
UCLA
Papers

Title
Distributed Gauss-Newton Methodology for Node Localization in Wireless Sensor Networks

Permalink
https://escholarship.org/uc/item/1190s0xj

Authors
Cheng, Bing Hwa
Hudson, Ralph E.
Lorenzelli, F.
et al.

Publication Date
2005-06-05

DOI
10.1109/SPAWC.2005.1506273

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1190s0xj
https://escholarship.org/uc/item/1190s0xj#author
https://escholarship.org
http://www.cdlib.org/

2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications

DISTRIBUTED GAUSS-NEWTON METHOD FOR NODE
LOCLAIZATION IN W W L E S S SENSOR NETWORKS

Sing Hwu Cheng, RaEph E. Hudson, Fluvio Lorenzelli,
Lieven Vandenberghe, Kung Yuo,

UCLA

ABSTRACT

We present distributed algorithms for sensor localization
based on the Gauss-Newton method. Each sensor updates
its estimated location by computing the Gauss-Newton
step for a local cost function and choosing a proper step
length. Then it transmits the updated estimate to all the
neighboring sensors. The proposed algorithms provide
non-increasing values of a global cost function. It is
shown in the paper that the algorithms have computational
complexity of O(n) per iteration and a reduced
communication cost over centralized algorithms.

1. INTRODUCTION

The use of sensor networks for monitoring has been
increasing extensively. The location of each sensor must
be determined before performing any usefd monitoring.
For large number of nodes in the network, it is not
possible to have GPS capability or precise calibration for
each sensor. Several techniques have been proposed using
centralized algorithms. [l j and [2] use convex
optimization to estimate the locations of sensor nodes
given range information, i.e., pair-wise distance
measurements between sensor nodes. In [6], an iterative
non-linear least-squares method is proposed to estimate
sensor iocations when no sensor with known location
(anchor) is available. However, as the number of semors
grows, it is not desirable to have a centralized algorithm
because of the computational complexity and
communication cost. Several distributed methods have
been proposed. In [9J, ad-hoc node locafization method is
proposed. In this approach each sensor counts the number
of hops to 3 nearest anchors and computes average hop
distance. With this information each sensor can perform
multilateration to obtain the position estimate. A
distributed refinement to [9] using triangulation is
presented in 1143. The N-hop multilateration method in
[101 provides distributed estimation of the sensor location
by dividing the network into several subtrees such that the
solution in each subtree is uniquely determined. In [I 11, a
similar approach is proposed. A dense network is divided
into several clusters. Each cluster estimates its own
sensors locations using semidefinite programming (SDP)

0-7803-8867.4/05/$20.0~200~ IEEE

io [l]. If the sensor is in multiple clusters, the algorirhm
simply chooses the best estimation among those clusters.
The nonparametric belief propagation (NBP) method in
[7] estimates the locations of sensors iQ a distributed
fashion. Each sensor sends different messages to its
neighboring sensors, where each massage consists of
random samples and marginal estimates of the
correSp0nding neighboring sensor. In [131, distributed
weighted multi-dimensional scaling (dwMDS) is
presented when a routing loop in the network is available.
We present distributed algorithms in which each sensor
has noisy measurements of the distance to its neighboring
sensors and anchors (sensors with known locations). The
measurements can be obtained using RSSI (Received
Signal Strength Indicator) or ToA (time-of-arrival)
described in [12]. Based on the measurements of the
distance and estimated locations of the neighboring
sensors, we update the estimated location by finding a
descent step using Gauss-Newton method on the local cost
function and choosing a proper step length. Then we
broadcast the updated estimation to the neighboring
sensors. Based on bow we update the estimated locations,
we present two distributed algorithms: sequential and
parallel algorithms. In the sequential algorithm, each
sensor computes a descent step, finds a step length and
then updates its estimated location sequentially. In the
parallel algorithm, all sensors first compute their descent
steps simultaneously. Then each sensor finds step length
and updates its location estimate sequentialIy. Since
computing a step requires more processing time than
finding a step length, the parallel algorithm will be faster
than the sequential algorithm. It is shown in [15] that both
algorithms provide non-increasing values of a global cost
function.

