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MOU 328 Final Report
Roadway and Work Crew Conspicuity

Joseph E. Barton and James A. Misener

Abstract. The work reported here quantitatively addresses the measurement of conspicuity of highway
features and Caltrans work zones -- from the perspective of driver detection. The method focused on
acquiring and operating on a computational visual signature analysis tool, but it evolved into evaluating
the detection process, then selecting and exercising human perception-acquisition models suitable for
development into a tool for conspicuity measurement. A composite, quantitative model of conspicuity
was developed, verified, and applied to some sample roadside scenes.

Key Words. Conspicuity, Perception, Visual Performance, Human Vision, Vigilance, Pre-attentive,
Pre-cognitive, Contrast Model, Work Zones



Executive Summary. Work under this MOU was slated to employ a state-of-the-art visual signature analysis tool as a
means to measure and improve conspicuity of human and roadway hazards on California highways. It was believed — and is
still believed — that this tool could serve as a powerful, cost-effective and semi-automated method of “virtual prototyping” in
which drivers’ perception of increased conspicuousness could be gauged. Notional designs and configurations could be
simulated with very little investment, under different geometries, color/illumination combinations and ambient lighting
conditions. The “best” design which optimizes some combination of cost-effectiveness and safety could then be confidently
built and implemented.

Due to other PATH research needs, and lack of availability of an available existing computational vision tool, the work
became an in-house effort to develop a conspicuity model of our own. The technique developed was an objective,
quantitative algorithm centered on contrast sensitivity, a known factor in conspicuity. The algorithm was tested using a still
image of a roadside scene in which a pedestrian was wearing a Caltrans safety jacket. Additional tests were conducted using a
mathematically derived pattern with a region of high conspicuity and two versions of the original roadside scene that had
been adjusted to demonstrate more and less conspicuity. In all cases the algorithm provided a scoring grid which highlighted
the regions of high conspicuity, thus demonstrating that the algorithm is valid.

Therefore, the technique developed under this MOU provides an objective and quantitative method for testing the conspicuity
of roadside scenes. While additional modifications to the algorithm would provide increased precision, the work here
provides an excellent first pass for those interested in testing the conspicuity of roadside scenes as well as a method for
examining how changes in the scene affect conspicuity.
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l. Introduction

A. Background

This project is a follow-on to MOU 284 "Evaluation of Work Crew and Highway Hazard Conspicuity’™. The first project
encountered institutional roadblocks to completion as originally intended. The project described in this paper was an attempt
to accomplish many of the original goals of the first project, but with a model of human vision devoid of the institutional
barriers encountered in the first project.

As originally intended, we have attempted to employ a state-of-the-art visual signature analysis tool as a means to
measure and improve conspicuity of human and roadway hazards on California highways. It is believed that this tool can
serve as a powerful, cost-effective and semi-automated method of “virtual prototyping” in which drivers’ perception of
increased conspicuousness could be gauged. Notional designs and configurations could be simulated with very little
investment, under different geometries, color/illumination combinations and ambient lighting conditions. The “best” design
which optimizes some combination of cost-effectiveness and safety could then be confidently built and implemented.

The primary goal of this project was to develop a quantitative method of evaluating roadside conspicuity with the intent to
provide a tool that can eventually be implemented as means of making work zones safer.

The first project (MOU 284) encountered difficulty in acquiring the genesis behind the project: a tool developed by the
U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC) and applied by the TARDEC
National Automotive Center (NAC) and the General Motors Research and Development and Safety and Restraint Centers to
detect taillight conspicuity. This tool, the NAC Visual Performance Model (VPM), was to be adapted for highway drivers
and its use constituted the main thrust of the original project plan. The original legal vehicle to use this tool was to be a pre-
arranged Cooperative Research and Development Agreement (CRADA) between PATH and TARDEC, but in time-
consuming deliberations, TARDEC CRADA administrators determined not to go that route. Finally, toward the end of 1997,
the VPM was supplied to PATH — too late to do substantial work in the planned area. Additional institutional barriers led to
the abandonment of the VPM in favor of one synthesized in-house.

This project does not fulfill the currently-addressed need for quick running and believable human driver model inputs for
PATH microsimulation activities; the model described in this paper is too computationally-intensive. However, it does fully
address the original goals of the first project, focusing in particular on an accurate methodology to assess relative
improvements in conspicuity enhancements for Caltrans work zones. Furthermore, the path to developing a deployable tool
is less difficult as the model is not encumbered by as many institutional issues.

B. Overview

Two elements of perception were considered in this study human vision- and cognition-based detection models:
acquisition (defined for here as proximal obstacle or vehicle detection probability P, at range x) and tracking (defined for
here as deceleration x’ relative to the driver). In acquisition, progresssively higher fidelity models in human vision-based
target acquisition were shown, with positive and negative aspects described. The work began with the Bailey-Rand (BR)
Contrast Model, then progressed to the Doll-Schmieder (DS) Model, and ended with the originally-proposed focus of work,
the National Automotive Center-Visual Performance Model (VPM). These models are shown to sequentially yield higher
confidence results in the analysis of more specific driver-assist or work zone implementations and scenarios. In tracking, the
work here is contained to a mathematical model describing longitudinal time to collision-based perception.

Of the three perception-acquisition models investigated — the Bailey Rand (BR) Contrast Model, the Doll-Schmieder
Model and Visual Performance Model — the BR model is determined to be the “best” for short-term application into the
SmartAHS microsimulation, due to a combination of believability and its low computational complexity. However, a logical
progression and continued checking of computational complexity of salient aspects of the other listed candidate models is
recommended in a carefully constructed longer term program to gradually build up the human vision aspects of SmartAHS.

! Misener, JI. A. (1998). Evaluation of Work Crew and Highway Hazard Conspicuity (UCB-ITS-PWP-98-14). Richmond, CA: University of California,
Partners for Advanced Transit and Highways.



Additionally, incorporation of perception-tracking models is recommended, starting first with the already-explored
longitudinal component and progressing to yet-to-be-explored lateral tracking.

Human vision models are applicable to the PATH SmartAHS microsimulation package mainly because of the impending
driver-assist research needs. To illustrate how these models could be used, a collision avoidance case was illustrated. In that
case, the need to supplement human detection with driver-assist detection technologies in inclement weather was highlighted.
To more fully explore this and the potential ramifications of weather and configuration on Caltrans work zone conspicuity,
especially in the context of the originally planned scope of this MOU 284, further elaboration on an probably not-for-
SmartAHS tool — the Visual Performance Model — is suggested. This is precisely the focus of the follow-on MOU 328.

The fundamental aspect of human vision that we exploit in this study is Contrast Sensitivity. The human visual system is
tuned to detect not the absolute luminance levels of various areas in a visual scene, but rather the contrast between the
luminance levels of adjacent areas. The signal supplied by the eye to the central visual structures does not give equal weight
to all regions of the visual scene. Rather, it emphasizes the regions that contain the most information—namely, the regions
where there are differences in luminance. Such regions are where our attention is directed when we look out into the world:
they are the most conspicuous. Contrast sensitivity, then, underlies our ability to detect objects of interest in the visual scene,
and also to discern patterns. This capability is of course the result of the way in which the human visual system has evolved.
Appendix I, The Anatomy of Human Sight, describes the elements and structure of the human visual system that give rise to
contrast sensitivity. The nature of light itself has significantly influenced this evolution, and a complete understanding of
contrast sensitivity requires in turn an understanding of the Physics of Sight, which is taken up in Appendix II.

The material presented in these appendices is not new, and has been presented in several classic references. We do not
wish to duplicate the considerable efforts that went into those works here, and therefore have extracted and reassembled
portions from ther to present a succinct but comprehensive iﬁtroduction to the subject. Appendix I has been taken from the
text Neuroscience=, Chapters 1 2, 5, 10, and 11; and Wandell%, Chapters 1-5. Appendix II has been taken from Physics
(Chapters 19, 28, 3AE|41, 43, 45, 46, and 48), The Eye and Visual Optical Instruments— (Chapters 26, 34, and 35) and
Principles of Optics™ (Chapter 8). All of the figures presented in these appendices have also been taken from these
references. Other references are noted in the end notes to these appendices.

Special thanks are extended to Professors Theodore E. Cohn, Stanley A. Klein, and to PhD Candidate Laura Walker
of the Department of Vision Science, University of California at Berkeley, for their generous advice and assistance.

2 Purves, et al, Neuroscience, Sinauer Associates, Inc., Sinderland, MA, 1997.

3 Wandell, Foundations of Vision, Sinauer Associates, 1995, Sunderland, MA.

4 Halliday, Resnick, and Crane, Physics, John Wiley & Sons, Inc., New York, 1992

5 Smith and Atchison, The Eye and Visual Optical Instruments, Cambridge University Press, Cambridge, UK, 1997
¢ Born and Wolf, Principles of Optics, Cambridge University Press, Cambridge, UK, 1999
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Il. Model of the Contrast Sensitivity Function
A. Overview

The description of the human visual system that we presented in Appendix I is based upon anatomical and
Dphyscophysical studies of human, primate, and other mammalian visual systems extending over the past 100 years. One
of the main conclusions we draw from the results of these studies is that the human visual system is particularly adept and
efficient at detecting alternating patterns of light/dark, red/green, and blue/yellow. We infer in turn that this just be a
Sfundamental aspect of what we call “seeing”. How well it can detect a particular pattern, i.e., its contrast sensitivity, is a
function of that pattern’s spatial frequency. To model this aspect of the visual system, we proceed as follows:

1. The given scene is decomposed into three sub-images: a black and white, or light/dark image, an image giving just the
reds and greens contained in the scene, and one giving just the blues and yellows.

2. Next, we construct a number of filters, each corresponding to a particular spatial frequency and orientation (rotation)
about the line of sight.

3. To each sub-image, we apply each filter, and then weight the result according to the corresponding Contrast Sensitivity
Function for that image and filter frequency.

Each sub-image is then built back up by pooling these filtered images together.

5. The result of these steps, then, is what one infers the visual system is actually able to discern from the original scene.
Each of the three rebuilt sub-images obtained in step 4 will have some average brightness, which is just the average of
the brightnesses of all the pixels making up the image.

6. Each sub-image is then divided into squares, and an average brightness for each of these squares is calculated in the
same manner as it was for the overall scene.

7. The ratio of the average brightness of each square (Step 6) to that of the overall sub-image (Step 5) is calculated.
8. A Scoring Grid for each sub-image is then constructed from the ratios obtained in Step 7.
9. Finally, an Overall Scoring Grid is constructed by combining the scoring grids for the three sub-images (Step 8).

The most conspicuous object in the original scene will lie in the Scoring Grid square whose ratio is the greatest.

B. Construction of Subimages
The Black/White, Red/Green, and Blue/Yellow sub-images are next calculated according to the relations

MonScene = Red+ Bh;e +Green ’

RGScene=Red—-Green, 2.1)
BYScene=Red+Green—2 Blue,

Since the individual entries of the RGScene and BY Scene arrays can fall outside the 0-1 range as a result of this operation,
they are scaled such that their values fall within it. The three sub-images are rendered (drawn) in black and white. For the
Red/Green sub-image, white indicates all-red, while black indicates all-green. For the Blue/Yellow sub-image, white
indicates all-yellow and black indicates all-blue.

C. Construction and Application of Filters

There is evidence to suggest that the human visual system is tuned to the spatial frequencies and rotational orientations
listed in Table 2-1, and we will therefore use these in constructing our filters.



Spatial Frequency (Cycles per Degree of Visual Angle) Rotational Orientation (From Horizontal)

2" = 0.5000 0

2% = 0.7071 n/6rad = 30
20 = 1.0000 2n/6rad = 60
25 = 14142 3n/6rad = 90
2" = 2.0000 dn/6rad = 120°
25 = 2.8284 Sm/6rad = 150
22 = 4.0000 6n/6rad = 180
2> = 5.6568

2 = 8.0000

237 =11.3137

2 =16.0000

2% =22.6274

Spatial Frequency and Rotational Orientation
Table 2-1

Figure 2-1 shows the scene (a scanned photograph) that we will be analyzing later. In taking this photograph, the
photographer

Original Roadside Scene
Figure 2-1

captured an area whose approximate dimensions are shown in Figure 2-2. Using these dimensions, the visual angle
subtended by the width of this scene is given by
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Since the scene is a digitized photograph, its dimensions in both pixels (768 pixels wide by 512 pixels high) and inches
(10.667" wide by 7.111" high) are available. Based on these, a square 1° of visual angle to a side would be

768 pixels 56 pixels
13.69° degree

2.3)

(or.7778") to a side.

For this madel we use a variant of the Gabor Filter, as described by Watson and AhumadaE! Our filter will extend over

this 1 square’, and for this purpose we will map the square onto a Cartesian coordinate frame. The x and y coordinates of
this frame will each be normalized between —1 and +1 and will take on intermediate values corresponding to each pixel
within the square. Thus we will have an x- and y array, each having 56 elements whose values are equally spaced between —
1 and +1. Since it is desirable to have a coordinate corresponding to zero, we will increase our arrays by one, so they will
each have 57 elements. The result is a two-dimensional, 57 x 57 element filter. From these coordinates, we can then obtain a
set of rotated coordinates x,, and y,, associated

with any counter-clockwise angular rotation  (which takes values according to the second column in Table 2-1) using the
standard coordinate transformation

X, =XCOSY+ysiny,

2.4

Vit =— X SINY+yCcos\. @9
The filter itself takes the form

Filter=e * -cos(if; X ot ], (2.5)



where dW is the dimension of our 1° square, G is the spatial frequency (which takes values according to the first column in
Table 2-1), and where

A=—P

% (2.6)
o= 3y/1og,,(2)

T

The basis for these parameters is described in the Watson and Ahumada article referenced above. The units of the cosine's

argument in Equ. are

o radians cycles

cycle  visual degree

o .
ches X, radians, 2.7

X, inches =

visual degree

as required.

The filters are then applied by convolving them with the visual scene. According to the Convolution Theorem, this is
equivalent to taking the Fourier Transforms of the Filter and the Scene, multiplying them together, and then taking the
Inverse Fourier Transform. This is the underlying algorithim for the Matlab™function “conv2” (conv2 performs a two
dimensional convolution, which we require since here the filter and scene are functions of the two spatial variables x and y),
that we emplgly in our model. According to Table 2-1, we have 12x7=84 different filters, so our algorithm performs 84

convolutions™

D. Weighting and Pooling of Filtered Images .

The Contrast Sensitivity Functions used in this analysis have been taken from Mullen™, and are shown in Figures 2-3 and
2-4.
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Figure 2-3
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Each filtered sub-image is weighted by the value of the corresponding contrast sensitivity function for that spatial frequency.
These are then pooled according to the relation

1\P
Pooled Sub-Image, =[Z[CSE (o) Filtered Sub-Image, (G)]; ) , 2.8)

where

1 Monochrome Sub-Image
i=42 Red/Green Sub-Image , 2.9)
3 Blue/Yellow Sub-Image

and where CSF;(c0) is the value of the corresponding Contrast Sensitivity Function at the spatial frequency ¢, and p is the
pooling factor, here taken to be 4. The three pooled sub-images represent the visual information actually taken in at the
retina and sent back to the central visual centers in the brain.

E. Identification of Conspicuous Elements in the Visual Scene

The scenes we will be dealing with are bitmapped images. Such images are represented in Matlab as three two-
dimensional arrays (y pixels high by x pixels wide) overlayed on top of one-another. The elements of each array are
unsigned, 8-bit binary integers. Such a number can range from 0 to 11111111 binary, or 0 to 255 decimal. The first array
indicates the amount of red each pixel in the final image contains, and we refer to it simply as R. The second array (G)
indicates the amount of green, and the third array (B) the amount of blue. Thus, each pixel can have 256 gradations of red,
green, and blue. A value of zero indicates no red (or green or blue), and a value of 255 indicates the brightest or most
luminant shade of red (or green or blue). If all three values associated with a particular point are zero, its color would be
black (the absence of all color), and if they were all 255, its color would be white (the presence of all color). If a point’s three
values were all equal but between 0 and 255, its color would be a shade of gray ranging from black to white. The brightness
of a particular point in the picture can thus be obtained by averaging its three RGB values. The brightness of the entire scene
can be obtained in the same way, by averaging all the values of all the points making it up, and similarly for any portion of
the scene. Such a file is rendered in Matlab with the “image” command. Since Matlab cannot perform arithmetic operations
on unsigned, 8-bit integers, these arrays are converted to arrays whose elements consist of real numbers ranging from zero to



one. Matlab can accommodate such arrays, and internally converts them back to unsigned, 8-bit integer arrays when it
renders them.

