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ABSTRACT: Analyzing hydrogel microstructure through scan-
ning electron microscopy (SEM) images is crucial in under-
standing hydrogel properties. However, the analysis of SEM
images in hydrogel research heavily relies on the intuition of
individual researchers and is constrained by the limited size of
the dataset. To address this, we propose SEMPro, a data-driven
solution using web-scraping and deep learning (DL) to compile
and analyze the structure—property relationships of hydrogels
through SEM images. It accurately predicts the elastic modulus
from SEM images within the same order of magnitude and
displays a learned extraction of modulus-relevant features in
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SEM images as seen through the nontrivial activation mapping and transfer learning. By employing Explainable AI through
activation map exposure, SEMPro validates the model predictions. SEMPro represents a closed-loop data collection and
analysis pipeline, providing critical insights into hydrogels and soft materials. This innovative approach has the potential to
revolutionize hydrogel research, offering high-dimensional insights for further advancements.

nderstanding mechanical properties is crucial in

l ' materials research and development as it allows
researchers and engineers to select the most suitable
materials for realizing specific properties and applications.
Hydrogels, composed of a complex, three-dimensional cross-
linked hydrophilic polymer network that can absorb and retain
a large amount of water (70%—99%)," are one of the most
commonly used materials for applications in biomedical
engineering,2 drug delivery systems,3 tissue engineering,z“5
and wound dressings’ because of their distinctive character-
istics such as high biocompatibility, soft and elastic nature, and
similarity to natural tissues.” However, conventional hydrogels
are considered fragile materials that severely limit their scope
of applications. In recent decades, substantial efforts have been
dedicated to improving the mechanical properties of hydrogels,
paving the way for the development of ionic skins,” wearable
sensors,” and soft robots'® that can effortlessly adapt to
changing demands, aligning with the advancements of the
fourth industrial revolution. Several fabrication techniques
have been employed to create hydrogels with tunable
mechanical properties by changing their inner porous
structures, such as the freeze—thaw method,'! solvent casting
and particulate leaching,'” gas foaming,'” and phase separa-
tion.'* These methods enable control over the internal pore
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size or porosity by adjusting experiment parameters (i..,
freezing time, sacrificial particle size, gas pressure, and
incubation time in a phase-separated state), thus allowing for
the tuning of mechanical properties. Furthermore, the
mechanical properties can be significantly improved by
employing strategies that involve creating interpenetrating
polymer networks,">'® making long polymer chains with a
significantly high degree of entanglement compared to cross-
links,'” incorporating nanoparticles to form percolating
networks,'*™! or harnessing the electrostatic interactions in
polyampholytes.”> As a result, these techniques have a direct
impact on changes in the microstructure of hydrogel networks,
providing valuable insight into their mechanical properties.

It is worth noting that while the mechanical properties of a
hydrogel are affected by its internal structure in three
dimensions, researchers have relied mostly on data extracted
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Figure 1. (a) Schematic representation of SEMPro dataset creation workflow: (i) SEM images are segmented from the figures of the research
paper and modulus is extracted from (ii) paper text and (iii) stress/strain curves, which are then stored in two individual databases. The
representative SEM images and stress/strain curves shown in (i) and (iii), respectively, are from our previous work.”" (b) Entries from both
databases are then matched and validated by researchers to form the labeled SEM training dataset that feeds into the deep learning
workflow. The CNN model takes in an input SEM image, computes feature maps from convolving learned filters over the image, and predicts
the elastic modulus from the feature maps. (c) The prediction of the elastic modulus on a given input SEM is explained through feature maps
overlaid on the input image. These regression activation maps nontrivially highlight structural regions on the hydrogel with higher (red) and
lower (blue) weights of relevancy to elastic modulus prediction. The researcher can then query the activation maps to understand the
predicted modulus from the model, as well as validate model learning and generalizability.

