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Measuring Correlated Electronic and Vibrational Spectral Dynamics Using Line

Shapes in Two-Dimensional Electronic-Vibrational Spectroscopy

Nicholas H. C. Lewis, Hui Dong, Thomas A. A. Oliver, and Graham R. Fleminga)

Department of Chemistry, University of California, Berkeley, California 94720,

United States

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley,

California 94720, United States and

Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720,

United States

Two-dimensional Electronic-Vibrational spectroscopy (2DEV) is an experimental

technique that shows great promise in its ability to provide detailed information

concerning the interactions between the electronic and vibrational degrees of free-

dom in molecular systems. The physical quantities 2DEV is particularly suited for

measuring have not yet been fully determined, nor how these effects manifest in the

spectra. In this work, we investigate the use of the center line slope of a peak in a

2DEV spectrum as a measure of both the dynamic and static correlations between

the electronic and vibrational states of a dye molecule in solution. We show how this

center line slope is directly related to the solvation correlation function for the vi-

brational degrees of freedom. We also demonstrate how the strength with which the

vibration on the electronic excited state couples to its bath can be extracted from a set

of 2DEV spectra. These analytical techniques are then applied to experimental data

from the laser dye 3,3’-diethylthiatricarbocyanine iodide in deuterated chloroform,

where we determine that lifetime of the correlation between the electronic transition

frequency and the transition frequency for the backbone C=C stretch mode to be

∼ 1.7 ps. Furthermore, we find that on the electronic excited state this mode couples

to the bath ∼ 1.5 times more strongly than on the electronic ground state.

a)Electronic mail: grfleming@lbl.gov
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I. INTRODUCTION

Ultrafast multi-dimensional spectroscopies have been developed into highly effective tech-

niques for studying the dynamics of molecules in condensed phases. The most prevalent

of these techniques, two-dimensional electronic spectroscopy (2DES) and two-dimensional

infrared spectroscopy (2DIR), are capable of characterizing the transition frequency fluctu-

ations of electronic or vibrational degrees of freedom.1–5 In particular, certain parameters of

the lineshapes of the resulting correlation spectra, such as the ellipticity of a feature or the

slope of the center line, have been shown to be directly related to the frequency-frequency

correlation function for the relevant degrees of freedom.6–9 Recently we have developed a

two color spectroscopic technique that combines the advantages of electronic and vibrational

spectroscopies and provides new information by correlating these disparate degrees of free-

dom, an experiment that we have termed 2D electronic-vibrational spectroscopy (2DEV).10

This technique directly measures the cross peak that would occur between the 2DES and

2DIR spectra, which provides information about the coupling between the electronic and

vibrational degrees of freedom.

The 2DEV experiment utilizes a sequence of three laser pulses, with controlled time delays

between each interaction. The first two pulses are resonant with an electronic transition,

while the third pulse is resonant with a fundamental vibrational transition. Following the

first pulse the system evolves for the time period t1 according to an electronic coherence,

which encodes the initial electronic transition frequency of the system. The second pulse

then causes the system to evolve according to a population, either on the excited or ground

electronic state, for the waiting time t2. During this period the system undergoes spectral

diffusion by interacting with the bath and due to microscopic changes in specific solvent-

solute interactions. The third pulse subsequently probes the changes that have occurred

during t2 by causing the system to once again evolve according to a coherence, which radiates

the third-order signal as a function of the third time delay t3. Because the third pulse is

resonant with a vibrational transition, however, the changes that are probed are those which

are directly correlated to this vibration, isolating only these components of the frequency-

frequency correlation function. The signal field is measured by interfering it with a local

oscillator on a spectrometer, which provides the transition frequency of the final vibrational

state that results from the evolution during t2. In typical 2DES and 2DIR experiments all
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three laser pulses are degenerate, and therefore they primarily interrogate diagonal features,

for which the same correlation function describes the coherence dephasing during t1 and

t3 and the spectral diffusion during t2, and cross peaks between nearby transitions, which

typically have similar interactions with the bath. For the 2DEV experiment, the dynamics

instead report on the correlation between these disparate aspects of the system.

2DEV is still a new technique, and it has shown promise by revealing simultaneous dynam-

ics of the electronic and vibrational states following an electronic excitation, showing the dy-

namic Stokes shifts for both these degrees of freedom in the laser dye 4-(di-cyanomethylene)-

2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM).10 The physical quantities 2DEV is

particularly suited for measuring have not yet been fully determined, nor how these effects

manifest in the spectra. In a separate paper we discuss in general terms what types of cor-

relations in both the homogeneous and the inhomogeneous line broadening mechanisms are

expected to contribute to the spectra, and show that the slope of the nodal line between the

features corresponding to t2 evolution on the electronic ground and excited states is sensi-

tive to these correlations.11 Here we focus on extracting quantitative information about the

solvation correlation function and the strength of the coupling between the system and its

bath. In this case the system is the laser dye 3,3’-diethylthiatricarbocyanine iodide (DTTCI)

dissolved in deuterated chloroform (CDCl3).

