
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Formal Analysis of Electronic System Level Models using Satisfiability Modulo Theories and
Automata Checking

Permalink
https://escholarship.org/uc/item/1193n1qj

Author
Chang, Che-Wei

Publication Date
2015

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1193n1qj
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Formal Analysis of Electronic System Level Models
using Satisfiability Modulo Theories and Automata Checking

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical Engineering and Computer Science

by

Che-Wei Chang

Dissertation Committee:
Professor Rainer Dömer, Chair

Professor Daniel D. Gajski
Professor Pai Chou

2015

c⃝ 2015 Che-Wei Chang

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 System-Level Design . 2

1.1.1 The Y-Chart and Top-Down Design Methodology 3
1.1.2 SpecC and Refinement-based Methodology 5

1.2 Verification of ESL Design . 6
1.2.1 Formal Analysis and Verification 6
1.2.2 Related Work . 9

1.3 Goals . 11
1.3.1 Formal Deadlock Detection 11
1.3.2 Timing Constraint Verification 12
1.3.3 May-Happen-in-Parallel Analysis 13
1.3.4 Satisfiability Modulo Theories 14
1.3.5 UPPAAL System Model . 15

1.4 Overview . 16

2 Formal DeadLock Analysis of SpecC Models 18
2.1 Introduction . 18
2.2 Related Work . 19
2.3 Preliminaries . 20

2.3.1 SpecC SLDL . 20
2.3.2 Satisfiability Modulo Theories 21

2.4 From SpecC to SMT assertions . 22
2.4.1 Execution . 23
2.4.2 Communication . 28
2.4.3 From Time Stamp to SMT Assertions 30

ii

2.5 Experiments . 33
2.6 Summary . 35

3 Communication Protocol Analysis of Transaction-Level Models 37
3.1 Introduction . 37

3.1.1 Designer Augmented Assertions 38
3.1.2 TLM with Communication Timing 39
3.1.3 Related Work . 42

3.2 Time Interval Models . 42
3.2.1 Timing Constraints . 44

3.3 Timing Relation Extraction . 45
3.3.1 Timing Relation for Hierarchical Behaviors 47
3.3.2 Timing Relation Extraction for Leaf Behaviors 50
3.3.3 Liveness and Deadlock . 53
3.3.4 Hierarchical Timing Analysis 54

3.4 Case Study and Experiments . 55
3.4.1 Case Study on AMBA AHB 55
3.4.2 Case Study on CAN Bus Protocol 58
3.4.3 Experimental Results . 59

3.5 Summary . 60

4 May-Happen-in-Parallel Analysis of ESL Models 62
4.1 Introduction . 62

4.1.1 MHP Analysis using UPPAAL Model Checker 63
4.1.2 Related Work . 64

4.2 May-Happen-in-Parallel Analysis . 65
4.3 SLDL Design to UPPAAL Model . 68

4.3.1 UPPAAL Automaton and System Model 68
4.3.2 PDES Model in UPPAAL . 71
4.3.3 Automaton Template for Hierarchical Behaviors 74
4.3.4 Automaton Template for Leaf Behaviors 78
4.3.5 Scheduler Automaton . 82
4.3.6 UPPAAL System Description for a PDES Model 85

4.4 Queries for May-Happen-in-Parallel Analysis 85
4.4.1 Query in UPPAAL Model Checker 86
4.4.2 Queries for MHP Analysis . 88

4.5 Model Optimization . 92
4.6 Experiments and Results . 95
4.7 Extension to Timing and Power Consumption Analysis 97

4.7.1 Timing Delay Analysis . 98
4.7.2 Timing Delay and Power Consumption Analysis 99
4.7.3 UPPAAL Modeling for Dynamic Voltage and Frequency Scaling 101

4.8 Summary . 102

iii

5 Conclusion 104
5.1 Contributions . 104

5.1.1 Formal Deadlock Detection using SMT 104
5.1.2 Formal Timing Analysis using SMT 105
5.1.3 May-Happen-in-Parallel Analysis using UPPAALModel Check-

ing . 106
5.2 Future Work . 107

5.2.1 SMT Modeling for System-level Design 107
5.2.2 UPPAAL Modeling for System-level Design 108

Bibliography 110

iv

LIST OF FIGURES

Page

1.1 Level of abstraction in SoC design (source[10]) 2
1.2 System-level design in the Y-Chart(source[11]) 4
1.3 SpecC refinement-based design methodology and features of models . 5
1.4 Validation and verification approach 7
1.5 Approach comparison . 8
1.6 Importance of May-Happen-in-Parallel statements 14
1.7 An UPPAAL model example . 16

2.1 Behavior Read in the JPEG encoder SpecC model 23
2.2 Four Supported Execution Types . 25
2.3 Time interval for sequential execution 26
2.4 Time interval for parallel execution 26
2.5 The flow of converting a SpecC model into SMT assertions and dead-

lock analysis with the Z3 SMT solver 30
2.6 Two examples of JPEG encoder SpecC model 34

3.1 SpecC Methodology with static constraint analysis 38
3.2 TLMs with detailed communication timing 40
3.3 AMBA AHB Protocol (source[53]) . 41
3.4 Producer-Consumer SpecC Model . 45
3.5 Two types of timing specification in SpecC language 46
3.6 Hierarchical behavior in Producer-Consumer model 48
3.7 Timing relation extraction for a leaf behavior 50
3.8 Timing relation extraction for the conditional execution 51
3.9 Timing relation extraction for the wait-notify statement 52
3.10 Hierarchical timing analysis of CAN bus protocol 54
3.11 TLM of Producer-Consumer example using AMBA AHB 55
3.12 The procedure of a data transfer from master to slave on AHB 57
3.13 Automotive example using CAN bus 58
3.14 TLM of automotive example using CAN bus 59

4.1 MHP analysis flow with UPPAAL model checker 63
4.2 Discrete event simulation (DES) algorithm (source[36]) 65
4.3 Parallel discrete event simulation (PDES) algorithm source[64]) . . . 67
4.4 Example of an UPPAAL system model 70

v

4.5 SLDL Design to UPPAAL automata conversion 71
4.6 SLDL source code for an introductory design example 73
4.7 Automaton template for both hierarchical and leaf behavior 74
4.8 Representation of hierarchical behaviors in UPPAAL 75
4.9 Control flow statements reflected in leaf automata 78
4.10 waitfor statement and wait-notify synchronization 80
4.11 Communication using standard double handshake channel 82
4.12 Scheduler automaton with delta and time advance cycles 83
4.13 UPPAAL system description for the introductory example 86
4.14 Queries for the model and their satisfiability 87
4.15 Scheduling points . 89
4.16 Queries for Figure 4.6 example for MHP analysis 90
4.17 Optimization with location prioritization 93
4.18 Power and timing annotation in the model 99
4.19 UPPAAL model for power and timing annotation 100

vi

LIST OF TABLES

Page

2.1 Static SMT analysis results for model (A) and (B) 35

3.1 Operations of time stamp . 43
3.2 Static SMT Analysis of TLM examples using AMBA AHB and CAN

bus protocols . 61

4.1 Run time and memory requirement for optimized model 95
4.2 MHP Analysis of SLDL Design Using UPPAAL Model Checker . . . 95

vii

ACKNOWLEDGMENTS

It could never be possible for me to finish Ph.D program without the supports from
my academic advisor, family, friend, and colleagues in the past 5 years, and I would
like to express my gratitude to these great people here.

First I would like to gratefully and sincerely thank my advisor, Professor Rainer
Dömer, for his tutoring, advice, and support during my doctorate program in UC
Irvine. Being his Ph.D student and teaching assistant is a great learning experience.
In the meeting, he always knew when to encourage me to think out of the box and
when to stop me from doing something too unrealistic, and also gave me suggestions
based on his own research and teaching experience. I believe the research and teaching
I experienced in his group will benefit me for my whole life.

I would like to thank Professor Daniel D. Gajski and Professor Pai Chou for serving
me on my dissertation committee and giving me valuable feedback and suggestion in
the defence.

I would like to thank Lisa Lin, for being such a wonderful girlfriend. I appreciate
the happiness she brought to me, the support she gave to me in my sad day, and the
great journey we experienced together. Being with her, life is full of joy and surprise.

I would like to thank my two best friends since college, Chien-Hung Yeh and Wei-
Cheng Huang, for always encouraging me when I was sad, feeling happy for me when
I was happy, and telling what I should do when I was too carried away. Also I would
like to thank Heng-I Su and Lu-Yueh Hsu. Though now we are living in different
continents, those short-term vacations back to Taiwan every year always gave me
strength and courage to continue my work in the United States.

I would like to thank Michelle Lee, Pei-Yuan Hsieh, Mike Su, Willy Fang, and every
member in the travelling group. Though they have zero contribution to my research,
I really appreciate that I can know these crazy travellers. Their craziness shows me
no journey is impossible, and each trip we have experienced together gave me great
energy.

Many thanks my colleagues, Weiwei Chen, Yasaman Samei, Xu Han, Guantao Liu
and Tim Schmidt, for the support in research and career in the past five years. It is
my pleasure to work with them.

Finally, I would like to express my deepest gratitude to my parents and my brothers,
for their unconditional and endless love. Their support is the greatest motivation for
me to pursue my dream.

viii

CURRICULUM VITAE

Che-Wei Chang

EDUCATION

Doctor of Philosophy in EECS 2011–2015
University of California, Irvine Irvine, California

Master of Science in EECS 2009–2011
University of California, Irvine Irvine, California

Master of Science in Eletrical Engineering 2001–2003
National Cheng-Kung University Tainan, Taiwan

Bachelor in Eletronic Engineering 1996–2001
Fu-Jen University HsinChuang, Taiwan

RESEARCH EXPERIENCE

Graduate Research Assistant 2011–2014
University of California, Irvine Irvine, California

Graduate Research Assistant 2001–2003
National Cheng-Kung University Tainan, Taiwan

TEACHING EXPERIENCE

Teaching Assistant 2013–2014
University of California, Irvine Irvine, California

- Computation Methods
- Advanced C Programming
- Software Engineering Project in C Language

Substitute Lecturer 2014
University of California, Irvine Irvine, California

- Advanced C Programming

INDUSTRY EXPERIENCE

Digital Logic Engineer 2004–2008
Himark Technology Inc. HsinChu, Taiwan

ix

REFEREED JOURNAL PUBLICATIONS

W. Chen, X. Han, C. Chang, G. Liu, and R. Dömer
Out-of-Order Parallel Discrete Event Simulation for
Transaction Level Models

2014

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
vol. 33, no. 12, pp. 1859-1872, December 2014

W. Chen, X. Han, C. Chang, G. Liu, and R. Dömer
Advances in Parallel Discrete Event Simulation for Elec-
tronic System-Level Design

2013

IEEE Design and Test of Computers, vol. 30, no. 1, pp. 45-54, January-February 2013

REFEREED CONFERENCE PUBLICATIONS

C. Chang and R. Dömer
May-Happen-in-Parallel Analysis of ESL Models using UP-
PAAL Model Checking

March. 2015

Proceedings of Design, Automation, and Test in Europe 2015,
Grenoble, France, March 2015

C. Chang and R. Dömer
Communication Protocol Analysis of Transaction-Level
Models using Satisfiability Modulo Theories

January. 2015

Proceedings of Asia and South Pacific Design Automation Conference 2015,
Tokyo, Japan, January 2015

C. Chang and R. Dömer
Formal Deadlock Analysis of SpecC Models Using Satisfi-
ability Modulo Theories

June. 2013

Proceedings of the International Embedded Systems Symposium 2013
Springer, Paderborn, Germany, June 2013

W. Chen, C. Chang, X. Han, and R. Dömer
Eliminating Race Conditions in System-Level Models by
using Parallel Simulation Infrastructure

November. 2012

Proceedings of the International High Level Design Validation and Test Workshop 2012,
Huntington Beach, California, November 2012

TECHNICAL REPORT

x

C. Chang and R. Dömer
Abstracting ESL Designs to UPPAAL System Models November 2014
Center for Embedded and Cyber-Physical Systems, Technical Report 14-13

C. Chang and R. Dömer
System Level Modeling of a H.264 Video Encoder June 2011
Center for Embedded Computer Systems, Technical Report 11-04

xi

ABSTRACT OF THE DISSERTATION

Formal Analysis of Electronic System Level Models
using Satisfiability Modulo Theories and Automata Checking

By

Che-Wei Chang

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2015

Professor Rainer Dömer, Chair

For a system-level design which may be composed of multiple processing elements run-

ning in parallel, various kinds of unwanted consequences may happen if the system

is constructed carelessly. For example, deadlock may happen if improper execution

order and communication between processing elements is used in the system. An-

other problem which may be caused by the concurrent execution is race condition, as

shared variables in the system-level model could be accessed by multiple concurrent

threads in parallel. Those unwanted behaviors definitely have negative influence on

the functionality of the system. Furthermore, the functionality is not the only con-

cern in system design as timing constraints are critical as well. If the system cannot

finish the job within timing constraints, it is still considered an unwanted design. To

address these issues, we propose two formal analysis approaches in this dissertation

to analyze three types of properties we discussed above, which are

1). liveness,

2). satisfiability of timing constraint, and

3). May-Happen-in-Parallel access.

These two approaches are based on Satisfiability Modulo Theories (SMT) and UP-

PAAL automaton model respectively. We run these two approaches on our in-house

xii

system models, including a JPEG encoder, MP3 decoder, AMBA AHB and CAN

bus protocol models. The experimental results show our approaches are capable of

analyzing those properties meeting our expectation within reasonable analysis time.

xiii

Chapter 1

Introduction

Embedded systems are widely used in our daily life nowadays. From coffee machines

to the smarthouse control system, from cars to aircrafts, from smartwatches to smart-

phones, embedded computer system are pervasive in our modern society. As the size

and complexity of the embedded system keep increasing to satisfy requirements from

various area, it also imposes great difficulty in the system design [8] [9]. For this rea-

son, or Model-Based Design approach (MBD) [8] or Electronic System Level (ESL)[9]

design methodology aiming at a higher level of abstraction and with less detail is

proposed to cope with the design challenge imposed by the large size, complexity,

heterogeneity of the embedded system nowadays. Except for the design methodol-

ogy, various validation and verification techniques for the system-level design are also

proposed to assure the correctness and detect design errors at early stages of the

design [5]. In this dissertation, we aim at the formal verification of the system-level

design.

1

1.1 System-Level Design

Due to the complexity of an embedded system nowadays, it is extremely difficult for

designers to consider all details of the intended system at the early stage of the design.

However, without the complete picture of the entire system, it is hard to guarantee

the system matches the expectation after putting all software and hardware compo-

nents together and integrating them into a system. A promising approach to address

this issue is System-level Design. The 2004 edition of the International Technology

Roadmap for Semiconductors(ITRS) [4] places System-level as ”a level above RTL

including both hardware and software”. Instead of developing the hardware and then

trying to incorporate the software into the the hardware to form a complete system,

designers treat the intended system as a whole entity to make sure the hardware and

software can be designed jointly at the same time. This is typically referred to as

Hardware/Software Co-Design [6] [7]. To achieve this goal, appropriate abstraction

is required for designers to increase comprehension about the system. Abstraction

allows engineers to handle the complexity of the system since the number of compo-

nents at the lower level implementation can be greatly reduced to a manageable size

at higher abstraction level.

 !"!#

$%&'!(

)*+,!&&+*

-.

/0'!

.*01&2&'+*

3
4
&
'*
0
,
'2
+
1

3
,
,
5
*0
,
%676

678

679

67:

67;

67<

67=

67>

Figure 1.1: Level of abstraction in SoC design (source[10])

2

Fig. 1.1 illustrates the concept of using different levels of abstraction to manage the

size of the design problem. For instance, the number of transistors in a system can be

tens of millions. By using logic gates to represent a set of transistors, the number of

components can be reduced to one tenth. Register-transfer level (RTL) abstracts the

logic gates into modules and reduces the number of components to several thousands.

The system can be further simplified and represented by a number of processor el-

ements which construct the system. The approach to realize the abstraction is to

using model to represent the behavior of the component in the system. For exam-

ple, it takes tens of gates to implement an adder, but at RTL this operation can be

described with a module with arithmetic statements. With this approach, designers

can focus on the higher abstraction level concerns such as functional specification

and algorithm which are independent from the hardware platform and software im-

plementation, and still keep implementation features such as structure of the system

or communication between modules in the design consideration. The trade-off here

is that the higher the abstraction level is, the more implementation details is hidden

and the less accurate the model is.

1.1.1 The Y-Chart and Top-Down Design Methodology

Gajski proposed a conceptual framework named Y-Chart [1] to coordinate the ab-

straction levels in three design domains. These three domains are Behavior, Struc-

ture, and Physical, and they describe the functionality of the system, the architecture

of the hardware platform and the implementation detail of structure, respectively.

The chart is illustrated in Fig. 1.2(A), in which abstraction levels are represented as

dashed concentric circles and three design domains are shown as axes. Starting from

the innermost circle representing the transistor level to the outermost circle for the

system-level, in between abstraction levels such as gate-level, RTL and processor are

3

placed in the chart in the order of abstraction where the outer circle is at a higher

abstraction level than the inner circle.

Except for the level of abstraction and design domain, design flows can be illustrated

as arches in the chart as well. Here we use the Top-Down design methodology as

the example, as the refinement-based design flow we used in later chapter is of this

type. As the illustration in Fig. 1.2(B), the top-down design methodology starts

at the highest abstraction level and then gradually map the functional description

into components supported in each abstraction level. The whole design is further

converted to lower level of abstraction with more and more implementation details.

Only at the transistor level abstraction, the system layout is required. The advantage

of this approach includes that designers can mostly focus on the functionality at high

abstraction level and easily customize the system without the distraction of low-

level implementation details. However, the disadvantage here is that it is difficult to

evaluate the performance accurately without the information only available at lower

levels.

 !"#$%$&'!

("&)

* +

,!'-)$$'!

./$&)0

+)1)2

3)4"1%'!
567#-&%'#8

.&!7-&7!)
5#)&2%$&8

,4/$%-"2
5+"/'7&8

3)4"1%'!
567#-&%'#8

.&!7-&7!)
5#)&2%$&8

,4/$%-"2
5+"/'7&8

598:./$&)0;+)1)2:<)$%=#:%#:>:?4"!& 538: '@;<'A#:<)$%=#:B)&4'C'2'=/

Figure 1.2: System-level design in the Y-Chart(source[11])

4

1.1.2 SpecC and Refinement-based Methodology

In this dissertation, we use SpecC system-level description language (SLDL) [12] to

describe our system-level design. SpecC is based on the C language and a superset

of ANSI-C, and it has a set of extensions to the constructs in ANSI-C to support

the requirements of system-level modeling, which include the support of structural

and behavioral hierarchy, concurrency behavior like parallel and pipelined composi-

tions, communication over various channel types, event synchronization and timing

information.

 !"#$%&'(")

*+#,$%&'(")

-+./$%&'(")

*+#,01"#12+"

3"40/"5"/1

6'552/0#.10'/

3"40/"5"/1

72+1,"+

3"40/"5"/1

8+'1'$

98

6'5!$

98

: 72/#10'/.)01;

: 9/010.)%!.+1010'/

: 6,.//")%<")"#10'/

: 72/#10'/.)01;

: &'(2)"%!.+1010'/

: 6,.//")%<")"#10'/

: 8=%.))'#.10'/

: 8+'#"<<%.<<0>/5"/1

: -050/>%.//'1.10'/

: 72/#10'/.)01;

: &'(2)"%!.+1010'/

: 6,.//")%<")"#10'/

: 8=%.))'#.10'/

: 8+'#"<<%.<<0>/5"/1

: -050/>%.//'1.10'/

%%?4'+%#'5!21.10'/%./(%

%%%%%%%%%#'552/0#.10'/@

: 8+'1'#')%<")"#10'/

Figure 1.3: SpecC refinement-based design methodology and features of models

The design methodology in SpecC SLDL is a top-down refinement-based methodology

illustrated as shown in Fig. 1.3. The procedure starts at the specification model in

which the functionality, initial module partition and channels between modules are

specified. In this model, detailed information such as timing delay caused by compu-

tation and on what bus protocol the communication is implemented are omitted so

that designer can focus purely on the evaluation of the functionality. Later the specifi-

5

cation model is refined into an architecture mode with the architecture refinement tool

provided in System-on-Chip Environment (SCE)[3]. In the architecture refinement,

designers specify the number and types of processing elements which will be used to

implement the system, as well as what modules should be mapped to which process-

ing element. Also, with the computational profiler in the tool, timing delay caused by

the computation is also annotated to each instance. The next step is Communication

refinement in which communication protocols chosen to implement the channel are

inserted to the model. In this step, the delay caused by communication over chosen

protocol are annotated to the model therefore the delay for communication is also

taken into consideration in the model validation and verification.

More refinement steps down to the Instruction Set Simulate (ISS) are defined in SCE,

but in this dissertation the models we aim to verify is at specification, architecture,

and transaction level. For more information about the refinement, please refer to

SCE [3].

1.2 Verification of ESL Design

1.2.1 Formal Analysis and Verification

As we described in the previous section, our system-level design flow is a top-down

design methodology. Starting from the specification model which simply defines the

functionality and structure, the design is refined into architecture model, transaction

level model, and so on. Before a design is further refined into another model at lower

abstraction level, we need to make sure the design meets our expectation. Along

with the refinement, more and more real-world implementation details is added to the

model, and designers can use the refined model to validate or verify the system design

6

 !"#$%&'(")

*+#,$%&'(")

-+./$%&'(")

*+#,01"#12+"

3"40/"5"/1

6'552/0#.10'/

3"40/"5"/1

78

78

78

92+1,"+

3"40/"5"/1

:+'1'$

;:

6'5!$

;:

 052).10'/<

=.>"(

?.)0(.10'/

 052).10'/<

=.>"(

?.)0(.10'/

 052).10'/<

=.>"(

?.)0(.10'/

 !"#$%&'(")

*+#,$%&'(")

-+./$%&'(")

*+#,01"#12+"

3"40/"5"/1

6'552/0#.10'/

3"40/"5"/1

78

78

78

92+1,"+

3"40/"5"/1

:+'1'$

;:

6'5!$

;:

9'+5.)%

?"+040#.10'/

9'+5.)

?"+040#.10'/

9'+5.)

?"+040#.10'/

< (".()'#@%("1"#1

< A

< (".()'#@%("1"#1

< 1050/B%./.)CD"

< A

< (".()'#@%("1"#1

< 1050/B%./.)CD"

< A

E*F% 052).10'/<=.>"(%G.)0(.10'/ EHF%9'+5.)%./.)C>0>%./(%G"+040#.10'/

Figure 1.4: Validation and verification approach

from different aspects. We mostly care the correctness of functionality at specification

level, but at architecture and transaction level model we might also want to take

timing information and channel implementation into account. According to the result,

designers decide whether the model should be further refined to a model closer to the

real-world implementation or should go into the refinement loop and back to higher

abstraction levels. In Fig. 1.4 we show two major categories of validation/verification

approach along with our refinement procedure, and the advantage and disadvantage

of these two approaches are shown in Fig. 1.5

The common approach to evaluate a system model is Simulation-based Validation, in

which the system model is compiled into an executable and then run simulations on

input test patterns. The advantage of this approach is that it is relatively fast, com-

pared with formal verification. In this approach the designer provides test patterns

as input and then carefully examine the output simulation to make sure the behavior

of the design match the expectation. However, the advantage of this approach is

7

 !"#

!$!

