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1 Introduction

Statistical inference is an important feature of meta-analysis. Estimation is
often a central goal, with hypothesis tests and confidence intervals used to
address uncertainty. Expositions of meta-analysis make statistical inference
a major theme (Hedges and Olkin, 1985; Hedges, 1993; Raudenbush, 1983;
Lipsey, 1992; 1997; Fleiss, 2003: chapter 10). Indeed, a significant motivation
for meta-analysis can be improving the precision of the estimates produced
and increasing the power of any hypothesis tests.

In the pages ahead, the use of statistical inference in meta-analysis will be
examined. The intent is to consider the statistical models employed and the
data with which they are used. Building on some previous work (Wachter,
1988, Berk and Freedman, 2003, Briggs, 2005), a key issue will be whether the
data were produced by the mechanisms that the models require. The paper
begins by describing some popular meta-analysis models. An assessment of
their use follows.

2 The Basic Meta-Analysis Model

Statistical inference is a process by which information contained in a data set
is used to drawn conclusions about unobservables. For meta-analysis, there
is a model representing how the studies to be summarized came to be. This



model has unobservable parameters. Investigators use information from the
studies on hand to estimate the values of these parameters.

Consider the basic meta-analysis model. There are m = 1,2, ..., M stud-
ies to be summarized. Within each study, there is a treatment group and a
control group. The treatment group is exposed to some intervention. The
control group gets an alternative, often just the status quo. Interest centers
on the difference between the mean response of the experimentals and the
mean response of the controls. Under the basic model, such differences are
the result of a single, treatment effect shared by all studies and a within-study
random error.

More formally, if « is the common treatment effect, and ¢, is the random
error associated with each study, the basic “fixed effects model” is

O = 0+ €, (1)

where 9,, is the realized treatment effect for study m. It can be measured
the units in which the outcome is measured (e.g., the homicide rate) or in
standard deviation units. The units in which §,,, is measured determine the
units of o and ¢,,. More will be said about this later.

The model requires that E(e,,) = 0 and that the disturbances represented
by €, are independent of one another. One imagines a very large number
of hypothetical studies in which the value of « is shifted up or down by an
additive, chance perturbation to produce 6,,. These chance perturbations are
independent across studies, which makes the 9,, independent across studies
as well.! The variance of €,,, often represented by o2, is usually assumed
to be the same for the experimental group and control group. All three
assumptions about ¢, are weighty, and their implications will be addressed
shortly.

Researchers never get to see any of equation 1. Equation 1 is a theory
about how the results of a given study are produced. All that follows only
makes sense if this theory is a good approximation of what really happened.

Equation 1 can be elaborated in many ways. Very commonly, a set of
covariates is included, so that equation 1 applies conditional on these co-
variates. In the absence of random assignment, for example, the covariates

!The assumption that E(e,,) = 0 implies that « alone is responsible for any systematic
differences between the experimentals and controls. The assumption of ¢, independence
implies that for estimates of a;, hypothesis tests can be undertaken and confidence intervals
can be constructed with conventional expressions.



might provide information on how membership in the experimental or control
group was determined. For the points to be made in this paper, nothing fun-
damentally changes. Other elaborations of the basic model will be considered
later.

2.1 Using the Basic Model

Data to inform the basic model must include for all study subjects a response
measure and an indicator for membership in the experimental or control
group. The data will often include covariates as well. Interest usually centers
on the difference between the mean response for the experimentals and mean
response for the controls.

In many settings, the difference between means shown in equation 1 is
taken to be in standard deviation units. Then, the observed difference in
means is divided by the standard deviation of the outcome variable. Specif-
ically, for each of m = 1,2,..., M studies

-T _ C
d, = Ym — ym’ (2)
Sm

where d,, is the standardized effect size for study m, ! is the mean response
for the treatment group, < the mean response for the control group, and s,,
is the standard deviation of the response in study m. For ease of exposition
and consistent with most studies in criminal justice settings, standardized
treatment effects will be employed from here forward.

The standard deviation of any given study is computed as.

Vin (g, = 1) + Vi (nf, = 1)
S = :
nl +ng —2

(3)

VI and V¢ stand for the variance of the response variable for the treatment
group and the control group respectively, and n’. and n¢ are the correspond-
ing sample sizes. Equation 3 can be justified by assuming that VI = V.
Whether this equivalence is reasonable is addressed below.

Because the goal is to summarize the findings across studies, an average
effect (over studies) is computed as an estimate of a. It is a weighed average,
with weights the inverse of the variance of each study’s standardized treat-
ment effect. Studies with larger chance variation are given less weight when
the weighted average is computed.



