr by
iterative solution. Note that this limit, determined by Taylor expansion consideration, is
similar to the limit in Section 3.2 determined by comparison of the ionization rate and
the multipactor rate.

Figure 5.7: Low-pressure particle lifetimes from iterative solution of Equation (5.15),
𝑝bg = 1 Torr. Extreme values of 𝜒𝐸 are not shown due to divergent values of lifetime,
i.e. lifetimes approach infinity with practically zero perpendicular fields as 𝜒𝐸 → 0∘ or
𝜒𝐸 → 180∘, measured relative to the surface tangent in the direction of the cathode.

Impact velocities can also be simplified applying the same Taylor expansion, but this
time to first-order to force a linear relation with respect to 𝑡life:

𝑣‖ (𝑡life) = 𝑣‖0 +

(︂
𝑞𝐸‖ −𝑚𝑣‖0𝜈𝛽

𝑚

)︂
𝑡life, and

𝑣⊥ (𝑡life) = 𝑣⊥0 +

(︂
𝑞𝐸⊥ −𝑚𝑣⊥0𝜈𝛽

𝑚

)︂
𝑡life.

(5.20)
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(a) Lifetime errors. (b) Weighted lifetime error.

Figure 5.8: Lifetime errors and weighted lifetime error at 1 Torr. Approximate lifetimes
are calculated with Equation (5.19) and exact lifetimes are taken from Equation (5.15).
Extreme values at 𝜒𝐸 → [0∘, 180∘] are not shown due to divergent values as a result of
lifetimes approaching infinity.

(a) Lifetime errors. (b) Weighted lifetime error.

Figure 5.9: Lifetime errors and weighted lifetime error at 760 Torr. Analogous to Fig-
ure 5.8.
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Finally, plugging in for 𝑡life:

𝑣‖ (𝑡life) = 𝑣‖0 +
2𝑣⊥0𝑞𝐸‖ − 2𝑣⊥0𝑚𝑣‖0𝜈𝛽

𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥
, and

𝑣⊥ (𝑡life) = 𝑣⊥0 +
2𝑣⊥0𝑞𝐸⊥ − 2𝑣⊥0𝑚𝑣⊥0𝜈𝛽

𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥
.

(5.21)

With the velocities now in closed form, the impact energy can be written as:

𝑊imp =
1

2
𝑚
(︁[︀

𝑣‖ (𝑡life)
]︀2

+ [𝑣⊥ (𝑡life)]
2
)︁

=
1

2
𝑚

(︃[︂
2𝑣⊥0𝑞𝐸‖

𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥
+ 𝑣‖0

]︂2
+ 𝑣2⊥0

)︃
. (5.22)

The target metric is, again, the ratio of perpendicular to parallel fields, which is obtained
by rearranging Equation (5.22):

𝐸⊥
𝐸‖

=
2𝑣⊥0(︃

𝑣‖0 −
√︂

2𝑊imp

𝑚
− 𝑣2⊥0

)︃ +
𝑚𝜈𝛽𝑣⊥0

𝑞𝐸‖
. (5.23)

Comparison of Equation (5.23) with Equation (5.10) shows that the collisionless con-
tribution of 𝐸⊥/𝐸‖ is clearly retained, while low-pressure collisions introduce an additive
term dependent on the field parallel to the dielectric, effectively moving the whole suscep-
tibility plane up or down in the 𝐸⊥/𝐸‖-space, as in Figure 5.10, which uses an unchar-
acteristically high pressure and temperature to enhance the effect. The dependence on
the parallel field is sensible since collisions are highly dependent on the particle energy,
which is largely driven by the parallel fields. It should be noted that this treatment will
be applied to discharges in Chapter 4, while the remainder of this chapter will focus on
applying developments in Section 5.2.1.

Figure 5.10: 𝐸⊥/𝐸‖ vs. 𝜃imp for the low pressure case. Pressure, 𝑝𝑏𝑔 = 10 Torr, with
electrons assumed to be Maxwellian with a temperature at 𝑇 = 15.79 eV to increase the
ionization rate. N.b. the pressure and temperature are artificially increased in this plot
for illustrative purposes.
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5.2.3 Comments on High-Pressure Susceptibility

This work will not address DC susceptibility at higher pressures beyond the limits
discussed in this chapter and in Section 3.2. The treatment of additional collisions requires
using the full lifetime relation from Equation (5.15) without expansion, with the possible
inclusion of additional space-charge effects when ionization and similar charge-producing
effects become significant. This would require an iterative treatment at each time step,
which would be computationally intensive in the aggregate. Velocities in Equations (5.11)
and (5.12) were similarly expanded, and would need to be solved in-situ since quasi-static
field arguments are less likely to apply with increased reaction rates. The most significant
characteristic of this treatment up to this point is that DC susceptibility through low
pressures is an a-priori metric, using known characteristics of the discharge to draw
limit lines; going deeper into regimes dominated by volume effects removes the a-priori
characteristic, and while DC susceptibility can provide useful insight into the discharge
evolution by agglomerating a collection of metrics (field phase and magnitude, secondary
impact and emission characteristics, etc.), it loses the predictive capability that makes DC
susceptibility particularly useful and important as a diagnostic tool that can be leveraged
to move a system into a desired operating regime.

5.3 VULP Susceptibility Diagrams

5.3.1 VULP in Multiplicative Breakdown

In general, fields can move into and out of the multipactor region similar to the
characteristically Lissajous curves of Figure 5.2. A typical time-trace of the electric-field
ratios for all points along the dielectric surface is shown in Figure 5.11. The colormapping
of the scatter plot describes the evolution of the fields from 0×𝑡trans

gap in yellow to 2×𝑡trans
gap

in black, noting that the time scale has been normalized to the standard transit time
of Equation (5.2). The blue triangles indicate the fields at 0×𝑡trans

gap along the dielectric
surface. The direction towards the cathode and anode are specified, but the actual values
are not plotted to allow for a cleaner plot where it should be noted that fields at the
electrodes are specified. In principle, there is some error in the way electrode fields are
represented with respect to the dielectric surface, related to the problems addressed in
Section 2.2.1, particularly as the electrodes are stair-stepped. Since the metallic boundary
condition forces fields normal to the electrode boundary, the fields at the intersection of the
electrode and dielectric are either parallel or perpendicular depending on the orientation
of the electrode segment intersecting with the dielectric. The binary field orientation
(either perpendicular or parallel) with respect to the dielectric surface is a result of the
stair-stepping errors, while the real configuration will generally result in an oblique field
angle with respect to the dielectric surface. Furthermore, it should be noted that the
fields on approach to the electrodes are theoretically subject to divergent characteristics
from dielectric wedges [4, 69, 75], although this is not explicitly modeled in PIC. The
triple-point fields are important to the seed, but not to the overall characteristic of field
evolution further downstream, as the divergent characteristic quickly decays as noted in
Section 2.A.3.

Recall the expected behavior for vacuum discharges in breakdown is described in
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Section 3.4.1. In the context of Figure 5.11, the behavior of the discharge includes the
following sequence: (1) the discharge starts within the multipactor region, indicated by
the blue triangles; (2) the development of an upstream, multiplicative, negatively-charged
cloud initially pulls surface field angles lower, mostly as a result of an increased field
component parallel to the surface in response to the growing upstream cloud, effectively
moving further into the multiplicative region; and (3) the discharge evolves towards the
first crossover line once the multipactor front passes a specified downstream point as a
result of increased perpendicular fields (reducing particle lifetimes) and reduced parallel
fields (reducing particle energy gain). Points on approach to the cathode continue to evolve
as a result of the unperturbed, CW, beam-like source used to seed these discharges. The
drive towards first crossover is a result of the multipactor growth as surface fields respond
to the front sweeping the surface; in the vacuum case, the front effectively snuffs further
growth in its wake, consistent with observations in Section 3.4.1.

Figure 5.11: 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 6.12∘ in vacuum. Field
ratios are scattered as a function of time. Yellow is 0 ps and black is 5000 ps. The time-
evolution scatter includes space charge, while the 𝑊1 and 𝑊2 limits do not.

Figure 5.12 shows more detailed temporal snapshots of the susceptibility diagram. The
various times shown are a collection of three plots, comprising the susceptibility diagram
for a characteristic point representative of most of the surface (chosen as the center of
the dielectric surface for this study) shown as the main subplot, scaled number plots
shown on the upper-right subplot, and a reproduction of the full-surface susceptibility
in the bottom-right subplot. Note that the scaling in the number plots is arbitrary for
ease of visualization, and the time scale is a moving window. The choice of the center
is largely a matter of observation, serving as a point observed to be sufficiently far from
localized effects of the initial-impact region such that near upstream and downstream
impacts are roughly similar in time, noting particularly that this is not necessarily true
for all variations on parameters. The dielectric center is furthermore an ideal choice as
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the error was designed to be smallest there, c.f. Section 2.2. For all plots, the current time
is identified by a white circle, matching the white bar on the temporal color-bar in the
center. Figure 5.12a illustrates the initial fast growth up to ∼ 0.12 × 𝑡trans

gap , i.e. a tenth
of the standard transit time or ∼ 250 ps, showing the very-fast pull-up to the 𝑊1-limit
from well-within the multipactor region. Although not shown explicitly, the secondary
peak is consistent with the ionization-electron peak, where most of the ionization occurs
near the surface, with the ionization-electron density peaked near the anode during the
fast-transient, allowing for the relatively fast decay of the ionization electrons. Evacuation
of both secondaries and ionization electrons to the anode leaves behind an appreciable
positive charge in the volume from the ions that will move slowly towards the cathode
in the nanosecond time-scale. The full-surface diagram in the lower right of Figure 5.12a
more clearly shows the ballooning of the field profile from a relatively concentrated (i.e.
near uniform) field condition as the downstream fields respond to upstream growth that
pulls downstream fields along as the front progresses over the surface. Figure 5.12b shows
the initial drive to steady-state, which amounts to a relatively fast decay of the number
where the leading edge of the decay is attributed to the maximum current gain of ∼ 250×𝐼0
from Figure 3.11b. The full extent of the field ballooning is more apparent by this time,
where it is most important to note that surface points are approaching a saturated angle
everywhere, even if individual magnitudes might vary by > 200 % at maximum comparing
component field magnitudes in the main cluster (ignoring the outermost tendrils that are
still affected by the electrode conditions). Finally, Figure 5.12c illustrates the sustained
steady-state for the remainder of the discharge, where the lower-right full-surface diagram
looks very similar to the full-surface diagram from Figure 5.12b. It is apparent that the
field angle approached in Figure 5.12c is, indeed, a saturation angle, and is consistent
with the location of the 𝑊1 limit. Again, observing the full-surface plots in the lower-
right subplots, most of the surface away from the electrodes behaves in a similar manner
to the characteristic (dielectric center) susceptibility diagrams, with minor tugs in both
directions along 𝐸‖ in response to whether the traveling multipactor front is upstream
or downstream of any point of interest on the surface. The pull-up to 𝑊1 is similarly a
response to the traveling front. The maximum variation in 𝐸‖ is ∼ 15 % of the initial
value while the maximum variation in 𝐸⊥ is ∼ 150 % of the initial value, so most of
the saturation phenomenon is coming from the perpendicular response, particularly since
the parallel value seems to oscillate about the initial value, again, as a response to the
traveling multipactor front and later as a response to the steady-state tail.

