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Computational fluid dynamics (CFD) models are emerging tools for assisting
in diagnostic assessment of cardiovascular disease. Recent advances in image
segmentation have made subject-specific modelling of the cardiovascular
system a feasible task, which is particularly important in the case of pulmonary
hypertension, requiring a combination of invasive and non-invasive pro-
cedures for diagnosis. Uncertainty in image segmentation propagates to
CFD model predictions, making the quantification of segmentation-induced
uncertainty crucial for subject-specific models. This study quantifies the varia-
bility of one-dimensional CFD predictions by propagating the uncertainty of
network geometry and connectivity to blood pressure and flow predictions.
We analyse multiple segmentations of a single, excised mouse lung using
different pre-segmentation parameters. A custom algorithm extracts vessel
length, vessel radii and network connectivity for each segmented pulmonary
network. Probability density functions are computed for vessel radius and
length and then sampled to propagate uncertainties to haemodynamic predic-
tions in a fixed network. In addition, we compute the uncertainty of model
predictions to changes in network size and connectivity. Results show that
variation in network connectivity is a larger contributor to haemodynamic
uncertainty than vessel radius and length.

1. Introduction

Definitive diagnosis of pulmonary hypertension (PH), defined as a mean
pulmonary arterial blood pressure greater than or equal to 25 mmHg, requires
a series of medical tests including invasive right heart catheterization and non-
invasive computed topography (CT) imaging of the heart and lungs [1]. Diagnos-
tic protocols interpret each data source independently to make an ultimate
decision about disease classification and severity [2], but recent studies [3,4]
have proposed assimilation of haemodynamics and imaging data with compu-
tational fluid dynamics (CFD) modelling, providing insight into the structure
and function of the pulmonary system.

Medical imaging and image segmentation have emerged as powerful
non-invasive tools for disease diagnostics [5-7], providing an abundance of data
for analysing the cardiovascular system under physiological and pathological con-
ditions [1]. Advances in image segmentation include semi- and fully automated
algorithms for geometric reconstruction of complex vascular regions [8,9]. How-
ever, inherent uncertainty is present as most image segmentation software
require manual specification of the image intensity thresholds (pre-segmentation
parameters) between background and foreground. For example, van Horssen
et al. [10] showed that variation in image resolution affected the cumulative

© 2019 The Author(s) Published by the Royal Society. All rights reserved.
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volume of a cast of the coronary arterial tree after segmentation.
Rempfleret al. [11] compared segmentation algorithms on retinal
images, showing that posterior probability estimates for fore-
ground pixels varied with different segmentation techniques
when compared with the true segmentation or so-called
ground truth. In contrast with the aforementioned studies, in
vivo images are only captured up to a finite resolution, which
makes ground truth rendering impossible. These two studies
quantified variability in segmented networks but did not inves-
tigate how this uncertainty affected pulsatile haemodynamics.

Haemodynamic predictions (e.g. cross-sectional averaged
flow and pressure) in the pulmonary vasculature are often
computed using either three-dimensional (3D) [12] or one-
dimensional (1D) [3] CFD models. Three-dimensional models
predict local flow patterns with more precision [4] but are com-
putationally expensive, making it difficult to perform multiple
forward model evaluations for uncertainty quantification, i.e.
UQ [13]. For instance, Sankaran et al. [14] computed 3D CFD
model sensitivity to coronary stenosis diameters, using surrogate
model approximations to combat high computational cost.
However, they did not account for possible changes in network
connectivity nor for the uncertainty from the initial segmenta-
tions of the vasculature. By contrast, 1D models are more
computationally efficient, reducing the need for surrogates and
allowing for investigations into variability of network connec-
tivity. Moreover, a recent study [15] of the coronary vasculature
showed that 1D models attain similar haemodynamic predic-
tions as 3D when using appropriate boundary conditions.
Recent studies analysed 1D systemic arterial models [10,16] to
understand how uncertainty in network structure impacts
haemodynamics. Fossan et al. [17] devised an optimization
strategy to determine the number of vessels needed to match
haemodynamic predictions in the coronary arteries, and Huberts
et al. [13] used polynomial chaos expansion to quantify the
sensitivity of flow predictions to variations in vessel radius.
In contrast with the systemic circulation, the pulmonary vascula-
ture is more compliant, branches more rapidly and operates at a
much lower mean pressure, indicating that results from the
systemic circulation may not be valid for comparison.

The total uncertainty in the haemodynamic prediction is a
combination of uncertainty in the model parameters and
uncertainty from the modelling framework. As noted above,
several previous studies have studied uncertainty with respect
to prescribed haemodynamic parameters and the 1D approxi-
mation, but to our knowledge, this is the first known
investigation of the impact of uncertainties in network recon-
struction on CFD simulations in the pulmonary vasculature.
Specifically, our study examines how pre-segmentation
parameters impact estimated vessel radius, vessel length
and network connectivity, and propagate this uncertainty to
haemodynamic predictions in the pulmonary circulation. To
do so, we analyse multiple segmentations of a microcomputed
tomography (micro-CT) image from a mouse pulmonary arter-
ial tree. We propagate this uncertainty using a 1D CFD model
by constructing the model domain from each segmentation.
Inverse UQ is performed by estimating probability density
functions (PDFs) for vessel radii and length, and then propa-
gating uncertainties (forward UQ) using Monte Carlo
sampling. Uncertainty in haemodynamic predictions is quanti-
fied by analysing three sets of predictions (depicted in figure 1):
(i) predictions using 25 segmented networks (total variation);
(ii) predictions from a representative network with fixed con-
nectivity when drawing realizations of length and radius
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Figure 1. Workflow for UQ of haemodynamics. Multiple segmentations are
performed to construct the segmented networks (SNs), of which one network
is selected as the represented network (RN). Inverse UQ is performed on the
25 SNs by estimating PDFs for vessel radius and length. The 25 SNs are used
in model simulations to understand the total variation, while the PDFs for the
vessel dimensions are used to propagate uncertainty in the parameter vari-
ation study. Lastly, we change the structure of the RN to understand the
variation induced by network connectivity. Pressure and flow predictions
are then compared from the three sources of variation.

perturbations (parameter variation); and (iii) predictions from
the same representative network when geometric parameters
are fixed, but connectivity and network size are varied (network
variation). We argue that UQ is an essential component of the
model analysis when computational models are integrated
into clinical protocols. The animal dataset used here [18,19]
serves as a preliminary step in understanding disease
progression and has potential for extrapolation to human PH.