Specifically, we investigate the properties of a model composed of a two-level electronic

system, with the ground and first excited levels of a single vibration treated explicitly on

both the ground and excited electronic states. The level diagram for the model is illustrated

in Figure (1.a). The electronic and vibrational degrees of freedom are allowed to interact

with separate baths, each described by its own spectral density. Within this simple four-

level model we will show how the component of the frequency fluctuations that is correlated

between the electronic and vibrational degrees of freedom is directly related to the correlation

function for the vibrational degree of freedom. This is due to the effect that fluctuations

in the vibrational zero point energy on the electronic excited state has on the electronic

transition. We will demonstrate that this can be directly measured via the dynamics in the

center line slope of a feature in the 2DEV spectrum. Indeed, the center line slope is sensitive

to both the dynamical homogeneous component of the correlations (i.e. correlations in the

bath-induced fluctuations) as well as any static inhomogeneous distribution in the transition

frequencies that is correlated between the electronic and vibrational degrees of freedom.
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Finally, we present experimental results which demonstrate these dynamical correlations

via the relaxation of the center line slope. Furthermore, we corroborate our model by

showing the dynamics are the same as the vibrational dephasing time, as directly measured

from the perturbed free induction decay of the vibrational coherence. The center line slope

is also used to extract the strength of the coupling to the bath of the vibration on the excited

electronic state relative to that of the vibration on the ground electronic state. This is a

parameter that 2DEV is particularly suited to measure, and represents the unique strength

of this technique in studying the coupling between electronic and vibrational degrees of

freedom.

II. THEORETICAL

A. Model

We consider a simple model for a dye molecule in solution comprised of two electronic lev-

els and one explicit vibrational degree of freedom, with these electronic and nuclear degrees

of freedom each coupled to their own bath. The system will interact first with two visible

fields, where we assume the visible fields excite the red edge of the electronic transition, and

subsequently with an infrared field resonant with the vibrational transition. This allows us

to consider only the ground and first excited vibrational levels on each electronic state. The

Hamiltonain for our system, written in units such that ~ = 1, is

H =Hg0 |g0⟩ ⟨g0|+Hg1 |g1⟩ ⟨g1|

+He0′ |e0′⟩ ⟨e0′|+He1′ |e1′⟩ ⟨e1′|
(1)
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where the terms in the Hamiltonian are

Hg0 =
∑
ξ

ωξa
†
ξaξ +

∑
j

νjb
†
jbj,

Hg1 =ωg +
∑
ξ

ωξa
†
ξaξ

+
∑
j

νj

[
b†jbj + hj

(
b†j + bj

)]
,

He0′ =ϵeg +
∑
ξ

ωξ

[
a†ξaξ + dξ

(
a†ξ + aξ

)]
+
∑
j

νj

[
b†jbj + α0hj

(
b†j + bj

)]
,

He1′ =ϵeg + ωe +
∑
ξ

ωξ

[
a†ξaξ + dξ

(
a†ξ + aξ

)]
+
∑
j

νj

[
b†jbj + α1hj

(
b†j + bj

)]
.

(2)

Here, a†ξ and b†j (aξ and bj) are the creation (annihilation) operators for the bath degrees of

freedom for the electronic and vibrational modes, respectively. The constants ϵeg, ωg and

ωe represent the transition frequencies for the electronic transition and for the 0-1 vibra-

tional transitions on the ground and excited electronic states. The system-bath coupling is

described by dξ for the electronic states and hj for the vibration, for the ξth or jth bath

modes. The parameters α0 and α1 characterize the strength with which the ground and first

excited vibrational levels on the electronic excited state couple to the bath, scaled relative

to the strength of the coupling to the bath for the vibration on the ground electronic state.

It is important to note that neither electronic nor vibrational relaxation is included.We

assume that the visible field will only excite the electronic transition between the v = 0

vibrational levels of the probed vibration, and so the only contribution of the finite vibra-

tional lifetime will be in its effects on the line width for the vibrational transition. If such

lifetime broadening is not a major component of the vibrational line width, as expected for

high frequency modes, then this approximation should not significantly affect the results.

The effect of electronic relaxation will be to cause the signal to decay with waiting time t2,

which has no significant effect on the properties of the spectra that are the focus of this

work.

Typically, it is convenient to reframe the system-bath coupling in terms of the spectral

density, which here is given as Je(ω) =
∑

ξ d
2
ξω

2
ξδ(ω − ωξ) for the electronic transition, and
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Figure 1. a) A schematic representation of the energy level structure of the hamiltonian. The

states are labeled with the electronic state and the number of quanta in the vibration (here we

will only allow v = 0 or 1). The double-headed arrows represent the bath induced fluctuations

and are labeled with the line shape functions that describe how the states fluctuate relative to |g0⟩

due to system-bath interactions. b) Double sided Feynman diagrams for the pathways considered

in this work. The red arrows represent interactions resonant with visible photons and the black

arrows represent interactions with infrared photons. The labels represent the rephasing (RR) and

nonrephasing (RNR) pathways, evolving on the ground (Rg) or excited (Re) electronic state during

t2.

likewise Jv(ω) =
∑

j h
2
jν

2
j δ(ω− νj) for the vibration. The parameters α0 and α1 are used to

denote how the vibration-bath coupling, i.e. the spectral density Jv(ω), is rescaled on the

electronic excited state. Within the current model this is independent of the bath mode, and

so it corresponds to a rescaling of the reorganization energy by a factor of α2
0 and α2

