
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Parallel performance of the XL Fortran random_number intrinsic function
on Seaborg

Permalink
https://escholarship.org/uc/item/1151715v

Author
Gerber, Richard A.

Publication Date
2003-07-30

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1151715v
https://escholarship.org
http://www.cdlib.org/

 LBNL-XXXXX

Parallel Performance of the XL Fortran
random_number Intrinsic Function on
Seaborg

Richard A. Gerber
User Services Group, NERSC Division

July 2003

This work was supported by the Director, Office of Science, Office of
Advanced Computing Scientific Computing Research, Division of
Mathematical, Information, and Computational Sciences of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

This research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy.

Parallel Performance of the XL Fortran
random_number Intrinsic Function on Seaborg
Richard Gerber

Ernest Orlando Lawrence Berkeley National Laboratory, NERSC Division, User Services Group, One
Cyclotron Road, MS: 943R0256, Berkeley, CA 94720

Abstract

The Fortran intrinsic function random_number is shown to perform very poorly when simultaneously
called from 16 tasks per node on NERSC's IBM SP Seaborg in its default runtime configuration. Setting the
runtime option intrinthds=16 improves runtime performance significantly and gives good results for
all possible numbers of tasks per node. It is speculated that the cause of the problem is the creation of an
excessive number of threads in the default configuration. It is noted that these threads appear to be created
by default, without specifying a "thread-safe" compiler or other user interaction.

Introduction

The poor performance of the BeamBeam3D code 1 used by the SciDAC∗ Accelerator project† on the current
(July 2003) Seaborg system was caused by problems with the Fortran intrinsic function
random_number. 2 Appropriate use of a runtime configuration parameter increased code performance
significantly, decreasing the code’s execution time by a factor of four. This report documents and quantifies
the performance of random_number on Seaborg, a POWER 3 (375 MHz) IBM SP with 16 CPUs/node.

Most of the use of random_number by the NERSC user community is assumed to be in the context of a
parallel code using MPI for communication. The random_number routine may constitute only a minor
component of the algorithm, but may be called many times. In the BeamBeam3D code random_number
was called for each of millions of particles each time step. For this investigation a small Fortran test code
was prepared that calls random_number many times. In order to emulate a “typical” user runtime
environment MPI was initialized (but otherwise unused).

The most common way to invoke the IBM XL Fortran compiler to create a parallel code is via the
mpxlf90 command; therefore, this command was used to compile source code cited in this report. IBM
XL Fortran compiler version 8.1.0.3 was used. Note this is not one of the "thread-safe" IBM compilers that
are used to create multithreaded programs.

RANDOM_NUMBER Configuration Options

There are no documented options to control the threading behavior of RANDOM_NUMBER in the XLF
8.1 for AIX manuals. However, the following excerpt is present in a README file in the XLF 8.1
installation directory on Seaborg and in the version 8.1 XL Fortran for Linux on pSeries User's Guide.

intrinthds={num_threads}

∗ Scientific Discovery through Advanced Computation, a program of the U.S. Department of Energy’s
Office of Science.
† Advanced Computing for 21st Century Accelerator Science and Technology.

Specifies the number of threads for parallel execution of the MATMUL and
RANDOM_NUMBER intrinsic procedures. The default for num_threads equals the number of
processors online.

As mentioned in the report2 on the BeamBeam3D code, a web search located the following text at the URL
http://msgs.sp2.net/cgi-bin/get/sp0207/45.html:

APAR: IY35729 COMPID: 5765F7100 REL: 810
ABSTRACT: ADD A RUNTIME OPTION TO CONTROL THE NUMBER OF THREADS

PROBLEM DESCRIPTION:
 ERROR DESCRIPTION:
 random_number() and matmul() are 2 Fortran instrinsic functions
 that are multi-threaded. It has been requested by
 customers to allow users to control the number of
 threads (eg. 1) used in these functions.

PROBLEM CONCLUSION:
A number of customers have experienced the problem that
multi-threaded intrinsic function floods their systems with
uncontrollable number of threads, which can result in
unacceptable run-time performance. In order to
solve this problem, we have to provide a new run-time option to
give them the ability to control the number of threads used in
those functions. Currently only matmul and random_number have
the multi-threaded version.
Syntax:
 intrinthds={num_threads}

This runtime option has a significant effect on the performance of random_number on NERSC's SP as is
show below. A test code was written and used to investigate how execution times are affected by choices
for the value of intrinthds and the number of MPI tasks used per node.