More formally, the standard error for each study is

S€m = om (4)

[T c’

Then, the weight for each study is the inverse of each study’s squared

standard error: )

—
sez,

()

To compute for M studies the weighted average standardized effect, one
uses,

Wm =

Z%:l (W X dp)
Z%:1 W ‘

Finally, the standard error of the weighted average is computed as

/ 1
S@E = m (7)

With the weighted average and its standard error in hand, confidence
intervals and hypothesis tests can be produced as usual.

a:

(6)

2.2 A Simple Illustration

To help make the preceding discussion more concrete, consider a very simple
example. Table 1 shows some summary statistics from three hypothetical
studies. There is an experimental and control group in each. For each study,
the table reports in the first three columns from left to right the sample size,
the difference between the mean of the experimental group and the mean of
the control group (in their original units), and the standard deviation of the
response variable.

N [ 95 —95 | sm | dn | sem | Wi
100 30 170 1.76 | 1.70 | 0.35
80 20 11.0 | 1.81 | 1.23 | 0.66
120 40 21.011.90 | 1.92 | 0.27

Table 1: Summary Statistics for Three Studies



The observed standardized effects, computed using equations 2 and 3, are
found in the fourth column. Using equation 4, the standard errors for each
study are shown in the fifth column. In the sixth column are the weights,
computed using equation 5. From equation 6, the weighted average is then
1.82. This is the estimate of a.

The standard error of the weighted average, computed using equation 7,
is .88. The 95% confidence interval is then 0.10 to 3.54. A test of the null
hypothesis that the treatment effect is 0, leads to a t-value of 2.06. Because
the p-value is smaller than .05, the null hypothesis is rejected. The same null
hypothesis would not have been rejected for each study by itself. This is the
kind of result that can be used to justify meta-analysis. Three studies with
null findings, when properly combined, lead to a rejection the null hypothesis
of no treatment effect.

3 Interpreting the Basic Model

The basic meta-analysis model is simple, and the computations that follow
are simple as well. Simplicity is good. However, because the model connects
statistical inference to how the studies were produced, simplicity by itself is
insufficient. We need to ask whether that connection performs as advertised.
A useful place to begin is with a discussion of the common treatment effect
«. What is the nature of the key parameter meta-analysts are trying to
estimate?

3.1 Causality

Meta-analysis is commonly used to estimate the impact of an intervention.
Interventions are manipulable within the real world in which the summarized
studies have been done. Thus, treatment effects are causal effects and in this
context, « is the “true” effect of some cause.

Some researchers apply meta-analysis to draw causal inferences when the
“Intervention” is a fixed attribute of an individual, such as sex (Archer, 2000)
or race (Mitchell, 2005). Regardless of the statistical procedure used, it makes
little sense to ask, for instance, whether a prison sentence would change if the
offender’s race were different, when it could not have been different (Holland,
1986; Rubin, 1986; Berk, 2003; Freedman, 2004).

But, there is nothing in equation 1 that requires cause and effect. One



may treat o as a description of a difference between the mean of one group
and the mean of the other. It is possible to conduct a meta-analysis of the
association between race and the length of prison sentence as long as no
causal interpretations are imposed.

In short, although meta-analysis is usually motivated by a desire to esti-
mate a causal effect, description will suffice. Problems arise when variables
that cannot be manipulated are analyzed as causes. Further confusion can
result when the language of experiments is used when it does not apply. We
will proceed from here onward within a causal framework because cause and
effect are usually key concerns in a meta-analysis. However, description is
not precluded.

3.2 Standardization

If all of the studies to be summarized have outcomes in common and inter-
pretable units, estimates of o are in those units as well. There is no need
to standardize the units across studies; « is the single, common treatment
effect in natural units. Suppose, for example, that « is three fewer burglar-
ies committed by individuals in a certain kind of drug treatment program
compared to individuals under conventional parole supervision. Then, there
will be exactly three fewer burglaries for each such drug treatment program
studied, save for random error.

In a wide variety of social science and criminal justice investigations, the
units in which the response is measured vary fundamentally. For example, the
outcome may be the homicide rate in one study and the number of homicides
in another study. Then, standardization is undertaken so that the treatment
effects can be more appropriately compared.

Under this scenario, the basic meta-analysis model requires the interven-
tion has the same effect in each study in standard deviation units (e.g., -1.2),
except for random error. The only systematic difference across studies is a
difference in scale. This means that if the response variable in each study
had the same standard deviation, the differences between the mean of the ex-
perimentals and the mean of the controls would be exactly the same. Then,
Equations 2 and 3 follow directly.