%&'()*

+,!-.!'

/&0!*

1'&2!'34

5)3

678)3

/)49!

%&'()*:;7)*48<8=>!'<"<-)3<&7

? 5*&@

? A72B3:A70!2!70!73

? C!8<')9*!:1'&2!'3<!8

? DB)')73!!:&":+&(2*!3!7!88

5<(B*)3<&7?E)8!0:>!'<"<-)3<&7

? %)83

? A72B3:C!2!70!73

? F&:DB)')73!!:&":

::::+&(2*!3!7!88

5483!(:G!H!*:/&0!*

Figure 1.5: Approach comparison

also its disadvantage. The disadvantage of simulation-based verification is that it is

input dependent. Though it can validate that for certain input vector the simulation

result matches the expectation, simulation-based verification cannot guarantee that

if a certain property is always satisfiable or not for all possible input and conditions.

Therefore, the major disadvantage of simulation-based verification is that it cannot

guarantee the completeness.

Compared to simulation-based verification, formal analysis and verification usually

takes longer run time and requires more memory to verify a design [13]. In spite of

these shortcomings compared to the simulation-based verification, formal verification

still gains more and more attention because of its advantage over the other – com-

pleteness. Formal verification is input independent and the designer does not have

to provide test vectors and run simulation. Instead, the designer needs to specify

the desirable or undesirable property of the system, and then use formal checker to

exhaustively search all possible input and conditions to prove or disprove the given

property. Depending on the selected formal checker, formal verification not only

checks whether the given property is satisfiable but also gives a case in which the

property is satisfied, which is very useful for problem identification. For example, the

designer can follow the case to find out why an undesirable property is satisfiable and

8

then modify the design to prevent the undesirable case from happening.

1.2.2 Related Work

Functional verification of a system-level design is as important as the system itself

as we want to get rid of as much potential error as possible at the early stage of the

design. If a bug is found at the implementation level at lower level of abstraction, the

current design may need to be abandoned if the bug is from the initial specification.

For that reason, we should try to verify the design to the extent possible at higher

level of abstractions. To enhance the performance and coverage of the system-level

design validation and verification, techniques in both simulation-based validation and

formal verification area are widely studied. For example, to accelerate the discrete

event simulation for a system composed of multiple concurrent processing elements,

parallel simulation techniques are proposed in [64] and [2] to make use of the power

of multi-core processors.

In this dissertation, instead of running simulation on the system-level models, our

proposed approaches make use of existing formal method tools [17] [18] to statically

analyze the design. Formal methods are used in both hardware [19] and software [20]

analysis and verification. For example, verifying the equivalence of two combinational

circuit can be achieved by converting two circuit into Binary Decision Diagram (BDD)

and comparing these two diagrams instead of running simulation for all possible in-

put vectors and comparing the output [21], and model checking [24] technique, which

involves of exhaustively searching the state space in finite state systems to check the

satisfiability of a given properties, is used in software verification to find safety vi-

olations or liveness issue [25] as well as in hardware verification such as sequential

circuit and communication protocol analysis [26]. Industries also use formal methods

to improve their design methodologies. For example, EDA tool companies Synopsys

9

and Cadence provide formal checking tools such as HECTOR[28], Formality[27], or

Encounter Conformal Equivalence Checker [29] for functional verification or equiva-

lence checking.

As for analysis of system-level model using formal verification techniques, according

to the properties of interest system level models are abstracted into formal represen-

tations such as automata [38] [39] [40], Petri net [42] or Integer Linear Programming

[52] problem, and then make use of existing formal solver or model checker to analyze

the abstracted model. Except for approaches using formal verification techniques,

there are also work relying purely on the static analysis of the model. For example,

[65] analyze the model based on the execution semantics to detect potential race con-

dition.

We use the approach converting the system-level design into another formal model for

analysis. In this dissertation, we aim to convert the design into Satisfiability Modulo

Theories (SMT) problem and concurrent automaton networks and use SMT theorem

prover and automaton model checker to formally verify properties of interest in a

system-level model. These two approaches belong to two different formal verification

approach categories. The SMT-based approach belongs to deductive verification in

which the design and the requirement are converted into a collection of mathematical

proof obligations and then a SMT solver is used to prove the truth of the obligations.

Tools likes Yices[30], CVC4[31], Z3[46], or Alt-Ergo[32] can be used to prove the truth

of the assertions, and in this work we use Microsoft Z3 theorem prover. On the other

hand, our second approach is in the realm of model checking. In model checking

the system is first represented as a finite state systems or automata, and then model

checking algorithms may be used to find the reachability of states where properties

of interest are satisfied. Details of these two approaches will be described in later

chapters.

10

1.3 Goals

Except for the correctness of the output result, there are other aspects the designer

needs to consider in an embedded system design. Since SLDL supports the modeling

of implementation details, such as module partitioning and choice of processing ele-

ments or communication protocol selection, the verification of a system model should

also cover all these aspects.

In this dissertation, we aim at the formal analysis and verification of the following

three properties of interest:

1) liveness (deadlock)

2) timing constraint verification, and

3) May-Happen-in-Parallel analysis.

It is difficult to verify these three properties with simulation-based validation due

to the limitation of simulation-based approach we described in the previous section.

Therefore, the goal of this dissertation is to design analysis and verification approaches

which statically examine system level models and guarantee the satisfiability or unsat-

isfiability of these three properties by using standard formal model checking methods

such as SMT theorem prover and UPPAAL model checker. We will utilize existing

infrastructure as foundation, in particular, focus on models specified in SpecC SLDL

[12].

1.3.1 Formal Deadlock Detection

In this dissertation, we first aim at formal detection of the potential deadlock in the

system model. For a system-on-chip design which may be composed of multiple pro-

cessing elements running in parallel, improper execution order and communication

11

assignment may lead to problematic consequences, and one of the consequences could

be deadlock. For example, for a system model composed of two modules running in se-

quential fashion, using double handshake channel to communicate this two processing

elements may lead to deadlock situation. It may be possible to identify the issue man-

ually when the design is simple, but it become difficult when the design is composed

of multiple processing elements working in parallel and communicate through various

types of channels. Therefore, in this work we want to propose an approach which

can formally detect the potential deadlock in the model, and also identify which part

of the design leads to deadlock condition. We plan to convert a system level design

in SpecC SLDL into a Satisfiability Modulo Theories (SMT) problem and then make

use of an existing SMT solver to prove or disprove the existence of potential deadlock.

1.3.2 Timing Constraint Verification

The second property we want to formally verify in this work is timing constraint

verification. In a system level design, we not only care the correctness of the out-

put results, but also when the output can be obtained. Except for the functionality,

another critical aspect in SoC design is the correctness of communication between

system blocks, especially for real-time systems and communication protocols. Take

dashboard displaying in a vehicle as the example. Except for verifying if the revolu-

tions per minute (RPM) can be read and displayed on the dashboard properly, we

also want to know if the reading update of the RPM can be executed within the tim-

ing constraints fitting the safety regulation. Simulation-based validation is commonly

used to check if the system level model containing timing information can be finished

within the giving timing constraint. However, the execution time can be input vec-

tor dependent, i.e., the timing constraint is not guarantee unless we run simulation

12

for all possible conditions in the design. Here we plan to propose a approach which

takes multiple aspects of the design such as delay caused caused by computation in

processing elements and communication protocols into consideration, and analyze the

satisfiability of given timing constraint.

1.3.3 May-Happen-in-Parallel Analysis

The third property we want to analyze in this work is May-Happen-in-Parallel (MHP)

statements in the design. Our definition to this problem is that ”for two given state-

ments in the design, is it possible that these two statements are executed in parallel?”.

This analysis is important for the verification of system-level design because MHP

statements are critical in system models and, among other problem, can lead to race

condition. Race condition is a set of problems that could happen in multi-thread

programming, and it is caused by parallel accesses to shared variables.

Fig. 1.6 shows an example where May-Happen-in-Parallel statements lead to race

condition. In this example, two parallel instances B1 and B2 both call function f()

in parallel. Function f() use a global integer d as the index to access an global array

with 10 entries. The desirable behavior of this model is that each instance calculates

the sum of all 10 elements in the array, but what may really happen is that each

instance misses some elements because the index is increased by the other instance.

Unfortunately, this issue may not be detected by simulation-based verification. To

address this issue, we plan to proposed an approach which converts the system-level

design into an UPPAAL model [59] [60] and makes use of the UPPAAL model checker

to identify May-Happen-in-Parallel statements in the design.

In the following subsections, we introduce these two formal representations – Sat-

isfiability Modulo Theories (SMT) and UPPAAL automaton model, and the corre-

13

 !"#$% ####&'()*+,)#-,. ,+)/'&

 !"#,..,01234#% ####&'()*+,)#-,. ,+)/'&

526789#

:

!"#;<=#%#

###$#>#3#%#

###?@)/#8$#A#239#:

######;<=#B>#

#########,..,01$4#%#

######$BB%

###C

C

5D6789#

:

!"#;<=#%#

###$#>#3#%#

###?@)/#8$#A#239#:

######;<=#B>#

#########,..,01$4#%#

######$BB%

###C

C

Figure 1.6: Importance of May-Happen-in-Parallel statements

sponding tools we plan to in this work to analyze the system-level design. The details

of our approaches based on these formal representations and tools are introduced in

Chapter 2, 3 and 4.

1.3.4 Satisfiability Modulo Theories

The first formal representation we will use in this work is the model of a Satisfiability

Modulo Theories (SMT) problem [45] [47]. Satisfiability (SAT) is the problem of de-

termining if an assignment of the Boolean variables exists, that makes the outcome of

a given Boolean formula true. The Boolean formula is purely described with Boolean

variables and logical operations such as AND, OR, and NOT. For a given Boolean

formula, a SAT solver can find out if there is an assignment for all Boolean variables

in the formula making the outcome true. An example is given here to demonstrate

a SAT problem. For a Boolean formula (a|b|c)
∧

(a| b|c)
∧

(a| b| c), a

SAT solver answers satisfiable and also returns a case in which a=true, b=true and

c=true. Similar to SAT problem, Satisfiability Modulo Theories (SMT) is also the

problem of determining the whether there is an assignment of the variables to make

14

the outcome of a formula true. Unlike the formula in SAT, which is purely built with

Boolean variables and composed of logical operations in SAT, the satisfiability mod-

ulo theories supports richer language such as linear arithmetic or inequality therefore

some problem in SMT can be described more naturally [51]. In this dissertation we

use a SMT solver to formally analyze the existence of potential deadlock (in Chapter

2 and Chapter 3) and the satisfiability of specified timing constraints (in Chapter 3).

1.3.5 UPPAAL System Model

The second formal model we are going to use in this work is UPPAAL automaton

model [59] [60]. UPPAAL system model is composed of a network of concurrent

processes and these processes are created by instantiating predefined automaton tem-

plates. The whole system can be seen as a set of automata running concurrently and

the enabled state transitions in those automata can take place in a non-deterministic

order. Processes in a UPPAAL model can communicate and synchronize with each

other through their parameters.

An example is provided in Fig. 1.7. In this example, the system is composed of two

concurrent processes TA1 and TA2 in which there are four statements respectively

(X1 ∼ X4 and Y1 ∼ Y4), and these two processes communicate with an integer and

a channel. To create this system, templates for processes TA1 and TA2 must be

defined first and then instantiated in the system definition with proper binding of

parameters. After an UPPAAL model is created, designers can use UPPAAL model

checker to verify the satisfiability of certain property. For instance, we can convert

a question like ”Is it possible that automaton TA2 reaches state Y4 ?” into a query

in UPPAAL requirement specification language and ask the model checker if it is

satisfiable. If the query is satisfiable, UPPAAL model checker can also generate a

trace recording the transition from the initial state to the state where the property

15

is satisfied. With the trace, designers can replay the transitions to identify in what

condition a property can be satisfied. This feature is very useful for debugging since

it is capable of showing how an undesirable situation can happen in a system in a

graphical interface.

 !"#$%

 !"#

#&'"

'() '*)

+",$'

 !"

-./ -.)

 !#

 !"#$0
'.-1/

2/

23 2)

24

5/

53

5) 54

Figure 1.7: An UPPAAL model example

Note that due to the nature of problems behind these two approach (satisfiability

and model checking), these two approaches are NP-Complete [33] and PSPACE-

Complete(or EXPTIME-complete) [34].

1.4 Overview

In the second chapter, we propose an approach to abstracting SpecC-based system

models for formal analysis using satisfiability modulo theories (SMT). Based on the

language execution semantics, our approach [35] abstracts the timing relations be-

tween the time intervals of the behaviors in the design. We then use SMT solver to

check if there are any conflicts among those timing relations. If conflict is detected,

our tool will read the unsatisfiable model generated by the SMT solver and report the

cause of the conflict to the user. We demonstrate our approach on a JPEG encoder

design model.

16

In Chapter 3, we present an approach evolved from the method proposed in Chap-

ter 2 to formally verify various aspects of communication models, including timing

constraints and liveness. Our approach [48] automatically extracts timing relations

and constraints from the design and builds a Satisfiability Modulo Theories (SMT)

model whose assertions are then formally verified along with properties of interest

input by the designer. Our method also addresses the complexity growth with a hi-

erarchical approach. We demonstrate our approach on models communicating over

industry standard bus protocol AMBA AHB and CAN bus. Our results show that

the generated assertions can be solved within reasonable time.

In Chapter 4, we propose a method to model parallel discrete event simulation (PDES)

with hierarchical concurrent automata and formally identify those states that May-

Happen-in-Parallel (MHP). Our MHP analysis [57] [58] utilizes formal verification

by use of the UPPAAL model checker. The proposed approach converts the system

model in SpecC SLDL into an UPPAAL model and generates a set of queries that

automatically and completely finds all possible MHP pairs. The experimental results

show our approach can report more precise MHP analysis results compared to other

works at the cost of extended analysis run time.

Finally, Chapter 5 summarizes the contribution of the work presented in this disser-

tation and concludes with a brief discussion on the future work.

17

Chapter 2

Formal DeadLock Analysis of

SpecC Models

2.1 Introduction

An embedded system design can be implemented in many ways, and a typical design

usually consists of hardware and software components running on one or multiple

processing elements. In such a design, the partitioned components on different pro-

cessing elements are executed in parallel. To make sure the data dependency and

the execution order is correct, communication between components synchronizes the

execution of components on different processing elements. In system-level descrip-

tion languages (SLDLs), like SpecC [12] [10] and SystemC [15] citesystemcbook, the

communication between components is implemented as channels, and multiple types

of channel are provided in the SLDLs to satisfy different kinds of communication and

synchronization requirements.

Channels provide a convenient way to communicate among multiple processing el-

18

ements. However, misusing the type of channel or setting incorrect buffer size in

channel can lead to deadlock situations, and it is difficult to determine the cause of

deadlocks when the design is complex. In this chapter [35] we propose a method to

perform static analysis and detect deadlocks in the design automatically. Based on

the SpecC execution semantics, our approach can extract the timing relations between

behaviors in the design, and then analyze these with Satisfiability Modulo Theories

(SMT) to detect any conflicts. To accelerate the debugging process, our approach

also reports the causes of the deadlock to the user if deadlock situation is found.

This chapter is organized as follows: in Section 2 we review some of the related works

in formal validation of SLDLs. In Section 3, we briefly introduce SpecC SLDL and

Satisfiability Modulo Theories. In Section 4, we describe our proposed approach in

detail, including the assumptions and limitations at this point. Also, we illustrate

the conversion from SpecC model to SMT assertions. In the last two sections, we

demonstrate our approach with a JPEG encoder model and sum up with a conclusion

and future work.

2.2 Related Work

A lot of research has been conducted in the area of verification and validation of

system-level design. We can see that many researches convert the semantics or be-

havioral model of the SLDL into another well-defined representation and make use

of existing tools to validate the extracted properties. In [38] and [39], a method

to generate a state machine from SystemC and using of existing tools for test case

generation is proposed; in [40] and [41], a SystemC design is mapped into semantics

of UPPAAL time automata and the resulting model can be checked by using UP-

PAAL model checker; [42] proposed an approach to translate SystemC models into

19

a Petri-net based representation for embedded systems(PRES+) which can then be

used for model checking. In [43], a SystemC design is represented in the form of pre-

dictive synchronization dependency graph (PSDG) and extended Petri Net, and an

approach combining simulation and static analysis to detect deadlocks is proposed.

[44] focuses on translating a SystemC design into a state transition system, i.e., the

Kripke structure, so that existing symbolic model checking techniques can be applied

on SystemC. In this section, our approach [35] uses SpecC1 language to create the

system level model for deadlock detection. The basic idea of our proposed approach

is to abstract the timing relations from the behavior and channel communication in

the SpecC model and then convert the relations into a SMT model composed of as-

sertions in the form of inequality expressed in SMT-LIB2 language. If there is any

deadlock situation in the system, the SMT model extracted out of the system will

not be satisfiable as the circular waiting creates conflicts between timing relations.

2.3 Preliminaries

2.3.1 SpecC SLDL

SpecC [36] is a SLDL and is defined as extension of the ANSI-C programming lan-

guage. It is a formal notation intended for the specification and design of digital em-

bedded systems, including hardware and software portions. SpecC supports concepts

essential for embedded systems design, including behavioral and structural hierarchy,

concurrency, communication, synchronization, state transitions, exception handling,

and timing. The execution semantics of the SpecC language are defined by use of a

time interval formalism [37].

1Due to its similarity, our results are equally applicable to SystemC

20

There are several key concepts in the design of a system model in SpecC Language.

The first concept is explicit structure. The design is partitioned modules and commu-

nicate with proper connection through ports. The second feature is explicit hierarchy.

In a system model, a component is built in hierarchical way and composed of sub-

components. In addition, in a system model the designer can explicitly specify the

execution order of instantiated sub-components in the design, i.e., the instantiated

components can be executed in sequential, parallel, or even pipelined fashion. The

last important feature is clear separation of computation and communication. By

clearly separate the communication from the computation, we can choose different

types of channels or protocols to implement the inter-module communication and

evaluate the performance. With these four features, we can not only evaluate the

functionality of the design, but also implementation details like module partition or

channel selection before further implementation.

2.3.2 Satisfiability Modulo Theories

Satisfiability (SAT) [50] is the problem of determining if an assignment of the Boolean

variables exists, that makes the outcome of a given Boolean formula true. Satisfiability

Modulo Theories (SMT) [45] [51] checks whether a given logic formula is satisfiable

over one or more theories. Unlike the formulas in Boolean SAT which are built from

Boolean variables and composed using logical operations, a SMT solver can capture

the meaning of a formula described in richer language. For example, with a supporting

theory of arithmetic, the meaning of a formula composed of integer variables and

linear arithmetic can be captured by the SMT solver. Formula with arithmetic and

inequality like (x+2y ≤ 7)∧ (2x−y ≤ 10) can be solved by a SMT solver supporting

arithmetic theory, and a satisfiable answer with an assignment to x and y satisfying

the formula is given (for example, x=0, y=0). If the formula is unsatisfiable, the SMT

21

solver we choose in this work also reports the assertions causing the unsatisfiability.

This feature enables the ability to report the problematic design in the system in our

approach.

After the formulas are generated, a SMT solver is then used to solve the set and

check if it is satisfiable. Note that the solver may or may not give a firm answer

saying the model is satisfiable or not. For a model which is too complicated for the

solver to handle or quantified expressions without clear bound, the solver may not be

able to determine whether the assertions is satisfiable or not. In this case, instead of

giving a SAT or UNSAT answer, the solver returns an UNKNOWN to indicate it is

unable to solve the formula. As we briefly described before, for a satisfiable assertion

set, dependent on the chosen tool, the SMT solver may return an assignment to all

function symbols in the model which satisfies the assertions. If assertions are not

satisfiable, the solver may return a set of indices indicating which assertions form the

conflict and lead to unsatisfiability.

In our implementation, we use Z3 theorem prover developed at Microsoft Research

as our SMT solver. For more detailed information about SMT-LIB2 language and Z3

theorem prover, please refer to [47] and [46].

2.4 From SpecC to SMT assertions

In this section, we first introduce the supported SpecC execution types in our ap-

proach and their execution semantics.

22

Read i_Read

blkout.

send(blk)

ReadPic i_R

Block1 i_B

6

24x16

Pic2Blk i_S

blkout

Q{2}Q{2}

JPEG Encoder

DUT

DCT

Figure 2.1: Behavior Read in the JPEG encoder SpecC model

2.4.1 Execution

The basic structure of a SpecC behavior includes port declaration, a main method,

local variable and function declaration (optional), and sub-behavior instantiation (op-

tional). The supported SpecC behavior models in our tool can be categorized into

the following two types:

Leaf Behavior: A behavior is called leaf-behavior if it is purely composed of local

variable(s), local function(s) and a main method, and there is no sub-behavior in-

stantiation in the behavior. In the example shown in Figure 2.1, behavior ReadPic

and Block1 are leaf behaviors.

Non-Leaf Behavior: A behavior is called non-leaf behavior if it is purely composed

of sub-behavior instance(s) and a main method. For non-leaf behaviors, all state-

ments in the main method are limited to statements specifying the execution type

of the behavior and must be function calls to sub-behavior instances. In the example

shown in Figure 2.1, behavior DUT , Read, JPEG encoder and Pic2Blk are non-leaf

behaviors.

Note that for simplicity our tool does not support models which do not fit into these

23

two categories, and the execution types we are going to describe in this section is for

non-leaf behaviors only since sub-behavior instantiation can only occur in non-leaf

behavior.

In SpecC, the sub-behavior or sub-channel instantiation is regarded as a statement

of function call to method of the sub-behavior or sub-channel. To specify the exe-

cution time of a statement, for each statement s in a SpecC program, a time inter-

val ⟨Tstart(s), Tend(s)⟩ is defined. Tstart(s) and Tend(s) represent the start and end

times of the statement execution respectively, and the following condition must hold:

Tstart(s)< Tend(s)

The execution time of an instantiated behavior s Texe(s) is defined as Texe(s) =

Tend(s) - Tstart(s). For a statement S consisting of a set of sub-behavior instances

⟨ssub 1, ssub 2, ssub 3, ...ssub n⟩, the following condition holds:

∀i ∈ {1, 2, 3, ...n},Tstart(S) ≤ Tstart(ssub i)

Tend(S) ≥ Tend(ssub i)

The type of execution defines the relation between the Tstart and Tend of the behavior

instance under the current behavior, and it is specified in the main method of the

behavior.

In the following, four types of supported execution are described, which are Sequential,

Parallel, Pipelined, and Loop execution. Figure 2.2 shows an example of specifying

Sequential, Parallel and Pipelined execution in a SpecC behavior. Loop execution

is not a explicitly defined behavioral execution in SpecC, but we can regard it as a

special case of Pipelined execution with only one instance inside.

