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DISTRIBUTED GAUSS-NEWTON METHOD FOR NODE 
LOCLAIZATION IN W W L E S S  SENSOR NETWORKS 

Sing Hwu Cheng, RaEph E. Hudson, Fluvio Lorenzelli, 
Lieven Vandenberghe, Kung Yuo, 

UCLA 

ABSTRACT 

We present distributed algorithms for sensor localization 
based on the Gauss-Newton method. Each sensor updates 
its estimated location by computing the Gauss-Newton 
step for a local cost function and choosing a proper step 
length. Then it transmits the updated estimate to all the 
neighboring sensors. The proposed algorithms provide 
non-increasing values of a global cost function. It is 
shown in the paper that the algorithms have computational 
complexity of O(n) per iteration and a reduced 
communication cost over centralized algorithms. 

1. INTRODUCTION 

The use of sensor networks for monitoring has been 
increasing extensively. The location of each sensor must 
be determined before performing any usefd monitoring. 
For large number of nodes in the network, it is not 
possible to have GPS capability or precise calibration for 
each sensor. Several techniques have been proposed using 
centralized algorithms. [ l j  and [2] use convex 
optimization to estimate the locations of sensor nodes 
given range information, i.e., pair-wise distance 
measurements between sensor nodes. In [6], an iterative 
non-linear least-squares method is proposed to estimate 
sensor iocations when no sensor with known location 
(anchor) is available. However, as the number of semors 
grows, it is not desirable to have a centralized algorithm 
because of the computational complexity and 
communication cost. Several distributed methods have 
been proposed. In [9J, ad-hoc node locafization method is 
proposed. In this approach each sensor counts the number 
of hops to 3 nearest anchors and computes average hop 
distance. With this information each sensor can perform 
multilateration to obtain the position estimate. A 
distributed refinement to [9] using triangulation is 
presented in 1143. The N-hop multilateration method in 
[ 101 provides distributed estimation of the sensor location 
by dividing the network into several subtrees such that the 
solution in each subtree is uniquely determined. In [I 11, a 
similar approach is proposed. A dense network is divided 
into several clusters. Each cluster estimates its own 
sensors locations using semidefinite programming (SDP) 
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io [l]. If the sensor is in multiple clusters, the algorirhm 
simply chooses the best estimation among those clusters. 
The nonparametric belief propagation (NBP) method in 
[7] estimates the locations of sensors iQ a distributed 
fashion. Each sensor sends different messages to its 
neighboring sensors, where each massage consists of 
random samples and marginal estimates of the 
correSp0nding neighboring sensor. In [ 131, distributed 
weighted multi-dimensional scaling (dwMDS) is 
presented when a routing loop in the network is available. 
We present distributed algorithms in which each sensor 
has noisy measurements of the distance to its neighboring 
sensors and anchors (sensors with known locations). The 
measurements can be obtained using RSSI (Received 
Signal Strength Indicator) or ToA (time-of-arrival) 
described in [12]. Based on the measurements of  the 
distance and estimated locations of the neighboring 
sensors, we update the estimated location by finding a 
descent step using Gauss-Newton method on the local cost 
function and choosing a proper step length. Then we 
broadcast the updated estimation to the neighboring 
sensors. Based on bow we update the estimated locations, 
we present two distributed algorithms: sequential and 
parallel algorithms. In the sequential algorithm, each 
sensor computes a descent step, finds a step length and 
then updates its estimated location sequentially. In the 
parallel algorithm, all sensors first compute their descent 
steps simultaneously. Then each sensor finds step length 
and updates its location estimate sequentialIy. Since 
computing a step requires more processing time than 
finding a step length, the parallel algorithm will be faster 
than the sequential algorithm. It is shown in [15] that both 
algorithms provide non-increasing values of a global cost 
function. 

2. DISTRIBUTED ALGORITHMS 

Supposed we have m sensors with known locations 
(anchors) o , € R 2 ,  k=I ,..., m, and n sen.sorsxiE R 2 ,  
i=Z, ..., n whose locations are unknown and need to be 
determined. Each sensor has distance measurements to all 
the neighboring sensors and anchors. For example, the i-th 
sensor has Euclidean distance measurement d, between 
x i ,  xi and drk between xi, ak if the distance between 
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X i ,  x j  and between xi, nk is less than the radio range 
f 

R. We assume there is a communication link established 
between a pair of sensors if the distance is less than the 
radio range. 
Given all the range information cfv and d, the 

localization problem [ 11 is to f i d  xi s such that 

(1) 
sik(x)=lb -q,I\ 2 -&=o, if Ibi - ~ J ~ I R ~  

where x = [ ( x ~ ) ~  ( x ~ ) ~  7 . -  (x,>'p. 

