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A B S T R A C T   

In this study, a 14-gene edited Pseudomonas putida KT2440 strain for heterologous indigoidine production was 
examined using three distinct omic datasets. Transcriptomic data indicated that CRISPR/dCpf1-interference 
(CRISPRi) mediated multiplex repression caused global gene expression changes, implying potential undesir-
able changes in metabolic flux. 13C-metabolic flux analysis (13C-MFA) revealed that the core P. putida flux 
network after CRISPRi repression was conserved, with moderate reduction of TCA cycle and pyruvate shunt 
activity along with glyoxylate shunt activation during glucose catabolism. Metabolomic results identified a 
change in intracellular TCA metabolites and extracellular metabolite secretion profiles (sugars and succinate 
overflow) in the engineered strains. These omic analyses guided further strain engineering, with a random 
mutagenesis screen first identifying an optimal ribosome binding site (RBS) for Cpf1 that enabled stronger 
product-substrate pairing (1.6–fold increase). Then, deletion strains were constructed with excision of the PHA 
operon (ΔphaAZC-IID) resulting in a 2.2–fold increase in indigoidine titer over the optimized Cpf1-RBS construct 
at the end of the growth phase (~6 h). The maximum indigoidine titer (at 72 h) in the ΔphaAZC-IID strain had a 
1.5–fold and 1.8–fold increase compared to the optimized Cpf1-RBS construct and the original strain, respec-
tively. Overall, this study demonstrated that integration of omic data types is essential for understanding re-
sponses to complex metabolic engineering designs and directly quantified the effect of such modifications on 
central metabolism.   

1. Introduction 

Pseudomonas putida KT2440 is emerging as an advantageous meta-
bolic engineering chassis due to its genetic tractability, rapid growth 
rate, and robust ability to grow on renewable carbon streams (Nikel and 
de Lorenzo, 2018). Previous efforts have targeted natural and heterol-
ogous bioproducts for production in P. putida including biofuels (phen-
azine, methyl ketones) (Askitosari et al., 2019; Dong et al., 2019), lipids 
(rhamnolipid) (Arnold et al., 2019), polymers (polyhydroxyalkanoate) 
(Yang et al., 2019), and organic acids (adipic acid) (Niu et al., 2020). 

Recently, P. putida KT2440 production of the non-ribosomal peptide 
indigoidine, a sustainable high-value colorant with uses in the textile, 
cosmetics, and dye industries, achieved promising titers of ~2 g/L in 
shaking flasks cultivations and ~26 g/L during fed-batch cultivations 
(Banerjee et al., 2020). This previous study used a genomically inte-
grated heterologous pathway (bpsA and sfp) to catalyze the conversion of 
glutamine to indigoidine. In turn, a single design-build-test cycle led to 
improved production. The design was generated using the constrained 
minimal cut set (cMCS) genome-scale modeling technique which iden-
tifies genetic targets for deletion to obtain strong product-substrate 
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growth coupling (Klamt and Mahadevan, 2015; Trinh et al., 2009). A 
multiplexed CRISPR-interference (CRISPRi/dCpf1/dCas12a) system 
enabled simultaneous knockdown of the 14 selected gene targets 
(Fig. 1). The product-substrate paired strain (PSP strain) had a 30% 
improvement in indigoidine production and in fed-batch mode, showed 
growth coupled production. These advances were achieved despite the 
partial design implementation as verified by collected transcriptomic 
and proteomic data (Banerjee et al., 2020). As a highly engineered 
system, the PSP strain represented a valuable system to examine the 
effects of engineered pathways on P. putida and potential emergent 
metabolic features and phenotypes. Strains generated by these methods 
use complex DBTL cycles and typically contain more failure routes (e.g., 
multiple components or genetic circuits that can accumulate mutations 
detrimental to production) and may therefore struggle to achieve the 
large improvements obtained in initial cycles. Insight gained here on the 
engineered PSP strain can guide further strain designs after strain per-
formance has already reached a relatively high production level. 

13C-Metabolic flux analysis (MFA) is a technique that measures 
intracellular enzymatic rates in different cell states and has been 
employed to guide strain engineering. This approach has deciphered 
cellular energy metabolism (He et al., 2014; You et al., 2015), flux re-
sponses to genetic perturbation (Long et al., 2016), and pathway regu-
lations (Long and Antoniewicz, 2019a). Previous 13C–MFA studies of 
P. putida metabolism during growth on glucose revealed several core 
metabolic features, such as the Entner-Doudoroff (ED)-EMP cycle, an 
active pyruvate shunt, and an inactive glyoxylate shunt (Kohlstedt and 

Wittmann, 2019; Nikel et al., 2015, 2021). While these foundational 
metabolic features have been clearly established, the metabolic rewiring 
of P. putida strains in response to complex engineering of central path-
ways is unknown. Many studies in microbes have examined flux changes 
in response to simple genetic edits (i.e., deletion or overexpression (He 
et al., 2019; Long and Antoniewicz, 2019b; Long et al., 2016; Xu et al., 
2021), however the impact of transcriptional downregulation due to 
multiplexed CRISPRi on flux topology has not been examined in-depth 
in any microbe. Due to the complexity and technical challenges 
needed to accurately quantify metabolic flux, previous researchers have 
used gene expression analysis (RNAseq) as a proxy in these engineered 
strains (Reis et al., 2019; Silvis et al., 2021; Zhao et al., 2019). The 
indigoidine producing P. putida strains were an ideal system to investi-
gate as both a case study of the response of P. putida network to genetic 
manipulation and CRISPRi downregulation as production was previ-
ously characterized in a minimal defined medium compatible with 
13C-MFA (Banerjee et al., 2020) and as global changes were observed 
from transcriptomics data. 

Here, metabolic responses of P. putida to multiplex CRISPRi gene 
knockdown were characterized by direct flux measurements, which 
revealed overall pathway responses and functions. Targeted metabolite 
analysis helped identify congestion nodes in the flux network. By inte-
grating metabolomic and flux data with previously collected tran-
scriptomic information, prominent gene deletion targets for improved 
production were rationally selected and experimentally tested in new 
deletion strains generated via ssDNA recombineering. 

2. Materials and Methods 

2.1. Strains and plasmids 

All strains used in this study are listed in Table 1. The strains 
analyzed via 13C–MFA were the wild type (WT), the strain containing 
engineered indigoidine production pathway (Eng), and the strain con-
taining both the engineered indigoidine production pathway and the 
CRISPRi product-substrate pairing plasmid (PSP) (Fig. 1). 

Expression of the heterologous indigoidine pathway is under the 
control of an arabinose inducible promoter (Banerjee et al., 2020). The 
PSP strain gRNA expression cassette is induced by adding IPTG. The 
gRNA targeted 14 genes for downregulation (gcd, tal, lldp, ppsA, maeB, 
mdh, mqo-II, mqo-II, putA, argE, speC, anmK, phaA, phaC-II). All plasmids 
contain neo which confers resistance to kanamycin for selection. dcpf1 is 
the endonuclease de-activated allele of Francisella novicida U112 cpf1 
(Cpf1-D917N). The endonuclease active allele is referred to as acpf1. The 
sequences of the plasmids generated in this study may be visualized at 
public-registry.jbei.org. 

2.2. Chemicals and growth medium 

Labeled substrates [1,2–13C glucose, 6–13C glucose, 1–13C glucose, 
U–13C6 glucose] were purchased from Omicron Biochemicals (South 
Bend, IN) or Sigma-Aldrich (St. Louis, MO). All other chemicals were 
purchased from Sigma-Aldrich. P. putida strains were grown in LB me-
dium or M9 minimal medium [per liter, 2 g (NH4)2SO4, 6.8 g Na2HPO4, 
3 g KH2PO4, 0.5 g NaCl, 1 mL trace elements solution (Teknova, 
Hollister, CA), 100 μL 1 M CaCl2, 2 mL 1 M MgSO4] supplemented with 
10 g/L of glucose. Arabinose (3 g/L), IPTG (0.5 mM), and kanamycin 
(50 μg/L) were added as necessary for indigoidine production and were 
included at inoculation. 

2.3. Cell cultivation 

P. putida cultivated for metabolomic and fluxomic analyses were 
grown in 14 mL of liquid volume in 50 mL unbaffled shaking flasks at 
30 ◦C and 200 rpm. Seed cultures were inoculated from fresh plates (<3 
days old) in 5 mL of LB medium and grown overnight. A 1.4% 

Fig. 1. Analysis of P. putida PSP Rewired Central Metabolism from Tran-
scriptomics and Proteomics. Central metabolism of the Product Substrate 
Paired (PSP) P. putida strain which produced indigoidine from glucose was 
analyzed by RNAseq and targeted proteomics. Genes targeted for knockdown 
by CRISPRi/dCpf1 which showed at least 30% reduction in RNA and protein 
levels are indicated by red X marks, and unsuccessful knockdown gene targets 
are indicated with blue X marks. Not all of the gene targets outside of central 
metabolism were depicted in the figure (Banerjee et al., 2020). This subset of 
CRISPRi targets were in turn selected for gene deletion in this study. Potential 
rate-limiting metabolic reactions rationally identified by omics analysis are 
highlighted with red question marks (?). Differential RNA expression levels in 
the PSP strain at the 24 h time point compared to 0 h time point were mapped 
to their corresponding metabolic reactions. Thin grey dashed lines indicate at 
least a 4-fold (log2<− 2) decrease in RNA levels, and thick green lines indicate 
at least a 4-fold (log2>2) increase in RNA levels, as a proxy for metabolic flux. 
Refer to Supplementary Table S3 and Supplementary DataFile 1 for the com-
plete RNAseq dataset for definitions and list of abbreviations within the Sup-
plementary Material. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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inoculation ratio was used to start 14 mL liquid cultures of M9 minimal 
medium. Cells from these first M9 minimal medium cultures were har-
vested around 8–12 h after inoculation (OD600 = ~2–5) and subcultured 
in M9 production medium at an initial OD600 of 0.06–0.10. Samples for 
the metabolomic, fluxomic, and production assay experiments were 
collected from the subculture. Fluxomic experiments substituted the 
unlabeled glucose in the subculture with either 1,2–13C glucose, a 80:20 
mixture of 6–13C glucose:U–13C6 glucose or a 80:20 mixture of 1–13C 
glucose:U–13C6 glucose (Cambridge Isotope, MA and Omicron 

Biochemicals, IN). Cultures used as internal standards for metabolomic 
measurements were grown in two subsequent M9 media cultures con-
taining 100% U–13C6 glucose. 