24

behavior B_seq

{

 B b1, b2, b3;

void main(void)

 {

 b1.main();

 b2.main();

 b3.main();

 }

} ;

behavior B_par

{

 B_seq A, B;

void main(void)

 { par {

 A.main();

 B.main();

 }

 }

} ;

behavior B_pipe

{

 B b1, b2, b3;

void main(void)

 { pipe(i=0; i<N; i++){

 b1.main();

 b2.main();

 b3.main(); }

 }

} ;

behavior B_loop

{

 B b1;

void main(void)

 { pipe(i=0; i<N; i++){

 b1.main(); }

 }

} ;

Figure 2.2: Four Supported Execution Types

Sequential Execution

Sequential execution of statements is defined by ordered time intervals that do not

overlap. Formally, for a statement S consisting of a sequence of sub-statements

⟨s1, s2, ...sn⟩, the time interval of statement S includes all time intervals of the sub-

statements, and the following conditions hold:

∀i ∈ {1, 2, ..., n},Tstart(S) ≤ Tstart(si)

Tstart(si) < Tend(si)

Tend(si) ≤ Tend(S)

∀i ∈ {1, 2, ..., n− 1},Tend(si) ≤ Tstart(si+1)

Note that sequential statements are not necessarily executed continuously. Gaps may

exist between Tend and Tstart of two consecutive statements, as well as between the

Tstart (Tend) of the sub-statement and the Tstart (Tend) of the statement in which

the sub-statement is called. Figure 2.3 shows an example of the time interval for the

sequential execution in Figure 2.2.

25

Tstart(B_seq) Tend(B_seq)

Tstart(b1) Tend(b1) Tstart(b1) Tend(b1) Tstart(b3) Tend(b3)

B_seq

b2b1 b3

Figure 2.3: Time interval for sequential execution

Tstart(B_par) Tend(B_par)

Tstart(A.b1)

A.b1

B.b1

B_par

Tend(A.b1)

Tstart(B.b1) Tend(B.b1)

A.b2

B.b2

A.b3

B.b3

Tstart(A.b2) Tend(A.b2)

Tstart(B.b2) Tend(B.b2) Tstart(B.b3) Tend(B.b3)

Tstart(A.b3) Tend(A.b3)

Figure 2.4: Time interval for parallel execution

Parallel Execution

Parallel execution of statements can be specified by par or pipe statements. In partic-

ular, the time intervals of the sub-statements invoked by a par statement are the same.

Formally, for a statement S consisting of concurrent sub-statements ⟨s1, s2, ...sn⟩:

∀i ∈ {1, 2, ..., n},Tstart(S) = Tstart(si)

Tend(S) = Tend(si)

Tstart(si) < Tend(si)

Figure 2.4 shows an example of the time interval for the parallel execution in Figure 2.2.

26

Pipelined & Loop Execution

Pipelined execution of statements is a special form of concurrent execution. The

syntax of pipe statement in SpecC is illustrated in Figure 2.2, where N in the ex-

ample specifies the number of iterations. Formally, for a statement S consisting of

sub-statements ⟨s1, s2, ...sn⟩ executed for m iterations in pipelined manner, let si.j

represents the j-th iteration of the execution of statement si. Then the following

conditions hold:

∀i, x ∈ {1, 2, ..., n} , j, y ∈ {1, 2, ...,m}

Tstart(si.j) < Tend(si.j),

Tstart(si.j) = Tstart(sx.y), if i + j = x + y

Tend(si.j) = Tend(sx.y), if i + j = x + y

Tend(si.j) ≤ Tstart(sx.y), if i + j < x + y

Loop execution is not defined explicitly in the behavioral execution semantics of

SpecC, but it can be regarded as a special case of Pipelined execution with only one

sub-statement.

Note that in the definition of pipelined statements the iteration number could be

infinity if the number is not specified, i.e., no range specification after the statement

pipe. However, to simplify the static analysis in this proposed method, at this point,

the number of iterations has to be a finite integer and explicitly specified in the model.

Please be aware that for now our proposed method does not support all types of

execution and communication defined in SpecC. Full support of SpecC is part of our

future work.

27

2.4.2 Communication

In SpecC, the communication between two behaviors can be implemented by port

variable, channel communication, or by accessing global variables. Since right now

the goal of our approach is to detect deadlocks in the design, the communication

implemented with port variables and global variables are not taken into consideration

because they will not lead to deadlock situation in the design.

Multiple types of channels are defined in SpecC. These include semaphore, mutex,

barrier, token, queue, handshake, and double handshake. In this chapter, we use

queue channel with different buffer sizes to model the supported channel communica-

tion in our approach. For example, to model the blocking characteristics of handshake

channels, we use a queue channel with one element buffer and zero element buffer to

implement the handshake and double handshake channel.

To clearly identify the communication between behaviors, we also impose some limita-

tions on the communication between behaviors. First, to make the data dependency

between behaviors clear, we limit the communication between behaviors to point-to-

point, i.e. every instantiated channel in the design is dedicated to the communication

of a pair of sender and receiver. Second, to abstract the channel activity without

looking into too much detail of the behavior model, the function call of the sending

(receiving) function to (from) a certain channel can only be executed once in the

main method of a behavior, i.e. function call to channel communication in any type

of iteration (for or while loop) in the main method of a behavior model is not sup-

ported. For the case that the output of a behavior has to be separated into multiple

parts and sent to another behavior, the sending (receiving) function calls have to be

wrapped in a behavior and executed in loop execution by using pipe statements.

Figure 2.1 shows an example of the situation described above. In this example, a

28

small picture of size 24-by-16 pixels is read and encoded into a JPEG file. Since

the input image block size for a JPEG encoding process is eight-by-eight pixels, the

picture has to be separated into 6 sub-blocks. The raw picture is read into the topmost

behavior DUT by sub-behavior Read, then behavior Pic2Blk divides the picture into

six 8-by-8-pixel blocks and sends the blocks to JPEG encoder model. Inside behavior

Pic2Blk, behavior Block1 is instantiated in a loop execution. Behavor Block1 fetches

the block from the raw picture according to the current iteration number, and calls

the sending function to send the data to JPEG encoder through channel Q. In this

example, channel Q is a queue channel with two buffers and each buffer is an integer

array of size 64.

Similar to the time interval ⟨Tstart,Tend⟩ defined for the execution of a statement, a

time stamp set ⟨Tsent(Q),Trcvd(Q)⟩ is also defined for each channel communication

activity between behaviors, where Tsent represents the time stamp when the the exe-

cution of sending a data to the channel finishes, and Trcvd represents the time stamp

when the execution of receiving data from the channel finishes. Based on the def-

inition of Tsent and Trcvd, for a queue channel Q communication through which m

data items are transferred, the relation between time stamps Tsent(Qi) and Trcvd(Qi),

where Qi represents the i-th data transfer through channel Q, should hold:

∀i ∈ {0, 1, 2, ...,m− 1},Tsent(Qi) ≤ Trcvd(Qi)

∀i ∈ {0, 1, 2, ...,m− 2},Tsent(Qi) < Tsent(Qi+1)

Trcvd(Qi) < Trcvd(Qi+1)

∀i ∈ {0, 1, 2, ...,m− n− 1},Trcvd(Qi) ≤ Tsent(Qi+n)

where n is the buffer depth of channel Q.

29

 !"#$$%&$!"'(

 !"'($$%&$!")%*

+&,-.($/0%10%$%&

2((&($3.1&(%$

+45$+&,-.(

+65 78+657898/:8

+1.#;$<=%.(=>,$

3.1(.".=%>%'&=

+45?@<A

6"".(%'&="

+1.#;$

B."'C=

2((&($

3.1&(%

<=%.(1(.%>%'&=

+1.#;$;&)1',.(

+;*+<3

+<3*+45

'=D.E
F

<=G&()>%'&="
"%)=%
"%)=%

,'=.
,'=.

4'#(&"&G%

HI$%J.&(.)$1(&-.(

+65 78+65

"%)=%
"%)=%
"%)=%

K

*

,'=.
,'=.
,'=.
,'=. "%)=%

<=D.E$&G$

0=">%'"G'>L,.$

>"".(%'&=

M(&L,.)>%'#

+%)=%N"O$P

@'=.$

80)L.(
7898/:8

+1.#;$<=%.(=>,$

3.1(.".=%>%'&=

+45?@<A

6"".(%'&="

+1.#;$

B."'C=

<=D.E$%&$

+%>%.).=%

<=%.(1(.%>%'&=

Figure 2.5: The flow of converting a SpecC model into SMT assertions and deadlock
analysis with the Z3 SMT solver

2.4.3 From Time Stamp to SMT Assertions

Figure 2.5 shows the flow of our proposed method. First, the SpecC model is converted

into a design representation called SpecC internal representation(SIR). The next step

is to traverse the internal representation structure and generate the assertions corre-

sponding to the statements in the design. At the same time, an index-to-statement

record is created which links the generated assertions to the statements in the design.

After the assertions and records are generated, we use the Z3 theorem prover to check

if there is any conflict in the set that makes the equations unsatisfiable. If there are

any, Z3 will report the indices of assertions leading to the conflict, and our tool can

use the indices to access the record and report the problem information to the user.

In the following part of this section, we use the model shown in Figure 2.1 as an

example, and illustrate the corresponding assertions for the model.

30

Execution to SMT assertions:

In our proposed method, we use uninterpreted functions in SMT-LIB2 language to

represent every time stamp in the model, and convert the timing relations between

those stamps into assertions. For an uninterpreted function, the user can define the

number of arguments, the data type of argument, the data type of return value, and

its interpretation. In our method, the return value of an uninterpreted function is

seen as the value of a time stamp, and the argument(s) of the function is (are) used to

specify the number of times a behavior instance is executed in a pipelined structure

or a loop. For a behavior instance, which is not in a pipelined or loop execution,

the time stamps of this instance are represented as uninterpreted functions with no

argument since the behavior will only be executed once.

For example, for instance i S in behavior Read in Figure 2.1, the following assertions

will be generated:

(declare− fun TstartDUT.i Read.i S () Int)

(declare− fun TendDUT.i Read.i S () Int)

(assert (<= TstartDUT.i Read TstartDUT.i Read.i S))

(assert (<= TendDUT.i Read.i S TendDUT.i Read))

(assert (< TstartDUT.i Read.i S TendDUT.i Read.i S))

(assert (<= TendDUT.i Read.i R TstartDUT.i Read.i S))

For a behavior instance, which is executed in a pipelined or loop for multiple times,

the time stamps of this instance are represented as uninterpreted functions with one

or multiple arguments. The input value of the argument is the number of execution

times of this instance.

31

For example, for instance S1 in behavior Sender in Figure 2.1, the following assertions

will be generated:

(declare− fun TstartDUT.i Read.i S.i B (Int) Int)

(declare− fun TendDUT.i Reae.i S.i B (Int) Int)

(assert (forall ((I0 Int)) (=> (and (>= I0 0) (<= I0 5))

(<= TstartDUT.i Read.i S

(TstartDUT.i Read.i S.i B I0)))))

(assert (forall ((I0 Int)) (=> (and (>= I0 0) (<= I0 4))

(<= (TendDUT.i Read.i S.i B I0)

(TstartDUT.i Read.i S.i B (+ I0 1))))))

Communication to SMT assertions:

In our approach, the time stamp of every channel activity is represented as an un-

interpreted function with one argument, and the input value of the argument is the

number of execution times of channel activity. For example, for channel Q in behavior

DUT in Figure 2.1, the following assertions will be generated:

∀i ∈ {0, 1, ..., 5}, TsentDUT.Q(i) ≤ TrcvdDUT.Q(i)

∀i ∈ {0, 1, ..., 3}, TrcvdDUT.Q(i) ≤ TsentDUT.Q(i+ 2)

Our tool will also generate the equality for the time stamp of the channel activity and

the time stamp of the function call to the interface of the corresponding channel. For

example, the following assertion will be generated for the channel accessing function

32

call blkout in Figure 2.1:

∀i ∈ {0, 1, ..., 5},

TsentDUT.q(i) = TsentDUT.i Read.i S.i B.blkout(i)

TstartDUT.i Read.i S.i B(i) ≤ TsentDUT.i Read.i S.i B.blkout(i)

TsentDUT.i Read.i S.i B.blkout(i) ≤ TendDUT.i Read.i S.i B(i)

Assertions for other modules in the model are generated based on the timing relations

we described in Section 2.4.1 and Section 2.4.2 accordingly.

During the assertion creation, a table named index-to-statement will also be generated.

For every assertion generated by our tool, an identical index is given to the assertion

and the information about the corresponding statement that is stored in the entry

addressed by that index. Take assertion TrcvdDUT.Q(i) ≤ TsentDUT.Q(i+ 2) listed

above as an example. This assertion is generated because channel Q is instantiated

in behavior DUT and its depth is set to two. Therefore, in the entry addressed by

the index of this assertion, the information of the statement specifying the depth of

the channel is stored.

2.5 Experiments

In this section, we demonstrate our proposed method with a JPEG encoder SpecC

model. In this example, the JPEG encoder is asked to encode five sub-frames of size

eight-by-eight pixels from a raw picture. Figure 2.6 shows two different implemen-

tations of the SpecC JPEG encoder model.

33

quan huff

6 6

dct

6

quan huff

6 6

dct

6

QD HQD H

Quantize_Huffman

JPEG EncoderJPEG Encoder

(A) (B)

qh{1}

dq{1}

qh{1}

dq{1}

Figure 2.6: Two examples of JPEG encoder SpecC model

In the JPEG encoder, every subframe will be encoded in three steps, two-dimensional

discrete cosine transform (DCT), quantization, and Huffman encoding. For every

subframe, these three encoding steps have to be executed in order. In our SpecC

model, three behaviors D, Q, and H are implemented to perform the discrete cosine

transform, quantization, and Huffman coding of JPEG encoding, respectively.

Example(A) is the design without deadlock, while for a SpecC model like Example(B)

will incur deadlock situation. As shown in Figure 2.6(A), behavior D, Q, and H are

executed in parallel fashion. To make sure these three steps are executed in correct

order, two queue channels are used to transfer the intermediate encoding data between

these three behaviors, instead of using port variable connections. In model (B), sub-

behavior Q and H are wrapped into a behavior Quantize Huff and executed in

sequential manner. The problem in model (B) is that behavior Q will halt forever

after the first two iterations of its sub-behavior quan. In this composition, behavior

quan will be executed six times before the execution of behavior Q finishes, but the

execution will stop because the queue channel between behavior quan and behavior

huff becomes full after the first two data sets are generated. Since behavior H can

only be executed after the execution of behavior Q finishes, the sub-behavior huff

can not be executed to empty the queue channel qh.

We have used our tool to analyse both models. Table 2.1 shows the analysis results

34

Table 2.1: Static SMT analysis results for model (A) and (B)
Design #ofAssertions T ime Satisfiability Error Report

Model-(A) 187 4.94s SAT N/A
Model-(B) 192 1.39s UNSAT Type: QUEUE

Line[16]: Channel[qh]
Type: SEQ
Line[23]: Instance[Q]
Line[24]: Instance[H]
Type: LOOP
Line[58]: Behavior[Q]
Line[60]: Instance[quan]
...

of the two models.

In Table 2.1, the value in Line represents the line number of the statement in the

SpecC model, Type shows the type of information stored in the entry. For example,

the Type : SEQ in this table shows that behavior instance Q and H are executed

in sequential manner, and Q is executed before H. Though for now the error report

might not be intuitive for the unfamiliar user to understand what led to the dead-

lock, the model designer who developed the model will easily recognize the deadlock

situation.

2.6 Summary

In this chapter we have proposed an approach to statically analyze deadlocks in SpecC

models using a SMT solver. After the introduction of four supported execution types

and queue channel communication in our tool, we have described our approach in

detail by showing how to extract timing relations between time stamps according to

SpecC execution semantics, and have illustrated the conversion from timing relations

to SMT-LIB2 assertions. Finally we demonstrated our implementation with a JPEG

35

encoder model, and showed that our approach is capable of detecting the deadlock in

the model and reporting useful diagnostic information to the user.

The approach proposed in this section can detect the potential deadlock caused by

improper composition and channel selection, but it requires further improvements to

support wider range of SpecC model so that we can use this model to verify more

properties of interest. The required improvement includes expanding the support for

larger models and extending the support for SpecC language execution semantics so

that it can cover more design verification problems. At this stage our implementation

only supports a confined set of SpecC model and leaves some important features

of SpecC unsupported, such as FSM composition and the communication between

processing elements. The communication between processing elements are limited to

pre-defined channels and user-defined channels are not supported. In the next chapter

we introduced the improved tool which is capable of extracting the timing relations

from a do-timing construct into assertions and also generating SMT-LIB2 assertions

to model the behavior of event delivery. We explored the possibility of using SMT

solver to formally prove or disprove the satisfiability of timing constraint in addition

to deadlock detection in the following chapter.

36

Chapter 3

Communication Protocol Analysis

of Transaction-Level Models

3.1 Introduction

In system-level design, a transaction level model (TLM) describes the system com-

ponents, their abstract computation behavior, and in particular the system commu-

nication over buses at an abstract functional level. Typically, the functionality and

timing of a TLM is validated through simulation. In this chapter [48], we formally

verify the transaction level model and propose an improved method over the approach

in the previous chapter to statically analyze the TLM and verify features of interest.

In particular, our main focus here is on the timing constraints in the communication

protocols. As illustrated in Figure 3.1, we perform multiple rounds of verification

using SMT, following a designer-in-the-loop methodology.

Based on the given execution semantics of Discrete Event Simulation (DES), our

proposed approach extracts the timing relations specified in the design model and

37

TLM

Refinement

Further

refinement

Arch Model

TLM Model

Protocol

Library

User
Refinement

SMT assertion

Generator

TLM Model

SMT assertion

SMT

Solver

SAT/UNSAT/UNKNOWN

.

.

.

Constraint Verification

Figure 3.1: SpecC Methodology with static constraint analysis

converts them into assertions as input for the SMT solver1. The SMT solver checks

the satisfiability of the assertions and reports the result to the system designer. If

the assertions are satisfiable, the SMT solver can provide a detailed report of the

symbol assignments which make the assertions true. On the other hand, if the model

is found unsatisfiable, the SMT solver reports the conflicting assertions leading to the

unsatisfiability. Based on the result, the system designer can determine whether or

not the TLM satisfies the desired design requirements, as well as where the design

fails the requirements, if so.

3.1.1 Designer Augmented Assertions

Our proposed methodology in this section is to automatically extract timing rela-

tions and constraints from a giving design and build a corresponding SMT model

as verification framework. Then the designer can verify the properties of interest on

the framework by augmenting the SMT model with assertions reflecting his points of

interest. For example, to verify that the execution time of the application is always

less than 100 time units, the designer can augment the SMT model with an asser-

1We use Z3 theorem prover [49] developed by Microsoft Research.

38

tion asking ”Can the execution time be more than 100 time units?”. If this is found

unsatisfiable, the application will execute in 100 time units or less, taking all condi-

tions into account. In other words, the execution time is proven to meet the timing

constraint. On the other hand, if it is found satisfiable, the tool will also list the

conditions satisfying the assertions so that the designer can examine the situation.

3.1.2 TLM with Communication Timing

Before an application is further implemented in a system, we design a system model

to verify the functionality as well as certain design constraints at early stage of the

implementation. In a top-down system design flow, we first design a specification

model and then refine it into an architecture model in which the structure and the

delay introduced by the computation is specified but the communication is assumed

to take no time. In the real world scenario, the delay caused by communication

cannot be neglected. To take the communication delay into consideration in de-

sign verification, the system architecture model is further refined into a TLM. The

main objective of TLM refinement is to choose and parameterize a bus protocol to

implement the communication between the processing elements in the system. The

communication protocol is specified by the inserted transaction level bus model which

specifies the detailed communication approach and timing, including synchronization

and delays compliant to the chosen protocol. Compared with the previous model,

TLM with communication timing better represents the real-world design in which

communication does take time.

Figure 3.2 shows two TLM examples and their corresponding timing diagrams. In

both designs, the corresponding timing information for AMBAAdvanced High-performance

Bus (AHB) [53] and controller area network (CAN) bus protocol [54] is specified in the

39

 !"#

$%&'(

)*+,-.,/'

01.2,-'&-34

 !"5

$%&'(

)*+0/6789-

01.2'-:34

;0/6789-<

01.2,-.=34(

 !">

$%&'(

?1,%?@,7A1B

01.2'-0&34

C
D
E F?

)
G
)

!
.
9A

?
1
91

H IJKH #L

!
)
!

!
)
!
(=
-
A

M
!
N
(,
A/
9

M
!
N
(=
-
A

D
E

F.
9-
'O
6

P >

#(Q'16-

3M4(G@6@.R(=@1R'16(Q/'(!MS(T8,(GU+(/Q(1()*+(?@,7A1B(-V167A-

>

#

5
5 >

?WC

=191

* # * 5

$%&'(

*'/=80-'

$%&'(

!/.,86-'

;0/6789-<

1%T2,-.=34(

1%T2'-0&34

;0/6789-<

MW$

GU+

MW$

0/668.@019@/.(9@6-

*'/=80-'

0/672(9@6-

!/.,86-'

0/672(9@6-

X(5(0B02 5(0B02 5(0B02

* # * 5

$%&'(

*'/=80-'

$%&'(

!/.,86-'

;0/6789-<

=1912,-.=34(

=1912'-0&34

;0/6789-<

3$4(G@6@.R(=@1R'16,(Q/'(1'0%@9-098'-(6/=-A(1.=(GU+(/Q(1(*'/=80-'O!/.,86-'(-V167A-

G'1.,109@/.(U-&-A(+/=-A

M'0%@9-098'-(+/=-A

*'/=80-'

0/672(9@6-

!/.,86-'

0/672(9@6-

7/AA@.R

QA1R

'-,-9

QA1R

,-.=

=191

Figure 3.2: TLMs with detailed communication timing

TLM channel. The communication delay has great influence on the execution time

and even liveness of the design. The delay is highly dependent both on how the com-

munication channel is implemented as well as on what protocol the communication

is performed.

Take the Producer-Consumer model illustrated in Figure 3.2 (B) as the example. In

this example, producer and consumer communicate with a double handshake channel.

The double handshake communication takes no time in architecture refined model,

but in TLM the delay is introduced. In our model the double handshake channel

is implemented as a three-step communication. The producer first polls the ready

40

flag in the consumer and then clears the flag after it makes sure the consumer is

ready to receive the data. After the completeness of the first two, the data is sent

from the producer to consumer. With this implementation, the delay caused by these

three steps should be considered together. Also, in our producer consumer model

the chosen communication protocol is AMBA AHB. As the illustration shown in

Figure 3.3, each communication takes at least two cycles to transfer in AMBA AHB

protocol. Therefore, for a data transfer using double handshake over AMBA AHB

protocol, the delay for the communication is at least 6 cycles.

 !"#

 $%%&

'()*+,

!-./0-1

 2%3

'()*+,

 &%3

'()*+,

 &4$%5

$

!-./0-1

%6/6

7$8

%6/6

7$8

$990:;<6=> %6/6:;<6=>

$?@$:$ @:;0-/-A-1

Figure 3.3: AMBA AHB Protocol (source[53])

By formally extracting the timing relations from the TLM and checking these with

the SMT solver, our proposed method can verify the meeting of the timing constraints

with the selected architecture and bus protocol.

41

3.1.3 Related Work

There is significant work in the realm of formal verification of system-level design, and

one research method in this area is to convert the semantics of a behavioral model

into another well-defined representation and make use of existing tools to validate

the properties of interest. In [40] designs in SystemC are transformed into UPPAAL

time automata and verified by UPPAAL model checker; in [39] and [38] a method

to convert SystemC into state machines for verification is proposed; [42] proposed to

translate SystemC models into a Petri-net based representation for embedded sys-

tems (PRES+) for model checking; [43] proposes a multi-layer modeling to represent

SystemC design in a predictive synchronization dependency graph (PSDG) and ex-

tended Petri net is proposed for formal deadlock checking. [44] translates SystemC

to Kripke structure and applies symbolic model checking for verification. In contrast,

Our approach [48] acts as an interactive property checking tool which brings uncer-

tainties about critical properties and corner cases to the attention of the designer. In

our method, the designer verifies points of interest by adding corresponding assertions

to the extracted SMT model. [52] uses similar time interval model for verification

of synchronization. In comparison, our approach does not support multiple event

synchronization which is not supported in this related work, but also support the ver-

ification of timing constraint. The satisfiability report obtained through our method

highlights often special situations, such as missed acknowledge signals or unsatisfied

condition, and assists the designer in verification of the model for all cases.

