
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Guidance, Navigation, and Control of Autonomous Surface Vehicles for Optimal Exploration
and Low-Cost Oceanography

Permalink
https://escholarship.org/uc/item/1151v2tg

Author
Vlastos, Pavlo

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1151v2tg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

GUIDANCE, NAVIGATION, AND CONTROL OF AUTONOMOUS
SURFACE VEHICLES FOR OPTIMAL EXPLORATION AND

LOW-COST OCEANOGRAPHY

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Pavlo Vlastos

June 2022

The Dissertation of Pavlo Vlastos
is approved:

Gabriel Elkaim, Chair

Ricardo Sanfelice

Renwick Curry

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Pavlo Vlastos

2022

Table of Contents

List of Figures vii

List of Tables xx

Abstract xxi

Dedication xxiii

Acknowledgments xxiv

1 Introduction 1
1.1 The Overarching Theme: Automated Field Exploration 2
1.2 Motivation . 3
1.3 Background . 4

1.3.1 Similar Projects and Research 5
1.3.2 Attitude Estimation . 13
1.3.3 Path Planning . 13
1.3.4 Trajectory Generation . 15

1.4 Thesis Contributions . 16
1.5 Organization . 16

2 System Implementations 19
2.0.1 Connection to the Overarching Theme 19

2.1 Hardware Design . 21
2.2 Software: Communication Protocols and Peripherals 22

2.2.1 MAVLink . 24
2.2.2 Kill Switch . 24

2.3 Conclusion and Caveats . 26

3 Sensors and Actuators 28
3.0.1 Connection to the Overarching Theme 28

3.1 Sensors . 29

iii

3.1.1 IMU . 29
3.1.2 NTC Thermistor . 30
3.1.3 Echo Sounder Depth-Sensor 30
3.1.4 GPS Receiver . 35
3.1.5 Encoder . 36

3.2 Actuators . 36
3.2.1 Servo . 36
3.2.2 BLDC Motor . 37

3.3 Conclusion and Caveats . 38

4 Attitude and Heading Reference System 39
4.0.1 Connection to the Overarching Theme 41

4.1 ARHS Comparison . 41
4.1.1 EKF AHRS . 41
4.1.2 TRIAD AHRS . 48
4.1.3 CF AHRS . 51
4.1.4 Comparison of EKF, TRIAD, and CF 53
4.1.5 Validation of Complementary Filter-Based AHRS 67
4.1.6 Validation Apparatus . 68
4.1.7 Apparatus Results . 71
4.1.8 Field Experiment Results: COG vs CF Yaw 74

4.2 Conclusion and Caveats . 81

5 System Modeling 83
5.0.1 Connection to the Overarching Theme 83

5.1 Rudder Servo . 85
5.2 Kinematic Model . 85
5.3 Nomoto Model . 87
5.4 Augmented Nomoto Model . 89
5.5 Newtonian Model . 91

5.5.1 Point-Mass Sub-model . 93
5.5.2 Orientation Sub-model . 94
5.5.3 Controllability . 97

5.6 Conclusion and Caveats . 98

6 System Identification 100
6.0.1 Connection to the Overarching Theme 100

6.1 ARX . 101
6.1.1 Rudder Servo . 101

6.2 Model Parameter Estimation . 105
6.2.1 Kalman Filter . 105
6.2.2 Extended Kalman Filter 105

6.3 Conclusion and Caveats . 108

iv

7 Guidance Navigation and Control 110
7.0.1 Connection to the Overarching Theme 111

7.1 Trajectory Generation . 111
7.1.1 Trajectory Tracking . 111

7.2 Control . 117
7.2.1 PID Controller . 117
7.2.2 GNC Algorithm . 120
7.2.3 Position Estimation . 123
7.2.4 Results . 126

7.3 Conclusion and Caveats . 130

8 Intelligent Exploration 132
8.0.1 Connection to the Overarching Theme 133

8.1 Ordinary Kriging . 134
8.2 The Variogram . 136

8.2.1 Fitting the Variogram . 137
8.2.2 Iterative Covariance Matrix Inverse Update 143

8.3 Gaussian Process Regression . 145
8.3.1 Review of GPR . 145
8.3.2 1-D Example . 147
8.3.3 2-D Example . 150
8.3.4 Hyper-parameters . 153

8.4 Results of Ordinary Kriging . 155
8.5 Partitioned Ordinary Kriging . 155

8.5.1 POK Procedure . 157
8.5.2 Creating a Simulated Field 161
8.5.3 Path Planning . 162
8.5.4 Simulation Results and Comparisons 165
8.5.5 Path-Planning Simulation Results 168
8.5.6 Remarks on MSE and Computation Time Trade-offs . . . 170

8.6 Optimal Exploration . 171
8.6.1 Maximizing Variance Along A Path 171
8.6.2 Minimizing the Sum of Negative Variance 181
8.6.3 Simulation Results . 182

8.7 Numerical Comparison of Path Planners and Spatial Estimation . 185
8.7.1 Simulation Procedure . 187
8.7.2 Simulation Results . 189
8.7.3 Conclusion and Caveats 193

9 Experimental Results 195
9.0.1 Note on Experimental Results 196

9.1 Experimental Results . 196

v

9.1.1 ASV System Block Diagram 196
9.1.2 Experimental Procedure 197
9.1.3 Results . 199
9.1.4 Remarks on POK . 202

9.2 GPR Experimental Field Reconstruction 202
9.3 Experimental Field Reconstruction and Path Planning 204

9.3.1 Depth Measurements with Zig-zag Path Planner 205
9.3.2 Depth Measurements with HV-Bellman-Ford Path Planner 206

9.4 MSE Spatial Estimation Comparison of Zig-zag and HV-Bellman-
Ford . 208
9.4.1 Procedure . 208
9.4.2 Experimental Results . 209

9.5 Comparing all Combinations of Path Planners and Spatial Estimators213
9.6 Autonomous Waypoint Tracking 216

9.6.1 Zig-zag Path Planner Waypoint Tracking 217
9.6.2 HV-Bellman-Ford Path Planner Waypoint Tracking 220

9.7 Position Estimation . 223
9.8 Speed Estimation . 223
9.9 Heading Angle Estimation . 224
9.10 Conclusion and Caveats . 226

9.10.1 Connection to the Overarching Theme 226

10 Conclusion 228
10.1 Discussion . 228

10.1.1 Novel Contributions . 229
10.2 Future Work . 231

10.2.1 Variance and Distance Weighting 231
10.2.2 Multi-Disciplinary Optimization (MDO) 232
10.2.3 Aerospace Extension . 233
10.2.4 Field Estimate Normalization 234
10.2.5 Covariance Function Research 234
10.2.6 Covariance Kernel Optimization 234
10.2.7 Combining Computational Loads 235

A Additional Simulation Results and Other Material 236
A.0.1 Optimal Control . 236

A.1 B-Spline Generation . 239
A.2 Fitting the Variogram with Least-Squares 244
A.3 CAD . 246
A.4 Hardware . 250

Bibliography 255

vi

List of Figures

1.1 A picture the MAPCO2 system by [82], installed on a buoy. . . . 5
1.2 A picture the Wave Glider built by Liquid Robotics. 6
1.3 A picture the Sea Slug from the University of California at Santa

Cruz’s Autonomous Systems Laboratory [51]. 7
1.4 Two Saildrone Explorer autonomous surface vehicles docked in New-

port R.I. 9
1.5 Picture of the Light Autonomous Underwater Vehicle LAUV by

OceanScan . 10
1.6 Picture the BlueROV2 ASV by Blue Robotics. 10

2.1 The Slug 2 autonomous surface vehicle. 20
2.2 The Slug 3 autonomous surface vehicle. 20
2.3 The top-level system block diagram. 21
2.4 Actuator system block diagram with RXc, or kill switch circuit block. 25
2.5 The system block diagram for the Slug 3 ASV. 26

3.1 The Blue Robotics echo sounder depth sensor attached to a wooden
arm. The arm connected to the top back of the Slug 3 to point
downward. 31

3.2 The measured distance from the depth sensor and the true depth
signals over time. The transition between set distances were changed
to ramps based on the time stamp when the sheet was moved. . . 32

3.3 The depth sensor measurements versus the true reference distance. 33

vii

3.4 The distance error between the depth sensor measurements and the
true reference distance over time. 33

3.5 A histogram of the depth sensor error. 34
3.6 A drawing of the PWM signal (blue) for the rudder servo. The

duty cycle changes such that the high time T falls within a range
of [1.0, 2.0]ms with the center at 1.5ms. 37

4.1 A passive discrete CF, as introduced in [50] 52
4.2 A full CF with both accelerometer and magnetometer feedback. . 53
4.3 True and measured rotational rates in the body reference frame,

with the standard deviation of noise from a normal distribution of
σgyro = 0.01 . 54

4.4 Visualization of the rotation of the orthogonal basis vectors. Also
shown are the inertial aiding vectors gravity (red), and the magnetic
field vector (magenta). 55

4.5 The true aiding reference vectors in the body reference frame . . . 61
4.6 A 50 second simulation showing attitude estimates of EKF, TRIAD,

and CF for the orientation Euler angles. 62
4.7 A 5 second simulation of the attitude estimates of EKF, TRIAD,

and CF for the orientation Euler angles. 62
4.8 The error histograms for each axis of rotation from the different

AHRS algorithms. Note that the CF did not incorporate gyro bias
compensation. 63

4.9 A 5 second window of the error signals for each axis of rotation
from the different AHRS algorithms 64

4.10 Computation time for each AHRS algorithm at each time step of
the simulation. 65

4.11 MAE versus mean computation time for each AHRS algorithm. . 66
4.12 Experimental low-cost AHRS testing and validation apparatus with

the body-fixed axes labeled. 68

viii

4.13 A historgram of the magnetic field measurements before and after
calibration . 72

4.14 CF Roll angle compared to the encoder angle on the validation
apparatus. 73

4.15 Roll signal comparison with the validation apparatus positioned at
90◦, normal to the horizontal plane. 74

4.16 GPS position of the Slug 2 ASV, being remotely controlled to collect
measurements for attitude estimates, and other data. 75

4.17 A comparison of the COG angle and CF estimated yaw angle over
time. There is large agreement between the two. This highlights
the difference in COG and CF Yaw. 76

4.18 A histogram of the frequency (vertical axis) of angle error (hori-
zontal axis). 77

4.19 GPS position of the Slug 3 ASV, being remotely controlled to collect
measurements for attitude estimates, and other data. 78

4.20 Another comparison of the COG angle and CF estimated yaw an-
gle over time. There is some agreement between the two. This
highlights the difference in COG and CF Yaw. 79

4.21 Another histogram of the frequency (vertical axis) of angle error
(horizontal axis). The mean is −1.573◦ and the standard deviation
is 29.530◦ . 80

5.1 Inverse bicycle model implemented in [51] 87
5.2 A partial representation showing the top-down view of the proposed

Newtonian model. The rudder or thrust vector angle δr is shown in
relation to the resulting torque for the orientation sub-model and
linear force for the point-mass sub-model. An assumption here is
that the center of mass is in the center of the vehicle, though this
is not necessarily true for all vehicles. 92

ix

6.1 A small time window showing the raw pseudo random input u(t)
and the measured rudder servo angle δ(t). There is a noticeable
offset and scaling between the two signals. 103

6.2 A simulation example ARX; the true servo angle δ compared to the
estimated signal δ̂. There is good agreement between the two signals.104

6.3 A histogram of the ARX error from simulation with a normal dis-
tribution fit to the resulting data. The mean µ = −5.34195×10−19

and the standard deviation σ = 5.59588× 10−5. 104
6.4 An example of rudder angle command signal (radians) versus time

recorded onboard the Slug 3 ASV. 107
6.5 An example of the estimated yaw time constant Td,yaw, converging

to ∼ 14.2 seconds. 108

7.1 Cross track error e between the vehicle and the closest point on the
path within the Serret-Frenet frame, along a linear path segment. 112

7.2 Cross track error e between the vehicle and the closest point on the
path within the Serret-Frenet frame along a curved path segment. 115

7.3 Geometry of an arcing segment and the closest point ck on the arc
to the position of the vehicle, pk 115

7.4 An approximation of the vehicle dynamics with respect to cross
track error within the Serret-Frenet frame. 118

7.5 Simulation using the estimator in eq 5.8 and the discrete PID con-
troller as part of the GNC algorithm 122

7.6 Simulation of trajectory following using only GPS measurements
as input to the trajectory tracking PID controller. The pre-arc,
pivot, and post-ark markers are shown in pink, dark blue, and
cyan, respectively. 127

7.7 Simulation of trajectory following using EKF position estimates
with GPS measurements as input to the trajectory tracking PID
controller . 128

x

7.8 A portion of the simulation showing the vehicle position based on
GPS measurements only. Trajectory tracking is noticeably oscillatory.128

7.9 A portion of the simulation showing the vehicle position, the po-
sition estimates, and GPS measurements. Trajectory tracking is
much smoother than if only using GPS measurements. 129

8.1 An example of a Gaussian variogram model, fit to an empirical
variogram. Note that the discrete bins of the Empirical variogram
are visible. 141

8.2 A comparison of MSE versus the number of points measured in a
field. The MSE signals correspond to different update rates 1/n,
where n represents the number of new measurements before a new
estimate is calculated using every nth measurement. The higher
frequency update rates show a faster decrease in MSE. 145

8.3 A 1-dimension example of GPR. The true signal f(x) is shown in
dark blue, the noisy measurements are shown as blue dots, the mean
predicted signal is shown in red, and the error bounds (2-standard
deviations) are shown in light blue. 149

8.4 The matrices that comprise the joint distribution. The A matrix
is shown in (a), the B matrix is shown in (b), and the covariance
matrix κf is shown in (c). 150

8.5 A 2-dimension signal f(x) or field is shown as the gradient of dark-
to-light color. The noisy measurements are shown as red dots . . 151

8.6 An example comparison of the estimated field using GPR in 2-
dimensions based on the measurements from Fig 8.6a. Note that
the locations with a higher density of measurements have a lower
variance in the corresponding estimate variance matrix. 152

8.7 An example of using GPR to estimate a field with hyper-parameters
based on the variogram. 154

xi

8.8 A visual comparison between the true field with observations indi-
cated by black dots (a), and the predicted predicted field based on
the observations (b). 155

8.9 A visual comparison between the true field with observations indi-
cated by black dots (a), and the predicted predicted field based on
the observations (b). 156

8.10 A visual comparison between the true field with observations indi-
cated by black dots (a), and the predicted predicted field based on
the observations (b). 156

8.11 An example of generating sub-fields based on measurement loca-
tions along the diagonal, using Alg. 3 with lmax = 4. Orange
boundaries represent the first level of recursive partitioning, red
represents the second level, purple is the third, and black is the
fourth. 160

8.12 Estimated fields using ordinary kriging, IIOK, and POK. Specifi-
cally lmax in Alg. 2 was set using Eq. (8.40). 160

8.13 Comparison of mean squared error for field estimates versus the
number of points scanned. The waypoints for measurements were
generated using a random waypoint path planner. 166

8.14 Comparing computation time (on a logarithmic scale) for estimat-
ing the field using Ordinary Kriging, IIOK, POK, GPR, and PGPR
with respect to the number of points scanned based on a random
waypoint path planner. 167

8.15 The computation time for GPR compared to the number of points. 168
8.16 MSE of the different kriging methods and GPR methods versus the

number of points measured while using the HV path planner . . . 169
8.17 Computation time on a logarithmic scale of the different kriging

methods and GPR methods versus the number of points measured
while using the HV path planner. 169

xii

8.18 An example of a directed a-cyclic graph with weights. This spe-
cific graph shows that if the A* search uses the sum of the inverse
variance as the cost function then the path of maximum variance
is not returned. 175

8.19 Example of a variance directed a-cyclic graph formed by Algo-
rithm 5. Each square represents a discrete point within the LTP.
The graph nodes are represented by circles. There are purposefully
fewer nodes than discrete points to show that node spacing is ad-
justable, and can be spaced every n× ds. This is a feature so that
a graph search can take less time, if fewer nodes are desired. . . . 176

8.20 An example of a variance directed a-cyclic graph formed by Algo-
rithm 5. Here the DAG is shown with 4 × ds spacing to further
highlight the variability of Algorithm 5. The start node (bottom
left) is labeled and marked by a green circle. The end node (top
right) is also labeled and marked with a red circle. 177

8.21 Example of a maximum variance, minimum distance path (red ar-
rows) between a start point (green dot) and a stop point (red dot). 179

8.22 The sum of the negative of the variance (SNV) versus time. This is
averaged for the exploration of 100 different fields with 266 discrete
points per field. The SNV plot is asymptotic as it approaches zero. 182

8.23 Vehicle position from the starting to ending point. 183
8.24 Estimation error versus time. 184
8.25 The energy cost gradient used as a cost constraint in simulation

with Alg. 7. 184
8.26 A high-level overview of the simulation procedure. 188
8.27 An example of 16, rather than 100 GRFs acting as the “true” sim-

ulated fields for the ASVs to explore and estimate during simulation.189
8.28 The paths (starting in the bottom left corner) of three separate

ASVs after exploring ∼ 40% of a field. (a) is the Zig-zag path
planner, (b) is the myopic path planner, and (c) is the HV Bellman
Ford path planner. 190

xiii

8.29 All MSE signals versus the percent field measured of the three
separate ASVs after exploring ∼ 40% of a field. (a) is the Zig-
zag path planner, (b) is the myopic path planner, and (c) is the
HV Bellman Ford path planner. The spatial estimator was GPR.
The field resolution ds = 5.0 meters. Each field had 266 discrete
points. 190

8.30 All MSE signals versus the percent field measured of the three
separate ASVs after exploring ∼ 40% of a field. (a) is the Zig-
zag path planner, (b) is the myopic path planner, and (c) is the
HV Bellman Ford path planner. The spatial estimator was PGPR.
The field resolution ds = 5.0 meters. Each field had 266 discrete
points. 190

8.31 The MSE signals from Fig. 8.29 and Fig. 8.30 were averaged, and
their standard deviations were computed. These signals were plot-
ted as a function of percent area explored (a) and (c), and as a
function of time (b) and (d). This is the result of running path
planners on 100 separate GRFs with ds = 5.0 meters for a total of
266 discrete points per field. The lighter colors indicate one stan-
dard deviation from the mean. (a) and (B) correspond to GPR,
and (c) and (d) correspond to PGPR. 191

8.32 Path planner field estimate mean MSE comparisons versus percent
area explored (a) and (c), and as a function of time (b) and (d).
This is the result of running path planners on 100 separate GRFs
with ds = 2.0 meters for a total of 1,518 discrete points per field.
The lighter colors indicate one standard deviation from the mean.
(a) and (b) correspond to GPR, and (c) and (d) correspond to PGPR.192

xiv

9.1 An example of real depth-sensed data corresponding to GPS loca-
tion of the ASV, projected onto the LTP. The start (green) and
stop (red) markers indicate where the ASV initially launched and
returned. The black dots represent discrete depth measurements
taken by the ASV using the onboard ping echo-sounder 198

9.2 A comparison of computation time of Ordinary Kriging, and POK
versus than number of depth measurements. 200

9.3 A comparison of MAE of Ordinary Kriging, and POK versus then
number of depth measurements. 200

9.4 A comparison of computation time of ordinary krging, and POK
versus then number of depth measurements for multiple separate
sets of depth measurement data. 201

9.5 A comparison of MAE of ordinary krging, and POK versus then
number of depth measurements for multiple separate sets of depth
measurement data. 202

9.6 An example of a sparsely measured depth field of a small body of
water . 203

9.7 An experimental depth field reconstructed from depth measure-
ments collected by the Slug 3 ASV. GPR was used to interpolate
depth measurements in space. The hyper-parameters were based
on the empirical mean and standard deviation of the collected data. 204

9.8 An experimental depth field reconstructed from depth measure-
ments (left) collected by the Slug 3 ASV while navigating au-
tonomously using the Zig-zag path planner. GPR was used to in-
terpolate depth measurements in space (right) on board the Slug 3
during run-time. The hyper-parameters were based on the empiri-
cal mean and standard deviation of the collected data. 205

xv

9.9 A second experimental depth field reconstructed from depth mea-
surements (left) collected by the Slug 3 ASV while navigating au-
tonomously using the Zig-zag path planner. GPR was used to in-
terpolate depth measurements in space (right) on board the Slug 3
during run-time. The hyper-parameters were based on the empiri-
cal mean and standard deviation of the collected data. 206

9.10 An experimental depth field reconstructed from depth measure-
ments (left) collected by the Slug 3 ASV while navigating au-
tonomously using the HV-Bellman-Ford path planner. GPR was
used to interpolate depth measurements in space (right) on board
the Slug 3 during run-time. The hyper-parameters were based on
the empirical mean and standard deviation of the collected data. . 207

9.11 A second experimental depth field reconstructed from depth mea-
surements (left) collected by the Slug 3 ASV while navigating au-
tonomously using the HV-Bellman-Ford path planner. GPR was
used to interpolate depth measurements in space (right) on board
the Slug 3 during run-time. The hyper-parameters were based on
the empirical mean and standard deviation of the collected data. . 207

9.12 The high-level overview of the experimental procedure. 209
9.13 MSE versus number comparison between two autonomous test-runs

of the Slug 3. One test run used the Zig-zag path planner (static)
and the other used the HV-Bellman-Ford path path planner (dy-
namic). 210

9.14 The ”true“ depth field used to compare the spatial estimates at run-
time. This is a combination of different separate test-run depth data.211

9.15 An estimate of the true depth field using the PGPR estimator
paried with the HV-Bellman-Ford path planner. There is a clear re-
semblance to the measurement-only depth field shown in Fig. 9.14;
the shallow lower left region shows good agreement, and the center
and center right regions are of similar lower depth. 212

9.16 Experimental depth data recorded by the Slug 3 ASV. 213

xvi

9.17 The MSE of all path planner and spatial estimator combinations
from experimental data collected by the Slug 3. 214

9.18 A position plot of the Slug 3 ASV (blue) as it autonomously navi-
gates the desired Zig-zag waypoints (yellow) with a minimum node
separation of 7ds. This is test-run 6a for the Slug 3. Note that a
gust of wind (red arrow) began to force the Slug 3 off course near
the 3rd waypoint, resulting in the linear drift. 218

9.19 A position plot of the Slug 3 ASV (blue) as it autonomously navi-
gates the desired Zig-zag waypoints (yellow) with a minimum node
separation of 5ds. Note that the first circular arc-turn shows a loop
instead of an arc; this is a fail-safe feature to re-acquire the desired
path if a waypoint transition results in a cross-track error that is
too high. This is test-run 6e for the Slug 3. 218

9.20 Histogram and Gaussian fit of the cross-track error of the Slug 3
ASV system during an experimental test-run (test-run 6a) with the
waypoint-tracking controller informed by the Zig-zag path planner.
This data test-run was done in the Los Gatos Creek County Park
pond number 2. 219

9.21 Histogram and Gaussian fit of the cross-track error of the Slug 3
ASV system during an experimental test-run (test-run 6e) with the
waypoint-tracking controller informed by the Zig-zag path planner.
This data test-run was done in the Los Gatos Creek County Park
pond number 2. 219

9.22 Another position plot of the Slug 3 ASV (blue) as it autonomously
navigates the desired HV-Bellman-Ford determined waypoints (yel-
low). 220

xvii

9.23 Histogram and Gaussian fit of the cross-track error of the Slug
3 ASV system during an experimental test-run (test-run 6d) with
the waypoint-tracking controller informed by the HV-Bellman-Ford
path planner. This data test-run was done in the Los Gatos Creek
County Park pond number 2. Note that the histogram excludes
the looping segments of the position plot when acquiring the next
line segment. 221

9.24 Histogram and Gaussian fit of the cross-track error of the Slug
3 ASV system during an experimental test-run (test-run 5g) with
the waypoint-tracking controller informed by the HV-Bellman-Ford
path planner. This data test-run was done in the Los Gatos Creek
County Park pond number 2. 221

9.25 GPS position (blue) and EKF position estimates (orange) of the
Slug 3 . 223

9.26 The estimated speed of the ASV using the EKF described in Ch. 7. 224
9.27 The estimated heading angle generated from the EKF described in

Ch. 7 compared to the COG angle from the GPS receiver. 225
9.28 The estimated heading angle generated from the EKF described in

Ch. 7 compared to the COG angle from the GPS receiver. 225

10.1 Example of a variance and distance path (red arrows) between a
start point (green) and a stop point (red). The distance weight-
ing to variance ratio is 10:1. The possible edges of the DAG are
represented by the white arrows. 232

A.1 A 2-dimensional, 3rd order B-spline generated on the PIC32MX795F512L.243
A.2 An empirical variogram fit using least-squares with varying number

of terms for the Taylor expansion 244
A.3 An empirical variogram fit using least-squares with varying number

of terms for the Taylor expansion 245
A.4 An empirical variogram fit using least-squares with varying number

of terms for the Taylor expansion 245

xviii

A.5 An empirical variogram fit using least-squares with varying number
of terms for the Taylor expansion 246

A.6 An image of the 3D CAD model for the AHRS validation apparatus 247
A.7 A CAD drawing of the AHRS validation apparatus 248
A.8 A CAD drawing with multiple views of the AHRS validation appa-

ratus . 249
A.9 A side shot of the Slug 3 ASV . 250
A.10 A front shot of the Slug 3 ASV 251
A.11 A back shot of the Slug 3 ASV 252
A.12 An image of the Turnigy Plush 40A ESC used by both the Slug 2

and Slug 3 . 252
A.13 An image of the 3500kV Radient Reaktor brushless motor used on

the Slug 2 . 253
A.14 An image of the Max32 microcontroller used on the Slug 2 and Slug 3253
A.15 An image of the Sik 925MHz 3DR radio module used to transmit

telemetry from the Slug 2 to the ground control station (latptop). 253
A.16 An image of the 5V SunFounder Metal Gear Digital RC Servo. . . 254
A.17 An image of the Sparkfun breakout board for the SAM-M8Q GPS

module used on the Slug 2 and Slug 3. 254

xix

List of Tables

4.1 Attitude estimation error comparison with mean and standard de-
viation . 64

4.2 Mean error, standard deviation of error, and validation apparatus
orientation. 75

7.1 Cross track error mean and standard deviation comparison between
EKF and GPS-only navigation . 126

9.1 Final MSE for Path Planner and Spatial Estimator Pairs 215
9.2 Mean and standard deviation of cross-track error 222

xx

Abstract

Guidance, Navigation, and Control of Autonomous Surface Vehicles for Optimal

Exploration and Low-Cost Oceanography

by

Pavlo Vlastos

Autonomous surface vehicles (ASVs) may be one of the most promising tools to

help study, protect, and address problems within complex ocean ecosystems. ASVs

can be used to collect ocean data for climate modeling, collect plastics and other

human-related pollution, study ocean fronts, and map the ocean floor. These

types of vehicles possess sensors that can be used with spatial estimation tech-

niques, such as simultaneous localization and mapping (SLAM), ordinary kriging,

or Gaussian process regression (GPR). Such algorithms produce an estimate of the

field representing the local environment with an associated level of uncertainty.

As the ASV collects more measurements, the estimate is updated. However, it is

common for ASVs to follow static paths with linear waypoint-to-waypoint track-

ing for navigating a field of interest; the path doesn’t change as more information

of the field is obtained. An alternative strategy is dynamic path planning based

on uncertainty suppression. In this thesis an optimal exploration algorithm is

presented that maximizes the current field-estimate variance along a path. This

algorithm is based on Bellman-Ford graph search and is compared to a myopic,

zigzag, and other planners in simulation. These path planners are also paired

with different spatial estimation methods, including partitioned ordinary kriging

(POK) and partitioned GPR. The results are discussed including the computation

time trade-offs. The intent is to determine an efficient path planner and spatial

estimator that can be used at run-time onboard an ASV.

xxi

Two experimentally implemented ASVs, the Slug 2 and Slug 3 are discussed.

This includes discussion of their system design, attitude and heading reference

system, system modeling, system identification, control, and experimental results.

Both ASVs used GPS for waypoint tracking and data logging. The Slug 3 used

an echo sounder depth sensor to measure the depth of a small body of water.

For navigation the ASVs used a GPS module and an IMU with tri-axis MEMS

accelerometers, gyroscopes, and magnetometers.

xxii

To my brother, my Babá, and especially my Mamá. I think she would have

really enjoyed this.

xxiii

Acknowledgments

I would like to thank Professor Gabriel Elkaim for offering me the opportunity to

conduct research in the Autonomous Systems Laboratory, going all the way back

to my first lab meeting during my freshman year as an undergraduate student.

I have yet to find a more challenging, but rewarding work. Gabe convinced me

to petition to become a PhD student during my masters, and I’m confident that

was an excellent choice to make. He has given me countless advice and ideas. I

would like to thank Professor Renwick Curry for making me think more deeply

about many of the engineering challenges associated with this research, boiling it

down to the fundamentals, and working my way up. Without Ren’s key insights,

this dissertation and subsequent work would not have been possible. Ren always

asked the best questions to further this work and many if not all of his ideas

were incredibly helpful and insightful. I think Ren provided the most feedback on

all of my writing out of anyone in my life thus far. I must also thank Professor

Ricardo Sanfelice for being on my advancement, defense, and reading committees.

He provided excellent points of feedback and ideas to help improve the quality of

this research. I would also like to thank Max Dunne for his patience in helping

me set up the hardware drivers for many of the peripheral devices for this work.

My thanks also goes out to all of the members and my friends in the Au-

tonomous System’s Laboratory, including Bryant Mairs, Sharon Rabinovitch, Jor-

dan Liss, Sargis Yonan, Aaron Hunter, Carlos Espinosa, Joseph Adamson, Chris

Seruge, Max Lichtenstein, Majid Moghadam, Engin Tekin, James Melvin, Eliana

Stefani, and the rest of the ASL members I have had the fortune of knowing and

solving problems with.

Additionally, I must thank my friends who I haven’t already listed; Con-

rad Esch, Aviv Elor, Sam Conde, Kyle Cordes, Sam LeBlanc, Eric Jung, Vic-

xxiv

toria Ly, Ash Robbins, Maryam Tebyani, Michael Suinn, Devesh Gohkalgandhi,

Eric Burgstrom, Mike Powell, Siera Catelani, Anca Mihaela, Zach Potter, Megan

Boivin, and so many more people that I haven’t the space to list here, but were

important nonetheless.

Of course, I would also like to thank the readers of this paper and the members

of the committee. Your guidance and consideration have been essential.

I absolutely must thank all of the Vlastos family for being ever so patient

and understanding. I know I have missed far too many family gatherings while

studying out here in California, and y’all are waiting for my excellent cooking. I

hope this body of work can help shed light on what in the world took so long. If

I’m not mistaken, this is the first computer engineering PhD dissertation from a

Vlastos in our family’s, dare I say long history. Thank you to my brother Lucas,

and my cousins Elias, Nikiphoros, Niko, Zoe, Xander, Kali, Kleo, and Mazzi.

Thank you to Keith, Kelly, Lisa, George, Manoli, Carrie, Theo Joe, Carol, and of

course my Babá. Thank you to Lucas especially for taking care of our Babá (it’s

never too late to start working on one’s health before it works on you) while I was

away and listening to my rants on random math stuff and rocket launches. Thank

you to my Thea Judy and Theo Steve for visiting, giving excellent financial advice,

and inviting me to some of the most memorable Thanksgiving meals before finals.

And finally, and most importantly I would like to thank my Mamá, who in-

spired me to push myself to work really, really hard. I remember thinking of her

throughout the night that I wrote my essays for my application to UC Santa Cruz.

She will always be missed, but the memory of her has stayed with me like a fire

for knowledge. I suspect that she would have loved to read through this and most

likely found more than a dozen typos and grammar edits. In fact, she probably

would have thought of some feedback controller designs herself after reading this.

xxv

She is missed, but never forgotten.

xxvi

Chapter 1

Introduction

This thesis describes the Slug Autonomous Surface Vehicle Project. The goal

of which, at a high level, was to develop a robust autonomous vehicle to drasti-

cally reduce the cost of oceanography. This goal evolved into designing a system

capable of autonomous waypoint tracking and optimal exploration. A systems en-

gineering approach was taken to address the framework and design of what could

eventually be a high volume and low-cost autonomous surface vehicle able to study

and estimate various phenomena in marine environments. This dissertation out-

lines the designs and implementations of two autonomous surface vehicles (ASV)

for this purpose. Path-planning, guidance, navigation, and control are given spe-

cial attention. This includes control algorithms, their formulation, analysis, and

experimental validation. Emphasis is placed on the importance of creating ro-

bust ASVs for oceanography and their part in reducing the cost of ocean data

acquisition.

1

1.1 The Overarching Theme: Automated Field

Exploration

The overall theme is a vision of the oceanographer using an ASV to collect

valuable ocean data; the idea is that a researcher could deploy the ASV and it

would autonomously survey the field in an efficient manner, generating a high

quality estimate (with bounds) in minimum time. An example use-case is that of

an oceanographer attempting to find the concentrations in an area of the ocean

of micro-plastics, or other similar pollutants. Ideally, the ASV will travel in a

way that quickly provides an accurate estimate of the area or field. The ASV

does not explicitly locate the highest concentrations, but rather travels in a way

to minimize the uncertainty associated with the field estimate at a given point in

time. In this way, the researcher can conduct further studies at specific locations

of interest based on their domain-specific skills and objectives.

Note that the oceanographer should need no domain knowledge of robotics,

controls, navigation, or autonomy to use the ASV. Rather, they would deploy the

ASV and use high level commands on a convenient graphic user interface. The

ASV would use the control systems, path planning algorithms, spatial estimator,

and attitude and heading reference system that are discussed in this thesis. The

idea of generating a quick and accurate field estimate using the ASV is to reduce

the time that the researcher spends trying to find domain-specific areas of interest.

This idea is revisited throughout this thesis in each chapter to highlight how each

subsystem or algorithm contributes to the overarching theme.

2

1.2 Motivation

Oceanography, the study of physical and biological phenomena of the ocean,

is expensive; it can cost many thousands of dollars a day to keep a ship and crew

on task or standing by for oceanographic study. Each crewed mission risks the

humans onboard, damage to the vessel, and possess intrinsic limitations on mission

duration and scheduling. These limitations prevent studying the ocean, especially

transient ocean phenomenon such as algal blooms, oil-spills, and waste spills.

Aside from transient phenomenon, the high cost of oceanographic limitations effect

the study of longer-term problems and solutions to address those problems. For

instance, billions of dollars are lost annually due to continuing increases in ocean

acidification [56]. Ocean acidification, in particular, may have far reaching effects

on many marine organisms, such as phytoplanktonic coccolithophores, pteropods,

and other mollusks, [23], [81]. Organisms such as phytoplankton help fix carbon

at a rate of up to 50 Gigatons each year [27]. Single-celled and chain-forming

diatoms are expected to have declined by 40% since 1950 [54]. That is obviously a

concerning metric and further warrants the development of low-cost oceanographic

research solutions. The cost of oceanography and the ability to address these issues

must be reduced. Another limitation is the time taken to transit from port to the

desired research location - time during which the vessel is burning fuel, crew are

being fed and housed, and time which the vessel is unavailable for other missions.

Ideally, measurements of the ocean could be made at any time and place at low

cost. To that extent another method to study the ocean is to use satellites. Unlike

marine vessels satellites are able to view comparably large areas of the Earth in

a short amount of time. Satellites, such as the Sea-Viewing Wide Field-of-View

Sensor (SeaWiFS) launched specifically to measure chlorophyll of plankton, [59].

At 10% the cost of comparable satellites, the 5-year mission cost 42 million dol-

3

lars [6]. To help calibrate SeaWiFS, in-situ surface measurements were taken for

comparison by the Marine Optical Buoy (MOBY) [35]. This is an instance where

both marine surface vessels and satellites may be used together for oceanography.

However, some ocean phenomenon may exclusively require in-situ measurements

that cannot be measured by satellites.

Autonomous surface vehicles (ASV) can help reduce some of the costs. There

are many existing ASV projects for ocean data collection; some are currently

commercially available to researchers. There exist short to long-range mission

ASV types with various sensors (depending on specific applications and types of

research missions). While many ASVs have some level of flexibility in their mission

capabilities many do not consider advanced control techniques, or autonomous and

intelligent exploration algorithms. This thesis specifically focuses on modeling,

control, and exploration algorithms to improve the science return, power usage,

and overall system utility. Many ASV designs have underlying hardware and

software that are difficult to customize. This can be challenging to researchers

that require a versatile ASV for different kinds of missions.

1.3 Background

We review a number of similar projects and research efforts to solve the gen-

eral problem of collecting oceanographic data using autonomous surface vehicles

or remote operable submersible vehicles. These different projects are compared

and their advantages and disadvantages to solving the energy constrained explo-

ration and navigation (ECEN) problem is discussed. The general tools for solving

the ECEN problem, such as attitude estimation, trajectory tracking, and path

planning are subsequently discussed.

4

1.3.1 Similar Projects and Research

Previous efforts to reduce the cost of, or improve, oceanography using au-

tonomous surface vehicles include notable contributions by [51], [82], [42], [73], [4],

[29], and [25]. In 2003, the Monterey Bay Aquarium Research Institute (MBARI),

in collaboration with the National Oceanic and Atmospheric Administration Pa-

cific Marine Environmental Laboratory (NOAA/PMEL) developed a drifting buoy

that used a state-of-the-art sensor suite called the MAPCO2 with an infra-red an-

alyzer to measure CO2 concentration of coastal ocean waters. Its design possessed

no means of propulsion or navigation, but was able to reliably collect ocean data.

There are currently (June 2022) 19 in the Pacific and Atlantic ocean, [82].

Figure 1.1: A picture the MAPCO2 system by [82], installed on a buoy.

In contrast to limited mobility of the MAPCO2 buoy, the Wave Glider by

the Liquid Robotics company uses a similar sensor suite based on the MAPCO2

system. To increase mission duration, it scavenges energy from ocean-waves, using

5

a submerged glider that is pulled by waves to propel the vehicle, [42]. One of the

drawbacks to this system is characterizing control scheme and waypoint tracking

along with estimating the maximum mission duration for such a vehicle. However,

energy scavenging does extend the overall operating time.

Figure 1.2: A picture the Wave Glider built by Liquid Robotics.

The most similar project to this thesis is the Sea Slug [51], because this work

is in some respects a continuation of that work, albeit with different emphases.

An autonomous surface vehicle approximately 6.5 meter long was outfitted with a

controller area network (CAN) of small microcontrollers (CANodes). Each CAN-

ode controlled a specific peripheral; the CAN bus could be easily modified with

more nodes depending on the mission. This made it a versatile tool in the hands

of an oceanographer. It was capable of autonomous GPS navigation, but did not

posses obstacle avoidance capabilities.