The Test Code

A test simple test code was created that does little but initialize MPI and then call RANDOM_NUMBER a
number of times. Here is the code:

program ranno
 implicit none
 include 'mpif.h'

 integer:: i
 integer, parameter:: times=100
 integer, parameter:: idim=10000000
 real, dimension(idim):: realArray1,realArray2
 integer:: ierr
 integer:: totTasks, task_id

 call MPI_INIT(ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, totTasks, ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, task_id, ierr)

 do i=1,times
 call RANDOM_NUMBER(realArray1)
 call RANDOM_NUMBER(realArray2)
 end do

 print *, "Task ",task_id," of ",totTasks," has a value:
",realArray1(100),realArray2(100)

 call MPI_FINALIZE(ierr)

end program ranno

The code initializes MPI so performance can be investigated as a function of the number of MPI tasks
created on a node. It loops through enough calls to random_number to give a non-trivial, yet convenient
run time. It then prints out a value in an attempt to keep the compiler from optimizing away the entire loop,
which it might do if it recognized that the calculated values are never used or examined. With the array size
given, the maximum memory usage on a node with 16 tasks is approximately:

10,000,000 entries * 4 bytes/entry * 2 arrays * 16 tasks = 1.28 GB.

This is less than the 16 GB of physical memory on the Seaborg node with the least amount of memory.
Runtime performance would be severely impacted if the code’s memory exceeded physical memory and
the node starting memory paging to disk.

The code was compiled with XLF 8.1 and the value of intrinthds was set via the XLFRTEOPTS
environment variable.

% mpxlf90 -O3 -qtune=pwr3 -qarch=pwr3 ranno.f
% setenv XLFRTEOPTS intrinthds=N

N was varied for each run.

Results

The code was run with 1, 2, 4, 8, 12, 13, 14, 15 and 16 MPI tasks on a single Seaborg node in order to
investigate the effect of running various numbers of tasks on a node. Most NERSC user codes will use 16
MPI tasks/node and users are charged for using all 16 CPUs.

The relevant IBM software versions were:

 AIX 5.1
 ppe.poe 3.2.0.13 poe Parallel Operating
 LoadL.full 3.1.0.13 LoadLeveler
 bos.rte.bind_cmds 5.1.0.35 Binder and Loader Commands
 xlfcmp 8.1.0.3 XL Fortran Compiler
 xlfrte 8.1.0.3 XL Fortran Runtime
 xlfrte.aix51 8.1.0.3 XL Fortran Runtime Environment

Note that in the test code each task is essentially independent, connected only by MPI initialization. If there
were no interaction between tasks, e.g. if each task was run on physically separate computer hardware, the

run time should be independent of the number of tasks. However, this is not the case on SMP nodes like
those on Seaborg; tasks must compete for access to memory for example.

For each run, the value of intrinthds was either unset (termed the "default" configuration) or had a
value between 1 and 128. The NERSC poe+ utility, which parses and concatenates output from IBM's
hpmcount program, was used to record run times, sys times, and user times. Use of the poe+ utility to
measure timings for the entire code, as opposed to timing the random_number calls only, was
appropriate in this case since MPI startup times are much shorter than the execution times reported here and
thus had little relative effect. (MPI initialization times have been measured by NERSC and are on the order
of .017 seconds/task; less than 1 second for 16 tasks or fewer.)

A striking result is that the program had a highly variable run time in the default configuration when 16
MPI tasks were run on a single node. Execution times varied unpredictably from 60 seconds to more than
30 minutes (jobs exceeding 30 minutes were killed). This result did not depend on the memory resident on
a node, the variability was observed on both 16 and 32 GB nodes. Likewise the specific node used did not
matter; the variation was observed by running the executable multiple times in succession in a single batch
job running on one node.

The following table lists runs times for various combinations of total tasks and values of intrinthds. A
dedicated compute node was used for all runs. When results were highly variable from run to run, multiple
timings are show below. Where single timings are given, a variation of at most a few percent was observed
for a minimum of three runs.

Run Times (seconds)
 Value of intrinthds
Number
of
tasks

default 1 2 4 8 16 32 64 128

1 11.3 51.4 30.5 19.3 13.6 10.7 10.9 11.4 11.8
2 14.9 52.0 31.0 19.3 13.8 14.1 14.4 14.4 16.1

4 21.1 52.4 31.0 19.9 20.2 20.6 20.8
93.1,
167,
21.6(1)

>1400

8 35.5 55.0 33.6 33.4 33.5 34.3 35.0
>720,
>1800,
583(1)

>1000

12 50.7 57.8 49.0 49.0 48.8 49.0 50.6 >1200 N/A(2)

13 145,
55.1(1) 58.5 52.7 52.1 52.1 52.7

54.5,
112,
54.1,
54.0(1)

>1200 N/A(2)

14 59.6,
641(1) 59.1 54.3 54.6 55.3 56.9 58.0,

207(1) >1200 N/A(2)

15
62.8,
62.2,
698(1)

62.7 58.7 59.0 58.8 61.4 62.7,
456(1) >1200 N/A(2)

16

1037,
233,
63.2,
66.0,
67.7,
857,
807.5,
>1800,
>720(1)

61.8 63.8 63.2 64.8 65.7
69.6,
>1500,
66.8(1)

>1800,
>1200 N/A(2)

(1) Where results are highly variable, multiple measurements are given.
(2) No runs were made with this combination of parameters.