3.2 Time Interval Models

In system design, functionality is not the only concern. Timing constraints are critical

as well, especially for real-time systems and communication protocols. Therefore, the

42

notion of time is an important aspect of the model. In this section, we propose a time

interval model to represent the timing aspect of the target SpecC model. By formally

analyzing the time interval model, we prove or disprove the satisfiability of proper-

ties of interest in the model. The proposed time interval model can be seen as the

combination of timing stamps and timing relations, and the model can be visualized

as a graph with timing stamps as vertices in the graph and timing relations as edges

between vertices. For each statement of interest s, a set of timing stamps ⟨Tstart,

Tend⟩ [37] are given to represent the start and end time of the execution of the state-

ment in the model. To properly reflect the discrete event semantics with delta cycles,

we make every time stamp a 3-tuple ⟨Time(t), Delta(d), Order(o)⟩, where Time and

Delta represent the simulation time and delta cycle of the time stamps respectively.

Note that we use the third member, called order, to distinguish statements that oth-

erwise happen at the same time and delta cycle. The ordering is determined based

on the timing relation between statements and assigned automatically by the solver.

For such time stamps, we define a set of operations as listed in Table 3.1, describing

the relations equality and greater-than, as well as time advance by wait-for-time.

Table 3.1: Operations of time stamp
Operation Definition
TA = TB TA.t = TB.t, TA.d = TB.d, TA.o = TB.o

TA >TB TA.t >TB.t or
TA.t = TB.t, TA.d >TB.d or
TA.t = TB.t, TA.d = TB.d, TA.o >TB.o

TA waitfor N TA.t = TA.t + N, TA.d = 0

Exact timing, such as delay or execution time of computation and communication, can

be specified by using wait-for-time statements that carry a time argument of integral

constant type. When a wait-for-time statement is executed, the current behavior is

suspended from execution for the specified time. Figure 3.5(A) shows an example

with waitfor, wait, and notify statements. Here, statement A is executed val time

43

units before statement B due to the waitfor val; statement. For this example, the

following conditions hold:

Tstart.t(stmnt B) = Tend.t(stmnt A) + val

Tstart.d(stmnt B) = 0

In the following sections, we will describe for what statements our approach generates

timing stamps for them and how the timing relations between timing stamps are

extracted from the system model.

3.2.1 Timing Constraints

Minimum or maximum bounds on the time between two statements in the model are

called timing constraints. To meet real-time constraints imposed on the application

by the environment, e.g. for communication, such constraints need to be specified

with the design model so that it can be implemented accordingly.

In the SpecC language, timing constraints can be specified in the model with a spe-

cial do-timing construct, with which the timing constraints can be checked during

simulation or, in our case, be extracted to assertions for formal verification. The

syntax of timing constraints contains two parts: the do block specifies a set of la-

beled statements, whereas the timing block contains the actual constraints. In the

do block, the statements whose timing the designer wants to check are given a unique

label and in the following timing block the labels are used to set the constraints.

Constraints are specified with the range construct, which takes four arguments. The

first two arguments specify the labels and the last two the lower and upper bounds of

the timing constraint, respectively. A do-timing example is shown in Figure 3.5(B).

44

There are three labels in the do block, and two constraints are specified with range

constructs in the timing block. Note that label L2 is attached to a compound state-

ment which contains two child behavior calls. The following condition must hold for

the constraints in this example:

0 ≤ Tstart.t(L2)− Tstart.t(L1) ≤ 100

0 ≤ Tstart.t(L3)− Tstart.t(L2) ≤ 300

Since Tstart(L1) = Tstart(i A) and Tstart(L2) = Tend(i A), the first constraint limits the

execution time of i A to less than or equal to 100 time units. The second constraint

sets the upper bound for the execution time of the statement labeled L2, which is also

the sum of the execution time of i B and i C. This way, specific timing constraints

on the execution time of any child behavior can be specified.

3.3 Timing Relation Extraction

 !"#$%&'()$*

+%,&!-.,/"*!0

!!!!(%-1'2)342-/245

!!!!6.,27%$!!89 5!

!!!!:;4)/&"<*5!

=

>!":%/4'-)$*

+%,&!-.,/"*!0

!!!!:;$)(),+)"<*5!

!!!!(%-1'2)342-/245

!!!!6.,27%$!!8? 5!

=

@AB)2C%&!7%$!

4)/&,/D!&.2.A@

+%,&!4)/&"*

0!(%--;342-/245!=

:!":C/E*

@AB)2C%&!7%$!

$)(),+,/D!&.2.A@

+%,&!$)(),+)"*

0!(%--;342-/245!=

B.,/

Figure 3.4: Producer-Consumer SpecC Model

A system model is composed of multiple computation blocks (modules, behaviors)

45

with communication (channel) between them. The approach proposed in this chap-

ter distinguishes three types of modules, and here we use a Producer-Consumer model

showed in Figure 3.4 to illustrate these three types of modules:

1) Leaf behavior, which is purely composed of local variables, local methods, and

a main method which implements the computation. In this example, behavior Pro-

ducer and Consumer are of this type of module.

2)Hierarchical behavior, which is purely composed of child behavior instances and

a main method which specifies the composition of the instances. Behavior Main in

the Producer-Consumer model is of this type of behavior.

3) Channel, where methods called by the leaf behaviors to implement the commu-

nication is defined (channel C in this example).

 !"#$%&'()"$'*+&,%-%./01(2

((("$'3(%*30415

((("$')(%*)0415

((("$'6(%*60415

((($&%7(-#%.0$&%71(2

7& 2

((((((((((89:(((%*3;-#%.01(5(

((((((((((8<:(2(%*);-#%.01(5

(((((((((((((((((%*6;-#%.01(5(=((

((((((((((8>:(2(=(=

?%-%./(2

'#./!(0895(8<5(@5(9@@1(5(

'#./!(08<5(8>5(@5(>@@1(5(

((((((=

(((=

=

8&A!'()&B.7

CDD!'()&B.7

031(!"#$%&E(!"#E(#.7('%#"$(0)1()%*#"+"',(F&.G?'#%.?(

 !"#$%&'(8!#H9(

0%.(!$!.?(!9E(&B?(!$!.?(!<1(2

((($&%7(-#%.0$&%71(2

((((((4

((((((G?-.?*3(5

((((((A#%?H&'($#I5(

((((((G?-.?*)(5(

((((((4(

((((((G?-.?*6(5(

A#%?(!9(5(((((((

((((((G?-.?*+(5(

.&?%HJ(!<(5(

((((((4(

(((=

=

Figure 3.5: Two types of timing specification in SpecC language

In our proposed method, we utilize the logic of uninterpreted functions with linear

arithmetic (QF LIA) which incorporates the Core and Ints theories to generate the

assertions. We use a function symbol (in SMT-LIB2 language) to represent each

time stamp in the model and convert the timing relations between those stamps into

assertions. For a newly introduced function symbol, the user can define the number of

46

arguments, and the data type of the argument and the return value. In our method,

the return value of an uninterpreted function is seen as the value of a time stamp,

and the arguments of the function are used to specify the number of iterations a

block is executed (if in a pipelined or loop structure). Take the waitfor statement in

Figure 3.5(A) as an example. In the example, stmnt A and stmnt B will be executed

once only and no argument is needed in the function symbol declaration for these two

statements, and there is a delay of val time units between the execution of stmnt A

and stmnt B inserted by the waitfor val statement. Thus, the assertions below are

generated for the timing relation above. Our tool will name the symbol with the full

hierarchy path to ensure the uniqueness of each function symbol.

(declare− fun Tend.t stmntA () Int)

(declare− fun Tstart.t stmntB () Int)

(assert (= Tstart.t stmntB (+ Tend.t stmntA val)))

3.3.1 Timing Relation for Hierarchical Behaviors

In SpecC, the child behavior instantiation implies a function call to the child behavior.

For a behavior S consisting of a set of child behavior instances ⟨s1, s2, s3, ...sn⟩, the

following condition holds:

∀i ∈ {1, 2, 3, ...n},Tstart(S) ≤ Tstart(si),

Tend(S) ≥ Tend(si)

The timing relation between the child behaviors is dependent on the execution type

specified in the parent behavior. The proposed approach identifies the composition

statement in the SpecC hierarchical behavior, and extracts corresponding timing re-

47

lations for the composition. Take the Main behavior in the producer-consumer model

as the example. Our tool first identifies the par statement and the instances specified

in the compound statement, and then generates a set of assertions for the concurrent

composition according to the SpecC execution semantics as shown in Figure 3.6.

behavior Main(){

 Chnl C ;

 Producer A(C);

 Consumer B(C);

 int main () {

par{

 A.main() ;

 B.main() ;

 }

 }

} ;

 !"#$"%&#'()* !"#$"%&#'(+,

 !"#$"%&#'()* !"#$"%&#'(+-

 !"#$"%&#'(+,)* .(/%&#'(+,

 !"#$"%&#'(+-)* .(/%&#'(+-

 .(/%&#'(+,)* .(/%&#'(

 .(/%&#'(+-)* .(/%&#'(

0'.$#$12'1#3*-.2#4'5$ '6'(7*8.3#"'5(!

Figure 3.6: Hierarchical behavior in Producer-Consumer model

In this work, we support sequential, parallel, pipelined, and loop behaviors. SpecC

language also defines FSM and exception behaviors, which we do not support at this

time.

1) Sequential Execution of statements is defined by ordered time intervals that do

not overlap. Formally, for a statement S consisting of a sequence of sub-statements

⟨s1, s2, ...sn⟩, the following conditions hold:

∀i ∈ {1, 2, ..., n},Tstart(S) ≤ Tstart(si),

Tend(si) ≤ Tend(S)

Tstart(si) < Tend(si)

∀i ∈ {1, 2, ..., n− 1},Tend(si) ≤ Tstart(si+1)

2) Parallel Execution can be specified by par or pipe statements. Formally, for a

48

par statement S consisting of concurrent child statements ⟨s1, s2, ...sn⟩, the following

conditions hold:

∀i ∈ {1, 2, ..., n},Tstart(S) ≤ Tstart(si),

Tend(S) ≥ Tend(si)

Tstart(si) < Tend(si)

3) Pipelined Execution of statements is a special form of concurrent execution. For-

mally, for a pipe statement S executed for m iterations, let si.j represents the j-th

iteration of the execution of statement si. Then, the following conditions hold:

∀i, x ∈ {1, 2, ..., n}, j, y ∈ {1, 2, ...,m} :

Tstart(si.j) < Tend(si.j),

Tstart(si.j) = Tstart(sx.y), if i + j = x + y

Tend(si.j) = Tend(sx.y), if i + j = x + y

Tend(si.j) ≤ Tstart(sx.y), if i + j < x + y

A limitation of our approach is that the number of iterations m has to be a known

integer. If it is statically unknown (i.e. a variable), our tool will prompt the designer

to input an upper bound for the loop.

4) Loop Execution can be regarded as a special case of pipelined execution with only

one stage. As above, we assume that the number of iterations is a finite constant.

Assertions for hierarchical behaviors in this chapter looks the same with assertions

shown in the previous chapter, but note that each time stamp in this chapter is a

3-tuple as we defined above and we use operations defined in Table 3.1 to specify the

timing relations between stamps in the time interval model.

49

3.3.2 Timing Relation Extraction for Leaf Behaviors

In contrast to the work presented in the previous chapter, we pay significant atten-

tion here to analyze the timing information specified in leaf behaviors and channels,

which is critical in order to capture communication timing in TLMs. Figure 3.7(A)

highlights the statements which are analyzed in the source code as well as the rules

to extract the corresponding timing relations for the static analysis. The rule for the

waitfor statement has been introduced already. We now describe the others.

 !"#$%&'(()%*+!',#-!(./(%*+!',#-!(01

2

(((($&%3(4#%*()$&%31(2

((((((((%,()51((2

((((((((((((5(

((((((((((((6#%+,&'()781(9

((((((((((((5(

((((((((((((6#%+(:(9((;

((((((((5(

((((((((*&+%,<(=(9(

((((((((5

((((((((.>?!*3)51(9

((((((((5(

((((((((0>'!-!%$!()51(9(((;

;

%*@%*!(

-"#**!@(,A*-+%&*

-'!#+!(6#%+B*&+%,<(

#??!'+%&*?

-'!#+!(%,B+"!*B!@?!(

#??!'+%&*
%*-'!#?!(

CD#-+(E%4!

)F1(+%4%*G(#H?+'#-+%&*(,&'(@!#,) 1(6"%@!(@&&I(A*'&@@%*G

6"%@!()-&*31(2

(((?+#+!4!*+?(9

;

,&'()%J89(%K49(%LL1(2

((((%,)-&*3)%11(2

(((((((?+#+!4!*+?(9(;

;

((((%((2M/5/m !"#

$%&'()*+,-./####$%&'() !*+,-./

####)# #01232m !"#

$%&'()*+,-./0####$%&'()+ !"#$%&'

Figure 3.7: Timing relation extraction for a leaf behavior

1) Conditional Execution: When conditional execution, such as a if statement or

if-else statement, is used in the model, we create a time interval ⟨Tif start, Tif end⟩

and a logic stamp Cif which represents the logic condition (for if-else, we also create

a 2-tuple ⟨Telse start, Telse end⟩). Figure 3.8 illustrates the timing relations for the con-

ditional execution. Here, Tprev and Tnext represent the time stamps before and after

the conditional execution. As shown with the selection structure in Figure 3.8, the

value of Tnext is dependent on the binary value of Cif .

Note that Tnever is a time stamp with a very large value representing infinity. We

represent the situation that a statement will never be executed by giving the cor-

50

responding time stamp this large value, as there is no way to represent infinity in

the SMT-LIB language. Any time stamp greater or equal to Tnever means that the

corresponding situation will never happen.

Note that our tool will not analyze the specified condition in an if-statement, but only

create the conditional assertions as listed in the illustration. It is the SMT solver’s job

to find an assignment for the condition and time stamps that satisfy the assertions.

…Cif = true

Tprev Tnext

Tif_start Tif_end

Cif = false

…Cif = true

Tprev Tnext

Tif_start Tif_end

Cif = false

Telse_start Telse_end

…

if (Cif == true): Tif_start = Tprev

Tnext = Tif_end

Tnext = Tprev

if (Cif == true): Tif_start = Tprev

Tnext = Tif_end

Telse_start = Tprev

Tnext = Telse_end

Tif_start = Tnever

Telse_start = Tnever

Tif_start = Tneverif (Cif == false):

if (Cif == false):

Figure 3.8: Timing relation extraction for the conditional execution

2) Loop Unrolling: To limit the verification space and the execution time of the

solver, for each loop with undefined iteration count (i.e., the condition is variable),

our tool will prompt the designer to provide an the upper bound for the loop, and then

unroll the loop to multiple if statements. Figure 3.7(B) illustrates the loop unrolling

performed by our tool. It also shows that the tool creates implication assertions for

the conditions generated by loop unrolling.

3) wait-notify synchronization: In order to analyze a TLM with synchronization

among multiple concurrent behaviors, we support events and the corresponding wait-

notify synchronization. When a wait statement is executed, it suspends the current

thread from execution until the event is triggered by a notify. A time interval ⟨Tstart,

Tend⟩ is generated as for other statements. For a wait statement W triggered by a

51

notify statement N , the following conditions hold:

Tstart(W) ≤ Tstart(N),

Tend.t(W) = Tend.t(N),

Tend.d(W) = Tend.d(N) + 1

Note that Tstart equals Tend for a notify statement. Also, to analyze the satisfia-

bility of the specified timing constraints, we have to determine the mapping between

wait and notify statements, i.e. which notify wakes up which wait. Our pro-

posed method to generate the assertions for the wait-notify mapping is illustrated in

Figure 3.9.

 !"#$%&'

&&&(

 !"#$%&'&

&&&(&

 !"#$%&'

&&&(&

&&&(&

 !"#$%&'

&&&(&

&&&#$&)*! +,&&&

& !"#$%&-

&&&(&

.#/01# 0&!$

.20304

*! +
"450 $6170

86#"&'

&&&(

86#"&'

&&&(&

86#" '

&&&(&

&&&(&

86#"&-

&&&(&&

90:63#!4&9;
90:63#!4&9< 90:63#!4&9=

90:63#!4&9> 90:63#!4&9?
90:63#!4&9@ 90:63#!4&9A

 !"#$%&&'&B

86#"&&&&'

Figure 3.9: Timing relation extraction for the wait-notify statement

In this example, all behaviors are executed in parallel except for the two behavior

pairs ⟨B1, B2⟩ and ⟨B6, B7⟩ executed sequentially. Our method consists of two steps:

(1) for every event in the model, our approach collects all start times of all event

notifying statements and generates the assertions to sort the time stamps of the

notify statements which trigger the event. This step is illustrated in the upper part

of Figure 3.9. Note that if the notify statement is inside a conditional statement,

the value of its time stamp is dependent on the condition. For example, Tstart.t for

52

the notify statement in behavior B4 in Figure 3.9 will be greater than Tnever if the

logic condition is false.

(2) for every wait in the model, we generate the assertions to ”search” the sorted time

stamps of the notify statements and find one that is greater than and the closest to

Tstart of the wait, and set the time and delta cycle of the wait using the condition

we listed above. This step is illustrated in the lower part of Figure 3.9.

4) Channel Interface Function Call: In a TLM, the timing information of the target

bus protocol and the synchronization mechanism between communicating parties are

specified in the interface methods defined in the channel. The communication between

the behaviors takes place by calling those interface functions. To generate assertions

for the SMT solver, our approach traverses down to the interface method in the

channel when it is called. Consequently, the timing information specified in the

channel model is taken into consideration during the timing analysis of the behavior.

3.3.3 Liveness and Deadlock

For a multi-PE system model, improper execution order or communication may lead

to problems, including deadlock. In our method, a deadlock caused by circular waiting

in the model will be reported to the designer in the form of unsatisfiable assertions

since there are conflicts in the timing relations. Another potential deadlock would

be a wait statement missing the wake-up signal. Figure 3.9 also shows examples for

two cases. Behavior B6 shows one case in which wait X misses all notification for X

therefore it will never be waken up. Behavior B7 illustrates another case. wait Y can

not wake up if the condition for notify Y in behavior B4 is not true. Both situations

are covered by our tool and reported to the designer.

53

3.3.4 Hierarchical Timing Analysis

The number of assertions generated by our method increases with the complexity of

the model. To keep the number of assertions manageable and limit the run time of

the SMT solver, our method addresses the complexity growth by analyzing the timing

constraints in a hierarchical manner. Timing constraints verified at a lower hierarchy

level are regarded as the prerequisite conditions for the verification of the higher level.

Verified timing constraints can be specified by use of the do-timing construct in the

model. When our method finds a do-timing construct during the design traversal,

it will take the constraints as they are and not traverse further down the hierarchy.

Thus, the assertions needed for model verification at the higher hierarchical level are

greatly reduced.

!
" #$

%
&
%

'
(
)*

$
+
)+

,, - ./0-

,123+45

*6753

869(:

9;;53

869(:

,18<)1)<45

=(:1

23+45
 !

+;;*<>+)<6(

*6753

869(:

9;;53

869(:

,?)

23+45
@1 A)B1

23+45

Figure 3.10: Hierarchical timing analysis of CAN bus protocol

Take the CAN bus protocol as an example. The bit time generated by the bit time

logic for each engine control unit (ECU) can vary due to different local operating

frequencies. Thus, the time needed for transmission can differ from one frame to

another. To verify the timing constraint of the frame transmission, we use the pre-

verified lower and upper bound of the bit time as prerequisite conditions. Figure 3.10

illustrates the hierarchical timing analysis of CAN protocol from the bit time via

frame time up to the application.

54

3.4 Case Study and Experiments

We use two standard bus protocols widely used in industry to demonstrate our ap-

proach. As shown in Table 3.2, both models are of reasonable size with practical

analysis times.

3.4.1 Case Study on AMBA AHB

 !" #$

Figure 3.11: TLM of Producer-Consumer example using AMBA AHB

Our first example is a producer-consumer model communicating over an AMBA AHB

protocol [55]. Here, the producer and consumer call interface functions send and

receive, respectively, to transfer data through an AMBA AHB channel specified at

55

TLM abstraction [55]. In this example, the producer acts as the bus master and sends

data to the consumer (slave). Figure 3.11 illustrates the TLM with the detailed bus

model.

The ARM producer calls the interface function send defined in the AHB channel

adapter to send the data, and the consumer calls receive to service the requests

from the master. The procedure contains three steps as the timing diagram shown

in Figure 3.2(B). The bus model use polling in the implementation of double hand-

shake channel (no interrupts). Note that a parallel behavior PollFlag is created and

instantiated in the HW slave. The functionality of the PollFlag block is to respond

for the slave to all polling requests from the master before data is transferred. The

data transfer includes three stages in our AMBA AHB TLM:

(1) To check whether the slave is ready, the master reads a ready flag from the slave.

The interface function keeps executing the ReadFlag function until the ready flag

asserted by the slave and the request to read the flag is successful. When the address

and control are valid for the behavior PollFlag, the master reads the flag and proceeds

to the ResetFlag function for full synchronization with the slave.

(2) The master and slave synchronize in double handshake fashion. For this, the flag

in behavior PollFlag has to be reset after the master has read it. Here, the master

requests the reset operation by writing 0 to the address of the flag in PollFlag.

(3) After the synchronization steps, the master proceeds to the SendData function.

In this stage, the master sets the address and data signals on the bus with the slave’s

address and the data content. After the slave checks the address and the control

signals, it proceeds to the Response function to receive the data from the bus.

Figure 3.12 shows the time line of the three steps. Note that this example assumes the

best case, i.e., successful requests for polling and data transfer. Note that according to

the first stage of synchronization, the number of polling iterations (ReadFlag) in the

send function depends on the iterations for the ListenCntlCycle in the serve function

56

as well as the condition in the if statement in the Response function. However, this

complex relationship cannot be generated automatically into assertions. In this case,

the system designer augments the assertions manually so that the SMT solver can

take this relation into account when computing the satisfiability. The 6 augmented

assertions in Exp1 in Table 3.2 represent the six correlation shown in Figure 3.12: 1⃝

and 2⃝ specify that the ReadFlag function ends after the behavior PollFlag responds

to the polling request with writing flag to the bus, and the Response function starts

after the address and control are valid in the ListenCntlCycle stage; ResetFlag func-

tion in the producer ends after the behavior PollFlag responds to the reset request to

the flag are specified with 3⃝ and 4⃝; and assertions for correlations 5⃝ and 6⃝ specify

that Response function starts after the producer proceeds to the SendData function,

and the SendData function ends after the consumer has received the data .