In [29] and [4], catamaran-type boats called ROAZ and ROAZ II were used to

map coastal features, including the Tua River in three-dimensions using an echo

sounder and a camera. It was also capable of acting as a central communications

node in multi-vehicle missions. ROAZ II used an RTK GPS for position measure-

6

Figure 1.3: A picture the Sea Slug from the University of California at Santa
Cruz’s Autonomous Systems Laboratory [51].

ments, possessed image processing capabilities, an internal world map, a mission

management system, and a motion controller. Like [51], it also used a CAN bus,

but relied on an embedded system with a Linux operating system instead of a set

of microcontrollers. This is a comparatively expensive vehicle with a very specific

purpose, and is not able to be re-tasked for a variety of missions. The ROAZ II

is capable of radar based collision detection.

A 16-foot long solar powered catamaran ASV is presented in [25]. It was capa-

ble of obstacle avoidance while traveling under 1 m/s, with an obstacle detection

range of about 30 meters. It used a laser scanner to detect obstacles. Similar

to [4], it placed a 15 meter boundary around the obstacle when generating its

avoidance trajectory. It has sonars, cameras, GPS, and uses a small computer to

interface with these peripheral devices.

One of the more notable takeaways from these projects, with the exception of

[51], is a lack of emphasis regarding their guidance systems. Both [4] and [25] do

not discuss vehicle modeling, control schemes, or waypoint switching/interpolation.

Studying these aspects of autonomous vehicles can improve their utility, safety,

and cost over less guided platforms. Fortunately, others have developed detailed,

robust ship models, viable controllers, and waypoint maneuvering methods for

7

ASVs (see [76], [62], [65]).

In [76] the dynamics of ship steering are explored and robust continuous first

and second-order models are developed. Details such as controllability and ob-

servability of the models are discussed. A Newtonian approach for ship modeling

is discussed in [62], which considers everything from hydrodynamic forces that can

create moments about a ship’s rudder, to modeling the propulsion system and the

associated hydrodynamic resistance.

If there is a single, best ASV design in existence now, or one that can be

considered the most advanced, then that honor should go to the Saildrone, shown

in Fig. 1.4. It is a 7-meter long, narrow hull, 5-meter tall, solid sail autonomous

boat with a top speed of 4 meters per second [37]. Saildrone has autonomous

waypoint-to-waypoint navigation capabilities. It also possesses a large suite of

oceanographic sensors for studying up-welling dynamics, sub-mesoscale variability,

air-sea fluxes near ocean fronts, diurnal warming modeling, carbon cycling (related

to ocean acidification), and other biophysical interactions. It even has a satellite

link for live data capabilities. It is partially funded by a branch of Google. The

Saildrone company business model is unique in the oceanography field. In general

scientists currently carry the burden of writing grants to purchase sensors, renting

an autonomous vehicle or similar service, and paying technicians and engineers

for system maintenance and up-keeping. Saildrone owns, operates, maintains,

and calibrates all their ASV sensors and oceanographic instruments. They make

revenue by instead selling the data they collect to scientists. This takes some of

the burden off of scientists and may be a lasting and successful business model

for ASVs going into the future. Saildrone is also very robust; on September 30th,

2021, it navigated through a category 4 hurricane, recording remarkable video

footage inside of the hurricane [31]. Like the Wave Glider, Saildrone is capable of

8

month long missions or longer as it too scavanges energy, being wind and solar-

powered. It’s primary goal is to reduce the cost of in situ ocean data collection.

It can be argued that this goal is shared broadly with all of these ASV efforts,

including this work.

Figure 1.4: Two Saildrone Explorer autonomous surface vehicles docked in New-
port R.I.

Some less costly ASV designs, (in which the abbreviation “ASV” may also ex-

tend to mean autonomous sub-surface vehicle, or autonomous submersible vehicle)

that should also be mentioned, include the Light Autonomous Underwater Vehi-

cle or LAUV by OceanScan that was used in some impressive work [32], shown

in Fig. 1.5. The LAUV has a partially modular design for extra attachments

and sensors. It is roughly 1.2 meters long (depending on the configuration), 15

centimeters wide, and is rated to 100 meters in depth 1.

And last, but not least, is the BlueROV2 by Blue Robotics. Of all the

aforementioned ASVs, the BlueROV2 is the least expensive, starting at about

$3,490.00,2 shown in Fig. 1.6. It is a highly modular design, with extra attach-

ments including extra propellers, sensors, and even small robotic arms to grab and

move small objects underwater. It is largely meant for use with a communication
1More information at https://www.oceanscan-mst.com/light-autonomous-underwater-

vehicle/
2More information at https://bluerobotics.com/store/rov/bluerov2/

9

Figure 1.5: Picture of the Light Autonomous Underwater Vehicle LAUV by
OceanScan

tether and for remote operation (hence not autonomous).

Figure 1.6: Picture the BlueROV2 ASV by Blue Robotics.

Caveats and Considerations

With all of these aforementioned ASVs already in existence, or currently being

rolled out, what are the areas of differentiation needed? The previously men-

tioned projects cover a wide variety of use cases, physical scale, computational

10

limitations, energy constraints, and varying budget constraints. However, with

the exception of the work done by [32] they are largely used for either waypoint-

to-waypoint navigation, in which the control system is performing straight line

tracking, or simply being remote controlled as is largely the use case of vehicles

like the BlueROV2. Maintaining course while subject to disturbances can be

challenging, especially when there are disturbances. The missing component is

intelligent exploration.

For example, Saildrone, a scientist usually has to manually specify waypoints

for the vehicle to navigate for taking measurements. This means that the number

of ASVs doing useful scientific missions is limited by the number of personnel that

can readily direct them to where they should go to next. One of the main ideas

and contributions of this work is to try to automate how to choose those waypoints

onboard the ASV during an autonomous mission. Part of the reasoning behind

this is due to the fact that the number of autonomous exploration systems will

likely (and should ideally) exceed the number of ocean scientists. Put another way;

the exploration capabilities and rate of data collection by a fleet of ASVs should

not be constrained by the number of people available to direct them. Essentially,

this work introduces some methods and modifications of using spatial estimation

to inform which global waypoints, with potential scientific value, should be chosen

and explored next during a mission.

There are many useful open source software packages for vehicles like the

BlueROV2, LAUV, and the Sea Slug, including Ardupilot, and Ardusub. There

are also a few different open source mission planning applications that work with

these software, which include Q Ground Control, Mission Planner, and others.

These are excellent for setting waypoints, and providing a good foundation for

autonomous vehicles, but at a high level the user still has to specify each waypoint.

11

Further more, there remains a lack of readily available software and firmware for

hardware peripherals such as inertial measurement units (IMUs), rotary encoders,

specific microcontrollers, and other useful hardware. Additionally, there are no

options in the way of open source intelligent exploration algorithms for ASVs (or

other autonomous vehicles). There is open source software for machine learning,

computer vision, and object detection specifically, but many proposed methods of

optimal exploration are not readily available and have computational complexity

that scales poorly with the number of points measured ([74] and [83]).

This thesis highlights the advantages and performance gains of using light-

weight, low-cost microcontrollers with similarly low-cost embedded compute plat-

forms, such as the Raspberry Pi. This work also highlights the importance of

considering embedded computation design choices for truly cost-effective ASVs3

System modeling, system identification, guidance, navigation, and control are all

discussed in detail; many ASVs discussed in this section don’t provide any code

base. This is unfortunate because that reduces the rate at which ASVs are adopted

and are able to be modified to myriad missions.

This work demonstrates that most of the same capabilities of the previously

discussed ASVs can be replicated with a far more cost-effective system architec-

ture, using open source and costume-written embedded code. For example, it

shown in this work that a simple 32-bit PIC32 microcontroller, with a single GPS

module, a servo, and a propeller can execute waypoint-to-waypoint navigation

similar to the Saildrone. That setup costs roughly under $200. Later is is also

shown how a PIC32 microcontroller working with a Raspberry Pi can be used to

do spatial estimation and conduct intelligent waypoint or sample-point generation.

All of the previously mentioned ASVs could be improved by adopting the
3It is worth noting that a sizable part of this research was built on top of an embedded C

code library written by the author. All of the code used in this work is either already available
to the public or is in the process of being made open source.

12

intelligent exploration algorithms presented, an efficient open source embedded

code base, and the light-weight low-cost system architecture later discussed.

1.3.2 Attitude Estimation

Attitude estimation is required for precise ASV guidance; it allows for deter-

mining the orientation (and body-fixed angular rates) of the vehicle. For instance,

the heading angle of a vehicle is necessary information for a trajectory-tracking

control algorithm (see [65]). There is exists a large body of work done on solving

the problem of attitude estimation. Popular approaches to attitude estimation in-

clude complementary filters (CF) by [50, 26], TRIAD method, Whaba’s problem,

extended Kalman filters (EKF) by [53, 45], and even machine learning techniques

[2].

In this work a CF-based AHRS is chosen for it’s ease of implementation and

low computational cost. One of the key benefits of the CF-based AHRS is that

it’s computationally efficient enough to be run on a microcontroller that is simul-

taneously controlling other peripherals (such as motors, and servos).

1.3.3 Path Planning

Another key aspect in the background research for this work is path planning.

This involves the selection of a sequence of points for an autonomous vehicle, or

robot, to move through the environment. Notable work in this area includes, [9],

[8], and [22].

[9] develops a two-step path planning algorithm to generate optimal UAV

flight paths. In [8], a probabilistic path planning algorithm that uses queries

to check for collisions is developed. A map is composed of a number of nodes,

and is used to compute the shortest path from a starting point to an end point.

13

The algorithm minimizes the number of collision checks by retaining information

of previous queries. Graph searching approaches for autonomous car navigation

are discussed in [22], in which algorithms such as A∗ are used to plan paths

around obstacles detected while moving. More recent work includes [83], which

demonstrates using the Kriging Method for field exploration with an autonomous

vehicle using multiple different path planners.

Work in [32] introduces mapping coastal ocean phenomena based on tempera-

ture and salinity measurements. They use spatial statistics to inform the decision

making of a marine robot. Specifically, they use Gaussian Random Fields (GRFs)

and the expected integrated Bernoulli variance reduction along with co-Kriging

to inform and prioritize sampling locations for the ASV (though they refer to it

as an AUV in their work).

Similarly, work by [74] introduces optimal planning based on Gaussian Process

Regression (GPR), which shares much of the underlying math and has many par-

allels to Kriging. Their research explores both single and multi-vehicle planning

to reduce the spatial estimation error of a region of space over time.

Caveats and Considerations

A key problem in [83], [32], and [74] is that they all share the need to invert

a spatial covariance matrix. This has computational complexity of O(n3), where

n is the number of field measurements. Work by [60] introduces some methods

to recursively partition the initial problem space to reduce the computational

complexity (this is also known as local Kriging). This dissertation highlights new

methods (some contributed by the author in [80]) to also recursively partition the

initial problem space to reduce the computational complexity. A key difference is

that the new partition method is an informed partition scheme because it bases

14

the field partition sizes dynamically on the auto-correlation of the field as it is

measured. This is in contrast to other methods which are either static, not able

to be used in real-time, or are informed by other methods. Statistical spatial

estimation techniques such as Ordinary Kriging are applied dynamically based on

the partition update.

It should also be noted that all of these approaches essentially discretize a

field, or form a graph, breaking up the problem of path planning into a more

computationally tractable form. This means that a number of discrete points on

a field with some utility value are considered. Each point may have a gradient of

values or a set of distinct possible values. These approaches are applicable, since

the path planners for this thesis are implemented on an embedded system.

1.3.4 Trajectory Generation

Trajectory generation relates the chosen path to time constraints and other

state variables of a vehicle. This means that when a trajectory is formed, the

vehicle has specific state variable values planned for each time step along or be-

tween a set of points. It also deals with forming the path based on the the points

selected during path planning. In [16], Bézier curve splines are used to form the

trajectories, where as in [22] and [65], cubic splines are considered and simulated.

Splines are also used in [43] based on Voronoi diagrams.

These works all tend to require knowledge of the closest point to the path and

the angle of a tangent vector on the closest point on the path with regard to some

reference frame. Path curvature is also a key factor in trajectory generation. If

a path is jagged or non-differentiable at a point, this can induce a higher control

effort from the vehicles trajectory tracking controller when it passes the point.

This is where path smoothing becomes useful, which can be done using splines

15

and other methods.

1.4 Thesis Contributions

The contributions of this thesis include:

• Autonomous exploration algorithms for static and dynamic path planning

based on Ordinary Kriging, or Gaussian Process Regression. This includes

online trajectory generation and optimized sample-point generation for max-

imal uncertainty suppression.

• Experimental demonstration of waypoint line-tracking to sub-meter mean

cross-tracker error with existing hardware.

• Simulation and experimental validation of embedded attitude and heading

reference system (AHRS) algorithms, including results using a custom AHRS

validation apparatus.

• Two novel hardware ASV implementations including low-level drivers and

high-level code.

• A full software stack for simulating and collecting real-time data collected

by the experimental ASVs.

1.5 Organization

This section outlines the general approach to realize the goal of creating a

cost-effective method to conduct oceanography and similar exploration missions.

The task of designing the GNC for this purpose was divided into: 1) guidance;

answering the question of where should the vehicle go? 2) navigation; how to

16

plan a path in relation to the vehicle’s state to successfully get the vehicle to

where it needs to go, and 3) control; ensuring the vehicle follows the path. These

three parts each involved conducting background research on similar projects,

simulating different approaches, comparing performance between approaches, and

finally coming up with new methods to do GNC.

Chapter 1 discusses past work on similar projects and introduces some key con-

cepts that we return to throughout this writing. Ch. 2 details the specific systems’

design choices. Ch. 3 outlines the Slug 2 and Slug 3 sensor and actuator hardware

specifications. Ch. 4 investigates attitude and heading reference systems and com-

pares different methods in simulation. Experimental results for a complementary

filter-based attitude estimation algorithm are shared and discussed. Ch. 5 deals

with various vehicle models, and how they are derived. Ch 6 discusses how to find

the parameters of vehicle models (through system identification) using both ARX

and an extended Kalman filter (EKF). Ch. 7 delves into autonomous navigation

with an emphasis on trajectory generation, tracking, control, B-Spline generation

embedded systems, and how to estimate vehicle-system state variables and model

parameters. Comparisons of different ways to track and structure trajectories

is given, along with computational and accuracy results for attitude estimators.

Ch. 8 covers intelligent exploration based on spatial estimation techniques such

as ordinary Kriging and Gaussian Process Regression (GPR). New techniques for

speeding up the spatial estimation are introduced with results. Optimal explo-

ration is discussed as well, with a focus on graph search algorithms. Ch. 9 goes

over the experimental results of the ASV implementations. We conclude with

Ch. 10 and discuss the research as a whole, and future work. Other work and

further results are found in Appendix A. Generally, additional background is pro-

vided at the beginning of each chapter, and the relevant contributions are listed

17

towards the end of each chapter.

18

Chapter 2

System Implementations

This chapter examines the hardware and software architecture of the Slug 2

and Slug 3 ASVs outlined throughout this thesis, how it evolved over time, and

the reasons for specific design choices. Both ASVs are shown in Fig. 2.1 and

Fig. 2.2. A system block diagram is provided in Fig. 2.3. Subsequent chapters

provide more detail on each block.

2.0.1 Connection to the Overarching Theme

The specific implementation of an ASV is not directly necessary for an oceanog-

rapher to know. However, it is important to outline the system architecture. This

chapter shows what communication protocols were used for each sensor and ac-

tuator and how they work together. Additionally, the computation platforms are

discussed along with how they are connected and what information is shared be-

tween different components. This architecture is easy to modify for different types

of missions, extending its use-cases to various kinds of researchers that might de-

ploy it in different environments. Fig. 2.1 and Fig. 2.2 show the Slug 2 and Slug

3 respectively. They represent two instances of using the architecture discussed

19

in this chapter. The Slug 3 system block diagram is shown in Fig. 2.3.

Figure 2.1: The Slug 2 autonomous surface vehicle.

Figure 2.2: The Slug 3 autonomous surface vehicle.

20

Figure 2.3: The top-level system block diagram.

2.1 Hardware Design

This section goes over the hardware design implementation for both the Slug

2 and Slug 3 ASVs. Initially, the Slug 2 was the primary test vehicle. It used a

single PIC32 microcontroller that interfaced with a GPS, an IMU, an ESC for the

propeller motor, a servo for the rudder, a radio transceiver, and an RC receiver.

Both the Slug 2 and Slug 3 use multiple different kinds of sensors, actuators,

transmitters, and receivers. Highlighting the necessary protocols for the ASV

leads to a deeper understanding of how the system works with all the peripheral

devices. The ASVs uses the Max32 microcontroller board which is based on a

PIC32MX79F128H microprocessor; the overall system architecture and underly-

21

ing code is meant to be extensible to other microcontroller with only small changes

to the low-level drivers. The microcontroller is capable many communication pro-

tocols: UART, I2C, SPI, and CAN. Some protocols, such as UART have multiple

channels such that multiple different devices can communicate to the microcon-

troller. All of the drivers for these protocols were written from scratch, tested,

and successfully employed in the validation procedure discussed in [79].

2.2 Software: Communication Protocols and Pe-

ripherals

The software discussion centers around the communication protocols necessary

for the different hardware peripherals to communicate with the central microcon-

troller and Raspberry Pi4B. Some sensors can be directly connected to the Rasp-

berry Pi, and may even include pre-written and pre-tested firmware drivers that

are part of a commercially available product (such is the case for the depth sensor).

However, a majority of the hardware peripherals connected to the Max32 micro-

controller rather than the Raspberry Pi. They required custom C code for commu-

nication protocols including UART, I2C, and SPI. Additionally, the MAVLink and

NMEA protocols were integrated with two separate serial drivers. The MAVLink

integration allowed the Max32 and Rasperry Pi could send MAVLink packets be-

tween each other over USB serial or a similar connection. The NMEA protocol

was used for the GPS module connected to the Max32.

UART

There are four UART channels on the Max32. The first of these channels is

dedicated to serial output for debugging and code development with a standard

22

computer. The second channel is used for radio telemetry. Anything from individ-

ual ASCII characters to more advanced packet structures with a checksum may be

transmitted and received over this channel. The third channel is to interface with

the GPS unit. The standard NMEA packet structure is used and a custom NMEA

library was written to obtain COG, speed, position, and HDOP (the quality of

the horizontal degradation of the position measurements). The fourth channel is

used for receiving commands from a remote controller for manual control of the

ASV. This is critical in case the GNC algorithm fails while testing and manual

control is necessary, or for testing other aspects of the ASV.

I2C

The inter-integrated circuit (I2C) communication protocol is used primarily

for communication with the sensor-head (MPU9250) at 100Hz. This is used to

measure body-fixed angular rates (p, q, r) using tri-axis rate gyros, specific force

using the tri-axis accelerometers, and the magnetic field using the tri-axis magne-

tometer. Note that the sensor-head frame is not necessarily coincident with the

vehicle body frame.

SPI

The serial peripheral interface (SPI) communication protocol is used to read

the magnetic quadrature phase encoder (AS5047D). This is the encoder used in the

validation procedures for the Complementary Filter based Attitude and Heading

Reference System (AHRS), but is also intended to be used to measure directly

measure the rudder angle.

23

2.2.1 MAVLink

For efficient data collection from the onboard sensors, the MAVLink1 packet

structure is used. This allows use of convenient programs such as QGroundCon-

trol, an open-source program to track vehicles’ locations on virtual maps while

recording vehicle telemetry. Hardware-in-the-loop (HIL) simulations have already

been conducted that use MAVLink to transmit data to the ground station for

validation of the embedded GNC algorithm (see Ch. 7).

2.2.2 Kill Switch

One of the biggest problems encountered during system integration testing

is implementing a safety precautions enabling user take-over or manual control

of the ASV, including stopping the vehicle’s primary propulsion motor. Fig 2.4

shows how the kill switch circuit (RXc) connects to the microcontroller, and tran-

sistor connecting the electronic speed controller (ESC) for the primary motor to

ground. The motor speed, rudder servo angle, and operation mode signals are

received by the RXc and passed to the microcontroller. Then it sends the motor

speed and rudder servo angle signals to the ESC and and servo respectively. The

mode signal is processed in software on the microcontroller to switch between

manual and autonomous mode. There is a fourth signal that does not get sent

to the microcontroller, but instead is sent directly to a transistor to connecting

the ESC to ground. If this signal is high the transistor disconnects the ESC from

ground, effectively cutting power to the motor, but not the microcontroller. This

is important because it is a hardware fail-safe, meaning no software error will

prevent the signal from reaching the transistor. Thus power to the motor can be

cut, while leaving power for both the microcontroller and servo. The servo doesn’t
1See https://mavlink.io/ for more information on the MAVLink protocol

24

Figure 2.4: Actuator system block diagram with RXc, or kill switch
circuit block.

have power cut, because it might be convenient or necessary to move the servo in

the event of user override. For example, the servo can be moved to a maximum

angle such that the rudder drag in the water increases and slows down the ASV.

The Slug 3 built also used most of the existing drivers, and used the same

micrcontroller, but it had three major design changes: 1) it used a different

catamaran-type hull, 2) it used an additional custom-made PCB board ontop

for easier interfacing with peripheral devices (including a new IMU), and 3) it

interfaced with a Raspberry Pi 4B over USB UART. Figure 2.5 shows the system

block diagram for the Slug 3.

The addition of the Raspberry Pi was driven by the need for high-level com-

putation, additional memory capacity, and file system use for black-box data

logging. As was mentioned earlier, the radio telemetry would occasionally fail to

send receiver a message at the ground station. To solve this, the microcontroller

25

Figure 2.5: The system block diagram for the Slug 3 ASV.

sent MAVLink messages over USB UART to the Raspberry Pi, where they were

recorded onto a USB drive. This eliminated the packet loss issue due to radio

transmission, because system data could be recovered after deployment.

Furthermore, the Raspberry Pi could compute things like the spatial estima-

tion quickly, while the lower-level hardware peripherals could be dealt with by the

microcontroller simultaneously.

2.3 Conclusion and Caveats

This chapter outlined the hardware and software design of the Slug 2 and

Slug 3. The design choices were made with regard to affordability and time for

system integration. Special attention was given to the various software drivers

and how they were used to interact with the hardware peripherals. The Max32

26

microcontroller was shown to be a capable computation platform for vehicles

of this type. One of the aspects of the hardware design that could be further

developed is the mechanical design. Specifically, a custom hull could be designed

and fabricated; if the hull modular, then it could potentially increase the number

of use-cases for such an ASV. A mission specific ASV could be customized to a

certain size for payloads.

27

Chapter 3

Sensors and Actuators

A system such as an ASV requires sensors to perceive it’s surroundings, aid

in localization, and to determine it’s attitude (3D orientation) relative to it’s

surroundings. The problem of determining orientation or attitude of the vehicle is

complicated and discussed further in Ch. 4. The main sensors on the ASV include:

1) an inertial measurement unit (IMU) sensor-head with tri-axis accelerometers,

gyroscopes, and magnetometers, 2) a temperature sensor, 3) an echo sounder

depth sensor, and 4) a GPS receiver. A rotary encoder was also used, but not

onboard the vehicles. It was as part of an attitude validation apparatus that is

discussed in Ch. 4. The main actuators include: 1) the rudder servo, and 2) the

brush-less direct current (BLDC) motors for the propeller(s). Note that the Slug

2 had one main propeller and the Slug 3 had two, but both ASVs used a single

rudder servo.

3.0.1 Connection to the Overarching Theme

The sensors and actuators used by an ASV are critical to its ability to navi-

gate, sense, and interact with the local environment. This chapter outlines some

28

of the necessary sensors and actuators shared by many autonomous vehicles. One

of the sensors of special note is the echo sounding depth sensor; This sensor rep-

resents the environmental field attribute sensor that is mission specific to this

thesis. It will be used later in measuring the depth field of a small body of water.

It is not a particularly interesting field attribute sensor, but it is representative

of similar sensors that are location-specific, and measures phenomena not easily

measured at large distances. For example a more ideal sensor would be micro-

plastic-concentration sensors; also a location specific sensor and would take the

place of the echo sounding depth sensor. This would mean that the field being

estimated would be one of micro-plastic density rather than a depth field. Fortu-

nately the estimation techniques discussed in Ch. 8 can be used for many different

kinds of stationary field attributes.

3.1 Sensors

This section outlines the sensors used for both the Slug 2 and Slug 3 au-

tonomous surface vehicles. A brief discussion of each sensor implementation is

provided. This includes software drivers that were necessary to interface with the

microcontroller, record data provided by each sensor, and the update rate for each

sensor. Most of the sensors described here used custom C code for interfacing the

Max32 microcontroller and Raspberry Pi 4b.

3.1.1 IMU

Two different IMUs were employed. The Slug 2 used the MPU-9250 Spark-

fun breakout board. It connected to the Max32 microcontroller using a I2C wire

connection. The I2C drivers were written to be non-blocking. This allowed for

29

reading bytes corresponding to the tri-axis accelerometers, gyroscopes, and mag-

netometers while other software tasks were carried out. It should be noted that

the MPU-9250 used a separate integrated circuit for the magnetometer with a

different I2C address than the MPU-9250. This IMU was read with an update

of 100Hz, but was limited to 8Hz for the magnetometer. It was powered directly

from the Max32 at 3.3 volts. As of this writing this IMU is no longer available.

The Slug 3 used the ICM 20948 IMU; it is very similar to the MPU-9250. This

used an SPI driver for faster measurement updates (up to 7MHz), though that

speed was not necessary.

The calibration and implementation of both of these IMUs in gereneral is

discussed in Ch. 4.

3.1.2 NTC Thermistor

An off-the-shelf NTC thermistor was briefly used in an experiment with the

Slug 2. It was used to measure the temperature of the water at different locations.

However, the temperature of a small body of water tends to be the almost the

same value regardless of the location, unless there is a local heat source. Even

then, the temperature gradient is so small as to not be very interesting for the

purposes of field attribute estimation. The sensor connected to a power pin, a

ground pin, and an analog to digital (ADC) pin on the Max32. The ADC module

on the Max32 was configured to be non-blocking and interrupt driven.

3.1.3 Echo Sounder Depth-Sensor

The echo sounder works by emitting a directed sound wave in the water. When

the sound wave bounces off of an object (such as a fish or the ocean floor) the

time of flight is used to calculate the distance to the object. This sensor was

30

used on the Slug 3 to take depth measurements of small bodies of water, such as

ponds and lakes. Fig. 3.1 shows the depth sensor used onboard the Slug 3. It

connects directly to the Raspberry Pi4B via USB serial connection. No custom

code was necessary to write for this sensor as Blue Robotics provides an open

source repository for using their python module.

Figure 3.1: The Blue Robotics echo sounder depth sensor
attached to a wooden arm. The arm connected to the top
back of the Slug 3 to point downward.

Calibration

The depth sensor was used to measure known “true” distances. Specifically,

a large/thin plastic sheet was set at a series of known distances away from the

depth sensor. The depth sensor measurements were compared to the true distance

values. They agreed with the true to within approximately ∼ ±0.5in. Fig. 3.2

shows the distance measured by the depth sensor and the known distance to the

sheet. Note that the transitions between different sets of known distances was

31

interpolated with a simple ramp. This is an approximation and in reality the

sheet was not perfectly moved at a constant velocity.

90 100 110 120 130 140
Time (seconds)

1.8

1.7

1.6

1.5

1.4

1.3

1.2
De

pt
h

(m
et

er
s)

Depth Measurement vs Time
measured
true

Figure 3.2: The measured distance from the depth sensor
and the true depth signals over time. The transition between
set distances were changed to ramps based on the time stamp
when the sheet was moved.

Fig. 3.3 shows the depth sensor measurements versus the true reference dis-

tance. Fig. 3.4 shows the distance error over time. Fig. 3.5 shows the distance

error histogram. Note that these figures are before any calibration.

32

1.8 1.7 1.6 1.5 1.4 1.3 1.2
Reference Distance (meters)

1.8

1.7

1.6

1.5

1.4

1.3

1.2

M
ea

su
re

d
Di

st
an

ce
 (m

et
er

s)

Measured Depth vs "True" Reference Depth

Figure 3.3: The depth sensor measurements versus the true
reference distance.

90 100 110 120 130 140
Time (seconds)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Er
ro

r (
m

et
er

s)

Depth Error VS Time

Figure 3.4: The distance error between the depth sensor
measurements and the true reference distance over time.

33

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Depth Sensor Error (meters)

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Histogram of Depth Sensor Error
Gaussian Fit

Figure 3.5: A histogram of the depth sensor error.

Before calibration the depth sensor possessed a mean error of approximately

−0.00474 meters with a standard deviation of 0.01134 meters (0.44646 inches).

The calibration procedure was done using least-squares. The sensor measurements

are represented by the following equation:

y = mx+ b (3.1)

where y is a measured distance, m is a scale factor, x is a “true” distance and b

is a scalar offset. Note that at this point m and b are not yet known, but can be

estimated as we will show below. First, let us re-write Eq. (3.1) as

x = y − b
m

(3.2)

Now let

34

q = Sr (3.3)

and

q︷ ︸︸ ︷

x0

x1
...

xn−1


=

S︷ ︸︸ ︷

y0 1

y1 1
... ...

yn−1 1



r︷ ︸︸ ︷ 1
m

b
m

 (3.4)

where q ∈ Rn×1 is the vector of true distance values, S ∈ Rn×2 is a matrix of

measured values and a vector of ones, and r is a vector of coefficients. We may

now estimate the coefficient vector r with least-squares,

r = (STS)−1STq (3.5)

It was found that 1/m = 0.999932 and b/m = 0.004629. With two equations and

two unknowns we may solve and find that m =∼ 1.000070 and b =∼ 0.004630.

The coefficients can then be applied to the original data using Eq. (3.1). Due to the

sensors initial level of accuracy the calibration improvement is small; the mean

error becomes −0.000218 meters and the standard deviation becomes 0.011340

meters (0.446444 inches). Based on these metrics, the depth sensor was deemed

to possess a sufficient level of accuracy for experimental use.

3.1.4 GPS Receiver

The GPS receiver used was the SparkFun GPS breakout board chip antenna

SAM-M8Q. It connected to the Max32 directly with a UART wired connection.

A custom NMEA0183 UART parsing module was written in C for the Max32 to

35

read the GPS data. This included latitude, longitude, course over gound (COG),

horizontal dilution of precision (HDOP), vertical dilution of precision (VDOP),

and other standard GPS data. The NMEA0183 parsing module was written to be

non-blocking to allow for other software tasks to be carried out “simultaneously.”

3.1.5 Encoder

The encoder used with the attitude and heading reference system (AHRS)

validation apparatus, discussed in Ch. 4 was the AS5047D high speed position

sensor. It uses a hall-effect sensor and magnet to detect the angular orientation

of rotating axle connected to the magnet. A non-blocking interrupt driven SPI

driver was written in C to allow it to interface with the Max32 microcontroller.

3.2 Actuators

The Slug 2 and Slug 3 both used essentially the same hobby servos for the

rudders and electronic speed controllers (ESCs) for the propellers. Custom C code

was written to configure the output compare pins of the Max32 microcontroller

to drive both actuators.

3.2.1 Servo

A standard hobby servo was used to move the rudders for both the Slug 2

and Slug 3. They connect to the Max32 microcontroller with a power (5 volt),

ground, and signal connection. However, the Max32 used a custom daughter-

board that allowed for a 5-volt rail with a higher amperage rating, so as not to draw

potentially damaging excessive current through the Max32 5-volt regulator. A

servo pulse was generated using custom pulse-width-modulation (PWM) module

36

written in C code for the Max32. It was non-blocking and interrupt driven. The

servo pulse width could change between 1.0 and 2.0 milliseconds, corresponding

to a rudder angle of approximately ±45◦. Fig. 3.6 shows a conceptual depiction

(not to scale) of the PWM signal for the servo.

1V

2V

3V

0V

4V

Figure 3.6: A drawing of the PWM signal (blue) for the
rudder servo. The duty cycle changes such that the high time
T falls within a range of [1.0, 2.0]ms with the center at 1.5ms.

The servo is driven using a PWM signal, shown in Fig. 3.6. By adjusting the

high-time of the signal (the duty cycle), the change in the effective voltage to

the servo causes the servo to rotate. The minimum servo angle corresponds to a

high-time of Tmin and the maximum angle corresponds to Tmax.

3.2.2 BLDC Motor

The same output compare pins associated with the PWM module for the

Max32 were used to drive a signal similar, but different signal than the servos.

37

The signal was sent into the Turnigy Plush 40A ESCs that would in-turn drive a

Radient Reaktor BLDC motor. This motor was connected to the main propeller

on the Slug 2. The Slug 3 used similar motors with similar ESCs, using the same

PWM signal as the Slug 2.

3.3 Conclusion and Caveats

This chapter outlined the sensors and actuators used by the Slug 2 and Slug 3

autonomous surface vehicles. It discussed how the hardware was integrated and

articulates the capability of a single microcontroller to interface with all of these

peripherals “simultaneously” using efficient custom embedded C code. It should

be noted that all of these sensors and actuators are relatively inexpensive with

the exception of the Blue Robotics echo sounder depth sensor. These actuators

and sensors are representative of those found on more expensive ASVs such as

the SailDrone, but are not as precise or accurate. These components were chosen

with regard to a constrained budget and to minimize the amount of work needed

to integrate them with the Slug 2 and Slug 3 ASVs.

38

Chapter 4

Attitude and Heading Reference

System

An attitude and heading reference system (AHRS) is commonly used on au-

tonomous vehicles. An AHRS is used to provide roll, pitch, and yaw estimates for

aircraft, satellites, and other vehicles that require accurate, onboard measurements

of their orientation in three-dimensional space. An ARHS generally consists of a

set of three-axes gyroscopes and some aiding sensors (e.g.: three-axis magnetome-

ters and/or accelerometers) that are used together in a sensor fusion algorithm to

estimate vehicle orientation (or attitude). Gyroscopes provide angular rates about

the three orthogonal axes in the body-frame of a vehicle. Ideally, the orientation

of the vehicle can be found by integrating these body-fixed angular rates, though

the process is non-linear and has some particularities depending on the specific

attitude parameterization. Due to inherent integration errors and time-varying

drift of the rate biases of the gyros, aiding sensors are required to estimate the

true gyro drift rates and improve the final attitude estimate. Note that the rate

gyros are incapable of resolving the initial attitude, and that the aiding sensors

are required to converge on the initial attitude estimate as well. The ASV uses a

39

sensor-head with a three-axis MEMs accelerometer, gyroscope, and magnetome-

ter. The measurements from the sensor-head can be combined using sensor fusion

techniques such as Extended Kalman Filters (EKF), TRIAD, or complementary

filters (CF) as part of an algorithmic design of an AHRS. In this section, both

simulation and experimental implementations for different ARHS algorithms are

explored. First, a simulation is used to show the advantages and disadvantages of

three different AHRS options: 1) EKF, 2) TRIAD, and 3) CF. We examine the

performance in terms of computation time and accuracy.

Depending on the size, weight, and power (SWaP) of the AHRS, and the

budget available, differing validation tests can be used to ensure that the AHRS

is correctly estimating the attitude and within the required specifications for the

mission. This can be achieved with rate tables, or similarly expensive apparatus,

where external sensors provide a measurement of the orientation of the vehicle.

The external truth reference (external measurement) is compared to the attitude

generated by the AHRS (internal measurements). This comparison between true

and estimated orientation is used to validate the system. If the internal and

external measurements agree (e.g.: low mean difference and standard deviation),

then the AHRS can be used with high confidence.

Part of the navigation component of GNC is discussed in this chapter and

is largely focused on attitude estimation through using an AHRS. The use of

GPS and course over ground (COG) is also discussed to address how to guide a

vehicle. However, Ch. 7 is dedicated to the other key aspects of GNC, and a more

comprehensive discussion as the system is implemented in this thesis is found here.

40

4.0.1 Connection to the Overarching Theme

ASV attitude is a hard requirement for autonomous vehicle guidance - it simply

cannot be accomplished without a decent estimate. In addition to the vehicle

trajectory control the ability of an ASV to determine its full 3D orientation can

be very useful to an oceanographer or similar researcher. For instance, a researcher

receiving telemetry from an ASV indicating that the vehicle is pitching with a high

amplitude oscillation can indicate to the researcher what kinds of ocean conditions

and weather are present in an area. Furthermore, orientation could be useful if

the field attribute sensor takes measurements that require a specific orientation.

This could include taking underwater images that require the ASV to assume a

specific orientation within some margin of error at different locations.

4.1 ARHS Comparison

This section discusses AHRS algorithms including the EKF, TRIAD, CF, along

with simulations comparing the three. Additionally, a validation apparatus is

presented that was created as part of the research for this thesis. It was used in

validating a custom CF AHRS implemented on a micocontroller in C code. The

AHRS was used onboard a small ASV with a GPS receiver and the course over

ground (COG) angle was compared to the CF yaw angle for further experimental

validation.

4.1.1 EKF AHRS

The EKF is a computationally intensive AHRS algorithm compared to CF

and TRIAD. This is shown quantitatively subsection 4.1.4. A version of an EKF

is discussed here briefly for completeness and to substantiate the claim of its

41

comparatively significant computational demand.

There are two main steps: 1) prediction and 2) correction (sometimes called

the update). The prediction step is comprised of the following two equations:

x̂(−)
k+1 = f(x(+)

k ,uk) (4.1)

P(−)
k = Φ(xk−1,uk)P(+)

k−1ΦT(xk−1,uk) + Qk−1 (4.2)

Φk = ∂fk(xk, 0)
∂xk

(4.3)

where uk is the control input to the system at the k-th time step, Φ is the discrete

state space transition matrix, Q is the process noise covariance matrix, P is the

estimation covariance matrix, and x is the state vector. The correction update

step is defined by Eqs. (4.4)-(4.8)

vk = zk − h(xk) (4.4)

Sk = H(xk)P(−)
k HT(xk) + Rk (4.5)

where R is the sensor noise covariance matrix. The Kalman gain is then define as

Kk = P(−)
k HT(xk)S−1

k (4.6)

x(+)
k = x̂(−)

k + Kkvk (4.7)

42

P(+)
k = (I−KkH(xk))P(−)

k (4.8)

where P(−)
k is the error covariance extrapolation and P(+)

k is the error covariance

update at the k-th time step. Specifically, in order to match our TRIAD and CF

forms we use the attitude prorogation of quaternions.

Now that we have reviewed the EKF equations, we examine how they relate

to the rotation kinematics for attitude estimation. To that extent the EKF AHRS

implementation from [68] is repeated here for completeness. The same notation is

used so that the reader can more easily reference the original text. The Earth-fixed

frame is represented by E =
[
e1 e2 e3

]
. The body-fixed frame is represented by

B =
[
e′1 e′2 e′3

]
. As noted in [68], a vector x ∈ R3 can be translated from the

body-fixed frame to the Earth-fixed frame, xB = B
ECxE .