5.3.2 VULP in Dark-Current Steady-State

The time-trace for the electric-field ratios at 𝛼 = 22.9∘ is shown in Figure 5.13, with
the colormapping similarly showing the time-evolution of fields as for Figure 5.11, al-
beit for an order of magnitude longer time for the full discharge, noting the scales. The
expected behavior for vacuum discharges in a creeping dark-current is described in Sec-
tion 3.4.2. In the context of Figure 5.13, the discharge behavior includes the following
sequence: (1) the discharge starts outside the multiplicative region; (2) the development
of an upstream, non-multiplicative, negatively-charged creeping front, coupled with nega-
tive surface-charging, pulls surface field angles lower toward the edge of the multiplicative
region, with particle lifetimes and energy gain increased; and (3) the discharge evolves to-
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(a) Through peak transient.

(b) Post peak-current. (c) Fully-developed steady-state.

Figure 5.12: Snapshots of 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 6.12∘ in
vacuum. Field ratios are scattered as a function of time. Yellow is 0 ps and black is
5000 ps. The time-evolution scatter includes space charge, while the 𝑊1 and 𝑊2 limits do
not. A full video is available at as a supplement to this document.
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wards the first crossover line with the dark-current front slowly creeping over downstream
points with unit gain. There is a region near the cathode that experiences field-reversal
as a result of excessive negative charging on the dielectric surface, leading to an arc
that results in the field pull-up shown in the upstream evolution (toward the cathode) of
Figure 5.13.

Figure 5.13: 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 22.9∘ in vacuum. Field
ratios are scattered as a function of time. Yellow is 0 ps and black is 50 ns. The time-
evolution scatter includes space charge, while the 𝑊1 and 𝑊2 limits do not.

Figure 5.14 shows more detailed temporal snapshots of the susceptibility diagrams
for 𝛼 = 22.9∘, analogous to Figure 5.12 for the case of 𝛼 = 6.12∘, including similarly
associated characteristic (dielectric-center) susceptibility diagrams in the main subplot,
(scaled) number plots in the upper-right subplot, and reproductions of the full-surface sus-
ceptibility diagrams in the lower-right subplot. The current time is, again, marked for all
plots with a white circle, matching the white bar on the temporal color-bar. Figure 5.14a
illustrates the slow pull-down through ∼ 5.0 × 𝑡trans

gap , noting that this is, of course, slower
than the standard transit time and occurs over a timescale that is ∼ 40× longer than the
timescale for dominant effects at 𝛼 = 6.12∘. Figure 5.14a is roughly half the time to a
relative steady-state, and the lower right graph showing the full surface illustrates that
most points are pushing from well outside the multipactor region to the 𝑊1-limit line.
Figure 5.14b shows the initial drive to an otherwise steady-state regime, where the center
point in the main diagram has not moved much, the remainder of the downstream surface
has effectively saturated near the 𝑊1-limit, but upstream points are showing a drive to
field angles outside the multipactor region, responding to the previously-mentioned up-
stream charge near the initial-impact region. Figure 5.14c shows the full extent of the
discharge out to ∼ 10× the temporal extent in Figure 5.12. The volume charge does
show some reduction, which is a function of near-electrode fields affecting particle losses
to the electrode boundaries, and may fluctuate over very long time scales as fields re-
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spond to near-electrode charges; nonetheless, but the overall steady-state characteristic
will look like the lower-right, full-surface graph in Figure 5.14c, with most points away
from electrodes responding as in the main center sample point in all main diagrams of
Figure 5.14.

(a) Through slow transient.

(b) Post peak-current. (c) Fully-developed steady-state.

Figure 5.14: Snapshots of 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 22.9∘ in
vacuum. Analogous to Figure 5.12, but for a non-multiplicative discharge. Yellow is 0 ps
and black is 50 ns. A full video is available at as a supplement to this document.
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5.4 Low-Pressure DC Susceptibility Diagrams

5.4.1 Low Pressure in Multiplicative Breakdown

Up to a few tens of Torr, the development of Section 5.2.2 is valid, and this section will
detail a 1 Torr discharge consistent with low-pressure parameters encountered in cases of,
for example, standard process plasmas [34]. Figure 5.15 shows the full-surface diagram,
analogous to Figure 5.11. The fast, early transient, multiplicative growth from the VULP
case is still present across the surface, but occurs over a very-short time frame compared
to the overall time shown, which is ∼ 100× longer in Figure 5.15 than in Figure 5.11.
Clearly , much of the temporal characteristics are obscured by the broad movement of
the fields compared to the VULP case, and the details of the fast-transient will be more
clearly delineated in Figure 5.16 below. It is apparent that most of the discharge time
is dominated by alternative effects other than pure multipactoring surface effects, and
the long-timescale (compared to the VULP fast-transient timescale) oscillations experi-
enced by the surface are at least partially the result of collisions in the volume (primarily
ionization). Less apparent is that the leading edge of the oscillations depend on surface
conditions, since the growth trend is seeded by surface growth.

Figure 5.15: 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 6.12∘ in 𝑝𝑏𝑔 = 1 Torr of
neutral Ar. Analogous to Figure 5.11, but for a low-pressure discharge. Yellow is 0 ns
and black is 50 ns. Oscillations are driven by the ion plasma frequency as was the case at
lower pressures with reduced oscillatory effects, c.f. Figure 3.25, causing the field ratio to
move into and out of the multiplicative region.

More detailed diagrams at key temporal intervals are shown in Figure 5.16. Fig-
ure 5.16a shows the extent of the “fast transient”, which is the VULP-like growth period
that happens over a very short time compared to both the standard transit time and the
full discharge time shown. In this case, the fast transient occurs over ∼ 30 % (noting the
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cutoff is somewhat arbitrary) of the standard transit time and ∼ 2 % of the full discharge
time shown, amounting to a picosecond-scale phenomenon. The characteristics of the
fast transient in 1 Torr at the center (main plot in Figure 5.16a) are very similar to the
vacuum case (main plot in Figure 5.12a), with some variations towards the end of the
fast-transient time shown in response to a relatively minor difference in composition and
configuration of species in the volume. Note that the scaled number plot at the upper
right of Figure 5.16a indicates a secondary population with a similar order of magnitude
to that shown in Figure 5.12a (n.b. the additional scaling noted in the legend to allow
better visualization of the number data). Clearly, there is a spike in the secondary popula-
tion associated with VULP-like multipactor over the surface over a very short time frame,
noted as the “fast transient”, as opposed to a slower, but still multiplicative, transient
later in the discharge termed the “slow transient”. The variation of fields towards the
end of the fast-transient time remains within about ∼ 20 % of the vacuum steady-state
value from Figure 5.12c further enforcing the VULP-like behavior at the parameters for
this simulation. Figure 5.16b is a snapshot after the peak electron population in a post
fast-transient growth period that is assisted by ionization electrons and the movement of
ions throughout the surface. This initial slow-transient growth comprises an upstream
growth resulting from a “peel-away” of ions near the surface that pulls near-cathode field
components up in magnitude (hovering along the saturation field-angle line) and slightly
shallower in angle, while the downstream near-anode field components are reduced in mag-
nitude by the presence of ions. An interesting point to note is that the field magnitude for
points on approach to the cathode have a larger magnitude than fields on approach to the
anode, although fields everywhere have roughly the same angle; consequently, ions closer
to the cathode experience a stronger field, enforcing the peel-away effect. Ion population
is largest near the anode, since any modes of multiplicative surface growth greater than
unity will have the largest density near the anode, leading to greater ionization in the
region. Space-charge, with larger densities of both positive ions and negative secondary
and ionization electrons, reduces the local fields as a result, corroborated by the spread in
field magnitude for all full-surface susceptibility snapshots, approaching the largest value
near the cathode and the smallest value near the relatively particle-dense anode. Further
note that Figure 5.16b happens to be the peak of ion population post fast-transient, and
the time shown is around the timescale for a typical ion to traverse the full gap under
the applied voltage for this simulation, and ∼ 20× past the fast-transient growth period.
Figure 5.16c corroborates the ion-momentum time-scale, as significant reduction of ions in
the volume has occurred over the ensuing ∼ 45 ns since the time in Figure 5.16b, with the
slower ions comprising the shallow end of the decay time, as is expected. The dielectric
center shows a field pull-up typical of what was seen with the multipactor front passing
over a given point on the surface. Due to the larger population of electrons now assisting
growth, the field pull-up extends further outside of the multipactor region than seen with
the pure-multipactor front. Figure 5.16d shows the field response accompanying surface-
growth saturation and the ion momentum, again noting that the time difference is on the
order of the time for a typical ion to cross the full gap since the end time in Figure 5.16c.
Ion are, again, peeled away from the surface, with upstream charge removed faster in an
average sense from the near-surface region, and fields are pushed back down to the 𝑊1

limit as the surface peel-away effectively leads to shallower angles since downstream points
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see stronger negative charge upstream along the evacuated surface. Figure 5.16e shows the
cumulative effect through the full discharge time, where the temporal behavior of surface
multiplication followed by surface-ion peel-away produces an oscillatory pattern in both
the characteristic susceptibility diagram and number plots, and an expansion-contraction
pattern in the full-surface susceptibility diagram.

5.4.2 Low-Pressure Dark-Current Steady-State

The full-surface susceptibility diagram for the case of 22.9∘ is shown in Figure 5.17.
As typical of low-collisionality discharges in Section 3.6.2, e.g. Figure 3.29, discharges
starting outside the multiplicative region of Figure 5.17 show no early growth period as
there was in, for example, Figure 5.15. Again, the early transient is dominated by surface
characteristics until collisionality can become appreciable, c.f. Section 3.2.

More detailed diagrams at various temporal intervals are shown in Figure 5.18, analo-
gous to Figure 5.12 for the 6.12∘ case. Figure 5.18a shows the characteristic point (again,
chosen as the dielectric center) responding in a similar manner to Figure 5.13, i.e. VULP-
like, albeit through about half the time shown in Figure 5.13. The fields at the final time
shown in Figure 5.18a are around ∼ 10 % for each component compared to the steady-
state value in Figure 5.13. Figure 5.18b shows this simulation out to the same time end
time as Figure 5.13, where clearly additional effects have been added with the presence
of ionization. In this case, an upstream ionization-assisted growth is occurring, pulling
fields up along a near-saturated angle in response to the upstream, ionization-assisted,
multipactor front in a similar manner to the field variations in Figure 5.16b. Of partic-
ular note is the absence of any fast-transient effects prior to this slower growth period,
consistent with VULP-like behavior. Furthermore, Figure 5.18b is around the time for
the average ion to cross the full gap at these parameters (recall ∼ 20 ns, so the reduction
in Ar+ population in the upper-right is sensible at this phase. Figure 5.18c behaves anal-
ogously to Figure 5.16c, where the ionization-assisted multipactor front has crossed the
center, pulling the fields “up” as a result. Figure 5.18d is a similar peel-away of Ar+ away
from the surface as in Figure 5.16c, resulting in the field pull-down. Finally, Figure 5.18e
shows the full discharge time, where the clear difference compared to Figure 5.16e is the
much more heavily-damped oscillation, most apparent in all species shown in the number
plot.

5.5 Chapter 5 Conclusions
A novel approach to susceptibility modeling in DC has been implemented. Suscepti-

bility with limits drawn using the Vaughan theory is successful at showing and predicting
where systems will evolve in terms of multiplicative growth using a-priori metrics. While
certain properties of the evolved distribution should be expected to provide better agree-
ment if used in the formulation, e.g. using the actual energy distributions in the volume
from simulation to calculate ionization rates, these are necessarily a-posteriori metrics
that do not serve the purpose of this technique. As in Chapter 3 and Chapter 4, it must
be understood that the evolution of the discharges studied are limited by the physics
included in the models described. The susceptibility diagram may be used to trace the
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(a) End of the fast transient.

(b) Post fast-transient growth. (c) Ionization-electron assisted front passing center.