&l

In Figure 2-5 we've overlayed a grid of squares onto our original roadside scene. We'll define the Contrast Ratio™ of the
i™ square as

Brightnessg,,.;

Contrast Ratiog,.; = (2.10)

Brlghtness Entire Scene

The Contrast Ratio can take on values from zero to infinity. A value of one indicates that a particular square is as bright as
the overall scene, and hence does not contrast with it (is not conspicuous). A Contrast Ratio near zero indicates that a square
is darker than the overall scene, while a Contrast Ratio larger than one indicates the square is brighter. The farther a Contrast
Ratio is from one, the more it contrasts with the surrounding scene and the more conspicuous it is. We'd like to construct
from this array of Contrast Ratios a Scoring Grid, similar in appearance to that of Figure 2-6, that we can quickly scan to
identify the most conspicuous elements of a particular scene. The lighter an individual square, the more conspicuous it is,
and the darker a square, the less conspicuous it is. We can't accomplish this directly with the Contrast Ratios we calculated
above, but we can develop from them a Modified Contrast Ratio

to arrive at the desired result. Let CR be our original array of Contrast Ratios. We'll first compute an "intermediate" array
CR’ from

CR’=|CR ]| (2.11)

Looking first CR —1, we see that —1<CR —1< e, and CR —1=0 corresponds to no contrast. Thus, 0<SCR’<e and CR’=0

corresponds to no contrast. At this point we've lost one piece of information: CR” cannot tell us whether a particular square
is lighter or darker than the overall scene, only that it is different. Since we're primarily concerned with the difference,
though, we're willing to sacrifice this. We can still not render CR”, since it is not within the range of zero to one. We can,
however, calculate from it a normalized array CR,o, that does fall within this range, according to the relation

| [ ALY A
l..ﬂﬂﬂ-=E J

==
HIMUM“IIIII
Coemaug A | | [ ] ]|
= o o I

Subdivided Scene
Figure 2-5



CR’—min(CR’)
CR,ym = T - (2.12)
max [CR —min(CR )]

In words, we first shifted CR” so that its smallest element is zero, if it wasn't already [the numerator of Equ. . We

then divided by the maximum element of this resulting array so that now the largest element is one [the denominator of Equ.
2.12)].

The final step in constructing the scoring grid is to make all the elements associated with a particular square equal to
CRom for that square. The squares will render as varying shades of gray, as shown in Figure 2-6. There will always be at
least on completely black square, corresponding to the portion of the overall scene having the least [not necessarily zero,
because of Equ. contrast. Likewise, there will always be at least one completely white square, corresponding to the
portion of the overall scene having the greatest contrast.

Scoring Grid
Figure 2-6

Though the Scoring Grid allows us to quickly identify the most conspicuous elements in a particular scene, it is not
without its shortcomings:

1. As we noted, we can no longer tell whether an element is conspicuous because it is much darker or much brighter than the
overall scene.

2. The calculation of CR,, carries with it the potential to greatly compress the contrast data, as a result of the need to scale
CR’. We can identify the most conspicuous element in a scene, but we don't know how greatly it contrasts with the
scene.

3. For this reason, we can not in general compare the Scoring Grids for two different scenes and infer that the most
conspicuous element in one possesses more or less contrast than the most conspicuous element in the other. This would
arise, for instance, if we altered an element in a particular scene in various ways, and then sought to compare the
resulting Scoring Grids with the goal of identifying the alteration that gave the greatest contrast. To accomplish this,
we'd have to normalize the CR” arrays fogether, taking the minima and maxima across all the arrays for use in Equ.
(This, then is not an insurmountable problem, it just takes more effort to address.)

We'll construct a scoring grid for each of the three sub-images, and then combine these into an overall scoring grid, which



we'll use to identify the most conspicuous element in the scene. Because of the data compression problem mentioned in item
2 above, we'll normalize the three sub-images together, as described in item 3, and then take their average to arrive at the
overall scoring grid.

Unlike the filters that we described in Section C, there is no known physiological basis for the Scoring Grid concept
presented here. We have created it with the goal of methodically and consistently picking out the most conspicuous
element(s) in a given scene. The object of interest can occupy any portion of a visual scene—from a very small part to a very
large part. If we size our squares too small our scoring grid may identify many different "most conspicuous objects"
scattered throughout the scene. If we size the squares too large, the most conspicuous object may get "averaged" into the
background when the intensity of the square containing it is calculated. Of course, we know from our own experience that
the human visual system can usually pick the pertinent object out with ease. This suggests that if anything like a scoring grid
is actually being implemented in the human visual system, then it must be capable of varying the square size until some
optimization criteria is met. Here we'll assume that this adjustment process has already occurred and we'll manually set the
square size appropriate to the scene we're analyzing. (The development of an algorithm to do this would be a logical and
desirable extension to the present effort, but is beyond the scope of our currently available resources.)

F. Computer Algorithm of the CSF Model

Our model of the Contrast Sensitivity Function has been implemented via the Matlab file CSF01, which is listed in
Appendix 3. Its organization is described by the flow chart shown in Figure 2-7. The variables used by CSFO01 fall into
three categories: Main Variables, Progress Variables, and Temporary Variables. These are also listed and described in the
three tables in Appendix 3.

10
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Figure 2-7

" The model that we present in Chapters II — IV is based on the physiological and theoretical concepts presented in
Appendices I and II. Though these appendices are not a prerequisite to the chapters, the reader my nonetheless wish to read
them in order to gain a more comprehensive understanding of the model's basis.

* Anatomical studies are, as one might guess, invasive. They typically involve the sacrifice and dissection a laboratory
animal, or the dissection of a human who has donated his or her remains for this purpose. Psychophysical experiments are
noninvasive experiments, in which a test subject is presented with a stimulus and his or her response observed.
Psychophysical experiments can be and have been performed on humans chimpanzees, cats, and many other types of living
things. We could even think of performing such an experiment on an individual cell.

’ A.B. Watson and A.J. Ahumada, Model of Human Visual-Motion Sensing, Journal of the Optical Society of America, 1985,
Volume 2, No.2, pp. 328-329.

* We have chosen such a small dimension for our filter because it is representative of foveal vision. An alternative, equally
valid, approach would be to consider extra-foveal vision, and to employ correspondingly larger filters if various sizes. In
selecting the former case we have implicitly assumed that our observor is attentive, and looking "forward" towards the

11



visual scene. A distracted observor would first have to be drawn to focus on the scene by his or her peripheral, or extra-
foveal vision. This would be a logical follow-on to this analysis.

> The Matlab computing environment has proven to be a particularly convenient one for analyses of this type, and we have
therefore implemented this model in it. The Matlab programming language is (with minor modification) the C-
programming language.

® Applying conv2 in this case is a time-consuming operation. A personal computer with an 890 MHz processor takes
approximately one hour to perform these 84 convolutions. Time did not permit researching this subject to identify faster
convolution algorithms. Again, this should be taken up as part of a follow-on study.

"K. T. Mullen, The Contrast Sensitivity of Human Colour Vision to Red-Green and Blue-Yellow Chromatic Gratings, Journal
of Physiology, 1985, Vol. 359, pp. 381-400

8 Here we're comparing each square with the entire scene. As with our selection of filter size, we could, alternatively,
compare each square with the squares in its immediate vicinity. Our rationale here is that a human observor will focus first
on the most conspicuous element in the entire scene, and then scan the rest of the scene (conditions permiting), focusing on
any other elements that stand out from their immediate surroundings. We want our target to be that first element the
observor's attention is drawn to.

12



lll. Verification of the Model

Before turning our attention to the roadside scene of Figure 2-1, we’ll first apply our algorithm to the scene shown in
Figure 3-1. This consists of a monochrome, sinusoidally varying pattern that is damped exponentially in both the horizontal
and vertical

Gabor Pattern Superimposed on a Uniform Field of Noise
Figure 3-1

directions, superimposed on a uniform field of “background noise”. It was constructed based on the dimensions shown in
Figure 3-2. The pattern is a variant of a two-dimensional Gabor Function (described in Watson and Ahumada article
referenced in the previous section), given by

oyl el ool 2 e cnf ol 2 o

where the amplitude I and the spatial frequency G are chosen to be
I=1,
Cycles (3.2)
Degree of Visual Angle’

G=.5

and where p and A are as defined in the previous section. As before, dW is the dimension (in this case 53 pixels) of a square

1° of visual angle to a side, as viewed on a Personal Computer monitor by an observor approximately .8 meters in front of it.
x and y (not to be confused with x and y as used in the previous section) are the coordinates (also in pixels) associated with
the scene, adjusted so that the point (0,0) corresponds to its center. This construction has been implemented in the Matlab
file CSF02.m, which is listed in Appendix 3.
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Because the form of this pattern corresponds to that of our filters, we should very nearly recover the monochrome sub-
image in our analysis. [We won’t recover it exactly because the noise will be filtered out. Note too that because of the way
we deconstructed the
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Figure 3-2

original image—into B/W, R/G, and B/Y sub-images according to Equs. (4.12), it is not possible to combine their filtered and
reconstructed counterparts together to arrive at an overall reconstructed image.] As we can readily see, the area of greatest
contrast lies at the center of the figure. This of course corresponds to the central peak of our pattern. The adjacent peaks
exhibit progressively diminished contrast, and our Scoring Grids should reflect this. Application of our model gives the
results shown in Figure 3-3. The first row shows the B/W, R/G, and B/Y sub-images. Note that the R/B and B/Y Sub-
Images show no pattern. This is because a monochrome input pattern, such as we have, is added to each of the R, G, and B
arrays, and then subtracted out [per Equ. 4.12)] when the sub-images are created. It only shows up, then, in the B/W sub-
image. The second row shows the filtered, pooled, and reconstructed sub-images, and the third row shows the Scoring
Grids. From the Scoring Grids we see that our predictions are confirmed: we have recovered the original monochrome sub-
image without the noise, and according to both the Bl;ack and White and Overall Scoring Grids the most conspicuous part of
the scene lies at the very center, with progressively less conspicuous areas fanning out from it and located at the sites of the
subsequent Gabor peaks.
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Analysis of a Two-Dimensional Gabor Function
Figure 3-3
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IV A Roadside Scene

The roadside scene of Figure 2-1 is analyzed in the same manner as the Gabor Function of the previous section, with the
result shown in Figure 4-3 on the next page. From the Scoring Grid, we see that the workman’s vest is the most conspicuous
element in the scene, as we would expect. We'll repeat this analysis, but this time we'll introduce a bright lime-green circle
into the scene, as shown in Figure 4-1. We now obtain the result shown in Figure 4-4. The scoring grids indicate that the
circle is more conspicuous than the

workman's vest, a result we can "sense" just by glancing quickly at Figure 4-1. We can get a better idea of why this is by
looking at the individual scoring grids. The circle is considerably brighter than the vest in both the Red/Green and
Blue/Yellow sub-images. (Neither it nor the vest seem to be able to compete with the sky in the Black/White sub-image, and
here they appear to be equally bright.) One insight into making an object more conspicuous, then, is to increase its
conspicuity in all three of the visual "channels"—the Black/White, Red/Green, and Blue/Yellow. Lime-green appears to do a
better job of this than orange.

Going in the other direction, we'll make the vest the same color as the shaded grass immediately behind the workman.
This case is shown in Figure 4-2, and gives the result shown in Figure 4-5. Now the workman almost disappears from the
scene, and the most conspicuous elements in the scene become the sky above the workman and the lighted ground in front
and to the left of him. Again, this result is easily confirmed by glancing quickly at Figure 4-2.

It's interesting, though on second thought not surprising, that the sky competes so effectively for our attention. It is for all
intents and purposes a light source, while all the other objects in the scene merely reflect the light it is generating. This again
offers us an insight into how to make objects more conspicuous—by having the workman's vest itself generate light in some
fashion, or by making it out of fluorescent material.
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A More Conspicuous Target
Figure 4-1

A Less Conspicuous Target
Figure 4-2

17



Original Scene B/W Sub-Image R/G Sub-Image B/Y Sub-Image

.+ J

Filtered B/W Sub-Image Filtered R/G Sub-Image Filtered B/Y Sub-Image

Overall Scoring Grid B/W Scoring Grid R/G Scoring Grid B/Y Scoring Grid

Original Roadside Scene

Figure 4-3
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A More Conspicuous Target

Figure 4-4
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V. Conclusions and Next Steps

We have developed an algorithm to identify the conspicuous elements in a visual scene, based on the human visual

system's contrast sensitivity function; and verified its performance using a photograph of an roadway construction scene. It is
implemented as a Matlab "M-File" in the Matlab computing environment. In its present form the M-File can read a digitized
photograph of a construction scene and identify the most conspicuous elements in it. A "scoring grid" has been devised to
quickly and easily view the results of the computations. Actual, numerical values associated with the conspicuity of any
element in the scene are also available for additional analysis.

The work to date should only be viewed as a first step. A number of refinements and extensions are possible, as discussed

in the previous sections, and summarized here:

1.

Here we assumed an "attentive" driver, and modeled foveal vision. By increasing the size of our filters and adding
additional logic we can model extra-foveal (peripheral) vision, and test the ability of various visual schemes to alert
inattentive drivers.

In quantifying conspicuity, we have compared the elements in a visual scene against a background consisting of the
entire scene. This represents an observor's "first glance" at a visual scene, where we assume the driver will focus on the
most conspicuous element overall. It would also be desirable to model the observor's "second pass" at the scene, in
which the driver quickly scans the scene for other elements that stand out from their immediate surroundings.

Depending upon what else is in the scene, this activity could enhance or detract from the driver’s efforts.
Investigate the effect of elements that are made out of fluorescent material or generate light in some fashion.

Here we limited our attention to still scenes. Contrast Sensitivity also includes sensitivity to movement, which is
modeled in a manner quite similar to the still case. By incorporating sensitivity to movement, we can then assess the
conspicuity of schemes that add movement (or a sense of movement) to important elements in the scene.

Work has been done recently at the NASA-Ames National Laboratory to develop a "spatial standard observer". In
particular, this observer or incorporates a "Tyler plus Oblique" contrast sensitivity function along with Minkowski
Pooling. (These are described in the NASA-Ames Web site—http://vision.arc.nasa.giv/imodelfest/) Our model is
already quite similar to this, but it would be desirable to make it more consistent.

Finally, on a more mechanical note, we mentioned that it would be desirable to speed our algorithm up. Additional
research to identify a faster convolution routine with an eye to making real-time sensing possible would be highly
desirable.

While these next steps would permit a more precise measurement of conspicuity, we have shown that it is possible to

develop a model for a good first pass. Thus, the algorithm shown here can be used to assess and improve the conspicuity of
construction equipment and personnel on California Highways.
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Appendix I: The Anatomy of Human SightEI
A. Overview of the Central Nervous System

The central nervous system is usually considered to include seven basic parts: the spinal cord, the medulla, the pons, the
cerebellum, the midbrain, the diencephalon, and the cerebral hemispheres. These are shown in Figure 1-1. The medulla,
pons, and midbrain are collectively called the brainstem; the diencephalon and cerebral hemispheres are collectively called
the forebrain. This divisional scheme is actually related to the embrionic subdivisions apparent at the earliest stages of neural
development. We note, though, that the categorization is somewhat artificial, in that neurons often span the boundaries of
these subdivisions, and most neural functions depend on more than one of these components.