2.4. Dry cell weight measurements 

The dry cell weight per OD600 measurements were collected from 
cultures grown with M9 minimal media (1st subculture). Cells were 
inoculated to an approximate OD600 of 0.06 in 50 mL of M9 minimal 
media in 250 unbaffled shaking flasks. OD600 was measured throughout 
the growth with biological replicates harvested at various OD600 values 
via centrifugation at 5000×g for 10 min. The supernatant was then 
discarded, the pellet washed with 0.9% NaCl, and the liquid re- 
centrifuged. Samples were frozen at − 80 ◦C before lyophilization and 
measurement. One OD600 unit was 0.37 ± 0.02 g/L biomass at the end of 
the growth phase (Fig. S1). 

2.5. Sample collection and processing for metabolomic analysis 

Metabolomic samples were collected at both the growth phase 
(OD600 range of 0.8–1) and the production phase (24 h, OD600 range of 
8–10). The sampling process involved rapidly quenching metabolism 
using a carbon-free media in a liquid nitrogen bath. Specifically, the 
culture was poured into a chilled (~0 ◦C) M9 media solution that was 
rapidly stirred in a liquid nitrogen bath until the culture reached ~0 ◦C. 
Cells were then pelleted at 5000×g for 5 min (at 1 ◦C), flash frozen with 
liquid nitrogen, and stored at − 80 ◦C until metabolite extractions were 
performed. Intracellular metabolites were extracted in a 1 mL 7:3 
MeOH:Chloroform solution at 4 ◦C, and then processed and analyzed as 
previously described (Czajka et al., 2020a). Intracellular concentrations 
were normalized via the dry cell weight correlations (Fig. S1). An iso-
topic labeling ratio method was used to determine relative metabolite 
intracellular concentrations across cultures as previously described 
(Abernathy et al., 2017). Briefly, P. putida cells were grown in 100% 
U–13C6 M9 minimal media in (50 mL of media in 250 mL shaking flasks) 
for two subcultures (see Methods section 2.3). Cells were harvested 
during the mid-exponential phase using the liquid nitrogen bath 
described above. Labeled biomass was mixed with the labeled cells in a 
known quantity before metabolite extraction and Liquid 
Chromatography-Mass Spectroscopy (LC-MS) measurements. The 
labeled to unlabeled isotopic ratio percentage of each metabolite was 
used to obtain relative measurements. Cultivation media was filtered 
through 0.2 μm sterile filters and lyophilized for extracellular metabolite 
measurements using the same method. A second set of extracellular 
metabolites were quantified from 20 μl of spent media that were dried 
under vacuum. Chemical derivatization, analysis by GC-MS (same in-
strument as citation), and data processing was done as previously 
described (Pomraning et al., 2021). Glucose content was determined via 
enzymatic kit (R-Biopharm, Darmstadt, Germany) per manufacturer’s 
instructions. 

2.6. Sample collection and processing for proteinogenic measurements 

Proteinogenic amino acid label incorporation samples were har-
vested from cultures that were grown to an OD600 range of 0.7–1.1. Cells 
were pelleted at 5000×g for 5 min, the supernatant was discarded, and 
the pellet was frozen at − 80 ◦C until processing. Proteins from cultures 
grown with 1–13C or 6–13C glucose were collected from a MPLEx 
extraction protocol (Nakayasu et al., 2016), hydrolyzed with 6 N HCl at 
100 ◦C for 20 h and dried with a speed vacuum concentrator. The amino 
acids were then dissolved in 20 μL of pure pyridine and chemically 
derivatized using 80 μL of tert-butyldimethylsilyl tri-
fluoromethanesulfonate (TBDMS) at 70 ◦C for 1 h. The raw data were 
analyzed and amino acid fragments were corrected for natural labeling 
abundance by the software DExSI (Dagley and McConville, 2018). All 
other samples were hydrolyzed with 1 mL of 6 N HCl at 100 ◦C for 20 h, 

Table 1 
Strains and plasmids used in this study.  

Strain 
annotation 

Strain Source 

WT P. putida KT2440 (Banerjee et al., 
2020; Nieto et al., 
1990) 

Eng straina KT2440 PP_5402::arap-Sc.bpsA,Bc.sfp (Banerjee et al., 
2020); 
JBEI-137,184 

PSP straina KT2440 PP_5402::arap-Sc.bpsA,Bc.sfp {p/ 
pTE327 neo BBR1 lacuv5p-dcpf1 14 gene 
CRISPRi array} 

(Banerjee et al., 
2020); 
JBEI-105,555 

pTE442 
straina 

Δ4116a 

KT2440 PP_5402::arap-Sc.bpsA,Bc.sfp {p/ 
pTE442 neo BBR1 lacuv5p-dcpf1 14 gene 
CRISPRi array dcpf1-RBS optimized 
sequence} 
KT2440 ΔPP_4116 PP_5402::arap-Sc.bpsA, 
Bc.sfp {p/pTE442 neo BBR1 lacuv5p-dcpf1 
14 gene CRISPRi array dcpf1-RBS 
optimized sequence} 

This study 
JBEI-230,534 
This study 
JBEI-230,533 

Δ4185 
Δ4186a 

KT2440 ΔPP_4185 ΔPP_4186 PP_5402:: 
arap-Sc.bpsA,Bc.sfp {p/pTE442 neo BBR1 
lacuv5p-dcpf1 14 gene CRISPRi array 
optimized dcpf1-RBS optimized sequence} 

This study 
JBEI-230,532 

Δ0751a KT2440 ΔPP_0751 PP_5402::arap-Sc.bpsA, 
Bc.sfp {p/pTE442 neo BBR1 lacuv5p-dcpf1 
14 gene CRISPRi array dcpf1-RBS 
optimized sequence} 

This study 
JBEI-230,531 

ΔphaAZC- 
IIDa 

KT2440 ΔphaAZC-IID (ΔPP_5003 
ΔPP_5004 ΔPP_5005 ΔPP_5006) PP_5402:: 
arap-Sc.bpsA,Bc.sfp {p/pTE442 neo BBR1 
lacuv5p-dcpf1 14 gene CRISPRi array 
dcpf1-RBS optimized sequence} 

This study 
JBEI-230,530 

ΔpyrF KT2440 ΔpyrF (ΔPP_1815) This study; 
JBEI-204,817 

Plasmid 
name 

Miscellaneous Notes; gRNA Targets Source 

pTE219 lacMp-dcpf1; gRNA-PmeI. Control plasmid; 
gRNA targets a randomly-generated 20 nt 
sequence + PmeI cut site absent from the 
P. putida genome 

(Banerjee et al., 
2020) 

pTE327 lacMp-dcpf1; gcd, tal, lldp, ppsA, maeB, mdh, 
mqo-II, mqo-II, putA, argE, speC, anmK, 
phaA, phaC-II 

(Banerjee et al., 
2020) 

pTE442 lacMp-RBSopt-dcpf1; gcd, tal, lldp, ppsA, 
maeB, mdh, mqo-II, mqo-II, putA, argE, speC, 
anmK, phaA, phaC-II 

This study; JBEI- 
204,831 

pAO1 
(pTE452) 

pORTMAGE-Pa1 pmp-Pa.recT,Pa.mutL- 
E36K BBR1 GmR 3-methyl-benzoate 
inducible promoter. 

(Wannier et al., 
2020) 

pTE355 lacMp-acpf1 neo BBR1 gRNA-PP_1815 for 
RBS-aCpf1 mutagenesis 

This study; JBEI- 
204,819 

pTE469 lacMp-RBSopt-acpf1 neo BBR1 gRNA- 
PP_0751 for recombineering 

This study; JBEI- 
204,820 

pTE486 lacMp-RBSopt-acpf1 neo BBR1 gRNA- 
PP_1444 for recombineering 

This study; JBEI- 
204,823 

pTE504 lacMp-RBSopt-acpf1 neo BBR1 gRNA- 
PP_5003 for recombineering 

This study; JBEI- 
204,825 

pTE505 lacMp-RBSopt-acpf1 neo BBR1 gRNA- 
PP_4186 for recombineering 

This study; JBEI- 
204,827 

pTE506 lacMp-RBSopt-acpf1 neo BBR1 gRNA- 
PP_4116 for recombineering 

This study; JBEI- 
204,829  

a Genomic integrations are targeted to an intergenic region adjacent to the 
indicated locus. 
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dried with filtered air, and derivatized using 100 μL of TBDMS in 100 μL 
of THF at 70 ◦C for 1 h. All amino acid derivatized samples were 
analyzed via GC-MS equipped with a HP-5MS column as previously 
described (Hollinshead et al., 2019). The amino acid fragments were 
corrected for natural labeling abundance according to the published 
method (Wahl et al., 2004). 

2.7. Indigoidine and glucose measurements 

Indigoidine production and quantification was performed as previ-
ously described with slight modifications (Banerjee et al., 2020). Briefly, 
either 500 μL (OD600 = 1) or 100 μL (24 h, 48 h samples) of liquid 
culture was pelleted at 24,000×g for 2 min. The supernatant was dis-
carded, and 500 μL of dimethylsulfoxide (DMSO) was used to resuspend 
and extract the indigoidine via vortexing (10 min). Additional DMSO 
was added if the pellet was not fully dissolved. Absorption was measured 
at 612 nm in a Cary 60 UV–Vis Spectrometer (Agilent Technologies). 
The values here were reported as absorbance, but can be converted to 
absolute concentration (g/L) using a previously determined calibration 
curve (Banerjee et al., 2020). 

2.8. Flux modeling 

A core P. putida metabolic network was constructed from published 
resources (Kohlstedt and Wittmann, 2019). Only the periplasmic 
secretion reactions were included in the model as small metabolite la-
beling was needed to distinguish flux from the gluconate node to central 
metabolism (Table S1). The INCA software package was used to analyze 
the metabolic network (Young, 2014) for parallel tracer experiments. 
The WUflux software was employed to cross-validate the flux calcula-
tions using the 1,2–13C glucose derived data (He et al., 2016). The 
indigoidine production rates and secretion rates constrained the 
network to represent MFA models for each of the three strains. The 
glucose depletion measurements and biomass formation at 6 h along 
with initial glucose and biomass concentrations were used to calculate 
the uptake per biomass yield and to evaluate the models (Fig. S2). The 6 
h measurements correspond to the growth phase, and therefore, the 
MFA models are designed to represent the growth phase and not 
necessarily the production phase. The amino acid requirements for the 
biomass equation were obtained from the P. putida genome-scale 
metabolic model iJN1462 (Nogales et al., 2020). The central carbon 
metabolite precursors required for sugar and lipid production (Ace-
tyl-CoA, G6P, F6P, GAP) were obtained from a metabolite only biomass 
equation that was reported and determined in a previous flux analysis 
study of P. putida KT2440 (Kohlstedt and Wittmann, 2019). The network 
transitions and constraints can be found in Table S1 and are also 
included in the provided supplementary INCA models. The chi-squared 
goodness of fit method, which assumes that the minimized 
variance-weighted sum of squared residuals (SSR) follows a chi-square 
distribution, was used to assess the confidence of flux best fits at 95% 
confidence interval (Young, 2014). 