(d) Ion momentum pushing fields down. (e) Full discharge time.

Figure 5.16: Snapshots of 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 6.12∘ in
𝑝𝑏𝑔 = 1 Torr of neutral Ar. Analogous to Figure 5.12, but for a low-pressure discharge.
Yellow is 0 ns and black is 50 ns. A full video is available at as a supplement to this
document.
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Figure 5.17: 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 22.9∘ in 𝑝𝑏𝑔 = 1 Torr of
neutral Ar. Analogous to Figure 5.15, but for an initially non-multiplicative discharge.
Yellow is 0 ns and black is 50 ns. The time-evolution scatter includes space charge, while
the 𝑊1 and 𝑊2 limits do not.

evolution of the discharge to further understand operating conditions and isolate the nec-
essary direction to drive the system to desired states, e.g. to either a growing regime
by maintaining field angles in the multiplicative region or to a steady-state regime by
pushing fields out of the multiplicative region as fast as possible. Furthermore, suscepti-
bility diagrams provide an engineering tool that can assess the initial characteristics of a
discharge based on the initial fields and the characteristics of secondary emission for the
dielectric. Engineering methods can then be devised to force the discharge characteristics
into desired regions from the onset, e.g. with surface charging prior to discharge onset.

5.A Excursion, Lifetime, and Energy Equations
Returning to Equation (5.12) in Section 5.2.2, explicitly working out the integration

to give the trajectory in 𝑦:

𝑦 =

[︂
𝑞𝐸⊥
𝑚𝜈𝛽
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𝛽
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(︀
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− 𝑣⊥0

𝜈𝛽

(︀
𝑒−𝜈𝛽𝑡 − 1

)︀
.

(5.24)
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(a) Similar behavior as in Figure 5.14a, through vacuum dark-current.

(b) Near peak volume population for all species. (c) Minimum Ar+ population.

(d) Minimum secondary population. (e) Full discharge time.

Figure 5.18: Snapshots of 𝐸⊥/𝐸‖ plotted at the dielectric surface with 𝛼 = 22.9∘ in
𝑝𝑏𝑔 = 1 Torr of neutral Ar. Analogous to Figure 5.16, but for an initially non-multiplicative
discharge. Yellow is 0 ns and black is 50 ns. A full video is available at as a supplement
to this document.



161

Similarly, working out Equation (5.11):

𝑥 =

[︂
𝑞𝐸‖
𝑚𝜈𝛽

𝜏 − 𝑞𝐸‖
𝑚𝜈𝛽

𝑒−𝜈𝛽𝜏

−𝜈𝛽
+ 𝑣‖0

𝑒−𝜈𝛽𝜏

−𝜈𝛽

]︂𝑡
0

=
𝑞𝐸‖
𝑚𝜈𝛽

𝑡 +
𝑞𝐸‖
𝑚𝜈2

𝛽

𝑒−𝜈𝛽𝑡 − 𝑞𝐸‖
𝑚𝜈2

𝛽

− 𝑣‖0
𝜈𝛽

𝑒−𝜈𝛽𝑡 +
𝑣‖0
𝜈𝛽

=
𝑞𝐸‖
𝑚𝜈2

𝛽

(︀
𝜈𝛽𝑡 + 𝑒−𝜈𝛽𝑡 − 1

)︀
− 𝑣‖0

𝜈𝛽

(︀
𝑒−𝜈𝛽𝑡 − 1

)︀
.

(5.25)

Setting Equation (5.24) (or Equation (5.13) in the main text) to 0 leads to Equa-
tion (5.15):

𝑦 = 0 =
𝑞𝐸⊥
𝑚𝜈2

𝛽

(︀
𝜈𝛽𝑡 + 𝑒−𝜈𝛽𝑡 − 1

)︀
− 𝑣⊥0

𝜈𝛽

(︀
𝑒−𝜈𝛽𝑡 − 1

)︀
⇒𝑣⊥0

𝜈𝛽

(︀
𝑒−𝜈𝛽𝑡life − 1

)︀
=

𝑞𝐸⊥
𝑚𝜈2

𝛽

(︀
𝜈𝛽𝑡life + 𝑒−𝜈𝛽𝑡life − 1

)︀
,

𝑣⊥0

𝜈𝛽
𝑒−𝜈𝛽𝑡life − 𝑞𝐸⊥

𝑚𝜈2
𝛽

𝑒−𝜈𝛽𝑡life − 𝑞𝐸⊥
𝑚𝜈2

𝛽

𝜈𝛽𝑡life =
𝑣⊥0

𝜈𝛽
− 𝑞𝐸⊥

𝑚𝜈2
𝛽

,(︃
𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥

𝑚𝜈2
𝛽

)︃
𝑒−𝜈𝛽𝑡life =

(︃
𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥

𝑚𝜈2
𝛽

)︃
+

𝑞𝐸⊥
𝑚𝜈2

𝛽

𝜈𝛽𝑡life,

⇒𝑒−𝜈𝛽𝑡life = 1 − 𝑞𝐸⊥𝜈𝛽
𝑞𝐸⊥ −𝑚𝜈𝛽𝑣⊥0

𝑡life.

(5.26)

Again, Taylor expansion of the exponentiated 𝜈𝛽𝑡life to second-order allows reduction of
Equation (5.26).(︃

𝑒−𝜈𝛽𝑡life ≈ 1 − 𝜈𝛽𝑡life +
(𝜈𝛽𝑡life)

2

2

)︃
= 1 − 𝑞𝐸⊥𝜈𝛽

𝑞𝐸⊥ −𝑚𝜈𝛽𝑣⊥0

𝑡life,

(𝜈𝛽𝑡life)
2

2
= − 𝑞𝐸⊥𝜈𝛽

𝑞𝐸⊥ −𝑚𝜈𝛽𝑣⊥0

𝑡life + 𝜈𝛽𝑡life,

⇒𝑡life =
2

𝜈2
𝛽

(︂
𝜈𝛽 −

𝑞𝐸⊥𝜈𝛽
𝑞𝐸⊥ −𝑚𝜈𝛽𝑣⊥0

)︂
=

2

𝜈𝛽
− 2𝑞𝐸⊥

𝑞𝐸⊥𝜈𝛽 − (𝑚𝜈𝛽𝑣⊥0) 𝜈𝛽

=
2𝑞𝐸⊥𝜈𝛽 − 2 (𝑚𝜈𝛽𝑣⊥0) 𝜈𝛽 − 2𝑞𝐸⊥𝜈𝛽

𝜈𝛽 (𝑞𝐸⊥𝜈𝛽 − (𝑚𝜈𝛽𝑣⊥0) 𝜈𝛽)

=
−2𝑚𝜈𝛽𝑣⊥0

𝜈𝛽 (𝑞𝐸⊥ −𝑚𝜈𝛽𝑣⊥0)

=
2𝑚𝑣⊥0

𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥
.

(5.27)

Velocities from Equation (5.11) and Equation (5.12) were simplified with a first-order
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Taylor expansion:

𝑣‖ (𝑡life) =
𝑞

𝑚

𝐸‖
𝜈𝛽

(︀
1 − 𝑒−𝜈𝛽𝑡life

)︀
+ 𝑣‖0𝑒

−𝜈𝛽𝑡life

=
𝑞

𝑚

𝐸‖
𝜈𝛽

(1 − [1 − 𝜈𝛽𝑡life]) + 𝑣‖0 (1 − 𝜈𝛽𝑡life)

=
𝑞

𝑚

𝐸‖
𝜈𝛽

𝜈𝛽𝑡life + 𝑣‖0 − 𝑣‖0𝜈𝛽𝑡life

= 𝑣‖0 +

(︂
𝑞𝐸‖ −𝑚𝑣‖0𝜈𝛽

𝑚

)︂
𝑡life

𝑣⊥ (𝑡life) =
𝑞

𝑚

𝐸⊥
𝜈𝛽

(︀
1 − 𝑒−𝜈𝛽𝑡life

)︀
+ 𝑣⊥0𝑒

−𝜈𝛽𝑡life

=
𝑞

𝑚

𝐸⊥
𝜈𝛽

(1 − [1 − 𝜈𝛽𝑡life]) + 𝑣⊥0 (1 − 𝜈𝛽𝑡life)

=
𝑞

𝑚

𝐸⊥
𝜈𝛽

𝜈𝛽𝑡life + 𝑣⊥0 − 𝑣⊥0𝜈𝛽𝑡life

= 𝑣⊥0 +

(︂
𝑞𝐸⊥ −𝑚𝑣⊥0𝜈𝛽

𝑚

)︂
𝑡life.

(5.28)

Plugging Equation (5.19) into the velocities in Equation (5.28) produces the simplified
velocities of Equation (5.20). The impact energy is obtained by applying Equation (5.20)
in the simple non-relativistic form:

𝑊imp =
1

2
𝑚
(︁[︀

𝑣‖ (𝑡life)
]︀2

+ [𝑣⊥ (𝑡life)]
2
)︁
. (5.29)

The target metric is, again, the ratio of perpendicular to parallel fields, which is obtained
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by rearranging Equation (5.22):

𝑊imp =
1

2
𝑚

(︃[︂
2𝑣⊥0𝑞𝐸‖

𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥
+ 𝑣‖0

]︂2
+ 𝑣2⊥0

)︃
,

2𝑊imp

𝑚
− 𝑣2⊥0 =

(︂
2𝑣⊥0𝑞𝐸‖

𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥
+ 𝑣‖0

)︂2

,(︃√︂
2𝑊imp

𝑚
− 𝑣2⊥0 − 𝑣‖0

)︃
=

2𝑣⊥0𝑞𝐸‖
𝑚𝜈𝛽𝑣⊥0 − 𝑞𝐸⊥

,

1(︂√︁
2𝑊imp

𝑚
− 𝑣2⊥0 − 𝑣‖0

)︂ =
𝑚𝜈𝛽𝑣⊥0

2𝑣⊥0𝑞𝐸‖
− 𝑞𝐸⊥

2𝑣⊥0𝑞𝐸‖
,

𝑚𝜈𝛽𝑣⊥0

2𝑣⊥0𝑞𝐸‖
− 1(︂√︁

2𝑊imp
𝑚

− 𝑣2⊥0 − 𝑣‖0

)︂ =
𝑞𝐸⊥

2𝑣⊥0𝑞𝐸‖
,

⇒𝐸⊥
𝐸‖

= 2𝑣⊥0

⎡⎢⎢⎣𝑚𝜈𝛽𝑣⊥0

2𝑣⊥0𝑞𝐸‖
+

1(︂
𝑣‖0 −

√︁
2𝑊imp

𝑚
− 𝑣2⊥0

)︂
⎤⎥⎥⎦ ,

𝐸⊥
𝐸‖

=
2𝑣⊥0(︂

𝑣‖0 −
√︁

2𝑊imp
𝑚

− 𝑣2⊥0

)︂ +
𝑚𝜈𝛽𝑣⊥0

𝑞𝐸‖
.

(5.30)

5.B Surface Field Correction

5.B.1 Correction of Charge-Biased Surface Fields

Since the particle-weighting scheme effectively distributes charge to discrete points
in space, the surface fields may experience significant error by overestimating the near-
surface influence of the charge on field magnitude and angle. The error occurs when using
the finite-differencing schemes for Poisson’s equation in XOOPIC to calculate the fields
using node values for the charge, calculating the fields via finite difference of potentials
across the nodes, and finally moving back to the nodes via interpolation, causing an
overall first-order error at surfaces. The error will then affect the more subtle nuances of
discharge behavior dominated by near-surface fields, exposing an error of similar order to
derived metrics, such as DC susceptibility.