from two-dimensional (2D) images such as pore size,”
thickness,”* and density,”’ to support the interpretations of
mechanical properties of hydrogels. This indicates that there is
a reasonable basis for interpreting the relationship between the
2D porous structure of a hydrogel and its mechanical
properties. To examine the porous structure of hydrogels,
scanning electron microscopy (SEM) imaging has emerged as
an important tool with high spatial resolution, leading to a
better understanding of the mechanical properties of hydro-
gels. However, as mentioned above, the quantitative analysis of
the information present in SEM image data has primarily been
limited to 2D metrics. To fully unlock the potential of SEM
images, we propose employing deep learning techniques to
investigate the relationship between microstructure and
mechanical properties. Deep learning, notably through the
application of multilayer perceptron models, has proven to be
an effective statistical method for the automated analysis of
high-dimensional data in the realm of soft materials.”**°
Combining dense connections between learned parameters
and nonlinear activation functions allows deep neural networks
(DNNs) to accurately model complex relationships across
various data domains.”’

With respect to image processing, convolutional neural
networks (CNNs) have demonstrated their effectiveness in
learning from images due to their inherent ability to recognize
local patterns and translation invariance.”® Prior research has
shown CNNss to be effective in predicting stress—strain curves
from second harmonic generation (SHG) images of
collagenous tissues.”” Olenskyj et al. reported the prediction
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of compression curves from micro-computational tomography
(micro-CT) images using deep learning.’® While these
approaches produced a relatively low prediction error
(10.9%—13.2%), it remains unknown if these models can be
generalized to other materials since these studies only tested
on one type of material, using a small dataset (less than 100
samples).

It is widely acknowledged that the accuracy of a deep
learning model is significantly influenced by the size and
quality of its training dataset.”’ However, this poses a unique
challenge due to the substantial cost, both monetary and
temporal, associated with collecting SEM images for the
individual project. While there are publicly available SEM
datasets such as the UltraHigh Carbon Steel Micrograph
DataBase®” and the Aversa SEM dataset,®” to the best of our
knowledge, there is currently no existing dataset that
encompasses SEM images along with their corresponding
properties for soft materials, specifically hydrogels. This
absence of a comprehensive dataset presents a significant
obstacle in the exploration of advanced materials within the
soft materials community.

In this work, we develop and optimize a low-cost,
semiautomatic data collection and analysis pipeline to learn
structure—property insights from SEM images (SEMPro; see
Figure 1). To the best of our knowledge, this is the first report
of using deep learning models to predict elastic moduli from
SEM images of hydrogels. Modern data-driven research
methods point to automated web-scraping and natural
language processing (NLP) as a method to supplement

https://doi.org/10.1021/acsmaterialslett.3c00909
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smaller datasets in microscopy and materials synthesis.

Web scraping is the process of automatically extracting website
metadata from its HTML source code. Combined with natural
language processing (NLP), a method of automating natural
language analysis to understand and subsequently extract
relevant metrics, we compile a large amount of SEM images
from the online, public repository of research papers with
permission (Figure 1a). After cleaning and labeling data, we
experiment with the state-of-art CNN architecture and learning
parameters to optimize learning for our task set and dataset
(Figure 1b). The accuracy of the generalized model can be
tailored to a target hydrogel with transfer learning,”” which is a
method of training a network primarily on a larger, more
generalized dataset and then secondarily on the target
predictive task, which allows for the application of deep
learning on smaller datasets of interest.”**” We also investigate
how regression activation mapping can give feedback on the
quality of learning and fuel model optimization. By using
Explainable AI methods, in contrast to the classical deep
learning black box, we show that it is possible to optimize
CNNs toward learning the mechanical insights of hydrogels to
aid researchers in microstructure analysis (Figure 1c).

We develop a method of obtaining SEM images and elastic
moduli datasets from research papers through our web
scraping and data filtering pipeline, SEMPro-Scraper, written
in Python. The scraping functionality of SEMPro-Scraper is
built off a boilerplate template from PaperScraper of VCU
NLP Lab.”” Augmenting the web scraping utility of Paper-
Scraper, SEMPro-Scraper includes general improvements in
functionality in the form of support for extracting figure sets
and data from supporting documentation. SEMPro-Scraper
also performs analytical filtering of the website source code to
search for SEM images and modulus-related data using
research paper metadata. All researched papers scraped are
sourced from the American Chemical Society (ACS), with
permission to compile data from the former.