.- - Spinal'cord

The Major Divisions of the Central Nervous System
Figure 1-1

When the human brain is viewed from the side, as in Figure 1-1, only the brainstem, the cerebellum, and the cerebral
hemispheres are visible. The latter are so large that they hide the rest of the brain’s subdivisions from view. In addition to
their large size (the cerebral hemispheres represent 85% of the brain by weight), an obvious feature of the hemispheres is
their highly convoluted surface. The ridges are known as gyri (singular gyrus), and the valleys are called sulci (singular
sulcus), or, if they are especially deep, fissures. The entire convoluted surface of the hemispheres comprises a laminated rind
of neurons and supporting cells about 2 mm thick, called the cerebral cortex. The reasons for cerebral sulcation are not
entirely clear, but the infolding of the brain obviously allows a great deal more cortical surface area (2.2 m* on average) to
exist within the confines of the skull, or cranium. Also, a sulcus or fissure often corresponds to a boundary between two
functionally distinct areas; thus, the mechanism of sulcation probably involves the differential growth of distinct cortical
regions.

Each hemisphere is conventionally divided into four lobes, as shown in Figure 1-2, named for the bones of the skull that
overlie them. These are the frontal, parietal, temporal, and occipital lobes. A particularly important feature of the frontal
lobe is the precentral gyrus, whose cortex is referred to as the motor cortex because it contains neurons whose axons project
(i.e., extend) to the motor neurons in the brainstem and spinal cord that innervate the skeletal muscles. The temporal lobe
contains cortex concerned with audition. The parietal lobe harbors cortex that is concerned with bodily sensation. Finally,
the striate or visual cortex of the occipital lobe (only a small part of which is apparent from this side-view of the brain), is
concerned with vision. In addition to their role in primary and sensory processing , each lobe of the cerebral hemispheres has

! The material in this Appendix and all of the figures have been taken from:
Purves, et al., Neuroscience, Sinauer Associates, 1997, Sunderland, MA (Chapters 1 2, 5, 10, and 11).
Wandell, Foundations of Vision, Sinauer Associates, 1995, Sunderland, MA(Chapters 1-5).
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characteristic cognitive functions. Thus, the frontal lobe is critical in planning behavior, the temporal lobe in recognizing
objects and faces, the parietal lobe in attending to important stimuli, and the occipital lobe in visual analysis.

As we shall see, the signals from the eye pass to the occipital lobe by way of the diencephalon. Here most of these
signals are processed in the lateral geniculate nucleus of the thalmus before being sent on. Those that aren’t are concerned
with pupillary light reflex, circadian rhythms (the “day/night” cycle), and head and eye movements. They project to
structures within the diencephalon and midbrain.

The Four Lobes of the Brain
Figure 1-2

B. The Anatomy of the Neuron

The fact that cells are the basic elements of living organisms was recognized early in the nineteenth century. It was not
until well into the twentieth century, however, that neuroscientists agreed that nervous tissue, like all other organs, is made up
of these fundamental units. The extraordinary shapes of individual nerve cells and the great extent of some of their branches
obscured their resemblance to the cells of other tissues. We now know, however, that nervous tissue is indeed made up of
cells that communicate with one another by means of specialized contacts called synapses. The cells of the nervous system
can be divided into two broad categories: nerve cells (or neurons) and a variety of supporting cells. Nerve cells are
specialized for electrical signaling over long distances (relative to the cell diameter). (Supporting cells, in contrast, are not
capable of electrical signaling.) Although the cells in the human nervous system are in many ways similar to those of other
organs, they are unusual in their extraordinary numbers (the human brain is estimated to contain 100 billion neurons and
several times as many supporting cells), their rich functional diversity, and the neurons’ ability to form intricate ensembles,
or circuits, on which sensation, perception, and behavior ultimately depend.

A prototypical neuron and its component parts is shown in Figure 1-3. Like other cells, each neuron has a cell body
containing a nucleus, endoplasmic reticulum, ribosomes, Golgi apparatus, mitochondira, and other organelles that are
essential to its function. As mentioned before, however, neurons are highly specialized for intercellular communication.
This specialization is perhaps most apparent in their bizarre and fascinating geometries. The most salient morphological
feature is the elaboration of the dendrites (also called dendritic branches or dendritic processes) that arise from the neuronal
cell body. Most neurons have multiple dendrites, which are typically short and highly branched. The dendrites, together
with the cell body itself, provide sites for the synaptic contacts made by the terminals of other nerve cells and can thus be
regarded as specialized for receiving information.

The spectrum of neuronal geometries ranges from a small minority of cells that lack dendrites altogether to neurons with
dendritic aborizations that rival the complexity of a mature tree, as shown in Figure 1-4. The number of inputs that a
particular neuron receives depends on the complexity of its dendritic arbor: neurons that lack dendrites are innervated by just
one or a few other neurons, whereas those with elaborate dendrites are innervated by a commensurately larger number of
other neurons. Since a fundamental purpose of neurons is to integrate information from other neurons, the number of inputs
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received by each neuron (which in the human nervous system ranges from 1 to about 100,000) is an especially important
determinant of neuronal function.

The information from the inputs that impinge on the dendrites is “read out” at the origin of the axon, the portion of the
neuron specialized for signal conduction. (See again Figure 1-4.) The axon is a unique extension from the neuronal cell
body that may ravel a few hundred micrometers or much further, depending on the type of neuron and the size of the species.
The majority of neurons in the human brain have axons only a few millimeters long, and a few have no axons at all (for
example, the amacrine cell, which we’ll discuss later). Such neurons transmit information locally. In contrast, the axons that
run from the retina of the eye to the midbrain region are about five centimeters long and those that run from the human spinal
cord to the foot are about a meter long. The axonal mechanism that carries signals over such distances is called the action
potential, a self-regenerating electrical wave that propagates

A Neuron and its Component Parts
Figure 1-3

from its point of initiation at the cell body (called the axon hillock, not shown in Figure 1-3, which is approximately at the
location where the axon meets the cell body) to the terminus of the axon.

The information encoded by the action potentials is passed on to the next cell in the pathway by means of synaptic
transmission. Accordingly, axon terminals are highly specialized to convey this information to target cells—which include
other neurons in the brain, spinal cord, autonomic ganglia, and muscles and glands throughout the body. These terminal
specializations are called synaptic endings (or terminal boutons), and the contacts they make with the target cells are called
chemical synapses, also shown in Figure 1-3. (So called to distinguish them from electrical synapses, which are not present
in the visual system, and which we therefore won’t discuss.) A single neuron can receive many thousands of synaptic
endings, and can contact as many as a thousand other cells. Each synaptic ending contains secretory organelles called
synaptic vesicles, as well as membrane specializations that allow these vesicles to transmit their contents to the target cells.
The release of neurotransmitters from the synaptic vesicles modifies the electrical properties of the target cell, thus
generating a signal in that (postsynaptic) cell. The postsynaptic cells are activated by virtue of the neurotransmitter receptors
on their surfaces, which specifically bind and react to the neurotransmitters released by the presynaptic cells.
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Nerve Cell Morphologies
Figure 1-4

C. Neural Signaling

Neurons generate signals in the form of electrical potentials that transmit information. Although they are not intrinsically
good conductors of electricity, they have evolved elaborate mechanisms for generating these signals based on the flow of
ions across their plasma membranes. Neurons generate two basic types of potentials: graded potentials and action
potentials= Graded potentials are generated in sensory receptors and in dendrites. They are usually sustained in nature,
lasting as long as the stimulus, with an amplitude that is proportional to the strength o the stimulus. Graded potentials are
local potentials (that is, they are not transmitted, which we discuss below), and their amplitudes diminish as they move away
from their site of generation. They add together, and they may be either positive of negative. Graded potentials have no
threshold (also discussed below); for example, a single photon of light absorbed by a photoreceptor generates a small, graded
potential. Action potentials, often called impulses or spikes, are relatively large (.1 volts), transient, (1 to 2 milliseconds in
duration), “all—or—nothing” potentials that are generated along axons. They signal the strength of a stimulus by their
frequency rather than their amplitude. Action potentials are usually transmitted, that is, they are continually regenerated
along an axon. Hence, an action potential at the end of an axon is identical in amplitude to one at the beginning. Action
potentials also have a threshold; for example, for an action potential to be generated, the voltage across the cell membrane
(the membrane potential) must be changed by about 15 mV. Some neurons with short axons may function with graded
potentials only. Some have no axons and therefore also function without action potentials. Most neurons, however, have
both kinds of potentials. The graded potentials in the dendrites sum to change the membrane potential of the neuron by a
sufficient amount to trigger the firing of action potentials in the axons. Thus, graded potentials generate action potentials in a
neuron and for this reason are sometimes generator potentials.

As we mentioned above, the use of electrical signals—as in sending electricity over wires to provide power or
information—presents a fundamental problem for neurons: neuronal axons, which can be quite long (recall that a spinal
motor neuron can extend for a meter or more), are not good electrical conductors. Although neurons and wires are both
capable of passively conducting electricity, the electrical properties of neurons compare poorly to even the most ordinary
wire. Action potentials constitute a “booster system” that allows them to conduct electrical signals over great distances
despite their intrinsically poor electrical characteristics. Underlying both graded and action potentials is a resting potential,
which is the membrane potential of both unexcited neurons and other cells. When it is at rest, the electrical potential across a
neuron’s plasma membrane is typically —40 to —90 mV: the cell’s inside charge is negative relative to the outside charge.
Action potentials are elicited when electrical current is passed across the membrane of the neuron. Under normal
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circumstances, such a current is generated by another neuron (at the synapse between the two nerve cells), or by the
transduction of an external stimulus in sensory neurons. If the current delivered is such as to make the membrane potential
more negative (hyperpolarization), nothing very dramatic happens. The membrane potential simply changes in proportion to
the magnitude of the injected current. If current of the opposite polarity is delivered, so that the membrane potential becomes
more positive than the resting potential (depolarization), then at a certain point, called the threshold potential, an action
potential occurs. The effects of hyperpolarizing and depolarizing currents is summarized in Figure 1-5. Generation of both
the resting potential and the action potential can be understood in terms of the nerve cell’s selective permeability to different
ions and the normal distribution of these ions across the cell membrane.

The actual communication of the information encoded in the action potential occurs through a synapse, the functional
contact between neurons. Although there are many synaptic subtypes within the brain, they can be divided into two general
classes: electrical synapses and chemical synapses. Electrical synapses, which are a distinct minority, permit direct, passive
flow of electrical current from one neuron to another. Chemical synapses enable communication via the secretion of
neurotransmitters; in this case, chemical agents released by the presynaptic neurons produce secondary current flow in
postsynaptic neurons by activating specific receptor molecules. The generalized structure of a chemical synapse is shown
schematically in Figure 1-6. The separation between the pre- and postsynaptic neurons is called the synaptic cleft. The key
feature of all chemical synapses is the presence of small, membrane-bounded organelles called synaptic vesicles within the
presynaptic terminal. These spherical organelles are filled with one or more types of neurotransmitters—the chemical
signals secreted from the presynaptic neuron. The use of such chemical agents as messengers between the communicating
neurons gives this type of synapse its name.

Transmission at chemical synapses is based on the elaborate sequence of events depicted in Figure 1-7. The process is
initiated when an action potential is transmitted to the terminal of the presynaptic neuron. The change in membrane potential
associated with the arrival of the action potential causes the opening of voltage-gated calcium channels in the presynaptic
membrane. Because of the steep concentration gradient of Ca®* across the presynaptic membrane (the external Ca®*
concentration is approximately 10° M, whereas the internal Ca>* concentration is approximately 10”7 M), the opening of these
channels causes a rapid influx of Ca®" into the presynaptic terminal, which in turn causes the Ca®* concentration of the
cytoplasm in the terminal to rise from its normally low level to a much higher value. Elevation of the presynaptic Ca**
concentration allows synaptic vesicles to fuse with the plasma membrane of

Record

Passive and Active Electrical Signals in a Nerve Cell
Figure 1-5
the presynaptic neuron, since this process is Ca®* dependent. The fusion of synaptic vesicles causes their contents, most

importantly neurotransmitters, to be released into the synaptic cleft. Following this exocytosis, transmitters diffuse
throughout the synaptic cleft and bind to specific receptors on the membrane of the postsynaptic neuron. The binding of
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neurotransmitter to the receptors causes channels in the postsynaptic membrane to open (or sometimes to close). The
resulting neurotransmitter-induced current flow alters the membrane potential of the postsynaptic neuron, increasing or
decreasing the probability that the neuron will fire an action potential.

Postsynaptic+
neuron

The Chemical Synapse
Figure 1-6
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D. The Formation of Images on the Retina

Figure 1-8 gives a schematic representation of the imaging components of the eye. The formation of focused images on
the photoreceptors of the retina depends in large part on the refraction (bending) of light by the cornea and the lens. The
cornea is responsible for most of the necessary refraction. The lens has considerably less refractive power than the cornea;
however, the refraction supplied by the lens is adjustable, allowing objects that lie at various distances from the observer to
be brought into sharp focus on the retinal surface.

‘Posterior chamber

Ciliary
“muscle

L. ——Sclera

Optic disk

Optic nerve
and retinal vessels

Imaging Components of the Human Eye
Figure 1-8

The dynamic changes in the refractive power of the lens are referred to as accommodation. When viewing distant objects,
the lens is made relatively thin and flat and has the least refractive power. For near vision, the lens becomes thicker and
rounder, and has the most refractive power. The lens is held in place by radially arranged connective tissue bands (called
zonule fibers) that are attached to the ciliary muscle that runs circumferentially near the inner surface of the eye. The shape
of the lens is determined by two opposing forces: the elasticity of the lens, which tends to keep it rounded up (removed from
the eye, the lens becomes spheroidal), and the force exerted by the zonule fibers, which tends to flatten it. Under normal
conditions, the force of the zonule fibers is greater than the elasticity of the lens and the lens assumes the flatter shape that
allows focusing on distant objects. Focusing on closer objects requires relaxing the tension in the zonule fibers, allowing the
inherent elasticity of the lens to increase its curvature. This relaxation is accomplished by the contraction of the ciliary
muscle. Because the ciliary muscle forms a ring, the attachment points of the zonal fibers move toward the center of the eye
when the muscle contracts, thus reducing the tension on the lens.

Adjustments in the size of the pupil (which is not a physical component of the eye but instead refers to the circular
opening in the iris) also contribute to the clarity of images formed on the retina. Like the images formed by other optical
instruments, those generated by the eye are not perfect; spherical and chromatic aberrations can cause blurring of the retinal
image, a problem that is greatest for the light rays that pass farthest from the center of the lens. Narrowing the pupil therefore
reduces both spherical and chromatic aberrations, just as closing the iris diaphragm on a camera lens improves the sharpness
of a photographic image. Reducing the size of the pupil also increases the depth of field—that is, the range of distances over
which objects can be moved toward or away from the eye without appearing blurred. However, a small pupil also limits the
amount of light that reaches the retina; under conditions of dim illumination, visual acuity becomes limited by the number of
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available photons rather than by optical aberrations. An adjustable pupil thus provides an effective compromise: it limits
optical aberrations and maximizes depth or field as different levels of illumination permit.

The spaces in front of and behind the lens account for most of the eye’s volume, and are filled with two different types of
fluid. Aqueous humor, a clear, watery liquid, fills the space between the lens and the cornea (the anterior chamber) and
supplies nutrients to both of these structures. Aqueous humor is produced in the posterior chamber (the region between the
lens and the iris) and flows into the anterior chamber through the pupil. A specialized meshwork of cells that lies at the
junction of the iris and the cornea is responsible for its uptake. Under normal conditions, the rates of aqueous humor
production and uptake are in equilibrium, ensuring a constant intraocular pressure. The space between the back of the lens
and the surface of the retina is filled with a thick gelatinous substance called the vitreous humor. In addition to maintaining
the shape of the eye, the vitreous humor contains cells that remove blood and other debris that might interfere with light
transmission.