The goal here is to weight the existing surface-field diagnostics to correctly account for
the charge density at the nodes. Since charge collects at the dielectric surface, anecdotally,
a large positive charge on the dielectric opposite a negative charge at the nearest node
above will tend to overestimate the field magnitude and field angle (with respect to the
−𝑥 axis in the usual configuration for this study). Existing charge-density diagnostics
are used to weight existing in-situ values for the line-integrated field to correct the field
diagnostics reported by XOOPIC. A Gaussian 2-D pillbox is applied “just above” the
charge density at each surface grid point, (𝑗, 𝑘), schematically shown in Figure 5.19.
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Figure 5.19: 2-D Gaussian pillbox schematic for 𝐸𝑦 correction. Charge densities, 𝜌, and
potential differences (line-integrated fields), ℰ , are diagnostic values. Field values indexed
with 𝑘 are conformal to the dielectric surface. The Gaussian pillbox sits with an edge on
the dielectric surface, where free charge collected at the surface is included in the volume.
The black dot indicates the location of the grid center, while the blue dot indicates the
location of the weighting centroid, about which linear weighting is applied to each of the
grid points, (𝑗, 𝑘).

Recall that this is a Yee-mesh implementation, so field values at mesh points are
directed, interpolating to get field values at other locations. Gauss’s law for the pillbox
is: ∮︁

𝑆

(︁
�⃗� · �̂�

)︁
𝑑𝑠 =

1

𝜀0

∫︁
𝑉

𝜌𝑑𝜏 , (5.31)

where the left-hand side integrates over surface elements, 𝑑𝑠, of the Gaussian pillbox, and
the right-hand side integrates over volume elements, 𝑑𝜏 . Summarizing details provided in
Appendix 5.B.2, the total surface integral is:

∮︁
𝑆

(︁
�⃗� · �̂�

)︁
𝑑𝑠 =

⎧⎪⎪⎨⎪⎪⎩
∆𝑥

8∆𝑦

(︃
ℰ𝑦,𝑗−1,𝑘+1/2

+ 6ℰ𝑦,𝑗,𝑘+1/2
+ ℰ𝑦,𝑗+1,𝑘+1/2

+

−ℰ𝑦,𝑗−1,𝑘 − 6𝐸𝑦,𝑗,𝑘∆𝑦 − ℰ𝑦,𝑗+1,𝑘

)︃
+

∆𝑦

8∆𝑥

(︁
ℰ𝑥,𝑗+1/2,𝑘+1 + 3ℰ𝑥,𝑗+1/2,𝑘

− ℰ𝑥,𝑗−1/2,𝑘+1 − 3ℰ𝑥,𝑗−1/2,𝑘

)︁ , (5.32)

where the target field, 𝐸𝑦,𝑗,𝑘 is explicitly written. The volume integral of the charge
density for the Gaussian pillbox is linearly weighted to the pillbox centroid, decomposing

into two halves centered at
(︂
±𝛿𝑥

4
,
𝛿𝑦

4

)︂
, using the areal ratio in Cartesian coordinates:

1

𝜀0

∫︁
𝑉

𝜌𝑑𝜏 =
1

𝜀0

∆𝑥∆𝑦

64

⎛⎝ 18𝜌𝑗,𝑘 + 6𝜌𝑗,𝑘+1 + 3𝜌𝑗−1,𝑘+

3𝜌𝑗+1,𝑘 + 𝜌𝑗−1,𝑘+1 + 𝜌𝑗+1,𝑘+1

⎞⎠ , (5.33)

noting that the weighting construct in Figure 5.19 is explicitly shown for the cell to the
right of (𝑗, 𝑘), but should be mirrored to the left of (𝑗, 𝑘) when writing Equation (5.33).



165

Returning to Gauss’s law and solving for the field value 𝐸𝑦,𝑗,𝑘:

𝐸𝑦,𝑗,𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆𝑦

6(∆𝑥)2

(︃
ℰ𝑥,𝑗+1/2,𝑘+1 + 3ℰ𝑥,𝑗+1/2,𝑘

+

−ℰ𝑥,𝑗−1/2,𝑘+1 − 3ℰ𝑥,𝑗−1/2,𝑘

)︃
+

1

6∆𝑦

(︁
ℰ𝑦,𝑗−1,𝑘+1/2

+ 6ℰ𝑦,𝑗,𝑘+1/2
+ ℰ𝑦,𝑗+1,𝑘+1/2

)︁
+

1

6
(−𝐸𝑦,𝑗−1,𝑘 − 𝐸𝑦,𝑗+1,𝑘) +

− ∆𝑦

48𝜀0

(︃
18𝜌𝑗,𝑘 + 6𝜌𝑗,𝑘+1 + 3𝜌𝑗−1,𝑘+

3𝜌𝑗+1,𝑘 + 𝜌𝑗−1,𝑘+1 + 𝜌𝑗+1,𝑘+1

)︃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.34)

The field in 𝑥 follows a similar development, but with a shifted pillbox as in Figure 5.20.
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Figure 5.20: 2-D Gaussian pillbox schematic for 𝐸𝑥 correction. Characteristics are similar
to Figure 5.19.

For Figure 5.20, the surface integral for the electric field, analogous to Equation (5.32)
is:

∮︁
𝑆

(︁
�⃗� · �̂�

)︁
𝑑𝑠 =

⎡⎢⎢⎣
∆𝑥

2∆𝑦

(︁
ℰ𝑦,𝑗,𝑘+1/2

+ ℰ𝑦,𝑗+1,𝑘+1/2

)︁
− ∆𝑥

2
(𝐸𝑦,𝑗,𝑘 + 𝐸𝑦,𝑗+1,𝑘) +

−∆𝑦

8
(𝐸𝑥,𝑗,𝑘+1 + 3𝐸𝑥,𝑗,𝑘) +

∆𝑦

8
(𝐸𝑥,𝑗+1,𝑘+1 + 3𝐸𝑥,𝑗+1,𝑘)

⎤⎥⎥⎦ , (5.35)

where the values for 𝐸𝑦,*,𝑘 are given by Equation (5.34), 𝐸𝑥,𝑗+1,* is taken directly from the
grid, and the target quantities are the 𝐸𝑥,*,𝑘 terms. The volume integral for the charge
density, analogous to Equation (5.33) is:

1

𝜀0

∫︁
𝑉

𝜌𝑑𝜏 =
1

𝜀0

∆𝑥∆𝑦

16
[𝜌𝑗,𝑘+1 + 𝜌𝑗+1,𝑘+1 + 3𝜌𝑗+1,𝑘 + 3𝜌𝑗,𝑘] . (5.36)
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Simplifying and solving for 𝐸𝑥,𝑗,𝑘 gives:

𝐸𝑥,𝑗,𝑘 = 𝐸𝑥,𝑗+1,𝑘 −
8

3∆𝑦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆𝑥∆𝑦

16𝜀0

[︃
𝜌𝑗,𝑘+1 + 𝜌𝑗+1,𝑘+1+

3𝜌𝑗+1,𝑘 + 3𝜌𝑗,𝑘

]︃
+

−

⎡⎢⎢⎢⎢⎢⎣
∆𝑥

2∆𝑦

(︂
ℰ
𝑦,𝑗,𝑘+1/2

+ ℰ
𝑦,𝑗+1,𝑘+1/2

)︂
+

−∆𝑥

2
(𝐸𝑦,𝑗,𝑘 + 𝐸𝑦,𝑗+1,𝑘) +

∆𝑦

8
(𝐸𝑥,𝑗+1,𝑘+1 − 𝐸𝑥,𝑗,𝑘+1)

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.37)

Note that Equations (5.34) and (5.37) are closed along the 𝑥 grid by the boundary con-
ditions at the electrodes, and that this treatment is only for the surface edge cells and
not applied globally since charge density accumulation is less problematic away from cell
edges.

5.B.2 Formulation of Charge-Bias Correction

This section delineates the details of using Figures 5.19 and 5.20 to derive the field
corrections to reduce field biasing by charge accumulation on the surface. Returning to
Gauss’s law in Equation (5.31) and the configuration of Figure 5.19, so that the field flux
through the top of the Gaussian pillbox is:

𝑥
𝑗+1/2∫︁

𝑥
𝑗−1/2

𝐸𝑦,𝑘+1/2
𝑑𝑥 =

𝑥𝑗∫︁
𝑥
𝑗−1/2

𝐸𝑦,𝑘+1/2
𝑑𝑥 +

𝑥
𝑗+1/2∫︁
𝑥𝑗

𝐸𝑦,𝑘+1/2
𝑑𝑥. (5.38)

Note the fields in the electrostatic case at the midpoints of the grid can be approximated
by existing diagnostics for the electric potential, i.e. the line integral of the electric field,
in 2-D:

ℰ = −∆Φ(𝐸) =

∫︁
�⃗� · 𝑑ℓ⃗ ⇒ �⃗� ≈

(︂ ℰ𝑥
∆𝑥

,
ℰ𝑦
∆𝑦

)︂
, (5.39)

which becomes exact in the limit that ∆ quantities approach zero, i.e. the grid approaches
continuous space. Assuming linear weighting, the right-hand side of Equation (5.38),
leveraging Equation (5.39), can be written:

𝑥𝑗∫︁
𝑥
𝑗−1/2

𝐸𝑦,𝑘+1/2
𝑑𝑥 =

∆𝑥

2

(︂
1

4
𝐸𝑦,𝑗−1,𝑘+1/2

+
3

4
𝐸𝑦,𝑗,𝑘+1/2

)︂

=
∆𝑥

2

(︂
1

4

ℰ𝑦,𝑗−1,𝑘+1/2

∆𝑦
+

3

4

ℰ𝑦,𝑗,𝑘+1/2

∆𝑦

)︂
𝑥
𝑗+1/2∫︁
𝑥𝑗

𝐸𝑦,𝑘+1/2
𝑑𝑥 =

∆𝑥

2

(︂
3

4
𝐸𝑦,𝑗,𝑘+1/2

+
1

4
𝐸𝑦,𝑗+1,𝑘+1/2

)︂

=
∆𝑥

2

(︂
3

4

ℰ𝑦,𝑗,𝑘+1/2

∆𝑦
+

1

4

ℰ𝑦,𝑗+1,𝑘+1/2

∆𝑦

)︂
,

(5.40)
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which simplifies Equation (5.38) for the top of the Gaussian pillbox:

𝑥
𝑗+1/2∫︁

𝑥
𝑗−1/2

𝐸𝑦,𝑘+1/2
𝑑𝑥 =

∆𝑥

8∆𝑦

(︁
ℰ𝑦,𝑗−1,𝑘+1/2

+ 6ℰ𝑦,𝑗,𝑘+1/2
+ ℰ𝑦,𝑗+1,𝑘+1/2

)︁
. (5.41)

Following similar treatment as in Equation (5.40) for the bottom, right, and left edges of
the Gaussian pillbox gives:

Bottom :

𝑥
𝑗+1/2∫︀

𝑥
𝑗−1/2

(−𝐸𝑦,𝑘) 𝑑𝑥 = −∆𝑥

8
(𝐸𝑦,𝑗−1,𝑘 + 6𝐸𝑦,𝑗,𝑘 + 𝐸𝑦,𝑗+1,𝑘) ,

Right :
𝑦𝑘+1∫︀
𝑦𝑘

𝐸𝑥,𝑗+1/2
𝑑𝑦 =

∆𝑦

8∆𝑥

(︁
ℰ𝑥,𝑗+1/2,𝑘+1 + 3ℰ𝑥,𝑗+1/2,𝑘

)︁
,

Left :
𝑦𝑘+1∫︀
𝑦𝑘

(︁
−𝐸𝑥,𝑗−1/2

)︁
𝑑𝑦 = − ∆𝑦

8∆𝑥

(︁
ℰ𝑥,𝑗−1/2,𝑘+1 + 3ℰ𝑥,𝑗−1/2,𝑘

)︁
.