However, standardization depends on two assumptions about how the
real world functions. Recall that the basic model requires that in each study
the variance of the experimentals is the same as the variance of the controls:
VI = VC. This is the first assumption, and it depends on a theory of how
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the treatment affects the response.

For example, when the response to the treatment is proportional to the
response to the control condition, both the mean and the variance will differ
between the experimentals and controls. If, for example, the variance of the
controls is V¢, and if the treatment increases the response by multiplicative
factor of k, the variance of the treatment group, VI is multiplied by k*:
VI = k2VC. However, if the intervention functions by adding a constant
k, which is the usual assumption, the equal variance assumption may be
credible. Credibility will depend on the precise nature of the study, what
is being measured, and the composition of the experimental and control
groups.>

The equal variance assumption is not a mere technicality. If the effect
is really additive, computing a standardized difference between means is
may not be misrepresenting impact of the treatment. But if the effect is
multiplicative, the treatment impact is being misrepresented from the start.
Therefore, a strong rationale must be provided in subject-matter terms for
why an additive effect (or some other effect) is being assumed. Why does
the phenomenon being studied work that way?

The second assumption is that the intervention has exactly the same
effect, in standard deviation units, in the different studies. This is a very
strong statement about how treatment effects are produced and requires
very strong justifications. Why does the phenomenon being studied work
that way?

To help fix these ideas, suppose the three studies in Table 1 report the
impact of “hot spot” policing. Hot spot policing is introduced in three cities.
In each of the three cities, some precincts get hot spot policing and some
do not. The short-term response is the number of arrests. But, why might
that intervention increase the standardized number of arrests in the treat-
ment precincts by, in effect, adding a constant to the standardized number
of arrests in the control precincts? Perhaps just as plausibly, there is a pro-
portional increase. But even assuming that the additive model is correct,
what is it about the social processes responsible for arrests and the social
processes inherent in hot spot policing that require the exact same increase

2An alternative assumption is that the variance of the experimental group’s response
is the same as the variance of the control group’s response under the null hypothesis that
« = 0. Then the variance of the control group’s response can be used as the “common”
variance. But if the null hypothesis is rejected, then what? One needs a new model that
can be justified in which the variances are not the same.



in the standardized number of crimes in the three cities? The burden is on
the meta-analyst to make the case and for this illustration at least, it would
be a difficult case to make.

In many social science applications of meta-analysis, what is being mea-
sured is arguably quite different in different studies. For example, whether a
parolee commits a parole violation is rather different from whether a parolee
commits a felony. At a higher level of abstraction, both are parole failures
that for purposes of a meta-analysis some might treat as the same. However,
then the assumption of a common effect across studies, except for scale, seems
especially tenuous.?

In summary, « in equation 1 is the parameter of main interest. It is
by assumption a common, treatment effect, usually taken to be a causal.
Whether a corresponds to anything real depends on how the intervention
affects the response in real life. The value of « is what meta-analysts want
to estimate. Statistical inference typically addresses various properties of a.

3.3 Statistical Inference

Researchers never see a. They see d,,,, which by equation 1 is a perturbed by
how the data in each study are generated. Statistical inference is a process by
which researchers use the d,, to learn about a. Consider now some specifics.

From Table 1, it is clear that despite the assumption of an common effect,
the three effects are a bit different: 1.76, 1.81 and 1.90 standard deviations.
Perhaps the simplest explanation is that the differences result from random
error introduced by each study’s research design.

If in each study, the units are assigned to the experimental and control
conditions by random assignment, random assignment is to blame. Were it
possible to go back in time and randomly assign the units a second time,
the results would be a little different, even if nothing else had changed. By
the luck of the draw, the composition of the experimental and control groups
would likely be altered, which would tend to alter the observed difference
between the mean of the experimental group and the mean of the control
group. By similar reasoning, the three studies have observed effect sizes that
vary from one to another because of random assignment alone. The fact
that the effect sizes are really equal in standardized units is obscured by
an assignment process that shuffles the composition of the experimental and

3For a further discussion see Berk and Freedman (2003) and Briggs (2005).



control groups from study to study. In one study, for example, higher crime
neighborhoods may be a bit over-represented in the experimental group, and
in another study, higher crime neighborhoods may be a bit over-represented
in the control group.