2. DISTRIBUTED ALGORITHMS

Supposed we have m sensors with known locations
(anchors) o , € R 2 , k=I ,..., m, and n sen.sorsxiE R 2 ,
i=Z, ..., n whose locations are unknown and need to be
determined. Each sensor has distance measurements to all
the neighboring sensors and anchors. For example, the i-th
sensor has Euclidean distance measurement d, between
x i , xi and drk between xi, ak if the distance between

915

X i , x j and between xi, nk is less than the radio range
f

R. We assume there is a communication link established
between a pair of sensors if the distance is less than the
radio range.
Given all the range information cfv and d, the

localization problem [11 is to f i d xi s such that

(1)
sik(x)=lb -q,I\ 2 -&=o, if Ibi - ~ J ~ I R ~

where x = [(x ~) ~ (x ~) ~ 7 . - (x,>'p.

This problem can be formulated as a non-linear least-
squares problem, i.e.,

A centralized Gauss-Newton method for solving (2) is
given in [lS].

2.1. Sequential Algorithm

We first define the local cost h c t i o n of node i as
F . (x . x . . .) =

I 1 7 .JIJ-H

where j + i and k + i represent all the sensors and
anchors that are neighbors of node i, respectively.
Assuming all the neighboring sensors before sensor i have

been updated at iteration H I , that is,
available to sensor i. For the rest of the neighboring
sensors, xi,i+i,j,i are also avaiIabIe fiom the previous

iteration t. Given x:;2i,jqi and ~i j*~,~,~, we can
formulate the problem of minimizing the local cost
function in (3) as a non-linear least-squares problem with
variable x i , i.e.,

are .
@+r)

0)

(4)

Given the estimated location of sensor i at iteration t, x r) ,
we can approximate (4) as a linear least-squares problem
using the Gauss-Newton method, i.e.,

(5)
Let p Y q be the solution to IS), the update of sensor i is

given by$+') = xr) -sip,""" where ai is a proper step
length. Then sensor i transmits the updated
estimation x,!ffl) to all the neighboring sensors and sensor
i+l starts to compute the step and fmd a step length. The
(t+l)-st iteration ends when all sensors have updated their
estimations.

2.2. Parallel Algorithm

One disadvantage of the sequential algorithm is that all
steps have to be computed in sequentially. We present a
parallel algorithm based on the Jacobi method 131 which
allows the computation done in a parallel fashion. Given
all the estimated locations of the neighboring sensors of
node i at iteration t, that isjx:ij+i, we formulate the
problem of minimizing the local cost function (3) as a
non-linear least-squares problem with variable xi, i.e.,

min F~ (xi, x?,,~) . (6)
xi

The approximation to a linear least-squares problem is
given by

f

Let be the solution to (7), the update of sensor i is

given by$*') = xy) - q p i , where ai is a proper step

length. Note that all the steps pip"'" G R 2 , i =l , . . . jn can
now be computed simultaneously. In general, the parallel
algorithm requires slightly more iterations than the
sequential algorithm for the same accuracy. Thus the total
computational complexity is slightly increased. But the
parallel algorithm has much faster processing time since
all the computations are done simultaneously.

Para

3. STEP LENGTH SELECTION

916

In the sequential algorithm, the step length selection can
be done using general techniques such as the backtracking
line search [5] sequentially on each sensor, that is, find a
a, > 0 such that

In the parallel algorithm, in order to guarantee non-
increasing values of global cost function, the step length
selection also needs to be done sequentially, that is, at
sensor i, find a ai > 0 such that

It is shown in [15] that both sequential and parallel
algorithms provide non-increasing values of the global
cost function F(x) . Both algorithms have computational
complexity of U(n) per iteration and only local
information (estimated locations fi-om the neighboring
sensors) is required. Note that it is possible in the parallel
algorithm that some sensors will find zero step length,
i.e., ai = 0 since p y is a descent step with respect to