Quaternions are used to represent orientation in [68], where q̄ =
[
q1 q2 q3 q4

]T
=[

qT q4

]T
. The first three elements of q are complex and q4 is real. Let

[
q×

]
=


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (4.9)

q =
[
q1 q2 q3

]T
= sin(θ/2)nT (4.10)

q4 = cos(θ/2) (4.11)

where nT ∈ R3 is the vector representing the axis of rotation and θ the angle.

43

Multiplication between quaternions is defined as

q̄a ⊗ q̄b =
[(
qb4qa + qa4qb +

[
qa×

]
qb
)T

qa4q
b
4 − qa · qb

]
(4.12)

where q̄a and q̄b are arbitrary quaternions. Let the pure vector quaternion

x̄E =
[
xT
E 0

]T
.

The kinematics equations are,

d

dt
q̄ = 1

2 q̄⊗
[
ωT
B 0

]T
= 1

2

−
[
ωB×

]
ωB

−ωT
B 0

 q̄ = Ω(ωB)q (4.13)

where Ω(ωB) ∈ R4×4 is a skew symmetric matrix. The discrete-time equivalent of

Eq. (4.13) is

q̄(tk) = Φq̄(tk−1) (4.14)

such that

Φ = cos(|uB|/2)I4×4 + sin(|uB|/2)
|uB|/2

Ω(ωB(tk−1)) (4.15)

and corresponds to Eq. (4.3) of the EKF equations outlined earlier. A key

assumption here is that the angular velocity is assumed to be constant within the

sample time ∆T = tk − tk−1, such that

uB =
∫ tk

tk−1
ωB(τ)dτ ≈ ωB(tk−1)∆T (4.16)

The sensor model for the tri-axis body-fixed gyroscope model ωm, accelerom-

eter model am, and magnetometer model hb from [68] is show below:

44

ωm = gKωbody + gb + gv (4.17)

am = aKBEC(abody − g) + ab + av (4.18)

hm = mKBEC(h + hb) + mb + mv (4.19)

whereC ∈ R3×3 is the rotation matrix between different reference frames, gK, aK,mK

are scale factor matrices, gb, ab,mb are the bias vectors, and gv, av,mv are Gaus-

sian noise on the measurements for the tri-axis gyroscopes, accelerometers, and

magnetometers respectively. The noise is assumed to be zero-mean. The con-

stant gravity vector in the body-fixed frame is g. The time-varying accelerometer

measurements in the body-fixed frame are represented by abody. The constant

magnetic field vector in the body-fixed frame are represented by h and the time-

varying magnetometer variations in the body-fixed frame are represented by hb.

Note that the super-scripts g, a,m indicate the gyroscope, accelerometer, and

magnetometer respectively. A simplification stated in [68] is that abody ≈ 0.

The gyro-bias is modeled as a random-walk vector,

d

dt
gb = wg (4.20)

where wg is Gaussian noise. It possesses a zero-mean, and a covariance matrix,
bΣg =b σgI3×3

In [68] the magnetic distortions are represented by hb and can be modeled

using a first-order Gauss-Markov vector random process,

d

dt
hb = −αb + wh (4.21)

where wh is zero-mean Gaussian noise and α is a positive constant. The corre-

45

sponding covariance matrix for the noise is bΣh = bσ2
hI3×3.

The continuous-time system model is as follows

d

dt
q̄ = Ω(ω)q̄ (4.22)

d

dt
hb = −αhb + wh (4.23)

d

dt
gb = wg (4.24)

(4.25)

The state vector is

x =
[
q̄T hbT gbT

]T
(4.26)

The state propagation developed in [68] is given by


d
dt

ˆ̄q
d
dt
b̂h

d
dt
b̂g

 =


−1

2Ξ(ˆ̄q)b̂g

−αb̄h

03×1


︸ ︷︷ ︸

f0

+


1
2Ξ(ˆ̄q)

03×1

03×1


︸ ︷︷ ︸

f1

ωm (4.27)

where Ξ(ˆ̄q) is defined as

Ξ(ˆ̄q) =

q4I3×3 +
[
q×

]
−qT

 =



q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


=
[
s̄1 s̄2 s̄3

]
(4.28)

and where the angular velocity ω̂ = ωm − gb and acts as a control input. The

46

state propagation is

x(k)︷ ︸︸ ︷
ˆ̄q(k)hb̂(k)
gb̂(k)



 =

f(k−1)︷ ︸︸ ︷
Φ(k − 1)e−α∆T I3×3 03×3

03×3 I3×3





x(k−1)︷ ︸︸ ︷
ˆ̄q(k − 1)hb̂(k − 1)
gb̂(k − 1)



+

w(k−1)︷ ︸︸ ︷
qw(k − 1)hŵ(k − 1)
gŵ(k − 1)



 (4.29)

Let

Φ(k − 1) = cos(|ω̃(k − 1)|∆T/2)I4×4 + sin(|ω̃(k − 1)|∆T/2)
|ω̃(k − 1)|∆T/2 Ω(ω̃(k − 1)) (4.30)

and

ω̃(k − 1) = ωm(k − 1)− gb(k − 1) (4.31)

The gyro measurement noise is incorporated into the state model via the process

noise component qw(k − 1),

qw(k − 1) = ∆T
2 Ξ(ˆ̄q(k − 1))gv(k − 1) (4.32)

As stated in [68], the process noise covariance matrix Q(k − 1) is

Q(k−1) =


σ2
g(∆T/2)2(trace(M0)I4×4 −M0) 03×3 03×3

03×3 σ2
h

1−e−2α∆T

3α I3×3 03×3

03×3 03×3
bσ2
gI3×3

 (4.33)

M0 = q̄(k − 1)q̄(k − 1)T + Pg(k − 1) (4.34)

47

where q̄(k − 1) is the expectation of the quaternion component within the state

vector, and q̄(k − 1) is the covariance matrix of the quaternion component.

The following equations are given for each reference vector components that

is required for vector matching as noted in [68]:

am(k)

hm(k)

 =

BEC(q̄(k)) 03×3

03×3
B
EC(q̄(k))


 g

h + hb(k)

+

 av(k)
mv(k)

 (4.35)

where again the sub-script m and a indicate which equations refer to the magne-

tometer and accelerometer respectively. The measurement noise covariance matrix

referenced in the EKF Eq. (4.5) is

R(k) =

σ2
aI3×3 03×3

03×3 σ2
mI3×3

 (4.36)

This subsection briefly repeated the work for an EKF AHRS primarily de-

veloped in [68]. In this subsection we introduced the general equations for the

EKF, outlined how quaternions can be used to describe orientation, introduced

the kinematic equations for rotation, and showed how a discrete state space model

could be propagated.

4.1.2 TRIAD AHRS

The TRIAD AHRS algorithm is robust and avoids the issue of gyro drift

entirely simply by not using gyros. Note that this makes TRIAD more suitable

as an aiding or low-bandwidth AHRS choice. It is a method that uses two aiding

reference vectors to compute a rotation direction cosine matrix (DCM) [72] [21].

The TRIAD algorithm as presented in [21] is outlined here for completeness.

48

First, we consider two reference vectors, v1 and v2 in the local tangent plane

frame of reference, such that their elements correspond to the x, y, and z axes.

In the case of gravity this would imply that v1 =
[
0 0 1

]
. Let the observation

unit vectors be w1 and w2 in the body-fixed reference frame. For the ASV, these

are measured from a tri-axis accelerometer and magnetometer respectively. Note

that some other examples include sun or lunar-tracking sensors or cameras. Now

assume that there is a DCM A such that

Av1 = w1, Av2 = w2 (4.37)

Let

Mo =
[
o1 o2 o3

]
(4.38)

and

Mr =
[
r1 r2 r3

]
(4.39)

where

49

o1 = w1 (4.40)

o2 = w1 ×w2

‖w1 ×w2‖
(4.41)

o3 = w1 × (w1 ×w2)
‖w1 ×w2‖

(4.42)

r1 = v1 (4.43)

r2 = v1 × v2

‖v1 × v2‖
(4.44)

r3 = v1 × (v1 × v2)
‖v1 × v2‖

(4.45)

(4.46)

Now the estimate of the DCM, A is

Â = MoMT
r (4.47)

Finally, the Euler angles can be extracted with

ψ = atan2(A23,33) (4.48)

θ = asin(−A13) (4.49)

φ = atan2(A12,11) (4.50)

(4.51)

Caveats of TRIAD

One of the key drawbacks it possess is that it is highly dependent on the

variance σw associate with the measured aiding reference vectors. On a different

50

note, many micro-electrical-mechanical (MEMS) tri-axis accelerometer, magne-

tometers, and gyros sensor-heads (also variably called inertial measurement units

or IMUs) have different update rates for each specific sensor. Typically a gyro has

a faster update rate (or bandwidth) than both the accelerometers and magnetome-

ters. This is not a problem by itself, but depending on the application and if the

vehicle is rotating fast enough, the update rate from a TRIAD AHRS may be to

slow. If the speed requirements are very high, then an AHRS that uses gyros with

a fast update rate would be necessary; TRIAD may not be the best option. Note

that there are also methods to propagate the attitude as a state between TRIAD

updates, such as in [21], which may also be useful for high-dynamics vehicles.

4.1.3 CF AHRS

Complementary filters have certain advantages and disadvantages compared

to other AHRS algorithms. They are generally less computationally intensive,

but at the cost of accuracy and slower convergence rates. Fig. 4.1 shows a passive

discrete complementary filter, introduced in [50]. It uses a skew anti-symmetric

projection operator πa() to project the rotation matrix error R̃ onto the skew

matrix (R̂Ωy)× formed from the rotation matrix estimate R̂ and the gyro angular

rate vector Ωy. The rotation matrix error is R̃ = R̂TRy, where Ry is the rotation

matrix between the inertial aiding vector and the aiding vector as measured in

the body-fixed reference frame.

Assume there exists some unit norm vector that represents a normalized sensor

measurement, such as an accelerometer or magnetometer vector measured in the

body-fixed frame:

vb =
[
v1 v2 v3

]T
(4.52)

51

Ry may found using the following equation:

Ry ,


v2

1 + (v2
2 + v2

3)cφ v1v2(1− cφ)− v3sφ v1v3(1− cφ) + v2sφ

v1v2(1− cφ) + v3sφ v2
2 + (v2

3 + v2
1)cφ v2v3(1− cφ)− v1sφ

v3v1(1− cφ)− v2sφ v2v3(1− cφ) + v1sφ v2
3 + (v2

1 + v2
2)cφ

 (4.53)

where φ is the angle between the inertial and body-fixed reference vector, and can

be found using the definition of the dot product:

φ = cos−1(mi ·mb)
||mi||||mb||

(4.54)

where mi and mb are analogous to v1 and v2 respectively.

Figure 4.1: A passive discrete CF, as introduced in [50]

Fig. 4.2 shows the full CF with accelerometer and magnetometer feedback.

Note that there are now two gains kp,a and kp,m that can be tuned depending

on the level of noise from the aiding vector sensors. Generally, the magnetometer

gain is low because there can be substantial noise for vehicles with electric motors,

batteries, actuators, and other electronic components.

52

Figure 4.2: A full CF with both accelerometer and magnetometer feed-
back.

It should be noted that there are many other versions of the complementary

filter. While the above versions were implemented and tested, the final version of

the CF used in this work used quaternions. It is detailed later in Section 4.1.4.

4.1.4 Comparison of EKF, TRIAD, and CF

A simulation was created to compare the EKF, TRIAD, and CF ARHS algo-

rithms. This subsection briefly discusses how that simulation was created and then

the results of that simulation. Fig. 4.3 shows the simulated true and measured

angular rates of a generic vehicle or object. The attitude orientation Euler angles

and the true inertial aiding reference vectors were generated by integrating the

true angular rates and applying rotations to the inertial aiding vectors. The rates

were integrated using quaternions, and the aiding vectors were rotated into the

body frame based on the resulting Euler angles. Quaternions were chosen specif-

ically because they provide an elegant way to ensure that the body angular rates

53

can be integrated while avoiding rotational singularities. Additionally, they are

well-suited for embedded applications because of their relatively low computation

cost.

Figure 4.3: True and measured rotational rates in the body reference
frame, with the standard deviation of noise from a normal distribution of
σgyro = 0.01

Since we are dealing with a tri-axis accelerometer, gyroscope, and magnetome-

ter it is helpful to visualize the orthogonal attitude basis vectors ê0, ê1, and ê2,

such that the matrix

[
ê0 ê1 ê2

]
=


1 0 0

0 1 0

0 0 1

 = I3×3 (4.55)

Fig. 4.4 shows the integration of the true body angular rates, previously shown in

54

Fig. 4.3.

Figure 4.4: Visualization of the rotation of the orthogonal basis vectors.
Also shown are the inertial aiding vectors gravity (red), and the magnetic
field vector (magenta).

Rate Quaternion Integration

A popular and computationally efficient method for angular rate integration

is quaternion integration. This is partly due to the fact that quaternions avoid

the transcendental functions that compromise the integration of Euler angular

rates. There have been many use-cases of quaternion integration. For instance, an

55

adaptive unscented Kalman filter with quaternion-based orientation estimation is

presented in [64], and similar approaches for quaternion integration are developed

in [67] and [5]. The integration method is repeated here for completeness; define

a vector of angular rates in the body-frame as

ωb =
[
p q r

]T
(4.56)

where p, q and r represent the roll, pitch, and yaw body angular rates about the

x, y, and z body-axes respectively. The body angular rates can be expressed as

part of a quaternion-based differential equation:

q̇ = 1
2Ω(ωb)q (4.57)

with q representing the attitude quaternion, and where

Ω(ωb) =

[
ωb×

]


︷ ︸︸ ︷
0 r −q

−r 0 p

q −p 0


p

q

r

−p −q −r 0


=

−[ωb
×] ωb

−ωbT 0

 (4.58)

For constant ω (see [5]) we see that solution for Eq. (4.57) is

q(t) = exp
(
t
1
2Ω(ωb)

)
q(0) (4.59)

Note that the skew operator can also assume the following notation,

56

dωbe =
[
ωb×

]
=


0 r −q

−r 0 p

q −p 0

 (4.60)

The change in angle for a given time-step, ∆t may be expressed as

∆θ = [ωb]∆t (4.61)

It should be noted that a key assumption here is that for small ∆t the angular

velocity is assumed to be constant. In reality that is not true, but it is generally

close to a constant rate and is useful to assume as will be shown later. The

assumption that the angular rate is constant for small time-steps allows for the

discretization of Eq. (4.57), see [21]. The solution for the discrete-time model is

then

qk+1 = M(∆θ)qk (4.62)

where (from [64]) we have,

M(∆θ) = cos
(∣∣∣∣∣
∣∣∣∣∣∆θ2

∣∣∣∣∣
∣∣∣∣∣
)
I4×4 + sin(||∆θ/2||)

||∆θ|| Ω(∆θ) (4.63)

Note the similarity to Eq. (4.15). It is the same matrix exponential formula. The

Euler angles are extracted using the following method by [46] as

57

φ = tan−1

2q1q3 + 2q0q1
2q2

0 + 2q2
3 − 1

 (4.64)

θ = sin−1(2q1q3 + 2q0q2) (4.65)

ψ = tan−1

2q1q2 + 2q0q3
2q2

0 + q2
1 − 1

 (4.66)

Next, the aiding reference vectors in the body reference frame are generated.

To do this, a rotation direction cosine (DCM) rotation matrix can be formed from

the true attitude quaternion q, using another method from [46].

R(q) =


2q2

0 − 1 + 2q2
1 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 2q2
0 − 1 + 2q2

2 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 2q2
0 − 1 + 2q2

3

 (4.67)

The inertial gravity vector vig and inertial magnetic field vectors vim can be rotated

in to the body reference frame of the vehicle. They are both 3 × 1 normalized

vectors.

vbg = RTvig (4.68)

In summary, a sequence of Euler angles ψ, θ, φ is calculated from a sequence of

rotation rates r,q,p using Eq. (4.62), and the aiding vectors in the inertial ref-

erence frame of the vehicle are calculated using Eqs. (4.64) - (4.68). One caveat

is that using quaternions for the Complementary Filter with the method outlined

above doesn’t provided a tremendous advantage over using DCMs, since we still

use DCMs in Eq. (4.67) to rotate the inertial-frame accelerometer and magne-

tometer vectors into the body-frame. However, if the vectors are rotated using

58

the quaternion rotation operator then DCMs can be avoided until Euler angles

are required to be extracted from the estimated attitude quaternion. Another

option instead of using quaternions is to propogate the attitude rotation DCM

R̂ using the matrix exponential operator exp(ω). This can be approximated by

a Taylor expansion, or similar approximations using the Rodrigues’ formula [61]

and Eq. (4.60).

exp(ω) = I + sin(||ω||)
||ω||

dωe+
sin2(||ω||2)
||ω||2

2

dωe2 (4.69)

R̂k+1 = exp(ω)R̂k (4.70)

Simulation Noise

Noise was added to both the true angular rates and the true aiding vectors to

better simulate a measurement from a tri-axial gyros, accelerometers, and magne-

tometers. A Gauss-Markov process was used along with a scalar offset to simulate

gyro drift; for example, the noisy angular yaw rate r̃ is based on the variance of the

gyro σ2
gyro, a time constant β, noise from a normal distribution ε(tk) ∼ N (0, σgyro),

and a scalar offset a0.

r̃(tk) = σ2
gyroe

−β|tk|r̃(tk−1) + ε(tk) + r(tk) + a0 (4.71)

Where r(tk) is the true angular rate and ε is an additional noise term. Similarly,

noise from a normal distribution was added to the aiding vectors

ṽbg(tk) = vbg(tk) + w(tk) (4.72)

59

ṽbm(tk) = vbm(tk) + w(tk) (4.73)

where

w(tk) ∼ N (0, σw) (4.74)

Simulation Results

Figure 4.5 shows the true aiding reference vectors in the body reference frame,

based on the quaternion integration of Eq. (4.62) of the true angular rates in

the body frame. The reason for this choice is based on the computation speed

up due to the approximations of the integration technique saving computation

cycles. Moreover, it is a common implementation on embedded systems for open

source autopilots. Again, the resulting rotation matrix transpose in Eq. (4.68) is

used to rotate the inertial reference vectors in to the body frame. Upon adding

noise, and offsets to the rates and aiding vectors, a realistic tri-axis gyroscope,

accelerometer, and magnetometer set of signals is created.

Figs. 4.6 and 4.7 show the attitude estimates of the EKF, TRIAD, and CF

ARHS algorithms. Each AHRS outputs the estimated Euler angles Ψ, Θ, Φ, that

represent the orientation of the vehicle or object in the inertial reference frame.

The EKF output is shown in green, the TRIAD output is shown in orange, and

the CF output is shown in purple. The true orientation is shown by the solid blue

line.

60

Figure 4.5: The true aiding reference vectors in the body reference frame

61

Figure 4.6: A 50 second simulation showing attitude estimates of EKF,
TRIAD, and CF for the orientation Euler angles.

Figure 4.7: A 5 second simulation of the attitude estimates of EKF,
TRIAD, and CF for the orientation Euler angles.

62

Performance

Two key metrics when comparing AHRS algorithms are error and the compu-

tation time. The term error is a little general, but can be expressed in a few ways,

including mean absolute error (MAE), mean, and standard deviation. Figures 4.8

and 4.9 show the error histograms and errors signals respectively, for each axis of

rotation from each AHRS algorithm. The mean computation times for the CF,

EKF, and TRIAD were approximately 0.168ms, 0.488ms, and 0.202ms respec-

tively. Table 4.1 shows the mean and standard deviation corresponding to the

results in Fig. 4.8.

1.0 0.5 0.0 0.5 1.0
0
2
4
6
8

10

Ya
w

fre
qu

en
cy

CF

1.0 0.5 0.0 0.5 1.0
0

5

10

15
EKF

1.0 0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25

TRIAD
Gaussian Fit

1.0 0.5 0.0 0.5 1.0
0

5

10

15

20

25

Pi
tc

h
fre

qu
en

cy

1.0 0.5 0.0 0.5 1.0
0

20

40

60

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

1.0 0.5 0.0 0.5 1.0
CF Error (radians)

0

5

10

15

20

Ro
ll

fre
qu

en
cy

1.0 0.5 0.0 0.5 1.0
EKF Error (radians)

0

5

10

15

1.0 0.5 0.0 0.5 1.0
TRIAD Error (radians)

0.0

0.5

1.0

1.5

Figure 4.8: The error histograms for each axis of rotation from the
different AHRS algorithms. Note that the CF did not incorporate gyro
bias compensation.

63

Table 4.1: Attitude estimation error comparison with mean and standard devi-
ation

µ (radians) σ (radians)
CF Yaw 0.052 0.079
CF Pitch -0.032 0.036
CF Roll -0.026 0.089
EKF Yaw 0.055 0.055
EKF Pitch 0.014 0.021
EKF Roll 0.016 0.056
TRIAD Yaw -0.027 0.566
TRIAD Pitch 0.028 0.254
TRIAD Roll 0.018 0.537

Figure 4.9: A 5 second window of the error signals for each axis of
rotation from the different AHRS algorithms

Computation time (flop count) is calculated based on the time it takes for

an ARHS algorithm to execute per measurement set. This can vary depending

on the computer or embedded system that is running the ARHS. For example,

64

a Raspberry Pi or similar computer running a non-real-time operating system

might vary on the time it takes to execute an AHRS attitude estimate, where

as an embedded system with hard-timing, based directly on a crystal oscillator

with a phase-locked loop (PLL), will be almost, if not exactly consistent in time

based on the number of cycles each operation takes. A non-real-time computer is

used to run the simulation. Fig. 4.10 shows the computation time of the AHRS

algorithm at each time step of the simulation.

Figure 4.10: Computation time for each AHRS algorithm at each time
step of the simulation.

As mentioned earlier, the MAE can help in the comparison between ARHS

algorithms. For example, the MAE for an AHRS algorithm’s roll angle estimate

signal φ̂ can be defined as follows.

eφ =
m−1∑
i=0
|φ̂(i)− φ(i)| (4.75)

The total MAE for an AHRS can then be defined as the sum of each MAE value

for all axes of rotation, eΣ = eψ + eθ + eφ. Figure 4.11 shows the MAE versus

65

mean computation time

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Time (milliseconds)

0.05

0.10

0.15

0.20

0.25

M
AE

 (r
ad

ia
ns

)

CF

EKF

TRIAD
Mean Absolute Error versus Computation Time

CF
EKF
TRIAD

Figure 4.11: MAE versus mean computation time for each AHRS algo-
rithm.

Discussion

In general, it was found that the CF was the fastest to compute, and produced

an intermediate MAE, followed by the TRIAD with its additional computation

time cost. However, the TRIAD algorithm specifically scales along the vertical

MAE axis proportional to the accelerometer and magnetic field noise variance

σ2
w,acc and σ2

w,mag. Realistic variance values were chosen based on real sensor data

sheets. The magnetic field can be significantly noisy in proximity to electric motors

and similar noise sources. This is a key drawback to using TRIAD in practice.

In ideal and potentially unrealistic environments, where the accelerometer and

magnetometer have very little noise, the TRIAD method can outperform both

66

the CF and EKF in terms of MAE. That would require very small standard

deviations of noise that may not be physically feasible. Unsurprisingly, the EKF

outperforms the other AHRS algorithms in MAE, but at the cost of being the

slowest in terms of computational time. It does possess other drawbacks however,

including the fact that the process noise must be known a priori. This can be

challenging, because even if data is collected and a process noise is calculated, it

may not be ergodic and thus using it to provide future process noise is problematic.

In which case, the EKF may change in performance over time and can possibly

diverge (though in practice, EKFs work quite).

4.1.5 Validation of Complementary Filter-Based AHRS

In this work, an AHRS is designed using a CF based on work by [50] and

[20] to provide the orientation estimates. The ASV’s orientation estimates can be

calculated faster than every 0.05-seconds, or 20Hz. This is useful information to

have while path following. For instance, the path angle error can be calculated

by knowing the vehicles’ heading, or yaw angle (which is part of the orientation

estimate) with respect to the local tangent plane and the path angle associated

with the closest point on the path to the vehicle. Eq 7.18 in sec 7.2.2 is meant

to use the heading angle estimate from the CF-based ARHS. The other option

is to use the course-over-ground (COG) measurements from the GPS unit as the

heading angle of the vehicle. This is susceptible to error if the ASV drifts in the

current, where they direction of the true vehicle heading is not necessarily the

direction of movement (which the COG measurement is based on). The potential

to fuse the COG angle measurement from the vehicle’s GPS unit with the heading

angle estimate may be explored, but for now the yaw angle from the CF-based

AHRS is used.

67

Figure 4.12: Experimental low-cost AHRS testing and validation appa-
ratus with the body-fixed axes labeled.

4.1.6 Validation Apparatus

The CF-based AHRS is validated using a custom validation apparatus outlined

in the author’s previous work, [79]. The validation apparatus used an encoder for

comparison with the orientation estimates from the CF in each axis, respectively.

The validation apparatus was designed to be flexible, low-cost, and easy to con-

struct using readily available materials. While a full three-axis truth measurement

would be ideal, it was decided that free rotation along a single axis would be much

easier to construct and would allow more flexibility. Future work will determine

if a full three-axis validation apparatus can be cost-effectively constructed. The

high accuracy external truth measurement is an encoder (the Austria Microsys-

68

tems AS5047D) which has an absolute resolution of approximately 0.022◦. In order

to increase flexibility, the apparatus can be set at various angles from 0 to 90 such

that the aiding sensors (magnetometers and accelerometers) can have varying in-

fluence on the sensor fusion. Orientation estimates for each axes are compared

with the true rotation angle, as measured by the encoder. Rather then compare

angular rates, as one would with a rate-table, the angular position is compared.

The apparatus top holds the microcontroller (Microchip PIC32), sensor-head (In-

vensense MPU9250), and the encoder (Austria Microsystems AS5047D) relative

to the column, and spins freely. This allows the apparatus top to make multiple

revolutions without wrapping wires around the main column.

The sensor-head can be mounted in three different positions on the apparatus

top, such that each cardinal body axis of rotation can be concentric with the axis of

rotation of the apparatus independently. The sensor-head measures angular rates

using gyroscopes, specific force (a− g) using accelerometers, and the intensity of

Earth’s magnetic field using magnetometers in each of the three body-fixed axes.

When the top of the apparatus rotates, the encoder measures the angle of rotation.

The top can be rotated by hand or, with a simple attachment, using a servo. As

the true rotation is measured by the encoder, the source of rotation is arbitrary,

so long as the rotation rate does not exceed the gyro speed and the upper limit

of the encoder. The results in the paper show rotations generated by hand. The

design choice to exclude a servo to generate rotations was made to further reduce

the cost of the apparatus. The amount of rotation of the top is limited only by the

length of wires to the micro-controller. A USB connection is required to record

measurements from the on-board sensors. All electronic components are placed

in the top of the apparatus for less restricted rotations; the only connection back

from the apparatus top is the USB cable itself.

69

Development of AHRS for smaller vehicles with low SWaP cannot always be

validated with expensive external truth measurement equipment, often due to

cost restrictions. Depending on the application, SWaP requirements, and bud-

get requirements, commercial-off-the-shelf (COTS) AHRS may not be available.

This section outlines a low-cost solution for validating an AHRS that uses a CF

for sensor fusion, and a low-cost sensor-head consisting of a three-axis MEMs ac-

celerometer, gyroscope, and magnetometer. The proposed method is based on a

low-cost prototype validation apparatus, shown in Fig. 4.12, that uses a simple

encoder as a truth measurement of a single axis of rotation to compare with the

integrated angular rates estimated by the CF. The total cost of the apparatus is

less than $100.

The arc of mounting holes permits the apparatus to be configured to test vary-

ing magnitudes of the force due to gravity and Earth’s magnetic field. This allows

for the isolation of the inertial vectors to observe the behavior of the AHRS with

one aiding vector, the other, or both with varying magnitudes. For example, if the

axis of rotation is configured such that it is perpendicular to the the horizontal

plane, there is no contribution of yaw feedback from the gravity vector measure-

ment, because the axis of rotation is co-linear with the gravity vector. The arc of

the apparatus and the sensor-head in the top is situated specifically so that the

center of the sensor-head circuit remains in the same space to mitigate the possible

change in magnetic field during reconfiguration of apparatus angle. This is impor-

tant as it permits the apparatus to be used in electrically noisy environments (e.g.

indoors near a computer) yet maintain a consistent magnetic vector measurement.

This alleviates the need to use a specially designed testing environment, which

can add to development costs. The arc design uses more material intentionally to

add more weight to the base of the structure and increase stability.

70

The larger flat surfaces of the of the apparatus allows for simple mounting to

various surfaces. The material used for construction is medium-density fiberboard

(MDF). This material is chosen for its relative strength, low-cost, and light weight.

The MDF was cut using a laser cutter, and although owning such a machine is

expensive, there are myriad locations that allow individuals to send CAD files

to have cut. The CAD files for the apparatus allow for easy material width

adjustment using building-equation relationships that automatically resize the

rest of the structure.

The validation apparatus is comprised of only twenty-eight parts, most of

which are duplicates to simplify assembly. The top of the apparatus can be

easily configured to mount different kinds of micrcontrollers, sensor-heads, and

encoders. Varying sensor-heads and other components means that other types

of sensor fusion algorithms that rely on different kinds of measurements can be

tested. For example, using sun-sensors such as in [1], instead of gyros.

In addition to simple mounting, the large surfaces and extra space of the

apparatus may be used to hold batteries if logging data outside, or in locations

with limited power.

4.1.7 Apparatus Results

One of the first steps before using the apparatus for testing was to calibrate

the acclerometers and magnetometers. There are many different ways to do this,

but here the iterative calibration method described by [24] is used. Fig. 4.13 shows

the pre and post calibration of the normalized measurement vectors of the tri-axis

magnetometer measurements. It is useful to normalize these vectors by dividing

each element by the magnitude of the vector. Ideally, such a sensor would provide

this by default, but due to the constraints of manufacturing precision for low cost

71

sensors, a calibration is required and subsequently performed. This is discussed

in further detail in [79].

Figure 4.13: A historgram of the magnetic field measurements before
and after calibration

The CF-based AHRS described in subsection 4.1.3 was implemented in MATLAB

and then later in C code. Fig. 4.14 shows the roll angle estimated by the CF com-

pared to the encoder angle measured about the same axis. Clearly there is very

good agreement.

Further tests at different apparatus angles allowed for isolation of the aiding

vectors as can be seen in Fig. 4.15. It shows the apparatus positioned at 90◦, such

that the axis of rotation was normal to the horizontal plane and parallel with the

gravity vector. As expected, the roll angle signal from the accelerometer alone

was zero. This ability to isolate aiding vectors was useful for tuning the CF and

further debugging.

72

Figure 4.14: CF Roll angle compared to the encoder angle on the vali-
dation apparatus.

It should be noted that the magnetometer is particularly sensitive to noise.

This is visible in the roll angle signal in Fig. 4.15. The accelerometer is also noisy,

but less so. Possible sources for noise include the various signal and power wires

for the validation apparatus, the wall power outlets, and other active electrical

components near by.

73

Figure 4.15: Roll signal comparison with the validation apparatus po-
sitioned at 90◦, normal to the horizontal plane.

Table 4.2 shows the mean, standard deviation, and apparatus orientation for

testing the AHRS with varying magnitude in aiding vector contribution.

The apparatus proved to be invaluable in both debugging and designing of the

final complementary filter used for navigation.

4.1.8 Field Experiment Results: COG vs CF Yaw

After conducting experiments with the validation apparatus, the CF was tested

onboard the Slug 2 ASV. The vehicle was controlled remotely to some arbitrary

path, transmitting position and sensor measurements back to a ground station.

Fig. 4.16 shows the position of the vehicle.

The COG angle and the CF yaw angle were compared over time. Fig. 4.17

shows the two angles.

74

Table 4.2: Mean error, standard deviation of error, and validation apparatus
orientation.

µ (Degrees) σ (Degrees) θva (Degrees)
CF -0.2443 1.0563 90◦

Magnetometer -0.9838 2.9558 90◦
Accelerometer 9.7167 27.8414 90◦

CF -0.2708 1.3275 45◦
Magnetometer -0.0129 2.5085 45◦
Accelerometer 2.0780 5.2003 45◦

CF -0.1089 0.5906 0◦
Magnetometer 3.5137 5.4626 0◦
Accelerometer -2.8029 4.3261 0◦

Figure 4.16: GPS position of the Slug 2 ASV, being remotely controlled
to collect measurements for attitude estimates, and other data.

75

Figure 4.17: A comparison of the COG angle and CF estimated yaw an-
gle over time. There is large agreement between the two. This highlights
the difference in COG and CF Yaw.

A histogram of the error, shown in Fig. 4.18 was created to better understand

and characterize the performance of the CF. The majority of estimates were near

zero.

This experiment was repeated a number of times to further validate that; 1)

the COG angle could be used in feedback for navigation, because it followed the

CF yaw heading angle over time within a permissible error margin, and 2) the

CF yaw could also be used as a higher-frequency heading angle in between or in

place of the COG angles. Fig. 4.19 shows another example of the GPS position

recorded by another ASV, called the Slug 3. Fig. 4.20 shows the recorded COG

angle and the CF yaw angle. Fig. 4.21 shows the histogram of the angle error

between the two angle signals over time.

76

Figure 4.18: A histogram of the frequency (vertical axis) of angle error
(horizontal axis).

77

0.0049 0.0050 0.0051 0.0052
lat +3.6950000000e1

0.0004

0.0003

0.0002

0.0001

0.0000

0.0001

lo
n

1.2206000000e2 GPS Position

Figure 4.19: GPS position of the Slug 3 ASV, being remotely controlled
to collect measurements for attitude estimates, and other data.

78

150 200 250 300
time (seconds)

0

200

400

600

800

1000

de
gr

ee
s

CF Yaw compared to COG vs Time
COG
CF1 Yaw

Figure 4.20: Another comparison of the COG angle and CF estimated
yaw angle over time. There is some agreement between the two. This
highlights the difference in COG and CF Yaw.

79

80 60 40 20 0 20 40 60
Angle Error (degrees)

0.000

0.005

0.010

0.015

0.020

0.025

Fr
eq

ue
nc

y

Histogram of Angle Error Between COG and CF Yaw
Gaussian Fit

Figure 4.21: Another histogram of the frequency (vertical axis) of angle
error (horizontal axis). The mean is −1.573◦ and the standard deviation
is 29.530◦

80

4.2 Conclusion and Caveats

This chapter showed the evaluation of a small-scale AHRS. Different methods

of attitude estimation including EKF, TRIAD, and CF AHRSs were discussed,

simulated, and experimental validated using a custom AHRS validation apparatus

developed. Further AHRS validation was done by comparing the estimated yaw

angle from the CF AHRS with the COG angle from the GPS receiver over time.

The error signals between the two were examined. The results of the validation

were promising. The attitude estimate matched the truth measurement to a mean

of less than 0.3◦ and a standard deviation of less than 1.3◦ on the apparatus. The

match between the GPS COG and yaw angle estimate had more error, with a

standard deviation of 12◦, but had good agreement with a mean of less than 3◦.

It should be noted that there are many other forms of attitude estimation

algorithms for AHRSs, and the ones discussed here were chosen due to their

popularity, over-all robustness, and to highlight the key differences in these ap-

proaches. The AHRS algorithms discussed in this chapter are meant to represent

the main approaches to solving the attitude estimation problem. At the speeds

at which an ASV generally operates (which is usually less than 4-meters per sec-

ond), there is no immediate advantage or disadvantage to choosing any particular

AHRS algorithm considered in this thesis. However, from an implementation

standpoint, the CF AHRS was chosen because of it’s relatively simple design and

low-computational cost. It was easily coded in C for the Max32 microcontroller.

One main caveat is that all of these methods require a substantial amount of

time tuning parameters; whether it is the proportional gains which require tuning

for the CF, or determining the correct process noise for the EKF. The time it

takes to tune these algorithms can grow very fast. One exception to this is the

TRIAD algorithm.

81

Another caveat shared by all of these algorithms that require a magnetometer

is that their designs assume that the inertial magnetic field vector is constant.

This is not true in two ways: 1) noise from motors, servos, and other electronic

components can easily distort the local magnetic field, and less commonly 2) if the

vehicle moves far enough the Earth’s magnetic field will be different depending

on where the vehicle is located on the surface of Earth. This is another reason

why COG is a useful metric to use with these ARHS algorithms for the purposes

of navigation.

82

Chapter 5

System Modeling

In order to control the ASV, the system dynamics must be known. This can be

done at different levels of complexity, stemming from the sub-system dynamics to

the macro-system dynamics. The sub-system dynamics include components such

as the motors for the propellers and the servos for the rudders. The question of

conducting system identification in relation to the models that are discussed in

this chapter is presented in Ch. 6

5.0.1 Connection to the Overarching Theme

The researcher that deploys an ASV neither needs nor wants to know the exact

mathematical model of the vehicle. However, it is important to outline how to

model and describe the vehicle as a dynamical system to later design controllers

so that the ASV can execute specific maneuvers. Ideally, the researcher should be

able to designate an area of water or field, deploy the ASV, and allow it to explore

or navigate autonomously. In later chapters, control of the ASV will be essential

for implementing different path planners with subsequent spatial estimators to

explore and estimate a field.

83

One of the most fundamental aspects of autonomous systems is building a

model of the system. Generally, this means that the inputs and outputs of the

system in question are specified and their relation is described by one or more

mathematical equations (often differential equations). A set of parameters are

determined as part of these equations to further aid in the mathematical descrip-

tion of a specific system. In an ideal world few equations would be necessary to

describe the system and they would be very simple. However, many (if not most

systems) are so complicated such that a fully descriptive mathematical model,

based on first-physics principles can easily become so detailed and complicated

that it becomes infeasible to compute, let alone control. This is where the idea of

approximating these systems becomes useful. Furthermore, when these systems

are part of a closed-loop feedback control system, modeling errors are mitigated

by the control system.

This chapter discusses a number of system models to describe the motion

of an ASV or similar vehicle. These models are approximations of otherwise

complicated systems. A boat for example, could be modeled to include the surface

friction of the water along the hull, the drag of the rudder as a function of angle,

the effects of wind disturbances, and all of the hydrodynamic interactions due to

fluid mechanics of the water it moves through. However, the work in this thesis

avoids such detailed models. Instead, the focus is on a set of simpler models with

a handful of parameters that can be identified or estimated. This includes the

rudder servo, the kinematic inverse bicycle model, the ship steering model, and a

limited set of extensions to the models.

84

5.1 Rudder Servo

The effects of disturbances on the rudder actuator prevents the commanded

rudder angle from being the actual rudder angle. This mismatch is important; the

controller is required to account for this mismatch, but this requires knowledge of

the parameters of the rudder model.