If the studies are observational, the same basic logic can apply. It is
common to assume that after conditioning on the set of covariates thought
to be related to the response and the intervention, nature undertakes the
equivalent of random assignment. Once again, chance is introduced into the
observed response and is the only reason why the observed effect sizes differ.*

Given the existence of «, random assignment to experimental and control
conditions, whether by a researcher or by nature, makes the assumptions
about ¢, reasonable. The perturbations that turn « into 9,, tend to cancel
out over a large number of studies and are independent of one another. It
follows that the d,, they are independence across studies. Thus, the mean
treatment effect of a sufficiently large number of studies will have about the
same value as «, and if for one study the observed treatment effect is by
chance too large, the likelihood that the next study’s treatment effect will be
too large or too small is unaffected. These are very attractive consequences
of the basic meta-analysis model and permit easy construction of proper
statistical tests and confidence intervals.

There an alternative interpretation of equation 1 based on random sam-
pling instead of random assignment (Hedges and Olkin, 1985). It begins with
a population of experimentals exposed to the treatment condition and a pop-
ulation of controls exposed to the control condition. In the population, « is
the standardized difference between the mean of the experimental popula-
tion and the mean of the control population. The variance of response is the
same in both populations. Then, the data for each study is a simple random
sample for each of the two populations. The standardized difference between
the two observed means is an estimate of a. Variation in these estimates
across studies results from the random sampling. Like random assignment,
random sampling will alter the composition of the experimental group and
control group from study to study.

Just as for the random assignment interpretation, the random sampling
can be an act of researchers or and act of nature. In the first case, there

4Whether it is plausible to proceed as if nature conducts the equivalent of a randomized
experiment, conditional on a set of covariates, must be examined with great care (Rosen-
baum, 2002). How that conditioning is done matters as well (Berk, 2003). Covariance
adjustment via regression are one popular option. Matching is another.
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is a population of experimentals and a population of controls, and for each
study researchers sample at random from the two populations. For example,
researchers might take a random sample from a population of school drop outs
and a random sample from a population of individuals who completed high
school. Comparisons might be made using the number of arrests between
the ages of 18 and 25.

In the second case, there is a population of experimentals and a popula-
tion of controls, and for each study nature provides a random sample from
each of the two populations. Such study might also compare individuals
who dropped out to those who did not within a given school district. A
meta-analyst would have to argue that because of the way social processes
allocate children to school districts, the experimentals and controls from the
given district are effectively simple random samples from some well defined
population of students (e.g., all students from school districts with the same
mix of income and racial groups).®

The random sampling interpretation of the basic meta-analysis model has
essentially the same consequences for statistical inference as the random as-
signment interpretation. However, the random assignment rationale seems
better suited for thinking about interventions and is somewhat more straight-
forward. We will continue to emphasize the random assignment formulation.

In summary, the random assignment assignment and random sampling
formulations both depend on a. There exists a single treatment effect for
a well-defined collection of studies. Thinking back to the policing hot spots
illustration, it is possible to define a set of cities, interventions, and circum-
stances in which the standardized number of arrests is increased by exactly
the value of «, except for random variation due to within-study random as-
signment or random sampling (by researchers or nature). But, what if no
such case can be made? What are the options? We turn to some now.

4 Extensions and Elaborations of the Basic
Model

The basic model can be made a more elaborate by allowing for many treat-
ment effects. On its face, this seems reasonable. It is difficult in practice

5In both instances, researchers would likely condition on a variety of covariates such as
race and gender.
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argue convincingly for a single treatment effect, even if standardized.

4.1 Random Effects Model

In one formulation, the unobserved treatment effects differ because of random
variation in the “true” treatment effect. One has a “random effects model.”
Thus,

Om = Qi + €. (8)

The random effects model requires that the «,, are independent of one
another, and that «,, is independent of ¢,,. All of the original assumptions
for €,, continue to apply. The usual goal of the meta-analysis is to estimate
the overall mean of the many standardized treatment effects, taking their
random variability into account when confidence intervals and statistical tests
are performed.

Translating equation 8 into something real takes a bit of thought, and it
is possible to construct more than one account. Under the basic model, there
was an unobserved common treatment effect. What we got to see was random
variation over studies because of how the data for each study were generated
(e.g., by random assignment). By one random effects account, each study
now has its own unobserved treatment effect that varies randomly across
studies. This random variation is not a result of how the data are generated,
but inherent in how in each study social processes link the intervention with
the response. This link contains some noise.