(5.42)

Summation of all terms gives the total surface integral for the Gaussian pillbox in Fig-
ure 5.19 as written in Equation (5.32). The charge density given in Equation (5.33) is
found from the explicit weighting scheme illustrated in Figure 5.19, where:

1

𝜀0

∫︁
𝜌𝑑𝜏 =

1

𝜀0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

left of (𝑗,𝑘)⏞  ⏟  ⎛⎜⎝ 9

16
𝜌𝑗,𝑘 +

3

16
𝜌𝑗+1,𝑘+

3

16
𝜌𝑗,𝑘+1 +

1

16
𝜌𝑗+1,𝑘+1

⎞⎟⎠ ∆𝑥

2

∆𝑦

2
+

⎛⎜⎝ 9

16
𝜌𝑗,𝑘 +

3

16
𝜌𝑗−1,𝑘+

3

16
𝜌𝑗,𝑘+1 +

1

16
𝜌𝑗−1,𝑘+1

⎞⎟⎠ ∆𝑥

2

∆𝑦

2⏟  ⏞  
right of (𝑗,𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.43)

Simplifying Equation (5.43) will produce Equation (5.33). Equating surface-integral terms
for the fields with the volume integral terms for the charge density in the Gaussian pillbox
will produce Equation (5.34), which is a series of coupled equations that can be solved
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simultaneously:

⎡⎢⎢⎢⎢⎢⎢⎣
𝐸𝑦 (𝑗, 𝑘𝑠)

𝐸𝑦 (𝑗 + 1, 𝑘𝑠)

𝐸𝑦 (𝑗 + 2, 𝑘𝑠)
...

𝐸𝑦 (𝑛, 𝑘𝑠)

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

�⃗�𝑦,corr

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M𝑦⏞  ⏟  ⎡⎢⎢⎢⎢⎢⎢⎣
0 −1

6

−1
6

0 −1
6

−1
6

0 −1
6

. . . . . . . . .
−1

6
0

⎤⎥⎥⎥⎥⎥⎥⎦

�⃗�𝑦,corr⏞  ⏟  ⎡⎢⎢⎢⎢⎢⎢⎣
𝐸𝑦 (𝑗, 𝑘𝑠)

𝐸𝑦 (𝑗 + 1, 𝑘𝑠)

𝐸𝑦 (𝑗 + 2, 𝑘𝑠)
...

𝐸𝑦 (𝑚, 𝑘𝑠)

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
−1

6
𝐸𝑦 (𝑥 [𝑗𝑐, 𝑘𝑐]) + 𝐴𝑦 (𝑥 [𝑗, 𝑘𝑠])

𝐴𝑦 (𝑥 [𝑗 + 1, 𝑘𝑠])

𝐴𝑦 (𝑥 [𝑗 + 2, 𝑘𝑠])
...

𝐴𝑦 (𝑥 [𝑚− 1, 𝑘𝑠]) − 1
6
𝐸𝑦 (𝑥 [𝑗𝑎, 𝑘𝑎])

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

�⃗�𝑦,grid

, (5.44)

where (𝑗𝑐, 𝑘𝑐) and (𝑗𝑎, 𝑘𝑎) are indices denoting the location of the cathode and anode,
respectively, closing off the equations at the specified potentials; 𝑘𝑠 is just the index for
the dielectric surface, recalling that the surface is the target and typically situated at
the half-space in 𝑦; and �⃗�𝑦(𝑥[𝑗, 𝑘𝑠]) consists of all the grid terms, pulling directly from
Equation (5.34):

𝐴𝑦(𝑥[𝑗, 𝑘𝑠]) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆𝑦

6(∆𝑥)2

(︃
ℰ𝑥,𝑗+1/2,𝑘+1 + 3ℰ𝑥,𝑗+1/2,𝑘

+

−ℰ𝑥,𝑗−1/2,𝑘+1 − 3ℰ𝑥,𝑗−1/2,𝑘

)︃
+

1

6∆𝑦

(︁
ℰ𝑦,𝑗−1,𝑘+1/2

+ 6ℰ𝑦,𝑗,𝑘+1/2
+ ℰ𝑦,𝑗+1,𝑘+1/2

)︁
+

− ∆𝑦

48𝜀0

(︃
18𝜌𝑗,𝑘 + 6𝜌𝑗,𝑘+1 + 3𝜌𝑗−1,𝑘+

3𝜌𝑗+1,𝑘 + 𝜌𝑗−1,𝑘+1 + 𝜌𝑗+1,𝑘+1

)︃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.45)

Inverting Equation (5.44) will then give the corrected fields.

�⃗�𝑦,corr = (I−M𝑦)
−1�⃗�𝑦,grid (5.46)
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Following a similar process for the Gaussian pillbox in Figure 5.20:

∫︁ (︁
�⃗� · �̂�

)︁
𝑑𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

top edge⏞  ⏟  
∆𝑥

(︂
1

2
𝐸𝑦,𝑗,𝑘+1/2

+
1

2
𝐸𝑦,𝑗+1,𝑘+1/2

)︂
+

bottom edge⏞  ⏟  
−∆𝑥

(︂
1

2
𝐸𝑦,𝑗,𝑘 +

1

2
𝐸𝑦,𝑗+1,𝑘

)︂
+

−∆𝑦

2

(︂
1

4
𝐸𝑥,𝑗,𝑘+1 +

3

4
𝐸𝑥,𝑗,𝑘

)︂
⏟  ⏞  

left edge

+

∆𝑦

2

(︂
1

4
𝐸𝑥,𝑗+1,𝑘+1 +

3

4
𝐸𝑥,𝑗+1,𝑘

)︂
⏟  ⏞  

right edge

. (5.47)

Again, leveraging Equation (5.39) and simplifying will reduce Equation (5.47) to Equa-
tion (5.35), recalling that direct grid values for the fields are used for the 𝐸𝑥,𝑗+1,* values,
which are calculated by weighted averaging to the grid prior to the correction. The charge
density, following the weighting scheme illustrated in Figure 5.20, is:

1

𝜀0

∫︁
𝜌𝑑𝜏 =

1

𝜀0

[︂
2

16
𝜌𝑗,𝑘+1 +

2

16
𝜌𝑗+1,𝑘+1 +

6

16
𝜌𝑗+1,𝑘 +

6

16
𝜌𝑗,𝑘

]︂
∆𝑥

∆𝑦

2
, (5.48)

which simplifies to Equation (5.36) with minor manipulation. Again equating surface-
integral terms for the fields with the volume-integral terms for the charge density in the
Gaussian pillbox will produce Equation (5.37), which is simpler to solve since it is only
coupled on once side once the solution for 𝐸𝑦 is found, and does not require simulta-
neous solution. For completion, the algebraic form to solve, following the convention in
Equations (5.44) and (5.45) is:

𝐸𝑥 (𝑗, 𝑘𝑠) = 𝐸𝑥 (𝑗 + 1, 𝑘𝑠) −
8

3∆𝑦
𝐴𝑥 (𝑥 [𝑗, 𝑘𝑠]) , (5.49)

where:

𝐴𝑥 (𝑥 [𝑗, 𝑘𝑠]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆𝑥∆𝑦

16𝜀0

[︃
𝜌𝑗,𝑘+1 + 𝜌𝑗+1,𝑘+1+

3𝜌𝑗+1,𝑘 + 3𝜌𝑗,𝑘

]︃
+

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆𝑥

2∆𝑦

(︁
ℰ𝑦,𝑗,𝑘+1/2

+ ℰ𝑦,𝑗+1,𝑘+1/2

)︁
+

−∆𝑥

2
(𝐸𝑦,𝑗,𝑘 + 𝐸𝑦,𝑗+1,𝑘)⏟  ⏞  
from the corrected fields

+

∆𝑦

8
(𝐸𝑥,𝑗+1,𝑘+1 − 𝐸𝑥,𝑗,𝑘+1)⏟  ⏞  
direct from grid diagnostics

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.50)

recalling that the index 𝑘𝑠 is the grid location of the dielectric surface.
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5.B.3 Application of Surface Field Correction

The surface field corrections delineated in Appendix 5.B.1 was applied to the standard
parameter case of Table 2.7. It should be noted that, except for this section, susceptibility
diagrams throughout this document do not apply the surface correction, accepting the
roughly 10 % to 20 % error in the saturation condition. It will be shown that surface
corrections follow similar characteristics up to peak population, but severely diverges
from the cases presented, likely due to propagation of field conditions at the boundaries
from coupling with necessarily error-prone fields at the boundaries.

A test case with the standard parameter set of Section 2.7, Table 2.8, is presented in
Figure 5.22, where the starkly contrasting behavior into the dark-current time scales is
noticeable as field behavior across the whole surface is highly ambulatory compared to the
analogous diagram of Figure 5.11. The run-up to peak multiplication follows a similar
behavior to that in Figure 5.11, but the field configuration into otherwise steady-state
conditions are markedly different, while still maintaining non-multiplicative conditions.

The major caveats to this implementation are that the errors were minimized at the
center of the dielectric, far from the electrodes. Furthermore, errors from stair-stepping
the dielectric were moved to the electrodes. Since the electrodes are stair-stepped, the
fields are either at 𝜋/2 or 𝜋 with respect to the surface, introducing an error on the order
of the dielectric angle. It is conjectured that such an external error is being propagated
though the scheme through the coupling to the boundary values or from the partial use
of grid values above the surface. To clarify, it was discussed in Section 2.2 that the
target error metric was the fields at the dielectric center. Discretization essentially moves
errors away from the dielectric surface and onto the electrodes, and since errors propagate
through every timestep, it this ambulatory field characteristic is a result of compounded
errors. The accuracy of the calculations are difficult to model in this framework, which
was partially addressed in Chapter 6, covering source studies and the direct calculation
of fields from first principles formulation of the triple-point.