The servo can be modeled in the frequency domain as a low-pass filter:

Gs(s) = α(s)
u(s) = b

s+ a
(5.1)

where α(s) is the output angle and u(s) is the input command. Note that this

simplified model has a non-unity gain, and a time constant. The system can be

discretized as follows:

Gs(z) = (1− z−1)︸ ︷︷ ︸
ZOH

Z
{

1
s
Gs(s)

}
(5.2)

Gs(z) = (1− z−1)Z
{

b

s(s+ a)

}
(5.3)

Gs(z) = b0

z + a0
(5.4)

where b0 = b
a
(1 − e−a∆T), a0 = −e−a∆T . Estimation of this parameter will be

discussed later in Sec. 6.1.1.

5.2 Kinematic Model

Among the various methods to model a surface vehicle (e.g.: a boat) there

exists a relatively simple kinematic model known as the inverse bicycle model.

This model has the advantage of being simple to compute, but is not very accurate;

85

it is based on a no-cross-flow condition on the rudder. It is non-linear and time

varying, and further assumes a constant velocity through the water. Work by [51]

used this model successfully for experimental autonomous navigation research

missions in the ocean. The model is,


Ṅ

Ė

ψ̇

 =


vw cos(ψ)

vw sin(ψ)

−vw tan(δ)
lbase

+


vcn

vce

0


︸ ︷︷ ︸

water current velocity

(5.5)

where vw is the water velocity and vcn and vce are the water current velocities in

the North and East directions respectively, and Ṅ and Ė are the rate of change

of position in the North and East directions respectively. This model corresponds

to Fig. 5.1. The heading angle is ψ, and the yaw-rate is ψ̇. The rudder angle is

δ. The wheel-base, lbase, of the model can be related to the radius, r, of an arcing

turn with the following equation.

tan(δ) = lbase

r
(5.6)

The model can be linearized for small steering angles, and localized into the

body frame or local path coordinates for control. This removes the non-linearity,

but still allows for global coordinate modeling.

86

Figure 5.1: Inverse bicycle model implemented in [51]

5.3 Nomoto Model

In order to simulate the vehicle within a local tangent plane, a discrete state

space representation is developed. Let

xk =
[
ψk rk xk yk vk

]′
(5.7)

be the state of the vehicle such that k represents the k−th time step, ψ is the

vehicle heading in radians with respect to North, East, Down (NED) coordinates,

r is the yaw rate in radians per second, x and y is the vehicle position in meters in

North and East on a local tangent plane, and v is the magnitude of the velocity.

The classical discrete state space formulation is

xk+1 = Φkxk + Γkuk (5.8)

where Φk is the discrete dynamics matrix, or state transition matrix, Γk is the

discrete input matrix, and uk is the input. In this case, uk is a scalar input. It is

87

now necessary to specify the system of equations that describe the vehicle motion.

The first equation describes the heading angle of the vehicle. It can be written

simply and discretely as

ψk+1 = ψk + r∆T (5.9)

where ∆T represents the time between each time step. The yaw rate is more

complex, but a partial derivation from [76] is restated here for completeness.

Let Tc be the effective yaw-rate time constant associated with the model in the

continuous (frequency) domain. This is dependent on the size of the vehicle. For

larger vehicles, it generally takes more time to establish an appreciable yaw-rate,

so Tc will be larger. Conversely, for smaller vehicles the time constant will be

smaller. There are exceptions to this depending on vehicle geometry and speed,

but in general this is a good assumption. Let

Tcṙ + r = Kcδ (5.10)

where Kc is the static yaw-rate gain associated with the model in the continuous

domain, and δ is the rudder angle of the vehicle. Eq 5.10 can be converted to the

frequency domain:

sr(s)Tc + r(s) = Kcδ(s) (5.11)

This results in the continuous first order Nomoto ship steering model in the fre-

quency domain, discussed in [76],

r(s)
δ(s) = Kc

1 + Tcs
(5.12)

88

Z-transform of Zero-Order-Hold (ZOH) Equivalent

Discretizing Eq. (5.12) by applying the Z-transform of the ZOH equivalent

results in Eq. (5.13).

r(z)
δ(z) = Kd,yaw

z − Td,yaw
(5.13)

where Kd,yaw = Kc
Tc

(−e−∆T/Tc + 1) and Td,yaw = e−∆T/Tc . Recall that ∆T is the

sample time. Then the difference equation is:

rk+1 = Td,yawrk +Kd,yawδk (5.14)

or

rk+1 = e−∆T/Tcrk + Kc

Tc
(1− e−∆T/Tc)δk (5.15)

The heading angle ψ and position integration of the vehicle in both x and y,

or East and North are as follows:

ψk+1 = rk∆T + ψk (5.16)

xk+1 = xk + ∆Tvk sin(ψk) (5.17)

yk+1 = yk + ∆Tvk cos(ψk) (5.18)

5.4 Augmented Nomoto Model

Using Eq. 5.9, Eq. 5.14, Eq. 5.17, and Eq. 5.18, the discrete state transition

matrix, Φk from Eq. 5.8 and the input matrix, Γk can be specified.

89



ψk+1

rk+1

xk+1

yk+1

vk+1

δk+1


︸ ︷︷ ︸

xk+1

=



1 ∆T 0 0 0 0

0 Td,yaw 0 0 0 Kd,yaw

0 0 1 0 ∆T sin(ψk) 0

0 0 0 1 ∆T cos(ψk) 0

0 0 0 0 1 0

0 0 0 0 0 −a0


︸ ︷︷ ︸

Φk



ψk

rk

xk

yk

vk

δk


︸ ︷︷ ︸

xk

+



0

0

0

0

0

b0


︸ ︷︷ ︸

Γk

uk (5.19)

where a0 and b0 are a coefficients of the discrete rudder transfer function:

Gs(z) = b0

z + a0
= δ(z)
u(z) (5.20)

This can be written as a difference equation:

δk+1 = −a0δk + b0uk (5.21)

These parameters, a0 and b0 describe the lag associated with the rudder command

and true rudder angle.

Eq. 5.19 is the discrete, augmented, first-order Nomoto ship steering model.

It should be noted that to simplify the control for this model, the velocity is

assumed to be constant and is therefore not expressed as a controllable input in

Γk. While this greatly simplifies the simulation, it is not difficult to add back in.

Additionally, the lag associated with a rudder command uk, and the actual rudder

angle δ is expressed in this model. Using Eqs. (5.19-5.21), Eq. 5.7 becomes:

xk =
[
ψk rk xk yk vk δk

]′
(5.22)

90

The augmented Nomoto model is used in simulation to estimate the position

of the vehicle and a GNC algorithm is designed around it. The algorithm handles

switching waypoints, trajectory generation, and trajectory tracking.

5.5 Newtonian Model

As one of the goals of this work, an alternative Newtonian model is introduced.

The design of the model considers forces, mass, and angular momentum. The full

model in R3 is described below to show that it may be used to model other

vehicles that, at first glance seem different. This model could potentially be

used to describe other vehicles, such as a rocket. Fig. 5.2 depicts the top-down

view of this Newtonian model. It is inspired, partially by the 1st-order Nomoto

ship steering, but is primarily designed based on basic (Newtonian) first-physics

principles.

The Newtonian model assumes three main parts: 1) a point-mass sub-model

with position relative to the inertial reference frame, 2) an orientation sub-model

with respect to the inertial reference frame, and 3) a thrust force vector F con-

nected to the point-mass at a distance r, with thrust vector angle δr, and expressed

in the body-fixed frame. Given the general continuous state-space representation,

ẋc,p(t) = Ac,pxc,p(t) + Bc,pu(t) (5.23)

we populate the dynamics matrix and input matrix based on the equations of

motion, where the acceleration in a single dimension is

ẍ(t) = [∑Fx]I
mv

(5.24)

such that mv is the mass of the vehicle and [∑Fx(t)]I is the sum of the forces in

91

Figure 5.2: A partial representation showing the top-down view of the
proposed Newtonian model. The rudder or thrust vector angle δr is shown
in relation to the resulting torque for the orientation sub-model and linear
force for the point-mass sub-model. An assumption here is that the center
of mass is in the center of the vehicle, though this is not necessarily true
for all vehicles.

the x dimension with respect to the inertial reference frame. The input is the sum

of thrust and drag forces (and possibly other disturbances):

u(t) = F− Fdrag (5.25)

The drag force is defined as

Fdrag = 1
2ρv

2CdragA (5.26)

92

The model parameters include the distance from the center of mass to the

gimbal thrust joint of the vehicle r = lrad (see Fig. 5.2), the moment of inertia of

the vehicle I (which may be a sphere, a rod, or other simple geometry), the cross-

sectional area associated with the vehicle geometry A, the fluid medium density

ρ, and the drag coefficient Cdrag. These parameters can be found experimentally

using a few different approaches, including system identification as described in

Ch. 6. The advantages to this model is that it is more detailed than the bicy-

cle model and the Nomoto ship-steering model. Unlike the other two it is also

strictly controllable, simplifying the control to a single thrust vector angle, and

the dynamic matrices are both linear.

5.5.1 Point-Mass Sub-model

We may write the continuous state space representation from Eq. (5.23) for the

point-mass sub-model as



ẋ

ẏ

ż

ẍ

ÿ

z̈


︸︷︷︸
ẋc,p

=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

Ac,p



x

y

z

ẋ

ẏ

ż


︸︷︷︸
xc,p

+



0 0 0
0 0 0
0 0 0

1/mv 0 0
0 1/mv 0
0 0 1/mv


︸ ︷︷ ︸

Bc,p

u (5.27)

where the force of thrust and drag forces are considered, though other disturbance

forces may be included if desired. The position of the vehicle in a local tangent

space is represented by x, y, z. The velocity is represented by ẋ, ẏ, ż, and the

acceleration is represented by ẍ, ÿ, z̈. The mass of the vehicle is mv.

93

5.5.2 Orientation Sub-model

The orientation sub-model in continuous state space representation is intro-

duced as

ẋc,o(t) = Ac,oxc,o(t) + Bc,ou(t) (5.28)

Recall that the angular acceleration is equal to the torque divided by the moment

of inertia of the vehicle. Consider the angular acceleration about the x-axis in the

body-fixed frame.

ṗ = τx
I

= lrad

I
Fx (5.29)

Since torque τx = lrad × Fx, we may consider the angular acceleration due to

torque about all three axes, assuming a perfect symmetrical rigid body, and rewrite

Eq. (5.28) as


ṗ

q̇

ṙ

 =


0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

Ac,o


p

q

r

+


1/I 0 0
0 1/I 0
0 0 1/I


︸ ︷︷ ︸

Bc,o


τx − τdrag,x

τy − τdrag,y

τz − τdrag,z


B

︸ ︷︷ ︸
u

(5.30)

where the angular rate vector ωB =
[
p q r

]
, and each element is the angular

rate as measured in the body-fixed frame. It is emphasized that a key assumption

is that the rigid body is symmetrical. This is not true in practice, but is a useful

simplification. Alternatively, this results in terms in the off-diagonal elements of

Bc,o. Note that the forces, as shown in Eq. (5.30) and Fig. 5.2 express the input

with respect to the body-fixed frame. Eq. (5.30) corresponds with Newton’s second

law:

94

IΘ̈ =
∑

τext (5.31)

where τext is the external torque applied to the rigid body and Θ̈ is the angular

acceleration. We may also consider Euler’s equations for rigid body dynamics,

Iω̇B + ωB × (IωB) = M (5.32)

where I is the inertial matrix and the applied torques are represented by M. We

may rewrite Eq. (5.32) as,

ω̇B = I−1
[
M− ωB × (IωB)

]
(5.33)

We may discretize the Newtonian model as follows.

Φd,p Γd,p

0 I

 ≈ exp
Ac,p Bc,p

0 0

 dt
 (5.34)

Φd,o Γd,o

0 I

 ≈ exp
Ac,o Bc,o

0 0

 dt
 (5.35)

where dt is the time step of the simulation or onboard computation. Next, we

integrate the angular rates using Eq. (4.57)-(4.63). The angular rates are a result

of the sum of the input force(s) and disturbance force(s). This yields the net

torque τ discussed earlier. We can define the angular rate vector as

ωB =
[
p q r

]T
(5.36)

and

95

Ω(ωB) =

−
[
ωB×

]
ωB

−ωT
B 0

 (5.37)

such that Eq. (4.57) and Eq. (4.62) can be used as follows

q̇ = 1
2Ω(ωB)q (5.38)

where q is the attitude quaternion for the orientation sub-model. Recall from

Eq. (4.63) that

qk+1 = M(∆θ)qk (5.39)

is the discrete solution. ∆θ stems from the constant rate assumption for small

time steps from Eq. (4.61). After each tk time step of duration dt, the attitude

quaternion qk+1 is normalized to ensure that the end of the quaternion vector

properly represents attitude.

qk+1 = qk+1∥∥∥qk+1

∥∥∥ (5.40)

This approach is based on those discussed in subsection 4.1.4 for a more complete

derivation of the attitude quaternion. The reader is referred to that subsection to

learn things such as how to extract the Euler angles from the attitude quaternion.

After the orientation model is calculated for a step, the net force input vector can

be rotated from the body-fixed reference frame to the inertial reference frame.

Then Eq. (5.23) can be computed and model will have been fully propagated for

a time step.

96

The orientation sub-model Eq. 5.30 can also be modified to become:



φ̇

θ̇

ψ̇

φ̈

θ̈

ψ̈


︸ ︷︷ ︸
ẋc,o

=



p

q

r

ṗ

q̇

ṙ


︸︷︷︸
ẋc,o

=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

Ac,o



φ

θ

ψ

p

q

r


︸ ︷︷ ︸
xc,o

+



0 0 0
0 0 0
0 0 0

1/I 0 0
0 1/I 0
0 0 1/I


︸ ︷︷ ︸

Bc,o


τx − τdrag,x

τy − τdrag,y

τz − τdrag,z


B

︸ ︷︷ ︸
u

(5.41)

where φ, θ, ψ correspond to roll, pitch, and yaw respectively. Eq. (5.41) make

use of the fact that p = φ̇, q = θ̇, and r = ψ̇. It also employees the tautology

that p = p, q = q, and r = r for the sake of showing controllability for angular

position and angular rate (which is explored in Sub-section 5.5.3 below). Again,

the angular rates constitute the elements of the vector ωB which is integrated

using Eq. (4.57)-(4.63).

5.5.3 Controllability

It should be noted that both Eq. (5.27) and Eq. (5.30) represent sub-models

for the Newtonian model. Both sub-models are linear and time-invariant. As

such, we may show that the Newtonian model is controllable in the continuous

domain. This is done using the following equation

C =
[
B AB A2B · · ·An−1B

]
(5.42)

for both Eq. (5.27) and Eq. 5.30, where the A and B matrices correspond to Ac,p

and Bc,p for the continuous point-mass sub-model, and to Ac,o and Bc,o for the

continuous orientation sub-model. Following the same subscript notation we have

the controllability matrix for the point-mass model being denoted as Cc,p and the

97

orientation model as Cc,o. Computing the rank of rank(Cc,p) = 6. The point-mass

model is full rank, and therefore the position is controllable.

For the orientation sub-model we see that rank(Cc,o) = 6 and is full rank with

respect to the sub-model. This means that the angular orientation of the sub-

model is also controllable. Both sub-models that constitute the Newtonian model

are full rank and therefore controllable.

5.6 Conclusion and Caveats

This chapter explained how to model an ASV in a number of different ways

and at different levels. This included the kinematic modeling approach, using the

inverse bicycle model, the Nomoto ship-steering model, an augmented version of

the Nomoto model, and Newtonian model that considered forces more explicitly

and in full three-space. The simplest model was the inverse bicycle model, but it is

time-varying and non-linear. The Nomoto models are slightly more complicated,

but the augmented version allowing for a convenient discrete state-space repre-

sentation. However it too is time-varying and non-linear. The Newtonian model

is convenient because the point-mass sub-model is linear and time-invariant. It

was shown that it was fully controllable. The orientation sub-model introduces

more complexity, but can be conveniently described using the same equations

used in the Ch. 4. Furthermore, the Newtonian model can describe vehicles that

can move in more dimensions than both the inverse bicycle and Nomotor models.

It does however rely on a simple geometry (shown in Fig.5.2). It assumes that

the center of mass is in the center of the vehicle’s geometry, which is not true

for all vehicles. Also, the Newtonian model relies heavily on the fact that input

requires calculating the rotation between the input force vector with respect to

the body-fixed frame and to the inertial reference frame. For instance, a thrust

98

input to the point-mass model also has to be rotated into the body-fixed frame

to propagate the orientation sub-model. That means this model is requires a bit

more computation for simulation.

It should be noted that there are many other models and other versions of

these models than the ones that were discussed in this chapter. See [76] and [10]

for further discussion of mathematical models of boats and similar vehicles.

99

Chapter 6

System Identification

The vehicle models were developed in Ch. 5; however many of the param-

eters within these models are unknown or could be determined from physical

measurements to estimate these parameters. We use system identification tech-

niques to find our estimate using measured ouput data and known input data.

The corresponding parameters for the motors and servos can be identified using

methods such as ARX, ARMAX, recursive least-squares (RLS) or other similar

methods outlined in [49]. The macro-system dynamics combine these now identi-

fied sub-systems to form an approximate model of the runtime vehicle dynamics.

Pseudo-random inputs to the sub-systems and a one-step-ahead prediction are

used to generate error signals to iteratively approximate the parameters for a

given model.

6.0.1 Connection to the Overarching Theme

Similar to the previous chapter, the researcher using the system will likely not

concern themselves with model-specific parameters that help describe a vehicle or

subsystem. It is nonetheless important to discuss them here so that the ASV can

100

be controlled and proper navigation can occur.

6.1 ARX

6.1.1 Rudder Servo

In this section we consider a rudder servo for system identification. The rudder

servo is simulated and the model parameters are estimated using Auto-Regression

with eXternal inputs (ARX). This method is specifically chosen for its ease of

implementation and practicality. The basic idea is to a generate pseudo-random

input signal to the servo and use a sensor (such as an encoder) to measure the

angle of the rudder for a given input. The inputs and output angles are recorded.

In this case, the amplitude of the input signal is chosen such that the rudder

reaches the maximum angle in both the positive and negative directions. Due to

the fact that the control system is implemented on an embedded-digital system,

Eq. (5.1) is converted to the Z-domain. We use Eqs. (5.2-5.3). Both a0 and b0

are constants to be estimated. Eq 5.4 can be converted to a difference equation:

Gs(z) = b0

z + a0
= δk
uk

(6.1)

δk = b0

z + a0
uk (6.2)

(z + a0)δk = b0uk (6.3)

(6.4)

Thus:

δk = −a0δk−1 + b0uk−1 (6.5)

From Eq. 6.5, it is now possible to use raw data collected from the servo with

101

the ARX model to estimate the parameters.

αk =
[
−δk−1 uk−1

]  a0

b0


︸ ︷︷ ︸

θp

+ e(t) t = 0, 1, 2, . . . , N (6.6)



δ1

δ2
...

δN


︸ ︷︷ ︸

∆

=



−δ0 u0

−δ1 u1
... ...

−δN−1 uN−1


︸ ︷︷ ︸

S

 a0

b0


︸ ︷︷ ︸

θp

+



e(1)

e(2)
...

e(N)


︸ ︷︷ ︸

v

(6.7)

The S matrix in Eq. 6.7 contains some of the raw angle outputs measured, δ(t),

and the input u(t). Note that ∆ is indexed one step ahead of the corresponding

output and input for a given row. Also, the error vector e is purposefully ignored

for now but assumed to be small. It is assumed that there are N number of angle

measurements and N number of inputs recorded. Eq 6.7 can expressed as follows:

∆ = Sθp + v (6.8)

This is solved using least squares, the parameter vector θp in Eq. 6.8, and thus

the constants a0 and b0 can be estimated.

θ̂p = (STS)−1ST∆ (6.9)

Note that because θp is being estimated, it is denoted as θ̂p.

This method has been successfully applied in a V-Rep1 simulation for a sim-

ilar servo mechanism. It is assumed that there is a moderate difference in the
1V-Rep is a 3D robotics physics simulation software.

102

parameters estimated when the rudder is in the water versus out of the water.

Specifically, the parameters in Eq. 6.1, for the in-water rudder measurements will

likely show a longer delay between the input signal and output angle. This is due

to the increased loading on the rudder due to hydrodynamic forces, and is likely

to be a function of velocity. However, for now we simply use the parameters from

θ̂p in our model.

The ARX method was applied in simulation out of water.Fig. 6.1 shows the

raw pseudo-random input signal in blue and the resulting measured rudder servo

angle in orange. Fig. 6.2 shows small time window of the simulated pseudo random

rudder servo command signal δ(t) compared to the estimated δ̂(t) using the ARX

method.

Figure 6.1: A small time window showing the raw pseudo random input
u(t) and the measured rudder servo angle δ(t). There is a noticeable offset
and scaling between the two signals.

Note that in Fig. 6.1 one assumption is that PWM corresponds instantly to

an angle command. In reality there is noise to the PWM signal.

103

Figure 6.2: A simulation example ARX; the true servo angle δ compared
to the estimated signal δ̂. There is good agreement between the two
signals.

Fig. 6.3 shows the histogram of the ARX error. The mean µ = −5.34195 ×

10−19 and the standard deviation σ = 5.59588× 10−05.

Figure 6.3: A histogram of the ARX error from simulation with a normal
distribution fit to the resulting data. The mean µ = −5.34195 × 10−19

and the standard deviation σ = 5.59588× 10−5.

104

This ARX experiment was done in simulation. Another alternative is to apply

an EKF with the model parameters added to the state vector.

6.2 Model Parameter Estimation

Model parameter estimation is an important aspect of system identification.

A model can be formulated to have specific parameters that correspond to empir-

ically known parameters of the physical system. For instance, the inverse bicycle

model (Eq. 5.5) possesses the parameter lbase which is a physical value that can

be inferred from the physical design of the hull of the boat and the center of mass.

6.2.1 Kalman Filter

The trusted Kalman filter (KF) is used for optimal estimation of the state and

requires a linear dynamics matrix (state transition matrix). There are general

extensions or modifications to the KF to deal with non-linearity, such as the

extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter,

etc. Subsection. 7.2.3 of Ch. 7 outlines the EKF implementation for position

estimation.

6.2.2 Extended Kalman Filter

An EKF may also be used to estimate state variables, model parameters and

conduct system identification by augmenting the state vector to include the model

parameters. This section discusses an EKF for estimating model parameters for

the augmented Nomoto ship-steering model (see Eq. (5.19)).

First, the model chosen for identification is the augmented Nomoto model

described by Eq. (5.19), but with modifications. Since there is no encoder on the

105

rudder to measure the rudder angle, the model is reduced slightly to become



ψk+1

rk+1

xk+1

yk+1

vk+1

Td, yaw,k+1

Kd, yaw,k+1


︸ ︷︷ ︸

xk+1

=



1 ∆T 0 0 0 0 0

0 Td,yaw 0 0 0 0 0

0 0 1 0 ∆T sin(ψk) 0 0

0 0 0 1 ∆T cos(ψk) 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


︸ ︷︷ ︸

Φk



ψk

rk

xk

yk

vk

Td,yaw,k

Kd,yaw,k


︸ ︷︷ ︸

xk

+



0

Kd,yaw,k

0

0

0

0

0


︸ ︷︷ ︸

Γk

uk

(6.10)

There are three main differences; 1) the yaw rate time constant Td,yaw,k+1 is now

a part of the augmented state vector, 2) the rudder lag coefficients a0 and b0 have

been removed since we have no estimate of measure of uk, and 3) the input vector

has changed to include Kd,yaw instead of the state transition matrix. The rudder

lag coefficients were initially removed, to simplify the implementation of the state

space model when applied in real-life in early experiments and then could be

added back later. The model assumes that the yaw rate will change with a lag

proportional to a time constant. This time constant is a model parameter that

can be estimated. It is important to note that a key assumption here is that the

velocity remains relatively constant.

Experimental Results

In order to estimate the model parameter, the Slug 3 ASV was used to collect

experimental data logged onboard the vehicle. This data included, but was not

limited to the GPS position of the vehicle (transformed into the local tangent

106

plane), the course over ground (COG) angle, and the rudder angle command

signal (in radians). Fig. 6.4 shows the rudder command signal in radians versus

time. Fig. 6.5 shows the resulting Tyaw estimate versus time.

0 10 20 30 40 50 60 70
Time (seconds)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Ru
dd

er
 C

om
m

an
d

Si
gn

al

Rudder Angle Command Signal

Figure 6.4: An example of rudder angle command signal (radians) versus
time recorded onboard the Slug 3 ASV.

107

0 10 20 30 40 50 60 70
Time (seconds)

0

2

4

6

8

10

12

14

Ya
w

Ti
m

e
Co

ns
ta

nt

Estimated Yaw-Time Constant
Tyaw

Figure 6.5: An example of the estimated yaw time constant Td,yaw,
converging to ∼ 14.2 seconds.

6.3 Conclusion and Caveats

This chapter explained how to use the ARX method to estimate the rudder

servo model parameters in simulation. This method is an effective way to identify

small systems. For more complicated systems that rely on actuators such as

servos in addition to having propulsion, an EKF can be more applicable. Such an

EKF was introduced and was used to estimate the yaw rate time constant of the

augmented Nomoto ship steering model.

One caveat to the ARX method in the context of the rudder servo example is

that it assumes that the rudder angle can be measured. This might not be the

case for all actuators, and in fact the Slug 2 and Slug 3 do not have encoders to

measure the rudder angle. Further more it is difficult to use a state-space model,

such as the augmented Nomoto ship steering model with an ARX formulation.

This is partly why the EKF is so useful. Ch. 7 and Ch. 9 further highlight this

108

point.

109

Chapter 7

Guidance Navigation and Control

While this work describes a "system" and its applications with explanations

on design and trade-offs, the central contribution lies within the guidance, navi-

gation, and control (GNC) of the vehicle; to do it without autonomous trajectory

following, the "system" cannot complete its mession. Guidance involves path plan-

ning and determining where the vehicle should go (often by the user). Navigation

is largely focused on localization and estimating where the vehicle currently is and

how the vehicle is oriented, based on sensor measurements. Control is the process

of tracking and driving the vehicle or system towards the desired path or state.

Regarding the guidance component of GNC, this chapter will discuss methods of

trajectory generation to form a path for the vehicle to follow. Attitude estimation

was previously discussed earlier in Ch. 4 as a standalone chapter. The control

part of this chapter deals with rudder control, and how it relates to trajectory

tracking. The main point of this chapter is to explain how to design a system for

path-following that doesn’t require a large amount of computation.

110

7.0.1 Connection to the Overarching Theme

This chapter begins to relate how the researcher or oceanographer can control

an ASV to execute specific maneuvers without specific knowledge of the underlying

control architecture. The researchers’ interactions with the guidance navigation

and control system essentially boils down to them selecting specific waypoints for

the vehicle to travel through or near. In later chapters, the use of the GNC system

will be connected to autonomous path planning informed by subsequent spatial

estimators.

7.1 Trajectory Generation

Trajectory generation involves specifying the desired vehicle state (orientation,

rotational rates, velocity, and position) in relation to a desired path based on the

waypoints that have previously been selected. There are many different ways

to generate trajectories for vehicles. The most simple approach is to connect

waypoints with straight lines. For slow-moving vehicles, this can be sufficient and

is certainly simple to implement. A more complicated approach is to use splines to

connect the waypoints. Previous work such as [15], [43], and [65] use cubic splines

and Bézier curves for trajectory generation of autonomous vehicles, usually UAVs.

7.1.1 Trajectory Tracking

Linear Path Segments

The GNC algorithm requires m number of waypoints defined in a set of North

and East points. Trajectory tracking is applied to path segments defined by two

waypoints for linear segments and three waypoints for curved segments, respec-

tively. Tracking is primarily based on the cross track error between the vehicle’s

111

current location and the closest point on the path. Let the matrix W ∈ Rm×2

represent all of the desired waypoints for the vehicle to visit with each row being a

discrete point on the local tangent plane, wi =
[
xi yi

]
where i ∈ Z, [1, 2, . . . ,m]

is the index of the rows of W . A Serret-Frenet1 reference frame is used to help

simplify how the system is described. The state of the vehicle in the Serret-Frenet

frame, shown in Fig. 7.2 is expressed as

xSF =
[
e ė ë

]
(7.1)

where e is the cross track error, or the distance from the vehicle to the closest

point on the path within the Serret-Frenet frame, ė is the velocity of the cross

track error, and ë is the acceleration.

Figure 7.1: Cross track error e between the vehicle and the closest point
on the path within the Serret-Frenet frame, along a linear path segment.

1The Serret-Frenet (sometimes referred to as Frenet-Serret) formulas are defined by three unit
vectors: a tangent, normal, and bi-normal. These are used to help describe particle kinematics
in R3

112

The terms in Fig. 7.1 are defined as follows:

NLTP = North vector of the local tangent plane

ELTP = East vector of the local tangent plane

NSF = normal vector in the Serre-Frenet frame

TSF = tangent vector in Serret-Frenet frame

ψ = heading angle in the local tangent plane

ψ̃ = angle between TSF and the heading vector

ψpath = the path angle in the local tangent plane

ψtf = the angle between TSF and ELTP

The vehicle state in eq 7.1 can be rewritten as

xSF
k =

[
eSF
k vSF

k aSF
k

]
(7.2)

where again, eSF
k is the cross track error, vSF

k is the velocity of the cross track

error, and aSF
k is the acceleration, but all corresponding to a discrete point in

time. The cross track error calculation depends on the definition of the path. For

linear segments of the path, an analytical solution to calculate eSF
k exists. This

can be achieved by projecting the vehicle position onto the vector connecting two

waypoints; (see Fig 7.1).

c = (p−w0)T(w1 −w0) + w0 (7.3)

It should be noted that the vectors such as w0 and p implicitly are vectors with

their origin of waypoint w0. The projection is applied, and finally the elements

of w0 are added back. This gives the closest point on the line segment, c and the

113

cross-track error can be calculated as follows:

ek = (p− c)TNSF (7.4)

This is the projection of the cross-track error onto the normal Serret-Frenet unit

vector.

Arcing Path Segments

For non-linear segments, as shown in Fig 7.2, an analytic solution for finding

the closest point on a b-spline or bezier-curve does not exist [14] and a numerical

solution is needed. In this thesis this problem is avoided by ensuring that circular

arcs are employed near the vertices of two connecting linear path segments. An an-

alytic solution exists to find the closest point on a circular arc, with small increase

in computing. The question may arise; why not only use straight line segments

to define the entire path? The answer is that this produces an abrupt change in

path angle, causing a possibly large control system response. The controller will

generate a consequently larger control effort to counter the discontinuity, possi-

bly saturating an actuator, in this case a rudder servo. This can consume excess

power and can have other negative effects such as increasing the chance of actua-

tor damage. The control effort can limited by introducing a slow change in path

angle which can be done with curved segments near the vertices of the path.

To find ek along a curved segment the closest point on the curve must be

calculated. This requires the location of the pivot point of the arc of the curve and

a threshold away from the vertex to define the start of the curve. The threshold is

based on the smallest turning radius of the vehicle, to limit the cross track error.

If the curve threshold is too small, the radius of the curve can be smaller than the

turning radius of the vehicle, resulting in too much overshoot. Fig 7.3 shows how

114

Figure 7.2: Cross track error e between the vehicle and the closest point
on the path within the Serret-Frenet frame along a curved path segment.

the curve threshold changes depending on the angle, θ between (wi−1 −wi) and

(wi −wi+1).

Figure 7.3: Geometry of an arcing segment and the closest point ck on
the arc to the position of the vehicle, pk

The magnitudes of the vectors and angle that describe the arc can be expressed

by the following equation:

||p−|| = ||p+|| =
rpiv

tan
(
θ
2

) (7.5)

where p− and p+ represent the beginning and ends of an arc, and rpiv is at least

the minimum turning radius of the vehicle. The change between calculating the

115

closest point on the linear segment and calculating the closest point on the curved

segment occurs once ||c−rpiv|| ≤ ||p−||. Eqs 7.6 and 7.7 define the beginning and

end points of the curve segment for a given vertex, wi.

ppiv
− = ||p−||ŵ− (7.6)

ppiv
+ = ||p+||ŵ+ (7.7)

where

ŵ− = (wi −wi−1)
||wi −wi−1||

(7.8)

and

ŵ+ = (wi+1 −wi)
||wi+1 −wi||

(7.9)

To find the pivot point, ppiv
0 , a unit norm vector stemming from ppiv

− is rotated

by π
2 in the direction of the curve.

ppiv
0 =

cos
(
dπ2

)
− sin

(
dπ2

)
sin

(
dπ2

)
cos

(
dπ2

)


︸ ︷︷ ︸
R

[
rpiv wi−wi−1

||wi−wi−1||

]
+ ppiv

− (7.10)

where rpiv can be calculated using the law of sines, as shown in eq 7.11, and

d = ±1 determined by Eq. (7.12)

rpiv = ||p−||
sin θ

sin
(
π
2 − θ

) (7.11)

d = sign([wi+1 −wi]SF
x − [wi −wi−1]SF

x) (7.12)

116

Note that the rotation matrix R in Eq. (7.10) will evaluate to either

R =

0 −1

1 0

 (7.13)

or

R =

0 1

1 0

 (7.14)

In eq 7.12, [· · ·]SF
x indicates the x-component of the two-dimensional point with

respect to the Serret-Frenet frame formed by wi and wi−1. It’s important to note

that the Serret-Frenet frame is comprised of the closest two waypoints within W

to the vehicles location, pk.

With the pivot solved for, the closest point to the vehicle’s location on the

curve can be calculated, as shown in eq 7.15.

ck = ppiv
0 −

rpiv(ppiv
0 − pk)

||ppiv
0 − pk||

(7.15)

The cross track error can be found using eq 7.4 with respect to the Serret-Frenet

frame. With the capability to calculate both the linear and curved segment closest

point and cross track error a controller can be developed.

7.2 Control

7.2.1 PID Controller

The purpose of the PID controller for the GNC algorithm is to track the tra-

jectory, such that the error between the desired state, xdes,k and the current state,

117

xk at a given time step is minimized. Rather than use the full state in Eq. (5.7),

the error state, Eq. (7.2) is employed. This has the advantage of approximating

the model for the vehicle to be expressed as a double integrator. This is shown in

fig 7.4, along with the digital controller.

Figure 7.4: An approximation of the vehicle dynamics with respect to
cross track error within the Serret-Frenet frame.

The digital PID controller uses feed-forward of the path curvature at the cur-

rent time step, which is defined as vkψ̇path,k. This is based on [65], and is useful

because the path curvature is known ahead of time. The feed-forward accounts

for the acceleration due to the path curvature. The difference equation block in

Fig. 7.4 matches the continuous equivalent in [65] and is written explicitly as

uk = vkψ̇path,k +Kpe
SF
k +Ki

z

z − 1e
SF
k ∆T +Kdv

SF
k (7.16)

where, again vk is the scalar magnitude of the vehicle’s velocity, and the vSF
k is the

velocity of the cross track error with respect to the Serret-Frenet frame. It should

118

be noted that the difference between the path angle and the vehicle heading angle

is equivalent to the velocity of the cross track error for small angles. Thus, in units

of meters per seconds, the rate of change of the cross track error is proportional

to the difference in heading angle and path angle;

vSF
k ≡ vk(ψpath,k − ψk) (7.17)

allowing Eq. (7.16) to be rewritten as

uk = vkψ̇path,k +Kpe
SF
k +Ki

k=N∑
k=0

eSF
k ∆T +Kdvk(ψpath,k − ψk) (7.18)

Recall that the simulation uses the discrete state space representation defined

by the dynamics in Eq. (5.19), and that the only input in Γk associated with the

yaw rate, r, of the state, xk, is the rudder angle δk from Eq. (5.14). Given Φk

and Γk, representing the discrete state space transition matrix and input matrix

respectively, then by the definition of controllability,

Ck =
[

Γk ΦkΓk Φ2
kΓk . . . Φn−1

k Γk
]

(7.19)

The dynamics with respect to the Serret-Frenet frame are considered, such that


ė

ë

...
e


︸ ︷︷ ︸
ẋSF

=


0 1 0

0 0 1

0 0 0


︸ ︷︷ ︸

A


e

ė

ë


︸︷︷︸
xSF

+


0

0

1


︸︷︷︸
B

u (7.20)

119

is the continuous state space representation of the system, and, given that

Φk Γk
0 I

 u expm


A B

0 0

∆T

 (7.21)

using a Taylor series expansion,


eSF
k+1

vSF
k+1

aSF
k+1


︸ ︷︷ ︸

xSF
k+1

=


1 ∆T ∆T 2

2!

0 1 ∆T

0 0 1


︸ ︷︷ ︸

ΦSF
k


eSF
k

vSF
k

aSF
k


︸ ︷︷ ︸

xSF
k

+


∆T 3

3!

∆T 2

2!

∆T


︸ ︷︷ ︸

ΓSF
k

uk (7.22)

is the discrete equivalent, then the system is controllable, because

CSF
k =

[
ΓSF
k ΦSF

k ΓSF
k ΦSF2

k Γk . . . ΦSFn−1

k Γk
]

(7.23)

is full rank, and has no dependency on the value of k.

7.2.2 GNC Algorithm

The following sub-components have been established: 1) a method to calculate

a desired path and trajectory with linear and curved segments, 2) a discrete PID

controller for trajectory tracking, and 3) a controllable system. Using all of these

sub components, the following algorithm is introduced:

120

Algorithm 1 GNC Path Following
1: Get GPS path coordinates
2: W = Map GPS coordinates to a local tangent plane (LTP)
3: a = wi=0
4: b = wi=1
5: c = wi=2
6: Calculate initial ppiv

0 ,ppiv
− ,ppiv

+
7: while i < mtotal
8: Get vehicle’s current GPS position
9: p = Map GPS positon to LTP
10: c = proj−→ab

−→ap =
−→
ab·−→ap
|
−→
ab|2

11: If ||c− ppiv
− || ≤ ||p−||

12: c = ppiv
0 −

rpiv(ppiv
0 −p)

||ppiv
0 −p|| // Calculate closest point on curve

13: ek = ||p− c||// Calculate cross track error
14: Run PID controller
15: If ||c− ppiv

+ || ≤ Switch Threshold
16: i = i+ 1
17: a = wi // Update the previous waypoint
18: b = wi+1 // Update the next waypoint
19: c = wi+2 // Update the waypoint after the next waypoint
20: Calculate new ppiv

0 ,ppiv
− ,ppiv

+

Note that the Switch Threshold is the distance around a waypoint that rep-

resents how close the vehicle must be in order to update the next and previous

waypoints. The GNC algorithm is implemented in a MATLAB simulation and

the resulting vehicle position plot is shown in Fig. 7.5. This algorithm was in sim-

ulation, where the “true” vehicle model was the augmented Nomoto ship steering

model.