2.9. Identification of an optimized RBS sequence for Cpf1 function 

A small library of ribosome binding site variants for Francisella nov-
icida U112 cpf1 were calculated using denovoDNA (Salis et al., 2009) 
and incorporated into a plasmid containing an endonuclease active 
(D917) allele of cpf1 and a gRNA targeting pyrF (PP_1815) using site 
directed mutagenesis (Deng and Nickoloff, 1992) with Q5 polymerase 
(NEB). The RBS mutant library was encoded by the degenerate sequence 
5′-GYAGAASAKTCMAAATGGKGASRTGGAT-3’. The library was trans-
formed into E. coli DH10-beta competent cells (NEB); approximately 50 
single colonies were picked, inoculated into liquid LB media with 50 
μg/mL kanamycin, and single plasmids were extracted using a Miniprep 
plasmid DNA extraction kit (Qiagen Research, Germantown, MA). 
P. putida KT2440 and the ΔpyrF strain were made electrocompetent 

(Wang et al., 2009) and transformed with a variant plasmid from the 
RBS library. Following an hour outgrowth in LB media at 30 ◦C (200 rpm 
shaking), the entirety of the transformation was spun down and plated 
on an LB kanamycin plate and incubated at 30 ◦C overnight. Candidate 
RBS-variant acpf1 plasmids were identified by the following criteria: 
>200 CFU/μg plasmid DNA in the ΔpyrF strain background; <5 CFU/μg 
plasmid DNA in the KT2440 wild-type background. One candidate 
clone, RBS isolate number 30, met this criterion. The RBS sequence was 
identified by Sanger sequencing and corresponded to the following 
sequence identity: 5′-GCAGAACAGTCAAAATGGGGACGTGGAT-3’. This 
RBS sequence was introduced into the multiplex CRISPRi/dCpf1 
plasmid pTE327 using site directed mutagenesis between the J2113 
promoter and start codon of cpf1 and subsequently was given the 
accession ID pTE442. 

2.10. Generation of deletion strains via recombineering & Cpf1/CRISPR 
selection 

Deletion mutants were generated using a RecT-family recombinase 
following a modified protocol based on (Aparicio et al., 2020). Briefly, 
fresh transformants harboring pTE452/pAO1 were selected using LB 
agar plates supplemented with 30 μg/mL gentamicin. Single colonies 
from fresh plates (<5 days old) were used to inoculate LB gentamicin 
liquid cultures and grown overnight at 30 ◦C (200 rpm shaking). 2.5 mL 
of the overnight culture (OD600 = ~4) was used to inoculate 25 mL of 
fresh LB gentamicin medium in a 250 mL baffled shaking flask and 
grown for 1 h at 30 ◦C and 200 rpm. Recombinase expression was then 
induced with 1 mM 3-methyl-benzoate (Sigma: T36609; M-Toluic Acid 
99% purity). Cells were incubated for 30 min after induction with 
shaking, decanted into a 50 mL falcon tube, and centrifuged for 5 min at 
3000×g at 4 ◦C. The cell pellet was resuspended with 10% glycerol and 
transferred into an Eppendorf tube, washed with glycerol three addi-
tional times, and resuspended in 1 mL of 10% glycerol. 

For each recombineering event, 50 μL of the aliquoted cells were 
mixed with 1 μL of the single stranded oligonucleotide (2 μM final 
concentration) (Table S2) and 50 ng of the appropriate cpf1-gRNA 
(endonuclease active) plasmid (Table 1). The above-mentioned com-
ponents were electroporated into P. putida using 2 mm-gap cuvettes and 
the Bio-Rad MicroPulser (program EC2 - 2.5 kV). After pulsing, cells 
were immediately recovered in 600 μL of Terrific Broth (TB) and incu-
bated for 3 h at 30 ◦C, 1000 rpm in a bench-top thermomixer (Eppendorf 
Inc, Infield, CT, USA). After outgrowth, 250 μL was plated on solid agar 
LB kanamycin plates for 1–3 days at 30 ◦C. Colonies were visible after 
48 h. 8–30 clones were selected for genotyping by colony PCR using NEB 
OneTaq Quick-Load 2X Master Mix with Standard Buffer (catalog 
#M0486L) following the manufacturer’s protocol. Before PCR, colony 
biomass was boiled at 94 ◦C for 45 min in 50 μL 20 mM NaOH. 2 μL of 
the boiled solution was used in a 25 μL PCR reaction. The annealing 
temperature was calculated using the webtool, NEB Tm calculator 
(tmcalculator.neb.com, New England Biolabs, Ipswitch, MA). The loci 
targeted for deletion were genotyped using colony PCR with primers 
that bind to the 5′ upstream and 3′ downstream regions adjacent to the 
targeted open reading frame (Table S2). PCR products were analyzed 
using standard techniques for agarose gel electrophoresis. After geno-
typing, both the recombineering plasmid and CRISPR plasmid were 
cured from the mutant by allowing random segregation; sensitivity to 
both kanamycin and gentamicin was verified by patching clones to solid 
agar media containing either of the two named antibiotics. 

3. Results 

The goal of this study was to integrate complementary omics ana-
lyses to “learn” where additional metabolic changes could further 
enhance indigoidine production. Differential gene expression from the 
RNAseq transcriptomics dataset of the PSP strain from Banerjee and Eng 
et al was analyzed to understand how global gene expression changes 
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impacted central metabolism (Fig. 1, Table S3, Supplementary Data-
File 1 (Banerjee et al., 2020)). This analysis indicated that while the 
dataset contained many differentially expressed genes, few of them were 
mappable to central metabolic reactions. A small number of transcripts 
from central metabolic genes were downregulated, which were likely 
related to the genes targeted for downregulation by CRISPRi. A notable 
exception was a statistically significant upregulation in beta-oxidation 
fatty acid metabolism associated genes related to PHA biosynthesis 
and genes associated with the catalytic conversion of acetate to 
acetyl-CoA. Since it was unclear how these changes affected the central 
metabolic reaction network, direct evidence of metabolic flux was 
desired to corroborate the RNAseq dataset. 

3.1. Unexpected metabolite overflow observed in the PSP strain stationary 
phase 

The first step in performing 13C–MFA was to evaluate the cell 
physiological state under the desired cultivation conditions (M9 mini-
mal media containing 10 g/L glucose and 2 g/L (NH4)2SO4). It was re-
ported that the strain containing the production pathway and the 
CRISPRi growth-coupling plasmid (PSP strain, Table 1) maintained a 
desirable phenotype under a variety of scales (deep-well microplates, 
shaking flasks, and bioreactors) (Banerjee et al., 2020). To minimize 
labeled substrate use, the culture volume was scaled down to a 14 mL fill 
volume in 50 mL unbaffled shaking flasks (Fig. S2a). The growth rates of 
the three strains in 14 mL cultures across the cultures were not statis-
tically different (Fig. 2a–b), although there was a longer lag phase for 
the PSP strain due to the addition of antibiotics necessary to retain the 
CRISPRi plasmid (Fig. S3). This increased lag did not cause a decrease in 
the biomass yield coefficient of the PSP strain, as there was a corre-
sponding decrease in glucose depletion rate (Fig. S2b), with yield co-
efficients in the physiological range of previous reports (del Castillo 
et al., 2007; Kohlstedt and Wittmann, 2019) (0.45 ± 0.02 g biomass/g 
glucose and 0.44 ± 0.04 g biomass/g glucose consumed for the Eng and 
PSP strains, respectively, see Supplementary Methods). The PSP strain 
showed a ~11% increase in production compared to the Eng strain 
across several runs in the 14 mL format (Fig. 2c), consistent with pre-
viously reported titers (Banerjee et al., 2020). 

The next step was to determine the extracellular metabolite secretion 
rates to constrain the MFA model during the growth phase (≤6 h), and to 
determine the effects of indigoidine production and the changes in gene 
expression in the PSP strain on the secretion profiles. Beyond the genes 
in central metabolism described in Fig. 1, downregulation of 167 genes 
and upregulation of 139 genes were observed as an indirect consequence 
of the multiplex CRISPRi gene targeting (Table 1, Table S3, Fig. S4, 
Supplemental DataFile 1). Pseudomonads preferentially oxidize glucose 

to gluconate and 2-ketogluconate (2 KG) in the periplasm under excess 
glucose conditions, as opposed to direct glucose uptake and phosphor-
ylation (Fig. 1). Both gluconate and 2 KG have been previously reported 
be secreted during growth on glucose minimal media (del Castillo et al., 
2007; Kohlstedt and Wittmann, 2019; Nikel et al., 2021, 2015) or 
complex LB media (Molina et al., 2019a, 2019b). An analysis of the 
extracellular media revealed that both compounds were secreted to-
wards the end of the growth phase (~6 h) in all three strains (Fig. 3a). 
The Eng strain secreted the highest amount, with a total of 1.4 ± 0.2 g/L 
(compared to 1.0 ± 0.1 g/L for the WT strain). Expression of the CRISPRi 
construct led to a reduction in secretion compared to both the Eng and 
WT strains (0.7 ± 0.1 g/L), with a 1.5–fold reduction in secretion 
observed when comparing values normalized to the glucose depletion 
rates (Fig. S2) or the growth rates. The lowered secretion indicated that 
the targeted knockdown of PP_1444 was successful in reducing peri-
plasmic oxidation rates (Fig. 1) and likely contributed to the increased 
indigoidine production during fed-batch mode reported in the original 
PSP strain (Banerjee et al., 2020). An interesting observation here was 
that 2 KG was secreted in higher quantities than gluconate under the 
cultivation conditions tested (Fig. 3a). A recent study demonstrated that 
P. putida 2 KG secretion is dependent on oxygen, with higher amounts of 
2 KG produced in the presence of oxygen (Pedersen et al., 2021). The WT 
and Eng strains secreted 2.6– and 2.9– fold more 2 KG than gluconate, 
while expression of the CRISPRi construct successfully reduced the 
amount of secreted compounds and shifted the excretion to a 1.3–fold 
ratio. Both compounds were re-consumed by the 24 h mark, with the 
exception of a small amount of residual gluconate in the PSP strain 
(Fig. 3b). Several minor byproducts were present in all strains (Fig. S5). 