Figure 3.12: The procedure of a data transfer from master to slave on AHB

57

3.4.2 Case Study on CAN Bus Protocol

The second example is a three-ECU communication over a CAN bus protocol[56]. In

this automotive example, the RPMcompute ECU issues a request to an RPMsensor

using a remote frame. Upon the reception of the request, the sensor initiates an

operation to read revolutions per minute (RPM) from the engine and sends it back to

RPMcompute using a data frame. After receiving the raw RPM from the sensor, the

RPMcompute ECU calculates the average RPM and sends that to Dashboard ECU

for displaying. The procedure is illustrated in Figure 3.13, and the detailed bus TLM

is shown in Figure 3.14. Similar to the previous example, the designer has to specify

the scenario described above with 3 augmented assertions. These three assertions

represent the following timing relations: the end time of remote frame transmission

in RPMcompute equals the end time of the remote frame reception in RPMsensor;

the end of frame transmission in RPMsensor equals the end of the frame reception

in RPMcompute; and the end of the frame transmission in RPMcompute equals the

end of the frame reception in Dashboard.

 !"#

$%&'(

)*+,-.,/'

01.2,-'&-34

 !"5

$%&'(

)*+0/6789-

01.2'-:34

;0/6789-<

01.2,-.=34(

 !">

$%&'(

?1,%?@,7A1B

01.2'-0&34>

#

5

Figure 3.13: Automotive example using CAN bus

According to the CAN bus protocol, each frame transfered with CAN bus protocol

is composed of following fields: Start-of-frame (SOF), Identifier, Control(includ-

ing Remote transmission request, Identifier extension bit, Reversed bit, and Data

length code), Data filed, CRC, CRC delimiter, ACK, ACK delimiter, and End-of-

frame(EOF). In our CAN bus model, the bit time units required for each commu-

58

nication step (field) in CAN bus protocol are specified with do-timing construct as

prerequisite, and we analyze the satisfiability of timing constraints based on this

prerequisite.

 !"#$%&'()*+,#

()#")./

()#")

#)01.213%&'4,56-/

7#)01$%&'$"089):

;#2<).213%&'+)*+,#/

%)=9)+<

;#2<).213%&'4,56-/

#)01.213%&'+)*+,#/

()*1

;#2<).213%&'4,56-/

%)4)2")

#)01.213%&'4,56-/

 !"#$ 2<(<#)05&#,4)++,#

1,

;02<$.+,>/$?

21@A---B

4*<8@$A---B

10<0@$ACB

$$$$C

*,<2>D$.),>/$?$

<252*E

#0*E)$.21?$4*<8?$

$$$$$$$F52*.21/?$F50G.21//$

#0*E)$.4*<8?$10<0?$

$$$$$$$F52*.4*<8/?$F50G.4*<8//

#0*E)$.10<0?$4#4?$F52*C$

$$$$$$C$

#)01$.<0#E)<321/

1,

$$;02<$.),>/$?

$$72*69<$21H$4*<8H$10<0:$

;!28)$.21$I$<0#E)<321/

#)<9#*$10<0H$4*<8

;#2<)$.21/

1,

$$$*,<2>D$.+,>/$?

;02<$.),>/$?$

$7,9<69<$21H$4*<8H$10<0:$

;!28)$.<G31,*)/

21H$4*<8H$10<0H$<G31,*)

 !"#$J*E2*)

K610<)$

%&'

 !"#$%&'L,569<)

%)=9)+<$./

7L,569<)$MNO:

()*1./

 !"#$P0+!Q,0#1

%)4)2")./

Figure 3.14: TLM of automotive example using CAN bus

3.4.3 Experimental Results

The statistics of TLM timing analysis for both bus protocols are listed in Table 4.2.

In the experiments, we verify the satisfiability of liveness and timing constraints. Ex-

periment 1 and Experiment 6 are the SMT2-LIB model generated for the Producer-

Consumer and the 3-ECU example with augmented assertions specified by the de-

signer to reflect the real use case. In these two examples, we simply check if there is

any conflict caused by circular waiting in the model, and then we augment the model

with one assertion asking if the execution of the model can finish in Experiment 2 and

Experiment 7. Experiment 3 and Experiment 8 is for checking the minimal execution

time of the mode. In this two experiment we augment the models with assertions

59

asking if the execution can finish within a time violating the protocol specification. As

for Exp.4, Exp.5, and Exp.9-11, we test the satisfiability of given timing constraints

under certain conditions. For example, Experiment 11 in the table shows a scenario

where we allow the model to utilize the bus up to 60% maximum, that is, on average

over 5 slots only 3 may be used. In these experiment, we model conditons specified

in the Condition field of the table by giving assertions to control boolean function

symbols representing the condition of the while loop statement in the TLM.

Except for the condition and the results, statistics results such as number of assertions,

lines of code (LOC) and the run time of the analysis for those assertions are also listed

in the table. According to the measured time, the satisfiability searching for these

two models and the constraints we added is reasonably fast, and as is often expected,

unsatisfiable solutions are faster obtained than satisfiable ones. Note that for the

test case 6 the solver gave no answer after two hours of calculation. According to

our observation, models with less constraints usually take more time to analysis. To

reduce the search time, we add an assumption that the entire transaction finishes in

finite time (Experiment 2 and Experiment 7). All experiments have been performed

on a host PC with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz.

3.5 Summary

In this chapter, we have proposed an improved approach to verify liveness and timing

constraints by extracting timing relations from a TLM design model and using a

SMT solver to verify the satisfiability of the corresponding assertions. Compared

with the method proposed in the previous chapter, the improved approach can verify

the timing information specified in computation as well as in communication. Also,

we introduce a hierarchical method to cope with the complexity growth of the model.

We demonstrated our approach with two standard bus protocols AMBA AHB and

60

Table 3.2: Static SMT Analysis of TLM examples using AMBA AHB and CAN bus
protocols

Experi− Constraint Condition #of LOC Time Result
ment assertions

Liveness and timing analysis for AHB TLM
1 None No Circular Waiting 240 19389 332s SAT

(6 aug.)
2 Tend(Prod) No Circular Waiting 241 19392 313s SAT

< Tnever (7 aug.)
3 Tend(Prod) Min. execution time 242 19395 4s UNSAT

< 6 cycles (8 aug.)
4 Tend(Prod) Polling succeeds 243 19401 333s SAT

≤ 10 cycles in the first 2 attemps (9 aug.)
5 Tend(Prod) Polling succeeds 243 19401 114s UNSAT

≥ 10 cycles in the first 2 attemps (9 aug.)
Liveness and timing analysis for CAN TLM

6 None No Circular Waiting 382 24963 > 2hr UNKNOWN
(3 aug.) 24963

7 Tend(DashDisp) No Circular Waiting 383 24972 189s SAT
< Tnever (4 aug.)

8 Tend(RPMcmp) Min. execution time 384 24975 50s UNSAT
≤ 200 units (5 aug.)

9 Tend(RPMcmp) Write always fails 387 24984 284s SAT
≤ 500 units in the 1st attempt (8 aug.)

10 Tend(RPMcmp) Write succeeds 387 24984 5s UNSAT
≥ 300 units in the 1st attempt (8 aug.)

11 Tend(RPMcmp) Bus utilization 385 25054 135s SAT
≤ 500 units ≤ 60% (6 aug.)

CAN bus. Our approach utilizes the designer’s augmented assertion reflecting the

properties of interest. In future work, we plan to improve the interaction between the

designer and the SMT assertion generator.

61

Chapter 4

May-Happen-in-Parallel Analysis

of ESL Models

4.1 Introduction

For concurrent and parallel languages, the May-Happen-in-Parallel (MHP) problem

asks for two given statements whether or not there is a possibility where these two

statements are executed at the same time. MHP analysis is useful as a basis for

static model analysis and debugging, such as resource allocation and contention or

race condition detection. In this chapter[57] [58], we propose an approach to abstract

an UPPAAL model [60] from a system in SpecC system level description language

(SLDL) and analyze the MHP statements by verifying the model with the UPPAAL

verifier. In contrast to other techniques, such as [65], our approach can not only check

the MHP property of two statements, but also of any number of statements and other

properties.

62

4.1.1 MHP Analysis using UPPAAL Model Checker

Figure 4.1 illustrates the analysis flow and the tool chain we use in this work to

analyze MHP statements.

 !!""#$

%&'(#$

)*(+,(-.

/(-0123"

4(5067

)&8!0#(-.

9(107(8(73

%&'(#

:(7(-"3&-

;<(-2

:(7(-"3&-

%&'(#=>8#

;<(-0(5=?

@"3

 75"3
@A9

%BC$"7"#2505

%"2D(

Figure 4.1: MHP analysis flow with UPPAAL model checker

Before the analysis, the system design is compiled into a System Internal Represen-

tation (SIR) data structure [14]. The internal representation is then read by the

Model Generator and Query Generator modules of the MHP analysis tool. The yel-

low blocks in the illustration are the existing tools to generate the SIR model and

verify it, and the green blocks represent the tool we created to connect the design flow

and the analysis. The Model Generator abstracts an automata model from the SIR

structure, and the Query generator generates the queries for MHP analysis, asking if

any two given scheduling points could possibly happen at the same time. According

to the model and queries, the UPPAAL model checker will give one of the following

answers: satisfied, not satisfied, or maybe. Each satisfied query represents a pair of

MHP scheduling points, while an unsatisfied query means the two scheduling points

will not happen at the same time. The maybe answer is given when the upper ap-

proximation option in the state space representation of UPPAAL verifier is enabled.

In our experiments, we will use an example to demonstrate these three cases.

This chapter is organized as follows. Section 4.1.2 reviews the related work of MHP

analysis as well as system modeling with automata. The motivation of this work is

discussed in Section 4.2. Model and Query Generator are described in Section 4.3

and Section 4.4. In Section 4.5 the model optimization to shorten analysis time is

63

introduced. Section 4.6 shows the experimental results for multimedia applications

(two JPEG encoders, and MP3 decoder). In addition to MHP analysis, we extend

this work to support timing delay and power consumption analysis, and the concept is

introduced in Section 4.7. Finally, summary and future work are discussed in Section

4.8.

4.1.2 Related Work

MHP analysis and race condition detection in concurrent and parallel language has

been broadly studied. [69] proposed an approach to find MHP statements in a un-

timed concurrent program with trace flow graph (TFG). [66, 67, 68] detect races and

analyze non-deterministic anomalies in timed concurrent models, but in those meth-

ods simulation is required. In [65], an approach using static segment aware detection

to identify MHP segment pairs is proposed. Like [65], our approach focuses on the

timed model and does not require simulation. Compared to [65], our approach re-

ports more precise results at the price of longer analysis time. Another advantage of

our approach is that instead of just giving the MHP analysis results, our method can

report the trace of transitions showing how statements can be executed in parallel. In

addition, our approach can also identify the MHP sets of any number of statements

and verify other properties like liveness (deadlock detection) and timing guarantees.

As for the system modeling, [62] and [63] propose approaches to model the behavior

of SLDL designs with automata in PROMELA, and in [?] the design is modeled as

a network of timed automata. The model is then analyzed with SPIN and UPPAAL

model checker, respectively. Our approach [57] [58] also models the application with

a network of automata and analyzes it with UPPAAL model checker. Compared with

other works, our approach supports the modeling of richer design compositions and

64

channel communication. More important, instead of only supporting the behavior

of regular discrete event simulation (DES), the scheduler process in our model also

supports parallel DES (PDES) [64], which is essential to our MHP analysis.

4.2 May-Happen-in-Parallel Analysis

In this work, the definition of May-Happen-in-Parallel (MHP) analysis is defined as

”for two given statements in the design, is it possible that these two statements are

executed at the same time?”. In Chapter 1 we have used an example illustrated

in Figure 1.6 to show how a MHP case can cause a wrong execution result. Here

we describe why this issue cannot or may not be detected with simulation-based

validation and requires other analysis techniques to identify the MHP statements in

the design.

 !"#!

 !"#$$$%

!&'$'()*+', !"#$-' %&.-'/0,!&.

 1223

 th !"# !"#!th !"#$#%&"'!"%(&')'#*+"

,($#"-&.+" !"#+"$%!&'/+"01#23"%(&')'#*"#$#%&!

$%!&'445

67*2&#"&.#"!'8912&'(%"&'8#

,($#"&.#"#231'#!&"th !"#$%& !" &'!()

&'!()##$

%&'

()*!+

,-,*)

./0)

,-,*)

1%2

34

1%2

34

1%2

34

Figure 4.2: Discrete event simulation (DES) algorithm (source[36])

65

Figure 4.2 and Figure 4.3 show two discrete event simulation algorithms. The (regu-

lar) discrete event simulation algorithm [36] is illustrated in Figure 4.2 is used in the

SpecC scheduler. In SpecC, concurrent threads are created for explicit parallelism

description, and their executions are coordinated by the scheduler. The threads ready

to be executed are stored in the READY queue, and one thread is picked among the

threads in READY queue for execution at a time. When the READY queue is empty,

the scheduler will fill the queue again by waking up the threads who have received the

event they are waiting for. These thread are moved from WAIT queue to READY

queue, and a new delta cycle begins. If the queue is still empty after event delivery,

the scheduler advances the time and moves the threads with the earliest waiting time

from WAITFOR queue to READY queue. If there is no more thread waiting in the

WAITFOR queue, the simulation is done. In this algorithm, threads in the READY

queue are picked and run one-by-one in non-deterministic order to model the concur-

rent behavior, i.e., even with the explicit parallelism there is only one thread executed

at a time. In this case, the race condition caused by parallel access to shared variables

can not be triggered and detected with simulation.

To make use of the computation power provided by multi-core processor, our lab

developed a Parallel Discrete Event Simulation (PDES) [64] algorithm in which mul-

tiple threads can be activated at the same time and threads can be really executed

in parallel. The scheduler keeps picking threads in the READY queue for execution

as long as there is available core. This algorithm is illustrated in Figure 4.3.

With multi-core processors and PDES algorithm, now it is possible to detect the race

condition with simulation. However, triggering a potential race condition and detect

it is still not guaranteed with parallel simulation. First, there is still a chance that

the shared variable is accessed by multiple threads in correct order, and the simula-

tion outcome just happens to be correct. Besides, race condition can be input data

dependent, i.e., it may only be triggered by certain input vectors. Since the result

66

 !"#!

 !"#$$$%

 &''(

 th !"# !"#!th !"#$#%&"'!"%(&')'#*+"

,($#"-&.+" !"#+"$%!&'/+"01#23"%(&')'#*"#$#%&!

$%!&'445

67*2&#"&.#"!'8912&'(%"&'8#

,($#"&.#"#231'#!&"th !"#$%& !" &'!()

&'!()##$

%&'

()*!+

,-,*)

./0)

,-,*)

1%2

34

1%2

34

1%2

34

&*+##$
5&*+5 6 789:;

<<&'!()##$

2*))=

1%2

34

!>#9/,?@&'!()A &*+B

C"@!>B

Figure 4.3: Parallel discrete event simulation (PDES) algorithm source[64])

of simulation-based verification is input-vector dependent, we could encounter a case

that for certain input vector the result is correct even race condition happens but for

another set of input the result is wrong.

Finally, detecting the occurrence of race condition is not good enough. When race

condition is observed, the designer needs to identify where it happens in the model.

It is difficult to find out the statements causing the race condition simply with the

simulation result, especially the result can vary from time to time when race condition

happens.

The reasons described above inspire us to develop an approach which is capable of

detecting MHP statements in the design and is also input vector independent. Also,

the proposed approach should be able to assist designers in debugging when MHP

statements are detected, i.e., report the condition in which statements can be executed

in parallel. As the analysis flow illustrated in Figure 4.1, our concept here contains two

steps: The first step is to abstract a system level design into an UPPAAL automata

67

model in which the state transition simulates the behavior of the PDES algorithm.

The second step is that for all possible combinations of two given statements in the

design, we generate a query asking whether or not these two statements can possibly

be executed in parallel. The model and the set of queries are analyzed with UPPAAL

model checker, and an answer will be given for each query. If a query is satisfiable,

which means the corresponding statements in the query can possibly be executed in

parallel, a trace recording the transition to state satisfying this query can be given

by the UPPAAL model checker. With this trace, the designer can easily recreate the

scenario in which these two statements happen concurrently.

4.3 SLDL Design to UPPAAL Model

As we described in the previous section, the proposed method in this paper includes

two parts: model generator and query generator. In this section, we first briefly

introduce the basic concept of mapping a system design into an UPPAAL system

model. After the introduction, we describe how we convert the details of behaviors and

scheduler for parallel discrete event simulation algorithm into UPPAAL automaton

templates.

4.3.1 UPPAAL Automaton and System Model

Before the description of our approach, we first briefly introduce the basic concept of

an UPPAAL system model. An UPPAAL model consists of a network of concurrent

processes which are created by instantiating the pre-defined timed automaton tem-

plates, and these concurrent processes can communicate and synchronize with each

other through parameters and channels defined. The system can be seen as a set of

68

automata running concurrently, i.e., when there are multiple transitions enabled in

the instance processes, these enabled transitions can take place in non-deterministic

order. An UPPAAL system model is usually composed of three parts:

1) definition of data structures, functions and global variables declaration,

2) definition of automaton templates, and

3) system definition.

The first part is quite similar to programming language like C. In an UPPAAL model

the designers can define global variables and function to be accessed and called by

all instance processes. Except for the basic variable types supported by UPPAAL

modeling language, such as integer and Boolean variable, designers can also define

their own complex data structures using struct construct.

As for the second and third parts, we use a simple model in Figure 4.4 to illustrate

the basic components in an UPPAAL model. In this example, the model is com-

posed of two processes Inst1 and Inst2 (illustrated as green blocks in the figure)

communicating through channel [sync] and integer [a].

The templates of the automata has to be defined first and then they can be instan-

tiated in the system definition to create the processes and build the model. To build

a model in Figure 4.4, automaton template TA1 and TA2 have to be defined first. In

the definition of a template, states in the automaton, transitions between states, the

conditions to enable a transition and expression to be evaluated on the transition are

clearly specified. In UPPAAL model they are named as location, transition, and label

respectively.

Take template TA1 as the example. Four locations X1∼ X4, transitions X1→X2,

X1→X3, X2→X4, and X3→X4 are defined. Labels are shown as blocks on transi-

tions in the illustration, and they are attached to transitions to specify the expressions

and conditions in which transitions are enabled.

UPPAAL model checker supports three types of label for different purposes. The

69

first type are update labels (b=1, b=3, or a=b+1 in black in this example) define the

expression to be evaluated during the transition. The second type are guard labels

represent the condition when transitions are enabled. When process Inst2 is at loca-

tion Y2, integer a defines which transition is enabled in this process. Note that when

a equals 3, process Inst2 stays at location Y2.

The third type are synchronisation labels which define the event synchronization be-

tween transitions in multiple processes. The synchronisation labels with exclamation

mark are event producers and the labels with question marks are consumers. In

this example, whenever transition X2→X4 or X3→X4 happens, the transition from

Y1→Y2 happens at the same time if process Inst2 is at location Y2.

 !"#$%

 !"#

#&'"

'() '*)

+",$'

 !"#$%&%'($

-./ -.)

 !"#)%&%'()

 !"#$0
'.-1/

2/

23 2)

24

5/

53

5) 54

67#',+7"

,8'" +,+7"

6'-96

Figure 4.4: Example of an UPPAAL system model

The final step to build an UPPAAL model is to instantiate predefined templates and

create a network with concurrent processes in the system definition. The instance pro-

cesses created in the system definition can communicate with parameter and channel.

In this example, channel [sync] and integer [a] are defined in the system definition

and used to connect processes Inst1 and Inst2.

70

4.3.2 PDES Model in UPPAAL

Figure 4.5 shows our structure of the UPPAAL model for a system model. A system

model is usually composed of multiple computation blocks(modules, behaviors) with

communication (port, channel, event synchronization) between those blocks. Using

SpecC SLDL, the computation block is described as behavior, and our approach

distinguishes two types of behaviors: Leaf and Hierarchical behavior. A leaf be-

havior is purely composed local variables, local methods, and a main method which

implements the computation and the communication, while a hierarchical behavior

is purely composed of child behavior instances and a main method specifying the

composition of the instances.

A system model is constructed with a topmost behavior Main and the sub-instances

of hierarchical and leaf behaviors.

 !" #$%&'$

()"*+) $

,-. $""/ #$%&'$-

,-. $""

 ! "#$

$01'+$

2)"*+)*2+*2.)

34$#+52.-6

$01'+$

2)"*+)*2+*2.)

34$#+52.-6

$01'+$

2)"*+)*2+*2.)

34$#+52.-6

()"*+) $

,-. $""

%&'(& "

)"*"+

%*,-#

./)01#2+-#3

Figure 4.5: SLDL Design to UPPAAL automata conversion

In our approach, we first abstract an automaton template from each behavior. These

templates are then instantiated to build a process network modeling the system. Each

behavior instance in the design is one-to-one mapped to a process through template

instantiation.

Except for the behavior instance processes, the system also contains a scheduler pro-

cess. Like in the discrete event simulation we have a central scheduler to coordinate

71

the execution of concurrent threads, in our approach we also have a scheduler pro-

cess to control the transitions in the instance processes. All instance processes are

connected to the scheduler process through a structure status tree and a channel

c schedule. The status tree is a tree structure designed to keep the status information

for all behavior instances. The structure of the status tree reflects the hierarchy of

the design: roof of the tree is the status node for the topmost behavior Main, and

the nodes beneath are the status nodes for its child instances.

To better understand our approach, we provide an introductory SLDL example from

[65] in Figure 4.6 to demonstrate the structure of our UPPAAL model as well as the

[status tree].

As shown in Figure 4.6, four processes are created through template instantiation in

the system definition for the scheduler, topmost behavior Main, and its child instance

A and B, respectively. All instance processes are connected to the scheduler process

through [c schedule] and [status tree]. Note that there is also a channel c call between

the parent process and its child processes, as for some compositions the activation of

child processes are coordinated by the parent rather than the scheduler. The detail

of channel c schedule and c call will be described in the following sections.

In Figure 4.6 we also show the detail of [status tree]. The status flags ready, enable,

and done, are kept in the node to represent the status of the corresponding instance,

and certain additional flags such as wtime or notify X are added to the status tree

to store the information for event synchronization and time advancement. For ex-

ample, flag notify e is added the status node of Main for event e in the behavior.

The detail of the additional flag will be described in the following sections. Based

on the information in [status tree], the scheduler activates instance processes in the

proper order and ensures the transitions are compliant with the parallel discrete event

execution semantics.

72

 !"#$%&'(%)

%+,(-%.

/ !"#$%&#'0

12,324*

%+,(-%.

/(")'*+,-0

3- 5!6

%+,(-%.

/(")'.0

3- 5!7

%+,(-%.

/(")'(0

)%-&8.9.:
;5.9.:

<- *=2).9.:
<- *!%>.9.:

?22(
?22(

 5*
?22(

= 5 4$%&.9.:?22(

)%-&8.9.:
;5.9.:

<- *=2).9.:
<- *!%@.9.:

?22(
?22(

 5*
?22(

= 5 4$%&.9.:?22(

)%-&8.9.@A
%5-?(%.9.:A

52* =8!%.9.:A

?22(
?22(

 5*
&25%.9.:A?22(

!/0!"#$%&#

,/ !"#$%&#' !"#$%&'(%)123*204 !"#$%&'(%)*+,-/. !"#$%&'(%)*+,-/(

6/4*-*'4!7$B)60 7/4*-*'4!7$B)70

)%-&8.9 :A
%5-?(%.9.:A

<* +%.9.:A
<- *!%>.9.:A

?22(
?22(

 5*
?22(

&25%.9.:A?22(

)%-&8.9.:A
%5-?(%.9.:A

<* +%.9.:A
<- *!%@.9.:A

?22(
?22(

 5*
?22(

&25%.9.:A?22(

.5/4*-*'4!60 (5/4*-*'4!70*+,-5/4*-*'4!3- 50

.@C. 5*.-))-8/@:0.9.D:E.@E.>EFE.GHI

.>C 5*.J.9.:E.8.9.:E.K.9.:E.<.9.:.I.