121

Figure 7.5: Simulation using the estimator in eq 5.8 and the discrete
PID controller as part of the GNC algorithm

The results from the simulation show that the Alg. 1, is capable of following

an arbitrary path defined by GPS waypoints. Hardware-in-the-loop testing and

software-in-the-loop (SIL) simulations on the microcontroller for the vehicle, both

confirm its functionality. SIL is also referred to as processor-in-the-loop (PIL)

simulation. The next step is to use a an estimator, such as an Extended Kalman

Filter (EKF) to estimate the position of the boat in between GPS updates (as

they are relatively slow).

Choosing the Gains

The gains for the PID loop were chosen using the Ziegler–Nichols method.

First, the derivative and integral gains were set to zero. Next, the proportional

gain was increased from an arbitrary starting value until oscillations in the cross-

track error were observed. The maximum proportional gain kp,max was determined

by the point at which oscillations were observed, along with the period of the os-

122

cillation Tmax. For no-overshoot ki = (0.4)kp,maxTmax and kd = (0.066̄)kp,maxTmax.

In simulation other gains were also experimented with. Tuning PID gains is a rich

area of discussion, and work by [33], [34], (and many others) provide a complete

treatment (a brief discussion is provided in Appendix. A.0.1).

7.2.3 Position Estimation

Position measurements are less frequent than what is assumed in simulation.

GPS modules generally have a new position, course over ground angle, speed, and

other metrics available at one second intervals (1 Hz). This presents a problem for

tracking the trajectory using the PID controller. If the vehicle moves too quickly,

the controller may become unstable. Additionally, any guidance algorithm, such

as Alg. 1 will have fewer points available to calculate the closest point on the

trajectory. In the case of Alg. 1, if the vehicle turning radius is only a few meters,

and the speed is greater than 1-2 meters per second, few curve points will be

generated within the time it takes the vehicle to pass the curve segment.

Extended Kalman Filter

It is possible to estimate the position of the vehicle in between GPS measure-

ments to facilitate having more frequent position updates. Position estimation can

be accomplished optimally using an Extended Kalman Filter (EKF). Specifically,

an EKF is required, because the vehicle dynamics are not linear.

The EKF is developed partially based on the vehicle dynamics shown in

Eq. (5.19). The rudder lag is not considered in the model for the EKF to simplify

the implementation and because an assumption (based on observation) is that the

rudder lag is negligible for small angular corrections. This assumption is further

based on the fact that the rudder is small, has low mass, and is easy to move

123

using a servo. The EKF uses the following model:



ψk+1

rk+1

xk+1

yk+1

vk+1


︸ ︷︷ ︸

xk+1

=



1 ∆T 0 0 0

0 Td,yaw 0 0 0

0 0 1 0 ∆T sin(ψk)

0 0 0 1 ∆T cos(ψk)

0 0 0 0 1


︸ ︷︷ ︸

Φk



ψk

rk

xk

yk

vk


︸ ︷︷ ︸

xk

+



0

Kd,yaw

0

0

0


︸ ︷︷ ︸

Γk

uk (7.24)

In Ch. 6 we demonstrated how Eq. (7.24) can be modified for the purposes of

system identification. The discrete time, nonlinear model EKF, described in [36],

is restated here for completeness. Let the stochastic discrete equation equation

describing the vehicle’s motion be written as

xk+1 = fk(xk, uk) (7.25)

where xk is the vehicle state with respect to the local tangent plane, and is equiv-

alent to Eq. (5.7), uk is the control input, and fk() is a nonlinear vector function

of the state, sometimes referred to as a state propagation vector function. It is

defined as

fk(xk, uk) =



0

Kd,yawuk

vk sin(ψk)∆T

vk cos(ψk)∆T

0


(7.26)

124

The sampled nonlinear measurement is

y
k

= h(xk) + vk (7.27)

where h is the observation, or output matrix.

The state transition matrix, Φk is formed by the Jacobian comprised of the

partial derivatives of the vector function of the state at index k, with respect to

the state elements.

Φk = ∂fk(xk, uk)
∂xk

(7.28)

Within the prediction step, the prediction of the step is defined as

x̂(−)
k+1 = fk(x̂k, uk) (7.29)

and the covariance matrix is

P(−)
k+1 = ΦkPkΦT

k + ΓkQk
ΓT
k (7.30)

where Γk is the input matrix, as noted before, and Q is the initial guess of the

variance for the stochastic terms. Γk may also be defined as

Γk = ∂fk(x̂k, uk)
∂uk

(7.31)

along with

Hk =
∂hk(x̂

(−)
k)

∂xk
(7.32)

125

Table 7.1: Cross track error mean and standard deviation comparison between
EKF and GPS-only navigation

Mean (meters) Standard Deviation (meters)
With EKF 0.009349 0.274763
GPS only -0.046454 0.800354

The optimal gain matrix of the update step is as follows

Kk+1 = P(−)
k+1HT

k+1

(
Hk+1P

(−)
k+1HT

k+1 + Rk+1

)−1
(7.33)

where R is the sensor noise covariance matrix. Next part of the update step is

the state estimate.

x̂k+1 = x̂(−)
k+1 + Kk+1

(
y
k+1 − hk+1(x̂(−)

k+1)
)

(7.34)

Lastly, the covariance matrix is udpated

Pk+1 =
(
I −Kk+1Hk+1

)
P(−)
k+1 (7.35)

7.2.4 Results

Using the EKF position estimates extracted from Eq. (7.34), the trajectory

tracking PID controller can be run at samples as fast as ∆T = 0.1 seconds, rather

than the one second GPS measurement intervals. A performance increase was ob-

served in simulation, between strict GPS measurement navigation and estimated

position navigation with Alg. 1. Table 7.1 shows the improved mean and standard

deviation in meters of the vehicle cross track error along the path.

Fig. 7.6 and Fig. 7.7 show the position of the vehicle over time using GPS-only

and EKF position estimates with GPS measurements respectively. It is important

126

to note that the curved segments of the path with feed-forward are significantly

more visible when navigation with the EKF position estimates. Both plots employ

Alg 1, but when the EKF is used to provide position estimates, Alg 1 can be called

at a faster rate.

Figure 7.6: Simulation of trajectory following using only GPS measure-
ments as input to the trajectory tracking PID controller. The pre-arc,
pivot, and post-ark markers are shown in pink, dark blue, and cyan, re-
spectively.

127

Figure 7.7: Simulation of trajectory following using EKF position esti-
mates with GPS measurements as input to the trajectory tracking PID
controller

Figure 7.8: A portion of the simulation showing the vehicle position
based on GPS measurements only. Trajectory tracking is noticeably os-
cillatory.

128

Figure 7.9: A portion of the simulation showing the vehicle position, the
position estimates, and GPS measurements. Trajectory tracking is much
smoother than if only using GPS measurements.

129

Fig. 7.8 and Fig. 7.9 show a closer look at a vertex along the desired path.

There is considerably better tracking when using the EKF position estimates in

between GPS measurements.

Remarks

This subsection explored the use of an EKF in simulation assuming the aug-

mented Nomoto ship steering model. An improvement in tracking with respect to

the mean cross track error was shown, compared to only using noisy GPS position

measurements at low update rates. The formulation of the EKF was discussed

in addition to the simulation results. In addition to being able to estimate po-

sition, the EKF can estimate the other state parameters. This is shown later

in Ch. 9. The standard PID Ziegler–Nichols method was used to find gains for

both the EKF and GPS-only simulations respectively. One idea worth additional

investigation is to determine if there are a set of gains that allow the GPS-only

navigation to outperform the EKF-based navigation in simulation (assuming use

of Alg. 1). It should be noted that during simulation testing many different gains

were experimented with outside of a formal procedure to explore this notion.

Better GPS-only performance was not observed.

7.3 Conclusion and Caveats

This chapter showed how to design a path-following system that incorporated

trajectory generation, control, and attitude estimation. Both simple straight-line

trajectories, and more complicated arc-ed paths were examined. A PID controller

was designed for tracking a trajectory with respect to the Serret-Frenet reference

frame. The difference in performance between GPS-only navigation and EKF-

based navigation was examined in relation cross-track error mean and standard

130

deviation (see Table 9.2).

It should be noted that splines could be used with the algorithms discussed

in this chapter. They are more computationally demanding than simple straight

lines, but can interpolate points and form paths that are smooth, continuous, and

easier for certain vehicles (such as a boat) to follow. For a further discussion of

b-splines see App. A.

131

Chapter 8

Intelligent Exploration

This chapter examines the question; how can an autonomous system decide

where to take location-specific measurements within a given space (or field) to

learn the most about the local environment? In this thesis the system is an ASV

and it is taking depth measurements of a small body of water at various locations.

However, this problem exists in various forms. For example, soil moisture is not

easily detectable at certain depths without in situ measurements. It can also

change over time. This means that even after surveying the field, different parts

of the field will possess varying amounts of moisture. We can think of this field

as being a sparsely sampled area of space and assume that the field attribute

(soil moisture, depth, oxygen concentration, etc.) has a stationary distribution

within some time-window. Furthermore, this chapter discusses fields that possess

a field attribute with a some degree of auto-correlation; measurements that are

close together are more likely to have a similar values than measurements that

are far apart. For instance, consider if one was to take a set of measurements of

the elevation of a hill. Two elevation measurements separated laterally by a few

centimeters will likely be similar in value. However, two measurements separated

laterally by a kilometer are less likely to be of similar value. This idea of auto-

132

correlation is observable in many different aspects of nature (mineral deposits,

geological features, galactic super-structures, etc.).

In order to effectively explore an unknown or sparsely sampled field, it is useful

to be able to estimate the field during exploration. An ASV may measure the field

in a particular location, estimate the field, and then based on the estimate move

to a location within the field to maximally improve the field estimate. There

are many methods of spatial estimation, such as simultaneous localization and

mapping (SLAM) and Gaussian Process Regression (GPR). SLAM in particular

has many variations in and of itself, including acoustic, audio-visual, collaborative,

biologically inspired, EKF, and many more. A classical and effective method of

spatial estimation is ordinary kriging.

In this chapter we discuss: 1) how to construct a Gaussian random field (GRF)

to simulate a realistic field (initially unknown to the ASV), 2) ordinary kriging, 3)

a novel variation of kriging meant to decrease the computation time to estimate

the field, 4) GPR, 5) simulation results, and 6) an intelligent path planner to

optimize exploration based on field estimates.

8.0.1 Connection to the Overarching Theme

This chapter highlights the algorithms for intelligent exploration that yield a

reliable estimate of an auto-correlated sparsely sampled phenomenon. The idea

of intelligent exploration within this thesis is separated into path planning and

spatial estimation. A key focus is placed on spatial estimation, because there are

a number of different methods to estimate a field based on a growing set of mea-

surements. In relation to the oceanographer/researcher example that has been

discussed throughout this thesis, we assume that there is a field attribute sensor

that provides a measured value of a field at different locations. The extent to

133

which field measurements are related by distance to one-another is discussed in

detail along algorithms that take advantage of field measurement auto-correlation.

These ideas can be of particular interest to researchers studying different environ-

mental attributes as they are generally intended in the estimated field.

8.1 Ordinary Kriging

This section provides an explanation of ordinary kriging and how it may be

used to inform path planning for an ASV. [83] and [85] both outline how ordinary

kriging works. A brief overview based on these works is presented here for com-

pleteness. [85] in particular shows how ordinary kriging may be improved with

regard to computational complexity. Ordinary kriging (OK) is classified as a best

linear unbiased estimator (BLUE) of a random field in this case (and in general).

Put another way, we are trying to estimate an attribute of a field, such as ele-

vation, depth, or an amount of something that is spatially auto-correlated. The

field is assumed to be a random field with some spatial correlation. For example,

assume the goal is to estimate the distribution of gold in a given area. If the field is

auto-correlated to some degree, then measuring the amount of gold in two places

that are very close together will result in a similar measurement; the amount of

gold measured is likely to be a similar amount. Now take two measurements of

the field that are far apart, and the two measurements will likely be very different.

It is important to realize that this is only true if the field is auto-correlated. If

there is zero auto-correlation, then any two measurements, regardless of the dis-

tance have no relation in measurement value. The key components of ordinary

kriging that are discussed below include forming an empirical variogram, fitting a

model of the variogram to the empirical variogram, forming a covariance matrix

with the variogram model, and finally inverting the covariance matrix to solve a

134

system of equations and estimate or predict a field based on previously acquired

measurements (including those used to form the variogram).

The specific scenario in which OK is discussed is as follows; measurements are

taken by an ASV within the bounds of a 2-dimmensional area (the “field”). A

measurement of the field may be of any specific field attribute (e.g: elevation,

temperature, salinity, etc.). As n, the number of measurements increases, the

estimate of the field produced by OK takes more computational time. The com-

putational complexity of OK is O(n3). One of the biggest contributing factors for

the computational complexity is the inversion of the covariance matrix, C. The

covariance matrix represents the specific correlation between different measure-

ments. The farther apart any two measurement locations are, the less correlated

they will be.

The computational complexity associated with OK and inverting the covari-

ance matrix poses a problem for embedded computation. If an ASV (or similar

autonomous vehicle) is meant to continually take field measurements, estimate

the field, and travel to locations with high variance, then eventually enough mea-

surements are taken that the computation time becomes intractable. The ASV

would cease motion to complete the inversion, resulting in limited exploration and

reduced area covered. Alternatively, if the ASV is incorporating multi-threading

or higher performance computing, then the cost is higher energy usage, which

again impacts vehicle performance, reducing mission duration. Thus computa-

tional complexity negatively impacts the field exploration.

Fortunately, [85] shows that the computational complexity can be reduced

to as little as O(n2) by implementing an incremental inversion method, O(nr2)

with a recursive matrix inversion method, where the covariance is divided into

sub-matrices with dimension r × r, where r << n. This is referred to as fixed

135

rank kriging (FRK). Within this section, a novel incremental method is discussed:

iterative inverse ordinary kriging (IIOK).

8.2 The Variogram

First, it is important to explain the empirical variogram, because it is used to

quantify auto-correlation of field measurements, and later to form the covariance

matrix. The empirical variogram is defined as

N(h) =
m−1,m−1∑
i=0,j=0


1 if (h− δ) ≤ ‖si − sj‖ ≤ (h+ δ)

0 otherwise
(8.1)

γ̂(h) = 1
2N(h± δ)

m−1∑
i=0

m−1∑
j=0
|Z̃(si)− Z̃(sj)|2 (8.2)

where Z̃(si) = Z̃(xi, yi), such that a generic position on the field is represented

by si =
[
xi yi

]
and N(h ± δ) is the number of field measurements locations

within a range based on some spatial separation, h, also known as a lag, and

tolerance, δ. The lags and tolerances together act as bins. The function, N() is

used to count how many field measurement locations lie within each lag accounting

for some tolerance. The tolerance is necessary, because it is unlikely that the

distances between any two field measurements will lie exactly on a specific lag

value. Z̃(xi, yi) is the measured value of the field in the local tangent plane, where

Z is a matrix of true field values. In reality there is some noise associated with

taking field measurements. This noise is inherent to the measurement process:

Z̃(xi, yi) = Z(xi, yi) + v (8.3)

where v is the sensor noise (usually assumed to be zero-mean and Gaussian).

136

The usefulness of γ̂(h) is limited, because it cannot be used to continuously

infer the variance of an arbitrary distance. By definition, it is limited to discrete

bins. It is more useful to have a continuous model, such that any distance between

measurements can have an associated variance computed. This is where a model

of the variogram is introduced; γ(h) is fit to the empirical variogram. Here, a

Gaussian model is chosen for fitting the empirical variogram using least-squares.

For reference, the Gaussian model takes on the following form,

γ(h) = (s− n)
(

1− e
(
− h2
r2a

))
+ n (8.4)

s is known as the sill, and is the point in the variogram where the variance

becomes non-monotonic (stops increasing). n is the nugget, and can be thought

of as a variance offset for the variogram. r is the range, and is defined as the

lag (or distance bin) where the variance stops being monotonic. a is an arbitrary

scaling factor. In this thesis the term r2a is treated as a single variable r0.

It should be noted that there are other variogram models, including spherical,

exponential, etc. For more details on variogram models, see [83].

8.2.1 Fitting the Variogram

As mentioned earlier, in order to approximate the covariance between any

two points continuously, a statistical model is employed. The model is meant to

act as a continuous analog to the empirical variogram. The Gaussian model is

chosen for its simplicity in implementation. It is fit to the empirical variogram

using least-squares to solve for the Gaussian model’s coefficients. For similar

techniques, [19] explores using weighted least-squares for fitting variograms of

geo-statistical data. Least-squares is chosen as it provides a reasonable fit in the

absence of other information about the field. Additionally, the Gaussian model

137

displays consistency in relation to random processes, especially if those processes

posses a normal distribution.

Least-squares (LS) can be used to approximately solve for the coefficients

(nugget, sill, range) of the Gaussian model. The Maclaurin series is used to

approximate the exponential term of the Gaussian variogram model in Eq. (8.4)

extended to m terms. As will be shown below, this leads to an intuitive method

for fitting the variogram with a closed-form solution.

The Maclaurin series as a function of a single scalar distance, or lag hi is:

f(hi) = e
−
h2
i
r0 =

∞∑
k=0

(
− h2

i

r0

)k
k! (8.5)

where r0 , r2a. Let h be a vector in Rn×1 of lags such that

hT =
[
h0 h1 · · · hn−1

]
(8.6)

Recall that the empirical variogram uses discrete bins, given some tolerance δ. The

elements of hT increase uniformly such that hi−dh = hi+1 for i ∈ [0, 1, 2, ..., n−1],

where dh is the distance between bins of the empirical variogram. Expanding

Eq. (8.5) to m terms to approximate f(hi) ≈ f̂(hi)

f̂(hi) = 1−

(
h2
i

r0

)
1 +

(
h4
i

r2
0

)
2 −

(
h6
i

r3
0

)
6 + · · ·+

(
− h2

r0

)m−1

(m− 1)! (8.7)

Eq. (8.7) can be rewritten as

f̂ = 1− h2
i

1
r0

+ h4
i

1
2r2

0
− h6

i

1
6r3

0
+ · · ·+

(
− h2

i

)m−1 1
r0m−1(m− 1)! (8.8)

Rewriting Eq. (8.8) as the dot product of two vectors

138

f̂(hi) = bix =
[
−h2

i h4
i −h6

i · · · 1
]

︸ ︷︷ ︸
bi



s
r0

s
2r2

0

s
6r3

0...

n


︸ ︷︷ ︸

x

(8.9)

where s is the sill and n is the nugget from the variogram model in Eq. (8.4) and

xT =
[
s
r0

s
r2
0

s
r3
0
· · · n

]
(8.10)

with

bi =
[
−h2

i h4
i −h6

i · · · 1
]

(8.11)

By combining Eq. (8.11) and Eq. (8.6), we have the following matrix form:

H =



b0

b1

· · ·

bn−1


=
[
−h2 h4 −h6 1

]
(8.12)

where 1 is an n × 1 vector of ones. Assume that there exists a vector v(h) such

that each element of v is the variogram function evaluated at hi. By combining

139

Eq. (8.10) and Eq. 8.12 we obtain the following system of equations:

v(h) =



γ(h0)

γ(h1)
...

γ(hn−1)


= Hx (8.13)

It should be noted that at this point we don’t have access to the vector v repre-

senting the Gaussian variogram model evaluated at each element of h. However,

if we substitute v for the empirical variogram vector γ̂(h), then we may estimate

the elements of x containing the unknown parameters of the Gaussian variogram

model, γ(h). By combining Eqs. (8.4)∼(8.10) we estimate x using least-squares:

x̂ = (HTH)−1HTγ̂(h) (8.14)

After estimating x̂, we can further solve for s, n, and r0. An example of applying

this to a simulated field is shown in Fig. 8.1. For more examples of the application

of this technique, see appendix A.2.

Note that non-Gaussian variogram models may be chosen. If, for example a

radial basis function is used instead, then this spatial estimation method may

begin to resemble Gaussian process regression [55]. Another note is that a poly-

nomial, or other function may be fit to the empirical variogram. Regardless of the

model function used, the main assumption is that the variance between points in-

creases as the distance between points grows up until a set distance: the range, r.

The variance beyond the range is expected to stop growing and remain regularly

constant. The range therefore represents the distance beyond which measure-

ment points are essentially uncorrelated. There are of course exceptions to this as

well, namely periodic covariance functions; these can be used for fields that have

140

0 20 40 60 80 100
Lags (meters)

0

1

2

3

4

5

6

Va
ria

nc
e

(m
et

er
s)

Fit to Variogram

LS Gaussian Fit
range
sill
Empirical Variogram

Figure 8.1: An example of a Gaussian variogram model, fit to an empirical
variogram. Note that the discrete bins of the Empirical variogram are visible.

patterns that are known to be periodic in structure.

With a fitted variogram model, the covariance matrix can be formed and used

to predict the values at all unmeasured locations within the field. Let si =
[
xi yi

]
be a single location on the local tangent plane defining the field, with x and y-

coordinates. Each element of the covariance matrix is based on the γ of the

distance between two measurement-locations;

C(si, sj) = γ

(
||
[
xi, yi

]
︸ ︷︷ ︸

si

−
[
xj, yj

]
︸ ︷︷ ︸

sj

||
)

(8.15)

where C ∈ R`×`, and ` is the number of measurements. For all points, pi =[
xi yi

]
in the field, represented by an m× n matrix, Z,

di =
[
γ(||s0 − pi||) . . . γ(||sm−1 − pi||)

]T
(8.16)

141

where d ∈ R`×1 acts as a proximity, or spatial sensitivity vector for the point

pi. The kriging weights, λpi and Lagrangian multiplier, ηpi can be found by

augmenting the covariance matrix with vectors of ones 1 ∈ R`×1 to solve the

system of equations, as shown in both [83] and [28], such that

 λpi

ηpi

 =

 C−1 1

1T 0


di

1

 (8.17)

where,

λpi = C-1di + 1 (8.18)

and

ηpi = 1Tdi (8.19)

impose the constraint for the unbiased condition of this estimate. This means

that λpi −C-1di = 1 and ηpi − (1Tdi) = 0. Finally, the point associated with the

field estimate matrix, Ẑ is found

Ẑ(pi) =
[
Z(s0) . . . Z(sm−1)

]T
λpi (8.20)

var(Ẑ(pi)) =
[
dpi 1

] λpi

ηpi

 (8.21)

A useful feature of this method includes calculating the variance of the field esti-

mate at pi as shown in Eq. (8.21). A more detailed description is given in [83],

upon which the above was based.

142

8.2.2 Iterative Covariance Matrix Inverse Update

The initial covariance matrix, C0, can be calculated from an initial batch of

measurements. A speedup is discussed for calculating the inverse, C−1
k after mak-

ing additional measurements using a variation of the Sherman-Morrison formula

for small-rank perturbations (see [39]). Eqs. (8.22 - 8.24) represent how to apply

the formula to the covariance matrix. Using this matrix inversion technique with

ordinary kriging is refereed to as iterative inverse ordinary kriging (IIOK) within

this thesis.

The covariance matrix for each new measurement is described using the fol-

lowing equation,

Ck+1 =

Ck α

αT β

 (8.22)

where α is the newest, and therefore last column of Ck, and corresponds to a new

field measurement. With each measurement the covariance matrix grows in size.

The inverse, C−1
k+1 is then given by

C−1
k+1 =


C−1
k + 1

v
C−1
k ααTC−1

k
1
v
C−1
k α

− 1
v
αTC−1

k
1
v


(8.23)

where C−1
k is the inverted covariance matrix at the previous measurement index,

and

v = β − αTC−1
k α (8.24)

Note that, β = n, the nugget, may be zero depending on the variogram. This

corresponds to calculating the correlation of the same point in Eq. (8.15) with

143

h = 0, =⇒ γ(h) = n, from Eq. (8.4). The purpose of using this variation of

the Sherman-Morrison formula in Eq. (8.23) is to avoid the O(n3) computational

complexity and resulting cubic computation time.

Remarks on the Update Rate

It is noted in [38] that the Sherman-Morrison formula is susceptible to nu-

merical rounding errors. This sensitivity can be observed to a varying extent

depending on the rate that the field estimate is updated, or the field estimate

update rate. For instance, assume that a field is re-estimated for every new mea-

surement collected. It should be apparent that the MSE versus the number of

measurements over time will drop at a faster rate than compared to re-estimating

the field using every n-th new measurement. Attempting to apply IIOK at low

rates, implying the addition of a batch of a large number of new measurements

yields a slower decrease in MSE than a compared to a higher rate of field estimate

updates. The effect of field estimate update rate for IIOK is shown in Fig. 8.2.

This shows how the field estimate update rate effects the MSE signals of IIOK.

144

4.0% 6.0% 8.0% 10.0% 12.0%
Percentage of Field Measured

0

1

2

3

4

5

6

7

8

M
SE

 (m
et

er
s2)

Comparison of IIOK Update Rate Effect on
MSE of Field Estimate

n = 1
n = 50

Figure 8.2: A comparison of MSE versus the number of points measured in a
field. The MSE signals correspond to different update rates 1/n, where n repre-
sents the number of new measurements before a new estimate is calculated using
every nth measurement. The higher frequency update rates show a faster decrease
in MSE.

8.3 Gaussian Process Regression

Within the context of this thesis Gaussian Process Regression (GPR) can be

thought of as a generalized version of kriging. GPR has been used in a wide

variety of applications, including real-time ground segmentation for autonomous

vehicles [13], increasing the resolution of single-images [41], and optimal explo-

ration trajectory planning for autonomous vehicles [74]. In this section we will

discuss GPR, explore some examples with varying dimensions, and examine a

simulation example of spatial estimation using GPR.

8.3.1 Review of GPR

Consider the joint distribution:

145

p(f,y) = N


 f
y

 ;

a
b

 ,
A CT

C B


 (8.25)

where f and y are vectors whose elements represent unknown and measured

values respectively. Each element of y is a measurement with noise: y(xi) ∼

N (f(xi), σy). Put another way; we may assume that there is a zero-mean Gaussian

noise added to the true function evaluated at some xi, such that y(xi) = f(xi)+v,

where v ∼ N (0, σy). Due to the fact that any conditional distribution of a Gaus-

sian is Gaussian itself, we can state the following:

p(f | y) = N (f; a + CB−1(y− b),A−CB−1CT) (8.26)

Now consider two values xi and xj. If we knew the true function f(·), we could

evaluate it at these points, but in the real world the best we can do is take

measurements y(xi), y(xj) at xi and xj respectively. In addition to taking a

measurement, we can use xi and xj as input to the following covariance, or kernel

function:

k(xi, xj) = σ2
fe

(
−
‖xi−xj‖2

2`2

)
(8.27)

where 2`2, sometimes denoted by λ is the common length scale of the Gaussian

process, and σ2
f is the variance of the process. These are often referred to as

hyper-parameters, and they are not necessarily known. The purpose of the kernel

function is similar to the variogram in kriging, in that it is meant to relate the

variance of f(·) to the distance between points. Essentially we have an estimate

of variance as a function of distance. It should be noted that there are many

other kinds of kernel functions, including periodic, linear, Matérn, and others. It

146

is also possible to combine certain types of kernel functions by multiplying them

together. We can create a matrix that uses the kernel function such that

K(x,x)i,j = k(xi,xj) (8.28)

where xi is the i-th element of the vector x and xj is the j-th element of the vector

x.

8.3.2 1-D Example

This sub-section discusses an example of GPR for a 1-dimensional signal. This

example is based on [55] and is partly repeated here for completeness. Using the

kernel function, Eq. (8.27), we can build the matrices of a joint distribution that

we will use to estimate f. First, let xu ∈ Rn×1 be a vector representing all of

the unobserved n discrete points comprising a signal and let xo ∈ Rm×1 be a

vector representing all of the observed m measured points. We can construct

three matrices that describe a new joint distribution based on Eq. (8.28). Let

A(xu,xu) = K(xu,xu), A ∈ Rn×n (8.29)

B(xo,xo) = K(xo,xo) + σ2
yI, B ∈ Rm×m (8.30)

C(xu,xo) = K(xu,xo), C ∈ Rn×m (8.31)

147

This yields the following joint distribution:

p


fu
y


 = N


fu
y

 ; 0,

A CT

C B


 (8.32)

= N


fu
y

 ; 0,

K(xu,xu) K(xu,xo)

K(xo,xu) K(xo,xo) + σ2
yI


 (8.33)

where fu ∈ Rn×1 is a vector with n elements representing the true values of the

signal evaluated at the n unobserved discrete points in xu. A prediction using the

following two equations describes the posterior over function values p(fu | y) as

µf = CB−1y (8.34)

κf = A−CB−1CT (8.35)

where µf is the mean-predicted function, and κf is the resulting covariance matrix

for the prediction. The variance for each unobserved or observed discrete point

corresponds to the diagonal of the covariance matrix. Fig. 8.3 shows an exam-

ple plot of a true signal, noisy measurements, the predicted mean, and variance

associated with the prediction.

148

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

f(x
)

1-Dimensional GPR Example
truth
mean
error
measurement

Figure 8.3: A 1-dimension example of GPR. The true signal f(x) is
shown in dark blue, the noisy measurements are shown as blue dots, the
mean predicted signal is shown in red, and the error bounds (2-standard
deviations) are shown in light blue.

The corresponding A, B, and C matrices are shown in Fig. 8.4. Note that the

covariance matrix in Fig. 8.4c depicts a “hill” or concentration of higher uncer-

tainty near the middle. This corresponds with the large error bounds in Fig. 8.3

near its middle. This makes sense because there is wide space between measure-

ments in that same area and therefore the uncertainty is higher. As a result, the

mean-prediction in that area is noticeably less accurate.

149

0 200 400 600 800

0

200

400

600

800

A

0.00

0.05

0.10

0.15

0.20

0.25

(a)

0 5 10 15

0

5

10

15

B

0.00

0.05

0.10

0.15

0.20

0.25

(b)

0 200 400 600 800

0

200

400

600

800

cov

0.00

0.05

0.10

0.15

(c)

Figure 8.4: The matrices that comprise the joint distribution. The A matrix is
shown in (a), the B matrix is shown in (b), and the covariance matrix κf is shown
in (c).

8.3.3 2-D Example

We extend the same principles to a 2-dimensional case for spatial estimation.

Assume that we have m measurements of a field (as shown in Fig. 8.5).

150

0 5 10 15 20 25

0
2
4
6
8

10
12
14
16
18

True Field with Measurements
measurement locations

0

2

4

6

8

10

De
pt

h
(m

et
er

s)

Figure 8.5: A 2-dimension signal f(x) or field is shown as the gradient
of dark-to-light color. The noisy measurements are shown as red dots

Recall that in the 1-dimensional example, xu ∈ Rn×1 was a vector that repre-

sented the unobserved n discrete points and that xo ∈ Rm×1 was a vector repre-

senting the observed m measured points. In the 2-dimensional case xu and xo are

now matrices such that xu ∈ Rn×2 and xo ∈ Rm×2. Each row in these matrices

represents a location on the field such that xoi =
[
xi yi

]
is the i-th row of xo

where xi is the x-coordinate on the field and yi is the y-coordinate on the field.

Eqs. (8.29)-(8.31) can still be applied in the same manner as the 1-dimensional

case, but the kernel function, Eq. (8.27), is changed to

k2D(xi,xj) = σ2
fe

(
−
‖xi−xj‖2

2`2
−
‖yi−yj‖2

2`2

)
(8.36)

where the two arguments of the function are points on the field (rather than a

point on a line, as in the 1-dimensional case). Note that a kernel matrix can be

formed similar to the 1-dimensional case, but Eq. (8.28) is rewritten so that it

uses Eq. (8.36) as follows:

151

K(x,x)i,j = k2D(xi,xj) (8.37)

Based on the measurements xo of a 2-dimensional field Z, we can estimate all

the points in the field that have not been measured. These points are represented

by xu. This is shown in Fig. 8.6. It is clear that GPR works well for spatial

estimation in this context; Fig. 8.6b looks nearly identically to Fig. 8.5. However,

it is important to recall that this predictive ability of GPR is only possible if the

signal or field has some degree of spatial auto-correlation.

0 5 10 15 20 25

0
2
4
6
8

10
12
14
16
18

True Field with Measurements
measurement locations

0

2

4

6

8

10

De
pt

h
(m

et
er

s)

(a) True field with measurement locations

10 0 10 20 30 40

0

5

10

15

20

25

30
Final GPR Estimate

0

2

4

6

8

De
pt

h
(m

et
er

s)

(b) Estimated field using GPR

10 0 10 20 30 40

0

5

10

15

20

25

30
Estimate Variance

0.0

0.2

0.4

0.6

Va
ria

nc
e

(m
et

er
s)

(c) Field estimate variance matrix

Figure 8.6: An example comparison of the estimated field using GPR in 2-
dimensions based on the measurements from Fig 8.6a. Note that the locations
with a higher density of measurements have a lower variance in the corresponding
estimate variance matrix.

152

A quantitative method to evaluate the degree of error between an estimated

signal and the true signal is desirable. In nature we don’t necessarily have access to

the actual or true field (or true signal), but in simulation we can find the discrete

differences at every point between a true field and the estimated field. Later on

in this chapter we will identify methods for comparing spatial estimations with

the ground truth (in simulation).

8.3.4 Hyper-parameters

The kernel functions Eq. (8.27) and Eq. (8.36) assume the use of hyper-

parameters, σ2
f and `. There may be additional hyper-parameters if we assume

a mean offset or if we employ a different kernel function (see [74]). However,

determining the hyper-parameters can be difficult, often times requiring the use

of numerical methods such as gradient descent. Another option is to choose the

variance scale factor σ2
f and common length scale factor ` based on the variogram.

This is an approximate method. In this thesis two scale factors are chosen, such

that ks corresponds with the sill s of the variogram and kr corresponds to the

range r0 of the variogram. Both ks and kr essentially gains that can be tuned.

This leads to the following two equations:

σ̂2
f = kss (8.38)

ˆ̀= krr (8.39)

where ˆ̀ and σ̂2
f represent the approximation for the common-length scale factor

variance parameter respectively from Eq. (8.27) and Eq. (8.36).

As an example to demonstrate the usefulness of this hyper-parameter approx-

153

imation technique, consider Fig. 8.7. It shows a field with uniform measurements

in a grid pattern (Fig. 8.7a), along with the variogram (Fig. 8.7b), and the GPR-

based estimate of the field (Fig. 8.7d).

40 30 20 10 0 10 20 30 40 50
East (meters)

20

10

0

10

20

30

40

No
rth

 (m
et

er
s)

Simulated GRF Depth-Field

2

4

6

8

10

De
pt

h
(m

et
er

s)

(a) A simulated, “true” field with measure-
ment locations marked by red dots.

0 20 40 60 80 100
Lags (meters)

0

1

2

3

4

5

6

Va
ria

nc
e

(m
et

er
s)

Fit to Variogram

LS Gaussian Fit
range
sill
Empirical Variogram

(b) The resulting variogram with a sill s =
5.30 and range r0 = 47.14 meters

40 30 20 10 0 10 20 30 40 50

20

10

0

10

20

30

40
True Field

2

4

6

8

10

De
pt

h
(m

et
er

s)

(c) The simulated, “true” field shown with-
out measurements.

40 30 20 10 0 10 20 30 40 50

20

10

0

10

20

30

40
GPR Estimate

2

4

6

8

10

De
pt

h
(m

et
er

s)
(d) GPR estimated field with kr = 0.1 and
` = krr0 = 4.714, ks = 0.1, and σ2

f = 0.53

Figure 8.7: An example of using GPR to estimate a field with hyper-parameters
based on the variogram.

A vehicle may use GPR to estimate the field given a number of measurements.

The hyper-parameters can be approximated using Eq. (8.38) and Eq. (8.39), as

shown in Fig. 8.7. This means that for each new measurement, or for every nth

measurement, the variogram may be recalculated, and a new set of approximate

hyper-parameters can be calculated.

154

8.4 Results of Ordinary Kriging

Results of some example simulations of Ordinary Kriging are shown in Figs. 8.8,

8.9, and 8.10. This includes equally spaced observations and resulting predictions

or estimates of the field. Two main cases are shown below: 1) a simple field with a

single peak and evenly spaced observations, and 2) a more complicated field that

is that is less auto-correlated.

(a) A simple, smooth field with obser-
vations.

(b) The predicted or estimated field

Figure 8.8: A visual comparison between the true field with observations
indicated by black dots (a), and the predicted predicted field based on the
observations (b).

Figs. 8.10a and 8.10b show what happen if random observation locations are

chosen as input for the prediction. The uniformity of the observations appears to

have an effect on the prediction accuracy. These are provided as an example to

highlight this effect, but more quantitative analysis is provided subsequently.

8.5 Partitioned Ordinary Kriging

Instead of pursuing other matrix inversion methods, the cost of matrix inver-

sion is addressed in Partitioned Ordinary Kriging (POK), via recursively dividing

155

(a) A complex field, having many ex-
trema with uniformly-spaced observa-
tions.

(b) The predicted or estimated field
shown in figure 8.9a.

Figure 8.9: A visual comparison between the true field with observations
indicated by black dots (a), and the predicted predicted field based on the
observations (b).

(a) A complex field with randomly
spaced observations.

(b) The predicted or estimated field
shown in figure 8.10a.

Figure 8.10: A visual comparison between the true field with observa-
tions indicated by black dots (a), and the predicted predicted field based
on the observations (b).

the initial field into quadrants, or sub-fields, depending on the ASV location and

variogram range. The quadrant that the vehicle currently resides in is the only

one for which the Ordinary Kriging is conducted. POK, therefore, is essentially

Ordinary Kriging applied to a sub-field whose minimal size allows for reduced

156

computational complexity

Note that the field should be partitioned based on the range of the variogram,

at which point the spatial auto-correlation by definition ceases. Put another way,

it is not useful to predict points in the field that exist beyond the range of the

variogram. This is because the variance at those points is constant, and therefore

the field prediction at those points will also be constant. Using those points as

part of a covariance matrix (which must be inverted) is computationally wasteful,

in terms of predicting correlated parts of the field. We state a condition for

subdivision for the maximum level of recursion as,

lmax =


√

(qx2 + qy2)
r0

− 1 (8.40)

where qx and qy indicate the length and width of a sub-field. If the range r0 = 0,

this equation cannot be used because the very idea of using a variogram no longer

applies. That is, if r0 = 0 then the field has no auto-correlation for the given field

discretization.

Dividing a continuous space into discrete sub-spaces is often referred to as

meshing. Extensive literature exists concerning meshing methods in fields such as

in computer graphics, finite element analysis, and computational fluid dynamics.

Here we present a simple field partitioning algorithm that divides a field, and

potential sub-fields into quadrants.

8.5.1 POK Procedure

Assume that a field is first discretized into an m× n matrix, Z, with discrete

points separated by δxy. Let, x and y be n × 1 and m × 1 vectors respectively,

with each element representing the x− and y-coordinates of corresponding points

in Z. Assume that we will not measure any point in the field more than once.