2. Material and methods
2.1. Experimental data

This study uses existing micro-CT and haemodynamic data from
two male C57BL6/] control mice aged 10-12 weeks. A detailed
description of experimental protocols for the imaging and haemo-
dynamic data can be found in Vanderpool et al. [18] and Tabima
et al. [19], respectively. Briefly, haemodynamic data include a
flow waveform ensembled over 20 cardiac cycles measured
using an inline flow meter (Transonic Systems, Ithaca, NY, USA)
in the main pulmonary artery (MPA). The imaging data are
obtained after euthanization and inflation of the mouse lung at
172 mmHg. A cannula with outer diameter of 0.127 cm and
inner diameter of 0.086 cm is attached to the MPA before 360° ima-
ging and reconstruction to DICOM 3.0 files. Both procedures were
approved by the University of Wisconsin-Madison Institutional
Animal Care and Use Committee.

2.2. Image analysis

2.2.1. Image segmentation

The micro-CT image is stored as a DICOM 3.0 file with voxel
dimensions 497 x 497 x497. The grey-scale image (shown in
figure 4a) is transformed to a binary map identifying the vascular
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Figure 2. ITK-SNAP interface for prescribing (6;, 65). Voxel intensities in the histogram are mapped to foreground and background based on thresholding function
(red curve) and pre-segmentation parameters. Here, we only assume a lower threshold on image intensities, as shown by the constant value of 1 in the threshold

function for all values greater than the lower threshold. (Online version in colour.)

(foreground) and non-vascular (background) regions using
global thresholding and image segmentation in ITK-SNAP
[20]. Global thresholding is a pre-segmentation technique
requiring a priori selection of thresholds to specify the image
intensity bounds of the foreground. Threshold bounds are
traditionally selected in an ad hoc manner to ensure that the
foreground is captured [3,21,22]. In addition, ITK-SNAP requires
specification of a smoothing parameter to determine the bound-
ary between the foreground and background (figure 2). Due to
the experimental protocol and use of perfused contrast, the
image segmented in this study does not contain high-intensity
voxels from other anatomical features (e.g. the veins or the
heart) within the region of interest. Therefore, only the lower
threshold (6;) and smoothing (6,) pre-segmentation parameters
require specification.

Acceptable intervals for (6,,6,) are determined to preserve
the foreground for the large vessels across segmentations. To
study segmentation-induced uncertainty, we assume a uniform
distribution for the two parameters, with 20 < 6; <45 and
3 < 6, <8, and draw 25 realizations of pre-segmentation par-
ameter sets (6, 6,) (given in table 1) using the rand function in
MATLAB (Mathworks, Natick, MA, USA). As shown in figure 3,
the foreground for distal vascular segments changes significantly
when (6;, 6,) are varied, but maintains features for the large,
proximal vessels.

We use active contour evolution, a semi-automated seg-
mentation algorithm available in ITK-SNAP, to segment the
micro-CT image (see the electronic supplementary material,
§5.1). We consistently use 2000 iterations of the contour evol-
ution, ensuring that the largest arteries carrying the majority of
the blood volume are captured. The imaging protocol described
in Vanderpool et al. [18] has a spatial resolution between 30 and
40 pm, providing a lower bound of 40 ym for the measurement
uncertainty diameter (20 pm for radius).

2.2.2. Network reconstruction

Segmented geometries are exported as surface meshes and
converted to VTK polygonal files using Paraview [23] (Kitware,
Clifton Park, NY, USA). Surface mesh VTK files were imported
into VMTK (www.vmtk.org) [6] to extract vessel segment
centrelines, lengths and radii using native scripts. We developed
a custom MATLAB algorithm to extract the network connec-
tivity from the extracted quantities and identify all the vessels
in each network. Subsequently, we use a recursive algorithm
to construct a connectivity matrix identifying the geometry of
the tree used in the 1D model. Further details of the recon-
struction are given in the electronic supplementary material,
§5.2. Figure 4 illustrates the workflow starting from the
micro-CT image segmentation and ending with the connected
network representation.

Voxels are converted to centimetres using a scaling factor
based on the known diameter of the cannula (0.086 cm).
The MPA radius is estimated using measurements distal to the
cannula before the left pulmonary arterial (LPA) and right pul-
monary arterial (RPA) bifurcation. Figure 5 shows an example
network with radii estimates at each point along the network
and within a single vessel. Measured values for radii vary
within each vessel segment, limiting our inference of tapering.
To proceed with calculations, we fix the vessel radius as the
mean over the centre 80% of the individual estimates, which
mitigates the impact of extreme diameters in the ostium regions
at either end of each segment.