1 for the

0 and 1 vibrational levels on the electronic excited state. In general, these parameters are

complicated to determine, and they likely depend on a large number of molecular parameters,

such as the electronic dipole moment, the polarizability of the environment and the transition

dipole of the vibration.12,13

In the current model we neglect explicit correlation between the fluctuations of the elec-

tronic and vibrational levels. In other words, we assume completely independent baths for

these different kinds of states. In general we expect this to be a reasonable approximation, as

the electronic transition will typically couple more strongly to fluctuations on a shorter time

scale than vibrational transitions. A detailed consideration of explicit correlation between

these degrees of freedom is beyond the scope of this work.
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The response functions for this model can be derived using typical cumulant expansion

methods.11,14–16 The four Liouville pathways that are considered in this work are illustrated

in Figure (1.b). The rephasing pathways are denoted RR
g (t1, t2, t3), R

R
e (t1, t2, t3) where the

subscript indicates the electronic state populated during t2. Likewise, the nonrephasing

pathways are given as RNR
g (t1, t2, t3), R

NR
e (t1, t2, t3), and the total response is given by the

sum of all four terms. They are as follows:

RR
g (t1, t2, t3) =

⟨
µ2
egµ

2
10

⟩
exp [iϵegt1 − iωgt3]

× exp
[
−g∗e(t1)− α2

0g
∗
v(t1)− gv(t3)

+α0f
−
v

∗
(t1, t2, t3)

]
,

RR
e (t1, t2, t3) = −

⟨
µ2
egµ

2
1′0′

⟩
exp [iϵegt1 − iωet3]

× exp
[
−g∗e(t1)− α2

0g
∗
v(t1)− (α1 − α0)

2gv(t3)

+α0(α1 − α0)f
+
v

∗
(t1, t2, t3)

]
,

RNR
g (t1, t2, t3) =

⟨
µ2
egµ

2
10

⟩
exp [−iϵegt1 − iωgt3]

× exp
[
−ge(t1)− α2

0gv(t1)− gv(t3)

−α0f
−
v (t1, t2, t3)

]
,

RNR
e (t1, t2, t3) = −

⟨
µ2
egµ

2
1′0′

⟩
exp [−iϵegt1 − iωet3]

× exp
[
−ge(t1)− α2

0gv(t1)− (α1 − α0)
2gv(t3)

−α0(α1 − α0)f
+
v (t1, t2, t3)

]
,

(3)

where the auxiliary functions are defined as

f+(t1, t2, t3) =g∗(t2)− g∗(t2 + t3)

− g(t1 + t2) + g(t1 + t2 + t3),

f−(t1, t2, t3) =g(t2)− g(t2 + t3)

− g(t1 + t2) + g(t1 + t2 + t3).

(4)

The subscripts e and v on the line shape functions indicate whether it corresponds to the

electronic or vibrational degrees of freedom. The pre-factors depend on the transition dipole

moment for the electronic transition µeg and for the vibrational transitions µ10 and µ1′0′ on

the ground or excited electronic states, and here the angled brackets indicate orientational
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Figure 2. Simulated purely absorptive 2DEV spectra using the exact response functions in equa-

tion (3) with the center lines superimposed. The positive-going (red) features correspond to the

vibration on the electronic ground state and the negative-going (blue) features correspond to the

vibration on the electronic excited state. The details of this simulation are given in the text.

averaging. The line broadening functions are given by

g(t) =− iλt+

∫ ∞

0

dω
J (ω)

ω2
coth

(
ωβ

2

)
(1− cosωt)

+ i

∫ ∞

0

dω
J (ω)

ω2
sinωt,

(5)

where J (ω) is the spectral density for the electronic or vibrational degrees of freedom and

β is the Boltzmann inverse temperature. The solvent reorganization energy is given by

λ =
∫∞
0

dωJ (ω)
ω

and is determined separately for the electronic and vibrational states by

relevant spectral densities.

In the impulsive limit, the frequency domain 2D spectra S(ω1, t2, ω3) for each term in

the total response function can be obtained by taking the Fourier transform over t1 and

t3, and the total purely absorptive correlation spectrum, here referred to as Sabp, is ob-

tained by combining the rephasing and nonrephasing components and taking the real part

as Sabp(ω1, t2, ω3) = Re
[
SR(−ω1, t2, ω3) + SNR(ω1, t2, ω3)

]
. Spectra simulated using this

method are shown in Figure (2). For this simulation the spectral densities are chosen to

be Drude-Lorentian, which has the form J (ω) = 2λωcω
ω2
c+ω2 . The purpose of this simulation is

not to reproduce the experimental results shown later, but to illustrate the main features

of the 2DEV spectra for parameters similar to those typically used for the type of cyanine

dye studied in the current experiments.17 For the electronic degrees of freedom the cutoff
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frequency ωce = 50 cm−1 and the reorganization energy λe = 50 cm−1 and for the vibrational

degrees of freedom ωcv = 10 cm−1 and λv = 5 cm−1. The parameters scaling the strength of

the coupling to the bath on the electronic excited state are set to α0 = 0.6 and α1 = 1.8, the

frequency of the vibration on the ground electronic state is ωg = 1500 cm−1, the frequency of

the vibration on the electronic excited state is ωe = 1300 cm−1 and the electronic transition

frequency is ϵeg = 12600 cm−1. The transition dipoles µ10 and µ1′0′ are taken to be the same.