157

Using a binary search in both x and y, we seek to subdivide the field in relation

to the ASV’s location in the global field. The binary search for determining the x

and y bounds, v0, and vf of a single axis of a quadrant is defined in Alg. 2, where

v is a scalar coordinate value in the x or y-axis, il and ir represent the left and

right indices of the vector, v, l is the level of recursion, and lmax is the maximum

recursion depth. Note that boundary conditions are not dealt with and we are

only concerned with simple partitioning. Alg. 2 uses lmax which is determined

from the variogram. We build upon this idea in Alg. 3, where
[
x0 xf y0 yf

]
represents the boundary coordinates of a sub-field based on the binary search of

the x and y coordinates of the point, si. Sub-field boundary coordinates can be

generated by using Alg. 3 with a point or a vector of points, and a maximum

level of recursion as input. Fig. 8.11 shows an example of applying Alg. 2 and

Eq. (8.40).

Algorithm 2 bnry_srch(v, il, ir,v, lmax, llvl)
1: If llvl ≥ lmax
2: return

[
v[il] v[ir]

]
3: i = round(il + ir)/2
4: if v ≤ v[i]
5: ir = i
6: else
7: il = i
8: return bnry_srch(v, il, ir,v, llvl + 1, lmax)

An explanation for the POKmethod used with a highest-variance path-planner

is provided in [80]. A brief explanation is repeated here for completeness with

modifications made for tests outlined in Section 9.1.2.

POK uses a binary search (Alg. 2), in the indices of the x and y coordinate

vectors to partition a 2-dimensional plane into quadrants based on a maximum

level of recursion, lmax. Let v be a value-element in the coordinate vector v. The

left and right indices are il and ir. The current level of recursion depth is llvl and

158

the maximum level is lmax.

Eq. (8.40) offers a way to find the maximum level of recursion, where qx and

qy are the lengths in the x and y dimensions respectively, and r0 = r2a from

Eq. (8.4). Note that if the desired smallest distance between field measurements

is known, then lmax may be set to that.

Algorithm 3 calculates a quadrant based on a point in the local tangent plane

(LTP), si and the maximum level of recursion. This algorithm effectively provides

a quick substitute to other meshing algorithms (e.g.: from computational fluid

dynamics or finite element analysis). It need not be called strictly for every

measurement point, by instead checking if a new point falls within the bounds of

already existing quadrants.

Algorithm 3 calculate_quadrant(si, lmax)
1:
[
x0 xf

]
= bnry_srch(si[0], 0, len(x)− 1,x, 0, lmax)

2:
[
y0 yf

]
= bnry_srch(si[1], 0, len(y)− 1,y, 0, lmax)

3: return
[
x0 xf y0 yf

]

A sub-field may be estimated using ordinary kriging, IIOK, or POK. Fig. 8.12

demonstrates the results of a full field estimated with ordinary kriging, IIOK, and

POK.

159

Figure 8.11: An example of generating sub-fields based on measurement lo-
cations along the diagonal, using Alg. 3 with lmax = 4. Orange boundaries
represent the first level of recursive partitioning, red represents the second level,
purple is the third, and black is the fourth.

Figure 8.12: Estimated fields using ordinary kriging, IIOK, and POK. Specifi-
cally lmax in Alg. 2 was set using Eq. (8.40).

160

As stated earlier, if a field is partitioned into sub-fields and estimated indepen-

dently from each other, the boundaries of adjacent sub-fields are not guaranteed

to be continuous. A simple solution to this problem, and the one we employ, is

to use measurements along the boundary of adjacent sub-fields in the estimate of

the target sub-field, thereby aiding in boundary continuity.

8.5.2 Creating a Simulated Field

The simulated field is used in part to help simulate the various algorithms

and compare the accuracy and computation times in a consistent fashion. We

create a “true field” so that we can compare the error between the true field

and the estimated field at every corresponding discrete point. Specifically we

create a Gaussian Random Field (GRF). Let x =
[
x0 x1 . . . xn−1

]
, where

xi = jds, j ∈ [0, 1, 2, · · · , n− 1], and where ds represents the smallest spatial sep-

aration between points in a grid in meters. Similarly, y =
[
y0 y1 . . . ym−1

]
,

where yi = jds, j ∈ [0, 1, 2, · · · ,m − 1]. Again, x and y are coordinate vectors

corresponding to points in the field Z, which is an m × n matrix with initially

random values for each element pulled from a normal distribution. The range

of the distribution represents a change in elevation (deviation in 3−axis) in this

work, but may be chosen to represent a range of any similarly measurable field

attribute that possesses auto-correlation.

The next step in creating the true field is to convolve a Gaussian kernel,K with

Z to enforce the auto-correlation of the field. Let, g(x, y) = 1
2πσ2 e

−

(
(x−µx)2+(y−µy)2

2σ2

)

be a 2D Gaussian function, where µx and µy are the mean in x and y respec-

tively, and σ is the standard deviation. The corresponding Gaussian kernel is,

K = 1∑b−1
i=0

∑b−1
j=0 Ki,j

∑b−1
i=0

∑b−1
j=0 Ki,j = g(j, i)

 such that K is a b × b square

matrix. The resulting convolution is the true field Z. An example true field is

161

shown in Fig. 8.12, panel (a).

Other Methods for Creating Fields

It should be noted that the above method for creating field is only one of many.

There are, in fact, a vast number of methods to create fields to describe everything

from the theoretical distribution of cosmic dark matter, to the spatial correlation

on the hydro-mechanical behavior of large open pit problems, and others. A review

of recent advancements and applications of GRFs specifically is given in [48].

Additionally, [48] discusses various other mathematical approaches to generating

GRFs, including the use of fast Fourier transforms, and power spectrum matrices

(which can significantly decrease the field generation computation time).

8.5.3 Path Planning

Path planning in this work is defined in two parts: waypoints and trajectories.

Waypoints are defined as the locations within the field where the vehicle will

pass through (or near) and take measurements. Trajectories are defined as the

interpolation of the waypoints subject to the constraint of a realizable path for the

vehicle. This may be linear, spline-based, hybrid, or any other similar function.

Although it is shown in [83] that path planners such as the Monte Carlo path

planner perform well in simulation, these sorts of paths are physically unrealizable

by conventional vehicles. Most vehicles have smooth motion by nature (defined

as continuity limits on the path and its derivatives). This is generally the case for

fixed-speed marine surface vehicles conducting field exploration.

162

Highest Variance Path Planner

A variety of path planners are discussed and tested in [83] using ordinary krig-

ing. We choose the highest variance path planner (HV) to show the computation

time improvement between Ordinary Kriging, IIOK, and POK.

The HV path planner sets the next waypoint for the ASV to travel to as,

si+1 = max(var(Ẑ)) (8.41)

In other words, the next waypoint is chosen to be the location in the field one

where the variance of the estimate - and therefore the uncertainty in the value of

field - is highest.

Trajectory Generation

We employ a linear trajectory (e.g.: straght lignes) between waypoints selected

by the path planner. The ASV follows the trajectories from one highest variance

waypoint to the next, collecting field measurements along the way. Every time the

ASV arrives at a waypoint, the empirical variogram is calculated using Eq. (8.2),

the empirical variogram is fit with a Gaussian model, and a new local field estimate

is made using Eqs. (8.15-8.24).

The steps of the POK procedure are shown in Alg. 4. In Alg 4, the ASV

position is denoted by sASV. The next waypoint with the highest variance is si+1

The maximum number of measurements, nmax per field can vary depending on

the desired spatial resolution, field size, vehicle, and sensor(s).

163

Algorithm 4 POK Procedure
1: Travel to the center of the field, taking measurements
2: If Arrived at center
3: Generate the empirical variogram, γ̂(h) using Eq. (8.2)
4: Fit γ(h) to ˆγ(h) using least-squares
5: while n ≤ nmax
6: Generate the global empirical variogram, γ̂g(h) using Eq. (8.2)
7: Fit γg(h) to γ̂g(h)
8: Calculate lmax using Eq. (8.40)
9: q = calculate_quadrant(sASV, lmax)
10: Generate the local quadrant empirical variogram, γ̂q(h) using Eq. (8.2)
11: Fit γq(h) to γ̂q(h)
12: Generate local covariance matrix, Cq using γ(h) and Eq. (8.22)
13: Invert Cq using Eq. 8.23
14: ∀pi ∈ Zquad

15: di =
[
γq(||s0 − pi||) . . . γq(||sm−1 − pi||)

]T
16:

[
λpi
ηpi

]
=
[
C−1
q 1

1T 0

] [
di
1

]
17: Ẑq(pi) =

[
Zq(s0) . . . Zq(sm−1)

]T
λpi

18: var(Ẑq(pi)) =
[
dpi 1

] [λpi
ηpi

]
19: Ẑ(pi) = Ẑq(pi) // update global field estimate at point pi
20: si+1 = max(var(Ẑ(p0:i)))
21: Travel to the next point of highest variance, taking field-measurements

along the way
22: return Ẑ, var(Ẑ)

164

8.5.4 Simulation Results and Comparisons

To evaluate the three methods, the z-component of a synthetic field was chosen

as a generic field attribute to estimate. The field had a spatial resolution ds = 0.5

meters and had a total of 4, 670 discrete points to potentially measure. The 2D

Gaussian kernel used for convolution of the initial random field was a 5×5 matrix.

The convolution was applied 7 times, to achieve a field with a high level of auto-

correlation. The simulations were performed using two different path planners.

The first used randomized waypoints with measurements taken along the way,

but with no explicit straight-line segment planning. The second used the HV

path planner with straight-line segments between waypoints. In both, the full

vehicle dynamics were used (see Eq. (6.10)). Both simulations compare Ordinary

Kriging, IIOK, and POK respectively for computation time and spatial estimation

accuracy. Accuracy is defined here as the mean squared error (MSE), ek of all

discrete points between the current estimated field and the true field at a given

number of k points scanned.

ek = 1
mn

m−1∑
i=0

n−1∑
j=0

(Ẑk(i, j)− Z(i, j))2 (8.42)

Randomized Waypoint Strategy

The set of random field measurement locations were used as input for Ordinary

Kriging, IIOK, POK methods (Alg. 4), GPR, and Partitioned Gaussian Progress

Regression (PGPR). For each new field measurement, the computation time of

each algorithm was recorded, along with the MSE of the field estimate using

Eq. 8.42. The results are shown in Fig. 8.13.

The computation time for generating the field estimate is compared and shown

in Fig. 8.14. The POK and PGPR methods show a logarithmic plot of the com-

165

IIOK

GPR

PGPR

POK

OK

Figure 8.13: Comparison of mean squared error for field estimates versus the
number of points scanned. The waypoints for measurements were generated using
a random waypoint path planner.

putation time trend that is significantly less than the other methods.

166

IIOK
GPR

PGPR

POK

OK

Figure 8.14: Comparing computation time (on a logarithmic scale) for estimat-
ing the field using Ordinary Kriging, IIOK, POK, GPR, and PGPR with respect
to the number of points scanned based on a random waypoint path planner.

Remarks on GPR Computation Time

Interestingly, GPR shows an initially higher computation time compared to

OK and IIOK, followed by an apparent decrease in computation time as the num-

ber of measurements grow. The initially high computation time is due to the

fact that GPR calculates a joint distribution for all measured and unmeasured

points. Therefore it should be expected to have a higher computation time at the

start of collecting measurements. The apparent decrease is due to some underly-

ing optimizations in the python modules that were used to implement GPR. At

low numbers of measurements, the majority of the joint distribution maintains a

higher ratio of unmeasured to measured points. The underlying GPR code takes

this into account, briefly decreasing the computation time. In Fig. 8.15 we see

that GPR does increase in computation time as a function of the numbers of mea-

surements, as would be expected. Furthermore, there is a key difference between

167

GPR and Ordinary Kriging in terms of computation time. Ordinary Kriging

must iterate through the points in the field for every measurement, which coin-

cides with Eqs. (8.17-8.21), where as GPR updates all points through Eq. (8.34),

which eliminates an extra looping step making it more computationally efficient.

Note that the point at which the computation time begins to observably increase,

corresponds with ∼ %50 of the total number of possible measurable points in the

field (the field is discretized with a resolution of ds meters between each adjacent

point).

1100 1200 1300 1400 1500 1600
Number of Points measured

12.50

12.75

13.00

13.25

13.50

13.75

14.00

14.25

14.50

Co
m

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Estimation Computation Time

Figure 8.15: The computation time for GPR compared to the number of points.

8.5.5 Path-Planning Simulation Results

The HV path planner was used for waypoint generation and trajectory devel-

opment. Ordinary kriging, IIOk, POK, GPR, and PGPR were compared in terms

of MSE. Fig. 8.16 shows MSE versus the number of points measured and Fig. 8.17

shows the computation time on a logarithmic scale for each spatial estimation

168

algorithm versus the number of points measured.

IIOK

GPR

PGPR

POK

OK

Figure 8.16: MSE of the different kriging methods and GPR methods versus
the number of points measured while using the HV path planner

IIOK
GPR

PGPR

POK

OK

Figure 8.17: Computation time on a logarithmic scale of the different kriging
methods and GPR methods versus the number of points measured while using
the HV path planner.

169

8.5.6 Remarks on MSE and Computation Time Trade-offs

This portion of the thesis introduced a unique partition method for spatial

estimation that will allow online trajectory planning due to computation time re-

duction. Ordinary Kriging, IIOK, POK, GPR, and PGPR are implemented with

an HV path planner in simulation. A superior computation time was demon-

strated as compared to Ordinary Kriging and IIOK. An apparent trade-off is that

the MSE converges mores slowly, though the ability to provide more frequent field

estimates may still be considered advantageous. POK and PGPR exhibit com-

putation times and accuracy that are favorable for experimental online trajectory

planning and field exploration with an ASV.

Comparing the MSE signals associated with using random waypoints versus

the HV path planner (see Fig. 8.13 and Fig. 8.16) there is a notable difference;

the random waypoints results in MSE signals that decrease more gradually than

compared to the MSE signals for the HV path planner. This seems to be the

case regardless of the spatial estimator. The reason for this faster decrease in

MSE is due to the fact that the HV path planner will tend to leave regions of

the field that are explored because - by definition - explored regions have less

variance than unexplored regions. In Fig. 8.13 there is a noticeable plateauing

effect in the MSE signals. This is because the random waypoints path planner

does not consider the variance associated with the estimate(s) of the field. Using

random waypoints means that the ASV may visit a new point in a region of

the field near many previous measurements. This is not very “useful” and will

not impact the accuracy of the next field estimate compared to the HV path

planner which will always identify the points of highest variance to explore next.

From these simulations it is clear that the choice of path planner matters and

that considering the variance associated with a field estimate can be useful for

170

exploring.

8.6 Optimal Exploration

For an ASV to explore a given area, a question arises; what is the best way

to estimate the field? The answer to that question depends on the what we are

trying to measure in the field and how it is distributed. As mentioned earlier

and throughout this thesis, if a field has no auto-correlation associated with the

field attribute, then the best method of exploring is to simply conduct a zig-zag

search pattern. However, nature is full of auto-correlated features, and many if

not most natural geological features possess a Gaussian distribution (or at the

very least can be assumed to possess such a distribution). Under the assumption

that the field is auto-correlated, the answer for how to optimally explore a field

changes; a zig-zag pattern is not guaranteed to optimally reduce the uncertainty

associated with a field estimate. This section investigates how to conduct optimal

exploration with respect to maximizing the rate of reducing uncertainty of the

field estimate over time.

Given a variance matrix associated with a spatial estimate of a field, we seek

to find an optimal path between two points on the field that maximizes the vari-

ance along the path. This is essentially the path that would suppress the most

uncertainty if followed.

8.6.1 Maximizing Variance Along A Path

The problem of minimizing the estimation error can’t be directly solved, be-

cause we do not have access to the true field prior to exploration. We restate

the problem to one of uncertainty suppression. Specifically, we seek a path that

171

maximizes the total variance along the path but doesn’t exceed the maximum

path distance the ASV can travel. We apply Bellman-Ford optimization in a

graph-search to achieve this result. The Bellman-Ford graph search guarantees

an optimal solution in polynomial time, but terminates in the presence of negative

cycles in the graph. Therefore we choose to constrain the formation of the graph

to be specifically directed and without any cycles, also referred to as a directed

a-cyclic graph (DAG).

Graph Formation Algorithm Description

This section discusses forming a DAG using Algorithm 5. First, a node matrix

is formed, such that each node exists on top of an active discrete coordinate, or

point on the LTP. This means that the graph edges pass over discrete points as

well and thus the edge weights are also associated with the variance at points they

pass over. Nodes can exist at discrete points, but do not take any value associated

with that point, and so that point is said to be inactive in relation to that node.

The minimum distance between adjacent nodes is denoted by ds. It follows that

diagonal distances between nodes is
√

2ds. If ds is very small, implying a high-

resolution and large variance matrix, then it may be computationally preferable

to assign a node to be associated with every n-th discrete element. For sufficiently

large matrices, this can allow for a more reasonable computation time, because

the Bellman-Ford algorithm scales as O(VGEG), where VG and EG are the number

of vertices and graph edges.

172

Algorithm 5 Directed a-cyclic graph formation algorithm
1: Form a node matrix between points a and b with each n-th node corresponding

to an element in the variance matrix
2: For every node in the node matrix add an edge weight wi in the horizontal,

vertical, and diagonal direction for adjacent
3: nodes that point from point a to point b. In order to maintain the a-cyclic

quality of the graph, the following edge conditions must be satisfied:
4: If a horizontal edge is to be added, it must point from point a towards

point b
5: If a vertical edge is to be added, it must point from point a towards point
b

6: If a diagonal edge is to be added, it must point from point a towards point
b

7: return G

It should be noted that there are many different ways to form a directed a-

cyclic graph with varying degrees of complexity, but this method is chosen because

it is straight forward to implement in code. Another example of a graph for a

similar purpose is a hexagonal graph outlined in [32]. It is important to mention

that the DAG is restricted in Alg. 5 such that the edges never point away from

point b; the edges may point in an orthogonal direction, but never backwards

toward point a. This is a restriction that could potentially be lifted with a more

complicated DAG structure, but it would likely involve more complicated methods

of ensuring that no cycles were formed. This idea is left for future work.

Assuming we have a DAG, and a variance matrix from applying kriging or

GPR, we may choose to apply the Bellman-Ford graph search algorithm to max-

imize the variance along a path connecting points a and b. As mentioned earlier,

the Bellman-Ford algorithm terminates in the presence of negative cycles, but

since the graph has no cycles, and therefore the algorithm will not terminate until

an optimal variance path is found. However, consider the case where we attempt

to find a path with maximize variance. Because there are no cycles, the path that

maximizes the integrated variance along it is also the path that travels through

173

the most edges in the DAG. This would correspond to the most integrated vari-

ance. If the node spacing is larger than the point spacing it is possible to visit

all nodes without traversing all edges. For example, in Fig. 8.21 a horizontal

“lawn-mower” pattern could be executed, and this would avoid all diagonal edges.

Depending on the DAG geometry this path can take many forms, but in the DAG

geometry outlined earlier this results in a zig-zag pattern. In reality this is not

efficient either in terms of time and energy use for an ASV. The ASV might not

have enough energy or fuel to travel to every node in the graph in a given area.

The Bellman-Ford algorithm gives the minimum variance to each node. Distance

between nodes can be used to control energy use.

The classical A* algorithm would seem to be a good choice to solve this prob-

lem, but it is limited to finding the shortest path assuming positive edge weights

as a cost. Since we want to maximize the variance, A* would treat variance as

a cost. Using the negative of the variance also leads to a problem: A* cannot

use negative weights. Using the sum of the inverse of the variance ∑ 1
var leads to

edge-cases when the variance is small (e.g.: var < 1). Fig. 8.18 shows one edge

case where the “shortest” inverse variance cost function results in an incorrect

(and sub-optimal) solution with a path that does not possess maximum variance.

Note that stating the problem this way is akin to the finding the “longest” path

and is np hard.

174

A

B C

D

Start

Stop

5

512

0.01

Figure 8.18: An example of a directed a-cyclic graph with weights. This specific
graph shows that if the A* search uses the sum of the inverse variance as the cost
function then the path of maximum variance is not returned.

The inverse variance cost to traverse path A-B-C in Fig. 8.18 is 1
12 + 1

0.01 = 100.083̄,

while the sum of the variance is var(A-B-C) = 12.001. The sum of the inverse

variance cost for path A-D-C is 1
5 + 1

5 = 0.4, but the sum of the variance is

var(A-D-C) = 10. A* will return path A-D-C because the sum of the inverse

variance cost is lower, but var(A-D-C) < var(A-B-C). The path of maximum

variance was not returned. This is because A* uses the addition operator in its

cost function and so we end up running into the fact that 1
a

+ 1
b
6= 1

(a+b) .

Since A* is cannot be used, the solution is to minimize the negative of the

variance using the Bellman-Ford algorithm (which can accommodate negative

weights). In this way, the “cheapest” path is the shortest path with the most

negative integrated total variance. This can be done by assigning the negative of

each element of the variance matrix as a weight for each corresponding edge on

the DAG. An example of an optimal variance path is shown in Fig. 8.21. Again,

if the vehicle had limitless energy and time, the optimal path would be to visit all

possible edges in the graph in a zig-zag pattern. This would yield the highest total

variance. With energy constraints the problem is to determine to what extent a

zig-zag pattern is followed. The width of the pattern and the location of the turns

must be calculated to maximize variance. Algorithm 5 takes Eq. (8.43) as input

175

and produces a graph such as the one shown in Fig. 8.19.

N =


0 1 . . . n− 1
n n+ 1 . . . 2n− 1
...

...
m+ n− 1 m+ n . . . m+ 2n− 1

 (8.43)

Start

Stop

Figure 8.19: Example of a variance directed a-cyclic graph formed by Algo-
rithm 5. Each square represents a discrete point within the LTP. The graph
nodes are represented by circles. There are purposefully fewer nodes than discrete
points to show that node spacing is adjustable, and can be spaced every n × ds.
This is a feature so that a graph search can take less time, if fewer nodes are
desired.

176

0

3

1

4

2

5

Figure 8.20: An example of a variance directed a-cyclic graph formed by Al-
gorithm 5. Here the DAG is shown with 4 × ds spacing to further highlight the
variability of Algorithm 5. The start node (bottom left) is labeled and marked
by a green circle. The end node (top right) is also labeled and marked with a red
circle.

The diagonal edge weights in Fig. 8.19 are equal. For instance w3 = w4 and

w6 = w7. The DAG can be represented in the matrix form:

G =



a0 b0 c0

a1 b1 c1
...

am−1 bm−1 cm−1


(8.44)

where a given row Gi represents a directed graph edge connecting node ai to node

bi with weight ci. Note that the node numbers correspond with the elements from

Eq. (8.43). With G, consider Alg. 6:

177

Algorithm 6 Bellman Ford Optimal Graph Search
Require: G
1: Initialize:
2: v, the number of vertices in the DAG
3: d ∈ Rv×1, a vector whose elements are all initially ∞
4: p ∈ Rv×1, a vector to hold the parent nodes.
5: For i = [0, 1, 2, · · · , v − 1]:
6: For each row (a, b, c) ∈ G:
7: If d(a) 6=∞ and (d(a) + c) < d(b):
8: d(b) = d(a) + c
9: p(b) = a, set the parent of node b
10: For each row (a, b, c) ∈ G:
11: If d(a)! =∞ and (d(a) + c) < d(b):
12: Terminate because a negative cycle was found.
13: return p, The optimal path that maximize variance along the path

Recall that the number of nodes that comprise the DAG can be adjusted, and the

geometry of the DAG can also be customized to different patterns.

178

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

35x45 Variance Matrix with DAG

Possible Edges
Optimal Path
Stop
Start

0

2

4

6

8

10

Va
ria

nc
e

Figure 8.21: Example of a maximum variance, minimum distance path (red
arrows) between a start point (green dot) and a stop point (red dot).

Optimal Path Update Algorithm

As the vehicle moves, it takes measurements that are used to recalculate the

variogram, and form a new estimate of the field along with a variance matrix of the

estimate. This means that the optimal path can be updated up to as frequently

as new measurements can be made and if computation time allows. We present

Algorithm 7.

179

Algorithm 7 Bellman Ford Kriging Exploration
1: r0, rf ,W,∆r
2: Initialize:
3: i = 0
4: ri = r0 // Initialize the vehicle position
5: Initialize the global weight matrix W
6: While ‖ri − rf‖ > ∆r
7: If vehicle position is at a new discrete point:
8: Take a field attribute measurement
9: If mod(i, n) == 0:
10: Form the empirical variogram
11: Fit the Gaussian model variogram to the empirical variogram
12: Form the covariance matrix C
13: Apply Ordinary Kriging to obtain the variance matrix V̂
14: Form a DAG using Alg. 5 and map the weight matrix W elements to

the graph edges
15: Apply Bellman-Ford graph search algorithm to obtain the optimal path

Popt connecting start point p0 to end point p1
16: Control thrust mechanism to follow Popt
17: i+ +
18: return Popt, The optimal path that maximizes the variance along the path

Note that ri =
[
xi yi

]
is the vehicle position in East and North positions in

the local tangent plane. The initial and final vehicle positions are r0 and rf

respectively. ∆r is the distance

An end point may be defined as the stop node in a DAG (see Fig. 8.20), or it

may be set to fulfill another object such (e.g: setting the end point to the next

highest variance point). Algorithm 7 may be run after reaching an end point p1

by specifying a new end point p2, p3, and so on. Steps 2− 8 are executed at every

n−th new measurement, where n may be determined based on the resolution of

the field, the speed of the processor, how often a new range may be desired, etc. A

new DAG can be formed at every n−th new measurement. If endpoints are set to

points of highest variance and one happens to falls outside of the current DAG, a

new DAG will be able to connect to it. Additionally, the last variance matrix can

180

be used as input for the algorithm towards the new end point. Some paths could

cost more energy than a vehicle could spend. However all path costs are known;

all end point path costs are a default output of the Bellman-Ford algorithm, so

these nodes are known. Again, we assume that reducing the spatial estimation

error is the primary goal for using this algorithm. Note that the end points can

be chosen freely, but may be associated with other algorithms or path planners.

8.6.2 Minimizing the Sum of Negative Variance

Bellman-Ford optimization (Alg. 6) is applied to a DAG to minimize the sum

of negative variances (SNV) along the edges of the DAG. This yields the path -

comprised of DAG edges - that sum to the most negative variance. We consider

a cost function to represent how the Bellman-Ford algorithm minimizes the SNV.

Recall that the variance discussed here is associated with the spatial estimate

of the field and not individual measurements. The Bellman-Ford graph search

algorithm is capable of using negative weights. This fact is used in relation to a

cost function:

J =
∫ tf

0
L(x, v)dt+ γ(t) (8.45)

where L(·) is the cost (negative variance) v at at each edge x of the DAG, and

γ(t) is a weighting function that effectively limits the final path length. Note that

γ(t) may be constant. Fig. 8.22 shows the result of recording the SNV over time

for 100 different field exploration simulations. The fields possessed 266 discrete

points.

181

25 50 75 100 125 150 175 200
Time (seconds)

140

120

100

80

60

40

20

(
v)

 (m
et

er
s)

Sum of Negative Variance VS Time

Figure 8.22: The sum of the negative of the variance (SNV) versus time. This
is averaged for the exploration of 100 different fields with 266 discrete points per
field. The SNV plot is asymptotic as it approaches zero.

Finding the path that the minimizes the SNV is important for exploration

in terms of suppressing uncertainty; we seek to explore most uncertain (highest

variance) points within the field. We treat variance as a cost by making it negative.

Thus, when we apply the Bellman-Ford algorithm Alg. 6, the resulting “shortest”

path is the path that minimizes the SNV, or the path with the most variance.

8.6.3 Simulation Results

Here we present simulation results for a Mars Ingenuity-like vehicle approxi-

mated with the Newtonian model from Ch. 5. Recall that the Newtonian model

is a state space model that accounts for aerodynamic drag, moment of inertia,

torque due to thrust, and other disturbances in discrete state space. This level of

complexity was desired to show that the algorithm is vehicle agnostic. We apply

Alg. 7 between two points in an unexplored field. The model parameters where

chosen such that the mass m = 20.0kg, the radius r = 0.045m, and a solid sphere

182

was assumed for the moment of inertia I = 2
5mr

2.

Setup

The field was artificially created using the same 2D convolution methods shown

in [80]. The field resolution was ds = 4.0-meters. The DAG node spacing was

n = 2, n × ds. The starting position was r0 =
[
−52.0 −4.0

]
. The stopping

position was rf =
[
32.0 50.0

]
. The distance cost or DAG weight matrix W for

is based on Fig. 8.25.

Figure 8.23: Vehicle position from the starting to ending point.

183

Figure 8.24: Estimation error versus time.

x (meters)

0 20
40

60
80

100 y (
mete

rs)

0
20

40
60

80
100

Ki
ne

tic
 E

ne
rg

y
(Jo

ul
es

)

0
5
10
15
20
25
30
35
40

Energy Cost Gradient

Figure 8.25: The energy cost gradient used as a cost constraint in simulation
with Alg. 7.

Remarks on Results

Fig. 8.23 shows the final path taken by the vehicle after applying Alg. 7. The

structure of the DAGs can be seen in the final path. Fig. 8.24 shows the mean

184

absolute error (MAE) of the field estimates over time. The sharp drops in MAE

correspond to new field estimates that incorporated one or more particularly “use-

ful” field measurements. It is important to consider that the MAE can be plotted

with respect to time, number of measurements made, the percent of total avail-

able discrete measurements, or other metrics. The field attribute being measured

could be depth, or it could be another aspect of a local environment that will

not change rapidly over time (such as the concentration of certain elements or

chemical compounds in the soil).

8.7 Numerical Comparison of Path Planners and

Spatial Estimation

Similar to the approaches outlined in [32], [83], and [74], a handful of path

planners are compared to the path planner based on the graph search method

shown above. The comparisons are made in terms of the reduction of the mean

square error (MSE) versus the percentage of field measured (the number of mea-

sured discrete points divided by the total number of discrete points) over time,

as well as the MSE versus the time spent exploring, respectively. All path plan-

ners are choosing waypoints based on the variance of their most recent respective

field estimates. That is, the path planners are informed by a spatial estimation

technique, such as Ordinary Kriging, GPR, POK, or PGPR. The path planners

include 1) a “greedy” or myopic planner that travels to the nearest point of highest

variance within a prescribed radius of the vehicle’s location, 2) a simple zig-zag

pattern that the vehice follows regardless of the variance of the field estimate, and

3) the highest variance (HV) Bellman Ford path planner that plans an optimal

route that maximizes the variance along the path with respect to a local graph

185

(as outlined above) towards the current global point of highest variance.

Zig-zag Path Planner

This is the simplest path planner of the three. A set of waypoints are statically

defined that makeup a zig-zag path between the vehicle’s starting position w0 =[
x0 y0

]
and a pre-defined stopping positionwf =

[
xf yf

]
. The starting position

w0 is defined in this work as the lower left corner or minimum East and North

position of the field. The stopping position wf is defined as the top right or

maximum East and North position of the field. The Bellman-ford graph search

Alg. 6 can be run once assuming some ds and no distance cost to form a zig-zag

path as mentioned earlier. This generates a static path consisting of an unchanging

list of waypoints for the ASV to follow.

Myopic Path Planner

The myopic path planner is defined in Alg. 8. It essentially travels to the point

of immediate highest variance at some distance away, and does not incorporate

future considerations of overlapping paths over time. This algorithm is different

than the highest variance path planner, in that it only picks from among points

that are a certain radius way from the vehicle position. By contrast the highest

variance path planner chooses from all the points in the field, regardless of vehicle

position.

186

Algorithm 8 Myopic Path Planner
1: Move towards the next waypoint
2: Make measurements along the way to the next waypoint
3: For every nth new measurement estimate the field
4: Once at the next waypoint designate the new next waypoint as the point r

distance away that possesses the highest estimate variance.
5: repeat steps 1 - 4
6: return Ẑk, V̂k

HV Bellman Ford Path Planner

The HV Bellman Ford path planner is defined in Alg. 9. The idea is to contin-

ually calculate the optimal path with respect to the latest field estimate variance,

as simlar to Alg. 7.

Algorithm 9 HV Bellman Ford Path Planner
1: Move towards the next waypoint
2: Make measurements along the way to the next waypoint
3: For every nth new measurement in between waypoints:
4: estimate the field
5: calculate the optimal path to the next waypoint using the Bellman Ford

graph search Alg. 6 that maximizes the variance along the path
6: Once at the next waypoint set the new next waypoint as the global point that

possesses the highest estimate variance.
7: repeat steps 1 - 6
8: return Ẑk, V̂k

8.7.1 Simulation Procedure

A number of different simulations were run to test combinations of path plan-

ners with spatial estimators. The spatial estimators included GPR, PGPR, Ordi-

nary Kriging (OK) and Partitioned Ordinary Kriging (POK). These tests included

making a batch of fields represented by GRFs (see subsection 8.5.2). One of the

parameters of the tests was the spatial resolution for the fields ds. A batch of

100 fields were generated and explored with simulated ASVs using the augmented

187

Nomoto ship steering model from Ch. 5 with the aforementioned path planners

and spatial estimators. One batch of 100 fields was created with ds = 5.0 meters

for a total of 266 discrete points per field, and another batch of 100 fields was cre-

ated with ds = 2.0 meters for a total of 1,518 discrete points per field. Fig. 8.27

shows an example of a batch of fields used in the simulation. A high level outline

of the simulation procedure is shown in Fig. 8.26.

Create n field(s) For each field:

Instantiate m vehicle(s) with:

A model (inverse bicycle,
Nomoto, etc.)

A path planner (Zig-zag,
Myopic, HV-Bellman-Ford)

A spatial estimator (GPR, PGPR,
OK, IIOK, POK)

1.2

1.1 2.1

Step 1: Simulation Setup Step 2: Run Simulation

For each vehicle:
2.1.1

Run main simulation loop

Record at each time-step:
2.1.1.1

MSE of field estimate

% field measured
Computation time for spatial
estimation
Computation time of path
planner

Other vehicle metrics

Specify the spatial resolution ds
Specify the field width and length
Specify the convolution
parameters (kernel size, number
of convolutions, etc).

Figure 8.26: A high-level overview of the simulation procedure.

188

20
0

20
Field 0 Field 1 Field 2 Field 3

20
0

20
Field 4 Field 5 Field 6 Field 7

20
0

20
Field 8 Field 9 Field 10 Field 11

0 50
20
0

20
Field 12

0 50

Field 13

0 50

Field 14

0 50

Field 15

10

8

6

4

2

0

De
pt

h
(m

et
er

s)

East (meters)

No
rth

 (m
et

er
s)

Figure 8.27: An example of 16, rather than 100 GRFs acting as the “true”
simulated fields for the ASVs to explore and estimate during simulation.

8.7.2 Simulation Results

After an ASV explored a field, the MSE versus the percentage of the field

measured and the MSE versus time was recorded. For example Fig. 8.28 shows

the paths of three separate ASVs after exploring approximately 40% of a field.

Fig 8.29 shows all of the MSE signals versus the percentage of the field measured

corresponding to each of the fields in the 100 batches. Figs. 8.31 and 8.32 are the

results of the simulation batches.

189

40 20 0 20 40
East (meters)

20

10

0

10

20

30

40

No
rth

 (m
et

er
s)

Position

(a)

40 20 0 20 40
East (meters)

20

10

0

10

20

30

40

No
rth

 (m
et

er
s)

Position

(b)

40 20 0 20 40
East (meters)

20

10

0

10

20

30

40

No
rth

 (m
et

er
s)

Position

(c)

Figure 8.28: The paths (starting in the bottom left corner) of three separate
ASVs after exploring ∼ 40% of a field. (a) is the Zig-zag path planner, (b) is the
myopic path planner, and (c) is the HV Bellman Ford path planner.

5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%
Percentage of Field Measured

0

5

10

15

20

25

30

35

M
SE

 (m
et

er
s2)

Mean Squared Error of Field Estimates

(a)

5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%
Percentage of Field Measured

0

5

10

15

20

25

30

M
SE

 (m
et

er
s2)

Mean Squared Error of Field Estimates

(b)

5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%
Percentage of Field Measured

0

10

20

30

40

M
SE

 (m
et

er
s2)

Mean Squared Error of Field Estimates

(c)

Figure 8.29: All MSE signals versus the percent field measured of the three
separate ASVs after exploring ∼ 40% of a field. (a) is the Zig-zag path planner,
(b) is the myopic path planner, and (c) is the HV Bellman Ford path planner.
The spatial estimator was GPR. The field resolution ds = 5.0 meters. Each field
had 266 discrete points.

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%
Percentage of Field Measured

0

10

20

30

40

50

M
SE

 (m
et

er
s2)

Mean Squared Error of Field Estimates

(a)

0.0% 10.0% 20.0% 30.0% 40.0%
Percentage of Field Measured

0

10

20

30

40

50

M
SE

 (m
et

er
s2)

Mean Squared Error of Field Estimates

(b)

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%
Percentage of Field Measured

0

10

20

30

40

50

M
SE

 (m
et

er
s2)

Mean Squared Error of Field Estimates

(c)

Figure 8.30: All MSE signals versus the percent field measured of the three
separate ASVs after exploring ∼ 40% of a field. (a) is the Zig-zag path planner,
(b) is the myopic path planner, and (c) is the HV Bellman Ford path planner.
The spatial estimator was PGPR. The field resolution ds = 5.0 meters. Each field
had 266 discrete points.

190

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%
Percentage of Field Measured

0

10

20

30

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag
Myopic
HV-Bellman-Ford

(a)

0 50 100 150 200 250 300 350
Time (seconds)

0

10

20

30

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag
Myopic
HV-Bellman-Ford

(b)

0.0% 10.0% 20.0% 30.0% 40.0%
Percentage of Field Measured

0

10

20

30

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag PGPR
Myopic PGPR
HV-Bellman-Ford PGPR

(c)

0 50 100 150 200 250 300 350
Time (seconds)

0

10

20

30

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag PGPR
Myopic PGPR
HV-Bellman-Ford PGPR

(d)

Figure 8.31: The MSE signals from Fig. 8.29 and Fig. 8.30 were averaged,
and their standard deviations were computed. These signals were plotted as a
function of percent area explored (a) and (c), and as a function of time (b) and
(d). This is the result of running path planners on 100 separate GRFs with
ds = 5.0 meters for a total of 266 discrete points per field. The lighter colors
indicate one standard deviation from the mean. (a) and (B) correspond to GPR,
and (c) and (d) correspond to PGPR.