We construct connected graphs using the centreline data
and create a connectivity matrix linking vessels, represented by
their length and radius, and bifurcations. In addition, we capture
global network features including the number of vessels, the
number of bifurcations (i.e. generations) and the total vascular
volume. The CFD model used for haemodynamics modelling
assumes a binary structure, with each generation of the tree
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6,=26,0,=3.0

Figure 3. Qualitative differences in foreground (white) of distal vascular segments when changing the lower threshold (6;) and the smoothing parameter (6;).
(a—c) Changes in foreground with 6;; (d—f) changes in foreground with &,. (Online version in colour.)

Table 1. Summary of pre-segmentation parameters and network features.

pre-segmentation

6,=36,6,=3.0 6,=46,6,=3.0
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parameters (6;, 6,) number of vessels number of generations number of terminal vessels total volume (cm?)
(22,5.0) 276 15 149 21.0871
(25, 6.0) 422 17 226 21.3407
(26,47) ................ s ey
(26, 4.8) 425 18 227 22.8591
(26’51) w L o
(27,5.8) 450 17 240 22.9599
(28,60) 5 s e Cwen
(30, 4.6) 428 16 230 21.7283
(30,57) w L e e
(30, 6.5) 476 18 252 23.1922
(30,80) w T o e
(31, 5.6) 462 18 246 23.3346
(31,61) W s e e
(32, 41) 419 16 220 22.2851
(33,42) w T e
(33, 5.1) 505 18 269 24.6089
(34’33) o . e e
(34,3.4) 474 17 257 24.2923
(35’36) 459 L Cam
(35, 4.8) 470 17 250 23.0868
(35,68) w e e
(36, 4.0) 419 17 226 22.0391
(36,41) e B e s
(37,39 409 17 221 21.6596
(44,76) e N e e
being formed by a new set of vessels. The resulting networks were indices for each network including structured tree scaling par-
found to have no loops within the region of interest studied here. ameters, asymmetry and area ratios, and Murray’s exponent (see

To characterize branching properties, we compute morphometric the electronic supplementary material, §5.7, for details).



Figure 4. Image to network workflow. (a) The foreground visible in the image file; (b) the 3D rendering of the vascular foreground; (c) centrelines obtained using
VMTK; (d) a graphical representation of the network used in the 1D model with vessels (edges) and bifurcations (nodes) identified using custom MATLAB algorithms.

(Online version in colour.)
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Figure 5. Components of an arterial tree. () Three-dimensional segmentation of network; (b) centreline representation of a tree with the 32 vessel subset (red and
blue); (c) magnification of the representative vessel in blue from (b) depicting radius estimates; (d) radius estimates along the representative vessel in (c), where the
centre 80% of points are used to calculate the mean radius. Actual radius values obtained in (d) are calculated at orthogonal centreline slices in VMTK, while (c)
shows non-orthogonal radii estimates for illustrative purposes. (Online version in colour.)

2.3. Haemodynamics modelling

2.3.1. Blood flow model

Similar to previous studies [3,24,25], we use a 1D CFD model to
predict time-varying flow, pressure and area in each vessel. The
model is derived under the assumptions that vessels are cylindri-
cal, blood is incompressible, and flow is laminar, axisymmetric
and Newtonian. The model equations are obtained by integrating
over the cross-sectional area of the vessel, described in detail in [3].
Mass conservation and momentum balance are then given by

0A 0Q
S tas=0 1)
and
0Q 0 (Q*\ AdP  2mRQ
8t+8x(A T e A 22)

where x (cm) and f (s) denote the axial and temporal coordinates,
A(x,t) (cm?) denotes the cross-sectional area, Qlx,bt) (em®s7) the
volumetric flow rate, P(x,t) (mmHg) is the transmural blood

pressure and R(x,t) (cm) the vessel radius. The blood density
p=1057 (gcm™) and the kinematic viscosity v = 0.0462
(cm®s™") are assumed constant [26,27]. The right-hand side of
equation (2.2) accounts for the frictional losses by assuming a flat
velocity profile

u:{ﬁ for r<R-6 (2.3)

u(R—-r)/d for R—-—8<r<R,

with a linearly decreasing boundary layer with thickness
6= +/vT/ 2w (cm), where T (s) is the length of the cardiac cycle
extracted from data [3,28]. To close the system of equations, we
employ a constitutive law relating blood pressure and vessel
cross-sectional area. We model vessels as thin walled, incom-
pressible, homogeneous and orthotropic cylinders tethered in
the longitudinal direction. Under these conditions, the linear
stress—strain relation [3,29,30] is given by

P—Po—gﬁ<l— éf), (2.4)

¥8706L07 9L 0ua3u 20S Y °f  yisi/jeunol/bio buiysijgndAiaposiesol H



where B=Eh/ro=37.5mmHg denotes the arterial stiffness, E
(mmHg) is Young’s modulus in the circumferential direction,
(cm) is the wall thickness and Ay = m’% (cm?) is the reference
area obtained at the reference pressure Py (mmHg).

The system (2.1)-(2.4) is solved using the two-step Lax—
Wendroff finite difference scheme in C++ [24] with a temporal
resolution of 1.3 x107° (s) and a spatial resolution of 0.025 (cm),
ensuring that the Courant-Friedrichs-Lewy (CFL) condition is
not violated. To ensure the stability and convergence of the
numerical scheme, the lengths of any vessels shorter than the
spatial resolution of the solver are artificially augmented to be
the size of one grid point.