Of particular note is the slope of the center lines that are shown in the figure. At early t2

the slope is positive, due to the correlation between the fluctuations of the electronic and

vibrational transitions. After a few picoseconds, however, the slope decays to zero, due to

the decay of the correlation function. In the following section an analytical form for the

center line slope is derived.

B. Center Line Slope

The derivation is based on a short time approximation of the response for the time

periods t1 and t3.
6–9,18 The dephasing times for the electronic coherence during t1 and the

vibrational coherence during t3 are typically short (∼ 100 fs - ∼ 1 ps) compared to the typical

electronic population relaxation times during t2 (∼ 100 ps - ∼ 1 ns), so we can perform a

Taylor expansion of these variables in equations (4) and (5) and truncate to second-order.

Following this procedure we obtain

f+(t1, t2, t3) =2it3
(
L(1)(t2)− λ

)
+ i(t1 + t3)t3

dL(1)(t2)

dt
+ t1t3L

(2)(t2),

f−(t1, t2, t3) =t1t3

(
L(2)(t2) + i

dL(1)(t2)

dt

) (6)

and

g(t) =
1

2
Ω2t2 (7)

where

L(1)(t) ≡
∫ ∞

0

dω
J (ω)

ω
cosωt

L(2)(t) ≡
∫ ∞

0

dωJ (ω) coth

(
ωβ

2

)
cosωt

Ω2 ≡
∫ ∞

0

dωJ (ω) coth

(
ωβ

2

)
.

(8)
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Here L(1)(t) is the solvation correlation function and Ω2 is the mean square fluctuation

of the transition frequency for the relevant degrees of freedom. The functions L(1)(t) and

L(2)(t) are related by the fluctuation dissipation theorem. L(1)(t) describes the bath induced

dissipation, and L(2)(t) describes the fluctuations.19 If L(1)(t) is a slowly varying function,

then we can neglect the terms that involve dL(1)(t)/dt and further simplify equation (6) to

obtain

f+(t1, t2, t3) = 2it3
(
L(1)(t2)− λ

)
+ t1t3L

(2)(t2),

f−(t1, t2, t3) = t1t3L
(2)(t2).

(9)

This approximation is reasonable for the absorptive (real) part of the spectrum when the

solvation correlation function is over-damped, and at high temperatures.6 The validity of

these approximations, for the parameter regime considered in this work, are illustrated with

an example simulation in Figure (3).

Together, using equations (7) and (9), the response functions in equation (3) can be
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simplified to

RR
g (t1, t2, t3) =

⟨
µ2
egµ

2
10

⟩
× exp [iϵegt1 − iωgt3]

× exp

[
−1

2
At21

]
× exp

[
−1

2
Bgt

2
3

]
× exp [−Cg(t2)t1t3] ,

RR
e (t1, t2, t3) =−

⟨
µ2
egµ

2
1′0′

⟩
× exp [iϵegt1 − i (ωe +∆ωe(t2)) t3]

× exp

[
−1

2
At21

]
× exp

[
−1

2
Bet

2
3

]
× exp [−Ce(t2)t1t3] ,

RNR
g (t1, t2, t3) =

⟨
µ2
egµ

2
10

⟩
× exp [−iϵegt1 − iωgt3]

× exp

[
−1

2
At21

]
× exp

[
−1

2
Bgt

2
3

]
× exp [Cg(t2)t1t3] ,

RNR
e (t1, t2, t3) =−

⟨
µ2
egµ

2
1′0′

⟩
× exp [−iϵegt1 − i (ωe +∆ωe(t2)) t3]

× exp

[
−1

2
At21

]
× exp

[
−1

2
Bet

2
3

]
× exp [Ce(t2)t1t3] ,

(10)

where

∆ωe(t) ≡ 2α0 (α1 − α0)
(
L(1)
v (t)− λv

)
(11)

is the dynamic Stokes shift for the vibrational transition on the electronic excited state and

we have defined

A ≡ Ω2
e + α0Ω

2
v,

Bg ≡ Ω2
v,

Be ≡ (α1 − α0)
2Ω2

v,

Cg(t2) ≡ −α0L
(2)
v (t2),

Ce(t2) ≡ −α0(α1 − α0)L
(2)
v (t2)

(12)

to simplify the notation. These terms correspond to the different origins of the overall
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line shape, where A is the component for the electronic transition, and Bg and Be are

the pure vibrational components on the ground and excited electronic states. The most

interesting terms are Cg(t2) and Ce(t2), which are the components of the line shape that are

correlated between the electronic and vibrational degrees of freedom. Within the current

approximations A, Bg and Be are static components of the line shape, whereas Cg(t2) and

Ce(t2) evolve with t2, decaying proportionally to the vibrational correlation function L
(2)
v (t2).