Further analysis revealed that only the PSP strain accumulated suc-
cinate as a byproduct, with 240 ± 40 mg/L detected in the production 
phase (Fig. 3c). The previous cMCS-based modeling (Banerjee et al., 
2020) used for designing the PSP strain had not assumed an overflow of 
succinate, as P. putida succinate secretion was previously reported only 
under nitrogen-limiting conditions during growth on glycerol (Beckers 
et al., 2016). As the modeling predicted succinate to be an incompatible 
substrate for production (i.e., succinate would not be sufficient as a 
carbon source to generate precursors for both biomass growth and 
indigoidine production ((Banerjee et al., 2020), Fig. S6)), the flow of 
carbon through this node represented a potential loss of carbon from the 
system. The availability of succinate in the media of the PSP strain could 
have potentially altered the observed secretion dynamics. Therefore, 
succinate was added to cultivations of the Eng strain (3 g/L) at either 6 h 
or 24 h to verify the modeling prediction. The additional carbon led to 
increased biomass accumulation but not increased indigoidine levels 
(Fig. 3d), supporting the prediction that succinate would not be directed 
towards product synthesis and may represent an inefficient loss of 

Fig. 2. Growth characterization of wild- 
type P. putida and indigoidine producing 
strains. (a) Growth curves (log scale) on 
glucose in M9 minimal medium (n = 4). 
Growth phase was defined as occurring up to 
~6 h and production phase occurred after 6 h. 
Growth rates were similar between all strains 
after 3 h. (b) Average growth rates up to time 
of harvest in labeling and metabolomic ex-
periments (n = 14). Error bars represent the 
standard error. (c) Indigoidine production at 
48 h (n = 9). The indigoidine absorbance for 
the PSP strain is ~1.8 ± 0.3 g/L using a pre-
viously reported standard curve (Methods 
Section 2.7 (Banerjee et al., 2020)). All 
measurements were from cultures grown in 
14 mL volume in 50 mL shaking flasks and 
production medium (10 g/L glucose, 3 g/L 

arabinose, 2 g/L (NH4)2SO4, 0.5 mM IPTG at time of induction. The PSP strain growth medium also contained 50 μg/L of kanamycin). Error bars represent the 
standard error.   
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carbon. To more fully characterize cellular flux, 13C-MFA was performed 
with isotopically labeled glucose as a tracer. 

3.2. Steady-state 13C–MFA data collection and modeling 

Parallel 13C–MFA tracer experiments were performed using three 
different labeled glucose mixtures as the carbon source (each tracer was 
used in an independent culture, Methods Section 2.3). At least three 
doublings of growth were allowed to occur in the labeled medium after 
inoculation before biomass was harvested (Wiechert et al., 2007). 
Steady-state flux fitting requires an assumption of metabolic and iso-
topic steady-state. The assumption was verified by growing the cells on a 
mixture of labeled glucose substrates and harvesting the biomass at 
different points within the desired range of growth. The resulting amino 
acid labeling experiment profiles were similar, with only small, 
non-significant differences (p-values <0.05, student’s t-test) observed 
between timepoints (Fig. S7). This verification provided confidence to 
proceed with sample collection for 13C-MFA. 

The glucose depletion rates (6.0 ± 0.9 mmol/h, 6.6 ± 0.4 mmol/h, 
and 5.6 ± 1.0 mmol/h) and specific depletion rates (8.9, 8.2, and 7.8 
mmol/gDCW/h) were determined for the WT, Eng, and PSP strains, 
respectively (Fig. S2). The fluxes were simulated by normalizing the 
specific glucose depletion as 100 mmol/gDCW/h, allowing for direct 
comparisons of the relative flux (absolute flux values were included in 
Tables S4–S6. The resulting fit goodness-of-fits for fragments were 
described in Fig. S8 and Tables S7–S9). A good quality of fit was ach-
ieved for each strain with SSR values equal to 180, 157, and 148 for the 
WT, Eng, and PSP strains respectively. These reported SSR values were 
within the expected range (from 147 to 221, from 141 to 215, and from 
144 to 218 for the WT, Eng, and PSP strains, respectively), passing the 
chi-square test at 95% confidence levels. The 13C–MFA quantified flux 

results represented the cell growth phase (6 h) and indicated the con-
servation of the core P. putida metabolic features within all three strains 
(based on features previously reported (Kohlstedt and Wittmann, 2019; 
Nikel et al., 2021), Fig. 4, Tables S2–S4). Namely, the ED pathway was 
predicted to be the exclusive catabolic route during growth on glucose, 
carbon reflux was observed through the cyclic ED-EMP pathway, and the 
pyruvate shunt was active. The largest difference between the strains 
was the increased cofactor production through the periplasmic oxidized 
reactions. In general, there were not large changes in the flux topology 
between the two strains which shows that the native flux network ac-
commodates indigoidine production without resulting in significant 
central carbon flux changes. 

On the other hand, expression of the CRISPRi system impacted the 
flux network of the PSP strain, with flux rewiring observed in the lower 
half of metabolism (i.e., the TCA cycle, pyruvate shunt, Fig. 4). CRISPRi 
targeting of the malic enzyme (maeB/PP_5085) achieved a 50% reduc-
tion in reaction flux in the PSP strain. There was a corresponding 
1.3–fold decrease in the second reaction (pyruvate carboxylase) of the 
pyruvate shunt which agreed with observed changes in transcriptomic 
and proteomic levels (Banerjee et al., 2020), Table 1, Fig. S4). The 
malate dehydrogenase reaction (MAL → OAC) had a 1.4–fold increase in 
flux despite the targeted downregulation of three of the four P. putida 
malate dehydrogenase genes (mdh, mqo-I, mqo-II), which may be due to 
the activity of the untargeted mqo-III gene. The rearrangement of flux 
activity downstream of MAL propagated through the TCA cycle and 
resulted in approximately 1.3–fold reduction in flux from ICI-
T→AKG→SUC (Fig. 4, Tables S4–S5) and the activation of the glyoxylate 
shunt. The glyoxylate shunt pathway can allow cells to bypass bottle-
necks in the TCA cycle and reduce CO2 carbon loss. In general, the 
glyoxylate shunt is inactive during glucose catabolism and its activation 
was not predicted by the cMCS design (Supplementary DataFile 2 

Fig. 3. Metabolite overflow and indigoi-
dine production dynamics in the pres-
ence of succinate. (a) Secreted extracellular 
sugars measured at the end of the growth 
phase. (b) Extracellular sugars during the 
production phase. (c) Succinate overflow 
measured at the end of growth (6 h) and 
during production (24 h) phases. (d) Indi-
goidine production after succinate addition 
at either 6 h or 24 h after inoculation. The 
indigoidine absorbance for the control is 
~1.4 ± 0.1 g/L using a previously reported 
standard curve (see Methods Section 2.7 
(Banerjee et al., 2020)). All measurements 
were from cultures grown in 14 mL volume 
in 50 mL shaking flasks and production 
medium (10 g/L glucose, 2 g/L (NH4)2SO4, 
3 g/L arabinose, 0.5 mM IPTG at time of 
induction. The PSP strain growth medium 
also contained 50 μg/L of kanamycin) Error 
bars represent the standard error (a & b, n =
2; c, n = 3; d, n = 4 (control), n = 3 (6 h and 
24 h time points).   
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(Banerjee et al., 2020),). Recent metabolic modeling indicated that 
preventing PHA formation can lead to glyoxylate shunt activation in 
P. putida (Manoli et al., 2022). There was a slight (1.1–fold) increase in 
ED glycolysis flux but major flux rewiring was not found in the cyclic 
ED-EMP pathway steps. Relatively more PP pathway flux activity in the 
PSP strain was observed, with the carbon being directed towards further 
NADPH production through the first oxidative step of the PP pathway. 
Cofactor and ATP generation were similar between strains, with an 
~10% increase of ATP generation and a 10% decrease in NADPH and 
NADH generation in the PSP strain relative to the Eng strain (determined 
from all non-amino acid forming reactions, Table S10). Overall, these 
flux maps revealed the effects of multiplexed CRISPRi on pathway ac-
tivities were dominated by a few gene targets. 

3.3. Intracellular metabolite concentration measurements 

Intracellular metabolite concentrations affect the thermodynamic 
driving force of enzyme reactions and buffer the flux network (Raams-
donk et al., 2001). When an enzyme abundance is altered after genetic 
modification, the accumulation or depletion of a metabolite can help a 
cell maintain its flux network. Therefore, a targeted metabolomics 
approach was utilized to examine the intracellular metabolite concen-
trations (pool sizes) in the strains. The measurements revealed a shift in 
pool sizes between the strains at both the growth (Fig. 5a) and pro-
duction phase (Fig. 5b). In the growth phase, the Eng strain was 
observed to have a depletion in many central carbon metabolites 
compared to the WT strain. Expression of the CRISPRi knockdown 
construct appeared to restore metabolite pool sizes to the WT level. 
Thus, the PSP strain had elevated metabolite pool sizes compared to the 
Eng strain, which may provide flux buffering and allow for improved 
production (Raamsdonk et al., 2001; Wegner et al., 2015). A significant 
difference (p-value < 0.05) of pool sizes were observed for erythrose 
4-phosphate (E4P) with an approximate 2–fold increase in both the Eng 
and PSP engineered strains compared to the WT. There was also a sig-
nificant increase of glyceraldehyde 3-phosphate (GAP) pool size 
(1.8–fold) in the PSP strain compared to both the WT and Eng strain. In 
the TCA cycle, the citrate (CIT) pool size of the PSP strain was increased 
by 1.7–fold and approximately 3.5–fold relative to the WT and Eng 
strains, respectively. There was a 2.2–fold and 2.9–fold increase of 
detected MAL and AKG in the PSP strain compared to the Eng strain 
(Fig. 5a and Fig. S9). While the reason for the E4P increase in the Eng 
and PSP strains remained unclear, the depletion of CIT in the Eng rela-
tive to the two other strains agreed with the observed decrease of flux 
towards CIT (Fig. 5a). The build-up of AKG in the PSP strain provided 
further evidence that the cMCS design directed more carbon towards the 
indigoidine precursors (Fig. 5a and Fig. S9). Overall, the increase of TCA 
cycle metabolites suggested TCA cycle flux congestion in the PSP strain 
(Fig. 4). Meanwhile, the decrease of intracellular CIT, AKG, and MAL in 
the Eng strain may be due to drainage of TCA cycle metabolites to 
produce indigoidine (requires two molecules of glutamine, derived from 
alpha-ketoglutarate, AKG). During the production phase (Fig. 5b), there 
was an overall reduction of intracellular metabolites after glucose 
depletion and most metabolite levels were similar between strains. 
However, there was a 1.7–fold increase in the AKG pool size in the PSP 
strain relative to the Eng strain, while 3–fold increase of intracellular 
SUC in the PSP strain was observed (Fig. S9). 