2.3.2. Wave intensity analysis

Wave propagation in the pulmonary system can be characterized
using wave intensity (WI) analysis [31]. Detailed derivations of
WI quantities can be found in the electronic supplementary
material, §5.3. Briefly, considering Q = AU, where U is the blood
flow velocity (m s™) in the vessel under the assumption of negli-
gible frictional losses, we define the forward and backward
components of WI as

o)) e

where ‘+” and ‘—’ indicate the direction of the local waves, and 6P .
and 86U, are the associated pressure and velocity ‘wavefronts’
[3,32]. The wave separation depends on the local pulse wave vel-
ocity (PWV)

Aop

c(P) = D04

(2.6)

Local waves can either be compressive or decompressive
[28,31]. Wave reflections are current clinical indicators for pul-
monary vascular disease and PH progression and can be
attributed to impedance mismatch at both proximal and distal
vessel junctions [31,32].

2.3.3. Inflow, outflow and junction conditions

The system governed by equations (2.1)-(2.4) is hyperbolic with
characteristics pointing in opposite directions, thus two bound-
ary conditions are needed at each vessel inlet and outlet. At
the network inlet (the MPA), we prescribe a measured flow
waveform from a single cardiac cycle. At network bifurcations,
we impose two conditions ensuring conservation of flow and a
continuity of pressure

Q1) = Qu, (0, + Qu, (0,1) }

2.7
and Pp(lp/t) = Pd1 (Olt) - sz (O/t)/ ( )

where the subscripts p, di, d, indicate the parent and daughter
vessels and I, denotes the length of the parent vessel. Lastly,
we impose a three-element Windkessel model at the outlet of
terminal vessels [4] to characterize the downstream vasculature,
which relates pressure and flow via an RCR circuit model

dP(t) R dQa,) Ri+Ry\ PG
ar ' at RiR, R,Cr’

+ QU5 ( (2.8)
where R; is the proximal resistance, R, is the distal resistance and
Cr is the total compliance [29,33].

2.3.4. Parametrization

The haemodynamics modelling parameters include those
describing the vascular structure (radius, length and stiffness),
the fluid dynamics (including viscosity, density and the bound-
ary layer thickness) and the inflow and outflow boundary
conditions. We assume that inflow, viscosity, density and wall

stiffness (B) are fixed and independent of the network geometry
[3,28,34], while parameters specifying the vessel radius, length
and Windkessel outflow boundary conditions (Ri, Ry, Ct)
depend on the network structure [3,17].

For each network, vessel radii and length are determined
from the segmentation, while estimates are needed for Windkes-
sel parameters. Similar to our previous study [3], we assume that
the total compliance Cr can be determined from the diastolic
decay time constant 7= RrCr, where Rt = R; + Ry is the total
vascular resistance [3]. Ry is computed as the ratio of mean
pressure to mean flow, i.e. Ry = 1_3/ Q, and as discussed in our
previous studies [3,30], a priori resistance values for each terminal
vessel can be calculated using Poiseuille’s equation, relating
mean pressure and flow via the vessel dimensions. Both junction
conditions in equation (2.7) are used together with Poiseuille’s
law to give the mean flow distribution relationship

~ = &
Qa=Qp & T &,

and (2.9)

= = &,
Qu.= G &+ &

where & = r#/l;, consistent with Poiseuille’s equation (see elec-
tronic supplementary material, §5.4, for details). Finally, we set
Ry = 0.2R7 and R; = 0.8Rr [3,30].

2.4. Inverse uncertainty quantification

We employ inverse UQ to estimate vessel length and radius PDFs
over the 25 segmented networks. To compare measurements
across segmentations, PDFs are computed for radius and length
from a 32-vessel subset after data standardization. Two estimation
techniques, kernel density estimation (KDE) and Gaussian process
(GP) density estimation, are used to compare estimated PDFs.
Weighted least-squares regression and GP regression are used to
remedy the issues of non-constant variance, i.e. heteroscedasticity,
in vessel dimensions.

24.1. Data standardization

A subset of 32 pulmonary vessels of various calibre (figure 5b) is
selected from the 25 segmented networks. The 32 vessels are visible
in all 25 networks and contain radius and length measurements
that encompass the full range of measurements in the networks.
Length and radius measurements are standardized using

sjj =17, (2.10)

where s;;, s = r,l are the measured quantities from the ith vessel
and jth segmentation, and 5; and o;, are the mean and the stan-
dard deviations of these quantities across the 25 networks.

2.4.2. Density estimation

KDE, a non-parametric technique [35], estimates the PDFs for
radius and length. This technique requires specification of a band-
width parameter, determining how influential each data point is in
the density estimation. We consider both Silverman'’s rule of thumb
[35] and maximum-likelihood leave-one-out cross-validation [36]
for bandwidth estimation. These methods are compared to logistic
GP density estimation [37] using the GP Stuff toolkit in MATLAB
[38]. Due to space restrictions, the methodological details have
been relegated to the electronic supplementary material, §S.5.

2.4.3. Statistical models for computing the length and radius

variance
The PDFs constructed from the 32-vessel subset are representative
of the overall variation in the length and radius across all the seg-
mented networks. However, the magnitudes of o5, and o, vary
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from vessel to vessel and need to be modelled explicitly before for-
ward UQ. We use the coefficient of variation, ¢ = oy,/5;, to
compare these measurements’ variability.

The statistical model ¢(5;) = ¢} relates the average measure-
ments of radius and length across segmentations to their
coefficient of variation. The variance of the measurements exhibits
heteroscedasticity, as smaller vessel segments are more sensitive
to pre-segmentation parameters leading to non-constant variance.
This violates the assumptions of ordinary linear regression; hence,
we consider weighted least-squares regression and GP regression
with input-dependent noise [39]. Deterministic weighted least-
squares regression iteratively fits regression models by updating
weights for each data point. The optimal weights (optimal in a
maximum-likelihood sense) are given by the inverse of the variance
of the response ¢(5;) [40]. Since this variance is unknown, we
approximate the weights as 1/€Z, where ¢ is the residual from the
unweighted regression model, reducing the impact of highly vari-
able observations on the regression prediction. We consider
exponential, logarithmic, square root and linear weighted least-
squares regression models. For GP regression, we employ a GP
for the response, ¢, and for the latent variance of cji. We use the
Matérn covariance function [41] with a smoothness parameter
v=>5/2 in the GP formulation (see electronic supplementary
material, §5.6, for more details).