We first use BeautifulSoup4 (BS4)*' and Selenium Python
packages to compile a list of research paper links from the
keyword “hydrogel” through the query engine of ACS. Using
BS4, we then extract the metadata of each web journal from its
HTML source code. We subsequently pass the metadata
through our data extraction pipeline.

The SEM image data are identified and extracted through
NLP and automated image classification using the state-of-the-
art object detection model, You Only Look Once (YOLO)*
(Figure 1a(i)). We used the fifth version of YOLO, YOLOVS.
First, the figure caption is tokenized by subfigure letters and
preliminarily evaluated for relevance by performing an iterative
search for SEM-related keywords. This list of keywords is
precompiled through a heuristic survey of unique words found
in the description of SEM figures. If the figure caption contains
keywords relevant to SEM, the figure is then passed to our
SEM image detection model to be segmented into individual
SEM images. The model was trained on a set of 150 manually
labeled SEM figures to recognize and compute bounding boxes
around each SEM image within a figure. Given the bounding
boxes, we used the OpenCV** image processing library to crop
out specific SEM images from the figure. Individual images are
saved in a directory with all other SEMs from the research
papers. The corresponding figures are also saved for ease of
validation of the scraped SEMs.

Hydrogel descriptors and modulus data are scraped both
from the body (Figure la(ii)) and figures (Figure laf(iii)) of

each research paper through NLP. Sentences in the body and
figure captions of the research paper are tokenized and passed
through a relevant keyword search which evaluates whether the
sentence pertains to modulus. This relevant keyword search is
also based on a precompiled list of elastic modulus and
keywords surrounding modulus values (e.g,, Pa). If the body
sentence contains one of the keywords, a sequential heuristic
NLP model is implemented to extract hydrogel descriptors,
such as the name and polymer composition for the referred
hydrogel, as well as modulus values. Similarly, if a figure
caption is considered relevant to the modulus, the figure is
stored for modulus value extraction.

A single scraping session can be customized by keyword
topics of the research papers scraped as well as the number of
research papers to scrape. Each scrape ranges from S s to 1
min, depending on content relevance, with an average runtime
of 20 s per research paper scraped. A cache is also logged
during the scraping process to avoid the runtime cost of
rescraping a research paper in the event of errors, cancellations,
or future iterations. The final corpus of data was scraped from
over 2000 research papers within ~11.1 h.

The results of a scraping session are automatically compiled
and logged into two CSV files: the modulus and the SEM
image spreadsheet. As a prevalidation check, only research
papers that contain both modulus and SEM image data are
written to the final spreadsheets. Each row of the compiled
SEM image spreadsheet represents a single SEM image and
contains the link, title, figure number, letter, hydrogel, caption,
figure path, and the respective segmented SEM image
directory. The figure path and SEM image directory are also
hyperlinked with an Excel macro for ease of access during SEM
image selection and validation. The modulus file contains a
collection of all modulus data collected for each valid research
paper. Each row contains the research paper name, the
hydrogel name, the contextual sentence from which the
modulus was extracted, and the modulus in value or figure. For
modulus values obtained from the body, the modulus is simply
written. For modulus values embedded in figures, a hyperlink is
provided to the referred figure in the dataset directory.

Using the two final spreadsheets of SEM and modulus data,
a team of researchers selected, matched, and validated the SEM
and modulus data to create the SEMPro dataset. The SEMPro
dataset consists of 830 labeled SEM images of 553 unique
hydrogels including both pure and composite hydrogels. The
primary parameters used for training were the SEM image and
the modulus value.

We used the state-of-the-art image classification model
ResNeXt50* as our CNN model with a small modification,
where we replaced the output classification layer with a linear
layer to output a single numerical value as the predicted elastic
modulus. The model, referred to as the baseplate model in our
following discussion, is programmed in Python with the
PyTorch package and trained on the SEMPro dataset. Its
performance was evaluated based on the coeflicient of
determination (R*) and mean absolute error (MAE). The
data are loaded into a PyTorch dataset object with each sample
represented as a tuple of SEM image, log modulus, and
learning weight. For each image, the loss function is then
weighted with the inverse of the smoothed distribution at the
elastic modulus label.