This is necessarily a theory about how the scientific community func-
tions. The usual null hypothesis that the average treatment effect is zero,
for example, requires a remarkable balancing act. The random variation in
standardized treatment effects exactly balances so that positive perturba-
tions cancel out negative perturbations. How does the scientific community
manage to do that?® Independence of the «,,, means, for instance, that if one
study has a larger effect than average, the next study is no more or less likely
to be above average. Random variation in the true effect sizes is unrelated to
the chance process by which the data for any particular study are produced.
How plausible this is depends on the fine print of each study’s research de-
sign and how it might be related to size of each study’s true treatment effect.
Finally, there remains the requirement of independence between studies en-

6Tt is hard enough to get competent peer reviews done in a timely manner.
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forced now by the «,, as well as the ¢,,. Working through these details in a
meta-analysis requires a very rich theory of the collective scientific enterprise.

A second popular account for equation 8 begins with a population of
studies that vary in the true treatment effects. In the population, each study
has its own fized «,,. The set of studies on hand is taken to be a random
sample from this population. That is, in addition to the within-study chance
process represented by €,,, there is a second chance process that results from
the sampling studies at random. The weighted mean over the sampled studies
is usually treated as an estimate of the average standardized treatment effect
in the population, but there is not a single a to be estimated. This account
is also consistent with equation 8, and no easier to justify. What population
are we talking about? Where does the random sampling come from? And
again, there is the requirement of independence across studies.

Statistical tools for the analysis of random effects models can come in
several forms. In the most simple case, the primary difference between how
the basic model is analyzed and how the random effects model is analyzed
is that for the latter, the standard error for the estimated overall mean has
to take two chance processes into account, one represented by ¢€,, and one
represented by «,,,. Empirical Bayes methods go several steps farther and also
allow one to capitalize on information in the overall mean to obtain better
estimates of the effects in each of the individual studies. Under either method,
it is usually possible to partition the overall variance into a component due to
between studies variability and a component due to within studies variability,
a “components of variance” approach.

4.2 Systematic Fixed Effects Models

Sometimes meta-analysts are more comfortable treating the study to study
variation not as random, but as systematic. Results may differ because of
the setting in which the study was done, the mix of study subjects, the
research design used, or a host of other reasons. The «,, in equation 8 are
now interpreted as fixed. Each study has an unobservable, stable, treatment
effect of its own that is not a product of a chance process. One also can think
of the «, as representing bias inherent in each study.

If the variation in the unobserved treatment effect is a function of a set of
measurable variables, the pull to some form of regression analysis is almost
irresistible. The formulation that results is another kind of “fixed effects
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model” and will often have the following structure.
Om = Q + €m, 9)

where

a, = X[. (10)

There are now a set of p predictors contained in the M x p matrix X and a
set of p + 1 regression coefficients including a constant term.”

At best, a regression approach only postpones the day of reckoning. The
many pitfalls of regression analysis (Berk, 2003, Freedman, 2005) are in-
troduced, and one still must make sense of €,,, but more so. One must
still explain why the ¢,, are independent of one another and have the same
variance. Then, one must have of a theory of the scientific enterprise that
explains why €,, is independent of (or at least uncorrelated with) any of
the predictors. Unless all of the studies are randomized experiments, this is
a daunting task. For example, perhaps weaker designs are associated with
larger chance variation that is likely to produce desirable results.

4.3 Models for Dependence between Studies

There is sometimes a concern that there are natural groups of studies within
which they may be dependence. For example, what may first seem to be
ten distinct studies, may actually be two outcomes each within five distinct
studies. There is then reason to worry about within-study dependence. This
would be a clear threat to the usual requirement of independence across
studies.

An illustration of more than one outcome per study might be parole
failure measured by the elapsed time to an arrest for a person crime and
parole failure measured by the elapsed time to an arrest for a property crime.
In effect, there is a new level of nesting: outcomes within studies.

The nesting principle generalizes. For example, the nesting may result
from studies done by researchers in the same research institution, or it may
result from studies done in common settings such as particular police de-
partments or political jurisdictions. If it is possible to know in advance that
nesting exists, and if there is information on which studies should be grouped,

Tt is possible to get fancier. One can add an error term to X 3. Such formulations are
sometimes called multilevel. However, the basic concerns are unchanged. There is just a
new layer of complexity to explain.
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there are models that in principle can adjust for the dependence (Gleser and
Olkin, 1994). However, these models are extensions of one or more of the
models already described and require even more elaborate theoretical un-
derstandings about the sociology of science. For example, there is now a
mandatory independence between the groupings of studies.

4.4 The Special Case of Randomized Experiments

There is one situation it which statistical inference can be easily justified
in a meta-analysis. If all of the studies to be summarized are randomized
experiments, and if there is a null hypothesis of no effect, all of the models
reduce to 6,, = €, under the null hypothesis. Then, the hypothesis test
follows directly.