2.5. Forward uncertainty quantification

Forward UQ propagates model and parameter uncertainties to
simulated quantities of interest. To analyse the posterior vari-
ation in model predictions, we pursue three sets of simulations
determining (i) the total variation of haemodynamic predictions
associated with segmentation, (ii) the variation to changes in
vessel radius and length, and (iii) the variation to changes in net-
work size and connectivity. The first set of simulations (i) use the

ducted in a representative network.

2.5.1. Total variation

We predict haemodynamics using each of the 25 segmented net-
works to quantify the total variation of flow and pressure
predictions in the MPA, LPA and RPA. The observed variation
is attributed to several sources of uncertainty, including the par-
ameters of the model and the size and connectivity of the
network. Once the total variation is calculated, we quantify the
relative contributions from the parameter and network variation.

2.5.2. Representative network

A representative network is used to examine the variation in
vessel radius and length as well as changes in network size
and connectivity. We first compute the MPA pressure waveform
for each of the 25 segmented networks, then we ensemble aver-
age these to determine a mean MPA pressure. The network with
the smallest least-squares cost between its MPA pressure wave-
form and the ensemble-averaged waveform is designated as
the representative network.

2.5.3. Parameter variation

As mentioned in §2.3, we assume that density, viscosity and
vessel stiffness are constant while parameters impacted by
image segmentation, including vessel length and radius, vary.
The outflow boundary conditions are dependent on vessel
length and radius; thereby, we analyse the variation in model
predictions associated with changes in vessel dimensions.

We compute inverse cumulative distribution functions (CDFs)
for the length and radius PDFs. The inverse CDE F; (@), is a non-
decreasing function defined on the interval [0,1] that provides
values from the original PDE allowing for inverse transform

sampling for forward UQ [13]. Briefly, let u be a realization from -

a uniform distribution, u ~ 2(0,1), and define the realization
from the inverse CDF as F; (). There exists a mapping from the
realization to the inverse CDF for the radius and the length via
v, = F; ') and v = F;'(u); hence, we draw samples from the
inverse CDF to provide standardized measurements I* and r* for
length and radius.

We define a mapping from the inverse CDF of 5; in vessel i
to the perturbed values 5; (in units of cm). Writing
F l(u) = (3i —8) /05, and a5, = ¢ - §; = ¢(5;) - §;, where $(§)) is the
statistical model found from §2.4.3, we get

Si=(F,Tw) - ¢G) +1) -5 (2.11)

for each average measurement 5; in vessel 7. The values $ are used
as the dimensions for each vessel in the 1D model when doing
the forward UQ. We set 5; = sfeP, where sfeP are the original
measurements from the representative network. To ensure the con-
vergence of the posterior predictions [29], we draw M =10*
realizations using Monte Carlo sampling. The pseudo-algorithm
for UQ propagation is as follows:

1. Draw a random sample u ~ 2(0,1).

2. Map the sample to F, () and F; (u).

3. Perturb the nominal radius and length by using equation
(2.11).

4. Run 1D CFD model with new radius and length values.

5. Repeat steps 1-4 M times.

2.5.4. Network variation

We simulate the effect of network truncation by iteratively elim-
inating terminal vessel pairs from the representative network. To
do so, we calculate the total volume of each terminal vessel (i.e.
Viot = 12]) and remove vessels with the smallest volume. Total
resistance, total compliance and total mean flow in the network
are conserved during this process, the details of which are in
electronic supplementary material, §5.3.

3. Results

We analyse the total variation of flow and pressure predic-
tions and identify the relative contributions from variations
in vessel parameters versus variations in network size and
connectivity. Variation in model predictions is quantified by
comparing simulations in the MPA, LPA and RPA.

3.1. Network statistics

Figure 6 summarizes network characteristics obtained from
the 25 segmented networks, including number of vessels
(figure 6a), average cross-sectional area (figure 6b) and total
cross-sectional area (figure 6¢) in each generation. The average
total number of vessels in each segmented network is 437
with a standard deviation of 76 and the mean number of
generations across segmentations is approximately 17. The
number of vessels and total cross-sectional area of the networks
are consistent across segmentations up until the sixth gener-
ation, after which the results deviate. Most segmentations
achieve a maximum number of vessels and cross-sectional
area between generations 8 and 14, while the average cross-sec-
tional area rapidly decreases until the fifth generation, and then
remains fairly constant afterward. Analysis across all networks
in figure 64 shows that one network (corresponding to
(61, 6,) = (44, 7.6)) is an outlier, having significantly fewer
vessels and a lower total cross-sectional area. Table 1 includes
all pre-segmentation parameter sets used in the repeated

~
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Figure 6. Morphometric features from the 25 segmentations marked by different coloured lines. The number of vessels (a) is consistent between segmentations
until the fifth generation. The average cross-sectional area (b) decreases rapidly after the first generation, while the total cross-sectional area (c) varies significantly
between segmentations. The segmentation parameters are plotted against each other in (d), with a clear outlier present at (44, 7.6) (in pink) indicating a set of pre-
segmentation parameters that have marked effects on the network structure. The outlier, located in the top right-hand corner of (d), has lower number of vessels
and total cross-sectional area as depicted in the pink curve in (a,c). (Online version in colour.)

segmentations as well as network-level features. Results of
calculating morphometric indices show that the parent to
daughter area ratio is greater than 1 and that Murray’s
exponent is approximately 3 (see electronic supplementary
material, §5.7), consistent with literature findings [30,42].