the local cost function K(X~,X;.;.+~), not

4(xi, x ; $ ~ , ~ , ;) . But fiom practical experience,

only few sensors in the network will find zero step Iength.
Thus the overall value of cost function is still decreasing.
We summarize sequential and parallel algorithms Figure
1.
We assume there is a central node that sends out
activation messages sequentiaIly to all sensors. After each
sensor receives the activation message, it starts processing
the information. In the sequential algorithm, it computes
the step, finds the step length, updates the estimation and
then broadcasts the estimation to its neighboring sensors.
In the parallel algorithm, since the step is already
computed at the beginning of the iteration, it only needs to
find the step length, update the estimation and broadcast
the estimation to its neighboring sensors. Denote T, and T2
(seconds) the processing time at each sensor for sequential
and parallel algorithms, respectively. Then an activation
message is sent every TI seconds for the sequentiaI
algorithm, and every 7'' seconds for the parallel algorithm.
Thus sensors do not need to communicate back to the
central node. Also if one sensor crashes, the rest of the
sensors can still continue the updating process. Note that
adjacent sensors, xi, xi+l , are not necessarily neighbors
to each other. Thus no pre-specified routing Ioop is
required.
Each sensor can determine its own stopping criterion by
comparing the magnitude of the step to a given threshold,

i.e., stop computing step and updating if llpi 11 < E where
& is a pre-determined value.

Sequential algorithm

Given starting point I(')
for i=l:l:n
4 Compute p,s'4 in (5).

Find step length ai
such that (8) holds.
x(t+l)

I

=x?) -aip;q

Transmit xjt+') to all
the neighboring
sensors.

end
t=r+I

Figure 1. Sequential

Parallel algorithm

Given starting point x")
Compute ppurn in (7).
for i=l:l:n

Find step length ai
such that (9) holds.
x<4

=xW -a;$$ Par0 ,

Transmit xjt+') to alI
the neighboring
sensors.

end
t = r + ~

parallel algorithms

4. SIMULATION RESULTS

In this section we present some simulation results.
Comparisons of the complexity among different
algorithms are also given. We consider a network with n
and d l 0 randomly chosen sensors and anchors,
respectively. If the distance between two sensors or sensor
and anchor is less than the radio range R, a noisy
measurement of the distance is given by [13

dii = d , (1 t rundnxnoise factor) ,
(1 0)
where noise factor is a given number related to the
accuracy of the distance measurement and randn is a
standard normal random variable with zero mean and unit
variance.
First, we show an example of 100 sensors and 10 anchors
placed randomly in a 1.6x1.6 region where the radio
range is 0.35 and the noise factor is 0.1. The starting
points are chosen as random perturbations from the true
sensor locations, where the perturbation is given by
uniformly distributed random variable in [-@I 0.11. The
estimation results of the centralized, sequential and
parallel algorithms are given in Figure 2, represented by
"x". The true sensor locations are given by the "0".
Anchors are given by "v". It can be seen from Figure 2
that distributed algorithms described in section 2 converge
to almost the same results as the centralized Gauss-
Newton algorithm. Figure 3 shows comparisons of the
convergence behavior of the parallel algorithm, the
distributed triangulation (or one-hop multilateration)
method in [IO] and [141 over 5 random realizations.

917

Then, we increase the size of tbe network n while keeping
the density of both sensors and anchors unchanged, that is,
n sensors and n/iO anchors located randomly in a - -

o.8-

0.4

4 . 4

-0.8

region. Figure 4 shows average
100 100

0 9 Ki?] 9 estimation @ c%

o Q &%
B

m b # : && J

8 e 8" n.
e$' Q

0 - h b 0: B
o . @ e B b

gg

& * " W D a" B

3
d
I

@Q O@ B
"8-
-

*o 8 , % e +@&

U
C

numbers of iteration over 20 realizations for both
sequential and parailel algorithms to reach a given
accuracy (within f0.01 from the true location). The radio
range is 0.35 and noise factor is set to zero in all cases. It
can be seen that the sequential algorithm requires slightly
fewer iteration. But the total processing time in Figure 5 is
much larger for the sequential algorithm. This is because
the computation of the steps p y q s in the sequential

algorithm must be computed sequentially, while pip"" in
the parallel algorithm can be computed simultaneously
(for simplicity, we ignore the processing time for finding
step length). Finally, we present some empirical results on
the communication energy cost. We use the model given
by [SI that the propagation loss is proportional to the
fourth power of distance. For centralized algorithms, each
sensor only needs to transmit to the central processor
once. However, as the size of the network increases or
equivalently, the region increases, each sensor will need
more energy to transmit the information to a central
processor (we assume the central processor lies at location
(U$)). In distributed algorithms, each sensor only
communicates to the neighboring sensors. Thus the total
energy cost depends linearly on the total number of
sensors and number of iteration required. Figure 6 shows
the average energy consumption over 20 realizations of
different algorithms. It can be seen when the size of
network is large, distributed algorithms have reduced
energy consumption.