This problem can be formulated as a non-linear least- 
squares problem, i.e., 

A centralized Gauss-Newton method for solving (2) is 
given in [lS].  

2.1. Sequential Algorithm 

We first define the local cost h c t i o n  of node i as 
F . ( x .  x . .  . ) =  

I 1 7  .JIJ-H 

where j + i and k + i represent all the sensors and 
anchors that are neighbors of node i, respectively. 
Assuming all the neighboring sensors before sensor i have 

been updated at iteration H I ,  that is, 
available to sensor i. For the rest of the neighboring 
sensors, xi,i+i,j,i are also avaiIabIe fiom the previous 

iteration t. Given x:;2i,jqi and ~i j*~,~,~,  we can 
formulate the problem of minimizing the local cost 
function in (3) as a non-linear least-squares problem with 
variable x i ,  i.e., 

are . 
@+r)  

0 )  

(4) 

Given the estimated location of sensor i at iteration t, x r ) ,  
we can approximate (4) as a linear least-squares problem 
using the Gauss-Newton method, i.e., 

(5) 
Let p Y q  be the solution to IS), the update of sensor i is 

given by$+') = xr) -sip,""" where ai is a proper step 
length. Then sensor i transmits the updated 
estimation x,!ffl) to all the neighboring sensors and sensor 
i+l starts to compute the step and fmd a step length. The 
(t+l)-st  iteration ends when all sensors have updated their 
estimations. 

2.2. Parallel Algorithm 

One disadvantage of the sequential algorithm is that all 
steps have to be computed in sequentially. We present a 
parallel algorithm based on the Jacobi method 131 which 
allows the computation done in a parallel fashion. Given 
all the estimated locations of the neighboring sensors of 
node i at iteration t, that isjx:ij+i, we formulate the 
problem of minimizing the local cost function (3) as a 
non-linear least-squares problem with variable xi, i.e., 

min F~ (xi, x?,,~) . (6) 
xi 

The approximation to a linear least-squares problem is 
given by 

f 

Let be the solution to (7), the update of sensor i is 

given by$*') = xy) - q p i  , where ai is a proper step 

length. Note that all the steps pip"'" G R 2 , i  =l , . . . jn  can 
now be computed simultaneously. In general, the parallel 
algorithm requires slightly more iterations than the 
sequential algorithm for the same accuracy. Thus the total 
computational complexity is slightly increased. But the 
parallel algorithm has much faster processing time since 
all the computations are done simultaneously. 

Para 

3. STEP LENGTH SELECTION 
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In the sequential algorithm, the step length selection can 
be done using general techniques such as the backtracking 
line search [5] sequentially on each sensor, that is, find a 
a, > 0 such that 

In the parallel algorithm, in order to guarantee non- 
increasing values of global cost function, the step length 
selection also needs to be done sequentially, that is, at 
sensor i, find a ai > 0 such that 

It is shown in [15] that both sequential and parallel 
algorithms provide non-increasing values of the global 
cost function F(x) .  Both algorithms have computational 
complexity of U(n) per iteration and only local 
information (estimated locations fi-om the neighboring 
sensors) is required. Note that it is possible in the parallel 
algorithm that some sensors will find zero step length, 
i.e., ai = 0 since p y  is a descent step with respect to 

the local cost function K(X~,X;.;.+~), not 

4(xi, x ; $ ~ , ~ , ; )  . But fiom practical experience, 

only few sensors in the network will find zero step Iength. 
Thus the overall value of cost function is still decreasing. 
We summarize sequential and parallel algorithms Figure 
1. 
We assume there is a central node that sends out 
activation messages sequentiaIly to all sensors. After each 
sensor receives the activation message, it starts processing 
the information. In the sequential algorithm, it computes 
the step, finds the step length, updates the estimation and 
then broadcasts the estimation to its neighboring sensors. 
In the parallel algorithm, since the step is already 
computed at the beginning of the iteration, it only needs to 
find the step length, update the estimation and broadcast 
the estimation to its neighboring sensors. Denote T, and T2 
(seconds) the processing time at each sensor for sequential 
and parallel algorithms, respectively. Then an activation 
message is sent every TI seconds for the sequentiaI 
algorithm, and every 7'' seconds for the parallel algorithm. 
Thus sensors do not need to communicate back to the 
central node. Also if one sensor crashes, the rest of the 
sensors can still continue the updating process. Note that 
adjacent sensors, xi, xi+l ,  are not necessarily neighbors 
to each other. Thus no pre-specified routing Ioop is 
required. 
Each sensor can determine its own stopping criterion by 
comparing the magnitude of the step to a given threshold, 

i.e., stop computing step and updating if llpi 11 < E where 
& is a pre-determined value. 