E. The Anatomy of the Retina

Despite its peripheral location, the retina is actually part of the central nervous system. Consistent with this status, the
retina comprises a complex neural circuitry that converts the chemical responses of the photoreceptors into graded electrical
activity, and finally into action potentials. There are five types of neurons within the retina: photoreceptors, bipolar cells,
ganglion cells, horizontal cells, and amacrine cells. The bodies and processes (dendrites and axons) of these retinal neurons
are stacked in five alternating layers, shown in Figure 1-9. The cell bodies are located in the inner nuclear, outer nuclear,
and ganglion cell layers;
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while the processes and synaptic contacts are located in the inner plexiform and outer plexiform layers. (The terms “inner”
and “outer” refer to relative distances from the center of the eye. Thus, “inner” means closer to the center of the eye and
“outer” means farther from the center. In Figure 1-9, light is shown travelling from the center of the eye so the nerve fiber
layer is the innermost part of the retina, and the pigment epithelium the outermost part.)

There are two types of photoreceptors, rods and cones, and these are the only elements of the retina that are sensitive to
light. Both types of photoreceptors have an outer segment that contains photopigment and an inner segment that contains the
cell nucleus and gives rise to the synaptic terminals that contact bipolar and horizontal cells. Absorption of light by the
photopigment in the outer segment of the photoreceptors initiates a cascade of events that changes the membrane potential of
the receptor and therefore the amount of neurotransmitter released by the photoreceptor synapses onto the cells they contact.
The synapses between photoreceptor terminals and bipolar (and horizontal) cell processes occur in the outer plexiform layer.
The cell bodies of photoreceptors make up the outer nuclear layer, whereas the cell bodies of bipolar cells lie in the inner
nuclear layer. The axonal processes of bipolar cells make synaptic contacts in turn on the dendritic processes of ganglion
cells in the inner plexiform layer. The axons of the ganglion cells form the optic nerve, which carries information about
retinal stimulation to the rest of the central nervous system.

The two other types of neurons in the retina, horizontal cells and amacrine cells, have their bodies in the inner nuclear
layer and are primarily responsible for lateral interactions within the retina. For example, lateral interactions between
receptors, horizontal cells, and bipolar cells in the outer plexiform layer are largely responsible for the visual system’s
sensitivity to luminance contrast. The processes of amacrine cells, which extend laterally in the inner plexiform layer, are
postsynaptic to bipolar cell terminals and presynaptic to dendrites of ganglion cells, shown in Figure 1-9. There are
numerous subclasses of amacrine cells that can be distinguished by the particular neuropeptide transmitter they contain.
Amacrine cells remain the least understood of the retinal neurons.

At first glance, the organization of the cellular layers in the retinal seems counterintuitive, since light rays must pass
through all of the neural circuitry of the retina (not to mention the retinal vasculature) before striking the outer segments of
the photoreceptors. This is certainly not the way an engineer would have designed things. However, this peculiar
arrangement allows the tips of the outer segments of the photoreceptors to contact the pigment epithelium. The outer
segments contain membranous disks that house the photopigment and other proteins involved in the transduction process.
The disks are continuously formed near the inner segment and pushed toward the tip of the outer segment, where they are
shed. The pigment epithelium plays an essential role in removing the expended receptor disks—no small task, since all the
disks in the outer segments are replaced every 12 days. The pigment epithelium also plays a second important role—it
reduces the back-scattering of light that has already passed through the photoreceptors. It is presumably the life cycle of the
photoreceptor that explains why photoreceptors are found in the outermost rather than the innermost layer of the retina

F. Phototransduction

In most sensory systems, activation of a receptor by the appropriate stimulus causes the cell membrane to depolarize (i.e.,
assume a more positive potential), stimulating transmitter release and ultimately a postsynaptic potential in the neurons it
contacts. Thus, it may come as a surprise to learn that shining light on a photoreceptor, either a rod or a cone, leads to
membrane hyperpolarization rather than depolarization, as demonstrated in Figure 1-10. In the dark, the receptor is in a
depolarized state, with a membrane potential of roughly —40 mV. Progressive increases in the intensity of illumination cause
the potential across the receptor membrane to become more negative, a response that saturates when the membrane potential
reaches about —65 mV. Transmitter release from the synaptic terminals of the photoreceptor, like that from other neuron, is
dependent on the potential difference across the terminal membrane. Thus, the depolarized photoreceptors continually
release transmitter in the dark; when they are hyperpolarized by light, the level of transmitter release is reduced. Although
this arrangement may seem odd, the only logical requirement for subsequent visual processing is a consistent relationship
between luminance changes and the activity of photoreceptors. In any event, the reason for this apparent “sign reversal” in
the activation of photoreceptor cells is not known.

The depolarized state of photoreceptors in the dark depends on the presence of ion channels in the outer segment
membrane that permit sodium, calcium, and magnesium ions to flow into the cell, thus reducing the degree of inside
negativity. This is shown schematically in Figure 1-11. The probability of these channels in the outer segment being open
or closed is regulated by the levels of the nucleotide cyclic guanosine monophosphate (cGMP). In darkness, high levels of
cGMP in the outer segment keep the channels open. In light, cGMP levels drop and some of the channels close, leading to
hyperpolarization of the outer segment membrane.
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The absorption of a photon by a molecule of photopigment in the disks of the photoreceptor outer segment initiates a
biochemical cascade that ultimately decreases intracellular levels of cGMP. The photopigment in the receptor discs contains

a light absorbing component (//-cis retinal) coupled to one of a variety of proteins (opsins) that tunes the molecule’s
absorption of light to a particular
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Signal Transmission at a Typical Chemical Synapse

Figure 1-10

region of the spectrum. The different protein component of the photopigment in rods and cones contributes critically to the
functional specialization of the two receptor types. Most of what is known about the molecular events of phototransduction
has been gleaned from experiments in rods, in which the photopigment is rhodopsin. When the retinal moiety in rhodopsin
absorbs a photon of light, its configuration changes and triggers a series of alterations in the protein component of the
molecule. These changes lead, in turn, to the activation of an intracellular messenger called transducin, which activates a
phosphodiesterase that hyudrololyzes cGMP. Thus, absorption of light results in structural changes in rhodopsin, the
activation of transducin, the activation of a cGMP phosphodiesterase, and finally the breakdown of cGMP.

This complex cascade provides enormous amplification. A single light-activated rhodopsin molecule can activate
hundreds of transducin molecules, which in turn can lead to the hydrolysis of hundreds of cGMP molecules. It has been

estimated that the absorption of a single photon by a rhodopsin molecule results in the closure of 300 ion channels, or about
3% of the number of channels in each rod that are open in the dark.
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The Role of cGMP in Regulating the Electrical State of Photoreceptors in the Dark
Figure 1-11
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G. Specializations of the Rod and Cone Systems

Longitudinal slices of the two types of photoreceptors, rods and cones, are shown in Figure 1-12. (When viewed from
above, these cells have a circular cross section. Thus, the outer segment of a rod is cylindrically shaped, while that of a cone
is conical—hence their names.) They are distinguished by their shape, the type of photopigment they contain, their
distribution across the retina, and their pattern of synaptic connections. These properties reflect the fact that the rod and cone
systems (by which we mean the receptors and their connections within the retina) are specialized for different aspects of
vision. The rod system has very low spatial resolution , but is extremely sensitive to light; it is therefore specialized for
sensitivity at the expense of resolution. In contrast, the cone system has very high spatial resolution but is relatively
insensitive to light (the amplification effect described in the previous section applied to rods—a rod can respond to a single
photon, whereas more than 100 photons are required to activate a cone); it is therefore specialized for acuity at the expense of
sensitivity. The cone system also allows us to see color.
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Structural Differences Between Rods and Cones
Figure 1-12

The contributions of the rod and cone systems to the range of illumination over which the visual system can operate are
shown in Figure 1-13. At the lowest levels of illumination (below the level of starlight), rods are the only receptors
activated; such rod-mediated perception is called scotopic vision. Everyone is familiar with the difficulty of making visual
discriminations under very low light conditions, where only the rod system is active. (The problem is the poor acuity of this
system, and the fact that all perception of color is lost.) Cones begin to contribute to visual perception at about the level of
starlight, and they are the only receptors that function under relatively bright conditions such as normal indoor lighting or
sunlight. Cone-mediated vision, called photopic vision, occurs at high levels of illumination because the response of rod
photoreceptors to light saturates—that is, the membrane potential of individual rods no longer varies as a function of
illumination. (See Figure 1-13.) Finally, mesopic vision occurs at light levels in which both rods and cones contribute.
From these considerations it should be clear that most of what we think of as seeing is mediated by the cone system, and that
loss of cone function is devastating. Individuals who have lost cone function are legally blind, whereas those who have lost
rod function only experience difficulty seeing at low levels of illumination (called night blindness).

The factors that contribute to the functional differences in the rod and cone systems are several. First, differences in the

structure of rods and cones, including the amount of photopigment and the shape of the outer segment, make rod receptors
more sensitive. (See again Figure 1-12.) Rods are longer and contain more photopigment than cones, enabling them to
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capture more light. Even more important, the transduction mechanism in rods (as mentioned above and in the previous
section) is capable of greater amplification than cones.

Another critical distinction between the two receptor systems concerns color vision. Both rods and cones transmit
information about the wavelength of light as a function of the types of the photopigments they contain. All rods contain the
same photopigment—rhodopsin—whereas individual cones contain one of three different photopigments, collectively called
cone opsins, that have different but overlapping absorption spectra. This is shown in Figure 1-14. The relative activity of
these three sets of cones [referred to as S, M, and L cones for the short (blue), middle (green), and long (red) wavelengths]
generates retinal signals that ultimately give rise to the sensation of color. Besides it aesthetic appeal, color vision makes it
possible to distinguish objects that might be difficult to
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contrast with their surroundings. Seeing color is not essential, however; many mammals lack this ability, and color blindness
in humans is a relatively minor problem.

There are approximately 100 million rods and 5 million cones in each eye. Their distribution across the surface of the
retina varies markedly, as Figure 1-15 shows. Cones are the only photoreceptors located in the fovea. In this specialized
region of the retina, shown in Figure 1-16, the layers of cell bodies and processes that generally overlie the photoreceptors
are displaced, so light rays are subjected to a minimum of scattering before they strike the receptors. Another potential
source of distortion, blood vessels, are also absent from the small region in the center of the fovea (called the foveola);
because this region lacks a capillary bed, it is dependent on the underlying choroid and pigment epithelium for sustenance.
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Distribution of Rods and Cones in the Human Retina
Figure 1-15

Although cones are not restricted to the fovea, their lower density outside the fovea, as well as the lower density of the
ganglion cells that they supply, explains why visual acuity declines so markedly as a function of eccentricity. Indeed, the
greater acuity of foveal vision is the main reason humans spend so much time moving their eyes (and heads) around—in
effect directing the foveas of the two eyes to objects of interest. Acuity is reduced by 75% just 6° eccentric to the line of
sight, a fact that can readily be appreciated by trying to read the words on any line of this page away from the word being
fixated on. Conversely, the exclusion of rods from the fovea and their presence in high density away from the fovea, explain
why the threshold for detecting a light stimulus is much lower outside the region of central vision. It is easier to see a dim

object (such as a faint star) by looking away from it, so that the starlight stimulates the region of the retinal that is rich in
rods.
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Diagrammatic Cross-Section Through the Human Fovea
Figure 1-16
Another distinction between the rod and cone systems is the degree of receptor convergence onto other cell types of the

retina. The rod system is highly convergent: many rods synapse on a single bipolar cell, and many bipolar cells that receive
rod input converge on the same ganglion cell. In contrast, the cone system is much less convergent. In the center of the
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fovea, a single cone may contact only one bipolar cell, which in turn contacts a single ganglion cell. Convergence makes the
rod system a good detector of light because small signals from many rods can combine to generate a larger response in the
bipolar cell. At the same time, convergence reduces the spatial resolution of the rod system, since the source of a signal in a
rod bipolar cell or retinal ganglion cell could have come from anywhere within a relatively large area of the retinal surface.
The one-to-one relationship of foveal cones to bipolar and ganglion cells is, of course, just what is required to maximize
acuity.

Finally, the routes by which rod and cone information reaches ganglion cells for transmission to central visual targets in
the brain are different. The rod pathway involves a class of bipolar cells (rod bipolars) that does not contact ganglion cells
directly; instead, these bipolar cells synapse on the processes of a specialized class of amacrine cells that in turn synapse with
the processes of ganglion cells. Although the routes through the retina are distinct, extrafoveal information from the rod and
cone systems ultimately converges on the same ganglion cells. Thus, individual ganglion cells can display both rod- and
cone-driven characteristics, depending on the level of illumination. Within the fovea, however, the ganglion cells are driven
entirely by cones.

As a result of this convergence of many photoreceptors onto single retinal ganglion cells, the approximately 105 million
signals from the photoreceptors in each eye are reduced to approximately 1 million signals—the number of retinal ganglion
cell axons making up each optic nerve. We’ve already described one type of convergence, that of the rods, and the reason for
it (to detect faint light signals). In the next section we’ll consider a far more important—and interesting—combination of
photoreceptors.

H. Retinal Ganglion Cell Receptive Fields

Some understanding of the purpose of the complex synaptic interactions in the retina has come from physiological studies
in which small spots of light are used to examine the responses of individual retinal neurons. Stephen Kuffler pioneered this
approach in the 1950’s by characterizing the responses of single ganglion cells in the cat retina. He found that each ganglion
cell responds to stimulation of a small, restricted, circular patch of the retina, which defines the cell’s receptive field. Based
on these responses, Kuffler distinguished two classes of ganglion cells, “on ”-center and “off”’-center. Turning a spot of light
on in the center of an on-center ganglion cell receptive field produces a burst of electrical activity (an “on” response, as
indicated in Figure 1-17). Turning the light on in the center of an off-center ganglion cell has the opposite effect: the
spontaneous rate of firing decreases, and when the spot of light is turned off, the cell responds with a burst of action
potentials (an “off” response). On- and off- center ganglion cells are present in roughly equal numbers. The receptive fields
have overlapping distributions, so that every point on the retinal surface (that is, every part of visual space) is analyzed by
several on-center and off-center ganglion cells. The significance of these two distinct types of retinal ganglion cells was
further demonstrated by Peter Schiller and his colleagues, who examined the effects of pharmacologically inactivating on-
center ganglion cells on a monkey’s ability to detect a variety of visual stimuli. After silencing the on-center ganglion cells,
the animals showed a dramatic and specific deficit in their ability to detect stimuli that were brighter than the background;
however, they could still see objects that were darker than the background.
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Figure 1-17

These several observations suggest that information about increases or decreases in luminance (perceived as brightness or
darkness, respectively) is carried separately to the brain by these two types of retinal ganglion cells. Having two separate
luminance channels means that changes in light intensity are always conveyed to the brain by an excitatory process, rather
than relying on decreases in activity below some set resting level to signal diminished luminance. For example, a rapid
increase in the firing rate of on-center cells, which have low rate of firing in dim illumination, unambiguously signals a rapid
increase in luminance, as shown in Figure 1-17A. However, these cells could not reliably signal a rapid decrease in
luminance from the original level, as in Figure 1-17B. The identification of two distinct classes of retinal ganglion cells, and
the demonstration that their activity conveys different types of information to central visual structures, illustrates one strategy
for coping with the wealth of information in the visual scene: the emergence of parallel systems for analyzing different
features of the visual stimulus. Other examples of the parallel processing of different categories of visual information (such
as color and motion) will be discussed later.