.LC ?%$-B 2).7$B)6.M%B%5*.%@N

.OC.D

.PC...B2 &.+- 5MND

.QC...... 5*. .9.:I.

.RC......=2).M 9:I. SGI. TTND

.UC.........8.9.J.T.>R.I.

.GC.........6+,472'5@I.

@:C........<TT.I.

@@C........6+,45%@.I.

@>C........J.9.-))-8/ 0AO>I.HH

@LC.H.I.

@OC ?%$-B 2).7$B)7.M%B%5*.%>N

@PC.D

@QC...B2 &.+- 5MND

@RC..... 5*. .9.:I.

@UC.....=2).M 9:I. SGI. TTND

@GC........8.9.8AO>.T.K.I.

>:C........6+,472'5>I.

>@C........-))-8/ 0.9.-))-8/ 0AOTJTTI

>>C........-24,785%>.I..

>LC........6+,45%>.I.

>OC........K.TT.I.H

>PC.....H

>QC.H.I.

>RC.?%$-B 2).3- 5.MN

>UC.D

>GC....%B%5*.%.I.

L:C....7$B)6.6M%N.I.

L@C....7$B)7.7M%N.I..

L>C.... 5*.+- 5MN.D

LLC.......3+'5

LOC.......D

LPC..........6V+- 5MN.I.

LQC..........7V+- 5MN.I

LRC.......H

LUC....H

LGC.H.I.

M6N."WXW.42')#%.#2&%.=2).-.4 +,(%.&%4 Y5.%J-+,(%

M7N.Z[[66W.+2&%(.=2).*$%.4 +,(%.&%4 Y5.%J-+,(%

!/123*204/!+&&

0!"# 0!"#$!+&& 0!"#$!+&&#$ 0!"#$!+&&#$

A\5 * -(
.B-('%

Figure 4.6: SLDL source code for an introductory design example

While the hierarchy of instances has been flattened in the system definition of the

UPPAAL model, [status tree] still maintains the hierarchy of the design. The refer-

ence of each node is passed to the corresponding instance process as parameter so

that the process can access its flags and its children’s.

Except for the reference of the node, the reference of a flag can also be passed to

a process as needed. Take flag [notify e] as an example. The reference of this flag

is passed to process Main B for statement "notify e2"in BhvrB as process Main B

needs to set this flag when it reaches the location of the notify statement.

73

In the following sections, we first introduce the UPPAAL automaton template for

hierarchical and leaf behavior as well as the status flag updating in the transition.

Then, we describe the template of scheduler automaton in detail, and explain how

scheduler process interacts with the instance process according to the status flags to

simulate the behavior of Parallel Discrete Event Simulation.

4.3.3 Automaton Template for Hierarchical Behaviors

To build an UPPAAL model simulating a SLDL design, each behavior in the SLDL

design is abstracted to an automaton template. In the system description of the

UPPAAL model, each behavior instance in the design is one to one mapped to a

process in the system by instantiating the defined automaton template.

 !"#$%&'(

)*%+%,'

-*&

(*,.'(/012

&3*(/4

 3&5

)&'(

67!(&8

(*,.'(//4

7,''(&8

9%(#,#7!%7,'

 (!,"%3#

behavior Main()

{

event e;

 BhvrA A(e);

 BhvrB B(e);

 int main(){

par{

 A.main();

 B.main();

 }

 }

} ;

 !"#

$!%"&'()

behavior BhvrB

(event e2){

void main()

 {

 int i=0;

 y=y*42+z;

waitfor 2;

 a[i]=a[i]*4;

notify e2;

wait e2;

 z++;

}} ;

Figure 4.7: Automaton template for both hierarchical and leaf behavior

Figure 4.7 shows the common automaton template for both hierarchical behavior and

leaf behavior in our approach. The central part of the illustration shows the basic

structure for all types of behaviors. In each behavior template there are at least

three locations: [Idle], [Initial], and [End]. All behavior processes start at [Idle] which

represents the status where the corresonding behavior instance are waiting for activa-

tion, and wait for transition [Idle]→[Initial] to be activated. Location [Initial] marks

74

the moment when a behavior process is activated by the scheduler or by its parent

process. Transition [Idle]→[Initial] is only activated when the enable flag in the sta-

tus node for the corresponding instance is set and the synchronization is triggered

through channel [c schedule] or [c call]. As described before, channel [c schedule] is

used to synchronize scheduler and behavior instance processes, while channel [c call]

implements the synchronization between parent process and child processes.

The statements in the main method of the behavior are converted to corresponding

locations and transitions, and then inserted into the automaton template between

location [Initial] and End]. Location [End] in the model represents the state where

the execution of the process is finished. After the execution of the behavior instance

is finished, the process reaches [End] and then goes back to [Idle]. On the transi-

tion [End]→[Idle], the done flag of this instance is asserted and enable flag is reset.

Figure 4.8 also shows the locations and transitions for the four types of composition

defined in SpecC SLDL.

In the following subsections, we describe the corresponding locations and transitions

generated for four types of composition in hierarchical behavior, and the automaton

template is illustrated in Figure 4.8.

 !"#$%&'(

)*%+%,'

-*&

(*,.'(/012

&3*(/4

 3&5

)&'(

6,#

*+!27!%'&8

#(,&5/4

9(:;<9=$)*%

9(:;<9=$(*&

>(:?(*+%,'2;2@>A B,#,''(' B%(6'%*(&

27,''2C

7!%'&8

#(,&5/4
7!%'&8

#(,&5/4

6%6(

*+!27!%'&8

#(,&5/47!%'&8

#(,&5/4
7!%'&8

#(,&5/4

%+(#// 3?*&

%+(#DD

(*,.'(/0

97!(&E

(*,.'(//4

7,''(&E

*+!27!%'&8

&3*(/4
7!%'&8

#(,&5/4
7!%'&8

#(,&5/4

%+(#/01
(*,.'(/0

49+27!%'&8
#(,&5/4F

49+27!%'&8
#(,&5/4

49+27!%'&8
(*,.'(/4

49+27!%'&8
&3*(//4

*+!27!%'&8

&3*(/4
7!%'&8

#(,&5/4
7!%'&8

#(,&5/4
49+27!%'&8
&3*(//4

*(G+27!%'&8
(*,.'(/4

7?##27!%'&8
&3*(//4

Figure 4.8: Representation of hierarchical behaviors in UPPAAL

75

Sequential Composition

Based on the execution semantics of sequential composition, the children instances

are executed in the order in which they are instantiated in the parent behavior and

their execution does overlap with each other. This semantic is modeled in the tran-

sition between location [seq ini] and [seq end]. When the parent process reaches

location [seq ini], the enable flag of the first child instance is set by the parent pro-

cess. The parent process then activates the transition [Idle]→[Initial] in child by

triggering the synchronization over channel [c call] with synchronize label in transi-

tion [seq ini]→[seq end]. After the activated child process reaches [End], the done flag

of the child process is set and transition [seq end]→[seq ini] is enabled. The parent

process then activates the next child process in the same manner. After the execution

of all children finishes, transition [seq end]→[End] is enabled, and the parent process

sets its done flag, resets the enable flag, and goes back to [Idle].

FSM Composition

Our approach also supports the modeling of finite-state-machine composition fsm

in which the child instances are executed conditionally. The template for the FSM

composition is very similar to the sequential composition. For both compositions only

one child instance is activated at a time and the next is activated after the current

one is finished. However, the child automata is activated in the order specified in the

FSM transition statements (in one-to-one fashion). Each transition statement in the

FSM composition is one-to-one mapped to an update label which enabling the next

child instance on the transition [fsm end]→[fsm ini].

76

Parallel Composition

The instances in a behavior with par composition are executed in parallel manner.

To model the parallel execution semantics, all child processes are activated at the

same time and then executed concurrently. As shown in Figure 4.8, in transition

[Initial]→[par] the update label sets the ready flags of all child instances and clears

enable flag of the parent instance. The scheduler process detects the assertion of

the ready flags and activates child processes by setting the enable flags of all child

instances and triggering the synchronization over channel [c schedule]. Note that

in order to synchronize with multiple processes, [c schedule] must be a channel of

broadcast type. Before the execution of all child instances are finished, the parent

process waits at location [par] until the done flags of all child instances are set.

Pipelined Composition

Another composition in which child instances are executed in parallel manner is

pipeline composition. Similar to the parallel composition, the child instances of active

stages in a pipe composition are activated at the same time, too.

There are two major differences between pipelined and parallel composition. The

first difference is that instead of being executed once in the parallel composition,

the child instances are executed iteratively in pipelined composition. The number of

iteration can be specified just like the condition expression of a for-loop statement.

However, considering the pipeline filling and flushing stage, not all child instances

are activated in all iterations. Therefore, the way to set the ready flags for the child

instances in par and pipe composition are different. For a pipeline composition with n

instances and m iterations, the ready and done flag of i -th instance at s-th iteration,

i ∈ {1, 2, ..., n}, s ∈ {1, 2, ...,m}, are set in the iterative transition [pipe]→[pipe] as

77

follows:

if i ≤ s ≤ m+ i− 1, Inst(i).ready = 1, Inst(i).done = 0

else Inst(i).ready = 0, Inst(i).done = 1

4.3.4 Automaton Template for Leaf Behaviors

As for the abstraction of leaf behaviors, instead of generating location and transition

for every statements, only certain statements of interest are taken into consideration

in the model generation. Here we categorize the statements of interest into three

types:

1) control-flow statement,

2) waitfor and wait-notify synchronization, and

3) channel communication

Statements other than these three types are abstracted away (ignored) since they have

no influence on the transition in the automaton. Note that if there is no waitfor, wait-

notify statement or channel communication in the sub-statements, the control-flow

statement is abstracted away, too.

 !" #

 !"$#%

&' ($" #

 !
)*+#*)

&' ($,
)*+#*)

 !-. !,$()$

$()$/
)*+#*)

&' ($"$#%

&' ($-.%0,&' ($

!01" #

!01,
)*+#*)

!01

!01"$#%

 *$1
22

3'41" %($

5# * 6(

7#%

$#68($9:;/%0#$9<

30%=

5%($

)>'$%?

$#68($99<

>6(($%?

Figure 4.9: Control flow statements reflected in leaf automata

78

Control-Flow Statement

Figure 4.9 shows the corresponding locations and transitions generated for if/if-else,

while/do-while, and for loop. We generate a pair of locations [ini] and [end] for

these three types of statements to encapsulate their sub-statements. For if/if-else

statements, we create transitions from location [ini] into the sub-statements for both

cases, and two paths merge at location [end].

For the do-while/while loop statement, transition [end]→[ini] is inserted to execute

the sub-statement for non-deterministic times, and a transition bypassing the sub-

statement is provided for the while statement in case the condition is false at the

first iteration. The for-loop statement is similar to the while-loop with guard and

update labels in the transition to count the iteration. The difference is that guard

and update labels are created to count the iteration based on the condition expression

if the iteration number is clearly specified.

Event Synchronization and Time Advancement

In SpecC language, the event synchronization and time advancement are implemented

with wait-notify and waitfor statements. The locations and transitions for waitfor,

wait, and notify statements are illustrated in Figure 4.10.

Two locations [ini] and [end] are created for each wait and waitfor statement. Loca-

tions [wait ini] and [waitfor ini] represent the states in which the instance is waiting

for event delivery and time advancement, while locations [wait end] and [waitfor end]

represent the states where the instance is waked up. As for notify statements, one

location [notify] is created for each event notification statement in the design. Ac-

cording to the execution semantics, it takes at least one delta cycle or simulation clock

advancement to wake up an automaton from suspension caused by wait or waitfor.

79

Since the scheduler process is the only module which keeps track of the event delivery

and time advancement, the suspended automata are re-activated by the scheduler.

When a process reaches location [ini] for a wait or waitfor statement, the process

suspends itself by clearing its enable flag and waits at [ini] until it is woken up by the

scheduler.

 !"#$%&'

 !"#(%)(*(&+#",-((%.(*(

%&!/0%12
 !"#$%)1)

 !"#$"&"

 !"#,+3$%&'

456%'7

 !"#,+3(8 *(

%&!/0%12

"&4%3#98:

 !"#,+3$"&"

&+#",-$%1)

&+#",-

 #";%18

%&!/0%11)

456%'7

%&!/0%11)

<6=3$"'0%

>&"#"!0

?&'

%&!/0%12@('+&%1)

<+'-

>'0%

456%'7

%&!/0%11)

5!00%'7

Figure 4.10: waitfor statement and wait-notify synchronization

A waitfor statement with argument N suspends the current instance from execution

for N time units. In our model, a global sorted queue is used to store the waiting

time of the suspended instance, and flag [wtime] is also added to the status node

of each leaf instance to identify if an instance is suspended by a waitfor. When a

process reaches location [ini] of statement waitfor T, it suspends itself and set the

wtime variable to T. A predefined function insert is called to insert T into the queue

for time advance in the scheduler. The waiting time in the queue will be read out in

order in the scheduler process to decide what is the next time units to be advanced.

This suspended process is reactivated by the scheduler after the simulation time is

advanced by T units.

A wait statement suspends the current thread from execution and waits for a state-

ment notifying the same event is executed. In our model, a wait flag is added to the

status node for each wait statement in the instance. Take the introductory design in

Figure 4.6 as the example. Flag [wait e1] and [wait e2] are added to the status node

80

of instance A and B for statement wait e1 and wait e2. When a process reaches

location [ini] of a wait statement, it suspends itself and sets the corresponding wait

flag. When another process reaches the location of a notify statement delivering the

event, the suspended process is reactivated by the scheduler.

A notify statement wakes up all suspended threads waiting for the notification of a

certain event. In our model, a notify flag is added to the status node for each event.

The reference of the flag is passed to all instances notifying the event so that those

processes can assert the flag when they reaches the notify location. For example, in

Figure 4.6 flag notify e is added to the status node of Main, and the reference of this

flag is passed to the process of instance B for the statement notify e2at line 22.

Channel Communication

Channel communication is essential in system level modeling, and SpecC SLDL sup-

ports various standard channels, such as semaphore, mutex, handshake, double-

handshake, and queue. In SLDLs, the channel communication between blocks is

implemented by making function calls to the method defined in the channel instances

to transfer data from sender to receiver. Our approach supports the modeling of

the three mostly used channels, which are handshake, double-handshake, and queue.

Here we show the standard double handshake channel illustrated in Figure 4.11. For

other two channel types, the corresponding locations and transitions will be generated

according to their detailed implementation respectively. In this example, channel in-

stance C is connected to instances S and R so that these two instances can call

functions send() and receive() defined in the channel to communicate.

Instead of create a process for the channel instance like for behavior instance, we inline

the communication method into the sender and receiver process. The right part of

81

 !"!#$!%#&#

 !"!#$!%!&'

(!&'%#&#

(!&'%!&'

&)*#+,% !-

.//0
$/0

.//1
$/0

.2#*%2"3%#&#

.2#*%2"3%!&'

!

!

!

!

.2#*% !-%#&#

.2#*% !-%!&'

&)*#+,%2"3

.2#*%2"3%#&#

.2#*%2"3%!&'

$//1
./0

$//0

444
./1

$/1

 !2',5/51
6&5/51

.2#*+) 5/51

7))8
7))8

#&*
+#&#(9!'5/517))8

:;(*2*<(%=9$:>

$5/51
.5/51

&)*#+,%2"3/1

#&*
#&*

#&*
&)*#+,% !-/17))8

 !;(*2*<(%?@A>

 !2',5/51
6&5/51

.2#*+) 5/51

7))8
7))8

#&*
+#&#(9!'5/517))8

 !2',5/51
555B

.2#*% !-5/51

7))8

"##$
.2#*%2"3/51"##$

%!;(*2*<(% !"!#$! >

 !2',5/51
6&5/51

7))8
7))8

+#&#(9!'5/517))8

 !2',5/51
555B

7))8

.2#*%2"3/51"##$

&!;(*2*<(%(!&'! > A!&'! C!"!#$!

&'(')*!+("$, -)'#.('#/!+,.0$(',

1/$1/,

Figure 4.11: Communication using standard double handshake channel

Figure 4.11 illustrates the inlining. Except for locations [ini] and [end] inserted for

the channel function call, the locations and transitions modeling the detail of the

communication method are also inlined between [ini] and [end]. The text and block

in red in the left part shows the additional node and flags for using a double handshake

channel. Flags wait ack and wait req are added to the status node of the sender S

and receiver R, and a status node C is inserted in the tree for the channel instance C.

The wait and notify locations here synchronize the sender and receiver. The guard

and update labels in the transitions make sure no matter which function is called

first, the send and receive function finish at the same time.

4.3.5 Scheduler Automaton

In this section we show the scheduler process modeling the discrete event simulation.

Note that our scheduler automaton supports the modeling for both regular DES and

parallel DES. The difference is that the regular DES mode allows one active process

at a time, while the parallel DES mode allows many activated processes. Since in

82

this paper the scheduler needs to run in PDES mode for MHP analysis, the following

description of scheduler automaton is for PDES mode.

Figure 4.12 illustrates the template of the scheduler automaton. The composition of

the scheduler automaton can be roughly divided into three parts:

1) instance activation,

2) event delivery, and

3) time advancement.

 !"#$%&'()

*#+$,

-./'0'!+/'.(

1+2#34

5$&# 1+'/6'7#

6'7#8$9+(!#

6#:7'(+/#

;
!
"
#
<=

>?@

5$&#

-A1
%4$+/#

1A6
%4$+/#

*A
%4$+/#

*A
/:+(;'/'.(

*A
/:+(;'/'.(

*A
/:+(;'/'.(

*A
%4$+/#

Figure 4.12: Scheduler automaton with delta and time advance cycles

The instance activation contains the loop from [Idle] to [Ready] and [Scheduling], and

then back to [Idle]. Transition [Idle]→[Ready] is enabled when there is any asserted

ready flag in the status tree. The enable flags of all instances with asserted ready flags

are set in transition [Ready]→[Scheduling], and the all instances with asserted enable

flag are activated by the synchronisation label in transition [Scheduling]→[Idle].

The event delivery includes the path from [Idle] to [Ready] via [Notification] and

[WakeUp]. This part simulates the delta cycle increment in the DES. Transition

[Idle]→[Notification] is enabled when all instances are suspended. The guard in tran-

sition [Notification]→[WakeUp] checks if there is any asserted notify flag, and the

update label sets the ready flags of the suspended instances waiting for the same

event. For example, the labels below are annotated to the transition to wake up

83

instance A and B in Figure 4.6 from suspension.

[guard] Main.notify e == 1

[update] Main.A.ready = (Main.A.wait e1 == 1)? 1 : 0,

Main.B.ready = (Main.B.wait e2 == 1)? 1 : 0

The time advancement is the path from [Idle] to [Ready] via [WaitTime] and [TimeAd-

vance]. This part simulates the simulation time advancement in the DES. Transition

[Notification]→[WaitTime] is enabled when there is no asserted notify flag in the

status tree. The guard in transition [WaitTime]→[TimeAdvance] reads the minimal

waiting time min clk from the sorted queue and advance the time by min clk. If

min clk is 0, i.e., there is no instance waiting for time advancement, the transition to

[Terminate] is enabled and the scheduler process can end. If the minimal time value

is greater than 0, the update label in transition [WaitTime]→[TimeAdvance] set the

ready flag of the suspended instance if its wtime flag matches min clk. The following

labels are annotated to transition [WaitTime]→[TimeAdvance] to wake up instance

A and B from suspension in Figure 4.6.

[guard] min clk > 0

[update] Main.A.ready = (Main.A.wtime == min clk)? 1 : 0,

Main.B.ready = (Main.B.wtime == min clk)? 1 : 0

min clk will then be subtracted from all wtime flags greater than 0 in the status tree

as well as from all waiting times in the sorted queue.

84

4.3.6 UPPAAL System Description for a PDES Model

After automaton templates for behaviors and central scheduler are defined, the last

step is to instantiate the defined templates in the system description to build the

model. As we described before, each instance in the design is one-to-one mapped to a

instance process in the system description. Our approach flattens the hierarchy of the

system, and we rely on the synchronization channels between scheduler and instance

processes as well as the channels between parent and child instances processes to

coordinate the transitions in these concurrent processes and simulate the execution

semantics defined in SpecC language.

Here we use the introductory example in Figure 4.6 to demonstrate the generated

system description. An UPPAAL system model illustrated in Figure 4.13 is generated

for the introductory example. For this example, templates for behavior Main, BhvrA,

and BhvrB are instantiated to build the system model. As we described above, a

Scheduler process is created to coordinate state transactions in processes for behavior

instances and a structure [status tree] is created according to the hierarchy of the

model to store the status of processes. Note that the labels on the transition and

communication between processes are not shown in the figure for simplicity.

4.4 Queries for May-Happen-in-Parallel Analysis

In this section we introduce our idea of analyzing a MHP pair of statements by asking

the model checker whether a corresponding query is satisfiable, as well as how the

query generator creates a set of queries for MHP analysis.

85

 !"#$%&'()

*#+$,

-./'0'!+/'.(

1+2#34

1+'/5'6#

5#76'(+/#
 !"#$%

5'6#8$9+(!#*:
%4$+/#

*:
/7+(;'/'.

(

*:
/7+(;'/'.

(

*:
/7+(;'/'.

(

*:
%4$+/#

-:1
%4$+/#

1:5
%4$+/#

<$&#<$&#

;
!
"
#
=>

<('/'+&

?+'/0.7@A@#($

?+'/0.7@A@'('

?+'/@BB@#($

?+'/@BB@'('

C($

8

D"97@'$&#<$&#

<('/'+&

C($

E+7

F+'(

D"97@'$&#<$&#

<('/'+& ?+'/@:G@'('

(./'0,@::D"97@'$&#<$&#

7#+$,=H=I
C(=H=I

?+'/0.7=H=I
?+'/@#:=H=I

J..&
J..&

'(/
J..&

0'(';"#$=H=IJ..&

7#+$,=H=I
C(=H=I

?+'/0.7=H=I
?+'/@#B=H=I

J..&
J..&

'(/
J..&

0'(';"#$=H=IJ..&

7#+$,=H=I
#(+J&#=H=I

(./'0,@#=H=I

J..&
J..&

'(/
$.(#=H=IJ..&

8K;/+/%;@D"978L

DK;/+/%;@D"97DL

7#+$,=H=I
#(+J&#=H=I

?/'6#=H=B
?+'/@#:=H=I

J..&
J..&

'(/
J..&

$.(#=H=IJ..&

7#+$,=H=I
#(+J&#=H=I

?/'6#=H=I
?+'/@#B=H=B

J..&
J..&

'(/
J..&

$.(#=H=IJ..&

 !K;/+/%;@8L

"!K;/+/%;@DL

#$%&!K;/+/%;@F+'(L

0.7@M@'('

0.7@M@#($

?+'/0.7@:I@#($

?+'/0.7@:I@'('

?+'/@:G@#($

C($

D

0.7@BN@'('

0.7@BN@#($

Figure 4.13: UPPAAL system description for the introductory example

4.4.1 Query in UPPAAL Model Checker

In the UPPAAL verifier, a query is described in the UPPAAL requirement specifica-

tion language which supports five types of properties, namely

Possibly (E<>)

Invariantly (A[])

Potentially always (E[])

Eventually (A<>) and

Lead to (-->).

Here we use an example shown in Figure 4.14 to demonstrate how the query can be

asked and their satisfiability.