3.2. Inverse uncertainty quantification

Figure 7 shows the length and radii PDF for the 32 representa-
tive vessels computed using Silverman’s rule, maximum-
likelihood cross-validation and GPs. Before density estimation,
the standard deviation for each of the 32 vessels is used to
normalize the data (see equation (2.7)). The maximum
coefficient of variation is 21% for the radius and 49% for
the length estimate. The bandwidth estimates for Silverman’s
rule are HY =2.038 x 107! and H; = 1.573 x 107!, while for
the maximumd-likelihood cross-validation, the estimated band-
widths are HMECV = 1.808 and HM“Y = 6.887 x 10! for the
length and radius densities, respectively. Computations using
Silverman’s rule exhibit overfitting, while the maximum-likeli-
hood cross-validation over-smooths the density relative to the
GP. In summary, the GP density estimation provides the most
robust approximation for the PDE which is therefore chosen in
the forward uncertainty propagation in §3.3.

Weighted least squares with exponential, logarithmic,
square root and linear regression functions are unable to resolve
the heteroscedastic nature of the data (plots not shown).
Instead, we use the GP regression model with input-dependent
noise to estimate ¢(5;). Figure 8a,b shows the GP regression for
i and cli, respectively, while figure 8c,d depicts the latent
variance. The coefficient of variation for vessel measurements
across segmentations increases as vessels get smaller. The
mean variance for ¢/ increases as the length decreases, yet
the mean variance of ¢, has a sharp decrease for the smallest
vessels. Both GP models stay above the minimum variability
of 20 pm.

3.3. Forward uncertainty quantification
The MPA flow data are used as an inflow boundary condition;
hence, they do not change in any of the simulations. The
ensemble-averaged pressure predictions in the MPA, LPA
and RPA along with +2 s.d. are shown in the first column of
figure 9. The mean, systolic, diastolic and pulse pressure and
max flow, min flow and total volume are given in table 2.
The flow distribution to the LPA is much larger than the
RPA, a consequence of the larger radius of the LPA. This
deviation in flow is apparent in the WI plots in figure 10, show-
ing a more complex series of wave reflections in the RPA than
the LPA and MPA. The ensemble-averaged pressure waveform
calculated from the 25 networks identifies the network
generated by (6y, 6,) = (33, 5.1) as the representative network.
For the parameter variation component of the study, we use
the inverse sampling methodology defined in §2.5.3 to propa-
gate 10* realizations of perturbed radius and length values in
the representative network. The second column of figure 9
shows the model predictions along with the mean and +2 s.d.
from the mean. The variation in the MPA, LPA and RPA systolic
and pulse pressure is significantly larger than the mean and
diastolic pressures (table 2). The flow predictions in the LPA
and RPA have larger variability in the mean and max flow in
comparison to the minimum flow. The variation attributed to
network size and connectivity is calculated by fixing each
vessel's radius and length in the representative network
before reducing the full network iteratively. As described in
§2.54, we reduce the network by starting at the smallest
branches and moving towards the proximal vasculature while
ensuring that Windkessel boundary conditions are adjusted
for each simulation (figure 9, third column). Overall, reducing
the number of vessels from 219 in the largest network to 3 in
the smallest network introduces a discrepancy of approxi-
mately 10 mmHg in the pressure predictions of all three
pulmonary arteries.
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Figure 9. Pressure and flow predictions in the first pulmonary bifurcation when studying total variation, parameter variation and network variation. Predictions from
the total variation include simulations in the 25 segmented networks, the representative network (in red) and +2 s.d. from the mean (cyan, dash-dot). The
parameter variation plots (second column) show the 10 000 Monte Carlo realizations (grey) along with the mean (black) +2 s.d. from the mean (cyan, dash-
dot). Lastly, the network variation predictions (third column) show the predictions when using 219 vessels in the network (bright red) up until the network
is reduced to the MPA, LPA and RPA (black). (Online version in colour.)
WI analysis results in figure 10 show that all vessels have backward WI value for the smallest network, while the oppo-

two forward waves at the beginning and end of systole. The site is true for the RPA. Time-averaged PWV in the MPA, as

MPA and LPA have a pronounced backward wave during
peak flow and the MPA and RPA have a secondary backward
wave later in systole. The RPA also has an additional back-
ward wave that occurs towards the end of diastole. The
connectivity study in the last column of figure 10 shows
that the MPA and LPA achieve their largest forward and

calculated using equation (2.6), was 4.83 + 0.0054ms™! for
the total variation, 4.83 + 0.0037 ms~! for the parameter
variation and 4.84 + 0.0054ms~! for the network variation.
The mean PWV was 0.2% larger in the network variation
study versus the total and parameter variation studies, a
minimal relative difference.