The Fourier transforms over t1 and t3 can be performed analytically for the form of the

response functions given in equation (10) to provide:

Sabp
g (ω1, t2, ω3) =

2
⟨
µ2
egµ

2
10

⟩(
ABg − (Cg(t2))

2)1/2 × exp


(
−A(ω3 − ωg)

2 −Bg(ϵeg − ω1)
2

− 2Cg(t2)(ϵeg − ω1)(ωg − ω3)

)
2ABg − 2 (Cg(t2))

2

 ,

Sabp
e (ω1, t2, ω3) =

−2
⟨
µ2
egµ

2
1′0′

⟩(
ABe − (Ce(t2))

2)1/2 × exp


(
−A (ωe +∆ωe(t2)− ω3)

2 −Be(ϵeg − ω1)
2

− 2Ce(t2)(ϵeg − ω1)(ωe +∆ωe(t2)− ω3)

)
2ABe − 2 (Ce(t2))

2

 .

(13)

The complete spectrum is obtained by adding the contributions from the ground and excited

electronic states.

At early t2, the fluctuations in the electronic and vibrational degrees of freedom are

correlated through the fluctuations of the vibrations on the electronic excited state. This

has the effect of making the slope of the center lines of each feature non-zero. To evaluate

the dynamics of the center line slopes, we can determine an analytic form as a function of

t2. To do this we differentiate the real (absorptive) part of the spectrum with respect to ω3,

which is then set to 0 and can be solved to give ωg
′ and ωe

′, the maxima in ω3 as a function

of ω1, parameterized by t2

ωg
′(ω1, t2) = kg(t2)(ω1 − ϵeg) + ωg

ωe
′(ω1, t2) = ke(t2)(ω1 − ϵeg) + ωe +∆ωe(t2)

(14)

where the slopes of the center lines are given by

kg(t2) =
α0L

(2)
v (t2)

Ω2
e + α0Ω2

v

,

ke(t2) =
α0(α1 − α0)L

(2)
v (t2)

Ω2
e + α0Ω2

v

,

(15)
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Figure 3. The center-line slope of the ground state feature for the model shown in Figure (2). The

solid blue line shows the analytical result from equation (15), the green crosses show the result for

the calculation with the short-time approximation without the further approximation in equation

(9) and the red circles show the result for the calculation using the exact response functions in

equation (3). The small discrepancy between the exact result and the analytical result comes

from the relatively long vibrational dephasing and the short-time approximation. The discrepancy

decreases as λv is increased.

and so the center line slopes for both the ground (kg) and excited (ke) electronic states are

directly proportional to L
(2)
v (t2). Furthermore, we can take the ratio

ke(t2)

kg(t2)
= (α1 − α0) (16)

and therefore if it is possible to separately measure kg and ke for the same vibrational

mode, then these can be used to provide an approximation for the strength with which the

vibrational transition on the electronic excited state couples to its bath. The dynamics for

the center line slope extracted from simulated spectra are shown in Figure (3) comparing

the center line slope for the exact response function with the short time approximation and

the analytical result in equation (15).

In the presence of inhomogeneous broadening, a result analogous to equation (16) can be

obtained. To determine this we allow the transition energies ϵeg, ωg and ωe to be described

13



by a joint gaussian distribution function, such as

p(ϵeg, ωg) =
1

2πσegσωg

√
1− ζ2

× exp

[
−

(ϵeg − ϵ0eg)
2

2 (1− ζ2) σ2
eg

−
(ωg − ω0

g)
2

2 (1− ζ2) σ2
ωg

+
ζ(ϵeg − ϵ0eq)(ωg − ω0

g)

(1− ζ2)σegσωg

] (17)

where ζ is a correlation factor between the distributions of electronic and vibrational tran-

sition frequencies that is 0 when there is no correlation, ζ > 0 for positive correlation and

ζ < 0 for negative correlation. The widths of the inhomogeneous distribution is given by

σeg for the electronic transition, and by σωg and σωe for the vibrational transitions on the

ground and excited electronic states. The effects that would result in this type of correlated

frequency distribution have been described theoretically,20,21 and the effect of an inhomo-

geneous distribution with this form is discussed at greater length in a separate paper.11

The effect of this inhomogeneous broadening on the spectrum can be obtained by integrat-

ing Sabp(ω1, t2, ω3) over this distribution, after which k̃g and k̃e, the center line slopes with

inhomogeneous broadening included, can be found in the same manner as before:

k̃g(t2) =
α0L

(2)
v (t2) + ζσegσωg

(Ω2
e + α0Ω2

v) + σ2
eg

,

k̃e(t2) =
α0(α1 − α0)L

(2)
v (t2) + ζσegσωe

(Ω2
e + α0Ω2

v) + σ2
eg

.