Next, the dataset is split into a 5:1 train-test split, with a 4:1
train-validation split within the training set. The validation set
performance is passed to a plateau learning rate scheduler to

https://doi.org/10.1021/acsmaterialslett.3c00909
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Figure 2. Distributions of modulus in SEMPro dataset (a) before and (b) after LDS smoothing. The corresponding distribution of log,,
absolute error of training using the SEMPro dataset (c) before and (d) after LDS smoothing, respectively.

decay learning rate as the model converges. Our baseplate
model was trained for 100 epochs with a batch size of 10 and
learning rate of 107°. The runtime of each epoch of training
and validation was, on average, 20 s, and the model converged
within ~30 epochs. All models were trained on a GeForce
GTX 1650.

To clean the images of extraneous data, such as peripheral
text or graphics, and normalize the dataset, each raw SEM
image was resized and cropped at the center to remove the
scale bar with a final size of 224 X 224 pixels. For the training
set, the images were randomly rotated and flipped for
rotational invariance during learning. Label distribution
smoothing (LDS) was performed by convolving a symmetric
kernel with the empirical density distribution, LDS extracts a
kernel-smoothed version that considers the information
overlap among data samples of neighboring labels.*> The
effective label density distribution is computed by LDS:

5y) 2 / k(y, y)p(y) dy

where p(y) is the number of appearances of the label of y in the
training data, and p(y’) is the effective density of the label y/,
k(y, y') is a symmetric kernel that satisfies k(y, y') = k(y/, )
and V k(y, y') + V, k(y', y) = 0. We used the Gaussian kernel

as our symmetric kernel for the computation.

Paired t-test was conducted as a statistical method to
compare the mean of the absolute errors generated by our
baseplate model and two trivial models (ie, mean and
normal), in which the mean model always predicts the mean
value of elastic moduli of the training set, and the normal
model randomly predicts value from a normal distribution
constructed based on the mean and standard deviation of the
moduli in the training set. The confidence threshold for the
paired t-testing was set to 0.0S.
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The following evaluation metrics have been applied to
evaluate the performance of the model:

(1) Coefficient of Determination (R*):
1— Z?:l ()f -3 )

Z:l=1 (y, -y )2
where ¥ is defined as

__ 1y
y—ﬂg:,y,-

and y; is the actual elastic modulus value, J is the predicted

R =

elastic modulus value, and n is the number of samples.

(2) Mean Absolute Error (MAE):

Ijz;—xl
o

We also used k-folds cross-validation to evaluate our model
performance. We first partition the dataset into k distinct
sections. We then train k models, whereby, for each model, we
uniquely assign one of the k partitions as a testing set while the
remainder of the dataset is used for training,

Viability for transfer learning was evaluated at a wholistic
and partial level on a smaller dataset (343 images) based on
the SEM images of a nanocomposite hydrogel composed of
different concentrations of graphene oxide and poly(N-
isopropylacrylamide).”® We will name this dataset GO-
PNIPAM in the discussion for transfer learning. In both
experiments, LDS was disabled due to the smaller dataset size
and even distribution of moduli. The learning rate was

https://doi.org/10.1021/acsmaterialslett.3c00909
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increased to 5 X 107* for faster convergence. All other training
parameters remained the same as in the baseplate model. In
the wholistic experiment, the full baseplate model was trained
on the GO-PNIPAM dataset, with an average runtime of 7 s
per epoch. In the partial transfer learning experiment, the
convolutional layers of the ResNeXt50 model were frozen by
disabling PyTorch autograd and only the linear output layer
was trained. The average runtime of the partial transfer
learning experiment was S s per epoch. Both converged within
~10 epochs.

The saliency maps were made using an open-source
PyTorch library for CAM methods.”” We chose to use the
output feature maps from the final convolutional layer as the
activation map overlay.