However, it is not clear what should be done if the null hypothesis is
rejected. One may conclude that the null hypothesis is incorrect, but then
what? In order to decide what to estimate from the data, a model of the
treatment effects is necessary. For example, is the overall standardized mean
of the studies an estimate of a common standardized treatment effect? And
if so, what is it about the intervention and the response that make such a
claim plausible? In short, all of the earlier concerns reappear.

4.5 Other Variations

Meta-analyses can take a larger number of other twists and turns. Perhaps
most important, summaries of the outcomes for the experimentals and con-
trols are not limited to means. One can use proportions, risk ratios, odds
ratios and other calculations. All of the models discussed above can be
altered to take these variations into account. But for purposes of this dis-
cussion, nothing significant changes. The problems raised are only altered
around the edges.®

In summary, a fundamental concern with any meta-analysis model is how
well it represents the manner in which the studies were produced. Under-
standings of how the relevant scientific community functions must be consis-
tent with the meta-analysis model. More complicated meta-analysis models
are not necessarily more realistic. And if the model is not realistic, there can

8But, a number of quite daunting technical problems sometimes surface (Berk and
Freedman, 2003).
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be serious consequences. We turn now to a more explicit discussion of those
consequences.

5 A Primer on Sampling Distributions for
Meta-Analysis

All statistical inference depends on the concept of a sampling distribution.”
For meta-analysis, the nature of the sampling distribution depends on how
the studies to be summarized came to be. If the correspondence between the
study generation process and the sampling distribution is poor, any confi-
dence intervals and statistical tests will likely be misleading.

To appreciate why this is true, we consider a simple illustration based on
the random effects model discussed as equation 8. We build on the account
in which there is a population of studies that differ in their underlying treat-
ment effects a,,. In the population, there is also random variation across
studies resulting from the chance process by which subjects are assigned to
the experimental or control groups. The studies on hand are a simple random
sample from that population. Other models and other stories would likely
lead to more a complicated discussion, and would not materially alter the
points to made.

Suppose the population consists of five studies. A simple random sample
of three studies is chosen. For the three studies, a weighted average of the
standard effects is computed, by the methods discussed earlier. It is desirable
that the weighted mean computed from the sample of three studies be an
unbiased estimate of the mean of the population. What does unbiasedness
require?

In the population of five studies, each study has a probability of 1/5 of
being selected in the first draw. With one study chosen, each of the remaining
studies has a probability of 1/4 of being selected. Finally, with two studies
chosen, the remaining studies each have a probability of 1/3 of being selected.

9In meta-analysis, occasional reference is made to Bayesian statistical inference in which
sampling distributions play no role. But real applications are difficult to find, and the
inferential goals are very different (Lewis and Zelterman, 1994). Moreover, one still has to
specify a credible likelihood function, which can raise the same kinds of issues discussed
in this paper. Suffice it say, the alternative of Bayesian inference has some real strengths,
but in the end trades one set of problems for another (Barnett, 1999).
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The sampling is, therefore, without replacement and at each draw, all of the
remaining studies have the same probability of selection.

Whether simple random sampling leads to an unbiased estimate depends
not on the result from a single sample, but what happens over all possible
samples from the population. Table 2 contains all possible samples of size
three from a population of five. The first column shows the studies chosen;
the studies are indexed as 1,2,3,4,5. The second column shows the stan-
dardized effect size associated with each study; the effect sizes in order are
3,1,0,1,5. The third column shows the weighted average. For ease of expo-
sition and with no impact on the points to be made, all of the studies are
given equal weight.

Study Index | Sample Values | Sample Mean
1,2,3 3,1,0 1.33
1,2,4 3,1,1 1.67
1,2,5 3,1,5 3.00
1,3,4 3,0,1 1.33
1,3,5 3,0,5 2.67
1,4,5 3,1,5 3.00
2,3.4 1,0,1 0.67
2,3,5 1,0,5 2.00
2,4,5 1,1,5 2.33
3,4,5 0,1,5 2.00

Table 2: Illustrative Sampling Distribution: Mean Standardized Effect Size
=2.0

There are ten possible samples that result from choosing three studies
by simple random sampling from a population of five studies. Because of
simple random sampling, each sample has the same probability of being
selected. That probability is 1/10. It follows that each weighed mean also
has a probability of 1/10. The ten weighted means and their associated
probabilities constitute a sampling distribution. This is the key to all that
follows.

If one multiplies each sample’s weighted average by 1/10 and sums them,
the result is 2.0. For the population of studies, mean is also 2.0. By definition,
therefore, the weighted average from any one of the ten possible samples is
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an unbiased estimate of the population mean. This is good because under
the scenario by which the population of studies were produced, one might be
interested in what an average treatment effect might be.