Further work remains to be done to verify the ambulatory nature of the fields in
Figure 5.22, and this appendix is provided as a summary of the necessary foundations to
further this study. In any case, the drive to peak current does not seem to be affected
significantly, maintaining a similar drive to ∼ 10 % to 20 % of the expected saturation
angle along the shortest chord to the 𝑊1 line, so it may be conjectured that the treatment
of secondary distribution draw the limit lines may be a target metric to further DC
susceptibility. To further expand, the final field value in the center at the end of the peak
growth towards the end of the fast transient is ∼ 13 % of the expected field angle along
the shortest chord to the first crossover line. Over the whole discharge time, the final
field value in the center is ∼ 70 % of the expected field angle along the shortest chord to
the first crossover line. The error percentage at the peak of the fast transient growth is
not especially improved from the uncorrected grid. As noted in Section 5.2, limit lines
are drawn assuming secondaries in a Maxwellian distribution through the lifetime of the
bulk volume. By observation of simulation, it is known that secondaries in the volume are
not Maxwellian, and it was merely assumed that the space charge characteristics remain
close to Maxwellian since lifetimes are relatively short. Future work can consider this
shortcoming by assessing the actual distribution and determine an appropriate profile to
generate limit lines; however, it should be stressed that the strength of the DC breakdown
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Figure 5.21: DC susceptibility diagram in breakdown with surface field correction, through
400 ps. Field correction is described in Appendix 5.B.1. Fast transient time scale shows
similar behavior pushing to the first crossover line for much of the surface. The analogous
susceptibility plot is shown in Figure 5.12

susceptibility framework lies in its a-priori treatment of discharge evolution. Since the
distribution profile through a parametric simulation will vary with parameters, such a
treatment would reduce the utility of the susceptibility metric. It is therefore advised
that future work consider establishing a criterion for further “blurring” the 𝜃imp region.
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Figure 5.22: DC susceptibility diagram in breakdown with surface field correction. Field
correction is described in Appendix 5.B.1.The push into steady-state shows starkly dif-
fering behavior from the analogous Figure 5.11.
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Chapter 6

Source Studies

The objective of this chapter is to provide an assessment of the effects and modeling
challenges using a broadened constant-waveform (CW) source, a Fowler-Nordheim (FN)
source affected by local fields, and a source following theoretical treatment of the triple-
point by Schächter to illustrate a first-principles approach on the triple-point itself; these
seed models were described in Section 2.5. Sources in this chapter emit over a larger area
than previously considered, normalizing to a cutoff length based on the Schächter source.
Normalization to the Schächter source is most natural since, under certain parameters,
the source saturates as the emitter length increases, i.e. the integration distance along the
emitter gets farther from the triple point. The initial-impact region will similarly expand,
distributing surface charge at impact, possibly introducing delay times and variations
in multipactor growth characteristics. Fowler-Nordheim provides a self-consistent source
that reacts to local variations in potentials, which can, in some cases, saturate the source
with sufficient space-charge growth. The Schächter model can be considered closest to
first-principles in terms of seed current magnitude for this study, using divergent field
values on approach to the dielectric as the primary source of field enhancement, and
providing a standard against the XOOPIC FN model, which relies on parameterized,
empirical values for field enhancement characteristic of, for example, surface roughness,
protrusions, impurities, etc. This treatment will focus only on multiplicative breakdown
in vacuum, isolating surface-dominated discharges.

Recall Chapters 3 and 5 established that the surface-field configuration (primarily an-
gle with respect to the surface) is the driving factor to multiplicative breakdown dominated
by surface phenomena where bulk volume effects are negligible; the seed largely serves an
auxiliary (although necessary) role. Furthermore, fundamental VULP multipactor has no
breakdown curve, in contrast to Townsend avalanche, which is characterized by breakdown
strengths parameterized in pressure and characteristic system length [20, 34]. The sus-
ceptibility theory of Chapter 5 showed that fundamental VULP multipactor breakdown
is parameterized by field angle, 𝜒𝐸, independent of field magnitude. If 𝜒1 > 𝜒𝐸 > 𝜒2,
where 𝜒1 and 𝜒2 are the field angles associated with the crossover-limits, 𝑊1 and 𝑊2

(described in Section 2.3), for a characteristic particle, new secondaries will experience
multiplicative growth with 𝛿 > 1, c.f. Section 5.2.1. While the initial seeding is auxiliary
to surface-field conditions vis-à-vis fundamental VULP breakdown, the nature of the seed
can influence other discharge characteristics not heretofore emphasized in this study, such
as the time to breakdown onset. The auxiliary role of the seed is partially a result of
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the beam specification, which effectively saturates space-charge effects for the seed and
initial impact such that discharges can adequately be modeled by a single particle with
average emission characteristics. As described in Section 2.5.1, the primary seed source
in the previous chapters is a specified, constant-waveform, unperturbed, Maxwellian-flux
electron source at specified amperage, injected with sufficient energy to produce impact
at peak secondary-emission characteristics from Section 2.3. This allows analysis across
dielectric angles without concern for variations in local field magnitudes that would affect
first impact, conditions for initial multiplication upon first impact, and time to initial
multiplicative growth. This chapter will compare characteristic behaviors, emphasizing
breakdown susceptibility evolution and driving characteristics. The behavior delineated
here for multiplicative breakdown will apply for all discharges dominated by surface ef-
fects, up through pressures where collisional mean free paths are sufficiently small that any
subsequent bulk volume charge does not significantly alter surface-field effects. It must
be stressed that only characteristics for vacuum discharge will be explicitly delineated
herein.

Considerations for developing a uniform emitter configuration for this chapter are
provided in Section 6.1. A summary of the primary effects from Chapter 3 are presented
in Section 6.2, for direct comparison with the succeeding three sections. Section 6.3
details an extended CW emitter over the uniform emitter length derived in Section 6.1.
The application of the FN source as it relates to the effects of Section 6.2 is presented
in Section 6.4. The implementation of the Schächter source and its effect on discharge
behavior is presented in Section 6.5. Finally, Section 6.6 summarizes the primary discharge
effects and additions from the usual case studies, with suggestions for future work.

6.1 Standard Emitter Configuration
Standard physical parameters are listed in Table 6.1. Reduced parameters are used

here to handle the larger voltages required for the Schächter source at typical parameters
used in previous chapters, which makes gains much larger than previously encountered
since secondaries have access to much more energy at higher voltages for the same system
length. Control of gain is maintained by reducing the system size such that the number
of impacts is ∼ 10, calculated with Equation (3.12); the associated maximum gain can
be found with Equation (3.18), using 𝛿𝑚𝑎𝑥 = 2.95, which remains unchanged from the
previous parameter set. The particle gain (for weighted particles) is maintained below
∼ 1 × 106, with system lengths, particle weights, and currents normalized to ensure this
gain limit.

It should be noted that an incidental benefit of reducing the spatial parameters by a
constant factor (1 × 104 for this case, reducing the 2 mm system down to 0.2 µm) is that
the spatial resolution of particle trajectories is increased by the reduction factor for the
spatial scale, holding all other computational parameters (e.g. particle weighting, tempo-
ral step-size) fixed, increasing from 35.5 µm from previous resolutions to 3.55 nm in the
reduced parameter scale. The main caveat is that the results here are more applicable
to pure vacuum and not as easily extensible to the low-pressure regime as the previous
parameters since the system length is approaching the Townsend limit on the mean free
path delineated in Section 1.3.3 at similar pressures. Assuming a typical secondary pop-
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Table 6.1: List of standard physical and simulation parameters for Chapter 6 configura-
tions. Physical parameters are reduced compared to previous chapters, and simulation
parameters also modified to allow reasonable simulation times for runaway populations,
noting that some physical characteristics must be monitored to ensure accuracy.

Parameter Value

Gap width 0.20 µm

Current magnitude 10 kA

Applied voltage 3500 V

Maximum secondary yield 2.95

Maximum simulation electrons 1 × 103

Maximum simulation secondary electrons 1 × 106

ulation at emission-energy characteristics (noting there should be consideration at higher
energies for the short lifetimes), the mean free path for electrons in 100 Torr argon would
be 𝜆𝑖∼ 10.95 µm, assuming ideal gas and 𝜎𝑖,max∼ 2.75 × 10−20 m. In other words, the ratio
of the mean free path to the system length at reduced parameters is 𝜆𝑖/𝐷

red
gap∼ 54.8, where

the ratio is 𝜆𝑖/𝐷gap∼ 2.0 × 10−3 for the previous parameters. Finally, it it important to
note that ideal smooth surfaces are assumed in this treatment, and the effect of surface
perturbations are not treated; it is known that system lengths in the sub-micron scale
are within the characteristic lengths of engineering-scale surface perturbations, and any
application of results herein should address any neglected surface effects accordingly.

From the discussions concerning the Schächter source in Section 2.5.3, the current
saturates integrating over some distance, 𝑅, along the emitter surface from the triple-
point origin. This is a highly non-linear process as a function of applied field, shown in
Figure 6.1, particularly Figure 6.1a, showing the orders of magnitude in integrated current
over a narrow range in applied field. The variation in 𝑅 is largely saturated in all cases
until applied voltage is appreciable, most apparent in Figure 6.1b.

The initial intent of this study was to limit the emitter length via the saturation
length for the Schächter emitter, but this approach only works well at low current for the
gap widths of interest. To elaborate further on the saturation characteristics, arbitrarily
choosing an applied field of 𝐸0 = 3000 MV/m in Figure 6.2a, the integrated current starts
to approach 𝐼top∼ 1 A over 𝑅∼ 800 µm. This field is about two orders of magnitude larger
than typical operating characteristics from experiment for the previous parameters. In
contrast, the current at the necessarily higher fields of the parameters used in this chapter
(c.f. Table 6.1) looks practically linear over the same length.

The balance between emitted current, gain, and statistics on each population required
re-evaluating the criterion for setting the emitter length, since the small step sizes needed
to adequately resolve characteristic particle metrics (essentially the particle Courant) ei-
ther leads to an excessively large number of steps to initial seed, or excessively small
weights that non-physical spreading of charge would result. Ultimately, a practical ap-
proach was used such that a high primary current with high statistics (small weighting)
was used, where the aforementioned reduction in spatial parameters maintains tractable
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Figure 6.1: Integrated current as a function of emitter length. 𝑅, and applied field, 𝐸0.
(b) shows the current on a linear scale to emphasize the nonlinearity, and (a) shows the
same current on a log scale.
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Figure 6.2: Schächter current as a function of distance, 𝑅, integrated from the triple point
along the emitter. Integrated from the triple point along the emitter for (a) the original
parameter set from the previous chapters, and for (b) for the reduced parameters from
Table 6.1. The approach to saturation is illustrated (a) with specified applied voltage over
increasing 𝑅, i.e. 6 MV over a gap of 2 mm. Table 6.1 does not saturate for the reduced
parameter set.
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gain by reducing the average number of bounces, and the length of the emitter was chosen
so that direct primary arcs would not be induced in the geometry. Since the saturation
length is very long at reduced parameters (with higher field), direct arcs would result from
points along the emitting surfaces (i.e. the cathode) that are beyond 𝐿 ∼ 𝐷gap tan(𝛼)
from the triple point (slightly further than this length depending on field strength and
particle average properties) for particles injecting as a Maxwellian flux with no drift. Di-
rect arcs obviously do not contribute to the surface growth, but the fields generated by
the volume charge can influence the surface characteristics, most importantly the field
angle. A simple test was assembled using several CW sources over the full length of
the vacuum-side cathode, each set to uniform current at 10 kA, which generally will be
larger than Schächter (or limit to Schächter for sufficiently linear integrated current at
very high voltages). Susceptibility diagrams with the associated species number plot for
two emitter lengths are shown in Figure 6.3. There is a reduction in the peak number of
secondaries by roughly a factor of three for the longest emitter, attributed to shorter life-
times of emitted secondaries due to space charge; however, the effect of additional primary
space charge is relatively limited and does not alter overall multipactoring characteristics
that are best illustrated with the susceptibility diagrams. The full-surface susceptibility
diagrams show no practical difference in downstream evolution between short and long
emitters. There is a minor discernible difference in the main plot for the usual characteris-
tic center evolution, where a small dip is visible during the fast transient at 𝑡/𝑡gap

trans∼ 0.15
in Figure 6.3a. Most notably, there is no significant difference in the upstream evolution,
which is where space-charge would be expected to influence evolution the most, since ex-
ponential downstream growth will typically dominate the effects of primary populations
towards the anode, proportionate to the multipactor gain (a difference of at least four
orders of magnitude, in this case, between near-anode primary population and secondary
population). The overall statistics for all populations in Figure 6.3b happen to be better
due to intentional injection of more current, but the increased statistics do not contribute
anything notable to the discharge evolution since the particle populations per cell were
already well represented, reducing the possibility of numerically induced field fluctuations
and consequent heating.

Finally, another benefit of moving to reduced spatial parameters allows reduction of
the voltage. At previous parameters, the applied voltage required to generate sufficient
amperage would be prohibitively large, leading to to variations in physics that would
comprise a very large domain and likely require relativistic treatment in cases of long-lived
electrons. Reduction of spatial parameters allows larger fields (the metric field emission
depends on) at relatively moderate voltage (the order of maximum particle energy after
uncollided gap excursion), keeping in line with physics heretofore discussed to concentrate
discussion on differential changes resulting from broadening of the seed.