3.4. Integration of omics data suggests new engineering strategies 

The integrative analysis of the PSP strain was used to guide the next 
round of strain design to improve the bioconversion of glucose to indi-
goidine. The metabolite analyses indicated that there were the relatively 
small changes in the PSP flux network and limited growth phase pro-
duction (in shaking flasks) and led to the question of whether the PSP 
strain production could be further improved if the CRISPRi repression 
was more complete in its knockdown efficacy. A random mutagenesis 
screen of the ribosome binding site (RBS) driving cpf1 was performed to 
identify variants that resulted in higher expression levels (Materials 
and Methods 2.9). It is well established that introducing a CRISPR 
system targeting a chromosomal locus for cutting leads to cell death 
(Bikard et al., 2012). This phenotype was used to identify RBS variants 
for F. novicida cpf1 expression where the concurrent introduction of a 
gRNA targeting pyrF/PP_1815 led to low CFUs in a WT strain but had no 
change on CFU counts in a ΔpyrF strain. The original RBS sequence for 
cpf1 expression led to >500 CFU per μg plasmid DNA when transformed 
with the system targeting the pyrF locus. After screening ~50 RBS mu-
tants, one candidate RBS was identified with the better cell-killing ac-
tivity (~0–5 CFUs/μg plasmid DNA), implying it had improved function. 
The identified RBS sequence was then incorporated into the CRISPRi 
plasmid for glucose/indigoidine growth coupling to enhance expression 

Fig. 4. Flux networks of P. putida strains. Flux fitting results for the three 
P. putida strains are represented using three rows, the WT (top), Eng (middle), 
and PSP (bottom). Hollow arrows represent metabolite drainage for biomass 
equations. The dashed arrow from PEP to OAC represents no predicted flux 
going through the reactions. Dotted lines represent reactions that were not 
distinguishable from proteinogenic amnio acid labeling and thus, undetermined 
in this network. Some reactions that do not contribute to the main points drawn 
from the flux maps are omitted from the figure for clarity. All reaction fits, 
uptake rates, and biomass formations can be found in Tables S4–S6. Flux is 
reported as a percentage of the glucose depletion rate, which has been 
normalized to 100 and was 6.0 ± 0.9 mmol/h, 6.6 ± 0.4 mmol/h, and 5.6 ±
1.0 mmol/h for the WT, Eng, and PSP strains, respectively. Goodness-of-fits of 
amino acid fragments can be found in Fig. S8 and Tables S7–S9. The SSR values 
were within the expected ranges for each strain (WT 180 [147,221], Eng 157 
[141,215], PSP 148 [144,218]). For metabolite abbreviations, refer to the list of 
abbreviations within the Supplementary Material. 
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(pTE442, Table 1). The reinforcement of the original cMCS design 
resulted in stronger growth coupling, with 1.6–fold (p-value = 0.08) 
improvement in production rate at the end of the growth-phase (6 h 
timepoint) compared to the PSP strain (Fig. 6). However, the increased 
production rate was not sustained over the course of cultivation and the 
strain only resulted in a 1.2–fold increase of titer (p-value = 0.14) at the 
final time point (72 h). The slowdown in production may have been due 
to the nitrogen limited regime near the end of the growth phase, despite 
the indication that the CRISPRi construct continued to affect pathway 
protein levels for at least 120 h (Banerjee et al., 2020). 

After increasing the RBS strength, the omics data analysis identified 
four targets for further engineering. The first two came from observa-
tions of flux changes: 1. that the glyoxylate shunt was activated and 
allowed carbon to bypass the central carbon metabolism indigoidine 
precursor, AKG and, 2. that downregulation of the malate dehydroge-
nase reaction was not sufficient despite targeting three out of four en-
zymes involved in the reaction by CRISPRi (mdh, mqo-II, mqo-II, Fig. 4). 
Thus, two genes, isocitrate lyase, aceA (PP_4116) and the final malate 
dehydrogenase, mqo-III (PP_0751) were selected as deletion targets. The 

intracellular and extracellular metabolomic data sets demonstrated a 
build-up and secretion of succinate from the PSP strain (Figs. 3c and 5b) 
under the specific growth conditions tested. Reutilization of the accu-
mulated succinate would not increase indigoidine production and thus 
represented a loss of carbon from the system (Fig. 3d and Fig. S6). The 
sucC (PP_4185) and sucD (PP_4186) subunits of succinyl-CoA synthetase 
complex were selected as the next gene targets to prevent succinate 
build-up and secretion. Similarly, the extracellular data indicated that 
knockdown of the gluconate forming glucose dehydrogenase 
(ΔPP_1444) was insufficient to fully prevent secretion of gluconate or 2 
KG. PP_1444 was therefore selected for deletion to further shift pro-
duction towards the growth phase. Finally, the phaAZC-IID operon 
responsible for synthesis of the storage compound poly-
hydroxyalkanoate (PHA) was selected for complete deletion. The PHA 
genes consistently appeared as deletion candidates in the cMCS design 
(Banerjee et al., 2020). The two genes targeted for downregulation 
(PP_5003 and PP_5005) by the CRISPRi construct catalyze the poly-
merization of PHA. While the two targeted PHA genes (PP_5003 and 
PP_5005) were down-regulated, several other genes involved in 

Fig. 5. Metabolite pool sizes. Comparison of 
metabolite pool sizes in the growth (a) and pro-
duction (b) phases. Pool sizes were compared to a 
isotopically labeled internal standard (see 
Methods Section) with a relative abundance of 
one being equal pool sizes between the standard 
and strains) * denotes metabolite pool sizes that 
were significantly different between strains (p- 
value <0.05, one-way anova). **Citrate in panel 
(b) is reported as ng/mg of Dry cell weight 
(divided by 100 for visualization purposes). Error 
bars represent the standard error (n = 3), except 
for E4P in the PSP strain during production phase 
(n = 1). For metabolite abbreviations, refer to the 
list of abbreviations within the Supplementary 
Information.   

J.J. Czajka et al.                                                                                                                                                                                                                                



Metabolic Engineering Communications 15 (2022) e00206

9

β-oxidation (forming precursors for PHA biosynthesis) were 
up-regulated compared to the Eng strain ((Banerjee et al., 2020), 
Table S3). PHA accession and biosynthetic gene clusters have been 
shown to be robust (Ankenbauer et al., 2020) in P. putida and to continue 
under nitrogen limited conditions. Thus, sufficient PHA flux may still 
occur and redirect carbon flux away from the indigoidine production 
route. 

Next, each of the deletion strains (ΔPP_0751, ΔPP_1444, ΔPP_4116, 
ΔPP_4185ΔPP_4186, ΔphaAZC-IID) were constructed via ssDNA 
recombineering (see Materials and Methods Section 2.10) and tested 
for growth-coupled indigoidine production with the RBS-optimized 
CRISPRi plasmid (pTE442). Deletion of the PHA operon led to a signif-
icant (p-value < 0.01) increase in both production rate and titer across 
the cultivation (Fig. 6). The ΔphaAZC-IID strain had a 2.2–fold increase 
in production at the end of the growth phase compared to pTE442 strain, 
which was maintained throughout the cultivation and resulted in a 
1.5–fold improvement of indigoidine titer at 72 h (p-values<0.01). 

In contrast, deletion of mqo-III (ΔPP_0751) or the succinyl-CoA 
synthetase subunits (ΔPP_4185 ΔPP_4186) led to strains with substan-
tial growth defects (reaching OD600 ~1–3 at 24 h) (Fig. S10). RB-TnSeq 
analysis previously indicated that no transposon mutants had been 
recovered in either of these gene loci, which provides indirect evidence 
that the genes may be essential (Eng et al., 2021; Price et al., 2018; 
Thompson et al., 2019). However, colonies were obtained for each 
deletion, although the strains exhibited a severe growth defect in liquid 
minimal medium. The deletion strains’ fitness defects agreed with the 
previous RB-TnSeq results, and the first DBTL cycle workflow aimed at 
avoiding potentially essential metabolic reactions targets for CRISPRi 
knockdown. Of the remaining deletion strains, isocitrate dehydrogenase 
(ΔPP_4116) or glucose dehydrogenase (ΔPP_1444) led to a 1.2– and 1.3– 
fold increase in production for the respective strains at the end of the 
growth phase over the strain containing the improved RBS (pTE442), 
albeit the increase was not significant (p-values = 0.21 and 0.17, 
respectively) (Fig. 6). The production rates slowed over the course of 
cultivation and the deletions were detrimental to overall titers with 1.3– 
and 1.4– fold decreases compared to the pTE442 strain observed at 72 h 
(p-values <0.05). Both the ΔPP_4116 and ΔPP_1444 strains also had 
decreased production compared to the original PSP strain by the end of 
the cultivation (by 8% (p-value >0.05) and 10% (p-value <0.05), 
respectively). Overall, these results indicated that the modified RBS used 
to drive cpf1 expression increased production 60% during the expo-
nential phase compared to the original PSP design while further deletion 

of the pha operon led to a 220% increase over the PSP design. Moreover, 
final product titer improvements could be detected concomitant with 
growth in exponential phase, in stationary phase, or both. 