There are several points to be taken from this illustration.

1. The five studies constituted a real population; all of the studies in the
population were identified and all could have been reviewed, at least in
principle.

2. The studies in the population differed in their standardized treatment
effects and also differed because of within-study random variation.

3. A single sample of three studies was chosen by probability sampling,
here, simple random sampling.

4. The thought experiment all possible samples, derived from simple ran-
dom sampling, then followed directly and led to the theoretical con-
struct of a sampling distribution.

5. From this theoretical sampling distribution, it was possible to illustrate
how the weighted average from any sample of the three studies was an
unbiased estimate of the population mean.

More generally, a properly weighted mean computed from a set of studies
is an unbiased estimate of the population mean when coupled with simple
random sampling. Building on Thompson’s exposition (2002, section 2.6),
let each sample of n observations be indexed by ¢ so that the probability
that sample g is selected is P(g). Then,

<N> = ]1[ gdi, (11)

where the number of combinations of n studies from a population of N studies

: N N!
< n ) ~ (N —n)! (12)
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In equation 11, ( n_ 1

) is number of samples in which study ¢ is

. N\ . . .
included and n | B the total number of distinct samples. So, the ratio of

the two is the probability of study i appearing in any sample. This ratio is
essential for an unbiased estimate of the mean and clearly depends on simple
random sampling from a population.

The overall message is this. The way the studies were sampled deter-
mined the particular thought experiment undertaken. Had a different form
of probability sampling been used, the thought experiment would have been
different as well. But without some form of probability sampling, it is im-
possible to consider full the set of samples that could be drawn, let alone the
probabilities associated with each. And without that information, it would
be impossible to determine if the summary statistic computed for a set of
studies is unbiased. Indeed, it is not even clear if the concept of bias is
defined.

These conclusions may be generalized in three ways. First, the population
size can in principle be limitless. However, there is no such thing as a limitless
set of studies. No more real is a population of “all possible studies” or a
population of studies “like” the studies on hand. Such formulations, while
providing an apparent population from which a set of studies could be a
probability sample, on closer inspection are not within the purview of science.
Generalizations are being made to entities that are entirely fictional or are
not clearly defined. It is hard to imagine how science is advanced in this
manner. '

Second, one does not have to be limited to simple random sampling.
All probability sampling is in play, although representing the probabilities
associated with each sample can sometimes be very difficult. For purposes
of this paper, there is no need to consider these complications.

10For readers who find the idea of “all possible studies” seductive, consider the following.
All possible when: this year, over the next 3 years, over the next decade, over the next
next century? All possible by whom: current meta-analysis practitioners, all such prac-
titioners and their students, applied statisticians familiar with multilevel models, social
scientists winning grants and contracts to do meta-analysis, or all individuals who read
the Lispey and Wilson textbook? All possible with respect to what: collections of ran-
domized experiments, randomized experiments and strong quasi-experiments, any study
with a comparison group, any study at all? The phrase “all possible studies” is vacuous.
The same sort of exercise for all studies “like” the studies on hand would be no more
compelling.
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Third, the notion that a set of real studies to be summarized is literally
a random sample from a well-defined population is typically contradicted by
the facts. As an alternative rationale for the sampling distribution, some
favor model-based sampling (Thompson, 2002: section 2.7).!' For model-
based sampling, there is no population from which a random sample is drawn.
There is, therefore, no sampling distribution generated from all possible ran-
dom samples of the population. There are natural processes, captured in
a model, capable of generating data. In meta-analysis, these are the pro-
cesses by which the relevant scientific or policy communities function, and
the data are studies. In this discussion, the studies would need to have the
same properties as a simple random sample from a population of studies,
consistent with equation 8. Then, the sampling distribution is a derived
from standardized treatment effects across all possible studies that could be
produced by the forces represented in the model. Inferences are made back
to features of the model, not to a population from which the studies were
drawn.

Crafting such a model would be a challenge. The model would have
to include features that explained any dependence between studies. Are
studies funded by the same agencies and published in the same journal more
alike than studies funded by different agencies and published in different
journals? Are later studies affected by earlier studies? If so, how? It cannot
be overemphasized that to rely on model-based sampling is to make strong
assertions about how science actually works. Ideally, there already exists
strong evidence for that theory. Alternatively, the theory at least must be
testable.

5.1 Standard Errors

Conventional confidence intervals and statistical tests depend on appropriate
estimates of standard errors. A standard error is the standard deviation of
the sampling distribution for a sample statistic. If there is no sampling dis-
tribution, there can be no standard deviation of that sampling distribution.