¥8706L07 ‘9L puajul 20S Y °f  yisi/feusnol/biobuiysiigndAiaposiesos E



Table 2. Results from S|mulat|ons Values are expressed as means = s.d. Pressure values are in units of mmHg, flow values are in units of cm®s™" and volume K3
values are in units of cm’.
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segmentation is strongly linked to the range of image intensi-
ties considered in the foreground via choice of (6;, 6,). Most
notably, the segmentation parameter set (31, 6.1) gives a
volume that is significantly smaller than networks with similar
pre-segmentation parameters, suggesting that even slight
changes in pre-segmentation parameters can reduce the
number and size of small vessels captured. The largest vascu-
lar tree used in this study contains 500 vessels, a small fraction
of the thousands of blood vessels that comprise the full
pulmonary arterial system [4,9]. We expect the trends seen
in figure 5 to continue if more vessels are obtained from
the segmentation. Our techniques study uncertainty induced
by global thresholding, but could be applied when
other pre-segmentation techniques are used, as global thresh-

4. Discussion

Recent advances in image segmentation have made subject-
specific modelling of PH feasible, yet the modelling
process still comprises segmentation-induced uncertainty that
propagates through to simulation results. This is the first
known study to explicitly quantify the variability of 1D CFD
blood flow and pressure predictions arising from uncertainty
in pre-segmentation parametrization. We investigate three
types of segmentation-induced variations: the total variation
arising from changes in pre-segmentation parameters, varia-
tion due to changes in vessel length and radius and variation
with respect to network connectivity and size. Results suggest
that variation in network structure is the greater contributor

to uncertainty in haemodynamic predictions, consistent with
what is known of the pulmonary vascular physiology. Moreover,
the methodology developed herein can be used to generate and
analyse a 1D model network for any vascular system.

4.1. Segmentation and construction of network graphs
Results show that pre-segmentation parameters drastically
influence the number of vessels in the network, while the
number of generations attainable remains relatively consistent.
It is apparent that the network obtained from image

olding is commonly used [3,21,22] but is only one of many
segmentation methods.

The variability in the total number of vessels for a
given network highlights the variation attributed to segmen-
tation. This is expected in other networks that exhibit
dispersive branching patterns, such as the coronary arteries
[10] or cerebral vasculature [33]. We employed a gener-
ation-based ordering scheme to describe the branching
structure, where each bifurcation is considered a new gener-
ation of blood vessels. By contrast, other authors [43] have
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Figure 10. WI analysis in the first pulmonary bifurcation. Forward (positive values) and backward (negative values) waves are calculated for the total variation and
parameter variation (grey lines) along with +2 s.d. from the mean (forward waves, magenta; backward waves, cyan). Predictions from the network variation study
are colour coded according to network size, as described in figure 9. (Online version in colour.)

used other ordering systems, e.g. Strahler [42] schemes, to
identify structural properties of the pulmonary system,
though these methods are not as compatible with CFD
network models.

4.2. Inverse uncertainty quantification

KDEs and GPs are commonly used techniques [37,44], but this
study is the first to use GPs in density estimation for vascular
measurements. Forward UQ is typically carried out by assum-
ing a parametric parameter distribution a priori, forcing prior
assumptions on the unknown parameter distributions. By esti-
mating the density directly from repeated measurements, we
construct a non-parametric, representative density describing
the uncertainty of the measurements across segmentations
without prior assumptions.

The standardized measurements allow us to generalize
the uncertainty of the 32-vessel subset to the entire vascular
network, increasing the robustness of the density estimate.
As shown in figure 8, the three density estimates are similar
in the mode of the distribution (approx. 0); however, the
GP density estimation allows for additional UQ in both the
density and CDF estimates [37]. We construct marginal den-
sity estimates for the PDFs of radius and length, which
assumes independence among the two quantities. PDF esti-
mation methods that account for correlation between radius
and length measurements should be investigated further.

GP regression is necessary for the data considered, as
weighted least squares cannot correct the heteroscedastic

variance. The coefficient of variation for the measurements
increased as the measured dimensions decreased in value,
suggesting that smaller vessels are subject to larger fluctuations
in estimated dimensions when varying pre-segmentation
parameters. Similar conclusions have been made in simulations
predicting the fractional flow reserve in coronary crowns [10], as
the smaller regions of the vasculature were susceptible to higher
segmentation error. However, our work is the first to consider
estimated, non-parametric densities for UQ propagation, and
does not require a priori distribution assumptions.

4.3. Total variation of model simulations

The total network size obtained from the segmentation pro-
cedure has several effects on the model output. As shown
in table 2, changes in network topology due to segmentation
induced a variation in systolic pressure that was nearly six
times larger than the variation of diastolic pressure. More-
over, we observe that the total variation standard deviation
for the systolic and pulse pressure is larger in comparison
to the mean and diastolic pressure. All four of these pressure
metrics are typically used in diagnostic tools of diseases such
as PH [2]. Though systolic pressure and pulse pressure have a
small standard deviation (approx. 5% relative to the mean),
studies investigating coronary-related mortality found that
these pressure quantities were important for risk assessment
in patients with congenital heart disease [45]. This further
indicates a need for UQ when using these models for cardio-
vascular disease diagnostics and risk assessment.
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4.4. Parameter variation

The standard deviation of diastolic pressure resulting from par-
ameter (radius and length) variation is greater than that
resulting from network (size and connectivity) variation. This
suggests that changes in vessel dimensions and nominal
boundary conditions can ultimately raise the diastolic pressure
of the system, which is expected in the case of chronic vascular
remodelling [2]. The standard deviation of the pulse pressure
for the parameter variation only accounted for approximately
30% of the total variation value and had less of an effect on
all other pressure and flow quantities when compared with
the network variation. Larger networks encompassing the
entire pulmonary tree will increase the parameter uncertainty,
as they correspond to more vessels and more uncertain
estimates of radius and length. This would in turn bias haemo-
dynamic parameter estimates, since network predictions
would be based on the initial segmentation results [14].