These results are illustrated in the following graph. Configurations that had highly variable long run times
are shown as extending off scale.

Run Times

0

20

40

60

80

100

120

1 2 4 8 12 16

Tasks/node

W
al

lc
lo

ck
 (s

ec
s)

intrinthds=1
intrinthds=2
intrinthds=4
intrinthds=8
intrinthds=16

intrinthds=64
intrinthds=128

default

intrinthds=32

Wallclock time, time in user mode, time in system mode, and MFlips/s (Million Floating Point
Instructions per Second) as reported by poe+ for some runs in the default configuration are reported in the
following table.

Default configuration measurements from poe+/hpmcount

Number of tasks Wallclock seconds user seconds sys seconds MFlips/s / task
1 11.3 46.0 17.1 1455
2 14.9 50.4 8.25 1107
4 21.1 52.1 4.65 708
8 35.5 52.3 3.69 463
16 varies; >63 varies; >53 varies; >2.8 Varies

Discussion

The code’s performance in the default configuration with 16 tasks per node is clearly unacceptable for use
in a production computing environment. The variation from run to run is great and in many cases the
program is not observed to finish.

The second table above shows that in the default configuration 1 task accrues 46 seconds of user time, but
only takes 11 seconds of wallclock time to run. This is an indication that the job is running multiple
threads that execute on the other 15 CPUs on the node. The finding that multiple threads are being created
by default, without using the "thread-safe" compilers or any other user specification, is notable and an
unexpected result.

If one examines the timings when intrinthds=32 in the first table and graph, they are remarkably
similar to the timings obtained when intrinthds is unset (the "default configuration"). If we were to
assume that in the default runtime environment 32 threads were created per task, it would explain the poor
performance using 16 tasks/node; a combination that translates to 512 threads/node. From the timings given
in this report, there appears to be a threshold somewhere around 512 (or perhaps as low as 256) spawned
threads per node beyond which node performance becomes inconsistent and significantly degraded. The
uptime command was observed to report a system load average of 99.99 during one of the long-running
jobs. LoadLeveler (the IBM batch software) reported load averages up to 471 on the nodes with jobs
that were measured to have long run times. These large values of system load indicate a heavily
overburdened system.

Interestingly, a value of intrinthds=16, which would appear to be the intended default from a reading
of the IBM comments on the web site referenced above, gives very good performance at all possible tasks
per node on Seaborg.

These results indicate that heavy use of the random_number Fortran intrinsic can produce very poor
performance in Seaborg's default configuration. While random_number is seldom expected to be the
major component of a computational kernel, Seaborg users should be aware of potential problems with this
intrinsic. Failure to do so could cause a minor component of the entire code to have a major impact on
overall performance.

Although not designed to investigate how to perform the maximum number of random_number calls per
unit time, the results of this report can be used to draw some tentative answers to that question. If one
assumes that a single task will perform N times more random_number calls in N times the measured
execution time of a single run described in this report, one can construct the following table:

Number of tasks per node Time needed to execute RANDOM_NUMBER calls relative to
the number performed with 16 tasks/node with intrinthds=16

1 2.61
2 1.72

4 1.28
8 1.04
12 1.03
16 1.00

Using 16 tasks/node with intrinthds=16 performs the most calculations in the least amount of time.

Conclusions

Calling the Fortran random_number intrinsic function simultaneously from 16 MPI tasks on a single
Seaborg SMP node in the default configuration gives unacceptable and unpredictable runtime performance.
NERSC users should be advised that heavy use of random_number could adversely affect overall code
performance. Setting the runtime parameter intrinthds=16 gives good performance and should be
recommended to NERSC users.

References

1 J. Qiang, M.A. Furman, & R.D. Ryne, (2003), “Parallel Particle-In-Cell Simulation of Colliding Beams
in High Energy Accelerators,” submitted to Supercomputing 2003.

2 Gerber, Richard A., (2003), “An Investigation of Reported Anomalies When Running the BeamBeam3D
Code on Seaborg,” http://www.nersc.gov/projects/scaling/beambeam3d.html.

http://www.nersc.gov/projects/scaling/beambeam3d.html

	Parallel Performance of the XL Fortran random_number Intrinsic Function on Seaborg
	
	
	Richard Gerber
	Ernest Orlando Lawrence Berkeley National Laboratory, NERSC Division, User Services Group, One Cyclotron Road, MS: 943R0256, Berkeley, CA 94720

	Abstract
	Introduction
	RANDOM_NUMBER Configuration Options
	The Test Code
	Results
	
	Run Times (seconds)
	Default configuration measurements from poe+/hpmcount

	Discussion
	Conclusions