The elastic moduli in our SEMPro dataset are imbalanced,
with most data being centered at ~10* Pa (Figure 2a). This
agrees with the mechanical properties generally possessed by
hydrogels.** However, the imbalanced dataset implicitly biases
the model toward the majority moduli label, which may lead to
poor generalization on novel data, especially for the minority
moduli labels. To address the issue of data underrepresenta-
tion, we used an LDS method developed by Yang et al.*> LDS
promotes the utilization of kernel density estimation to capture
the effective imbalance in datasets associated with continuous
targets. Figure 2b shows the elastic moduli distribution after
LDS, which exhibits the effective distribution by convolving a
Gaussian kernel with the empirical density. We then use the
effective label density to inversely weight the loss function
based on moduli label representation, which subsequently
increases learning on minority labels during training. The
model trained with the dataset using LDS (Figure 2c)
demonstrates higher precision, compared to the model trained
without LDS (Figure 2d), as seen by the predictions of elastic
moduli in the former model exhibiting a lower absolute error.
Thus, unless specifically stated otherwise, we apply LDS to the
dataset for all subsequent experiments.

The predicted elastic moduli from the baseplate model on
the SEMPro dataset are plotted against the actual elastic
moduli for the train, test, and validation set, represented by the
orange, blue, and green scatters, respectively (see Figure 3).
The MAE of the baseplate model is 0.789, 0.792, and 0.807 for
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Figure 3. Elastic moduli predicted using baseplate model plotted
against the actual elastic moduli for the train (orange), test (blue),
and validation (green) sets, respectively.
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train, validation, and test, respectively. The corresponding
coefficient of determination R* is 0.597, 0.489, and 0.378 for
the train, validation, and test, respectively (see Table 1). As

Table 1. Evaluation Metrics Including Mean Absolute Error
(MAE) and Coefficient of Determination (R?) for
Predicting Elastic Modulus of Machine Learning Models

MAE R?
ML model train  validation test train  validation test
baseplate 0.789 0.792 0.807 0.597 0.489 0.378

there are no known pre-existing deep learning models
predicting elastic moduli from SEM images of hydrogels, we
also evaluate our model against two trivial models: one that
predicts the mean of the training dataset for every image and
one that randomly chooses from a normal distribution
modeled after the training dataset. Each model is trained on
a randomly generated training set and evaluated against a test
set that it has not seen during training. The distributions of the
evaluation results, given by the absolute error between the
predicted and expected log moduli, are shown in Figure 4. The
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Figure 4. Box plot of absolute error produced by the baseplate,
mean and normal model on the test set of the SEMPro data set,
respectively (median, 25th, and 75th percentiles, minimum and
maximum). [Legend: (*) p < 0.05, (**%*) p < 0.0001; paired, two-
tailed t-test.]

baseplate model exhibits the lowest median value of absolute
error (0.5S log Pa), while the ones produced by the mean and
normal models are 0.85 and 1.25 log Pa, respectively. We
compute paired t-tests between the baseplate model and the
mean and normal models with an alternative hypothesis stating
that the baseplate model error distribution has a mean that is
less than the trivial models. The results show confidently that
we can reject the null hypothesis and, consequently, that the
baseplate model performs better than these two trivial models.
Our model thus displays a learned, nontrivial relationship
between the SEM images and the elastic moduli of hydrogels.

We further conducted experiments with transfer learning, a
machine learning approach that applies the knowledge
acquired from solving one problem to another related problem,
to further elucidate that our baseplate model can produce
nontrivial results and demonstrate the transfer learning

https://doi.org/10.1021/acsmaterialslett.3c00909
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Original

AE =0.0941 AE =0.3061

Figure 5. Examples of model performance and explainability on GO-PNIPAM hydrogel test dataset compared across variations in model
training. (a) The original SEM images (resized and cropped to 224 X 224 pixels); The visual explanation maps for (b) baseplate, (c) single,
and (d) hybrid model. The elastic modulus error (AE) of the prediction from each model is displayed under the respective regression

activation map.