6.2 Summary of Constant Waveform Current Effects
To summarize the constant-waveform (CW) source effects of interest, Table 6.2 pro-

vides a list of pertinent figures from Chapters 3 and 5, with a description of notable
features. To recap, the CW source is an unperturbed beam, where dielectric charge from
electron impact and subsequent secondary emission is positive for most of the surface
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(a) Short emitter length. (b) Long emitter length.

Figure 6.3: DC Susceptibility diagrams for CW sources over different emitter lengths. This
is a cursory illustration of the minimal effect of bulk volume discharge on downstream
conditions for multipactor at reduced parameters. (a) is the DC Susceptibility diagram
for a CW source over ∼ 28.4 nm. This is the standard length chosen, which is roughly
the maximum emitter length before direct arcs start to form. (b) is the DC Susceptibility
diagram for a CW source over ∼ 191.7 nm. This is the maximum emitter length possible
for this configuration, given the additional limits for geometry discussed in Section 2.2.

under multipactoring conditions at the angles used for all figures in Table 6.2. The pri-
mary electron energy distribution function (referred to as the EEDF) is highly localized,
while secondaries range from energies near emission to the full potential, shown in the
secondary electron energy distribution function (referred to as the SEEDF). Susceptibility
characteristics are typical of all discharges dominated by multipactoring surface effects,
where downstream fields evolve to support unit emission at impact near first crossover.

Table 6.2: List of pertinent figures from Chapter 3 for discussion in this chapter. Elec-
tronic document is actively linked for convenience.

Figure Description

Figure 3.6 on
page 73

Dielectric surface charge at 6.12∘ in multipactor breakdown result-
ing from a discharge seeded by a beam-like source, showing positive
charging throughout.

Figure 3.7 on
page 74

Dielectric-impact energy distribution functions at 6.12∘ showing beam-
like primary impact and distributed secondary impact.

Figure 5.11
on page 150

Surface susceptibility plot at 6.12∘ showing the drive from multipactor
surface conditions to steady-state surface conditions.

Figure 5.12
on page 152

Surface susceptibility snapshots focusing on the dielectric center for a
multipactoring discharge at 6.12∘, emphasizing the initial multipactor
conditions and illustrating the drive to steady state towards the first-
crossover line.



179

6.3 Extended Constant Waveform Emitter
Extending the constant waveform emitter over a larger emission area has the obvious

consequence of distributing the initial-impact region over a broad region as in Figure 6.4a,
rather than the localized initial-impact region of Figure 3.7a. The spread in energy is a
result of longer excursion paths of primaries emitted further from the triple point due
to the comparatively larger finite beam width than typically used. The minimum cutoff
at ∼ 500 eV is a result of the intentional drift velocity originally used in the previous
chapters to ensure maximum gain for the uniform beam profile; the drift velocity was
kept in this study to merely reduce parameter variation, but it should be noted that
primaries will impact with energies “to the right” of the peak for the secondary emission
curve (i.e. Figure 2.9a), which is not a characteristic of the other seed sources. Primaries
are therefore accessing secondary emission characteristics greater than unity towards the
second crossover side. It should be clear by observation of the results herein that this
particular difference does not pose significant concerns to any of the overarching ideas
presented on multipactoring breakdown discussed thus far.

The dielectric charge is also broadened as in Figure 6.5, where the peak magnitude
near the cathode is expectedly reduced due to charge spreading. The region associated
with the “immediate downstream region” discussed in Section 3.D is still present, but
shifted further downstream since the characteristic is linked to the behavior of secon-
daries just off the beam edge. It should be noted that the charge plots in Figure 6.5
are cumulative, with some beam spreading occurring with sufficient secondary density.
Positive-charging characteristics further downstream are largely maintained, comparing
Figure 6.5a and Figure 3.6. It should be noted that the comparable order of magnitude
for the charges is a result of controlling gain and input current, since the input current is
four orders of magnitude larger for the reduced parameter set in this chapter, while the
number of bounces is reduced by ∼ 2–3. Also note the different time scales between Fig-
ure 6.5 and Figure 3.6, with the reduced parameter set incurring a shorter time to anodic
current, but similar front speeds of 𝑣front∼ 6.67 × 106 m/s, since they are dependent on
the characteristic speed of the particles, which do not change significantly.

Finally, comparing the susceptibility characteristics of the surface between Figure 5.12
and Figure 6.6, the evolution of the fields remains largely the same for the downstream
region, notably past the primary impact region, which is incidentally quite well defined
by a definite transition between the clearly uniform downstream field evolution and an
upstream region that continues to have evolving field characteristics. The characteristic
center plot shows practically identical behavior, from the slight pull in parallel field dur-
ing the very early transient near around first impact due to upstream electron growth,
to the pull of field angles towards the unit-emission region near first crossover during
the transient multipactor phase, and finally saturating at similar normalized field values
𝑠𝐸⊥/𝑠𝐸‖∼ 0.18/(−0.45) at similar normalized time 𝑡/𝑡trans

gap ∼ 1.2.

6.4 Fowler-Nordheim Effects
The Fowler-Nordheim source described in Section 2.5.2 provides a self-consistent seed

influenced by the local potentials. Typically, to produce comparable current densities as
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(a) Primary-electron EDF.
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(b) Secondary-electron EDF.

Figure 6.4: Broadened CW source electron energy distribution functions (EEDFs) on the
dielectric surface for 6.12∘. To be compared directly to Figure 3.7 for the narrow-beam
seed source.

(a) Dielectric-charge full profile. (b) Dielectric charge contour in 𝑥 against 𝑡.

Figure 6.5: Broadened CW source characteristic dielectric-surface charging for a multi-
pactoring discharge at 6.12∘. To be compared directly to Figure 3.6. Similar positive
charging is shown over a large region of the dielectric since surface characteristics are
sufficient for multiplicative breakdown.
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Figure 6.6: Full DC Susceptibility diagram for CW source over ∼ 28.4 nm.

the CW source of Section 6.3, a large enhancement factor would be required with the orig-
inal parameter set (∼ 8000), basically modeling rough surfaces along the emitter length
that concentrates fields at the tips of micro-protrusions. The reduced parameters in the
configuration for this chapter produce sufficiently large fields at ∼ 17.5 GV/m, compared
to the previous parameter set at ∼ 1.75 MV/m, such that the enhancement factor for re-
duced parameters can be modest (in this case, 𝛽FN∼ 0.80) to produce comparable current
at applied voltage of 3.5 kV across the 0.20 µm gap. In this case, a field enhancement
less than unity would be “better” than smooth, and it would be prudent to note that this
value is used for simulation purposes, and not as representative of real materials.

The primary impact characteristics show stark differences, comparing the FN EEDF
in Figure 6.7a with the broad CW EEDF in Figure 6.4a. The larger spread in the FN
EEDF is a result of implementation differences of the seeds, where current density calcu-
lations in the FN source are calculated in-situ with a Maxwellian distribution of emitted
primaries impacting with energy proportional to the potential experienced during excur-
sion and no drift velocity at injection; alternatively, the CW source is an unperturbed
beam with uniform drift velocity to ensure impact with minimum energy near maximum
emission (∼ 500 eV), as discussed above). The primary EEDF for the FN source covers
the entire gap width, which is a consequence of geometry and the aforementioned emission
characteristics. As alluded to above, the primary EEDF also covers energies lower than
the minimum cutoff enforced in the CW source, which means the primaries have access
to the secondary-emission curve “to the left” of the peak. Again, while this characteristic
may seem an interesting difference, it does not add significantly to the evolution of the
discharge, particularly on the drive to steady state most easily communicated with the
DC susceptibility diagram discussed below.

Differences in the impact profile manifest geometrically in the dielectric charge pro-
file, most notably in the contour plot of Figure 6.8b, where there is a clear push away
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from the cathode through much of the discharge time compared to the broad CW pro-
file in Figure 6.5b, even past the fast transient (∼ 𝑡trans

gap = 0.2 or 𝑡∼ 0.3 × 10−4 ns). This
characteristic is associated with the broad distribution of the FN seed, where the impact
profile leads to generally reduced positive charging compared to the CW source (recalling
enforced impact near maximum emission for CW, i.e. maximum positive charging from
secondary emission). Differences in the impact profile do not manifest clearly in peak
magnitude of the charge (c.f. Figure 6.8a and Figure 6.5a). The uniformity between peak
magnitudes suggests that both discharges are experiencing similar growth characteristics,
i.e. a nontrivial population of primaries from the FN source seed a fully cascaded multi-
pactor with similar gain characteristics as the broad CW source. Note that the maximum
magnitude of the charge plots are maintained at similar values for ease of comparison.

The sensitivity of the FN source to local potentials can be seen in the number plots
for primaries in Figure 6.9. The primary population is steadily growing due to changing
field conditions near the cathode. Although not shown in this particular configuration, it
should be noted that upstream variations near the impact region can lead to seemingly
anomalous current gain compared to initial injection, occurring due to the response of the
seed to changing near-cathode fields that can increase/decrease the current from initial
conditions; the increased current can “ride” steady-state conditions over the remainder of
the surface and appear as a steady-state current greater than initial input. This behavior
is a particular consequence of seeds influenced by local potentials, but will not be explored
further as they do not influence the standard characteristics of discharge evolution, but
should be noted as a possible contributor to gain, particularly at steady-state.

Finally, saturation characteristics evolve into similar steady-state conditions, 𝑠𝐸⊥/𝑠𝐸‖ ∼
0.18/(−0.45) at similar normalized time 𝑡trans

gap ∼ 1.2, shown in the characteristic center DC
susceptibility diagram of Figure 6.9. The early transient shows some variation at the char-
acteristic center point (and at points further downstream), where the broad CW source
approaches 𝑠𝐸‖∼ −0.40 towards the end of the fast transient time 𝑡trans

gap ∼ 0.2 in response
to the dominant, growing multipactor front (c.f. Figure 6.6. The FN source does not ex-
perience the pull to 𝑠𝐸‖∼ −0.40 since the upstream electron population is comparatively
larger than the broad CW seed case by way of initial emitter configuration. Despite this,
field evolution going into steady-state and in response to the overall multipactor gain
remains similar to the broad CW source of Figure 6.9, as well as the initial beam-like CW
source of Figure 5.12.

6.5 Schächter Source Effects
The Schächter source is the final configuration to be studied herein, representing a

base case limit for what would be expected with a source that is driven solely by the
conditions of the triple point. It should be noted that variations by the near-cathode
charge state are not currently included in the model, but the capability can be extended,
and similar variations to that shown in the FN model should be expected, including the
possibility of steady-state current greater than initial input, possible quenching dependent
on charge state, and a similar characteristic push to steady-state conditions.

Again, the reduced parameter set allows for modest voltage of ∼ 4.77 kV, translating
to initial fields of ∼ 23.9 GV/m to produce a current of 10 kA comparable to the broad
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(a) Primary-electron EDF.
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(b) Secondary-electron EDF.

Figure 6.7: FN source electron energy distribution functions (EEDFs) on the dielectric
surface for 6.12∘. To be compared directly to Figure 3.7 and Figure 6.4 for the CW seed
source.

(a) Dielectric-charge full profile. (b) Dielectric charge contour in 𝑥 against 𝑡.

Figure 6.8: FN source characteristic dielectric-surface charging for a multipactoring dis-
charge at 6.12∘. To be compared directly to Figure 3.6 and Figure 6.5. Positive charging
remains, and accumulates to much larger magnitude as a result of seed variations from
local potentials.
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Figure 6.9: Full DC Susceptibility diagram for FN source over ∼ 28.4 nm.