(18)

The long-time slope is determined by the widths of the inhomogeneous distribution and the

correlation factor, and by subtracting this component and taking the ratio of these slopes

we recover the same result as in equation (16)

k̃e(t2)− k̃e(∞)

k̃g(t2)− k̃g(∞)
= (α1 − α0). (19)

If instead of taking the derivative with respect to ω3 to find the center-line at a function of

ω1 we do the reverse, differentiating with respect to ω1, we can find an analogous centerline

slope, k′, defined via the equations

ω′
g(ω3, t2) = k′

g(t2)(ω3 − ωg) + ϵeg

ω′
e(ω3, t2) = k′

e(t2)(ω3 − ωe −∆ωe(t2)) + ϵeg.
(20)
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For one-color measurements, where the same degrees of freedom is correlated with themselves

after the waiting time t2, these slopes are equivalent. Here, because the measurement is of

a cross-peak, these slopes are not directly related in this manner, and instead we can find

k̃′
g(t2) =

α0L
(2)
v (t2) + ζσegσωg

Ω2
v + σ2

ωg

,

k̃′
e(t2) =

α0(α1 − α0)L
(2)
v (t2) + ζσegσωe

(α1 − α0)
2 Ω2

v + σ2
ωe

.

(21)

These slopes are somewhat less useful than their counterparts, however, because it is not

possible to extract (α1−α0) as in equation (19). In the absence of correlated inhomogeneous

broadening, i.e. when either the system is purely homogeneously broadened or ζ = 0, if we

note that L
(2)
v (0) = Ω2

v then we can determine α0 and α1 explicitly and find them to be

α0 = k′
g(0)

α1 =
k′
g(0)

k′
e(0)

+ k′
g(0).

(22)

Therefore in certain circumstances it can be possible to directly measure the relative

strengths with which the vibration couples to the bath on the excited versus the ground

electronic states.

Through the derivation of equations (16) and (22) we have a general analytical procedure

which can be used to extract information from 2DEV spectra about the correlated aspects

of the line shape, as well as to obtain values for the important parameters α0, α1 and α1−α0

which describe the strength of the vibrational coupling to the bath on the electronic excited

state for a given vibrational mode.

III. EXPERIMENTAL

A. Methods

The experimental details involved in 2DEV have been described previously.10 Briefly, the

experiment was driven by the output of an amplified Ti:Sapphire femtosecond laser system

(Coherent; Legend Elite USP; 806 nm, 40 fs, 0.9 mJ, 1 kHz). A portion of this laser (∼ 0.2

mJ) was used to pump a homebuilt mid-IR optical parametric amplifier (OPA), creating

200 nJ pulses centered at 7 µm with a duration of ∼ 80 fs.
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Figure 4. (a-b) The linear absorption of DTTCI dissolved in CDCl3 at the concentration used in the

present experiment is shown in blue. The electronic absorption is shown in a) and the vibrational

absorption, with the solvent signal subtracted, is shown in b). In each case the normalized laser

spectrum used to excite the relevant transition superimposed in black. c) Stick spectra of the

calculated normal mode frequencies and infrared intensities within the probed region calculated

for the S0 (blue) and S1 (red) electronic states. Note the axes for the two sets of data differ by a

factor of 50. In each case the frequencies have been scaled by a factor of 0.98.22 The details of the

calculation are given in the text.
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Figure 5. a) A purely absorptive 2DEV spectrum of DTTCI at t2 = 0 ps. The dotted line indicates

the slice through the spectrum shown as a function of t2 in b). For t2 > 0 the signal at ω3 = 1400

cm−1 decays with a time constant of ∼ 250 ps. For t2 < 0 it decays with a time constant of 1.5 ps.

The pulse pair for the electronic excitation was derived from a small portion of the regen-

erative amplifier beam. Prior to the sample, the pump was passed through an acousto-optic

programmable dispersive filter (Fastlite; Dazzler) which was used to temporally compress

the pump to 40 fs at the sample position and to generate a pair of identical pulses with a

controlled time delay t1 and relative phase ϕ12. This pulse pair was then delayed by reflect-

ing it off a retroreflector mounted on a translation stage to control the time delay t2 between

the second 800 nm pulse and the 7 µm probe pulse. At the sample, the total power of the

pump beam was 100 nJ, focused to a spot size of 250 µm by an f = 25 cm, 90◦ off-axis

parabolic silver mirror. The spectrum of the excitation laser at the sample position is shown

in Figure (4.a).

Following the OPA, this 7 µm beam was split by a 50:50 ZnSe beam splitter to form

the probe and reference beams, which were both focused at the sample to separate 250

µm spots by an f = 15 cm, 90◦ off-axis parabolic gold mirror. The probe and reference

beams were then dispersed in a spectrometer (Horiba; Triax 180) and imaged onto a dual-

array HgCdTe detector with 64 elements per array (Infrared Systems Development). The

spectrum of the probe laser at the sample position is shown in Figure (4.b). The reference

beam was used to normalize the probe spectrum, to compensate for shot-to-shot instability

in the laser intensity. The probe beam was overlapped in the sample with a small portion of
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the regenerative amplifier output to serve as the pump. The cross-correlation time between

the pump and probe pulses was measured to be ∼ 90 fs.