Kuffler’s work called attention to another important feature of visual processing. Retinal ganglion cells do not act as
simple photodetectors; in fact, most ganglion cells are relatively poor at signaling differences in the level of diffuse
illumination. Instead, they are sensitive to differences between the level of illumination that falls on the receptive field center
and the level of illumination that falls on the surround—that is, luminance contrast. Kuffler noticed that the center of a
ganglion cell receptive field is surrounded by a concentric region that, when stimulated, antagonizes the response to
stimulation of the receptive field enter. For example, as a spot of light is moved from the center of the receptive field of an
on-center cell towards its periphery, the response of the cell to the spot of light decreases, as in Figure 1-18. When the spot
falls completely outside the center (that is, in the surround), the response of the cell falls below its resting level; the cell is
effectively inhibited until the distance from the center is so great that the spot no longer falls on the receptive field at all, in
which case the cell returns to its resting level of firing. Off-center cells also show an antagonistic surround. Light
stimulation of the surround of an off-center cell increases the firing rate of the cell, a response that opposes the decrease in
firing rate that occurs when the center is stimulated (Figure 1-17C). Because of their antagonistic surrounds, ganglion cells
respond much more vigorously to small spots of light confined to their receptive field centers than to large spots or uniform
illumination (Figure 1-17D).
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To appreciate how center-surround antagonism helps to detect luminance contrast, consider the activity levels in a
hypothetical population of on-center ganglion cells whose receptive fields are distributed across a retinal image of a light-
dark edge, as shown in Figure 1-19. The neurons whose firing rates are most affected by this stimulus—either increased
(neuron D) or decreased (neuron B)—are those with receptive fields that lie along light/dark border; those with receptive
fields completely illuminated (or completely darkened) remain relatively unaffected (neurons A and E). Thus, the signal
supplied by the retina to central visual structures does not give equal weight to all regions of the visual scene; rather it
emphasizes the regions that contain the most information—namely, the regions where there are differences in luminance.

This property of retinal ganglion cells explains why our perception of the brightness or darkness of a given region in the
visual scene is influenced so strongly by the luminance of adjacent regions. For example, the middle panel in Figure 1-20
reflects the same amount of light on the left side as on the right; yet the part on the right appears significantly brighter than
the part on the left. (You can convince yourself that the middle panel is really equiluminant by using two pieces of paper to
block out the regions above and below it.) The perceived brightness of the panel is computed on the basis of the activity of
those retinal ganglion cells whose receptive fields intersect its borders. Their activity in turn depends on contrast—the
difference in the amount of light that falls on their receptive field centers and surrounds.
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Figure 1-19

The special sensitivity of retinal ganglion cells to contrast rather than absolute levels of luminance also explains why the
perceived brightness of objects remains constant over a wide range of lighting conditions. Increases or decreases in the
overall level of illumination have equal effects on the center and surround of each ganglion cell’s receptive field, and thus do
little to affect the cell’s level of activity. In bright sunlight, for example, the print on this page reflects considerably more
light to the eye than it does in room light. In fact, the print reflects more light in sunlight than the white paper reflects in
room light; yet, the print looks just as black (and the page just as white, for that matter) indoors or out. The signal sent to the
brain from the retina therefore downplays the background level of illumination while enhancing the salient features of a
visual stimulus—in particular, its contrast with the surroundings.

The Effect of Background Contrast on the Perception of Brightness
Figure 1-20
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I. Central Projections of Retinal Ganglion Cells

All the visual pathways to the brain arise from ganglion cell axons that exit the retina through a circular region in its nasal
part called the optic disk, where they bundle together to for the optic nerve (See again Figure 1-8). (Because this region of
the retina has no photoreceptors, it is insensitive to light and produces the perceptual phenomenon known as the blind spot.)
Ganglion cell axons in the optic nerve run a straight course to the optic chiasm at the base of the diencephalon. In humans,
about 60% of the fibers cross the chiasm, while the other 40% continue toward the brain on the same side. Once past the
chiasm, the ganglion cell axons on each side form the optic tract. Unlike the optic nerve the optic track contains fibers from
both eyes. The partial crossing, or decussation, of the ganglion cell axons at the optic chiasm allows information from
corresponding points on the two retinas to be processed by approximately the same cortical site in each hemisphere.

The ganglion cell axons in the optic tract reach a number of structures in the diencephalon and midbrain, as shown in
Figure 1-21. The major target in the diencephalon is the lateral geniculate nucleus of the thalmus. Neurons in the lateral
geniculate nucleus send their axons to the cerebral cortex via the internal capsule. These axons pass through a portion of the
internal capsule called the optic radiation and terminate in the primary visual (or striate) cortex. This pathway, referred to as
the primary visual pathway, is responsible for most of what is thought of as seeing. There are several other targets for retinal
ganglion cells. These are the pretectum (reflex control of the pupil and lens), the suprachiasmatic nucleus of the

hypothalamus (regulation of circadian rhythms—i.e., the day/night cycle), and the superior colliculus (coordination of head
and eye movements).
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J. The Functional Organization of the Striate Cortex

The discovery by Stephen Kuffler that retinal ganglion cell receptive fields have a center-surround structure that conveys
luminance contrast information to the brain led David Hubel and Torsten Wiesel to consider the sorts of information
extracted by more central visual structures. An analysis of the receptive field properties of neurons in the lateral geniculate
nucleus showed surprisingly little difference from what had been found in the retina. In the striate cortex, however, the small
spots of light that were so effective at stimulating neurons in the retina and lateral genidulate nucleus were largely ineffective.
Instead, cortical neurons in cats and monkeys responded vigorously to light-dark bars or edges, and only if these bars were
presented at a particular orientation within the cell’s receptive field, as indicated in Figure 1-22. Moreover, each cortical cell
responded maximally to a narrow range of edge orientations (the cell’s preferred orientation). Thus, all the orientations
present in visual scenes appear to be encoded in the activity of distinct populations of orientation-selective neurons.

Hubel and Wiesel also found that within a class of neurons that preferred the same orientation, there were subtly different
subtypes. For example, the receptive fields of some cells, which they called simple cells, were composed of spatially
separate on and off response zones, as if the on and off centers of the retinal ganglion cells that supplied these neurons were
arrayed in separate parallel bands. Other neurons, referred to as complex cells, exhibited mixed on and off responses
throughout the receptive field, as if they received their inputs from a number of simple cells. Further analysis uncovered
cortical neurons sensitive to the length of the bar of light that was moved across their receptive field, decreasing their rate of
response when the bar exceeded a certain length. Hubel an Wiesel called such neurons hypercomplex (or end-stopped) cells.
Still other cells responded selectively to the direction in which an edge moved across their receptive field. Although the
mechanisms responsible for generating these selective responses are still not fully understood, there is little doubt that the
specificity of the receptive field properties of neurons in the striate cortex (and beyond) is essential for perceiving different
aspect of the visual scene.
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K. The Columnar Organization of the Striate Cortex

A special feature of the functional organization of the striate cortex is the grouping together of neurons that have similar
response properties into radial arrays that span the thickness of the cortex. For example, all the neurons encountered in a
vertical penetration of the striate cortex (that is, perpendicular to the surface) have similar preferred orientations.
Furthermore, electrode penetrations made tangential to the cortical surface show a systematic shift in preferred orientations,
such that movements across the surface of about a millimeter are sufficient to encounter a series of neurons that cover the full
range of orientations, shown in Figure 1-23.

The columnar organization of the striate cortex is equally apparent in the binocular responses of cortical neurons.
Although most neurons in the striate cortex respond to both eyes, the relative strength of the inputs from the two eyes varies
from neuron to neuron. At the extremes of this continuum are neurons that respond almost exclusively to the left or right
eye; in the middle are those that respond equally well to both eyes. As with orientation preference, vertical electrode
penetrations encounter neurons with similar ocular preference (or ocular dominance, as it is usually called), and tangential
penetrations show gradual shifts in ocular dominance as the electrode moves across the plane of the cortical surface (Figure
1-24).

It may come as a surprise to learn that within the retinotopic map of visual space, response properties other than location
are represented in an orderly fashion. The map of visual space is relatively gross; on a finer scale, each small region in visual
space is represented within the receptive fields of neurons that are distributed over several millimeters of the cortical surface.
This is more than enough cortical area to accommodate the columns of cells that are required to cover the complete range
orientation preferences and ocular dominance values.

Although the modular arrangement of the striate cortex was first recognized on the basis of orientation and ocular
dominance columns, further work has shown that other stimulus features, such as color, direction of motion, and spatial
frequency are also distributed in iterated patterns that are systematically related to each other (for example, orientation
columns tend to intersect ocular dominance columns at right angles). Thus the striate cortex is composed of repeating units,
or modules, that contain all the neuronal machinery to analyze a small region of visual space for a variety of different
stimulus attributes.
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Appendix Il: The Physics of SightIII

A. Wave Motion

Ocean waves travel thousands of miles across the ocean, but the particles of water do not make that journey. We are
familiar with energy and momentum being transported from one place to another through the motion of particles; wave
motion provides an alternative way for energy and momentum to move from one place to another without material particles
making that journey. Water waves, sound waves, and the oscillation of a stretched string are examples of mechanical waves,
which are waves that travel through a deformable or elastic medium, They originate when some portion of the medium is
displaced from its normal position and released. Because of the elastic properties of the medium, the disturbance propagates
through the medium. On the microscopic level, such mechanical properties as the forces between atoms are responsible for
the propagation of mechanical waves. In this section we’ll concentrate on the study of mechanical waves, a particularly
simple type of which involves the oscillation of a stretched string. This will allow us to illustrate some of the general
properties of waves without incurring too much mathematical complexity. Light waves are not mechanical waves, but our
discussion here will be applicable to them as well.

As a wave reaches a particle in the medium, it sets that particle in motion and displaces it, thus transferring both kinetic
and potential energy to it. Not only energy but also information about the nature of the wave source can be transmitted over
considerable distances by wave motion. We can regard the particles of the medium as moving by only small distances about
their previous positions as the wave passes. For example, in waves on the surface of water the particles of water move
slightly, both up and down and back and force, tracing out small elliptical paths as the water waves move by. After the wave
passes, the particle is more or less where it started before the wave passed.

Types of Waves

We can distinguish different kinds of mechanical waves by considering how the direction of motion of the particles of
matter is related to the direction of propagation of the wave. If the motion of the particles is perpendicular to the direction of
propagation of he wave itself, we have a transverse wave. A string under tension that is set oscillating back and forth at one
end is an example of a transverse wave. The disturbance moves along the string but the string particles vibrate at right angles
to the direction of propagation of the disturbance. (Light waves are also transverse waves.) If, however, the motion of the
particles in a mechanical wave is back and forth along the direction of propagation, we have a longitudinal wave. Sound
waves in a gas are longitudinal waves. Some waves are neither purely transverse nor purely longitudinal. Waves on the
surface of water, as we pointed out above, trace out elliptical paths (up and down and back and forth) as the waves pass by.

Waves can also be classified as one-, two-, and three-dimensional, according to the number of dimensions in which they
propagate energy. Waves moving along a string are one dimensional. Light waves traveling radially outward from a small
source are three-dimensional. Waves may be classified further according to how the particles of the medium move in time.
For example, we can produce a pulse traveling down a stretched string by applying a single sidewise movement at its end.
Each particle remains at rest until the pulse reaches it, then it moves during a short time, then it again remains a rest. If we
continue to move the end of the string back and forth, we produce a train of waves traveling along the string. If our motion is
periodic, we produce a periodic train of waves in which each particle o the string has a periodic motion. The simplest special
case of a periodic wave is a harmonic wave, in which each particle undergoes simple harmonic (sinusoidal) motion.

Imagine a stone dropped in a still lake. Circular ripples spread outward from the point where the stone entered the water.
Along a given circular ripple, all points are in the same state of motion. Those points define a surface called a wavefront. If
the medium is of uniform density, the direction of motion of the waves is at right angles to the wavefront. A line normal to
the wavefronts, indicating the direction of motion of the waves, is called a ray. Wavefronts can have many shapes. A point
source at the surface of water produces two-dimensional waves with circular wavefronts and rays that radiate outward from
the point of the disturbance. On the other hand, a very long stick dropped horizontally into the water would produce (near its
center) disturbances that travel as straight lines, in which the rays are parallel lines. The three-dimensional analogy, in which
the disturbances travel in a single direction, is the plane wave. At a given instant, conditions are the same everywhere on any
plane perpendicular to the direction of propagation. The wavefronts are planes, and the rays are parallel straight lines, as

! The material in this Appendix and all of the figures have been taken from:
Halliday, Resnick, and Crane, Physics, John Wiley & Sons, Inc., New York, 1992 (Chapters 19, 28, 34, 41, 43, 45, 46, and 48);
Smith and Atchison, The Eye and Visual Optical Instruments, Cambridge University Press, Cambridge, UK, 1997 (Chapters 26, 34, and 35)
Born and Wolf, Principles of Optics, Cambridge University Press, Cambridge, UK, 1999 (Chapter 8).
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shown in Figure 2-1a. The three-dimensional analogy of circular waves is spherical waves. Here the disturbance is
propagated outward in all directions from a point source of waves. The wavefronts are spheres, and the rays are radial lines
leaving the point source in all directions, as shown in Figure 2-1b. Far from the source the spherical wavefronts have very
small curvature, and over a limited region they can often be regarded as planes. Many other possible wavefront shapes are
of course possible.

a b
A Plane Wave and a Spherical Wave
Figure 2-1

Traveling Waves

Consider again a transverse waveform that travels on a long stretched string. We assume an “ideal” string, in which the
disturbance, whether it is a pulse or a train of waves, keeps its form as It travels. For this to occur, frictional losses and other
means of energy dissipation must be negligibly small. The disturbance lies in the xy plane and travels in the x direction. The
upper plot in Figure 2-2 shows an arbitrary waveform at t=0, which we can consider to be a pulse traveling along the string.
let the pulse move in the
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A Transverse Pulse Traveling Along a String at Times 0 and t.
Figure 2-2

positive x direction with speed v. At a later time t, the pulse has moved a distance vt, as noted in the lower plot of Figure 2-
2. Note that the waveform is the same at t=0 as it is at later times. the coordinate y indicates the transverse displacement of a
particular point on a string. This coordinate depends on both the position x and the time t. we indicate this dependence on
tow variables as y(x,t). We can represent the waveform of Figure 2-1a as

y(x,0)=f(x), 2.1

where f'is a function that describes the shape of the wave. At time t, the waveform must still be described by the same
function f, because we have assumed that the shape does not change as the wave travels. relative to the origin O’ of a
reference frame that travels with the pulse, the shape is described by the function f(x’), as indicated in the lower part of
Figure 2-2. The relationship between the x-coordinates in the two reference frames is
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x'=x-vt, (2.2)
as can be seen from Figure 2-2. Thus, at time t, the wave is described by
y(x,t)=f (x")=f(x—vt). 2.3)

That is, the function f(x-vt) has the same shape relative to the point x=vt at time t that the function f(x) has relative to the
point x=0 at time t=0. To describe the wave completely, we must specify the function f. Later, we shall consider harmonic
waves, for which f is a sine or cosine function.

Equs. [2.1)]and [2.3)]together indicate that we can change a function of any shape into a wave traveling in the positive x
direction by merely substituting the quantity x-vt for x everywhere that it appears in f(x). For example, if f(x)=x%, then f(x-
vt)=(x-vt)>. Furthermore, a wave traveling in the positive x direction must depend on x and t only in the combination x-vt;
thus x>-(vt)> does not represent such a traveling wave. Let us follow the motion of a particular part (or phase) of the wave,
such as that of location P of the waveform of Figure 2-2. If the wave is to keep its shape as it travels, then the y coordinate y,
of P must not change. We see from Equ. that the only way this can happen is for the x coordinate of P to increase as t
increases in such a way that the quantity x-vt keeps a fixed value. That is, evaluating the quantity x-vt gives the same result
at P in the lower part of Figure 2-2 and at P in the upper part of Figure 2-2. this remains true for any location on the
waveform and for all times t. Thus for the motion of any particular phase of the wave we must have

X —vt=constant. 2.4)

We can verify that Equ. characterizes the motion of the phase of the waveform by differentiating with respect to time,
which gives

——v=0,
dt

dx_
dt

2.5)

the velocity d%t describes the motion of the phase of the wave, and so it is known as the phase velocity. We take v to be a

positive constant, independent of any property of the wave but possibly (as we shall see) depending on the properties of the
medium. If the wave moves in the negative x direction, we only need to replace v by —v. In this case we would obtain

y(x, )=f(x+vt), (2.6)

where once again f(x) represents the shape at t=0. That is, substituting if f(x) the quantity x+vt in place of x gives a wave that
would move to the left in Figure 2-2. the motion of any phase of the wave would then be characterized by the requirement
that

X +vt=constant, 2.7
and by analogy with Equ.|(2.5)|we can show that

dx
—=—v, 2.8
" (2.8)
indicating that the x component of the phase velocity in this case is indeed negative.