4.5. Network variation

The largest effects on pressure and flow waveform predic-
tions in the network are attributed to changes in network
connectivity and size, as seen in figures 9 and 10. Quantitat-
ive metrics provided in table 2 also show that network
variation produces larger standard deviations in systolic
and pulse pressures versus parameter variation, suggesting
that the configuration of vessels in the pulmonary system
may play an important role in haemodynamic predictions.
It is known that the highly compliant pulmonary system
uses its rapidly branching structure to perfuse the lung
under a low-pressure gradient and varying cardiac outputs,
and that network remodelling is common with pulmonary
vascular disease [2,4]. For example, Rol et al. [43] concluded
that changes in vessel diameter with PH cannot solely explain
the increase in vascular resistance, and further hypothesized
that network rarefaction may be a larger contributor to
increased pulmonary arterial pressure. Olufsen et al. [25]
investigated this computationally by altering structured tree
boundary conditions, effectively reducing the size of the
microvasculature and increasing pulmonary artery pressure.
Our model analysis agrees with clinical hypotheses that vas-
cular rarefaction and associated changes in network size and
connectivity contribute more to changes in pulmonary arter-
ial pressure than vessel narrowing.

The Poiseuille relation used to distribute network resistance
introduces an impedance mismatch at each terminal vessel.
Reflected pressure waves due to this mismatch become more
prevalent as successive vessels are added to the system, leading
to an increased pressure [16,46]. While other studies have con-
sidered non-reflective boundary conditions [1547], it is
hypothesized that wave reflections occur in the pulmonary
system when PH is present [31], illustrating the appropriateness
of reflective boundary conditions in the model.

Our results show three instances where reducing part of
the network causes a larger change in pressure, which agree
with a previous investigation by Epstein et al. [47] that
showed a critical threshold in the number of vessels that lead
to larger discrepancy in haemodynamic predictions. It is
often the case that haemodynamic data are only available in
select locations of the vascular system [3,29,30], a drawback
when performing parameter estimation. Changes in network
size will lead to changes in optimal parameter values during
parameter inference, making the problem ill-posed as

estimated parameters describing stiffness, compliance and
vascular resistance will depend on the size of the network
used in CFD simulations. This further indicates that uncer-
tainty in the network structure must be taken into account
when using 1D CFD models for clinical decision-making [30].

4.6. Limitations and future directions

Several potential limitations of this study can be addressed in
future investigations. First, we assume negligible tapering in
each vessel, which could play a role in proximal artery
dynamics. Second, our model assumptions ignore radius-
dependent stiffness and the effects of wall viscoelasticity,
which may be important in pulmonary arteries [46] and could
change the model sensitivity to network size and vessel dimen-
sions. However, the focus of this study was to quantify how
changes in the model domain attributed to pre-segmentation
parameters impact haemodynamic predictions for fixed
material parameters. Similar to previous studies [29,30,33],
nominal parameters are calculated under the assumption of
steady flow and that pressure does not drop in the large vessels.
However, in the 1D domain, we solve nonlinear equations,
which account for inertial and viscous losses resulting
in a pressure drop along the vessels. Yet, no experimental
studies have measured pressure beyond the first few genera-
tions; hence, validation of this assumption in the pulmonary
circulation is difficult.

Additional limitations involved model construction and
quantified results. The length of the smallest vessels was aug-
mented during simulations to ensure the CFL condition is
not violated. The CFL condition could also be met by either
increasing the number of time-steps, which increases compu-
tational cost, or devising a numerical scheme using adaptive
time-stepping, extending the scope of the study. We also
provided conventional mean and standard deviation calcu-
lations as familiar metrics for comparison. An alternative
approach is to perform formal global sensitivity analysis.
State-of-the-art methods are based on Sobol indices defined
via conditional variances of different order [13,14,30,43]; how-
ever, their computation via Monte Carlo or quasi-Monte Carlo
simulations is computationally expensive. This computational
complexity is aggravated by the fact that the image segmenta-
tion includes manual inspection and the parameter space can
therefore only be sampled at a coarse level. A potential way
to alleviate this problem is to use statistical emulation, e.g.
using GPs, to compute first order and total effects indices.
This can, in principle, follow the method described in [43], by
adapting and extending existing approaches and software
tools; see https://github.com/samcoveney/maGPy. How-
ever, this exploration is beyond the scope of the present study
and provides an interesting direction for future research.

We consider the frequently used three-element Windkessel
model as the boundary condition for the 1D model, yet this
model greatly simplifies the physiological resistance beyond
the segmented vessels. By contrast, structured tree boundary
conditions [24,25,28] can provide an additional level of
complexity for approximating downstream resistance and
attempt to capture network structure beyond the limits of
image segmentation. In addition, the experimental protocol
inhibited the same mouse from being used for both the haemo-
dynamic and imaging data. While this is a limitation for
possible parameter inference, our methodology still captures
variability in model predictions due to uncertainty in the
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vessel dimensions and network structure. Future human-based
studies could incorporate non-invasive flow and imaging data
from the same patient in the model. Finally, future subject-
specific models of the pulmonary vasculature would be
enhanced by allowing for trifurcations and considering branch-
ing angles in the vascular tree, thus accounting for more of the
physiological traits of the network.

5. Conclusion

The uncertainty of model predictions must be accounted for
in the absence of ground truth geometries and haemodynamic
data. We have presented the first known investigation of
the impact of uncertainties in imaging-based network recon-
struction on CFD simulations in the pulmonary vasculature.
This work identifies the uncertainties pertaining to image
pre-segmentation parameters by explicitly measuring the
variation in radius and length measurements of a subset
of vascular segments. Another novelty of this work is in esti-
mating densities of radius and length from data obtained
using state-of-the-art non-parametric techniques, rather
than assuming a fixed and potentially biased functional
form of the distribution a priori. Moreover, our study is the
first to perform UQ on the dimensions and network topology

of a 1D CFD model in an expansive pulmonary vascular net-
work. Our results show that the network variation has the
most influence on predictions of blood pressure and flow,
while changes in vessel length and radius have less impact on
haemodynamic predictions.
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