Sequential algorithm 

Given starting point I(') 
for i=l:l:n 
4 Compute p,s'4 in (5). 

Find step length ai 
such that (8) holds. 
x(t+l) 

I 

=x?) -aip;q 

Transmit xjt+') to all 
the neighboring 
sensors. 

end 
t=r+I 

Figure 1. Sequential 

Parallel algorithm 

Given starting point x") 
Compute ppurn in (7). 
for i=l:l:n 

Find step length ai 
such that (9) holds. 
x<4 

=xW -a;$$ Par0 , 

Transmit xjt+') to alI 
the neighboring 
sensors. 

end 
t = r + ~  

parallel algorithms 

4. SIMULATION RESULTS 

In this section we present some simulation results. 
Comparisons of the complexity among different 
algorithms are also given. We consider a network with n 
and d l 0  randomly chosen sensors and anchors, 
respectively. If the distance between two sensors or sensor 
and anchor is less than the radio range R,  a noisy 
measurement of the distance is given by [ 13 

dii = d ,  (1 t rundnxnoise factor) , 
(1 0)  
where noise factor is a given number related to the 
accuracy of the distance measurement and randn is a 
standard normal random variable with zero mean and unit 
variance. 
First, we show an example of 100 sensors and 10 anchors 
placed randomly in a 1.6x1.6 region where the radio 
range is 0.35 and the noise factor is 0.1. The starting 
points are chosen as random perturbations from the true 
sensor locations, where the perturbation is given by 
uniformly distributed random variable in [-@I 0.11. The 
estimation results of the centralized, sequential and 
parallel algorithms are given in Figure 2, represented by 
"x". The true sensor locations are given by the "0". 
Anchors are given by "v". It can be seen from Figure 2 
that distributed algorithms described in section 2 converge 
to almost the same results as the centralized Gauss- 
Newton algorithm. Figure 3 shows comparisons of the 
convergence behavior of the parallel algorithm, the 
distributed triangulation (or one-hop multilateration) 
method in [IO] and [ 141 over 5 random realizations. 
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Then, we increase the size of tbe network n while keeping 
the density of both sensors and anchors unchanged, that is, 
n sensors and n/iO anchors located randomly in a - - 
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region. Figure 4 shows average 
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numbers of iteration over 20 realizations for both 
sequential and parailel algorithms to reach a given 
accuracy (within f0.01 from the true location). The radio 
range is 0.35 and noise factor is set to zero in all cases. It 
can be seen that the sequential algorithm requires slightly 
fewer iteration. But the total processing time in Figure 5 is 
much larger for the sequential algorithm. This is because 
the computation of the steps p y q s  in the sequential 

algorithm must be computed sequentially, while pip"" in 
the parallel algorithm can be computed simultaneously 
(for simplicity, we ignore the processing time for finding 
step length). Finally, we present some empirical results on 
the communication energy cost. We use the model given 
by [SI that the propagation loss is proportional to the 
fourth power of distance. For centralized algorithms, each 
sensor only needs to transmit to the central processor 
once. However, as the size of the network increases or 
equivalently, the region increases, each sensor will need 
more energy to transmit the information to a central 
processor (we assume the central processor lies at location 
(U$)). In distributed algorithms, each sensor only 
communicates to the neighboring sensors. Thus the total 
energy cost depends linearly on the total number of 
sensors and number of iteration required. Figure 6 shows 
the average energy consumption over 20 realizations of 
different algorithms. It can be seen when the size of 
network is large, distributed algorithms have reduced 
energy consumption. 

5. CONCLUSIONS 

We have presented distributed algorithms for localization 
in wireless sensor networks based on Gauss-Newton 
method. Both algorithms provide non-increasing values of 
the global cost function. The proposed methods have 
linear computational complexity per iteration and reduced 
communication energy consumption over centralized 
algorithms. 

j 
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2 4 6 8 10 
Heration 

Figure 3. Estimation error versus iteration for different 
algorithms over 5 random realizations 
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Figure 4. Average number of iteration 
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Figure 5. Average processing time (in log scale) 
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Figure 6 .  Average energy consumption due to 
communication 
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