The function f(x) contains the complete description of the shape of the wave and its motion. At any particular time, say t;,
the function y(x,t;) gives y as a function of x, which defines the curve; this curve represents the actual shape of the string at
that time and can be regarded as a “snapshot” of the wave. On the other hand, we can consider the motion of a particular
point on the string, say at the fixed coordinate x;. The function y(x,,t) then tells us the y coordinate of that point as a function
of the time. Figure 2-3 shows how a point on the x axis might move with time as the pulse of Figure 2-2 passes, moving in
the positive x direction. At times near t=0, the point is not moving at all. It then begins to move gradually, as the leading
edge of the pulse of Figure 2-2 arrives. After the peak of the wave passes, the displacement of the point drops rapidly back
to zero as the trailing edge passes. Note that the form of Figure 2-3 appears to be reversed from the shape of the waveform
in Figure 2-2. Tt is, since the leading edge of the traveling pulse arrives at the point of interest at the earliest times.
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Sinusoidal Waves

The above description is quite general. It holds for arbitrary wave shapes, and it holds for transverse as well as
longitudinal waves. Let us consider, for example, a transverse waveform having a sinusoidal shape, which has particularly
important applications. suppose that at the time t=0 we have a wavetrain along a string given by

y(x,0)=y, sin(%x). (2.9

Displacement of x; Due to the Traveling Pulse of Figure 2-2
Figure 2-3

This wave shape is shown in Figure 2-4. The maximum displacement y,, is called the amplitude of the sine curve. The
transverse

Time O -
s T :

A Sinusoidal Wavetrain
Figure 2-4
displacement y ahs the same value at any x as it does at x=A, x+2A, and so on. The symbol A represents the wavelength of

the wavetrain and indicates the distance between two adjacent points in the wave having the same phase. If the wave travels
in the +x direction with phase speed v, then the equation of the wave is

y(x,t)=y, sin(%(x—vt)). (2.10)
Note that this has the form f(x-vt) required for a traveling wave, given by Equ.

The period T of the wave is the time necessary for a point at any particular x coordinate to undergo one complete cycle of
transverse motion. During this time T, the wave travels a distance vT that must correspond to one wavelength A, so that

A=vT. (2.11)

The inverse of the period is called the frequency v of the wave:

v=r (2.12)

Frequency has units of cycles per second, or Hertz (Hz). Substituting Eau. [2.12)]into Equ. [2.10)|gives another expression
for the wave:

y(x.t)=y, sin[Zn(%—%D. 2.13)
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From this form it is clear that y, at any given time, has the same value at x, x+A, x+2A, and so on, and that y at any given
position, has the same value at the times t, t+T, t+2T, and so on. To reduce Equ. to a more compact form, we
introduce two quantities, the wave number k and the angular frequency ®. These are defined as

kEE,
A (2.14)

2
mz—£=2nv
T

The wave number k is, like ®, and angular quantity, and units for both involve radians. Units for k might be, for instance,
rad/m, and for m, rad/s. In terms of these quantities, the equation of a sine wave traveling in the positive x direction is
y(x,t)=y,, sin(k x—mt), (2.15)

while the equation for a wave traveling in the negative x direction is

y(x,t)=y,, sin(k x + wt). (2.16)
Comparing Equs. [2.11)]and we see that the phase speed v of the wave is given by
pdv=ho® 2.17)
T k

Phase and Phase Constant

In the travelling waves of Equs. and we have assumed that the displacement of y is zero at the position x=0
and at time t=0. This, of course, need not be the case. The general expression for a sinusoidal wave traveling in the positive
x direction is

y(x,t)=y,, sin(kx—ot—9). (2.18)

The quantity that appears in the argument of the sign, (kx-mt-¢), is called the phase of the wave. Two waves with the same
phase (or with phases differing by any integer multiple of 2m) are said to be “in phase”; they execute the same motion at the
same time. The angle ¢ is sometimes called the phase constant. the phase constant does not affect the shape of the wave; it
moves the wave forward or backward in space or time. To see this, we rewrite Equ. in two equivalent forms:

y(x,t)=y,, sin {k(x—gJ—mt],
k
y(x,t)=y,, sin |:kx —u)[tJri]].
®

The upper plot in Figure 2-5 shows a “snapshot” at any time t of the two waves represented by Equ. (in which ¢=0)
and Equ. Note that any particular point on the wave described by the first of Equs. [2.19)|(say a certain wave crest) is
a distance ¢/k ahead of the corresponding point in the wave described by Equ. [2.15)] Equivalently, if we were to observe the
displacement at a fixed position x resulting from each of the two waves represented by Equs. and we would
obtain the result indicated by the lower plot in Figure 2-5. The wave described by the second of Equs. {2.19)lis similarly
ahead of the wave having 0=0, in this case by a time difference ¢/w.

(2.19)

When the phase constant in Equ. is positive, the corresponding wave is ahead of a wave described by a similar
equation having ¢=0. It is for this reason that we introduced the phase constant with a negative sign in Equ. when
one wave is ahead of another in time or space, it is said to “lead”. On the other hand, putting a negative phase constant into
Equ. moves the corresponding wave behind the one with ¢=0. such a wave is said to “lag”. If we fix our attention on
a particular point of the string, say x;, the displacement y at that point can be written

y(t)=y, sin(ot+0), (2.20)
where we have substituted
¢'=0-kx,. (2.21)
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This is an expression of simple harmonic motion. Hence, any particular element of the string undergoes simple harmonic
motion about its equilibrium position as this wavetrain travels along the string.
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Two Sine Waves with Different Phase Constants Traveling in the Positive Direction
Figure 2-5

Group Speed and Dispersion

Pure sinusoidal waves are useful devices for helping us understand wave motion. In practice, we use other kinds of waves
to transport energy and information. These waves may be periodic but non-sinusoidal, such as square waves or sawtooth
waves, or they may be non-periodic pulses. We have used the phase speed to describe the motion of two kinds of waves: the
pulse that preserves its shape as it travels and the pure sine wave. In other cases, we must use a different speed, called the
group speed, which is the speed at which energy or information travels in a real wave. Figure 2-6 shows a pulse traveling
through a medium. The shape of the pulse

A Pulse Traveling Through a Dispersive Medium
Figure 2-6

changes as it travels; the pulse spreads out, or disperses. (Note that dispersion is not the same as energy dissipation. The
energy content of the pulse in Figure 2-6 remains constant as it travels, even though the pulse disperses. We are assuming,
then, that the medium is dispersive, but not dissipative.) Any periodic wave can of course be regarded as the sum of a series
of sinusoidal waves of different frequencies or wavelengths--the frequencies, amplitudes, and phases being prescribed by
Fourier’s Theorem. In most real media, the speed of propagation of these component waves (that is, the phase speed)
depends on the frequency or wavelength of the particular component. Each component wave may travel with its own unique
speed. Thus, as the wave travels, the phase relationships of the components may change, and the waveform of the sum of the
components will correspondingly change as the wave travels. This is the origin of dispersion—the component waves travel
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at different phase speeds. There is no simple relationship between the phase speeds of the components and the group speed
of the wave; the relationship depends on the dispersion of the medium.

Some real media are approximately non-dispersive, in which case the wave keeps its shape, and all component waves
travel with the same speed. Sound waves in air are one such an example. (If this were not the case, conservation would be
impossible, because the waveform produced by one individual’s vocal cords would be jumbled by the time it reached
another’s ear.) Light waves in vacuum are perfectly non-dispersive. Other media through which light can travel is, however,
dispersive, giving rise to such effects as the spectrum of colors in rainbows. In a non-dispersive medium, all the component
waves in a complex waveform travel at the same phase speed, and the group speed of the waveform is equal to that common
value of the phase speed. Only in this case can we speak of the phase speed of the entire waveform.

Transverse Velocity of a Particle

The motion of a particle in a transverse wave such as that of Figure 2-4 is in the y direction. the wave speed describes the
motion of the wave along the direction of travel (the x direction). The wave speed does nof characterize the transverse
motion of the particles of the string. to find the transverse velocity of a particle of the string, we need the change in the y
coordinate with time. We focus our attention on a single particle of the string, that is, on a certain coordinate x. We therefore
need the derivative of y with respect to t at constant x, and we represent the particle velocity, which varies with x (the
location of the particle) as well as with t, as u(x,t). Assuming we are dealing with a sinusoidal wave of the form of Equ.

we then have

=aa_f=%[ym sin(kx-wt-0)],

=—y, 0cos(kx—0t—0).

u(x.1) (2.22)

Differentiating again, the transverse acceleration a(x,t) of the particle at this location is
'y du_
ot ot

=—y.

a(x,t) —y, sin(kx—ot-9), (2.23)

Power and Intensity in Wave Motion

If we were shaking the end of a string, a person at the other end could extract the resulting energy (which is transported
along the string in the form of the potential and kinetic energy of its elements) and use the energy to do work on another
system. Such transport of energy (and momentum) is in fact one of the purposes for which we produce waves. Here we
consider the rate at which the string transports energy. Figure 2-7 shows a snapshot of the wave at times t and t+dt. A point
on the string at coordinate x has at time t a transverse velocity u, which has only a y component. This velocity, as we
discussed in the previous section, is nof related to the phase speed of the wave but instead has magnitude given by Equ.

2.22)|with ¢=0,
u(x,t)=—y, ocos(kx—ot). (2.24)

for a sinusoidal wave of the form of Equ. [2.15)] The force exerted on an element of the string by the element to its left is
also shown in Figure 2-7. This force transmits energy at a rate given by

P=u-F=uF,. (2.25)

Only the component F, of F along u contributes to the power; this component is Fsin0, which for small displacements can be
approximated as

Ftan0=F % (2.26)
ox

where a%x is the slope of the string at the coordinate x.

Note that the y component of F is parallel to u, no matter whether that element of string happens to be moving up or
down. Thus uF, >0, and so the power transmitted is never negative during the cycle of oscillation. There is a continuous
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net flow of energy in the positive x direction (the direction of propagation of the wave). Substituting for the y component of
the force, we obtain

Instantaneous Transverse Velocities of Different Points along a String

Figure 2-7
ay \ ..oy
P=uF = —=— || F—
* (at )( ax}

=F[-oy, cos(kx-ot)][-ky, cos(kx-ot)], (2.27)
=y. koFcos’ (kx—ot).

Note also that the power or rate of flow of energy is not constant. This is because the input power oscillates: the work done
by our hand as it moves the end of the string varies with the transverse displacement of that point. As energy is transported
along the string, it is stored in each element of the string as a combination of kinetic and potential energy of deformation.
The power input to the string is often taken to be the average over one period of motion. It is given by

1 pt+T

P=—| Pdt, 2.28
7l (2.28)

where T is the period. The average value of sin’0 or cos’® over one cycle is y , so after substituting Equ. @linto Equ.
2.28)[we obtain

I_’:%y; k F. (2.29)

If m is the mass per unit length of the string, we can show that
F=v'p. (2.30)
Substituting this result and Equ. [2.17)]into Equ [2.29)|then gives
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a result that does not depend on x or t. The dependence of the rate of transfer of energy on the square of the wave amplitude
and the square of the wave frequency is in general true for all types of waves, including light waves.

In a three-dimensional wave such as a light, it is often more useful to specify the infensity of the wave. The intensity I is
defined as the average power per unit area transmitted across an area A normal to the direction in which the wave is
traveling, or

P

= (2.32)

Just as with power in the wave traveling along the string, the intensity of any wave Is always proportional to the square of the
amplitude. For circular or spherical waves, the amplitude is not constant as the wavefront travels. For example, in the case
or a spherical wavefront, the intensity at any point a distance r from its point source is, by Equ.

P
1= .
4mr?

(2.33)

The wave intensity thus varies inversely as the square of its distance from the source. Since the intensity is proportional to
the square of the wave’s amplitude, the amplitude must also vary, in this case inversely with the distance from the source.
Thus, in doubling the distance form the source, the amplitude of a spherical wave decreases by half, and its intensity by one
quarter.

Interference of Waves

When two or more waves combine at a particular point, they are said to interfere, and the phenomenon is called
interference. As we shall see, the resultant waveform is strongly dependent on the relative phases of the interfering waves.
Let us first consider two transverse sinusoidal waves of equal amplitude and wavelength, which travel in the x direction with
the same speed. We take the phase constant of one wave to be ¢, while the other has ¢=0. Figure 2-8 shows the combined
waveform at a particular time for the two
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Interference of Two Waves
Figure 2-8

cases of ¢ nearly zero (the waves are nearly in phase) and ¢ nearly 180° (the waves are nearly out of phase). We can see by
merely adding the individual displacements at each x that in the first case there is nearly complete reinforcement of the two
waves and the resultant has nearly double the amplitude of the individual components, while in the second case there is
nearly complete cancellation at every point and the resultant amplitude is close to zero. These cases are known, respectively,
as constructive interference and destructive interference.

Let us see how interference arises from the equations for the waves. We consider a general case in which the two have
phase constants ¢, and ¢,, respectively. The equations for them are then, from Equ.

y,(x, )=y, sin(kx—ot—-9,), -
y, (X, )=y, sin(kx—wt—9,). (2.34)

Because this is a linear system, we can use superposition to find the resultant wave. Summing the two waves together, then,
gives

y(x, D)=y, (X, 1) +y,(x,1),

=y, [sin(kx—ot-¢,+sin(k x—ot—¢,)]. (235)
Applying the trigonometric identity
sinA+sinB=25in[%(A+B)— cos[%(A—B)], (2.36)
we obtain, after some rearrangement,
y(x,t)=2y,. cos(@)sin kx—wt—@} (2.37)

The quantity Ap=0¢, —¢, is called the phase difference between the two waves.
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The resultant wave corresponds to a new wave having the same frequency but with an amplitude 2y, . IfAG

%)

is very small (compared to 180°) the resultant amplitude is nearly 2yy, (the upper plot in Figure 2-8). When A¢ is close to
180°, on the other hand, the resultant amplitude is nearly zero (the lower plot in Figure 2-8). Notice that Equ. 2.37 ilhas the
form of a sinusoidal wave. Thus adding two sine waves of the same wavelength and amplitude always gives a sine wave of
the identical wavelength. We can also add components that have the same wavelength but different amplitudes. In this case
the resultant again is a sine wave with the identical wavelength, but the resultant amplitude does not have the simple form
given by Equ. If the individual amplitudes are yir, and yan, then if the waves are in phase (A¢=0) the resultant

amplitude is Yim + Yam, While if they are out of phase (A¢p=180°) the resultant amplitude is |Y1m “Yom | . There can be no

complete destructive interference in this case, although there is partial destructive interference.

Figure 2-9 shows an example of the occurrence of interference effects. Here two loudspeakers are driven from the same
source.

Two Loudspeakers Driven by a Common Source
Figure 2-9

At points equidistant from the speakers (on the line AB, which represents the entire midplane), there is complete constructive
interference if the speakers are driven in phase (A¢=0). There are also other points P where the waves arrive in phase and
interfere constructively. That is, we can shift one of the waves in Figure 2-9 by a phase constant of any integer multiple of
27 (or by a distance of any whole number of wavelengths), and the combined waveform is unchanged. these other points of
constructive interference are located wherever the difference in distance to the two speakers is a whole number of
wavelengths:

|x, —x,|=A, 20, 34, ... (2.38)

At other points P, the differing distances x; and x, result in the waves possible arriving at P out of phase, even if they started

out in phase at the speakers. The listening environment might therefore have “dead spots” where partial or complete

destructive interference occurs for a particular wavelength A. Maximal destructive interference occurs at points where

A LA _A
3—,5—

) LRRRI 2.39
22 2 ( )

|X1_X2|:

corresponding to a phase difference of 180°, 540°, 900°, and so on.

Of course, if the speakers emit a mixture of many different wavelengths, some points P might show destructive
interference for one wavelength and constructive interference for another. The critical factor in determining the locations of

the maxima and minima of sound intensity is the path difference |x1 -X, | . At points not on the midplane represented by the
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line AB, the tow components arrive with different amplitudes (because the distances from the speakers are not the same).
There will thus be no complete destructive interference. (In certain geometries, it is possible for the sound radiated from the
back of the speaker to interfere with the sound radiated from the front. These two waves are 180° out of phase, and their
interference can reduce the sound intensity at locations in front of the speaker. loudspeaker enclosures are designed to
eliminate this effect.)