4. Discussion 

4.1. P. putida metabolic plasticity and flux buffering 

Cellular metabolism has evolved over time to provide robust flux 
networks for generating the precursors and energy molecules necessary 
for growth and survival under a variety of environmental and genetic 
perturbations (Czajka et al., 2020b; Donati et al., 2021). Changes in 
protein levels can be counteracted by latent pathway activation, enzyme 
activity changes (through post-transcriptional regulation), or metabolite 
levels changes (Raamsdonk et al., 2001; Wegner et al., 2015). The 
resulting flux buffering determines the effectiveness of CRISPRi modi-
fications and requires integrated flux and metabolite analyses. Studies 
have shown that multiplexed CRISPRi strategies can overcome the flux 
buffering and reroute carbon in a manner that increases product pro-
duction (Banerjee et al., 2020; Reis et al., 2019; Tian et al., 2019), but 
whether the CRISPRi-mediated gene repression led to decreased flux had 
not been directly investigated. In the PSP strain, targeting 14 genes for 
downregulation indirectly led to the downregulation of 167 genes and 
the upregulation of 139 genes compared to the Eng control strain car-
rying an empty vector plasmid, pTE219 (Table 1, Fig. 1, Fig. S4). The 
transcriptomics analysis was unable to detect the subtle flux changes 
characterized by the fluxomics analysis or the near-complete inactiva-
tion of maeB/PP_5085 in the PSP strain (Fig. 4), likely due to 
post-translational regulatory mechanisms that cannot be captured at the 
RNA enrichment level or high basal mRNA degradation rates that blunt 
this assay’s sensitivity in prokaryotes (Herzel et al., 2022). 

The 13C-MFA revealed several enzymatic rates were undesirable 
based on the original cMCS design and potential deletion targets for 
further strain improvement (Fig. 4, Supplemental DataFile 2). Specif-
ically, there was an increase of flux through the malate dehydrogenase 
reaction despite targeted downregulation of three out of four of the 
genes involved in this step. It appeared that limiting flux through the 
malic enzyme resulted in flux rerouting through the malate dehydro-
genase reaction and further perturbations downstream, indicating that 
the malic enzyme and the pyruvate shunt are key nodes with limited flux 
buffering for P. putida to maintain stable flux through the TCA cycle. 
These observations are supported by studies that showed the malic 

Fig. 6. Production profiling of various 
indigoidine producing strains. Indigoidine 
titers as measured by absorbance in DMSO at 
612 nm. Strain pTE442 represents the indi-
goidine production strain containing 
plasmid pTE442 (Table 1). * denotes data 
points that were not collected due to no 
observable growth (see Fig. S10). The 6 h 
measurements are depicted on a separate 
axis due to differences in the scale of the 
measurements. The indigoidine absorbance 
for the ΔphaAZC-IID strain corresponds to 
~0.2 ± 0.1 g/L at 6 h and ~3.6 ± 0.2 g/L at 
72 h as determined with a previously re-
ported standard curve (see Methods Sec-
tion 2.7 (Banerjee et al., 2020)). All 
measurements were from cultures grown in 
14 mL volume in 50 mL shaking flasks and 
production medium (10 g/L glucose, 2 g/L 
(NH4)2SO4, 3 g/L arabinose, 0.5 mM IPTG at 
time of induction. The PSP strain growth 
medium also contained 50 μg/L of kana-
mycin). Error bars represent standard error 

(n ≥ 6).   
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enzyme/malate dehydrogenase flux ratio shifts in response to oxidative 
stress (Nikel et al., 2021) or iron limitations (Sasnow et al., 2016) from 
its normal ratio of ~65% TCA cycle flux entering the pyruvate shunt 
(Kohlstedt and Wittmann, 2019; Nikel et al., 2015, 2021). A recent study 
analyzing kinetic parameters and control coefficients in P. putida indi-
cated that the malic enzyme exhibits control over the pyruvate shunt 
and has increased importance under stress conditions (Tokic et al., 
2020). Thus, P. putida appears to employ highly active anaplerotic 
pathways to maintain relatively stable fluxes through the core pathways. 

The original cMCS design called for complete gene deletions and 
predicted decreased flux through the second half of the TCA cycle (SUC 
→ MAL) compared to the experimental 13C-MFA measured activity 
((Banerjee et al., 2020), Supplementary DataFile 2). Deletion strains 
generated to reduce the malate dehydrogenase activity (ΔPP_0751) and 
the glyoxylate shunt flux (ΔPP_4116) to match the cMCS original design 
resulted in a severe growth defect and reduced production at 72 h (by 
13% and 30%, respectively (Fig. 6)). Logically extending the deletion 
results obtained here, it follows that implementing the original cMCS 
design as a 14-gene deletion strain would have generated a strain with 
significantly slower growth and lower production overall compared to 
the multiplexed CRISPRi implementation. Integrating gene essentiality 
indicators into computational designs can help avoid the generation of 
growth-defected strains. As gene essentiality information may not be 
available or complete, multiplexed CRISPRi constructs offer an alter-
native implementation that can avoid gene essentiality issues by 
allowing for minimal flux through such nodes while still leading to 
desired phenotypes. To illustrate this, consider the indigoidine produc-
tion titer when PP_4116 expression was reduced versus its complete 
deletion; according to RNAseq and proteomics, CRISPRi knockdown 
reduced PP_4116 levels by ~30% (Table S3). In contrast, when PP_4116 
is completely abolished in the case of a gene deletion, the impact on 
indigoidine titer was not beneficial overall and even led to an 8% 
decreased production compared to the original PSP strain at 120 h. 
While gene deletions lead to desirable re-routing fluxes in cases of 
simple pathways (i.e., one to two deletions), it eliminates pathways 
needed for the metabolic networks to accommodate further stresses. For 
complex engineering designs calling for multiple deletions, the resulting 
flux network may be too constrained and unable to maintain flexibility 
to compensate for both production burdens and modulation of pathways 
by engineered tools (Chavarría et al., 2012). Thus, utilizing CRISPRi to 
modulate cellular fluxes allows cells to maintain the necessary flux 
network flexibility that can result in stable growth and robust produc-
tion in cases of complex strain designs. However, it was determined that 
CRISPRi mediated downregulation would not impose flux changes 
predicted to be necessary from cMCS modeling tools. These CRISPRi 
implementations may provide an accessible route to prototype large 
gene cutsets before laboriously building sequential gene deletion strains 
to realize the predicted gains in titers, rates, and yields. 

4.2. Engineering insights on growth coupling and cellular byproducts 

Growth coupling has been demonstrated as a viable strategy for 
improving production of non-toxic compounds like indigoidine, itaconic 
acid, and 1,4-butanediol (Banerjee et al., 2020; Harder et al., 2016; Yim 
et al., 2011). The generated PSP strain indicated large gene cut sets 
could be rapidly tested using multiplex CRISPRi/dCpf1, but did not 
result in complete gene inactivation (Banerjee et al., 2020). Accordingly, 
in this study it was shown that increased CRISPRi activity was realized 
with an optimal Cpf1-RBS sequence and revealed higher indigoidine 
production titers in the growth phase where 60% more product was 
detected at the 6 h timepoint. 

Several specific gene targets from the CRISPR multiplex set were re- 
evaluated to determine if partial knockdown of a single metabolic re-
action could explain the predicted titers, rates, and yields were not 
reached. Of the deletion strains tested in tandem with the CRISPRi 
system, inactivating PHA synthesis was the most effective strategy and 

led to a 2.2–fold improvement in growth phase production and 1.5–fold 
more indigoidine at the end of cultivation compared to the pTE442 
strain (Fig. 6). PHAs are typically synthesized as storage compounds that 
are accessed under glucose starvation (Ankenbauer et al., 2020) in 
P. putida and have been previously shown to be closely tied to central 
carbon metabolism (de Eugenio et al., 2010a, 2010b; Escapa et al., 
2012). Preventing PHA formation in P. putida may be beneficial for 
indigoidine production because blocking synthesis increases acetyl-CoA 
and precursor flux through the TCA cycle (Escapa et al., 2012) and has 
also been predicted to increase ATP production (Manoli et al., 2022). 
Furthermore, PHA synthesis has been identified as a key component in 
maintaining energy and redox balance by allowing for dissipation of 
excess energy (Manoli et al., 2022). Disrupting this energy balancing 
component may further drive the production of indigoidine as a means 
to dissipate reducing power. Overall, the phaAZC-IID deletions gener-
ated here prevented the accumulation of this key carbon storage 
component and enabled the strain to redirect excess carbon and energy 
to production of indigoidine throughout the cultivation process. 

Under the studied production conditions in M9 minimal media, the 
pTE442 strain was nitrogen limited. As this strain provides an example 
of growth coupled product production, extending the growth phase and 
relieving the nitrogen limitation through increased initial indigoidine or 
a with a nitrogen supplemented feed during cultivation is expected to 
result in further production improvements between strains as shown in 
previous work (Banerjee et al., 2020; Wehrs et al., 2019). This strategy 
could enhance the effectiveness of the CRISPRi construct as well since 
many of the CRISPRi gene targets are involved in central carbon meta-
bolism and amino acid synthesis pathways that become less active as 
glucose is depleted. 

5. Conclusions 

Initial DBTL cycles can be effective in increasing production from 
engineered strains, but systems analyses are necessary to reveal cell 
metabolic regulations and to identify non-intuitive engineering targets 
in advanced cycles (Zhang et al., 2020). Here, multi-omics data provided 
holistic information on the P. putida system-wide response to complex 
metabolic perturbations that helped re-engineer a strain for a nearly 
50% improvement in heterologous production titer over the first round 
engineered strain. Although multi-omic analyses can lead to under-
standing of metabolic status and regulations in light of genetic modifi-
cations and cultivation stresses, the obtained metabolic knowledge may 
not directly pinpoint new gene targets after initial DBTL rounds. Inte-
grating multi-omic data into genome-scale models (Kim and Lun, 2014; 
Martín et al., 2015; Töpfer et al., 2015), utilizing computational design 
algorithms (Klamt and Mahadevan, 2015), and high throughput strain 
construction and evaluation can result in more robust and accurate ge-
netic targets for DBTL applications. 

Author contributions 

JC DB TE YT and AM conceived the study. CY JM TE constructed and 
verified recombinant P. putida strains and plasmids. JC harvested and 
analyzed samples for 13C MFA analysis. NMM, BCP and YMK acquired 
and analyzed samples for the MFA analysis of metabolites and proteo-
genic amino acids using high resolution mass spectrometry. JC DB TE YT 
and AM interpreted the results. JC wrote the first draft of the manuscript 
and prepared figures. All authors edited and provided constructive 
feedback on the final manuscript. All authors have read and approved 
the final version of this manuscript for publication. 

Data availability 

The sequences of the plasmids generated in this study may be visu-
alized at public-registry.jbei.org. All other data is included in the 
manuscript and the supplementary files. The INCA network models have 

J.J. Czajka et al.                                                                                                                                                                                                                                

http://public-registry.jbei.org


Metabolic Engineering Communications 15 (2022) e00206

11

been provided as matlab files with the conditions used to simulate the 
flux network results. 

Declaration of competing interest 

The authors declare no conflicts of interest. 