The Possibly property E<>p tests if there is a reachable state where property p is

satisfied. Query Q1 in Figure 4.14 asks if variable b in process TA1 can be greater

than 2 in this model. The result is satisfiable since transition X1 to X3 in TA1 can set

86

 !"#$%

 !"#

&'(&)(

*"+$&

,-

,.

,(,/

 !"

01- 01(

2-

2. 2(

 !#

2/

 !"#$3
&104-

56789 *:"

5)'$;<-=0'.

><;

 &+

<?$@$;<-=0'.

5?$@$;<-=0'.

<)'$;<-=0'1-

5)'$;<.=,(

<)'$;<.=,(

;<-=0'- ;<.=,(

A" &+

A" &+

 &+

 &+

A" &+

A &+

BA98!

B-

B.

B(

B/

BC

BD

BE

Figure 4.14: Queries for the model and their satisfiability

b to 2.

The Invariantly property A[]p tests if every reachable state satisfies property p. Query

Q2 asks if b in TA1 is always greater than 2, and the result is unsatisfiable since b is

1 in X2.

The Potentially always property E[]p tests if there is a sequence of transitions in

which all states satisfy p. Query Q3 asks if there is a sequence of transitions where

b in TA1 is greater than 2 in all states. This properties is unsatisfiable because b is

zero in location X1 (assuming b is not initialized). However, the result is satisfiable

if the initial value of b is greater than 2. In this case, any sequence of transitions

containing transition X1→X3 satisfies this properties.

The Eventually property A<>p tests if all possible sequences of transitions eventually

reach a state satisfy p. Query Q4 asks if b in TA1 is eventually greater than or equal

to 1. The queries is satisfiable since for all possible sequences of transition b will

eventually be either 1 or 3.

Finally, the leadto property p --> q can be expressed as the property A[] (p imply

A<> q). Note that in the example query Q7 is unsatisfiable because TA1.b>1 only

guarantee TA2 cannot be at location Y4, but not guarantee TA2 will always be at

location Y3.

87

In the UPPAAL requirement specification language, it is possible to test whether or

not a certain process is at a given location with the query of the form [process.location].

Also, the user can use the expression as below to verify if certain processes are at cer-

tain locations at the same time. For example, query of the form [process1.location1

and process1.location1] can test whether a process1 is at location1 and process2 is

at location2 at the same time.

4.4.2 Queries for MHP Analysis

With the basic concept of the UPPAAL requirement specification language, the next

step is to decide what the state properties and temporal properties should be for the

MHP analysis. For two given statements Stmnt1 and Stmnt2 in instances Inst1 and

Inst2 respectively, the following query will be created for MHP analysis:

E <> Proc Inst1.Loc Stmnt1 and Proc Inst2.Loc Stmnt2

In our approach, since the query is ”whether or not two statements can possibly

happen in parallel”, we use the Possibly property E<>p in the expression to test if

there is a reachable state where property p is satisfied. As for the state property, since

in the model generator we have mapped instances into processes, statements into

locations and execution of statements into transitions, Proc Inst1.Loc Stmnt1 and

Proc Inst2.Loc Stmnt2 are used to represent Stmnt1 in instance Inst1 and Stmnt2 in

instance Inst2 respectively. Finally, an and is used to state ”happen in parallel” in

the query.

The most intuitive approach to generate a set of queries for MHP analysis for any two

88

given statements is to generate a query for each possible combination of statement

pair. This approach certainly will do the work, but the number of queries may be

tedious even for a simple model. To reduce the number of queries, we apply three

approaches to generate a compact set of queries for MHP analysis.

First, instead of generating query for all possible statement pairs, we only identify

the suitable scheduling points that may happen in parallel. To analyze the May-

Happen-in-Parallel properties without exhaustively generate query for all possible

combinations of statement pairs in the design, we need to identify suitable points

that can represent the simulation times and delta cycles for a group of statements,

and here we use the concept of scheduling point.

 !"#$% !"#$&'%##()

 !&!*+,'"#-%
 !"#$%

./01

 !"#$% !"#$%

./01
 !"#$&'%##()

 !&!*+,2"#-%

34567488196/96:4)4;;1;#

<!4!1019!=

Figure 4.15: Scheduling points

Figure 4.15 illustrates the concept of scheduling points and how they can be used in

the analysis to reduce the number of queries. This illustration shows two timelines of

two concurrent processes respectively, and each point pointed by an arrow in the figure

represents the timing stamp for a statement in the design. Statements in the model

are further divided into two categories: statements which can affect the simulation

time and delta cycle(pointed by red arrows) and statements that cannot(pointed

by blue arrows). Points pointed by red arrows are called scheduling points in our

approach.

The scheduling points mark the moments when instances are activated or woken by

89

the scheduler. According to the semantics, the statements between two scheduling

points share the same simulation clock and delta cycle. Take Figure 4.15 as the exam-

ple. Between scheduling points, there can be any number of statements which does

not affect the simulation time and delta cycle, i.e., statements other than waitfor

and wait. These statements (pointed by blue arrows) share the same simulation time

and delta cycle with the preceding scheduling point.

The concept here is that if we prove two scheduling points in two concurrent processes

share the same simulation and delta cycle ((t,d) in this example), then according to

the execution semantics these two groups of statements are supposed to be executed

concurrent. In this case, any two statements from these two groups and one from

each separately are MHP pair of statements. Therefore, by checking the MHP pairs

of these scheduling points, we actually check the MHP pairs of all statements in the

design. The scheduling points in our model include location [Initial] of all instances,

and location [end] of wait and waitfor statements.

 !"#$

%&' ()*+,-./012,3435)+65()*+,/./012,343

%&' ()*+,-./012,3435)+65()*+,/.7-389:2,;<,%4=

%&' ()*+,-./012,3435)+65()*+,/.7-38,;>,%4=

%&' ()*+,-.7-389:2,?,%4=5)+65()*+,/./012,343

%&' ()*+,-.7-389:2,?,%4=5)+65()*+,/.7-389:2,;<,%4=

%&'5()*+,-.7-389:2,?,%4=5)+65()*+,/.7-38,;>,%4=

%&' ()*+,-.7-38,@@,%4=5)+65()*+,/./012,343

%&' ()*+,-.7-38,@@,%4=5)+65()*+,/.7-389:2,;<,%4=

%&' ()*+,-.7-38,@@,%4=5)+65()*+,/.7-38,;>,%4=

(0A

B)C

!+B)C

!+B)C

!+B)C

!+B)C

!+B)C

!+B)C

!+B)C

B)C

Figure 4.16: Queries for Figure 4.6 example for MHP analysis

The second approach is that we only generate queries for leaf instances instead of all

instance. The reason is the computation and communication statements only exist in

leaf instances. Since at this point the main purpose of our MHP analysis is to analyze

the concurrent computation, we only need the queries for leaf instances. Note that in

order to simplify the analysis, we take the end locations of the channel function calls

90

as scheduling points instead of generating queries for the wait statements inlined for

the communication method.

The final approach is to use static analysis to rule out statement pairs which are

executed sequentially for sure and generate queries for pairs that may happen in

parallel. The approach includes two steps. The first step is to generate all possible

MHP pairs of instances. In this step all combinations of any two leaf instances

are generated, except combinations where two instances share the same parent with

sequential or FSM composition in their hierarchy, since with these composition the

execution of the child instances cannot overlap.

The second step is to generate queries for all combinations of the scheduling points

in each MHP pair of instances. Take the introductory design as the example. The

red arrows in Figure 4.6(A) mark the scheduling points in both leaf instances. Since

instance A and B do not have the same parent with sequential or FSM composition,

instance A and B are a MHP pair. Figure 4.16 shows the queries generated by our

tool as well as their satisfiability. According to the result, the statement set at lines

6∼8 and statement set at lines 17∼19 are MHP statements. Also statements at line

12 or 8 and statement at line 24 or 19 are MHP statements as well.

In the end, for any two leaf instance processes which are potentially activated by

the scheduler at the same time, the query generator create a set of queries for all

combinations of scheduling points in these two processes, and let UPPAAL model

checker verify the satisfiability of these queries.

91

4.5 Model Optimization

In this paper, we apply two main methods from different aspects to shorten the run

time of MHP analysis. The first one is to generate a compact set of queries to shorten

the analysis time, which has been described in the previous section. Another method

is to trim the redundant search space in the model so that the solver can still give

the identical result with less search time.

In order to analyze the MHP statements in the design, our model supports PDES

and activates as many instances as possible in parallel. The downside of this method

is that for most of the steps in the trace there are multiple enabled transitions and

therefore the search space is much larger than regular DES. We assume the UPPAAL

model checker will try all possible interleaving between enabled transitions in pro-

cesses to prove the satisfiability of the given query – especially when the query itself

turns out to be unsatisfiable.

Based on this assumption, we developed an approach to trim the search space in

the model by removing redundant interleaving, i.e., interleaving leading to the same

states and does not affect the analysis result. In the optimized model, a great portion

of redundant interleaving is removed and interleaving modeling the concurrency in

the system design are still kept. The experimental results match our assumption as

the analysis time of the optimized model is shortened and the result is identical to

the original model.

The concept of this method is to give certain transitions in processes higher priority

than others and use the priority to prevent redundant interleaving from happening.

The priority of a transition in the UPPAAL model can be determined by setting the

priority of the location involving the transitions. For example, for two enabled tran-

sitions X1→X2 and Y1→Y2, transition X1→X2 will always happen before transition

92

Y1→Y2 if X1 has higher priority than Y1.

In UPPAAL model, different priority can be given to a location by specifying the type

of the location. There are three types of locations supported in UPPAAL: committed,

urgent, and regular. Among these three types of locations, locations of committed

type have the highest priority. If any automaton is in a committed location, the next

transition must depart from one of the committed locations. Transitions departing

from locations of urgent and regular type can only take place when there is no au-

tomaton in a committed location, i.e., we can block part of the interleaving and then

reduce the search space.

 !"#$%$!"#!%&

$%$$&'!

()

(*

(+

$%$

$%$

,)-.'!/01

,*-. !"1

,+-.'!/01

2/$3045-)6

 37%3#86

2/$3045-*6

937%3#,6

$&'!

$&'!) *

+ : ;

; <

)=-)>-+>-*>-:>-;>-<

 =-)>-+>-:>->-;>-<

 ;=-+>-)>-*>-:>-;>-<

 <=-+>-)>-:>-*>-;>-<

 ?=-+>-)>-:>-;>-*>-<

 @=-+>-)>-:>-;>-<>-*

 A=-+>-:>-)>-*>-;>-<

)B=-+>-:>-)>-;>-*>-<

))=-+>-:>-)>-;>-<>-*

 37%3#8 2/$3045-)

 37%3#, 2/$3045-*

 B=-)>-*>-+>-:>-;>-<

 +=-)>-+>-:>-;>-*>-<

 :=-)>-+>-:>-;>-<>-*

)*=-+>-:>-;>-)>-*>-<

)+=-+>-:>-;>-)>-<>-*

):=-+>-:>-;>-<>-)>-*

Figure 4.17: Optimization with location prioritization

Let’s use a UPPAAL model of a system with three instances in Figure 4.17 to illustrate

how the prioritized locations can trim the search space. In this example, instance B1

and B2 are executed concurrently and B3 is a child instance of B2. Processes P1, P2,

and P3 are created for these three instances in the UPPAAL model. If now the query

is for MHP analysis as we defined above , the solver shall try all possible transitions

listed in Figure 4.17 to determine the satisfiability since this query is not satisfiable (in

fact, stmnt A and stmnt B are executed at different simulation time). Figure 4.17 lists

all 15 possible sequences of transitions before P1 wakes up and moves into location

for stmnt A. Here, we give P2.ini and P2.seq ini the committed priority to reduce

93

the number of possible sequences. After the location prioritization, transition 4 and

5 must occur right after transition 3, and thus the number of possible sequences

is reduced from 15 to 6 (s0, s3, s4, s12, s13, s14) while the interleaving properties

between the transitions in the bodies of leaf instances (transition 2 and 6) are still

intact.

In previous section, we mentioned that our approach will only generate queries for

statements of interest in leaf instances because time advancement, event synchroniza-

tion, and channel communication can only happen in the leaf behavior. Based on

this rule, we trim the search space in our model by removing transition interleaving

between processes for hierarchical instances and leaf instances but still keeping the

possible interleaving between leaf instances to model the concurrent composition.

In the optimized model, we assign the following locations with the committed priority:

[Ready] and [Scheduling] in the scheduler automaton, [Initial] and [End] of processes

for hierarchical instances, and [seq ini] and [fsm ini]. Note that the prioritization

trims the search space significantly without violating the execution semantics. The

remaining possible sequences still keep the concurrency between transitions in the

bodies of leaf instances (for example, transition 2 and 6 in Figure 4.17).

Our experimental results show that our assumption is valid. Table 4.1 in Section 4.6

shows one example demonstrating the analysis run time for the model before op-

timization and after. The analysis results for both models are identical, but the

difference in runtime and memory requirements is tremendous.

94

4.6 Experiments and Results

We now show experimental results of running MHP analysis on the introductory

example and three in-house models of embedded applications, a grey-scale JPEG

encoder[70], color JPEG encoder, and MP3 decoder[71]. The generation of the models

and queries is very quick. The analysis, however, takes time to verify the satisfiability

of the queries.

Table 4.1: Run time and memory requirement for optimized model
Optimization # of # of total memory
(JPEG) queries mhp pairs runtime req.
Before 143 51 1h:44m:41s 310MB
After 143 51 42s 26MB

Table 4.2: MHP Analysis of SLDL Design Using UPPAAL Model Checker
Application lines of # of # of total

codes queries mhp pairs runtime
Intro 39 9 2 <1s

Intro-M 39 9 - ∞
Intro-M* 39 9 2* 3s*

Mono-JPEG 1.5k 143 51 42s
Color-JPEG 2.5k 210 25 16m:18s
MP3 Decoder 7k 141 24 21h:32m:36s

Table 4.1 shows the comparison before and after the search space optimization de-

scribed in Section 4.5. Here we use our JPEG encoder model as the example and

list the runtime and memory requirement before the optimization and after. Note

that the memory requirements listed here are obtained by running the verification on

an unsatisfiable query since for an unsatisfiable query the solver needs to explore all

search space to disprove the satisfiability. In this table, we can see that for the same

model and query, the optimized model takes significantly less computation resource

to obtain the identical result.

95

Table 4.2 first shows the result for the introductory example of Figure 4.6. The

verification takes less than one second and reports two out of nine MHP pairs of

scheduling points are true. Compared to [65] in which four out of nine are reported

true, our approach is more precise. Intro-M is a modified introductory example where

the loop is replaced by a while loop. For a design with unbounded loop transitions,

the verification tool keeps expanding the search space and tries to find a trace to

satisfy the query. For satisfiable properties like the first and last query in Figure 4.16

the verification is still quick, but for unsatisfiable properties the verification will not

terminate. To deal with this situation, our tool identifies the while and do-while

loop, and insert a guard label as the upperbound in the transition created for the

loop statement. In our model, an upperbound for a while or do-while loop is added

to the model as an argument so that the designer can easily specify the upperbound

in the system description. Note that the model checker assigns zero to all uninitial-

ized integer variables and arguments, and the labels we generate for loop statements

identifies the case where ”upperbound=0” and allows the loop running unboundedly.

As we mentioned in the previous paragraph, the search space can keep expanding if

there is an unbounded loop in the model. Instead of giving loops an upperbound, an

alternative approach is to use the under approximation option provided by the verifier.

According to the information provided by UP4ALL Inc., the under approximations

use bit-state hashing to represent the state space. Users can also choose the size of

hash table to adjust the degree of approximation, i.e., the size of the table results in

the size of the state space being searched. The result of this option is an approximate

answer. The results listed in Intro-M* row are obtained with this approximation

option. Instead of keeping searching until running out of memory, the verifier replies

"MAY NOT be satisfied" for unsatisfiable queries.

The fourth and fifth experiment are MHP analysis of greyscale and color JPEG

96

encoder. We can see that the number of MHP queries for color JPEG is more than

greyscale JPEG because there are more leaf instances and scheduling points in the

color JPEG encoder. The true MHP pairs in the greyscale encoder, on the other

hand, are more than the MHP pairs in the color encoder. The reason is that in

the color encoder the communication between modules are implemented with double

handshake channels, while the communication in greyscale encoder are implemented

with queues. Given the medium size design, the analysis run time is acceptable.

The MP3 decoder is a large example with three times as many instances as the

greyscale encoder (34 and 12 respectively). The left and right channel are decoded in

parallel and each channel contains multiple instances with children below them. The

search space is much larger than the JPEG encoder and it takes much more time to

verify the satisfiability. Giving the complexity of formal verification, the run time of

less than a day is still reasonable.

4.7 Extension to Timing and Power Consumption

Analysis

In this chapter we propose an approach which converts system level designs into

UPPAAL automaton models and make use of UPPAAL model checker to prove or

disprove the satisfiability of queries asking whether two given statements can possibly

be executed in parallel. The experimental results shows this approach works well and

matches our expectation. Except for MHP analysis, we also found that this approach

can be used for verification of other properties of interest. In this section, we present

our concept of applying this apporach to timing delay and power constraint analysis.

97

4.7.1 Timing Delay Analysis

Except for the functionality of the design, the timing delay of the design can also be

captured in SLDL. In our model, we capture the time spent by a module to complete

the computation using waitfor T statement. As the illustration in Figure 4.18(A),

waitfor T statement is inserted at the beginning of the main method of a leaf instance

as the annotation for timing delay, and the value of T represents the time required to

finish the computation. In simulation-based verification, the discrete event simulator

identifies time advancement statements, and activate or wakeup the idling or sus-

pended behavior instances at the correct simulation time. After the simulation, the

timing delay can be easily obtained by returning the simulation time advancement in

the discrete event simulator.

Similar to the advantages and disadvantages we described before, simulation-based

timing analysis is also input vector dependent. The simulation cycle time obtained

during the simulation is influenced by the input vector. Unless we try all possible

input vector to cover all conditional execution cases in the model, the captured cycle

time cannot guarantee the simulation will finish within the timing constraints for all

possible input vectors. Here we can use our UPPAAL automaton model to address

this issue since the scheduler process in our UPPAAL system model simulates the

behavior of the parallel discrete event simulator. In the scheduler process we also

have a local integer sim clk to keep track of the time advancement and make sure the

scheduler process activate or wakeup behavior processes from suspension at correct

time. To ask whether for all possible conditions the execution of the system model

can finish within a time T, we can simply add a query as below:

E <> i Scheduler.Terminate and i Scheduler.sim clk > T

98

Here i.Scheduler is the instance name of the scheduler process. If the query is

satisfiable, the solver proves that there is at a possible condition in which the execution

of the system model can be greater than timing constraint T; otherwise, the model is

proved to meet the timing constraint since the solver exhaustively searches the state

space but cannot find a state satisfying this query.

behavior Test()

{

 waitfor T ;

 (basic_block)

};

behavior Test()

{

 PowerTime(P,T);

 (basic_block)

};

behavior Test()

{

 PowerTime(P1,T1,

 P2,T2,

 P3,T3,

 ...);

 (basic_block)

};

 !"

#$%$&'()*&+,%-#$*&

 ."

#$%$&'(/&0(-*123

)*&+,%-#$*&

 4"

%,5#$-52(#$%$&'(/&0(-*123(

)*&+,%-#$*&(-5/&+

Figure 4.18: Power and timing annotation in the model

4.7.2 Timing Delay and Power Consumption Analysis

The concept of using waitfor to model the timing delay can also be applied to power

consumption analysis. In [72], an approach based on virtual power meter is pro-

posed. In this approach, instead of just inserting waitfor statements to represents

the timing delay, the power consumption for each basic block is estimated with a

computation profiler and then annotated to the model with a function call to a power

API PowerTime Meter(P,T) for each basic block, where P and T represents power

and time required to complete the computation of the basic block respectively. The

annotated ESL model is illustrated in Figure 4.18(B). In [72], the power API is used

to keep track of the power and time spent in execution of the model, and after the

simulation the trace can be visualized so that designers can have better understanding

how power is dissipated over time. Here we take power APIs as statements provid-

99

ing information about power consumption and time advancement of the model, and

generate corresponding locations, transitions, and label for it.

 !"#$%&'(

 !"#$%)%

 !"#$()&

()*+'(,-./

&0)(,1

23!(&4

()*+'(,,1

3*''(&4

5*%670#8%)%

5*%670#8()&

 !"#$%&'(

 !"#$%)%

 !"#$()&

()*+'(,-./

&0)(,1

23!(&4

()*+'(,,1

3*''(&4

 !"#$%&'(

 !"#$%)%

 !"#$()&

()*+'(,-./

&0)(,1

23!(&4

()*+'(,,1

3*''(&4

9606*' :,/9

905(#8%;($%)%

9606*' :,/91 9606*' :,/9<

=>?

6%;%)@/30)2A;B6%0)

= ?

6%;%)@/*)&/B05(#

30)2A;B6%0)

=C?

;A'6%B'(/6%;%)@/*)&/B05(#/

30)2A;B6%0)/B'*)2

905(#8%;($()&

905(#8%;(1$%)%

905(#8%;(1$()&

905(#8%;(<$%)%

905(#8%;(<$()&

Figure 4.19: UPPAAL model for power and timing annotation

Figure 4.19(A) and (B) shows the generated automaton templates for Figure 4.18(A)

and (B) respectively. As the illustration in Figure 4.19(B), the locations generated

for power APIs are almost identical to the locations for waitfor statements. The

difference here is the additional update label on the transition from the initial location

for the statement to the end. We insert a global variable Ptotal to keep the accumulated

power consumption, and it will be updated by the update label in the transition. With

this modification, the total power consumption is taken into consideration when we

verify the system design with the corresponding UPPAAL model. To ask whether

for all possible conditions the execution of the system model can finish within a time

Tcon and power consumption Pcon, we can simply create a query as below:

E <> i Scheduler.Terminate and (i Scheduler.sim clk > Tcon or Ptotal > Pcon)

100

If the query is satisfiable, it is possible that the execution time or the power con-

sumption can be greater than the specified constraints.

4.7.3 UPPAALModeling for Dynamic Voltage and Frequency

Scaling

The research to reduce power consumption of a design has been broadly studied, and

one technology in this realm is Dynamic Voltage and Frequency Scaling (DVFS). In

DVFS, the speed of the circuit can be modified through adjusting the voltage and

frequency. Designers can use this technology to balance the timing delay and power

consumption and find the best combination which uses minimal power to complete

the job on time. In a circuit supporting DVFS technology, a few set of power and time

consuming plans are provided. To model this technology in our system level model,

the power API is modified to take multiple sets of power and time as arguments. The

modified ESL model is illustrated in Figure 4.18(C). In this illustration, the power

API takes three sets of delay and power consumption {P1,T1}, {P2,T2}, and {P2,T2}

to represent three consuming plans respectively. Conceptually the greater the power

consumption, the faster the computation speed, i.e., T1 > T2 > T3 if P1 < P2 < P3.

Here we also modify our UPPAAL model generator to support the DVFS technology

with finite set of power/time consuming plans.