191

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%
Percentage of Field Measured

0

5

10

15

20

25

30

35

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag
Myopic
HV-Bellman-Ford

(a)

0 50 100 150 200 250 300 350
Time (seconds)

0

5

10

15

20

25

30

35

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag
Myopic
HV-Bellman-Ford

(b)

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5%
Percentage of Field Measured

0

5

10

15

20

25

30

35

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag PGPR
Myopic PGPR
HV-Bellman-Ford PGPR

(c)

0 50 100 150 200 250 300 350
Time (seconds)

0

5

10

15

20

25

30

35

40

M
SE

 (m
et

er
s2)

Comparison of Path Planner Field Estimate MSE
Zig-zag PGPR
Myopic PGPR
HV-Bellman-Ford PGPR

(d)

Figure 8.32: Path planner field estimate mean MSE comparisons versus percent
area explored (a) and (c), and as a function of time (b) and (d). This is the result
of running path planners on 100 separate GRFs with ds = 2.0 meters for a total of
1,518 discrete points per field. The lighter colors indicate one standard deviation
from the mean. (a) and (b) correspond to GPR, and (c) and (d) correspond to
PGPR.

192

8.7.3 Conclusion and Caveats

This section introduced an optimal method to explore a field in terms of sup-

pressing uncertainty by maximizing the variance along a path. The simulation

results seem to indicate that the Alg. 9 outperforms both the myopic and zig-zag

path planning algorithms. The differences are not overwhelming most likely be-

cause they are both a form of highest variance path planner. However, the key

drawback to Alg. 9 is that it is computationally demanding compared to the other

two path planners if it is informed by GPR or Ordinary Kriging. This is due to

the computational cost of the Bellman Ford graph search algorithm, specifically

when the DAG formed between the vehicle’s current position and the new highest

variance point is large.

One way around this problem is to tune the resolution of the DAG; as men-

tioned earlier, the number of nodes does not necessarily have to match the number

of discrete points. The question then becomes; how do we decide the ratio of num-

ber of DAG nodes to the total number of discrete points or, how do we tune the

size of the DAG? One way to make this choice is to base it off of the spatial

auto-correlation of the estimated field thus far. That means that the variogram

model’s range could be used to proportionally tune the size of the DAG. Future

work should explore this idea and other possible approximations of optimal paths

with respect to variance along the path.

Another aspect for future work is to investigate the effects of the degree to

which the vehicle explores the space between two points. This can be tuned

depending on the weight of the variance versus the weight of the distance cost.

This could be an adaptive feature based on the observed field over time, perhaps

being proportional to the range of the variogram.

Lastly, the discussion of optimal exploration did not involve using multiple

193

vehicles and obstacle avoidance. Work by [74] outlines some methods for multi-

vehicle exploration. Introducing this idea further complicates the problem of

optimal exploration, but has obvious benefits in reducing overall exploration time.

Obstacle avoidance is important for autonomous vehicles, especially if multiple

vehicles are deployed and their paths depend on the surrounding environment.

Future work should focus on incorporating obstacle avoidance that are application

specific.

194

Chapter 9

Experimental Results

This chapter examines experimental results of applying Ordinary Kriging and

POK on real-world data collected by the Slug 3 ASV. Their performance in terms

of depth field estimation accuracy and computation time versus the number of

points measured is discussed. This chapter also examines two custom-made au-

tonomous surface vehicles, the Slug 2 and Slug 3 along with results from a number

of experimental test-runs. Sec. 9.6 shows the autonomous waypoint tracking for

the Slug 3. It had multiple successful test-runs, which show that the guidance

algorithm and subsequent simulations from Ch. 7 can be considered validated to

a high degree of confidence. Sec. 9.7 shows the effectiveness of the EKF for posi-

tion estimation for the Slug 2 and Slug 3. Sec. 9.8 shows a speed estimate versus

time of the Slug 2, also using the EKF. Sec 9.9 shows the heading angle estimate

versus time of the Slug 3, comparing the estimate with the COG angle from the

onboard GPS receiver.

195

9.0.1 Note on Experimental Results

The reader will note that this chapter does not hold all experimental results.

Recall that throughout this thesis, there have been both simulation and experi-

mental results shared within each chapter. There are yet more experimental re-

sults in the appendix of this thesis along with other supplemental material. This

chapter highlights key findings within this research and the related experimental

results.

9.1 Experimental Results

Work done by [83] compares various path planners informed by the Ordinary

Kriging method. This section uses the field estimates to inform basic path plan-

ners. It should be noted that neither [83] nor [80] used real-world data to test their

methods. Here we apply these same methods on real-world data to further the

case of their applicability for online updates for autonomous vehicle exploration.

Specifically, we seek to meet strict time requirements that are representative of

real-world constraints (such as system battery life).

The goal is to develop a robust and real-time method for spatial estimation to

inform various path planners used by the ASV.

9.1.1 ASV System Block Diagram

To measure the depth of the pond, an onboard micro-controller and raspberry

pi are used for hardware peripheral interfacing, data logging, and the ability for

autonomous navigation based on more computationally demanding spatial esti-

mation and path planning. However, though the micro-controller interfaces with

the servos, electronic speed controllers (ESCs), GPS, and the inertial measure-

196

ment unit (IMU), the depth sensor is connected to the raspberry pi directly,

to simplify depth data logging. MAVLink messages are exchanged between the

micro-controller and the raspberry pi. Messages include additional vehicle status

information for logging, including attitude with respect to the LTP, GPS position,

and other useful information. See Ch. 2 for the full design of the experimental

platform.

9.1.2 Experimental Procedure

Collecting Real-World Data

Depth data was collected from a local pond with a depth echo-sounder onboard

the ASV. The collected depth measurements were associated with GPS coordi-

nates of the ASV’s location. The data are presented in terms of the LTP, with the

x and y-axes representing the East and North directions in meters respectively.

A portion of the data collected by the ASV was via remote operation, and

other data was collected autonomously. The intent was to collect depth data

along a pseudo-random path created arbitrarily by the operator, so as to validate

the quality of two spatial estimation methods. If a spatial estimation method were

to depend on a specific hard-coded path it might be susceptible to disturbances.

Ideally, small disturbances while navigating should not - by themselves - signifi-

cantly impact the quality of the spatial estimator. A pseudo-random path could

be considered similar to the random waypoint path planner discussed in Ch. 8.

Such a path is a useful first step for collecting data simply to check that a spatial

estimation algorithm can work with real data.

197

Figure 9.1: An example of real depth-sensed data corresponding to GPS location
of the ASV, projected onto the LTP. The start (green) and stop (red) markers
indicate where the ASV initially launched and returned. The black dots represent
discrete depth measurements taken by the ASV using the onboard ping echo-
sounder

198

Validation Metrics for OK versus POK

A subset of all depth measurements and corresponding GPS positions is used

to form the first variograms. For instance, 25% of the total number of points

measured may be used to initially determine the range, nugget, and sill of the

variograms. This is not explicitly required, but can generally allow for more

accurate starting predictions by both Ordinary Kriging and POK. Work by [83]

and [74] also use an initial set of data points to form the starting variograms and

covariance matrices respectively. A point that is estimated is compared to a direct

measurement in the same location. The measured points are considered “true”

points. True points come from separate data sets. The true depth measurements

- in reality - have some noise (see Ch. 3). Comparing two measurements at the

same point is avoided; the number of true points decreases if a new measurement

occupies the same location as a true point. The reason for this is to avoid the

case of comparing two measurements at the same point, because this would not

facilitate determining the accuracy of the field estimate at that point.

Measurements are incrementally added as input to both Ordinary Kriging and

POK. These are referred to as “scanned” points, having depth distance and East

and North distance in meters. As the number of scanned points increase, the

MAE is expected to decrease. An important factor is the rate at which the MAE

converges towards zero, as the number of scanned points increases. True points

9.1.3 Results

Below are the comparisons between Ordinary Kriging, and POK in MAE and

computation time, with real depth measurement data as input.

199

Figure 9.2: A comparison of computation time of Ordinary Kriging, and POK
versus than number of depth measurements.

Figure 9.3: A comparison of MAE of Ordinary Kriging, and POK versus then
number of depth measurements.

200

The same procedure resulting in Fig. 9.2 and Fig. 9.3 was repeated for other

separate sets of depth measurement data, taken at different times and locations.

Three separate data-sets are shown: (a), (b), and (c). Both Ordinary Kriging,

and POK are run on each data-set independently, shown in Fig. 9.4 and Fig. 9.5.

Figure 9.4: A comparison of computation time of ordinary krging, and POK
versus then number of depth measurements for multiple separate sets of depth
measurement data.

201

Figure 9.5: A comparison of MAE of ordinary krging, and POK versus then
number of depth measurements for multiple separate sets of depth measurement
data.

9.1.4 Remarks on POK

The POK method was demonstrated to possess favorable computation time

compared to Ordinary Kriging, using real environmental data. The MAE com-

parison showed an initially higher error for POK, but after more data points

are collected, POK appears to have lower MAE. The computation time is also

favorable for online exploration.

9.2 GPR Experimental Field Reconstruction

Experimental depth measurements collected by the Slug 3 ASV were used as

input to GPR to reconstruct the true depth field of a small body of water. Fig. 9.6

shows an example of a sparsely-measured depth field of a small body of water.

One method to reconstruct the depth field is to interpolate the depth mea-

202

0 5 10 15 20 25 30 35 40
East (meters)

0

5

10

15

20

25

30

35

40

No
rth

 (m
et

er
s)

Sparsely Sampled Depth-Field

3.0

2.5

2.0

1.5

1.0

De
pt

h
(m

et
er

s)

Figure 9.6: An example of a sparsely measured depth field of a small
body of water

surement points in space. This can be done with Ordinary Kriging or GPR and

their respective variations discussed in the Ch. 8. Fig. 9.6 shows the reconstructed

depth field using GPR. The hyper-parameters were based on the empirical mean

and standard of the data collected.

Fig. 9.6 and Fig. 9.7 show the depth measured by the ASV as it moved from

shallow water (indicated by the brighter colors) to deeper water. The ASV moved

in a large loop and then took measurements within that loop. The areas toward

the edges of Fig. 9.7 are estimated to be similar to the measurements taken in the

shallower water. Measurements taken near the center of the pond are deeper.

203

0 5 10 15 20 25 30 35 40
East (meters)

0

5

10

15

20

25

30

35

40

No
rth

 (m
et

er
s)

Experimental Depth Field Constructed
From Sparse Measurements

1.4

1.2

1.0

0.8

0.6

De
pt

h
(m

et
er

s)

Figure 9.7: An experimental depth field reconstructed from depth mea-
surements collected by the Slug 3 ASV. GPR was used to interpolate
depth measurements in space. The hyper-parameters were based on the
empirical mean and standard deviation of the collected data.

9.3 Experimental Field Reconstruction and Path

Planning

Two path planners were used to guide the Slug 3 ASV, the Zig-zag and HV-

Bellman-Ford path planner. The former is a static path planner, and the latter is

dynamic.

204

9.3.1 Depth Measurements with Zig-zag Path Planner

Below are depth field measurements (associated with the position of the Slug

3 ASV using the Zig-zag path planner and navigating autonomously) and depth

field reconstructions based on these depth measurements, shown in Fig. 9.8 and

Fig. 9.9

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Sparsely Sampled Depth-Field

1.0

0.9

0.8

0.7

0.6

0.5

De
pt

h
(m

et
er

s)

(a) Depth measurements collected au-
tonomously using the Zig-zag path planner

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Experimental Depth Field Constructed
From Sparse Measurements

1.0

0.9

0.8

0.7

0.6

0.5

De
pt

h
(m

et
er

s)

(b) Reconstructed depth field from depth
measurements using GPR

Figure 9.8: An experimental depth field reconstructed from depth measurements
(left) collected by the Slug 3 ASV while navigating autonomously using the Zig-
zag path planner. GPR was used to interpolate depth measurements in space
(right) on board the Slug 3 during run-time. The hyper-parameters were based
on the empirical mean and standard deviation of the collected data.

205

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Sparsely Sampled Depth-Field

1.0

0.9

0.8

0.7

0.6

0.5

De
pt

h
(m

et
er

s)

(a) Depth measurements collected au-
tonomously using the Zig-zag path planner

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Experimental Depth Field Constructed
From Sparse Measurements

1.0

0.9

0.8

0.7

0.6

0.5

De
pt

h
(m

et
er

s)

(b) Reconstructed depth field from depth
measurements using GPR

Figure 9.9: A second experimental depth field reconstructed from depth mea-
surements (left) collected by the Slug 3 ASV while navigating autonomously using
the Zig-zag path planner. GPR was used to interpolate depth measurements in
space (right) on board the Slug 3 during run-time. The hyper-parameters were
based on the empirical mean and standard deviation of the collected data.

9.3.2 Depth Measurements with HV-Bellman-Ford Path

Planner

Below are depth field measurements (associated with the position of the Slug

3 ASV using the HV-Bellman-Ford path planner and navigating autonomously)

and depth field reconstructions based on these depth measurements, shown in

Fig. 9.10 and Fig. 9.11

206

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Sparsely Sampled Depth-Field

1.0

0.9

0.8

0.7

0.6

0.5

0.4

De
pt

h
(m

et
er

s)

(a) Depth measurements collected au-
tonomously using the HV-Bellman-Ford
path planner

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Experimental Depth Field Constructed
From Sparse Measurements

1.0

0.9

0.8

0.7

0.6

0.5

0.4

De
pt

h
(m

et
er

s)

(b) Reconstructed depth field from depth
measurements using GPR

Figure 9.10: An experimental depth field reconstructed from depth measure-
ments (left) collected by the Slug 3 ASV while navigating autonomously using
the HV-Bellman-Ford path planner. GPR was used to interpolate depth measure-
ments in space (right) on board the Slug 3 during run-time. The hyper-parameters
were based on the empirical mean and standard deviation of the collected data.

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Sparsely Sampled Depth-Field

1.0

0.9

0.8

0.7

0.6

0.5

De
pt

h
(m

et
er

s)

(a) Depth measurements collected au-
tonomously using the HV-Bellman-Ford
path planner

20 15 10 5 0 5 10 15 20
East (meters)

20

15

10

5

0

5

10

15

20

No
rth

 (m
et

er
s)

Experimental Depth Field Constructed
From Sparse Measurements

1.0

0.9

0.8

0.7

0.6

0.5

De
pt

h
(m

et
er

s)

(b) Reconstructed depth field from depth
measurements using GPR

Figure 9.11: A second experimental depth field reconstructed from depth mea-
surements (left) collected by the Slug 3 ASV while navigating autonomously using
the HV-Bellman-Ford path planner. GPR was used to interpolate depth measure-
ments in space (right) on board the Slug 3 during run-time. The hyper-parameters
were based on the empirical mean and standard deviation of the collected data.

207

9.4 MSE Spatial Estimation Comparison of Zig-

zag and HV-Bellman-Ford

The Slug 3 ASV system was used to autonomously collect depth measure-

ments of the Los Gatos Creek County Park pond number 2. Spatial estimation

algorithms and path planners were paired, applied in autonomous exploration,

and then compared. The idea was to compare a sub-set of the combinations of

path planners and spatial estimators based on the simulation results Ch. 8. A pro-

cedure was created for comparing the spatial estimations made during run-time.

9.4.1 Procedure

This subsection outlines the procedure to reproduce this experiment. The first

step was to make sure all systems and subsystems of the Slug 3 were functional

by reviewing the pre-launch checklist, and conducting a quick remote controlled

test to ensure that the vehicle could be recovered remotely in case of a malfunc-

tion. The second step was to re-launch the Slug 3, switching it to autonomous

exploration mode, to explore the field using the Zig-zag path planner and a spatial

estimator, such as GPR. The third step was to re-launch the Slug 3 again, still in

autonomous exploration mode, and explore the field using the HV-Bellman-Ford

path planner (Alg. 9). Estimates were made at run-time for both autonomous

test-runs. The ground truth was a separate set of depth measurements from

other test-runs taken in the same location and combined together. The depth-

measurements and other data were recorded. Fig. 9.12 shows the high-level steps

used to collect the experimental results.

208

Setup Slug 3 ASV

Launch the Slug 3 ASV1.2

1.1

Step 1: Survey the Field

Review the pre-launch checklist

Double check the pre-launch
checklist

Manually control the ASV and
collect depth measurements
Log telemetry data
Return to launch site

Setup Slug 3 ASV3.1

Step 3: Auto-Explore the Field

Review the pre-launch checklist

Double check the pre-launch
checklist
Specify Zig-zag, HV-Bellman
Ford, or other path planner
Specify PGPR, or other spatial
estimator

For each field estimate:
4.1

Step 4: Compare Estimates & Field

Calculate the MSE between
surveyed field and estimated field

Analyze Results:
4.2

Plot MSE versus time

Launch Slug 3 ASV
2.5
Log depth measurements
Log telemetry data
Return to launch site

Check Slug 3 ASV
2.3

Review the pre-launch checklist

Prepare Autonomous Navigation
2.4
Review the pre-launch checklist
Specify the Zig-zag path planner

Compare Depth Measurements
2.6

Calculate the MSE between the
manually collected depth
measurements and the
autonomously collected depth
measurements.

Step 2: Auto Survey the Field

Launch Slug 3 ASV
3.2

Log depth measurements
Log telemetry data
Log field estimates

Return to launch site

Figure 9.12: The high-level overview of the experimental procedure.

9.4.2 Experimental Results

Fig. 9.13 shows the comparison of two MSE signals from two separate au-

tonomous test-runs of the Slug 3 ASV. It is clear that the HV-Bellman-Ford path

planner paired with the PGPR spatial estimator had a more consistent rate of

decreasing MSE. Fig. 9.14 shows the true depth field. It is a combination of

a number of separate depth-data collected form separate test-runs of the Slug

3. Fig. 9.15 shows the estimate of the true depth field using the PGPR esti-

mator paried with the HV-Bellman-Ford path planner. The HV-Bellman-Ford

path planner and Zig-zag path planner were chosen because the former seemed

like the most complicated, novel, and most capable path planner (based on the

simulations in Ch. 8 and the latter seemed like the most simple and practical

path planner to implement. In short, they both seemed to be on either end of

209

spectrum of complexity vs simplicity. The POK and PGPR algorithms were cho-

sen because they both highlight one of the key points of this thesis; partitioning

the computationally demanding aspects of certain spatial estimation algorithms

can help extend their use in real-time autonomous vehicle applications. Essen-

tially, both algorithms were chosen because they scale better with the number of

measurements (see Ch. 8).

50 60 70 80 90 100
Number of Points Measured

0.0

0.2

0.4

0.6

0.8

M
SE

 (m
et

er
s)

MSE vs Number of Points Measured
POK Zig-zag
PGPR HV-Bellman-Ford

Figure 9.13: MSE versus number comparison between two autonomous
test-runs of the Slug 3. One test run used the Zig-zag path planner (static)
and the other used the HV-Bellman-Ford path path planner (dynamic).

For the sake of brevity a pairing between an estimation method and a path

planner will be referred to as an exploration method. The comparison in Fig. 9.13

shows that the PGPR HV-Bellman-Ford exploration method starts with an ini-

tially higher MSE signal, but decreases at a more consistent rate than the POK

Zig-zag method. The two exploration methods have a comparable final MSE. In-

terestingly the POK Zig-zag method shows an abrupt drop in MSE. This might

be due to the POK Zig-zag combination finding a particularly informative (or

“lucky”) measurement that the PGPR HV-Bellman-Ford happened to miss. How-

ever, it may be the case that given a smaller or larger field the MSE performance

210

outcome could vary. Future work should explore the contribution of the scale of

the field in relation to the exploration performance. Conceivably a larger field

or larger number of field measurements might point towards better performance

from the PGPR HV-Bellman-Ford method. Furthermore POK may partition the

field differently than PGPR if the input measurements differ which would imply

that the range of the variograms also differed. If the partitions are different it is

possible for a local field estimate to be less or more accurate. Large drops in MSE

were observed in simulation.

True Depth Field vs Final Estimated Field

The measurement-only depth field is shown in Fig. 9.14 and the estimated

field is shown in Fig. 9.15. This is meant as visual indicator to help show that the

measured depth field visually corresponds to the final PGPR estimate; the MSE

signals do a reasonable job to reflect the degree of similarity between true and

estimated depth fields.

0 5 10 15 20 25
East (meters)

0

2

4

6

8

10

12

14

No
rth

 (m
et

er
s)

Measured Depth Field

1.0

0.9

0.8

0.7

De
pt

h
(m

et
er

s)

Figure 9.14: The ”true“ depth field used to compare the spatial esti-
mates at run-time. This is a combination of different separate test-run
depth data.

211

0 5 10 15 20 25
East (meters)

0

2

4

6

8

10

12

14

16

No
rth

 (m
et

er
s)

Experimental Depth Field Constructed
From Sparse Measurements

1.0

0.9

0.8

0.7

0.6

0.5

De
pt

h
(m

et
er

s)

Figure 9.15: An estimate of the true depth field using the PGPR esti-
mator paried with the HV-Bellman-Ford path planner. There is a clear
resemblance to the measurement-only depth field shown in Fig. 9.14; the
shallow lower left region shows good agreement, and the center and center
right regions are of similar lower depth.

This section highlighted the ability of the Slug 3 ASV to use the HV-Bellman-

Ford path planner and the PGPR spatial estimator to estimate the depth field of

the Los Gatos Creek County Park pond number 2. The MSE signals shown in

this section agree with those shown in simulation in Ch. 8. While this is a useful

comparison, it is a small-scale experiment. A larger area for exploration and more

comparisons between path planners and spatial estimators is required for more

accurate insights.

212

9.5 Comparing all Combinations of Path Plan-

ners and Spatial Estimators

All combinations of path planners and spatial estimators were compared ex-

perimentally (see Ch. 8 for simulation comparison results). The same procedure,

shown in Fig. 9.12, was applied. The Slug 3 was used to measure the depth at

different points within a specific area in the Los Gatos Creek County Park pond

number 2. The raw depth measurements associated with using different path

planners (Zig-zag, Myopic, and HV-Bellman-Ford) is shown in Fig. 9.16. Data

including the depth measurements, field estimates, and other information were

recorded for each experimental test-run of the Slug 3. Fig. 9.17 shows the MSE

for all combinations of path planners and spatial estimators.

0 10 20 30 40 50
0

10

20

30

40

50

Zig-zag
Path Planner

0 10 20 30 40 50
0

10

20

30

40

50

Myopic
Path Planner

0 10 20 30 40 50
0

10

20

30

40

50

HV-Bellman-Ford
Path Planner

5

4

3

2

1

De
pt

h
(m

et
er

s)

East (meters)

No
rth

 (m
et

er
s)

Figure 9.16: Experimental depth data recorded by the Slug 3 ASV.

213

20 30 40 50 60 70
Number of Points Measured

0

2

4

6

8

10

12

14

M
SE

 (m
et

er
s)

MSE vs Number of Points Measured

Zig-zag with GPR
Zig-zag with PGPR
Zig-zag with OK
Zig-zag with POK
Myopic with GPR
Myopic with PGPR
Myopic with OK
Myopic with POK
HV-Bellman-Ford with GPR
HV-Bellman-Ford with PGPR
HV-Bellman-Ford with OK
HV-Bellman-Ford with POK

Figure 9.17: The MSE of all path planner and spatial estimator combi-
nations from experimental data collected by the Slug 3.

214

Table 9.1 shows the final MSE values for all combinations of path planners

and spatial estimators. It appears that there is a difference between Fig. 9.5

and Fig. 9.17. This is likely due to the fact that the field used in the former

was relatively flat (see Fig. 9.7), whereas the field explored in the latter had

more variation (Fig. 9.15). This implies that field partitions that have yet to be

estimated may, by default, possess values that happens to results in a low field

estimate error. Note that this is not the case for a field with higher variation,

which is evident in the difference in estimate error in Fig. 9.13.

Table 9.1: Final MSE for Path Planner and Spatial Estimator Pairs

GPR PGPR OK POK
Zig-zag 9.65 12.71 6.40 6.57
Myopic 9.48 7.50 5.67 10.27
HV-Bellman-Ford 10.06 6.90 5.61 6.33

Final Considerations

In terms of MSE as a function of the number of measurements made, OK

performs best when paired with HV-Bellman-Ford and the Myopic path planners.

OK does not perform as well when paired with the Zig-zag path planner. POK

shows a large decrease in MSE when paired with HV-Bellman-Ford. It appears

that the POK and Zig-zag combination initially has a low MSE, but then in-

creases after 30 measurements, and finally decreases close to OK and Zig-zag at

approximately 57 measurements. This is likely due to the first estimates being

initially “lucky” with very few measurements. It was shown in Ch. 8 that the

computation time for OK scales poorly compared to the other spatial estimators

(see Fig. 8.14). Note that the overall MSE in Fig. 9.17 is greater than Fig. 9.13.

This is due to the fact that the Fig. 9.17 is showing estimate results for a larger

215

area and with comparable fewer measurements.

Considering both computation time and final MSE, the best choice for a com-

bination of path planner and spatial estimator appears to be HV-Bellman-Ford

paired with POK or PGPR. HV-Bellman-Ford and OK show the lowest final

MSE value, but OK scales poorly with many measurements (see Ch. 8). Both

HV-Bellman-Ford paired with POK or PGPR show significant drops in MSE,

scale well with many measurements, and have final MSE values that are com-

parable with OK. The POK and Myopic combination and the PGPR and Zig-

zag combination both have higher final MSE values. Between choosing between

HV-Bellman-Ford paired with POK or PGPR, the final best choice is the com-

bination of HV-Bellman-Ford paired with POK. This is because POK inherently

requires calculating the variogram, whereas PGPR makes use of the variogram as

an additional computation step. The best path planner and spatial estimator is

HV-Bellman-Ford paired with POK, based on these results.

9.6 Autonomous Waypoint Tracking

The Slug 3 ASV system was used in extensive testing in the Los Gatos Creek

County Park pond number 2 (it did not have a name at the time of this writing).

This location was chosen based on a number of factors: 1) it was close to the

author’s home, thus reducing personal cost of transportation, 2) it was one of the

few locations that specifically allowed autonomous and remote controlled boating

via permit and inspection from a County Park official, and 3) it was large enough

(∼ 75m × 120m) to facilitate and be representative of a real-world environment

that the Slug 3 could be deployed in. Note that the size of the pond would vary

slightly depending on water level, rainfall, the water reserves in the park water

treatment facility (located nearby), and the amount of pond scum. Pond scum

216

in particular posed a problem because it could become so dense that it could

stall the propeller motors and in one instance one of the onboard electronic speed

controllers exploded in a cloud of smoke due to sinking too much current while

stalling. As such, testing was conducted on days and in areas with little to no

pond scum.

This location was repeatedly visited for testing autonomous waypoint track-

ing for both static and dynamic path planners; a zig-zag pattern and the HV-

Bellman-Ford algorithm (Alg. 9). The mean and standard deviation associated

with the cross-track error for the waypoint-tracking controller (Alg. 1) is shown

and discussed in this section. The waypoint-tracking controller was used with the

Zig-zag path planner as well as the HV-Bellman-Ford path planner. Recall that

the waypoint-tracking controller is agnostic of which path planner is used.

The results of this section show a mean cross-track error for all autonomous

test-runs that is less than 0.9 meters with a standard deviation less than 2.5

meters.

9.6.1 Zig-zag Path Planner Waypoint Tracking

The position of the Slug 3 ASV during experimental test-runs was recorded.

Fig. 9.18 shows the position of the Slug 3 navigating autonomously, using the Zig-

zag path planner. The cross-track error is presented as histograms in Fig. 9.20 and

Fig. 9.21 to articulate the consistency of the waypoint-tracking controller when

informed by the Zig-zag path planner. Fig. 9.19 shows a Zig-zag path with more

graph edges and a corresponding smaller node separation.

217

Wind

Figure 9.18: A position plot of the Slug 3 ASV (blue) as it autonomously
navigates the desired Zig-zag waypoints (yellow) with a minimum node
separation of 7ds. This is test-run 6a for the Slug 3. Note that a gust
of wind (red arrow) began to force the Slug 3 off course near the 3rd
waypoint, resulting in the linear drift.

0 5 10 15 20
East

5

10

15

20

25

No
rth

Slug 3 ASV Position During Autonomous Test-Run
Waypoints
Start
End

Figure 9.19: A position plot of the Slug 3 ASV (blue) as it autonomously
navigates the desired Zig-zag waypoints (yellow) with a minimum node
separation of 5ds. Note that the first circular arc-turn shows a loop
instead of an arc; this is a fail-safe feature to re-acquire the desired path if
a waypoint transition results in a cross-track error that is too high. This
is test-run 6e for the Slug 3.

218

4 2 0 2 4
Error (meters)

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

Histogram of Cross-Track Error
Gaussian Fit

Figure 9.20: Histogram and Gaussian fit of the cross-track error of the
Slug 3 ASV system during an experimental test-run (test-run 6a) with
the waypoint-tracking controller informed by the Zig-zag path planner.
This data test-run was done in the Los Gatos Creek County Park pond
number 2.

2 1 0 1 2 3 4
Error (meters)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc

y

Histogram of Cross-Track Error
Gaussian Fit

Figure 9.21: Histogram and Gaussian fit of the cross-track error of the
Slug 3 ASV system during an experimental test-run (test-run 6e) with
the waypoint-tracking controller informed by the Zig-zag path planner.
This data test-run was done in the Los Gatos Creek County Park pond
number 2.

219

9.6.2 HV-Bellman-Ford Path Planner Waypoint Tracking

Fig. 9.22 shows the position of the Slug 3 navigating autonomously, using the

HV-Bellman-Ford path planner. The cross-track error is presented as histograms

in Fig. 9.24 and Fig. 9.23.

0 5 10 15 20 25
East

5

10

15

20

25

No
rth

Slug 3 ASV Position During Autonomous Test-Run

Waypoints
Start
End

Figure 9.22: Another position plot of the Slug 3 ASV (blue) as it
autonomously navigates the desired HV-Bellman-Ford determined way-
points (yellow).

220

3 2 1 0 1 2 3
Error (meters)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
eq

ue
nc

y

Histogram of Cross-Track Error
Gaussian Fit

Figure 9.23: Histogram and Gaussian fit of the cross-track error of the
Slug 3 ASV system during an experimental test-run (test-run 6d) with
the waypoint-tracking controller informed by the HV-Bellman-Ford path
planner. This data test-run was done in the Los Gatos Creek County Park
pond number 2. Note that the histogram excludes the looping segments
of the position plot when acquiring the next line segment.

4 2 0 2 4
Error (meters)

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

Histogram of Cross-Track Error
Gaussian Fit

Figure 9.24: Histogram and Gaussian fit of the cross-track error of the
Slug 3 ASV system during an experimental test-run (test-run 5g) with
the waypoint-tracking controller informed by the HV-Bellman-Ford path
planner. This data test-run was done in the Los Gatos Creek County
Park pond number 2.

221

Table 9.2 shows that the Slug 3 ASV is capable of a mean cross track error

less than 0.9 meters, a median less than 0.3 meters, and a standard deviation of

approximately 2.459 meters.

Table 9.2: Mean and standard deviation of cross-track error

µ (Meters) σ (Meters)
Zig-zag (test-run 6a) -0.599 1.488
Zig-zag (test-run 6e) 0.127 1.069

HV-Bellman-Ford (test-run 6d) -0.116 1.794
HV-Bellman-Ford (test-run 5g) -0.190 2.332

Remarks on Waypoint Tracking

The static Zig-zag waypoint tracking showed relatively good performance. The

tracking quality seems to change depending on the space between vertices. Smaller

spacing results in poorer tracking. It should be noted that these test runs were

susceptible to inconsistent environmental disturbances (i.e.: wind). Ideally testing

was done at times with lower wind speeds, but many tests were conducted with

wind speeds ranging between 4 and 12 miles per hour. All Zig-zag paths were

tracked within a standard deviation of < 1.5 meters. This is ∼ 50% better than

the accuracy of the onboard GPS unit (σ = 2.5 meters).

The dynamic tracking with the HV-Bellman-Ford path planner was less accu-

rate. This is likely due to the abrupt waypoint generation that is inherent to the

path planner. In Fig. 9.22 there are sharp acute angles and the space between

vertices can be very small.

222

9.7 Position Estimation

The Slug 3 had its position estimated using the EKF described in Ch. 6 and

Ch. 7. Fig. 9.25 show data logs of the Slug 3’s GPS position along with the EKF

position estimates.

20 15 10 5 0 5 10
East (meters)

10

5

0

5

10

15

No
rth

 (m
et

er
s)

Estimated and Measured Position
Measured Position
Estimated Position
Start
End

Figure 9.25: GPS position (blue) and EKF position estimates (orange)
of the Slug 3

9.8 Speed Estimation

Using the EKF described in Ch. 6 and Ch. 7 the speed of the Slug 2 was

estimated. Fig. 9.26 shows the estimated speed over time.

223

Figure 9.26: The estimated speed of the ASV using the EKF described
in Ch. 7.

9.9 Heading Angle Estimation

Again using the EKF described in Ch. 6 and Ch. 7, the heading angle of the

Slug 3 was also estimated. Fig. 9.27 and Fig. 9.28 show the estimated heading

angle over time.

224

0 10 20 30 40 50 60 70
Time (seconds)

3

2

1

0

1

2

3

An
gl

e
(ra

di
an

s)

Estimated Heading and COG
COG

Figure 9.27: The estimated heading angle generated from the EKF
described in Ch. 7 compared to the COG angle from the GPS receiver.

0 10 20 30 40 50
Time (seconds)

3

2

1

0

1

2

3

An
gl

e
(ra

di
an

s)

Estimated Heading and COG
COG

Figure 9.28: The estimated heading angle generated from the EKF
described in Ch. 7 compared to the COG angle from the GPS receiver.

225

9.10 Conclusion and Caveats

This chapter highlighted the data and experimental results associated with

the Slug 2 and Slug 3 ASVs. Ordinary Kriging and POK were compared on ex-

perimental depth measurements from three different data sets of the same body

of water. The choice of using three separate data sets was meant to increase the

confidence of the performance comparisons between Ordinary Kriging and POK.

The depth measurements collected by the Slug 3 were also used to reconstruct the

true depth field (see Fig. 9.6). GPR was chosen for interpolating the depth mea-

surements between positions, because the hyper-parameters could be determined

from the data empirically. Autonomous waypoint tracking was shown for the Slug

3 with multiple successful test runs. As stated before, the results of this section

show a mean cross-track error for all autonomous test-runs that is less than 0.6

meters with a standard deviation less than 2.3 meters. The EKF discussed in

Ch. 6 and Ch. 7 were used successfully for position estimation of both the Slug 2

and Slug 3. Additionally, the speed of the Slug 2 was estimated using the EKF.

The course over ground angle was compared to the estimated heading angle of

the vehicle. These results further validate the effectiveness of the EKF and the

Nomoto ship steering model.

9.10.1 Connection to the Overarching Theme

POK was shown to be a fast method of estimating a field compared to Ordinary

Kriging. The results show that POK scales better in terms of computation time

versus the number of measurements for input. In terms of MAE, the results for

three different data sets of the same body of water showed POK can outperform

Ordinary Kriging. This shows that POK can be used onboard vehicles to help

estimate a field during run-time. This could be very useful for autonomous vehicles

226

for other research domains or for ocean pollutant cleanup missions. For example

POK could be used to quickly estimate a field, and help inform researchers of

areas of interest. Similarly, it could be used as part of another algorithm for

maximizing ocean cleanup; it could estimate high densities of ocean pollutants,

such as plastic waste and help inform a fleet of ASVs where to clean up the most

polluted areas efficiently during runtime.

227

Chapter 10

Conclusion

10.1 Discussion

This work culminated in the creation of two low-cost autonomous surface ve-

hicles, capable of autonomous waypoint-to-waypoint tracking and intelligent ex-

ploration based on Gaussian Process Regression in the form of Ordinary Kriging

and Partitioned Ordinary Kriging. An in-depth analysis and comparison was con-

ducted to determine the most well-suited attitude heading and reference system

algorithm. Simulations and experimental procedures were performed to observe

AHRS computation times, error characteristics, and implementation variations.

A number of different trajectory generation algorithms were introduced for explo-

ration; different types of vehicle models were simulated and compared. A number

of different controllers were designed, tuned and were implemented in code for

real-world tests. An optimal method of exploration via uncertainty suppression

subject to vehicle energy constraints was introduced.

All of this work represents a holistic approach to designing an efficient, low-

cost autonomous surface vehicle. It represents a demonstration for an autonomous

surface vehicle for exploration based on off-the-shelf-components that is readily

228

accessible and implementable. The performance analysis for online trajectory

planning showed that even inexpensive computation platforms such as the PIC32

microcontroller and Raspberry Pi can be used to implement optimal exploration

and control. Furthermore, a number of different vehicle models were discussed

and compared. Considering vehicles that are not boats that can move in all three

dimensions, the Newtonian model in Section 5.2 was shown to be able to describe

vehicle motion in three axes. The Newtonian model in particular could even be

used to describe the motion of a rocket, plane, or quad-copter, because it accounts

for fluid medium drag forces and other disturbances.

10.1.1 Novel Contributions

The main high-level contributions and achieved goals of this work are as fol-

lows:

1. Autonomous exploration algorithms for static and dynamic path planning

based on Ordinary Kriging, or Gaussian Process Regression.

2. Modernized architecture, software design, and sensor fusion for marine sur-

face data collection.

3. Experimentally demonstrated waypoint line-tracing to sub-meter mean cross-

track error with existing hardware; developed a simulation environment for

SIL testing of the algorithms.

4. Designed, built, and tested a novel and affordable AHRS validation appa-

ratus based on laser-cut MDF platform and a hall effect encoder for truth

validation. The developed system is able to calibrate and assess performance

of various types of attitude estimation algorithms at low-cost and without

specialized external references.

229

5. Developed framework to compare performance and computational costs of

various attitude estimation schemes including Extended Kalman Filter, TRIAD

and Complementary Filter; generated trade-off plots of computation perfor-

mance versus attitude accuracy.

6. Developed online trajectory generation and optimized sample point genera-

tion for maximal entropy suppression of a priori field. optimal sample point

generation using Kriging.

7. Developed a novel speed-improved spatial estimation algorithm.

The software contributions of this work include:

1. Two novel hardware ASV implementations (low-level drivers and high-level

code).

2. A software toolbox for autonomous exploration.

3. A full software stack for simulating and collecting real-time data from the

experimental platform.

This work showed the comparison of different AHRS algorithms in simulation;

contributions include the creation of a novel attitude and heading reference system

validation apparatus. It was capable of comparing accumulated encoder angles

about a body-fixed axis of rotation to the estimated orientation angle of a com-

plementary filter. An embedded explicit, quaternion-based complementary filter

was created and tested in the real world. AHRS performance was even compared

to additional “ground truth” sources including the course-over-ground angle from

a GPS module.