CW seed. This should be noted in contrast to the FN fields contributing to an effective
field of 𝛽FN𝐸∼ 14 GV/m. In principle, the larger voltage (which is a general condition,
and would be much larger at the original parameters of previous chapters) means that
secondaries can have access to more energy on average. Access to regions in the secondary-
emission curves with 𝛿 > 1, i.e. Figure 2.9, is consequently expanded for the primaries in
a similar way to the FN source, compared to all CW configurations studied herein.

Similar to the FN source, the primaries are emitted as a Maxwellian distribution
with no drift velocity; consequently, some primaries gain the full potential difference as
they traverse the full gap length. The primary EDFs on the dielectric for the Schächter
source, Figure 6.10a, show similar characteristics to the FN source, Figure 6.7a, while the
secondaries for Schächter, (Figure 6.10b, show a broadened distribution consistent with
increased access to energy for the secondaries. Again, the broadened secondary EDF will
fill in the secondary-emission curve characteristics similar to gaseous discharges with the
original CW beam, e.g. of Figure 3.8, but resulting from the broadened energy accessi-
bility by voltage rather than through ionization in the bulk (and subsequent variability
in particle lifetime).

Finally, susceptibility characteristics are very similar to the evolution of the FN dis-
charge, although the primary number reaches a steady-state saturation since the source
is not currently modeled to account for near-cathode field variations. In any case, the
susceptibility diagram for the characteristic center point of the dielectric shows similar
evolution to the FN source, where the pull to 𝑠𝐸‖∼ −0.40 does not occur as it does
in the broad CW case. The steady-state evolution, again, goes to similar ratios as the
other seed sources (𝑠𝐸⊥/𝑠𝐸‖∼ 0.18/(−0.45)) at similar normalized time, indicating down-
stream conditions are essentially the same, and illustrating the general applicability of the
susceptibility construct through any particular seed variant.
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(a) Primary-electron EDF.
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(b) Secondary-electron EDF.

Figure 6.10: Schächter source electron energy distribution functions (EEDFs) on the
dielectric surface for 6.12∘. To be compared directly to Figure 3.6 and Figure 6.5.

(a) Dielectric-charge full profile. (b) Dielectric charge contour in 𝑥 against 𝑡.

Figure 6.11: Schächter source characteristic dielectric-surface charging for a multipactor-
ing discharge at 6.12∘. To be compared directly to Figure 3.7 and Figure 6.4 for the CW
seed source.
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Figure 6.12: Full DC Susceptibility diagram for Schächter source over ∼ 28.4 nm.

6.6 Chapter 6 Conclusions
The configuration studied in this chapter is essentially a region in parameter space

where the operating characteristics are, again, dominated by the growth characteristics
dominated by surface effects, and while there may be upstream variations which present
themselves in the upstream field characteristics in all diagnostics and in the susceptibility
plot, the characteristics of secondary growth remain the same further downstream, even
in the presence of seeds that otherwise impact the whole dielectric surface. As long as
some primaries impact nearest the cathode to seed a fully cascaded multipactor avalanche,
the typical multipactor discharge will occur. This fully seeded discharge is most easily
described with the DC susceptibility diagrams, where the fully cascaded discharge is
emphasized since the exponential gain means such a cascade will dominate. The upstream
region nearest the cathode can be expected to undergo variations in behavior in some cases
that leads to anodic output current greater than input at steady state, with none of the
growth occurring in the field-saturated downstream region, e.g. steady-state initial growth
from seeds affected by local potentials (e.g. FN and a Schächter model implemented with
local charge buildup).

The most difficult aspect of modeling seed problems of the type discussed herein is
the broad parameter space encompassing input current, emitter length, applied voltage,
gain characteristics (secondary emission characteristics), dielectric angle, and gap width.
As shown, there is minimal variation in the aggregate of the discharge for all cases stud-
ied, despite variations in primary characteristics. The delineation of breakdown evolution
for this chapter should also be taken as further clarification on the validity of assum-
ing linearity away from the surface for the configurations of the previous chapters. It
was noted in previous configurations that there it is very difficult to spatially resolve
the electron distribution of short-lived secondaries, and arguments were put forward in
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Sections 3.3.1 and 3.3.2 to justify the relatively limited resolution. The increased resolu-
tion in this chapter provides fundamentally similar characteristics in vacuum discharges,
where resolution concerns are further relieved when pressure is increased due additional
space-charge shielding elongating electron lifetimes and trajectories. The stark similarity
amongst all susceptibility curves for discharges dominated by surface effects justifies both
the assumptions on numerical accuracy and the validity of the susceptibility framework.

Again, this document has stressed that multiplicative characteristics of a system are
largely dependent on field conditions near the dielectric surface for discharges that are
not otherwise dominated by Townsend-like volume effects, as demonstrated in Chapter 3.
While typical diagnostics show some noteworthy variation, the evolution of the discharge
is most easily understood through the DC susceptibility construct, where downstream
conditions control growth characteristics, relegating upstream conditions to necessary but
insufficient conditions for multipactor growth. This chapter therefore serves to further
buttress the auxiliary role of the seed source in all cases.

While the parameter space for seed-configuration studies is prohibitively large, the
cases presented herein are sufficient to provide a broad understanding of what to expect
from a variant seed source, particularly when coupled with the developments of the pre-
vious chapters. The case of Schächter coupled with the understanding of the FN source
evolution should serve as a sound foundation to expand on such similar variations.
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Chapter 7

Conclusions and Future Work

To recapitulate, the intent of this study is to understand the evolution of DC discharges
loaded with angled dielectrics subject to space charge effects that are particularly difficult
to model a-priori. Single-surface multipactor was targeted as the most fundamental mul-
tiplicative effect. PIC is uniquely suited to modeling problems of this type since the PIC
framework includes space charge and surface charge in the treatment of charge density
for the field solve. Extensive work was done to model single-surface multipactor, mini-
mizing errors in modeling the multipactoring surface, correcting existing emission models
to better fit experimental data for dielectrics, correction of existing code to accurately
model particle distribution, addition of various models to extend the application of the
XOOPIC code, and development of a novel framework for understanding the evolution of
discharges with appreciable surface effects that extends into low pressures where volume
growth is comparable.

The most fundamental conclusion to draw from this study is that breakdown condi-
tions dominated by surface effects are driven solely by the surface field angle (not field
magnitude) from a physics perspective. This “physics perspective” must be explicitly
stressed, as this result is largely in contrast to prior works characterizing fundamental
breakdown [20] as a result of engineered systems having more contributions beyond fun-
damental order. Attributing initial surface field angle conditions to the fundamental
breakdown contribution is an important result as it allows design of engineering pro-
cesses that can eliminate (or enhance) growth by manipulating conditions at the onset
and allow for reduction of the parameter set to monitor for further growth (i.e. previous
parameters that might have been driven by surface growth need no longer be considered).
Additionally, this fundamental physics perspective effectively reveals that there should
be no breakdown curve from discharges dominated by surface-effects, which is, again, in
contrast to previous works. This conclusion is most relevant to discharges in background
pressures from vacuum through “ultra-low pressure” (VULP) of less than a few hundred
mTorr, where surface effects dominate volume collisional effects. Various influences on
VULP discharges were examined, including the effect of scattered and reflected primaries
and the effect of electron and ion collisions with background gas. Electron collisions in
VULP can lead to underdamped oscillations as space charge couples with surface charge,
causing slight restoration of otherwise saturated fields into multiplicative conditions. Ion
collisions add frictional effects that enhances the underdamping, hastening steady-state
conditions; typical decay characteristics are enhanced by a factor of two for oscillatory



189

envelope functions. Despite any additional effects in VULP, the driving factor in discharge
evolution is the field angle condition, eventually driving to saturation that supports unit
multipactor growth on the surface.

Single-surface multipactor effects are still appreciable through low pressure (∼ 1 Torr),
and coupling of surface charge with space charge causes oscillations in discharge metrics
(e.g. particle population, surface and volume charge in time, anodic current, etc.). Vol-
ume growth is seeded by surface growth, and, again, the field-angle plays a major role
even at low pressure since the onset of surface growth past early vacuum-like discharge
behavior is dictated by the movement of volume charges. Wave characteristics based on
ion momentum define oscillatory effects that drive periods of growth and decay in the
volume, with periodicity on the order of the ion plasma frequency. Oscillation time scales
are correlated to the ion plasma frequency, since the momentum of heavy ions is the
driving factor in field evolution past the saturation of the electron population. Saturation
of electrons prior to ion momentum is driven by near-surface field conditions evolving to
support unit growth in multipactor in the same way that they evolve in VULP discharges,
with variations in growth characteristics due to space charge. Oscillations may occur in
discharges that are otherwise not multiplicative, e.g. with a dielectric angle at 22.9∘ with
respect to the electrode normal, resulting from ionization over longer time scales that
alters surface characteristics that are simply not accessible in vacuum-like discharges.
Diffusive outgassing adds a hybrid characteristic to discharge evolution, where modest
outgassing flux is insufficient to significantly alter the fast transient of vacuum-like dis-
charges until sufficient gas species has been desorbed into the volume. Alternatively, large
gas densities can be outgassed proportionate to the number of electron impacts, leading
to peaked density accumulation near the anode. Modest seed conditions would cascade to
the anode via multipactor, and impact-dependent outgassing causing non-uniform neutral
gas densities peaked near the anode would instigate large ionization rates near the anode.
Additional effects remain to be studied, but this work has laid the foundational elements
for diffusive outgassing within the XOOPIC code base, and should be extended for kinetic
applications with particle-particle collisions. While oxygen cross-sections have also been
ported over from other PTSG codes, kinetic collisions have not been implemented, which
would allow simulation of, e.g. oxygen recombination, which is known to alter discharge
characteristics in certain geometries [22, 24].

Couple the perspective of initial conditions noted above with assumptions of parti-
cle characteristics grounds previous work in breakdown susceptibility [1, 10, 11] to the
fundamental treatment of secondary emission, allowing a-priori metrics on breakdown
conditions in DC. The development of DC breakdown susceptibility theory is an impor-
tant step in understanding discharge evolution even up to low pressures, since breakdown
onset can be explicitly tied to the near-surface fields tracked by the susceptibility theory.
Breakdown susceptibility provides a practical tool to both track the evolution of a dis-
charge and identify desirable operating regimes based purely on near-surface phenomena
and secondary-emission theory using ensemble distribution characteristics at emission.
It must be stressed that breakdown susceptibility successfully uses emission distribution
characteristics to map the distribution evolution (which are generally a function of the
material), as opposed to average in-volume distribution characteristics, which are not gen-
erally Maxwellian and relatively difficult to predict a-priori in practical settings. Under
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limiting conditions of collisionality on typical particle lifetimes, DC susceptibility can be
applied to cases of low pressure, where limit lines are simply shifted along 𝐸⊥ in the
𝐸⊥/𝐸‖ plane, i.e. “up” or “down” in the field-ratio plane.

Finally, the seed current plays a necessary but insufficient role in typical discharge evo-
lution. The nature of the seed current does not change the characteristics of breakdown
susceptibility with respect to the aforementioned dependence of discharge characteristics
on field angle. The necessity to push out to higher applied voltage in the case of fun-
damental Schächter treatment serves to alter the volume characteristics of particles with
sufficient lifetime to be exposed to the larger voltages. This is further evidenced by the
initial push to steady-state with the self-consistent FN source, where the discharge be-
haves in typical fashion through the fast transient, while the saturated steady-state carries
upstream perturbations to the anode. These upstream perturbations do not propagate
and are the result of local charge variations near the triple point.
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