B. The Electromagnetic Field

The state of excitation which is established in space by the presence of electric charges is said to constitute an
electromagnetic field. 1t is represented by two vectors, E and B, which we’ll refer to as the Electric and Magnetic Field
Vectors, respectively. The Electric Field is the space around a non-moving, charged particle that exerts a force of electric
origin on other non-moving, charged particles. We define the electric field E associated with a certain collection of charges
in terms of the force F exerted on a positive test charge q at a particular point,

E=lim £ Newtons (2.40)
qo—0 q0 Coulomb

where the limit is included to remind us that the test charge must be sufficiently small so as not to disturb the distribution of
charges whose electric field we are trying to measure. Since q is a positive scalar, the direction of E is the same as the
direction of F. We are all familiar with electric field diagrams such as that shown in Figure 2-10. The lines here are /ines of
force. Such a diagram contains three important pieces of information regarding the field:

1. The lines of force give the direction of the electric field at any point, and hence the direction of the force acting on a
positively charged particle at that point.

2. The lines of force originate on positive charges and terminate on negative charges. (In the figure, the negative charges
are assumed to be at infinity).

3. The lines of force are drawn to that the number of lines per unit cross-sectional area (perpendicular to the lines) is
proportional to the magnitude of the electric field. (The closer the lines are together, then, the stronger the field.)

Magnetic Fields are a little more complicated, due to the fact that magnetic monopoles do not exist (or are so exceedingly
rare that relationships involving them are of no practical value). We thus define a Magnetic Field as the space around a
moving, charged particle (or permanent magnet) that exerts a magnetic force on other moving charges (or magnets). We
define the magnetic field B by the relation

F=lirr%)q0v><B, (2.41)
Qo=
where v x B denotes the vector product. Figure 2-11 shows a magnetic field diagram, The essential properties of this
diagram, though similar to those of the electric field diagram, also differ in important ways:

1. The lines of force give the direction of the magnetic field at any point. The direction of the magnetic force applied to a
moving charge, as specified by the vector product in Equ. [2.41 h is however perpendicular to the lines of B, as well as the
direction of travel of the charge.

2. The lines of force form a closed loop, as indicated in the figure.

3. The lines of force are drawn so that the number of lines per unit cross-sectional area (perpendicular to the lines) is
proportional to the magnitude of the magnetic field. (The closer the lines are together, then, the stronger the field.)
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Lines of Force Surrounding Two Equal Positive Charges
Figure 2-10

\\’/ g

The Magnetic Lines of Force Produced by a Bar Magnet
Figure 2-11

i

The magnetic field vector B has the units Newtons or Tesla .

Coulomb- Meter
Second

If all field quantities are independent of time, and if, moreover, there are no moving charges present, the field is said to be
static. 1f all the field quantities are time independent, but moving charges are present, we denote the field as a stationary
field. In optical fields the field vectors are very rapidly varying functions of time, but the sources of the field are usually such
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that, when averages over any macroscopic time interval are considered rather than the instantaneous values, the properties of
the field are found to be independent of the instant of time at which the average is taken. The work stationary is often used in
a wider sense to describe a field of this type.

Combining the ideas of the previous two sections, we show in Figure 2-12 a sinusoidally varying electromagnetic
traveling wave, propagating in the x direction. All such waves have four important properties, which follow from an analysis
of Maxwell’s Equations,

A Sinusoidally Varying Electromagnetic Traveling Wave
Figure 2-12

the governing equations of electromagnetism:

1. The electric and magnetic field vectors E and B are always perpendicular to one another, as sell as the direction of
propagation of the wave.

2. E and B are always in phase.
3. The ratio of the amplitudes Em and B, of E and B is the wave speed v, i.e.,

“moy (2.42)

m

4. The speed of an electromagnetic wave in a vacuum is the speed of light, i.e., v=c.

The wave illustrated in Figure 2-12 is said to be linearly polarized (or plane polarized). This means that the E field
remains in a fixed direction (here the y direction) as the wave propagates. By convention, we define the direction of
polarization of the wave to be the direction of the E vector. The plane determined by the E vector and the direction of
propagation of the wave (the xy plane in Figure 2-12) is called the plane of polarization of the wave. Ordinary sources of
light, such as incandescent bulbs or the sun emit waves whose planes of polarization are randomly oriented about the
direction of propagation. Figure 2-13a shows polarized light, as viewed from the direction of propagation. (Here only the E
vector is shown). Unpolarized light, then, would be as shown in Figure 2-13b. En either case the light continues to be a
transverse traveling wave.

a

Unpolarized Light, Viewed From Along the Direction of Propagation
Figure 2-13
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C. Light and the Electromagnetic Spectrum

The electromagnetic spectrum, shown in Figure 2-14, includes a broad range of different kinds of radiation from a variety
of sources. They differ greatly in their properties, in the means of their production, and in the ways we observe them. They
share other features in common, however: They can all be described in terms of electric and magnetic fields, and they all
travel through vacuum with the same speed (the speed of light). In fact, from the fundamental point of view, they differ only
in wavelength (or frequency). The names given to the various regions of the spectrum have to do only with the way the
different types of waves are produced or observed.; they have nothing to do with any fundamental property of the waves.
Other than the difference in their wavelengths, there is no experimental way to distinguish a wave in the visible region from
one in the infrared region; the waves have identical mathematical descriptions. There are no gaps in the spectrum, nor are
there sharp boundaries between the various categories.

What we call light comprises only a very small part of the overall electromagnetic radiation spectrum. Table 2-1 gives a
finer breakdown of the visible portion of the spectrum. As indicated, our visual system distinguishes wavelength/frequency
through the perception of color. Note from Figure 2-14 and Table 2-1 that light waves have extremely high frequencies (and
correspondingly, extremely short wavelengths). The instantaneous electromagnetic field is way beyond the capabilities of
our eyes to detect. Instead, our visual systems detect its intensity, which, as we showed in the previous section, is
proportional to the square of the amplitude and

The Electromagnetic Spectrum
Figure 2-14

the square of the frequency. In general, only the electric field is important in optics. This is because the interaction of
electromagnetic radiation with matter involves interaction of the radiation with the electrons in the material, and whereas the
electric field interactswith all electrons, the magnetic field only interacts with fast moving electrons. The electrons in optical
materials such as our eye move sufficiently slowly that their speed can be neglected and therefore they are only affected by
the electric field component of the radiation.

The sources of visible light depend ultimately on the motion of electrons. Electrons in atoms can be raised from their
lowest energy state to higher states by various means, such as heating the substance or by passing an electric current through
it. When the electrons eventually drop back to their lowest levels, the atoms emit radiation that may be in the visible region
of the spectrum. Emission of visible light is particularly likely when the outer valence electrons are the ones making the
transitions. The color of the light tells us something about the atoms or the object from which it was emitted. The most
familiar source of light is the sun. Its surface emits radiation across the entire electromagnetic spectrum, but its most intense
radiation is in the region we define as visible, and the sun’s radiant intensity peaks at a wavelength of about 550nm, which
corresponds precisely to the peak in the sensitivity of a “standard” human observer. (This suggests that, through natural
selection, our eyes evolved in such a way that their sensitivity matched the sun’s spectrum.)
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Color Vacuum Wavelength (10”° Meter) | Frequency (10'* Cycles per Second)
Red 780-622 384-482
Orange 622-597 482-503
Yellow 597-577 503-520
Green 577-492 520-610
Blue 492-455 610-659
Violet 455-390 659-769
The Visible Spectrum
Table 2-1

D. Geometrical and Physical Optics

In our description of wave motion, we used the ray as a convenient way to represent the motion of a train of waves; the
ray is perpendicular to the wavefronts and indicates the direction of travel of the wave. A ray is a convenient geometrical
construction that is often helpful in studying the optical behavior of a system such as a lens. A ray is not a physical entity,
however, and it is not possible to isolate one. Consider a train of plane light waves of wavelength A incident on a barrier in
which there is a slit of width a. As suggested by Figure 2-15a, if A a, the waves pass through the slit, and the barrier

forms a sharp “shadow”. As we make the slit smaller, we find that the light flares out into what was formerly the shadow of
the barrier, as shown in Figure 2-15b. This phenomenon, known as diffraction, occurs when the size of the slit (or other
obstacle) in the path of the wave is comparable to the wavelength. (We consider diffraction in detail later.) Note (Figure 2-
15c¢) that diffraction becomes more pronounced as the slit width becomes smaller; thus an attempt to isolate a single ray will
be futile.

If a is a measure of the smallest transverse dimension of a slit or obstacle, then the effects of diffraction can be ignored if
the ratio a/A is small large enough. In this case, the light appears to travel in straight-line paths that we can represent as rays.
This is the condition for geometrical optics, also known as ray optics. When a light beam encounters such obstacles as
mirrors, lenses, or prisms whose lateral size is much greater than the wavelength of light, we are safe in using the equations
of geometrical optics. Perhaps the two most important result derived from geometrical optics are the Law of Reflection and
the Law of Refraction. Both involve light passing from one medium to another, as in Figure 2-16. (Notice here how rays are
used to represent the paths of the incident, reflected, and refracted light waves.) The Law of Reflection states that the
reflected ray lies in the same plane as the incident ray, and that

0/=0,. (2.43)
The Law of Refraction states that the refracted ray lies in the same plane as the incident ray, and that
n,sin®,=n,sin6,, (2.44)

where the n; are the indices of refraction, defined as the ration of the speed of light ¢ in vacuum to the speed of light v in the
corresponding medium,

n =—. (2.45)

If the condition for geometrical optics is not met, we cannot describe the behavior of light by rays but must take its wave
nature specifically into account. In this case we are in the realm of physical optics or wave optics, which includes
geometrical optics as a limiting case. Physical Optics, on the other hand, describes the phenomena of Interference and
Diffraction, which we take up shortly.
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Geometrical Optics and the Laws of Reflection and Refraction
Figure 2-16
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E. The Theory of Diffraction’]

Huygen’s Principle

In a number of situations, it can be observed that when a wave motion passes through an aperture (opening), the waves
bend around the edge of the aperture. Sea waves entering an enclosed harbor, for example, will bend around the seawall.
The effect is called diffraction. To understand it better, let us consider first what would happen if diffraction did not take

place. Figure 2-17 shows parallel waves entering a harbor in the absence of diffraction. Upon passing through the seawall,
the waves would remain parallel

Open sea

Sea wall

Sea Waves Entering an Enclosed Harbor in the Absence of Diffraction

Figure 2-17

with a sharp edge at their boundary, producing a vertical wall of water with a sinusoidal profile at the edge, as shown in the
figure. This, of course, is not possible. Huygens (1690) suggested that every point on a wave motion becomes a new and
secondary spherical source with an amplitude equal to the amplitude of the original wave at that point. This is known as
Huygen’s Principle. For an unbounded wave, the effect of these secondary waves cancels out except in the original direction
of the wave, and in that direction their cumulative effect is identical to the original wave motion, as shown if Figure 2-18.
These secondary wave fronts only become manifest near the

s

Wavefront at ! -New position
PN of wavefront

Huygens’ Wavelets Applied to an Unbounded Wave
Figure 2-18
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edge of a bounded wave, for example, when a wave passes through an aperture, as in Figure 2-19. Returning now to our
water wave example in Figure 2-17, and applying these ideas to just one of the edges of the seawall, we have the
construction shown in Figure 2-20. Summing the amplitudes of these secondary wave fronts, taking care to account for
phase differences, gives the result of

i Original Secondary
wavefronts wavefronts

Aperture

Huygens’ Principle and Diffraction by an Aperture
Figure 2-19

Figure 2-21. The shape of a water wave after entering the harbor, then, will be a superposition of two sinusoidal shapes at
right angles to one another. The first is the “pure sinusoid” of Figure 2-17 (evident when viewed at right angles to the
direction of propagation), and the second is the “damped sinusoid” of Figure 2-21 (evident when viewed along the direction
of propagation). The wave’s overall amplitude at any particular point along it will be a decreasing function of that point’s
distance from the seawall opening. If the seawall opening is “wide” (many times the wavelength of the water waves), then
the edge effect of Figure 2-21 will occur over a relatively insignificant length and in the middle the wave will have just the
sinusoidal shape of Figure 2-17. This is the case of geometrical optics, in which diffraction is ignored, which we described
previously. Note that the edge effects are still there, but when applying the assumptions of geometrical optics we are more
interested in conditions in the central region of the opening, far from the edge. When viewed from a distance under these
circumstances, the edges of the wave appear “sharp” and the seawall appears to cast a “sharp shadow”. If the opening is
relatively narrow, the effects of the two edges overlap all along the (transverse) length of the wave and hence must be taken
into account—the condition of wave optics discussed previously. These ideas carry directly over to the three dimensional
case of planar or spherical light waves passing through a small aperture. We are interested in understanding the effect of
light passing through the pupil of the eye to form an image on the retina. As we’ll see, diffraction must be taken into account
here.

Fresnel explained diffraction in terms of this principle and the interference between all the secondary sources. This
development is known as the Huygens-Fresnel theory and has enabled the mathematical development of the theory of
diffraction and the calculation of the light level at any point ﬁeyond an aperture due to diffraction at the aperture. The
Huygens-Fresnel theory was further developed by Kirchoff.
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Figure 2-20

Diffraction Around an Infinite Edge

Figure 2-21
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Fresnel and Fraunhofer Diffraction

Consider a monochromatic wave emanating from a point P, that has propagated through an opening A in a plane opaque
screen, as in Figure 2-22. If the linear dimensions of the opening are small compared to the distances Py and P (though large
compare%to the wavelength A of the beam), then the disturbance U at point P is given by the Fresnel—Kirkhoff Diffraction
Formula™

U<P>=—i2—‘;ﬂ T Leos(mr)—costn ] (3.46)

Here A is a constant, the angles (n,r) and (n,s) are as defined in the figure, and

(oo 2m (3.47)

®

{a)

Fresnel--Kirchoff Diffraction
Figure 2-22

As the element dS varies over the domain of integration A, r+s will in general change by very many wavelengths, so that the
factor ¢*"™* will oscillate rapidly. On the other hand, since the distances to the points Py and P from the screen are assumed
large compared to the linear dimensions of the aperture, the factor [cos(n,r) — cos(n,s)] will not vary appreciably over the
aperture and may therefore be taken outside the integral. Further, if O is any point in the aperture, the angles which the lines
PoO and OP make with PP will be small. We may then replace this factor by 2 cos 8, where 9 is the angle between PyP and
the normal to the screen. Finally, the factor 1/rs may be approximated by 1/r’s’, where 1’ and s’ are the distances from P, and
P to O. With these, then, Equ. [3.46)|reduces to

Aicosd ie(rts)
UR)=-=——= HAe ds. (3.48)
We’ll now take a Cartesian reference system with origin O in the aperature and with the x- and y- axes in the plane of the
aperture. We’ll choose the positive z direction to point into the half-space that contains the point P of observation, as shown

in Figure 2-23. If (xo, Yo, Zo) and (x, y, z) are the coordinates of P, and P, respectively, and (&, n) the coordinates of a point

Q in the aperture, we then have

r=(x,—E) +(y,-n) +z,
s’ :(x—§)2 +(y—n)2 +277,

7

2_ L2, 2,2
r"=X,+Yy,+7,,

(3.49)

S?=x’+y* +7°.
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Diffraction at an Aperture in a Plane Screen

Figure 2-23
Hence,

r=1"-2(x,&+y,n)+& +n’,

(3.50)
s=s7-2(x&+yn)+& +n’.