Acknowledgements 

We thank Victor de Lorenzo and Esteban Martínez (Centro Nacional 
de Biotecnología-CSIC) for insightful technical comments and sharing 
their recombineering plasmids and methods. We thank Patrick Leggieri 
& Michelle O’Malley (University of California, Santa Barbara) as well as 
Chris Lawson (University of Toronto) for insightful comments and sug-
gestions on the manuscript. JC was supported by the U.S. Department of 
Energy, Office of Science, Office of Workforce Development for Teachers 
and Scientists, Office of Science Graduate Student Research (SCGSR) 
program. The SCGSR program is administered by the Oak Ridge Institute 
for Science and Education (ORISE) for the DOE. ORISE is managed by 
Oak Ridge Associated Universities (ORAU) under contract number DE- 
SC001464. All opinions expressed in this paper are the author’s and 
do not necessarily reflect the policies and views of ODE, ORAU, or 
ORISE. 

A part of this research was conducted at the Joint BioEnergy Institute 
(http://www.jbei.org) supported by the US Department of Energy, Of-
fice of Science, through contract DE-AC02-05CH11231 between Law-
rence Berkeley National Laboratory (LBNL) and the US Department of 
Energy. Separately, a portion of this research was performed on a project 
award 10.46936/brcr.proj.2021.51792/60000322 from the Environ-
mental Molecular Sciences Laboratory (EMSL), a DOE Office of Science 
User Facility sponsored by the Biological and Environmental Research 
program under Contract No. DE-AC05-76RL01830 at Pacific Northwest 
National Laboratory (PNNL). The work was partially supported by Agile 
BioFoundry (http://agilebiofoundry.org), funded by the United States 
Department of Energy, Office of Energy Efficiency and Renewable En-
ergy, Bioenergy Technologies Office, under Award No. DE-NL0030038. 
The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript. 

We also acknowledge the Proteomics and Mass Spectrometry Core 
Facility at the Donald Danforth Plant Science Center and the United 
States Department of Agriculture, Agricultural Research Service, for 
access and use of instrumentation and resources. In addition, we 
acknowledge support from the National Science Foundation (NSF-MCB 
#1616820 and NSF-DBI #1427621), the latter grant provided support 
for acquisition of the QTRAP LC-MS/MS used for collecting initial data 
in this project. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.mec.2022.e00206. 

References 

Abernathy, M.H., Yu, J., Ma, F., Liberton, M., Ungerer, J., Hollinshead, W.D., 
Gopalakrishnan, S., He, L., Maranas, C.D., Pakrasi, H.B., Allen, D.K., Tang, Y.J., 
2017. Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via 
isotopically nonstationary metabolic flux analysis. Biotechnol. Biofuels 10, 273. 
https://doi.org/10.1186/s13068-017-0958-y. 
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Czajka, J.J., Okumuş, B., Koffas, M.A., Blenner, M., Tang, Y.J., 2020b. Mitigation of host 
cell mutations and regime shift during microbial fermentation: a perspective from 
flux memory. Curr. Opin. Biotechnol. 66, 227–235. https://doi.org/10.1016/j. 
copbio.2020.08.003. 

Dagley, M.J., McConville, M.J., 2018. DExSI: a new tool for the rapid quantitation of 
13C-labelled metabolites detected by GC-MS. Bioinformatics 34, 1957–1958. 
https://doi.org/10.1093/bioinformatics/bty025. 

de Eugenio, L.I., Escapa, I.F., Morales, V., Dinjaski, N., Galán, B., García, J.L., Prieto, M. 
A., 2010a. The turnover of medium-chain-length polyhydroxyalkanoates in 
Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the 
metabolic balance. Environ. Microbiol. 12, 207–221. https://doi.org/10.1111/ 
j.1462-2920.2009.02061.x. 

de Eugenio, L.I., Galán, B., Escapa, I.F., Maestro, B., Sanz, J.M., García, J.L., Prieto, M.A., 
2010b. The PhaD regulator controls the simultaneous expression of the pha genes 
involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida 
KT2442. Environ. Microbiol. 12, 1591–1603. https://doi.org/10.1111/j.1462- 
2920.2010.02199.x. 

del Castillo, T., Ramos, J.L., Rodríguez-Herva, J.J., Fuhrer, T., Sauer, U., Duque, E., 2007. 
Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas 
putida: genomic and flux analysis. J. Bacteriol. 189, 5142–5152. https://doi.org/ 
10.1128/JB.00203-07. 

Deng, W.P., Nickoloff, J.A., 1992. Site-directed mutagenesis of virtually any plasmid by 
eliminating a unique site. Anal. Biochem. 200, 81–88. https://doi.org/10.1016/ 
0003-2697(92)90280-K. 

Donati, S., Kuntz, M., Pahl, V., Farke, N., Beuter, D., Glatter, T., Gomes-Filho, J.V., 
Randau, L., Wang, C.-Y., Link, H., 2021. Multi-omics analysis of CRISPRi- 
knockdowns identifies mechanisms that buffer decreases of enzymes in E. coli 
metabolism. Cell Syst 12, 56–67. https://doi.org/10.1016/j.cels.2020.10.011 e6.  

Dong, J., Chen, Y., Benites, V.T., Baidoo, E.E.K., Petzold, C.J., Beller, H.R., Eudes, A., 
Scheller, H.V., Adams, P.D., Mukhopadhyay, A., Simmons, B.A., Singer, S.W., 2019. 
Methyl ketone production by Pseudomonas putida is enhanced by plant-derived 
amino acids. Biotechnol. Bioeng. 116, 1909–1922. https://doi.org/10.1002/ 
bit.26995. 

Eng, T., Banerjee, D., Lau, A.K., Bowden, E., Herbert, R.A., Trinh, J., Prahl, J.-P., 
Deutschbauer, A., Tanjore, D., Mukhopadhyay, A., 2021. Engineering Pseudomonas 
putida for efficient aromatic conversion to bioproduct using high throughput 
screening in a bioreactor. Metab. Eng. 66, 229–238. https://doi.org/10.1016/j. 
ymben.2021.04.015. 

Escapa, I.F., García, J.L., Bühler, B., Blank, L.M., Prieto, M.A., 2012. The 
polyhydroxyalkanoate metabolism controls carbon and energy spillage in 
Pseudomonas putida. Environ. Microbiol. 14, 1049–1063. https://doi.org/10.1111/ 
j.1462-2920.2011.02684.x. 

Harder, B.-J., Bettenbrock, K., Klamt, S., 2016. Model-based metabolic engineering 
enables high yield itaconic acid production by Escherichia coli. Metab. Eng. 38, 
29–37. https://doi.org/10.1016/j.ymben.2016.05.008. 

Herzel, L., Stanley, J.A., Yao, C.-C., Li, G.-W., 2022. Ubiquitous mRNA decay fragments 
in E. coli redefine the functional transcriptome. Nucleic Acids Res. 50, 5029–5046. 
https://doi.org/10.1093/nar/gkac295. 

He, L., Wu, S.G., Zhang, M., Chen, Y., Tang, Y.J., 2016. WUFlux: an open-source platform 
for 13C metabolic flux analysis of bacterial metabolism. BMC Bioinf. 17, 444. 
https://doi.org/10.1186/s12859-016-1314-0. 

He, L., Xiao, Y., Gebreselassie, N., Zhang, F., Antoniewiez, M.R., Tang, Y.J., Peng, L., 
2014. Central metabolic responses to the overproduction of fatty acids in Escherichia 
coli based on 13C-metabolic flux analysis. Biotechnol. Bioeng. 111, 575–585. 
https://doi.org/10.1002/bit.25124. 

He, P., Wan, N., Cai, D., Hu, S., Chen, Y., Li, S., Chen, S., 2019. 13C-Metabolic flux 
analysis reveals the metabolic flux redistribution for enhanced production of poly- 
γ-glutamic acid in dlt over-expressed Bacillus licheniformis. Front. Microbiol. 10, 
105. https://doi.org/10.3389/fmicb.2019.00105. 

J.J. Czajka et al.                                                                                                                                                                                                                                

http://www.jbei.org
http://agilebiofoundry.org
https://doi.org/10.1016/j.mec.2022.e00206
https://doi.org/10.1016/j.mec.2022.e00206
https://doi.org/10.1186/s13068-017-0958-y
https://doi.org/10.1111/1751-7915.13571
https://doi.org/10.1111/1751-7915.13571
https://doi.org/10.1016/j.isci.2020.100946
https://doi.org/10.1186/s13568-019-0804-7
https://doi.org/10.1186/s13568-019-0804-7
https://doi.org/10.3389/fmicb.2019.01990
https://doi.org/10.3389/fmicb.2019.01990
https://doi.org/10.1038/s41467-020-19171-4
https://doi.org/10.1038/s41467-020-19171-4
https://doi.org/10.1186/s12934-016-0470-2
https://doi.org/10.1186/s12934-016-0470-2
https://doi.org/10.1016/j.chom.2012.06.003
https://doi.org/10.1016/j.chom.2012.06.003
https://doi.org/10.1128/mBio.00028-12
https://doi.org/10.1128/mBio.00028-12
https://doi.org/10.1016/j.isci.2020.100854
https://doi.org/10.1016/j.isci.2020.100854
https://doi.org/10.1016/j.copbio.2020.08.003
https://doi.org/10.1016/j.copbio.2020.08.003
https://doi.org/10.1093/bioinformatics/bty025
https://doi.org/10.1111/j.1462-2920.2009.02061.x
https://doi.org/10.1111/j.1462-2920.2009.02061.x
https://doi.org/10.1111/j.1462-2920.2010.02199.x
https://doi.org/10.1111/j.1462-2920.2010.02199.x
https://doi.org/10.1128/JB.00203-07
https://doi.org/10.1128/JB.00203-07
https://doi.org/10.1016/0003-2697(92)90280-K
https://doi.org/10.1016/0003-2697(92)90280-K
https://doi.org/10.1016/j.cels.2020.10.011
https://doi.org/10.1002/bit.26995
https://doi.org/10.1002/bit.26995
https://doi.org/10.1016/j.ymben.2021.04.015
https://doi.org/10.1016/j.ymben.2021.04.015
https://doi.org/10.1111/j.1462-2920.2011.02684.x
https://doi.org/10.1111/j.1462-2920.2011.02684.x
https://doi.org/10.1016/j.ymben.2016.05.008
https://doi.org/10.1093/nar/gkac295
https://doi.org/10.1186/s12859-016-1314-0
https://doi.org/10.1002/bit.25124
https://doi.org/10.3389/fmicb.2019.00105


Metabolic Engineering Communications 15 (2022) e00206

12

Hollinshead, W., He, L., Tang, Y.J., 2019. 13C-Fingerprinting and metabolic flux analysis 
of bacterial metabolisms. Methods Mol. Biol. 1927, 215–230. https://doi.org/ 
10.1007/978-1-4939-9142-6_15. 