5. CONCLUSIONS

We have presented distributed algorithms for localization
in wireless sensor networks based on Gauss-Newton
method. Both algorithms provide non-increasing values of
the global cost function. The proposed methods have
linear computational complexity per iteration and reduced
communication energy consumption over centralized
algorithms.

j
i
i
i

2 4 6 8 10
Heration

Figure 3. Estimation error versus iteration for different
algorithms over 5 random realizations

I netwrok size (n)
~~~~~ ~ 

Figure 4. Average number of iteration 

91 6 



i 000 - F 
8 100 
“ 5  

10 

n 
W 

0 1  

b m e 
B 

t m 

netwrok size (n) 

Figure 5. Average processing time (in log scale) 

network slze (n) 

Figure 6 .  Average energy consumption due to 
communication 

7. REFERNCES 

[l] P. Biswas, Y. Ye,  “Semidejnite Programming for Ad 
Hoc JVireeless Sensor Network Localization”, IPSN, 
Pages 46-54, April 2004. 

[Z] L. Doherty, L. E. Ghaoui, and S. J. Poster. “Convex 
Position Estimation in Wireless Sensor Networks” 
IEEE hfocum, v.3, pages 1655-1663, April 2001. 

[3] D. P. Bertsekas and J. N. Tsitslklis, Parallel and 
Distributed Computation. Engiewood Cliffs, 1989. 

[4] J. M. Ortega and W. C. Rheinboldt, Iterative SoZution 
of Non-linear Equations in Several Vuriables, 
Academic Press, New York and London, 1932. 

IS] S. Boyd, L. Vandenberghe, Convex Optimization, 
Cambridge University Press, 2004. 

163 R. Moses, D. Krisbnamwth and R. Patterson, ‘‘Serf- 
localization fur Wireless Networh”, Eurasip Journal 
on Applied Signal Processing, pages 348-358,2003. 

[7] A. Mer, J. Fisher III, R. Moses and A. Willsky, 
“Nonparametric Belief propugation for Self- 
Calibration in Sensor Networks”, IPSN, pages 225- 
233, April 2004. 

[SI G. Pottie and W. Kaiser, “Wireless Integrated 
Network Sensors”, Communications o f  the ACM, 
43(5): 51-58, May2000. 

[9] D. Nicolescu, B. Nath, “Ad-hoc Positzoniilg S’stem”, 
Proceedings of IEEE GLOBECOM, vol. 5, pages 
2926-293 I ,  NOV. 2001. 

[ 101 A. Sawides, H. Park, M .  B. Srivastava, “The Bits and 
Flops of the Whop Multilateration Primitive For 
Node Loculizution Problems”, ACM Mobile 
Networks and Applications, 8(4), 443-451 (2003). 

[I  1 JP. Biswas, Y .  Ye, “A Distributed Method for Solving 
Semidefinite Programs Arising From Ad-hoc Wireless 
Sensor Network Loculizotion”, Technical report, 
Dept. of Management Science and Engineering, 
Stanford University, Oct. 2003. 

[12]A. Sawides, S. Han, M. B. Srivastava, “Dynamic 
fine-grained localizatioir in Ad-Hoc networks of 
sensors“, Proceedings of  the Seventh ACM Annual 
hternational Conference on Mobile Computing and 
Networking (MobiCom), July 2001. 

[13]J. A. Costa, N. Patwari and A. 0. Hero 111, 
“Achieving High-Accuracy Distributed Luculizution 
in Sensor Network”, 1CASSP 2005. 

[14] C. Savarese, J. Rabay and K. Langendoen, “Robust 
Positioning Algorithms for Distributed Ad-Hoc 
Wireless Sensor Networks”, USENIX Technical 
Annual Conference, June 2002. 

[ 151 B. H. Cheng, “Distributed Gauss-Newton Method for 
Node Localization in Wireless Sensor Networks”, 
Technical Reports, 2005. 

919 