potential of the baseplate model for smaller hydrogel datasets.
In the wholistic transfer learning experiment, we let the
baseplate model predict the elastic moduli from a smaller
dataset that it has not seen before (i.e., GO-PNIPAM dataset),
and compared the corresponding MAE with the single and
hybrid models, where the single and hybrid models are the
ResNeXtS0 and baseplate model trained on top of the GO-
PNIPAM dataset, respectively. We also employed the Grad-
CAM visualization technique to highlight the regions of the
input SEM that are influential in the prediction. The original
SEM images (resized and cropped to 224 X 224 pixels) were
displayed in Figure Sa. The corresponding regression
activation maps (Figures Sb—d), which utilize the gradients
of the final convolutional layers in the model to emphasize
localized areas of significance, show that our model produces
nontrivial feature maps. Here, nontriviality is seen by the
unique activation regions rather than repeated, nonstructure
related motifs (i.e.,, the right/left edge of the image). The
elastic modulus error (AE) of the prediction from each model
is displayed under the respective regression activation map.
Although the performance of the single model is relatively the
same, compared to the hybrid model (Table S1 in the
Supporting Information), the activation regions highlighted in
Figure 5 are similar across hybrid, single, and baseplate models
(see Figures Sb—d). Therefore, the wholistic transfer learning
experiment indicates that our baseplate model extracts general
features relevant to hydrogel SEMs, which can be transferred
and targeted to specific hydrogels of interest. This is further
demonstrated by our partial transfer learning approach (Table
S2 in the Supporting Information), in which the baseplate
model is still able to converge to a similar degree of

performance as the hybrid and single models (Table S1)
simply by training the output layer on the smaller, target
dataset (i.e, GO-PNIPAM dataset). Therefore, the learned
features of our baseplate model have a wholistic relevance to
hydrogel SEMs that can be tuned to a given target hydrogel.

Our work introduced a new approach for performing
efficient computational analysis on high-dimensional and
sparse data in the field of materials science, specifically
focusing on predicting elastic moduli from the SEM images of
hydrogels. It is important to point out that the SEM images of
hydrogels are typically taken after the hydrogel has been
lyophilized and is in a dry state. Consequently, the reported
porosities may not accurately reflect the hydrogel’s inherent
porosity in the hydrated condition, as they can be influenced
by ice crystal formation during lyophilization, introducing
potential artifacts in SEM images during sample preparation.
Although having artifact-free data for training deep learning
models would be ideal, it is important to acknowledge the
practical challenges in achieving this, as variations and errors
are almost inevitable during the manufacturing process and
necessary sample treatments for characterization. Our primary
objective is to develop a tool capable of extracting valuable
insights from typical SEM images, which often contain
artifacts, and using this information to predict mechanical
properties. To achieve this goal effectively, it is essential to
work with an inclusive dataset that encompasses images with
artifacts. This approach allows the model to learn and discern
these artifacts as integral components of the “features” it
extracts. One potential limitation of this study is that the model
might encounter difficulties in accurately predicting results
when presented with a nonporous SEM image of a hydrogel.
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This challenge primarily arises from the limited availability of
similar data in the training dataset. To address this limitation,
potential strategies include enlarging the training dataset by
including more diverse data or implementing comprehensive
validation and testing procedures. These procedures should
involve evaluating the model’s performance on SEM images
featuring nonporous structures, therefore suggesting a
direction for future research.

In conclusion, this method offered a lightweight solution to
analyze and extract valuable insights from the complex data
structures commonly encountered in hydrogel research. In the
data collection phase, we employed NLP techniques to scrape
publicly available online journal repositories. This enabled us
to gather a vast and diverse dataset of SEM images of
hydrogels. The dataset was designed to be easily labeled by
researchers within a short period, facilitating the availability of
labeled data for subsequent analysis and model training. By
leveraging NLP and automated data collection methods, we
ensured the acquisition of a comprehensive and varied dataset
for our research. With this dataset, we proved that we could
train a model that is able to learn and extract features from our
target material, hydrogels, relevant to our target metric, elastic
moduli. Additionally, the model could be used for transfer
learning on specific hydrogels and generating activation maps
to explain the nontrivial predictions of the model. Through
experimentation on a variety of hydrogels and model training
methods, we showed that the learned features of our baseplate
model were both valid and nontrivial. We also benchmarked
the speed and performance of transfer learning achievable once
a baseplate model was established. We hope that our pipeline
would not only help researchers analyze hydrogel micro-
structure based on a larger, diverse dataset but also better
utilize the repository of soft materials data in research papers
for a greater understanding of high-dimensional, sparsely
available metrics.
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