For Table 2, the standard error for the weighted mean is .77. It is the
standard deviation of the 10 sample means. The standard error of .77 indi-
cates that the mean from a simple random sample of three studies from this

TA simple random sample is sometimes said to be a special case of “design-based
sampling.”
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population will fall on the average about .77 standard deviation units from
the population mean of 2.0.

In practice, the standard error must be estimated from a single sample.
Estimates of the standard error for each sample in Table 2 vary considerably
around .77 because each sample size is so small, but whatever the value com-
puted, multiplying it by 1.96 and alternatively adding it to and subtracting
it from the estimated mean produces a 95% confidence interval. For hypoth-
esis tests, the estimated standard error is used in the denominator when a
t-statistic is computed.

With a sample of only three observations, one might not take a confidence
interval or an hypothesis test very seriously. But that is not the point here.
The point is that unless there is a sampling distribution derived appropriately
from how the studies were produced, there can be no standard error; there is
no good answer to the question, standard deviation of what? And without
standard errors, there can be no confidence intervals or hypothesis tests.

6 Conclusions

Tests and confidence intervals depend on a credible sampling distribution. In
meta-analysis, a credible sampling distribution depends an accurate repre-
sentation of the way the studies being summarized were produced. Figure 1
shows these relationships. The last link in the chain is relatively straightfor-
ward; it is mostly a matter of following the right recipes. The first link is
where serious problems commonly arise. This is usually where meta-analysis
stumbles.

It is usually difficult to square how treatment effects are defined with
any credible account of how an intervention affects a response. It may be
telling that researchers rarely bother to even try. No more convincing are
the typical assumptions about how the studies to be summarized were gen-
erated. In particular, any reliance on independence between studies is a very
long stretch. As David Freedman and I have observed elsewhere, (Berk and
Freedman, 2003),

“Investigators are trained in similar ways, read the same papers,
talk to one another, write proposals for funding to the same agen-
cies, and publish the findings after peer review. Earlier studies
beget later studies, just as each generation of Ph.D. students
trains the next. After the first few million dollars are committed,
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Figure 1: The Framework for Statistical Inference

granting agencies develop agendas of their own, which investi-
gators learn to accommodate. Meta-analytic summaries of past
work further channel the effort. There is, in short, a web of social
dependence inherent in all scientific research.”

If the meta analysis model does not accurately represent how the stud-
ies were actually generated, a credible sampling distribution cannot be con-
structed. Indeed, the very idea of a sampling distribution may not apply.
The problem is not with the meta-analysis model itself. The problem is that
the model has little or no correspondence to how the set of studies were ac-
tually done. And If the model does not apply, the statistical inference that
follows is not likely to help.

There appear to be three common responses to the mismatch between a
meta-analysis model and anything real. In some cases, the problems are not
mentioned. Even if recognized as the meta-analysis was done, they go miss-
ing when the results are written. In other cases, the requisite assumptions
are listed, but not defended. A list of the assumptions by itself apparently
inoculates the meta-analysis against modeling errors. In yet other cases, the
modeling assumptions are specified and discussed, but the account is not con-
vincing. In perhaps the most obvious illustration, the population to which
generalizations are being made is “all possible studies.”

It is also possible to dismiss the issues raised in this paper as statistical
purity that should not be taken literally in real research. But that position
is to fundamentally misunderstand the message. This paper is not a call for
perfection. It is a call for rigor. At some point, moreover, the correspondence
between what the formal mathematics require and the way the studies were

21



generated is so out of kilter that the mathematical results do not usefully
apply. The conclusions reported are just plain wrong.

How should researchers proceed? First, there is always the option of a
conventional literature review. These are certainly not flawless, but they
have served science well for a very long time. Also, readers do not have to
cut through pages of statistical razzle-dazzle to understand what is really
being said. Second, a meta-analysis can stop short of statistical inference.
Good description alone can make a contribution. Third, one can reconsider
the uncertainty that statistical inference is supposed to address, and seek
alternative approaches. For example, if a concern is the stability of the results
had the set of studies summarized been a bit different, a “drop-one” analysis
can be helpful. If there are, for instance, ten studies, ten meta-analyses can
be done using nine of the studies each time. Each study is dropped in turn. If
the effect sizes vary dramatically over the ten meta-analyses, there are ample
grounds for caution.!? This and some other possibilities are considered by
Greenhouse and Iyenger (1994), but there is a lot more that could be done.
That discussion will be saved for another time.
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