For optimal exploration, additional contributions includes the algorithms for

forming a local directed a-cyclic graph for Bellman-Ford optimization. The di-

230

rected a-cyclic graph algorithm was shown to be versatile in terms of implemen-

tation; it could be adjusted to different field resolutions, and could be tuned to

account for vehicle maneuvering limitations, such as minimum turning radius. A

solution to the variance maximization problem was introduced by summing the

negative of the variance along a path. This optimization was shown to be able

to be performed during run-time of an autonomous surface vehicle. This includes

successive optimizations during run-time and not just a single computation based

on training data.

In terms of spatial estimation, a novel field partitioning scheme was introduced

in Section 8.5. Results showed that this computation speedup by partitioning

still maintained comparable mean absolute error for field estimates, and could

(in certain situations) outperform Ordinary Kriging. Three path planners and

four spatial estimators were compared with experimental data. This resulted in

Fig. 9.17 and Table. 9.1 which showed that the best path planner and spatial

estimator combination, after considering computation time, is HV-Bellman-Ford

paired with POK.

10.2 Future Work

The next steps of this research could take many different paths. A few potential

considerations are discussed here.

10.2.1 Variance and Distance Weighting

During this research, it was realized that the distance and variance may be

differently weighted when applying the Bellman-Ford graph search algorithm.

These weights could potentially change over time depending the current infor-

231

mation available. A potential next step could be to experiment with weighting

the variance at nodes or along a path as well as the distance in relation to either

the variogram, or some other criteria during exploration. For example Fig. 10.1

shows an example of weighting the distance 10× the variance.

Figure 10.1: Example of a variance and distance path (red arrows) between a
start point (green) and a stop point (red). The distance weighting to variance
ratio is 10:1. The possible edges of the DAG are represented by the white arrows.

10.2.2 Multi-Disciplinary Optimization (MDO)

One potential next step for this research is to explore multi-disciplinary opti-

mization for the optimal ASV design. Some potential variables to consider include:

1) the set of tasks for the vehicle, 2) the size, 3) the shape, 4) the battery size,

5) the number of motors, 6) the types of motors, 7) the propulsion force range

8) the computation platform (e.g.: a custom PCB that combines a Raspberry Pi

232

and microcontroller), 9) energy scavenging mechanisms, and 10) ease of manufac-

turing. All of these variables are quantifiable. If an optimal ASV design exists

(one that is capable of performing the most oceanography or similar exploratory

task for a fixed cost) the design should factor in all or most of these variables.

10.2.3 Aerospace Extension

As this research was conducted the author found many fundamental theoret-

ical connections between ASV modeling and control design and designing and

controlling aircraft and spacecraft. For example, a rocket and boat have much in

common; they both are non-holonomic, have a form of thruster vectoring control,

posses a fuel or energy constraints, move in a fluid medium with drag forces and

disturbances, use embedded computation architectures (microcontrollers), use at-

titude and position estimation (Extended Kalman Filter), use radio telemetry, and

require controllers for trajectory tracking. A potential next step of this research

could be the design and control of a launch vehicle (e.g.: a rocket) to explore as-

teroids using GPR or OK to search for places to mine rare-Earth materials. Even

the spatial estimation component of this research could be applied to a landing

camera to locate and track the landing site for a rocket booster. In this example

the field could be estimated from images taken by a video camera. GPR could be

used to interpolate the images’ pixels because the resolution at a distance would be

a critical limiting factor in landing zone position estimation relative to the rocket

lander-booster. It would be worth while to further test the HV-Bellman-Ford and

POK combination in this context.

233

10.2.4 Field Estimate Normalization

An observation that was made after analyzing experimental depth data was

that a sensitive aspect of Ordinary Kriging, that is not often discussed in the

literature, is normalizing the field estimate matrix Ẑ. This can be done based on

known dimensions of the field a priori, however such information might not be

available. It might be useful to devise an algorithm to aid in the field estimate

normalization if there are no prior known maximum field attribute values. It was

observed that Ordinary Kriging specifically could yield inaccurate field estimates

if the normalization was based on poor assumptions of field attribute bounds.

10.2.5 Covariance Function Research

The covariance function and variogram models could be extended and further

developed. The are many different types of covariance functions as noted in [74],

but it is not clear if an adaptive covariance function exists, or if we are limited

to case-specific functions a priori. The potential benefit could be to help form

covariance matrices that are smaller than the number of measurements (and take

less time to invert), but still accurately describe the spatial auto-correlation.

10.2.6 Covariance Kernel Optimization

Another method to reduce the computational load of spatial estimation, be-

sides partitioning the field, is to modify the covariance kernel, as noted in [38].

This work did not explore different methods of kernel resizing, modification, aug-

mentation, or optimization. Perhaps a dynamic covariance kernel could make for

a rewarding next step in this research.

234

10.2.7 Combining Computational Loads

It was realized that there are similar code loops between creating a field es-

timate and generating a directed a-cyclic graph for an optimal graph search. It

may be possible to combine the graph creating with the spatial estimation step,

such that the nested matrix loops can fulfill two different purposes simultaneously.

This could speed up online trajectory generation. Further research in this area is

highly suggested as a potentially promising area.

235

Appendix A

Additional Simulation Results

and Other Material

This appendix has GNC simulation results, variogram fitting graph compar-

isons, as well as AHRS validation apparatus CAD models, and other similar ma-

terial.

A.0.1 Optimal Control

When possible, and depending on the system model an optimal controller

should be considered, such as a linear quadratic regulator (LQR) or linear quadratic

Gaussian (LQG). [33] outlines a steady state solution for an optimal controller. It

is briefly and partially repeated here for completeness. If the model is non-linear

and time-varying things become complicated. This is because the discrete Riccati

equation,

S(k) = ΦT[S(k + 1)− S(k + 1)ΓR−1ΓTS(k + 1)]Φ + Q1 (A.1)

where R may defined as

236

R = Q2 + ΓTS(k + 1)Γ (A.2)

may have to be solved as frequently as the smallest possible time step. Alterna-

tively, it common to linearize the system about fixed points. This is due to the

fact that the dynamics matrix Φ will change as a function of time. However, in

the case of the error model of the vehicle in the Serret-Frenet reference frame, the

dynamics matrix is linear and time-invariant.

Assuming an infinite time horizon and seeking an optimal steady state gain

vector, we can use the discrete state space formulation from Eq. (5.8) along with

two weighting matrices Q1 and Q2 as part of the Sweep method by [11] (also

shown in [33]). The weighting matrices are symmetric and non-negative definite.

Given a vector of Lagrangian multipliers λ, we assume there exists a matrix S

that translates the state vector x to λ, such that

λ(k) = S(k)x(k) (A.3)

This leads to the algebraic Riccati equation,

S∞ = Φ[S∞ − S∞ΓR−1ΓTS∞]Φ + Q1 (A.4)

While it is possible to find an analytical solution for equation (A.4), in most

situations a numerical solution is necessary. One such method is eigenvector

decomposition. This uses Hamilton’s equations, also called the Euler-Lagrange

equations,

x
λ


k+1

=

Φ + ΓQ2ΓTΦ−TQ1 −ΓQ2ΓTΦ−T

−Φ−TQ1 Φ−T


x
λ


k

(A.5)

237

The Hamiltonian matrix is

Hc =

Φ + ΓQ2ΓTΦ−TQ1 −ΓQ2ΓTΦ−T

−Φ−TQ1 Φ−T

 (A.6)

At this time, we refer the reader to [33] for more information, and carry on with the

general case in finding a constant optimal gain solution. We may now diagonalize

the Hamiltonian matrix,

H∗c =

E−1 0

0 E

 (A.7)

where E and E−1are a diagonal matrices possessing the unstable and stable roots

respectively. The diagonalized Hamlitonian matix comes from the following simi-

larity transform.

H∗c = W−1HcW (A.8)

W is a matrix of eigenvectors of the Hamiltonian matrix, such that

W =

XI XO

ΛI ΛO

 (A.9)

where the left column is the matrix of eigenvectors with corresponding roots that

exist inside of the unit circle, and the right column with roots outside of the unit

circle. Again, a more in-depth analysis of this method is done by [33]. The end

result is

S∞ = ΛIX−1
I (A.10)

And finally, the optimal gain matrix can be calculated and used for optimal full-

238

state feedback.

K∞ = (Q2 + ΓTS∞Γ)−1ΓTS∞Φ (A.11)

uk = K∞(xdes,k − xk) (A.12)

A.1 B-Spline Generation

It can be useful to generate smooth paths for a vehicle to follow, rather than

strict straight line segments. This can involve interpolating points of interest that

the ASV is desired to pass over or next to. A popular method is to use splines, of

which there many different kinds, including cubic, centripetal, Bezier, B-splines,

rational and non-rational. This section discusses B-spline, as they have a number

of useful properties, including guaranteed interpolation, smoothness conservation

at segments or knots, and posses the convex hull property, such that their control

points form a bounding perimeter around a B-spline sub-segment.

B-splines are calculated using a basis function, parameter vector, control points,

and subdivisions of the parameter vector called knots. An important property of

B-splines is that they may be used to do global interpolation of spatial coordi-

nates. For example, suppose there exists a 2-dimensional plane and a matrix of

x, y coordinates corresponding to points on the plane.

239

d =



x0 y0

x1 y1

x2 y2
... ...

xn yn


(A.13)

B-splines are defined using a basis function, as shown in [70]. The specific

implementation used in this thesis and in [70] is repeated here for completeness.

The basis function is

Ni,0(v) =


1 if ui ≤ v < ui+1

0 otherwise
(A.14)

Ni,p(v) = v − ui
ui+p − ui

Ni,p−1(v) + ui+p+1 − v
ui+p+1 − ui+1

Ni+1,p−1(v) (A.15)

where v ∈ R : [0, 1] and whose value corresponds to a point on the curve to be

generated. The knots that subdivide the interval [0, 1], are shown in eq A.14 and

eq A.15 as ui, ui+1, etc. The basis coefficient, Ni,p is calculated based on some

iteration, i, and order, p. Using the basis coefficients, the following summation is

used to calculate a point on the spline curve,

c(v) =
n∑
i=0

Ni,p(v)pi (A.16)

where c is a point on the curve, pi is a control point. The control points may be

found by solving the linear system of equations represented by

dk = c(vk) =
n∑
i=0

Ni,p(vk)pi (A.17)

240

where ∑n
i=0Ni,p(vk) can be rewritten in matrix form as a basis coefficient matrix.

N =



N0,p(v0) N1,p(v0) . . . Nn,p(v0)

N0,p(v1) N1,p(v1) . . . Nn,p(v1)
...

N0,p(vn) N1,p(vn) . . . Nn,p(vn)


(A.18)

After rewriting eq A.18, the relation between the spatial coordinates and the

control points can represented as d = Np. This can be used to solve for p

by augmenting eq A.18 with the respective columns of the spatial coordinate

matrix. The control points necessary to generate a spline that will pass through

the desired spatial coordinates are found by using standard Gaussian elimination

on the augmented coefficient matrix.



p0,i

p1,i
...

pn,i


=



N0,p(v0) N1,p(v0) . . . Nn,p(v0) d0,i

N0,p(v1) N1,p(v1) . . . Nn,p(v1) d1,i
...

N0,p(vn) N1,p(vn) . . . Nn,p(vn) dn,i


(A.19)

So long as the coordinates are distinct from each other the matrix is guaranteed

to be non-singular. Note that each column of the control point matrix is calculated

by solving the coefficient matrix augmented with each respective column of the

spatial coordinates matrix. This means the number of times the linear system

must be solved is equal to the dimension of the spline. In the 2-dimensional

case, the system is solved twice. There exist other solving methods, such as QR

factorization. Gaussian elimination is chosen as the means of solving the system

because its implementation on an embedded system is more intuitive.

Recall that parameter generation is required to calculate the basis coefficients

in eq A.18. There are various methods for selecting the b-spline parameters,

241

such as uniformly spaced, chord-length, or centripetal method. In this work the

chord-length method is used for it’s simplicity in implementation.

Let sk be the ratio of the length between two spatial coordinates and the total

length lt of all segments between spatial coordinates.

sk = 1
lt

k∑
i=1
||di − di−1|| (A.20)

Eq A.20, only applies to finding the parameters between 0 and 1. The first and

last parameters are be defined as s0 = 0 and sn = 1 to complete the parameter

vector.

The last component needed to form the b-splines is the knot vector u. This is

done using the following equation,

uj+p = 1
p

j+p+1∑
i=j

si (A.21)

where j ∈ Z : [1, 2, ..., n − p]. It should be noted that the number of knots

m = n+ p+ 1. There are other methods for generating the knot vector, however

some will result in a singular N when used with the chordal method. Fortunately,

the method described above does not have this issue, as noted in [70].

242

Figure A.1: A 2-dimensional, 3rd order B-spline generated on the
PIC32MX795F512L.

The first and last p elements of the knot vector are 0’s and 1’s respectively.

The reason for this lies in the multiplicity of the knots. In order to have a clamped

B-spline where the first and last spatial coordinates connect to the curve, there

must exists sufficient multiplicity. In practice, the above knot generation method

will produce a spline that connects its ending spatial coordinates if an extra set

of coordinates that are zero are added to the beginning and end of the spatial

coordinates matrix. This effectively increases the multiplicity of the knot vector

elements such that the b-spline connects end points. The curve passes through all

spatial coordinates, excluding the necessary zero end points and the interpolates

the desired points correctly. After applying the above methods, a 2-dimensional,

3rd order b-spline is created, as shown in fig A.1.

243

A.2 Fitting the Variogram with Least-Squares

Figs. A.2, A.3, A.4, and A.5 show the effects of the variations of the number

of terms used for the Taylor expansion approximation for the Gaussian variogram

model, as well as the effects of different tolerances, and lag sizes (or increments).

The importance of these figures is highlighting the accuracy of fitting the vari-

ogram depending on the maximum lag element value hmax in the lag vector. This

is essentially the furthest distance we may consider within the lag vector when ap-

plying least-squares to fit the variogram model. For instance, Fig. A.4 shows that

for a complex gradient (having many “hills”) the variogram fit is more accurate if

hmax is less (11.m) than the maximum empirical variogram distance.

Figure A.2: An empirical variogram fit using least-squares with varying
number of terms for the Taylor expansion

244

Figure A.3: An empirical variogram fit using least-squares with varying
number of terms for the Taylor expansion

Figure A.4: An empirical variogram fit using least-squares with varying
number of terms for the Taylor expansion

245

Figure A.5: An empirical variogram fit using least-squares with varying
number of terms for the Taylor expansion

A.3 CAD

This appendix section has computer assisted designs (CAD) for things like

the AHRS validation apparatus. Figs. A.6, A.7, and A.8 show the various CAD

drawings. The CAD files can be found at https://github.com/PavloGV/AHRS_

Validation_Apparatus_CAD.git.

246

https://github.com/PavloGV/AHRS_Validation_Apparatus_CAD.git
https://github.com/PavloGV/AHRS_Validation_Apparatus_CAD.git

Figure A.6: An image of the 3D
CAD model for the AHRS validation
apparatus

247

A A

B B

2

2

1

1

WEIGHT:

main_cut

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN
THIS DRAWING IS THE SOLE
PROPERTY OF <COMPANY NAME >.
ANY REPRODUCTION IN PART OR AS
A WHOLE WITHOUT THE WRITTEN
PERMISSION OF <COMPANY NAME>
IS PROHIBITED.

COMMENTS:

SHEET 1 OF 1

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAMEDIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH BEND
TWO PLACE DECIMAL
THREE PLACE DECIMAL

NEXT ASSY USED ON

APPLICATION DO NOT SCALE DRAWING

FINISH

MATERIAL

REV.

A
DWG. NO.SIZE

SCALE:1:8

Figure A.7: A CAD drawing of the
AHRS validation apparatus

248

A A

B B

2

2

1

1

WEIGHT:

main

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN
THIS DRAWING IS THE SOLE
PROPERTY OF <COMPANY NAME >.
ANY REPRODUCTION IN PART OR AS
A WHOLE WITHOUT THE WRITTEN
PERMISSION OF <COMPANY NAME>
IS PROHIBITED.

COMMENTS:

SHEET 1 OF 1

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAMEDIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH BEND
TWO PLACE DECIMAL
THREE PLACE DECIMAL

NEXT ASSY USED ON

APPLICATION DO NOT SCALE DRAWING

FINISH

MATERIAL

REV.

A
DWG. NO.SIZE

SCALE:1:8

Figure A.8: A CAD drawing with
multiple views of the AHRS valida-
tion apparatus

249

A.4 Hardware

This section has some additional photos of the hardware used by the Slug 2

and Slug 3 ASVs.

Figure A.9: A side shot of the Slug 3 ASV

250

Figure A.10: A front shot of the Slug 3 ASV

251

Figure A.11: A back shot of the Slug 3 ASV

Figure A.12: An image of the Turnigy Plush 40A ESC used
by both the Slug 2 and Slug 3

252

Figure A.13: An image of the 3500kV Radient Reaktor
brushless motor used on the Slug 2

Figure A.14: An image of the Max32 microcontroller used
on the Slug 2 and Slug 3

Figure A.15: An image of the Sik 925MHz 3DR radio mod-
ule used to transmit telemetry from the Slug 2 to the ground
control station (latptop).

253

Figure A.16: An image of the 5V SunFounder Metal Gear
Digital RC Servo.

Figure A.17: An image of the Sparkfun breakout board for
the SAM-M8Q GPS module used on the Slug 2 and Slug 3.

254

Bibliography

[1] Hyo-Sung Ahn and Seon-Ho Lee. Gyroless attitude estimation of sun-pointing
satellites using magnetometers. IEEE Geoscience and Remote Sensing Let-
ters, 2(1):8–12, January 2005. Conference Name: IEEE Geoscience and Re-
mote Sensing Letters.

[2] Mohammad K. Al-Sharman, Yahya Zweiri, Mohammad Abdel Kareem Jara-
dat, Raghad Al-Husari, Dongming Gan, and Lakmal D. Seneviratne. Deep-
Learning-Based Neural Network Training for State Estimation Enhancement:
Application to Attitude Estimation. IEEE Transactions on Instrumenta-
tion and Measurement, 69(1):24–34, January 2020. Conference Name: IEEE
Transactions on Instrumentation and Measurement.

[3] Livia Albeck-Ripka. The ‘Great Pacific Garbage Patch’ Is Ballooning, 87,000
Tons of Plastic and Counting. The New York Times, mar 2018.

[4] Carlos Almeida, Tiago Franco, Hugo Ferreira, Alfredo Martins, Ricardo
Santos, Jose Miguel Almeida, Joao Carvalho, and Eduardo Silva. Radar
based collision detection developments on USV ROAZ II. In OCEANS 2009-
EUROPE, pages 1–6, May 2009.

[5] Michael S. Andrle and John L. Crassidis. Geometric Integration of Quater-
nions. Journal of Guidance, Control, and Dynamics, 36(6):1762–1767, 2013.

[6] Juli Berwald. Ocean-studying satellite ’no longer recoverable’, 2011.

[7] James Bishop. Autonomous Observations of the Ocean Biological Carbon
Pump. Oceanography, 22(2):182–193, June 2009.

[8] R. Bohlin and L.E. Kavraki. Path planning using lazy PRM. In Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol-
ume 1, pages 521–528 vol.1, April 2000. ISSN: 1050-4729.

[9] S.A. Bortoff. Path planning for UAVs. In Proceedings of the 2000 American
Control Conference. ACC (IEEE Cat. No.00CH36334), volume 1, pages 364–
368 vol.1, June 2000. Issue: 6 ISSN: 0743-1619.

255

[10] Andrew W. Browning. A mathematical model to simulate small boat be-
haviour. SIMULATION, 56(5):329–336, May 1991.

[11] Arthur Bryson, Y.-C Ho, and George Siouris. Applied Optimal Control: Op-
timization, Estimation, and Control. Systems, Man and Cybernetics, IEEE
Transactions on, 9:366–367, July 1979.

[12] Joseph Carsten, Arturo Rankin, Dave Ferguson, and Anthony Stentz. Global
Path Planning on Board the Mars Exploration Rovers. In 2007 IEEE
Aerospace Conference, pages 1–11, March 2007. ISSN: 1095-323X.

[13] Tongtong Chen, Bin Dai, Ruili Wang, and Daxue Liu. Gaussian-Process-
Based Real-Time Ground Segmentation for Autonomous Land Vehicles.
Journal of Intelligent & Robotic Systems, 76(3-4):563–582, December 2014.

[14] XiaoDiao Chen, Yin Zho, Zhenyu Shu, and Hua Su. Improved Algebraic
Algorithm on Point projection for B´eziercurves. In Second Inter-
national Multi-Symposiums on Computer and Computational Sciences (IM-
SCCS 2007), pages 158–163, Iowa City, IA, USA, August 2007. IEEE.

[15] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. Path planning based on
bézier curve for autonomous ground vehicles. In Advances in Electrical and
Electronics Engineering - IAENG Special Edition of the World Congress on
Engineering and Computer Science 2008, pages 158–166. IEEE.

[16] Ji-wung Choi, Renwick E Curry, and Gabriel Hugh Elkaim. Continuous Cur-
vature Path Generation Based on B´ezier Curves for Autonomous Vehicles.
page 12, 2010.

[17] Sophie Jeong CNN, Susanna Capelouto and Nicole Chavez. A cargo ship
leaking tons of oil off the Mauritius coast has split in two.

[18] John Connors and Gabriel Elkaim. Analysis of a Spline Based, Obstacle
Avoiding Path Planning Algorithm. In 2007 IEEE 65th Vehicular Technology
Conference - VTC2007-Spring, pages 2565–2569, Dublin, Ireland, April 2007.
IEEE. ISSN: 1550-2252.

[19] Noel Cressie. Fitting variogram models by weighted least squares. Journal of
the International Association for Mathematical Geology, 17(5):563–586, July
1985.

[20] Renwick Curry, Mariano Lizarraga, and Gabriel Elkaim. The Design of
Rapidly Reconfigurable Filters for Attitude and Position Determination. In
AIAA Infotech@Aerospace 2010. American Institute of Aeronautics and As-
tronautics, 2010.

256

[21] Hector Garcia de Marina, Fernando J. Pereda, Jose M. Giron-Sierra, and
Felipe Espinosa. UAV Attitude Estimation Using Unscented Kalman Filter
and TRIAD. IEEE Transactions on Industrial Electronics, 59(11):4465–4474,
November 2012. Conference Name: IEEE Transactions on Industrial Elec-
tronics.

[22] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
Path Planning for Autonomous Vehicles in Unknown Semi-structured Envi-
ronments. The International Journal of Robotics Research, 29(5):485–501,
April 2010. Publisher: SAGE Publications Ltd STM.

[23] Scott C. Doney, Victoria J. Fabry, Richard A. Feely, and Joan A. Kleypas.
Ocean Acidification: The Other CO 2 Problem. Annual Review of Marine
Science, 1(1):169–192, January 2009.

[24] Eric Dorveaux, David Vissière, Alain-Pierre Martin, and Nicolas Petit. Iter-
ative calibration method for inertial and magnetic sensors. In Proceedings of
the 48h IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, pages 8296–8303, December 2009.
ISSN: 0191-2216.

[25] Matthew Dunbabin, Alistair Grinham, and James Udy. An Autonomous
Surface Vehicle for Water Quality Monitoring. page 6, 2009.

[26] Mark Euston, Paul Coote, Robert Mahony, Jonghyuk Kim, and Tarek Hamel.
A complementary filter for attitude estimation of a fixed-wing UAV. In
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 340–345, September 2008. ISSN: 2153-0858, 2153-0866.

[27] P. G. Falkowski. Biogeochemical Controls and Feedbacks on Ocean Primary
Production. Science, 281(5374):200–206, July 1998.

[28] Yaron A. Felus, Alan Saalfeld, and Burkhard Schaffrin. Delaunay Trian-
gulation Structured Kriging for Surface Interpolation. Surveying and Land
Information Science, 65(1):27–36, mar 2005.

[29] Hugo Ferreira, C. Almeida, A. Martins, J. Almeida, N. Dias, A. Dias, and
E. Silva. Autonomous bathymetry for risk assessment with ROAZ robotic
surface vehicle. In OCEANS 2009-EUROPE, pages 1–6, May 2009.

[30] Paolo Fiorini and Zvi Shiller. Motion Planning in Dynamic Environments
Using Velocity Obstacles. The International Journal of Robotics Research,
17(7):760–772, July 1998.

[31] Gregory Foltz. An Unprecedented View Inside a Hurricane, May 2022.

257

[32] Trygve Olav Fossum, Cédric Travelletti, Jo Eidsvik, David Ginsbourger, and
Kanna Rajan. Learning excursion sets of vector-valued Gaussian random
fields for autonomous ocean sampling. The Annals of Applied Statistics,
15(2):597–618, June 2021. Publisher: Institute of Mathematical Statistics.

[33] Gene F. Franklin. Digital Control of Dynamic Systems 3rd Edition. 1998.

[34] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Con-
trol of Dynamic Systems (7th Edition). Pearson, 2014.

[35] Bryan A. Franz, Sean W. Bailey, P. Jeremy Werdell, and Charles R. McClain.
Sensor-independent approach to the vicarious calibration of satellite ocean
color radiometry. Applied Optics, 46(22):5068–5082, August 2007.

[36] Arthur Gelb. Applied Optimal Estimation. The MIT Press, 1974.

[37] C. L. Gentemann, Joel P. Scott, Piero L. F. Mazzini, Cassia Pianca, Santha
Akella, Peter J. Minnett, Peter Cornillon, Baylor Fox-Kemper, Ivona Cetinić,
T. Mike Chin, Jose Gomez-Valdes, Jorge Vazquez-Cuervo, Vardis Tsontos,
Lisan Yu, Richard Jenkins, Sebastien De Halleux, Dave Peacock, and Nora
Cohen. Saildrone: Adaptively Sampling the Marine Environment. Bulletin
of the American Meteorological Society, 101(6):E744–E762, June 2020. Pub-
lisher: American Meteorological Society Section: Bulletin of the American
Meteorological Society.

[38] Arjan Gijsberts and Giorgio Metta. Real-time model learning using Incremen-
tal Sparse Spectrum Gaussian Process Regression. Neural Networks, 41:59–
69, May 2013.

[39] William W. Hager. Updating the Inverse of a Matrix | SIAM Review | Vol.
31, No. 2 | Society for Industrial and Applied Mathematics.

[40] J. T. Hardy. The sea surface microlayer: Biology, chemistry and anthro-
pogenic enrichment. 11(4):307–328.

[41] He He and Wan-Chi Siu. Single image super-resolution using Gaussian pro-
cess regression. In CVPR 2011, pages 449–456, June 2011. ISSN: 1063-6919.

[42] Roger Hine, Scott Willcox, Graham Hine, and Tim Richardson. The wave
glider: A wave-powered autonomous marine vehicle. In OCEANS 2009, pages
1–6. ISSN: 0197-7385.

[43] Kevin Judd and Timothy McLain. Spline based path planning for unmanned
air vehicles. In AIAA Guidance, Navigation, and Control Conference and
Exhibit. American Institute of Aeronautics and Astronautics.

258

[44] Dongwon Jung and Panagiotis Tsiotras. On-Line Path Generation for Un-
manned Aerial Vehicles Using B-Spline Path Templates. Journal of Guidance
Control and Dynamics, 36, November 2013.

[45] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35–45, March 1960.

[46] JACK B. KUIPERS. Quaternions and Rotation Sequences: A Primer with
Applications to Orbits, Aerospace and Virtual Reality. Princeton University
Press, 1999.

[47] Yu-lei Liao, Ming-jun Zhang, and Lei Wan. Serret-Frenet frame based on path
following control for underactuated unmanned surface vehicles with dynamic
uncertainties. Journal of Central South University, 22(1):214–223, January
2015.

[48] Yang Liu, Jingfa Li, Shuyu Sun, and Bo Yu. Advances in Gaussian random
field generation: a review. Computational Geosciences, 23(5):1011–1047, Oc-
tober 2019.

[49] Lennart Ljung. System Identification Theory for the User. Prentice Hall
PTR, One Lake Street, Upper Saddle River, NJ 07458, second edition, 1999.

[50] R. Mahony, T. Hamel, and J. Pflimlin. Complementary filter design on the
special orthogonal group SO(3). In Proceedings of the 44th IEEE Conference
on Decision and Control, pages 1477–1484, December 2005.

[51] Bryant Mairs and Gabriel Elkaim. SeaSlug: A low-cost, long-duration mobile
marine sensor platform for flexible data-collection deployments. page 7.

[52] Justin Manley and Scott Willcox. The Wave Glider: A persistent platform
for ocean science. In OCEANS’10 IEEE SYDNEY, pages 1–5, May 2010.

[53] J.L. Marins, Xiaoping Yun, E.R. Bachmann, R.B. McGhee, and M.J. Zyda.
An extended Kalman filter for quaternion-based orientation estimation using
MARG sensors. In Proceedings 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Expanding the Societal Role of Robotics in
the the Next Millennium (Cat. No.01CH37180), volume 4, pages 2003–2011
vol.4, October 2001.

[54] Claire Martin. Vanishing Marine Algae Can Be Monitored From a Boat With
Your Smartphone | Science | Smithsonian Magazine.

[55] Kevin P. Murphy. Machine learning: a probabilistic perspective. Adaptive
computation and machine learning series. MIT Press, Cambridge, MA, 2012.

259

[56] Daiju Narita, Katrin Rehdanz, and Richard S. J. Tol. Economic costs of
ocean acidification: a look into the impacts on global shellfish production.
Climatic Change, 113(3):1049–1063, August 2012.

[57] NASA. Electrical Power, January.

[58] Masahiro Ono, Thoams J. Fuchs, Amanda Steffy, Mark Maimone, and Jeng
Yen. Risk-aware planetary rover operation: Autonomous terrain classification
and path planning. In 2015 IEEE Aerospace Conference, pages 1–10, March
2015. ISSN: 1095-323X.

[59] John E. O’Reilly, Stéphane Maritorena, B. Greg Mitchell, David A. Siegel,
Kendall L. Carder, Sara A. Garver, Mati Kahru, and Charles McClain. Ocean
color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research:
Oceans, 103(C11):24937–24953, October 1998.

[60] Chiwoo Park and Daniel Apley. Patchwork Kriging for Large-scale Gaussian
Process Regression. page 43.

[61] Jonghoon Park and Wan-Kyun Chung. Geometric integration on Euclidean
group with application to articulated multibody systems. IEEE Transactions
on Robotics, 21(5):850–863, October 2005.

[62] Tristan Perez. Mathematical Ship Modeling for Control Applications. 2002.

[63] Sean Potter. NASA Ingenuity Mars Helicopter Prepares for First Flight,
March 2021.

[64] S.H. Pourtakdoust and H. Ghanbarpour Asl. An adaptive unscented Kalman
filter for quaternion-based orientation estimation in low-cost AHRS. Aircraft
Engineering and Aerospace Technology, 79(5):485–493, September 2007.

[65] I. Rhee, S. Park, and C. Ryoo. A tight path following algorithm of an UAS
based on PID control. In Proceedings of SICE Annual Conference 2010, pages
1270–1273, 2010.

[66] Melissa Rice and Briony Horgan. NASA Perseverance Rover’s First Major
Successes on Mars – An Update From Mission Scientists, October 2021. Sec-
tion: Space.

[67] A. M. Sabatini. Quaternion-based strap-down integration method for appli-
cations of inertial sensing to gait analysis. Medical & Biological Engineering
& Computing, 43(1):94–101, February 2005.

260

[68] Angelo Maria Sabatini. Kalman-Filter-Based Orientation Determination Us-
ing Inertial/Magnetic Sensors: Observability Analysis and Performance Eval-
uation. Sensors, 11(10):9182–9206, October 2011. Number: 10 Publisher:
Molecular Diversity Preservation International.

[69] Kevin G. Sellner, Gregory J. Doucette, and Gary J. Kirkpatrick. Harmful
algal blooms: causes, impacts and detection. 30(7):383–406.

[70] C.-K. Shene. B-spline curves: Computing the coefficients, cs3621 introduction
to computing with geometry notes, 2014.

[71] D. Shi, Y. Xu, B. M. Hopkinson, and F. M. M. Morel. Effect of Ocean Acidifi-
cation on Iron Availability to Marine Phytoplankton. Science, 327(5966):676–
679, February 2010.

[72] M. D. SHUSTER and S. D. OH. Three-axis attitude determination from
vector observations. Journal of Guidance and Control, 4(1):70–77, 1981.
Publisher: American Institute of Aeronautics and Astronautics _eprint:
https://doi.org/10.2514/3.19717.

[73] P. Smith and M. Dunbabin. High-fidelity autonomous surface vehicle simu-
lator for the maritime RobotX challenge. pages 1–10.

[74] Sisi Song. Trajectory Planning for Autonomous Vehicles for Optimal Explo-
ration of Spatial Processes. PhD thesis, UC Santa Cruz, 2019.

[75] Dave Steitz. Terra: Flagship of the Earth Observation System.

[76] Ching-Yaw Tzeng and Ju-Fen Chen. FUNDAMENTAL PROPERTIES OF
LINEAR SHIP STEERING DYNAMIC MODELS. Journal of Marine Sci-
ence and Technology, 7(2):10, 1999.

[77] National Oceanic and Atmospheric Administration US Department of Com-
merce. Can we clean up, stop, or end harmful algal blooms?

[78] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal Velocity
Obstacles for real-time multi-agent navigation. In 2008 IEEE International
Conference on Robotics and Automation, pages 1928–1935, May 2008. ISSN:
1050-4729.

[79] Pavlo Vlastos. Low-Cost Validation for Complmentary Filter-Based ARHS.
Proceedings of IEEE/ION PLANS 2020, September 2020.

[80] Pavlo Vlastos. Partitioned Gaussian Process Regression for Online Trajectory
Planning for Autonomous Vehicles. International Conference on Controls,
Automation, and Systems, October 2021.

261

[81] George G. Waldbusser, Burke Hales, Chris J. Langdon, Brian A. Haley, Paul
Schrader, Elizabeth L. Brunner, Matthew W. Gray, Cale A. Miller, and Iria
Gimenez. Saturation-state sensitivity of marine bivalve larvae to ocean acid-
ification. Nature Climate Change, 5(3):273–280, March 2015.

[82] S. Willcox, C. Meinig, C. L. Sabine, N. Lawrence-Slavas, T. Richardson,
R. Hine, and J. Manley. An autonomous mobile platform for underway surface
carbon measurements in open-ocean and coastal waters. In OCEANS 2009,
pages 1–8.

[83] Sargis Yonan, Renwick Curry, and Gabriel Elkaim. Uncertainty suppression
methods for the exploration of sparsely sampled fields. pages 2480–2511, 10
2019.

[84] F. Zhao and B. G. M. van Wachem. A novel Quaternion integration ap-
proach for describing the behaviour of non-spherical particles. Acta Mechan-
ica, 224(12):3091–3109, December 2013.

[85] Xu Zhong, Allison Kealy, and Matt Duckham. Stream Kriging: Incremental
and recursive ordinary Kriging over spatiotemporal data streams. Computers
& Geosciences, 90:134–143, may 2016.

262

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	The Overarching Theme: Automated Field Exploration
	Motivation
	Background
	Similar Projects and Research
	Attitude Estimation
	Path Planning
	Trajectory Generation

	Thesis Contributions
	Organization

	System Implementations
	Connection to the Overarching Theme
	Hardware Design
	Software: Communication Protocols and Peripherals
	MAVLink
	Kill Switch

	Conclusion and Caveats

	Sensors and Actuators
	Connection to the Overarching Theme
	Sensors
	IMU
	NTC Thermistor
	Echo Sounder Depth-Sensor
	GPS Receiver
	Encoder

	Actuators
	Servo
	BLDC Motor

	Conclusion and Caveats

	Attitude and Heading Reference System
	Connection to the Overarching Theme
	ARHS Comparison
	EKF AHRS
	TRIAD AHRS
	CF AHRS
	Comparison of EKF, TRIAD, and CF
	Validation of Complementary Filter-Based AHRS
	Validation Apparatus
	Apparatus Results
	Field Experiment Results: COG vs CF Yaw

	Conclusion and Caveats

	System Modeling
	Connection to the Overarching Theme
	Rudder Servo
	Kinematic Model
	Nomoto Model
	Augmented Nomoto Model
	Newtonian Model
	Point-Mass Sub-model
	Orientation Sub-model
	Controllability

	Conclusion and Caveats

	System Identification
	Connection to the Overarching Theme
	ARX
	Rudder Servo

	Model Parameter Estimation
	Kalman Filter
	Extended Kalman Filter

	Conclusion and Caveats

	Guidance Navigation and Control
	Connection to the Overarching Theme
	Trajectory Generation
	Trajectory Tracking

	Control
	PID Controller
	GNC Algorithm
	Position Estimation
	Results

	Conclusion and Caveats

	Intelligent Exploration
	Connection to the Overarching Theme
	Ordinary Kriging
	The Variogram
	Fitting the Variogram
	Iterative Covariance Matrix Inverse Update

	Gaussian Process Regression
	Review of GPR
	1-D Example
	2-D Example
	Hyper-parameters

	Results of Ordinary Kriging
	Partitioned Ordinary Kriging
	POK Procedure
	Creating a Simulated Field
	Path Planning
	Simulation Results and Comparisons
	Path-Planning Simulation Results
	Remarks on MSE and Computation Time Trade-offs

	Optimal Exploration
	Maximizing Variance Along A Path
	Minimizing the Sum of Negative Variance
	Simulation Results

	Numerical Comparison of Path Planners and Spatial Estimation
	Simulation Procedure
	Simulation Results
	Conclusion and Caveats

	Experimental Results
	Note on Experimental Results
	Experimental Results
	ASV System Block Diagram
	Experimental Procedure
	Results
	Remarks on POK

	GPR Experimental Field Reconstruction
	Experimental Field Reconstruction and Path Planning
	Depth Measurements with Zig-zag Path Planner
	Depth Measurements with HV-Bellman-Ford Path Planner

	MSE Spatial Estimation Comparison of Zig-zag and HV-Bellman-Ford
	Procedure
	Experimental Results

	Comparing all Combinations of Path Planners and Spatial Estimators
	Autonomous Waypoint Tracking
	Zig-zag Path Planner Waypoint Tracking
	HV-Bellman-Ford Path Planner Waypoint Tracking

	Position Estimation
	Speed Estimation
	Heading Angle Estimation
	Conclusion and Caveats
	Connection to the Overarching Theme

	Conclusion
	Discussion
	Novel Contributions

	Future Work
	Variance and Distance Weighting
	Multi-Disciplinary Optimization (MDO)
	Aerospace Extension
	Field Estimate Normalization
	Covariance Function Research
	Covariance Kernel Optimization
	Combining Computational Loads

	Additional Simulation Results and Other Material
	Optimal Control
	B-Spline Generation
	Fitting the Variogram with Least-Squares
	CAD
	Hardware

	Bibliography