For each waiting time t2 a 2DEV surface was measured by using the pulse shaper to

scan the delay t1 from 0 fs to 175 fs in 0.875 fs steps. For each value of t1 the signal was

measured with the relative phase ϕ12 set to 0, π
4
, π

2
and 3π

4
and the signal was recovered

using a 4× 1× 1 phase cycling scheme.23,24 The signal was collected in the rotating frame,

to remove the optical frequency of the pump from the signal. Because the experiment was

performed in a partially collinear geometry (referred to as the pump-probe geometry) it was

not necessary to perform a separate phasing procedure to recover the purely absorptive part

of the spectrum.25

The sample was prepared by dissolving the laser dye DTTCI in CDCl3 so that the optical

density at the maximum of the electronic transition (760 nm) was 1.2 OD in a 250 µm path

length cell, corresponding to 0.4 OD at the wavelength of maximum pump laser intensity (806

nm). Under these conditions ∼ 9.5% of the molecules in the interaction volume were excited.

The vibrational transition had an optical density of ∼ 0.06. The cell was constructed from a

pair of CaF2 windows separated by a 250 µm teflon spacer, and the sample was continuously

flowed to minimize the effects of local heating and photo-induced degradation of the dye.

The electronic linear absorption was measured before and after the experiments to ensure

the sample did not degrade over the course of the 2DEV measurements. The experiments

were performed at ambient temperature. The linear absorption spectra for the electronic

and vibrational transitions of the sample, with solvent subtracted, are shown in Figure (4.a)

and (4.b), respectively.

B. Results

A 2DEV spectrum of DTTCI probed near 1400 cm−1 at t2 = 0 ps is shown in Figure

(5.a). The spectrum is dominated by a single positive-going feature centered at an excitation

energy 12600 cm−1 and a detection energy of 1400 cm−1. This is assigned to the bleaching of

the backbone C=C stretch mode on the electronic ground state, based on density functional

theory (DFT) calculations using the ωB97XD functional and the 6-311+G(d) gaussian basis

set using the Gaussian09 package with a polarizable continuum solvent model with param-

eters appropriate for chloroform.26 The corresponding feature for evolution of this mode
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Figure 6. a) Purely absorptive 2DEV spectra of the 1400 cm−1 mode of DTTCI in CDCl3 at

waiting times t2 = 0, 1 and 5 ps. The center line with respect to ω3 is indicated by the solid lines

and the center line with respect to ω1 is indicated with dashed lines. b) The center line slope with

respect to ω3, kg(t2), as a function of the waiting time t2. The solid red line is the fit of the data

to a single exponential, with a lifetime of τ = 1.8 ps. c) The center line slope with respect to ω1,

k′g(t2), as a function of the waiting time t2. The solid red line is the fit of the data to a single

exponential, with a lifetime of τ = 1.6 ps and an amplitude of k′g(0) = 1.5.

on the electronic excited state is not observed because of the very small extinction coeffi-

cient associated with the vibrational transition on the electronic excited state, as predicted

from TDDFT calculations. The calculated vibrational frequencies and infrared activities

are shown in Figure (4.c). The S1 vibrations in the probed region are predicted to have

activities ∼ 100 times smaller than the 1400 cm−1 S0 mode.

In addition to the primary resonance at 1400 cm−1, there are several smaller features,

including two positive-going peaks, one at ω3 = 1420 cm−1 and the other at 1455 cm−1,

and a negative-going peak at ω3 = 1440 cm−1. These features correspond to, respectively,
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ground and excited electronic state vibrations with small vibrational oscillator strength, such

as backbone C-H wag modes. Additionally there is a small amplitude negative-going peak

at the same detection frequency as the primary feature but centered at a lower excitation

frequency of ω1 = 12100 cm−1. The origin of this peak is unclear, as it is located past

the red-most edge of the DTTCI linear electronic absorption in CDCl3. Due to the low

intensity of these peaks the signal to noise ratio is poor, and they will not be considered

further.

The dynamics of the spectrum at the frequency of the maximum absorption at ω1 = 12600

cm−1 is shown in Figure (5.b) as a function of detection frequency ω3 and waiting time t2.

For t2 > 0 ps the signal of the 1400 cm−1 mode decays with a single time constant of

∼ 250 ps. This decay is substantially faster than previous studies, which have found the

excited state lifetime for the S1 state of DTTCI to be 845 ps in ethanol.27 It is known,

however, that chloroform acts as a quencher for electronic excited states,28,29 and so the

decay we observe appears to be consistent with the lifetime of the recovery of the bleach of

the ground electronic state vibration, due to electronic relaxation. The central position and

width of the 1400 cm−1 feature in the ω3 axis does not change significantly in the first 10 ps

following electronic excitation.

For t2 < 0 ps, the infrared laser excites a vibrational coherence on the ground electronic

state which is subsequently perturbed by the 800nm laser, and so the signal corresponds to

the perturbed free-induction-decay of the vibrational coherence.30 This signal is therefore

expected to decay with the dephasing time for the vibration. It is observed that the sig-

nal intensity decays with a single time constant of 1.5 ps, providing a direct time domain

measurement for the dephasing time for this vibration within the current experiment.

Of particular interest are the dynamics of the line shape of the main 1400 cm−1 peak.