Figure 4.19(C) illustrate the modified automaton template. Instead of inserting a

pair of locations for each power APIs, multiple arcs representing different options are

created to model the specified power and time consuming plans. With the modified

model, we can use the model checker to find out the feasible plan to meet the time

and power constraints. To ask whether it is possible that the execution of the system

model can finish within a time Tcon and power consumption Pcon, we can simply create

101

a query as below:

E <> i Scheduler.Terminate and (i Scheduler.sim clk < Tcon and Ptotal < Pcon)

If the query is satisfiable, it means there is a feasible plan to meet constraints Tcon and

Pcon. As we described before, the model checker can generate a trace for a satisfiable

case. With this trace, designers can replay state transitions and find out at what time

the behavior process should take which path to satisfy the query, i.e., find out when

the processing element should use more power to complete the computation fast and

when to reduce the speed to save power.

4.8 Summary

In this chapter, we have described a new approach to identify the MHP statements

in a system. Our approach includes the abstraction of the automata network from

a design and the generation of queries for MHP analysis. The satisfiability of MHP

queries is verified using UPPAAL model checker, and we demonstrated our method

with an introductory and three models of embedded application. Compared to state-

of-the-art other work [65], our results are more precise, but take longer to compute.

We also propose a concept of using UPPAAL model checker to verify the satisfiability

of timing and power consumption constraints. This concept is further evolved into

an approach using model checker to find out the feasible DVFS plan to satisfy the

giving constraints.

In terms of future work, first we plan to shorten the analysis time by introducing

more static analysis and generating a more compact set of queries as well as further

102

exploit the priorities of locations to trim the search space. As we demonstrate in

the experimental results, the state space reduction greatly improves the run time as

well as resource requirement, and we think there are still lots of room to improve the

reduction technique. Second, we will keep explore the possibility of using this model

to verify other properties of interest. Here we have proposed a concept of verifying

the total consumption of time and power, and we believe this model can be used to

verify more properties in both time and power domain.

103

Chapter 5

Conclusion

5.1 Contributions

In this chapter, we summarize our contributions to formal analysis of ESL models.

There are three specific contributions, namely

1) formal deadlock detection,

2) formal timing analysis, and

3) May-Happen-in-Parallel analysis.

5.1.1 Formal Deadlock Detection using SMT

In chapter 2 [35], we have proposed an approach to formally detect potential deadlocks

using Satisfiability Modulo Theories solver. Our method first abstracts the system-

level model into a time interval model composed of assertions in SMT-LIB2 language,

and then use the SMT solver to prove or disprove the existence of conflicts in the

model. This approach mostly deals with the design at specification level, and it

104

detects the deadlock caused by the improper execution order and communication

assignment. If the model is unsatisfiable, i.e., deadlock is detected, based on the

indices reported by the solver which indicate assertions leading to the conflict, our tool

generates a brief report stating the structural hierarchy and channel communication

causing the deadlock. This work enables the detection of deadlock caused by the

improper combination of execution order and communication and therefore improves

the stability of embedded systems. Above of that, our approach can also give designers

good hints of which parts of design causing the deadlock by reporting the indices of

the assertions causing the timing conflict and generating a error report.

5.1.2 Formal Timing Analysis using SMT

In Chapter 3 [48], we further extended the approach in Chapter 2 so that we can

support the analysis of properties of interest in time domain. The improved approach

can not only identify the composition in hierarchical behaviors and pre-defined chan-

nels, but also support the modeling of statements for conditional execution, time ad-

vancement and event synchronization in leaf behaviors. Furthermore, this approach

also supports the modeling of customized channels. After the time interval model

is extracted from the system-level design, designers can augment the model with as-

sertions representing real-world use cases and the properties of interest and then use

SMT solver to verify the satisfiability of the augmented assertions.

We use this approach to analyze the liveness and timing constraint properties of two

transaction level models in which processing elements communicate with each other

over AMBA AHB protocol and CAN bus protocol. The experimental results shows

that this work is capable of analyzing the satisfiability of timing constraints under

various assumptions within reasonable analysis time. This work also shares the same

advantage of the previous approach, which is capable of reporting useful information

105

back to designers for both satisfiable and unsatisfiable cases. By integrating this work

into the design loop, we can identify an application will finish on time or not, which

is a critical concern in real-time system.

5.1.3 May-Happen-in-Parallel Analysis using UPPAALModel

Checking

In Chapter 4[57] [58], we have proposed a method to identify May-Happen-in-Parallel

statements in the system model. May-Happen-in-Parallel analysis can answer the

questions for two given statements in the design, whether or not they can be ex-

ecuted in parallel. It is important because processing elements running in parallel

in the system-level design can lead to race conditions caused by parallel accesses to

shared variables. To identify this issue, we need to identify the statements which can

be executed in parallel. Our approach here is to use our model generator to convert

the system-level design into an UPPAAL system model which simulates the behav-

ior or parallel discrete event simulation on the target design. Also, queries asking

whether or not the given two statement can possibly be executed in parallel are gen-

erated automatically, and our query generator creates a set of queries for all possible

combinations of any two statements. The model and queries are then analyzed by

UPPAAL model checker to identify the satisfiability of each query.

Except for the model and query generator, we also proposed an approach to optimize

the model and trim the state space. With the optimization, we found that the run

time and memory requirements are reduced significantly. This work enables precise

detection of MHP statements. Compared with a state-of-the-art MHP analysis ap-

proach proposed in [65], this work shows the experimental result is more precise. Also,

since a query is satisfiable only when the corresponding MHP property is true, the

UPPAAL model checker can generate a trace to show how the query is satisfiable,

106

i.e., show under what conditions the two given statements can happen in parallel.

Another benefit of this approach is that the automata model generated in the work

can also be used to analyze other properties, such as timing delay and power con-

sumption. With this approach, we can identify the potential race condition precisely,

and therefore improve the stability of the system.

5.2 Future Work

5.2.1 SMT Modeling for System-level Design

The approach of using SMT modeling for deadlock detection and timing constraint

analysis certainly can do the work, but we also encountered some inconvenience with

this approach and that could be the possible improvement direction in the future.

First, some test cases we run the analysis did not finish in two hours (and probably

will take more since we terminated the analysis), and the situation will be even worse

if the design is more complex. For this reason, scalability of the analysis using SMT

solver is definitely a direction worth the consideration.

In Section 3.3.4, we have proposed an idea of hierarchical timing analysis which pro-

vides a certain degree of scalability to this approach, but this approach is limited to

the timing information specified with do-timing constructs by the designer. We think

further improvement such as to decompose the analysis to multiple levels and make

use of intermediate results provided by the solver in analysis of higher hierarchical

levels is possible.

Another direction for future development is to improve the user interface. One dif-

ficulty we faced in this approach is that even though the Z3 SMT solver can report

the indices of assertions causing the conflict when potential deadlock is detected, it is

107

still hard to identify where the problem is when the structure of the system and the

communication between modules are complicated. A future improvement to address

this issue would be visualizing the structure of the system and displaying the con-

flicting timing relations in the structure illustration. We believe it will greatly reduce

the effort designers need to make to identify the issue in the system.

5.2.2 UPPAAL Modeling for System-level Design

As for the system modeling using UPPAAL automaton, the future work can be dis-

cussed from two aspects. The first aspect is the possible application with this UP-

PAAL model for system-level design. In Chapter 4, we have proposed an application

which identifies MHP statements in the system with our generated UPPAAL model

for the system, and we believe it can be use to analyze the constraints in power

domain, such as the concept we brought out in Section 4.7 which uses this model

for verifying the timing and power constraints as well as finding feasible plans with

dynamic voltage and frequency scaling. Except for the analysis of the properties in

power and time domain, we also think it can be used for analysis of other properties

of interest.

For example another possible application we come up with is to use this model to

find out the maximum parallelism in the model. Since the model itself simulates the

behavior of the execution in a system-level model, we can ask many kind of questions

to it as long as the question can be described as a query in requirement specification

language.

Another aspect of future work here is the optimization of the model and further re-

duce the run time and resource requirement. With more static analysis to the system

level design and to the query we want the solver to prove/disprove, the UPPAAL

model we proposed in this dissertation can be further optimized to reduce the state

108

space.

109

Bibliography

[1] D. Gajski and R. Kuhn ”Guest Editors Introduction: New VLSITools,” IEEE

Computer, December, 1983.

[2] W. Chen, X .Han, C. Chang, G. Liu, and R. Döomer, ”Out-of-Order Parallel

Discrete Event Simulation for Transaction Level Models,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.33, no.12, pp.

1859-1872, December, 2014

[3] L. Cai, A. Gerstlauer, S. Abdi, J. Peng, D. Shin, H. Yu, R. Dömer, D. Gajski

”System-On-Chip Environment Manual”, Center for Embedded Computer Sys-

tems, Technical Report 03-45, December 2003

[4] ”International Semiconductor Industry Association. International Technology

Roadmap for Semiconductors (ITRS)”, http://www.itrs.net, 2004

[5] M. Fujita, I. Ghosh, and M. Prasad, ”Verification Techniques for System-Level

Design”. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007

[6] J. Staunstrup, and W. Wolf ”Hardware/Software Co-Design: Principles and Prac-

tice”, Springer-Verlag US, 1997

[7] G. D. Micheli, and R. K. Gupta ”Hardware/Software Co-Design”, IEEE MICRO,

vol. 85, pp 349-365, 1997

110

[8] A. Sangiovanni-Vincentelli, H. Zeng, M. Di Natale, and P. Marwedel, ”Embedded

Systems Development: From Functional Models to Implementations”, Springer

New York, 2013

[9] Grant Martin, Brian Bailey, and Andrew Piziali, ”ESL Design and Verification:

A Prescription for Electronic System Level Methodology”. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA. 2007.

[10] A. Gerstlauer, R. Dömer, J. Peng, D. Gajski, ”System Design: A Practical Guide

with SpecC”, Kluwer Academic Publishers, 2001.

[11] D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner ”Embedded System Design: Mod-

eling, Synthesis, and Verification”, Springer Publishing Company, Incorporated,

2009

[12] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, ”SpecC: Specification

Language and Methodology” Kluwer Academic Publisher, Boston, March, 2000

[13] W. K. Lam. ”Hardware Design Verification: Simulation and Formal Method-

Based Approaches” Prentice Hall PTR, Upper Saddle River, NJ, USA. 2005.

[14] I. Viskic, R. Dömer, ”A Flexible, Syntax Independent Representation (SIR) for

System Level Design Models”, Proceedings of EuroMicro Conference on Digital

System Design, Dubrovnik, Croatia, August 2006.

[15] ”SystemC 2.3.1 (Includes TLM)” http://www.accellera.org/downloads/standards/systemc

[16] D. C. Black, and J. Donovan, B. Bunton SystemC: From the Ground Up, Second

Edition Springer Verlag Gmbh, 2014

[17] E. M. Clarke and J. M. Wing ”Formal methods: state of the art and future

directions”, ACM Comput. Surv. 28, 4 (December 1996)

111

[18] J. B. Almeida ”Rigorous Software Development” Springer-Verlag London, 2011

[19] C. Kern and M. R. Greenstreet ”Formal Verification in Hardware Desgin: A

Survey”, CM Trans. Des. Autom. Electron. Syst. 4, 2 April 1999, 123-193.

[20] V. D’Silva, D. Kroening, and G. Weissenbacher, ”A Survey of Automated Tech-

niques for Formal Software Verification” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol.7, pp. 1165–1178

[21] A. J. Hu ”Formal Hardware Verification with BDDs: An Introduction”, IEEE

Pacific Rim Conference on Communications, Computers, and Signal Processing

(PACRIM), pp. 677-682, 1997

[22] A. Koelbl, Y. Lu, and A. Mathur, ”Formal equivalence checking between system-

level models and RTL” IEEE/ACM International Conference on Computer-Aided

Design, 2005. ICCAD-2005

[23] J. P. Marques-Silva , K. A. Sakallah ”Boolean satisfiability in electronic design

automation” Design Automation Conference, 2000. pp675-680

[24] E. M. Clarke, O. Grumberg and D. Peled ”Model Checking”, MIT Press, Cam-

bridge, MA, USA. 2000

[25] R. Jhala and R. Majumdar ”Software model checking” ACM Comput. Surv. 41,

4, Article 21, October 2009

[26] S. Edelkamp , S. Leue , A. Lluch-Lafuente ”Directed explicit-state model checking

in the validation of communication protocols”, International Journal on Software

Tools for Technology (STTT), 2004. volume 5, pages 247-267

[27] ”Synopsys Formality”, http://www.synopsys.com/Tools/Verification/

FormalEquivalence/Pages/default.aspx

112

http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/default.aspx
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/default.aspx

[28] ”Synopsys Formality”, http://www.synopsys.com/Tools/Verification/

FunctionalVerification/Pages/HECTOR.aspx

[29] ”Cadence Encounter Conformal Equivalence Checker”, http://www.cadence.

com/products/ld/equivalence checker/pages/default.aspx

[30] ”The Yices SMT Solver” http://yices.csl.sri.com/

[31] ”CVC4 the SMT solver”, http://cvc4.cs.nyu.edu/web/

[32] Conchon, S., Contejean, E., Kanig, J ”Alt ERGO SMT Solver” http:

//alt-ergo.lri.fr/

[33] M. Garey and D. Johnson. ”Computers and Intractability: A Guide to the Theory

of NP-Completeness”, W. H. Freeman, 1979

[34] Luca Aceto, ”Is your model checker on time? On the complexity of model check-

ing for timed modal logics” In Proceedings of the 24th International Symposium

on Mathematical Foundations of Computer Science (MFCS ’99), Miroslaw Kuty-

lowski, Leszek Pacholski, and Tomasz Wierzbicki (Eds.). Springer-Verlag, London,

UK, UK, 125-136

[35] C. Chang, R. Dömer, ”Formal Deadlock Analysis of SpecC Models Using Satis-

fiability Modulo Theories”, Proceedings of the International Embedded Systems

Symposium, Springer, Paderborn, Germany, June 2013

[36] R. Döomer, A. Gerstlauer, and D. Gajski, ”SpecC Language Reference Manual

Version 2.0” SpecC Technology Open Consortium, Japan, December 2002.

[37] M. Fujita, H. Nakamura. ”The Standard SpecC Language” Proceedings of the

International Symposium on System Synthesis, Montreal, October 2001.

[38] A. Habibi, H. Moinudeen, and S. Tahar. ”Generating Finite State Machines from

SystemC”, In Design, Automation and Test in Europe, pages 76-81, 2006.

113

http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/HECTOR.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/HECTOR.aspx
http://www.cadence.com/products/ld/equivalence_checker/pages/default.aspx
http://www.cadence.com/products/ld/equivalence_checker/pages/default.aspx
http://yices.csl.sri.com/
http://cvc4.cs.nyu.edu/web/
http://alt-ergo.lri.fr/
http://alt-ergo.lri.fr/

[39] A. Habibi and S. Tahar. ”An Approach for the Verification of SystemC Designs

Using AsmL”, In Automated Technology for Verification and Analysis, pages 69-

83, 2005.

[40] P. Herber, J. Fellmuth, and S. Glesner ”Model Checking SystemC Designs Using

Timed Automata”, In Int. Conf. on HW/SW Codesign and System Synthesis.

ACM, press, 2008.

[41] P. Herber, M. Pockrandt, and S. Glesner ”Transforming SystemC Transaction

Level Models into UPPAAL timed automata”, In 2011 9th IEEE/ACM Interna-

tional Conference on Formal Methods and Models for Codesign (MEMOCODE),

pages 161-170, 2011.

[42] D. Karlsson, P. Eles, and Z. Peng. ”Formal verification of SystemC Designs

using a Petri-Net based Representation”, In DATE, pages 1228-1233, 2006.

[43] Chun-Nan Chou, Yen-Sheng Ho, Chiao Hsiehand Chung-Yang Huan ”Formal

Deadlock Checking on High-Level SystemC Designs” In 2010 2010 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 794-799,

2010.

[44] Chun-Nan Chou, Yen-Sheng Ho, Chiao Hsiehand, Chung-Yang Huan ”Symbolic

Model Checking on SystemC Design” In Design Automation Conference (DAC)

’12 Proceedings of the 49th Annual Design Automation Conference, pages 327-333,

2012.

[45] C. Barrett, A. Stump, C. Tinelli ”The SMT-LIB Standard Version 2.0”, March

30, 2010

[46] ”Z3 theorem prover” http://z3.codeplex.com/

114

http://z3.codeplex.com/

[47] David R. Cok. ”The SMT-LIB v2 Language and Tools: A Tutorial” http:

//www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

[48] C. Chang and R. Dömer, ”Communication Protocol Analysis of Transaction-

Level Models using Satisfiability Modulo Theories”, Accepted for publication at

the Asia and South Pacific Design Automation Conference 2015, Tokyo, Japan,

January 2015

[49] L. De Moura and N. Bjørner, ”Z3: An efficient smt solver”, in

TACAS’08/ETAPS’08, pages 337–340. Springer-Verlag.

[50] C. P. Gomes, H. Kautz, A. Sabharwal, B. Selman, ”Satisfiability solvers” Hand-

book of Knowledge Representation 3 (2008): 89-134

[51] L. De Moura and N. Bjørner, ”atisfiability modulo theories: Introduction and

applications”, in Commun. ACM, 54(9):69–77, Sept. 2011.

[52] T. Sakunkonchak, S. Komatsu, and M. Fujita, ”Synchronization verification in

system-level design with ILP solvers”, Proceedings of Formal Methods and Models

for Co-Design, pp.121,130, 11-14 July 2005

[53] Advanced RISC Machines Ltd., ”AMBA Specification (Rev. 2.0)”, ARM IHI

0011A

[54] Robert Bosch GmbH. ”CAN Specification, 2.0 edition”, 1991.

http://www.can.bosch.com/

[55] G. Schirner and R. Dömer, ”Quantitative analysis of the speed/accuracy trade-off

in transaction level modeling”, ACM Transactions Embedded Computing Systems,

8:4:1–4:29, Jan. 2009.

[56] G. Schirner and R. Dömer, ”Abstract Communication Modeling: A Case Study

115

http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

Using the CAN Automotive Bus”, Proceedings of the International Embedded

Systems Symposium, Springer, Manaus, Brazil, August 2005.

[57] C. Chang and R. Dömer, ”Abstracting ESL Designs to UPPAAL System Mod-

els”, Center for Embedded and Cyber-Physical Systems, Technical Report 14-13,

November 2014

[58] C. Chang and R. Dömer, ”May-Happen-in-Parallel Analysis of ESL Models using

UPPAAL Model Checking”, Accepted for publication at the Design, Automation

and Test in Europe Conference 2015, Grenoble, France, March 2015.

[59] G. Behrmann, A. David, K. G. Larsen ”A Tutorial on UPPAAL 4.0”

http://www.uppaal.org/

[60] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P.Pettersson, W. Wi, and

M. Hendrikes, ”UPPAAL 4.0”, in Proc. QEST, 2006, pp. 125-126.

[61] P. Herber, and S. Glesner, ”A HW/SW co-Verification framework for SystemC”,

in ACM Trans. Embed Comput, Syst. 12, 1s Article 61, 2013

[62] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi, ”A SystemC/TLM Seman-

tics in PROMELA and its Possible Application”, in Proc. SPIN, LNCS, 2007, pp

204-222

[63] A.Cimatti. I. Narasamdya, and M. Roveri, ”Software Model Checking SystemC”,

in IEEE Computer-Aid-Design of Integrated Circuits and Systems, Vol. 32, May,

2013

[64] R. Dömer, W. Chen and X. Han, ”Parallel Discrete Event Simulation of Transac-

tion Level Models”, Proceedings of the Asia and South Pacific Design Automation

Conference, 2012, Sydney, Australia, Feb 2012

116

[65] W. Chen, X. Han, and R. Dömer, ”May-Happen-in-Parallel Analysis based on

Segment Graphs for Safe ESL Models”, in DATE ’14 European Design and Au-

tomation Association.

[66] C. Schumacher, J. Weinstock, R. Leupers, and G. Ascheid, ”Scandal: SystemC

Analysis for Nondeterminism Anomalies”, in Forum on Specification and Design

Languages, 2012

[67] A. Sen, V. Ogale, and M. S. Abadir, ”Predictive Runtime Verification of Multi-

processor SoCs in SystemC”, Design Automation Conference, 2008. DAC 2008.

45th ACM/IEEE

[68] N. BLANC, E. Zurich, and D. Kroening, ”Race Analysis for SystemC using

Model Checking”, in ACM Trans. Des. Autom. Electron. Syst. 15, 3, Article 21

[69] G. Naumovich and G.S. Avrunin, ”A Conservative Data Flow Algorithm for De-

tecting All Pairs of Statements that May Happen in Parallel”, in ACM SIGSOFT

on Software Engineering Notes,vol.23,pp.24-34,1998

[70] K. P. Kim, R. Dömer, ”Design Exploration using Multiple ARM Instruction Set

Simulators - A Case Study on a JPEG Encoder”, Center for Embedded Computer

Systems, Technical Report 09-08, May 2009.

[71] P. Chandraiah, H. Schirner, N. Srinivas, R. Dömer, ”System-On Chip Modeling

and Design: A Case Study on MP3 Decoder”, Center for Embedded Computer

Systems, Technical Report 04-17, June 2004.

[72] Y. Samei and R. Dömer, ”MAVO: An Automated Framework for ESL Design:

Monitor, Analyze, Visualize and Optimize”, Center for Embedded and Cyber-

Physical Systems, Technical Report 14-12, November 2014.

117

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	System-Level Design
	The Y-Chart and Top-Down Design Methodology
	SpecC and Refinement-based Methodology

	Verification of ESL Design
	Formal Analysis and Verification
	Related Work

	Goals
	Formal Deadlock Detection
	Timing Constraint Verification
	May-Happen-in-Parallel Analysis
	Satisfiability Modulo Theories
	UPPAAL System Model

	Overview

	Formal DeadLock Analysis of SpecC Models
	Introduction
	Related Work
	Preliminaries
	SpecC SLDL
	Satisfiability Modulo Theories

	From SpecC to SMT assertions
	Execution
	Communication
	From Time Stamp to SMT Assertions

	Experiments
	Summary

	Communication Protocol Analysis of Transaction-Level Models
	Introduction
	Designer Augmented Assertions
	TLM with Communication Timing
	Related Work

	Time Interval Models
	Timing Constraints

	Timing Relation Extraction
	Timing Relation for Hierarchical Behaviors
	Timing Relation Extraction for Leaf Behaviors
	Liveness and Deadlock
	Hierarchical Timing Analysis

	Case Study and Experiments
	Case Study on AMBA AHB
	Case Study on CAN Bus Protocol
	Experimental Results

	Summary

	May-Happen-in-Parallel Analysis of ESL Models
	Introduction
	MHP Analysis using UPPAAL Model Checker
	Related Work

	May-Happen-in-Parallel Analysis
	SLDL Design to UPPAAL Model
	UPPAAL Automaton and System Model
	PDES Model in UPPAAL
	Automaton Template for Hierarchical Behaviors
	Automaton Template for Leaf Behaviors
	Scheduler Automaton
	UPPAAL System Description for a PDES Model

	Queries for May-Happen-in-Parallel Analysis
	Query in UPPAAL Model Checker
	Queries for MHP Analysis

	Model Optimization
	Experiments and Results
	Extension to Timing and Power Consumption Analysis
	Timing Delay Analysis
	Timing Delay and Power Consumption Analysis
	UPPAAL Modeling for Dynamic Voltage and Frequency Scaling

	Summary

	Conclusion
	Contributions
	Formal Deadlock Detection using SMT
	Formal Timing Analysis using SMT
	May-Happen-in-Parallel Analysis using UPPAAL Model Checking

	Future Work
	SMT Modeling for System-level Design
	UPPAAL Modeling for System-level Design

	Bibliography