Kim, M.K., Lun, D.S., 2014. Methods for integration of transcriptomic data in genome- 
scale metabolic models. Comput. Struct. Biotechnol. J. 11, 59–65. https://doi.org/ 
10.1016/j.csbj.2014.08.009. 

Klamt, S., Mahadevan, R., 2015. On the feasibility of growth-coupled product synthesis 
in microbial strains. Metab. Eng. 30, 166–178. https://doi.org/10.1016/j. 
ymben.2015.05.006. 

Kohlstedt, M., Wittmann, C., 2019. GC-MS-based 13C metabolic flux analysis resolves the 
parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and 
Pseudomonas aeruginosa PAO1. Metab. Eng. 54, 35–53. https://doi.org/10.1016/j. 
ymben.2019.01.008. 

Long, C.P., Antoniewicz, M.R., 2019a. High-resolution 13C metabolic flux analysis. Nat. 
Protoc. 14, 2856–2877. https://doi.org/10.1038/s41596-019-0204-0. 

Long, C.P., Antoniewicz, M.R., 2019b. Metabolic flux responses to deletion of 20 core 
enzymes reveal flexibility and limits of E. coli metabolism. Metab. Eng. 55, 249–257. 
https://doi.org/10.1016/j.ymben.2019.08.003. 

Long, C.P., Gonzalez, J.E., Sandoval, N.R., Antoniewicz, M.R., 2016. Characterization of 
physiological responses to 22 gene knockouts in Escherichia coli central carbon 
metabolism. Metab. Eng. 37, 102–113. https://doi.org/10.1016/j. 
ymben.2016.05.006. 

Manoli, M.-T., Nogales, J., Prieto, A., 2022. Synthetic control of metabolic states in 
Pseudomonas putida by tuning polyhydroxyalkanoate cycle. mBio, e0179421. 
https://doi.org/10.1128/mbio.01794-21. 

Martín, H.G., Kumar, V.S., Weaver, D., Ghosh, A., Chubukov, V., Mukhopadhyay, A., 
Arkin, A., Keasling, J.D., 2015. A method to constrain genome-scale models with 13C 
labeling data. PLoS Comput. Biol. 11, e1004363 https://doi.org/10.1371/journal. 
pcbi.1004363. 

Molina, L., La Rosa, R., Nogales, J., Rojo, F., 2019a. Influence of the Crc global regulator 
on substrate uptake rates and the distribution of metabolic fluxes in Pseudomonas 
putida KT2440 growing in a complete medium. Environ. Microbiol. 21, 4446–4459. 
https://doi.org/10.1111/1462-2920.14812. 

Molina, L., Rosa, R.L., Nogales, J., Rojo, F., 2019b. Pseudomonas putida KT2440 
metabolism undergoes sequential modifications during exponential growth in a 
complete medium as compounds are gradually consumed. Environ. Microbiol. 21, 
2375–2390. https://doi.org/10.1111/1462-2920.14622. 

Nakayasu, E.S., Nicora, C.D., Sims, A.C., Burnum-Johnson, K.E., Kim, Y.-M., Kyle, J.E., 
Matzke, M.M., Shukla, A.K., Chu, R.K., Schepmoes, A.A., Jacobs, J.M., Baric, R.S., 
Webb-Robertson, B.-J., Smith, R.D., Metz, T.O., 2016. MPLEx: a robust and universal 
protocol for single-sample integrative proteomic, metabolomic, and lipidomic 
analyses. mSystems 1. https://doi.org/10.1128/mSystems.00043-16. 

Nieto, C., Fernández-Tresguerres, E., Sánchez, N., Vicente, M., Díaz, R., 1990. Cloning 
vectors, derived from a naturally occurring plasmid of Pseudomonas savastanoi, 
specifically tailored for genetic manipulations in Pseudomonas. Gene 87, 145–149. 
https://doi.org/10.1016/0378-1119(90)90507-N. 

Nikel, P.I., Chavarría, M., Fuhrer, T., Sauer, U., de Lorenzo, V., 2015. Pseudomonas putida 
KT2440 strain metabolizes glucose through a cycle formed by enzymes of the entner- 
doudoroff, embden-meyerhof-parnas, and pentose phosphate pathways. J. Biol. 
Chem. 290, 25920–25932. https://doi.org/10.1074/jbc.M115.687749. 

Nikel, P.I., de Lorenzo, V., 2018. Pseudomonas putida as a functional chassis for industrial 
biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 
142–155. https://doi.org/10.1016/j.ymben.2018.05.005. 

Nikel, P.I., Fuhrer, T., Chavarría, M., Sánchez-Pascuala, A., Sauer, U., de Lorenzo, V., 
2021. Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to 
sub-lethal oxidative stress. ISME J. 15, 1751–1766. https://doi.org/10.1038/ 
s41396-020-00884-9. 

Niu, W., Willett, H., Mueller, J., He, X., Kramer, L., Ma, B., Guo, J., 2020. Direct 
biosynthesis of adipic acid from lignin-derived aromatics using engineered 
Pseudomonas putida KT2440. Metab. Eng. 59, 151–161. https://doi.org/10.1016/j. 
ymben.2020.02.006. 

Nogales, J., Mueller, J., Gudmundsson, S., Canalejo, F.J., Duque, E., Monk, J., Feist, A. 
M., Ramos, J.L., Niu, W., Palsson, B.O., 2020. High-quality genome-scale metabolic 
modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. 
Microbiol. 22, 255–269. https://doi.org/10.1111/1462-2920.14843. 

Pedersen, B.H., Gurdo, N., Johansen, H.K., Molin, S., Nikel, P.I., La Rosa, R., 2021. High- 
throughput dilution-based growth method enables time-resolved exo-metabolomics 
of Pseudomonas putida and Pseudomonas aeruginosa. Microb. Biotechnol. 14, 
2214–2226. https://doi.org/10.1111/1751-7915.13905. 

Pomraning, K.R., Dai, Z., Munoz, N., Kim, Y.-M., Gao, Y., Deng, S., Kim, J., Hofstad, B.A., 
Swita, M.S., Lemmon, T., Collett, J.R., Panisko, E.A., Webb-Robertson, B.-J.M., 
Zucker, J.D., Nicora, C.D., De Paoli, H., Baker, S.E., Burnum-Johnson, K.E., 
Hillson, N.J., Magnuson, J.K., 2021. Integration of proteomics and metabolomics 
into the design, build, test, learn cycle to improve 3-hydroxypropionic acid 
production in Aspergillus pseudoterreus. Front. Bioeng. Biotechnol. 9, 603832 
https://doi.org/10.3389/fbioe.2021.603832. 

Price, M.N., Wetmore, K.M., Waters, R.J., Callaghan, M., Ray, J., Liu, H., Kuehl, J.V., 
Melnyk, R.A., Lamson, J.S., Suh, Y., Carlson, H.K., Esquivel, Z., Sadeeshkumar, H., 
Chakraborty, R., Zane, G.M., Rubin, B.E., Wall, J.D., Visel, A., Bristow, J., Blow, M. 
J., Deutschbauer, A.M., 2018. Mutant phenotypes for thousands of bacterial genes of 
unknown function. Nature 557, 503–509. https://doi.org/10.1038/s41586-018- 
0124-0. 

Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M.C., 
Berden, J.A., Brindle, K.M., Kell, D.B., Rowland, J.J., Westerhoff, H.V., van Dam, K., 
Oliver, S.G., 2001. A functional genomics strategy that uses metabolome data to 

reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50. https://doi. 
org/10.1038/83496. 

Reis, A.C., Halper, S.M., Vezeau, G.E., Cetnar, D.P., Hossain, A., Clauer, P.R., Salis, H.M., 
2019. Simultaneous repression of multiple bacterial genes using nonrepetitive extra- 
long sgRNA arrays. Nat. Biotechnol. 37, 1294–1301. https://doi.org/10.1038/ 
s41587-019-0286-9. 

Salis, H.M., Mirsky, E.A., Voigt, C.A., 2009. Automated design of synthetic ribosome 
binding sites to control protein expression. Nat. Biotechnol. 27, 946–950. https:// 
doi.org/10.1038/nbt.1568. 

Sasnow, S.S., Wei, H., Aristilde, L., 2016. Bypasses in intracellular glucose metabolism in 
iron-limited Pseudomonas putida. Microbiol. 5, 3–20. https://doi.org/10.1002/ 
mbo3.287. 

Silvis, M.R., Rajendram, M., Shi, H., Osadnik, H., Gray, A.N., Cesar, S., Peters, J.M., 
Hearne, C.C., Kumar, P., Todor, H., Huang, K.C., Gross, C.A., 2021. Morphological 
and transcriptional responses to CRISPRi knockdown of essential genes in 
Escherichia coli. mBio 12, e0256121. https://doi.org/10.1128/mBio.02561-21. 

Thompson, M.G., Blake-Hedges, J.M., Cruz-Morales, P., Barajas, J.F., Curran, S.C., 
Eiben, C.B., Harris, N.C., Benites, V.T., Gin, J.W., Sharpless, W.A., Twigg, F.F., 
Skyrud, W., Krishna, R.N., Pereira, J.H., Baidoo, E.E.K., Petzold, C.J., Adams, P.D., 
Arkin, A.P., Deutschbauer, A.M., Keasling, J.D., 2019. Massively parallel fitness 
profiling reveals multiple novel enzymes in Pseudomonas putida lysine metabolism. 
mBio 10. https://doi.org/10.1128/mBio.02577-18. 

Tian, T., Kang, J.W., Kang, A., Lee, T.S., 2019. Redirecting metabolic flux via 
combinatorial multiplex CRISPRi-mediated repression for isopentenol production in 
Escherichia coli. ACS Synth. Biol. 8, 391–402. https://doi.org/10.1021/ 
acssynbio.8b00429. 

Tokic, M., Hatzimanikatis, V., Miskovic, L., 2020. Large-scale kinetic metabolic models of 
Pseudomonas putida KT2440 for consistent design of metabolic engineering 
strategies. Biotechnol. Biofuels 13, 33. https://doi.org/10.1186/s13068-020-1665- 
7. 
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