A series of 2DEV spectra at t2 = 0, 1 and 5 ps is shown in Figure (6.a), focusing on the

dominant feature in the spectrum. The center line slope kg for the feature is illustrated with

the solid blue lines superimposed on the spectra, while the inverse slope k′
g is shown with the

dashed blue lines. To minimize potential issues with lower signal to noise ratio at the wings

of the feature we only consider values greater than the half-maximum. At early t2 the peak

shows a clear ellipticity and diagonal elongation with positive center-line slopes. The decay

of the center line slope kg is shown in Figure (6.b) and the dynamics of k′
g is shown in (6.c).

Here we can see that kg has an initial value of ∼ 0.006 while k′
g has an initial value of ∼ 1.5.
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Both slopes decay on a few picosecond timescale. They can be fit to a single exponential

with lifetimes of τ = 1.8 ps for kg and 1.6 ps for k′
g, which are very close (within error) to the

vibrational dephasing time found for this vibration from the perturbed free-induction decay.

This agreement between the dynamics of kg(t2) and k′
g(t2) and the vibrational dephasing

time is consistent with the model Hamiltonian and equation (15). This provides support

for the model discussed in this work, which predicts that these parameters should all decay

with the same lifetime.

In both Figures (6.b) and (6.c) we note the slopes decay completely to 0, with no long time

offset. This indicates that the 1400 cm−1 mode of DTTCI is either primarily homogeneously

broadened, as would be expected for a dye in solution at room temperature, or that the

inhomogeneous broadening is not correlated (ζ = 0). In the former of these scenarios,

equation (22) is applicable and we can use the fit to estimate α0 = 1.5, providing a direct

measurement for the relative strength of the bath on the electronic excited state versus

the ground state for this mode. The primary sources for error in this estimate come from

the approximations made in the derivation of equations (18, 21), particularly the impulsive

limit and the short time approximation. The precise effect of these approximations on the

estimate for α0 have not been fully characterized. The origin of this increase in the strength

of the coupling to the bath on the electronic excited state could be explained for example by

the increase in the permanent electric dipole moment – from DFT calculations the electric

dipole moment increases from 1.32 D on the ground state to 1.63 D on the excited state –

or other related parameters such as the polarizability.

It is interesting to note that despite analyzing a spectral feature that corresponds to

t2 evolution on the electronic ground state, it is possible to measure α0, a parameter that

describes the electronic excited state. This is because the dynamics are initiated by an

electronic absorption, which depends on α0 via its effect on the line broadening function for

the electronic transition. If we also could measure the center line slope for the excited state

feature corresponding to the same nuclear coordinate then it would be possible to measure α1

for that mode in addition to α0. If the system were inhomogeneously broadened then it would

not be possible to directly measure α0 and α1, but only the difference. This parameter is still

of interest, because it describes the strength of the coupling to the bath of the vibrational

transition on the electronic excited state. 2DEV is uniquely capable of measuring these

parameters, α0 and α1. This information would be very difficult to extract from a 2DES
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spectrum, as it would be incorporated as a component of the overall electronic line shape

function. In principle it might be possible to extract the α1 − α0 from a combination of

2DIR and transient-2DIR, but to our knowledge this has not been attempted.31,32 Indeed, it

would likely not be as straight forward as measuring the center line slopes, as these provide

the normalized solvation correlation function, whereas α1 and α0 are related to the absolute

magnitude of the coupling to the bath.

IV. CONCLUSION

In this work we have analyzed the line shape of a 2DEV resonance for a simple model

comprised of a two-level electronic system with a single vibration, coupled to a bath. We

make use of a short-time approximation to derive an analytical form for the center line slope

of a resonance. In particular, we find that the center line slope has a decaying component

which is proportional to the vibrational correlation function and a static component that

depends on the correlation between the inhomogeneous frequency distributions for the elec-

tronic and vibrational transitions. The origin of the dynamic component as the vibrational

correlation function comes from the effect that fluctuations in the vibrational zero point

energy on the electronic excited state has on the electronic transition frequency.

In addition to the dynamics of the slope, we show that it is possible in certain circum-

stances to measure the relative strength of the coupling of a vibration to the bath on the

electronic excited state relative to the ground state, here referred to as α0 for the 0 vibra-

tional level and α1 for the first excited vibrational level. These are unique parameters that

the 2DEV spectroscopic technique is particularly suitable for observing, as they are theo-

retically or practically excluded from being extracted from 2DES or 2DIR spectra. It may

be possible to measure these parameters using transient-2DIR, but this would likely depend

on a more complicated analytical procedure than that which was been presented here.

We also demonstrate experimentally the validity and practical application of the theoret-

ical results, by showing 2DEV spectra of the 1400 cm−1 mode of the dye DTTCI. Here the

center line slope is shown to decay with a time constant of ∼ 1.7 ps, which is very close to the

observed vibrational dephasing time. Furthermore, we are able to directly measure a value

for α0 for the 1400 cm−1 vibration of ∼ 1.5. In other words, on the electronic excited state

this vibration couples to the environment about 1.5 times more strongly than the electronic
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ground state vibration for the same mode.

In this data we only observe the ground electronic state feature of a single vibration.

An open question, therefore, is whether the parameters α0 and α1 vary within the same

molecule for different vibrational modes. Exactly what molecular parameters these values

depend on also remains uncertain, and will require further theoretical developments.
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