Since we assumed that the linear dimensions of the aperture are small compared to both r’ and s’, we may expand r and s as
power series in &/r’, n/r’, &/s’, and 1)/s’. We then obtain

2

r~p2 _Xo E+y,M +E_;2 +’° _(XO S+, n) _

r 2r 2r” ’ (3.51)
o xE+yn B4’ (xE+yn)
§=§ - ’ + ;7 ” -
] 2s 2s
Substituting these results into Equ. |(3.48)|then gives
icosd A" o e
UR)=—— TﬂAe d&dn, (3.52)
where
e X GtYN_ xEryn Ean’ £4n’ (xE+ym) (x&+yn)
(&!n)_ ’ - ’ - ’ + 7 ) - 3 (353)
r s 2t 2s 2r 2s
If we denote (ly, my) and (1, m) as the first two direction cosines, i.c.,
10 __X? > 123,’
! S (3.54)
m=2,  mel,
S
then Equ. [3.53)|may be written as
(1 1 ,&€+myn) (1&+mn)’
f(ﬁ,n):(lo—1)§+(m0—m)n+5{(?+?)(§2+n2)—( 0 = o) 7 ) (3.55)

We have thus reduced the problem of determining the light disturbance at P to the evaluation of the integral in Equ.
Naturally, the evaluation is simpler to carry out when the quadratic and higher-order terms in  and n may be neglected in f.
In this case we have Fraunhofer Diffraction. When the quadratic terms cannot be neglected we have Fresnel Diffraction.
Fortunately, the simpler case of Fraunhofer Diffraction is of much greater importance in optics, and the focus of our interest
here as well.
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Strictly speaking, the second and higher-order terms disappear only in the limiting case " — oo, s"— oo, that is, when both

the source and the point of observation are at infinity. [The factor A in Equ. must then be assumed to tend to inifinty
in the same fashion as r’s’, in order to keep U(P) bounded.] It is, however, evident that the second-order terms will not
appreciably contribute to the integral if

(%+§J(§2+n2)—(l°§+m°n) _(gsmn)) 0 (3.56)

’ ’ |

Lk
2

T S

With this in mind we can immediately recognize certain conditions under which Equ. [3.56)lis satisfied. If we make use of

inequalities of the form (I, &+m, 1)’ < (102 +m,’ )(&2 +1’) and remember that 15, m; 1> ,and m* cannot exceed unity, we
find that Equ. ill be satisfied if

E2 41> E 41’
0 ( )max , and T ( )max ’ (3.57)
A A
or if
i
l,+l,:0, and I;,m;, 1>, m*0] zr—z (3.58)
r s (g +n )max

Equs. give an estimate of the distances r’ and s’ for which the Fraunhofer representation may be used. Equs.
imply that Fraunhofer Diffraction also occurs when the point of observation is situated in a plane parallel to that of the
aperture, provided that both the point of observation and the source are sufficiently close to the z-axis™ Here two cases may
be distinguished: when 1’ is negative, the wave-fronts incident upon the aperture are concave to the direction of propagation.
That is, Py is a center of convergence and not of divergence of the incident wave. This case is of great practical importance,
as it arises in the image space of a well-corrected, centered system that images a point source which is not far from the axis.
The resulting Fraunhofer pattern may be considered as arising from the diffraction of the image--forming wave on the exit
pupil. In other words, Fraunhofer phenomena occur in the focal plane of a well corrected lens, in the region near the r’s’ axis.
The second case implied by Equ. in which Fraunhofer Diffraction occurs corresponds to positive r’. Here the wave-
fronts are convex to the direction of propagation, and the diffraction phenomena are virtual, being apparently formed on a
screen through the source Py. This case arises, for example, when a aperture is held in front of the eye, or the object glass of
a telescope adjusted for distant vision of the light source. In this analysis we’ll be concerned with the first of these cases.
Assuming the conditions of the first case, we can neglect the quadratic and higher-order terms in & and 1} in Equ. and

write Equ. [3.52)|as

U(P)=-— iCOSSﬂJ‘J‘ e—ik(piﬂm) dE_'dn (3.59)
A r's’ A ’ ’
where
p=l-1,,q=m-m, . (3.60)

The constant appearing in front of the integral in Equ. is unweldy, but it can be simplified into a more convenient
form. Let E be the total energy incident upon the aperture. By the law of conservation of energy the total energy that reaches
the plane of observation must also be equal to E, so that we have

2 E
[[lvee.@f dpda=—=, (3.61)
where R is the distance from O to the point at which the line PyQ intersects the plane of observation, as shown in Figure 2-
23. In Equ. the integration extends over all possible values of p and q. Equ. may be rewritten as a Fourier
Integral

2mi

up.a=[[6Eme *'

p&+qn)

dedn | (3.62)

where the Pupil Function G(E, 1) is given by
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_icos § A for points inside the aperture
G(En= A r's ) (3.63)
0 for points outside the aperture

Here the integration extends over the entire &, n| plane. Applying Parseval’s Theoremﬂto Equ. gives

%J“U(p,q)r dp dq=H

=H|G<&,n) I

= mG(g,n) |1 dédn, (3.64)
=[[lcEm[ dgdn,
=|c|* [ d&dn.

Substituting Equ. for the left-hand side integral and noting that the right-hand side integral is just the area of the
aperture, which we’ll denote as D, Equ. |(3.64)|reduces to

1 E
Thus,

sz(p£+qn)

GEme dEdn,

25|
—-——(p&+
o p&+an dedn,

Ic'D. (3.65)

1

1 (EY}
C_x_R(B) , (3.66)

and the basic Fraunhofer Diffraction Integral [Equ. |(3.59)]] becomes

1
l E P -1 +
U(p’q)=7\,_R(BJ JjAe kpEran) d&dﬂ . (3.67)

From this, we can see that the intensity I =|U(O, 0)|2 at the center of the pattern p=q=0 is given by

Ioz(ﬁ] S(I], dgan) =52 =c* D, (3.68)

To see in a more physical way how Fresnel and Fraunhofer Diffraction are related, consider Figure 2-24, which shows a
focussed, monochromatic and aberration-free beam, arising from an axial monochromatic point source. The continuous lines
are the geometrical optics boundary and the dotted lines indicate the actual form of the light distributions across the beam at
two representative positions along the beam. For the position closer to the optical system, a Fresnel Diffraction Pattern
exists. Here the light distribution at either extreme is similar to the light distribution at the edge of the beam, similar to
Figure 2-21. In the center of the beam there is no fringing and the light distribution is as predicted by geometrical optics. If
we now move this plane towards the focus at O’, the edges of the beam become closer, the flat central portion of the light
distribution narrows, and finally the fringe systems at the edges merge and at O’ the light level finally takes the form of a
Fraunhofer Diffraction pattern. Because the Fresnel diffraction pattern varies in going from the optical system to the focus at
O’, there is no unique pattern in this region. In the plane of the focus, however, the diffraction pattern is unique. Fraunhofer
Diffraction, then, is a special case of Fresnel Diffraction and is in fact defined as the diffraction effect in the focal plane of a
beam. Here we are interested in Fraunhofer Diffraction because it (along with any aberrations present) predicts the light
distribution in the image plane. This particular case--the light distribution in the image of a point source for an aberraton-free
beam--is also known as the Diffraction-Limited Point Spread Function.

Ideally, we would measure retinal image quality by first imaging a point source of light onto the retina, and then recording

that image using light reflected back out of the eye. (Mathematical manipulation is required to account for the fact that the
recorded light rays have passed through the eye twice.) Until the advent of lasers and very sensitive detectors, though, this
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approach was not possible because a conventional “point” source of light contained too little light to be detected after it had
been reflected from the retina. A suitable and simple alternative was to use a “line” source in place of a point source. Such a
source emits perhaps a hundred times for luminous flux than a point source of the same width. (Ideally, of course, both
sources would have zero width.) Such

Diffraction Patterns Along an Aberration-Free, Focused Beam
Figure 2-24

a light distribution is called a Line Spread Function. Because this part of the visual system is linear, such a function can be
obtained by summing (or in the limit, integrating) point spread functions. Thus, the line spread function is the sum of a line
of point spread functions. Continuing with this reasoning, we could also construct an Edge Spread Function (a sum or
integral of line spread functions). We could also construct the light distribution resulting from an image whose luminance
varied as a square wave or a sine wave. We could also go the other way, if we wished, and recover the point spread function
upon which a particular line spread function was based (and similarly for edge, square wave, and sinusoidal patterns).

Students of Systems and Control Theory may by now have come to suspect that the point spread function is the impulse
response of the optical system comprising the eye (with the independent variables being the three spatial dimensions, as
opposed to time). This is indeed the case, and we define the Optical Transfer Function G(G) as the Fourier Transform of the
point spread function. (In systems theory we usually deal with Laplace Transforms, but since here we are interested in
sinusoidal inputs it is more convenient to work with Fourier Transforms, which can be used in a completely analogous
manner.) In words, the Optical Transfer Function is a complex-valued function of the spatial frequency ¢ that measures the
reduction in amplitude and change in phase of sinusoidal patterns imaged by an optical system. Because it is derived from an
impulse function, the optical transfer function (in the case of the human visual system) can provide information on the eye’s
response (in terms of amplitude attenuation and phase shift) to any input. The optical transfer function is traditionally written
as the product of two other transfer functions, the Modulation Transfer Function G,(6), which gives the attenuation of the
input amplitude, and the Phase Transfer Function G,(c), which gives the phase shift. Thus,

G(6)=G,(0)G, (0). (3.69)

We’ll next derive the Point Spread Function for a defect-free eye, and from this develop the corresponding Optical
Transfer Function. (This diffraction-limited case represents the upper limit of the eye’s capabilities.) Finally, once this
foundation is laid we will introduce the Contrast Sensitivity Function, a measure of the eye’s actual performance in this
regard.

Fraunhofer Diffraction Due to a Circular Aperture

In analyzing the diffraction pattern due to a circular aperture it is more convenient to use polar instead of rectangular
coordinates. Let (p, 0) be the polar coordinates of a typical point in the aperture, so that

pcosO=E, psin@=n; (3.70)
and let (w, ) be the coordinates of a point P in the diffraction pattern, referred to the geometrical image of the source. Then

wcosy=p, wsiny=q. (3.71)
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From the definition of p and q [Equ. @] it follows that w=./p>+q" is the sine of the angle which the direction (p, q)
makes with the central direction p=q=0. The diffraction integral given by Equ. [3.59)|then becomes

ue)=C|’ joz"e*‘kPWC°S("*“’) pdpde . (3.72)

Now we have the well-known integral representation of the Bessel Function J,(z):

:-n

1 2 ixcoso in(xd _J 3 73

2TC'[° e e da=J (x). (3.73)
Equ. therefore reduces to

U(P)=2nCJ: J,(kpw)dp . (3.74)

We also have the well-known recurrence relation

(%[xn“ a0 ]=x""T,(). (3.75)

Integrating Equ. for n=0, then gives
xJ, (0 =[x T, (x)dx’. (3.76)
From Equs. [3.74)|and |(3.76)|it follows that

2] (kaw)
aw ’

U(P)=CD|: (3.77)

and the intensity is given by

ZJl(kaW)]z

3.78
kaw ( )

1(P)=|U(P)|" =1, {

or

I(P)={2J1(kaW)]2 (3.79)

I, kaw
where, per Equ.|(3.68)]

ED

212
,=C'D'= 5

(3.80)

Equ. [3.78)]is the celebrated formula first derived in a somewhat different form by Air}E.l

Equ. gives the normalized intensity distribution in the neighborhood of the geometrical image, and is plotted in
Figure 2-25. It has a principle maximum I(I% =1 at (kaw) =0, and with increasing (kaw) it oscillates with gradually
0

diminishing amplitude. The intensity is zero (minimum) for values for (kaw) given by J,(kaw)=0. The minima are no
longer equidistant, as shown in Table 2-2. The positions of the secondary maxima are given by the values of (kaw) that
satisfy the equation

d J (kaw) -0 (3.81)
dkkaw)| kaw ’ )

or, using the relation [analogous to Equ.
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d
d(kaw)

[(kaw) T, (kaw)]=—(kaw)" ], (kaw), (3.82)

by the roots of the equation
J,(kaw)=0. (3.83)

With increasing (kaw) the separation between two successive minima or two successive maxima approaches the value 7.

The result is a pattern (the Airy Pattern) consisting of a bright disc (the Airy Disc), centered on the geometrical image p=q=0
of the source, surrounded by concentric bright and dark rings, shown in Figure 2-26. "The intensity of the bright rings
decreases rapidly with their radius and normally only the first one or two rings are bright enough to be visible to the naked
eye.
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Fraunhofer Diffraction at a Circular Aperture: The Function
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I(P) . .

(kaw) I, Maximum/Minimum
0 1 Maximum
1.220m=3.833 0 Minimum
1.635m=5.136 0.0175 Maximum
2.233n=7.016 0 Minimum
2.6791=8.417 0.0042 Maximum
3.238n=10.174 0 Minimum
3.6991=11.620 0.0016 Maximum

1(P)

The First Few Maxima and Minima of —=

Table 2-2

0

Fraunhofer Diffraction Pattern of a Circular Aperture (The Airy Pattern)

F. The Optical Transfer Function

Figure 2-26

The Fourier Transform F(c) of the complex-valued function f(x) is defined as

F(G)=J: f(x)e ™ dx.

3.1)

Here Equ. (3.78) corresponds to f(x), with x=(kaw) . The Optical Transfer Function, then, is given by

G(G):J |:2Jl(kaw):| e 2mio(kaw) d(kaw),

kaw

(3.84)

Since in this case the diffraction-limited point spread function is even-symmetric, G(c) will have no phase shift associated
with it, and the Optical and Modulation Transfer Functions will be one and the same. Equ. has been evaluated
numerically, and the result plotted in Figure 2-27. ¢ here is the spatial frequency (in cycles per degree of visual angle) of the

harmonic input signal.
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The optical and modulation transfer functions can be determined based on experimental data. Campbell and Gubischlz,I for
example, calculated the modulation transfer functions from their measured white light line spread functions. Their mean
result for a 3mm pupil size is shown in Figure 2-28. The diffraction —limited modulation transfer function of Figure 2-27 is
also plotted here for comparison. We can also measure the modulation transfer function of the eye by subjective methods;
Campbell and Green™accomplished this by measuring two somewhat related functions:

1. The Total Contrast Threshold Function, which is obtained by presenting sinusoidal patterns on an oscilloscope screen to
an observor and then by some suitable psychophysical procedure varying the contrast until the subject decides that it is
just visible. In this case, the final result is affected by the aberrations and diffraction properties of the eye as well as by
neural factors.

2. The Contrast Threshold Function, which is obtained by using an interferometer to project sinusoidal patterns directly
onto the retina. In this case the results are not affected by aberrations or diffraction, only neural factors.

Note that these measures of contrast are not modulation transfer functions, because they are influenced by the neural system.
The modulation transfer function does emerge, however, if we take the ratio of the Contrast Threshold Function to the Total
Contrast Threshold Function. (This in effect "divides out" the neural factors.) These results are also plotted in Figure 2-28.
They are not strictly comparable with the two other curves in the figure because a pupil diameter of 2 mm (vs. 3 mm for the
other curves) was used, and two different wavelengths of light (530 nm and 632.8 nm vs, 550 nm for the other curves) were
used. If parameters and two different wavelengths of light (530 nm and 632.8 nm vs, 550 nm for the other curves) were used.
If parameters consistent with our other data had been used this curve would be pushed down towards the one reflecting the
Green and Gubisch results. Even with this, though, we see that the experimental data agrees well with the theory, and we get
an idea of the degree to which the visual system is affected by the imperfections associated with the eye's optics.
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Figure 2-27
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G. Summary

We have now accomplished the objective of these two appendices—to understand one of the central elements of what we
think of as "seeing": contrast sensitivity. We have in Appendix I investigated the pertinent physiological elements involved
in this task and the manner in which they're organized to accomplish it. In Appendix II we investigated the nature of light,
and seen how the human visual system has tuned itself to accommodate its properties. More concretely, we have seen that
the visual system acts as a filter to detect luminance patterns, and that those exhibiting the greatest contrast are the ones that
attract our notice. Tying the two appendices together, we find that this filtering function is carried out for light/dark (black
and white) patterns, red/green patterns, and blue/yellow patterns. Thus the scene is sampled in three ways to detect its salient
features. We will use these conclusions in developing our model.

Perhaps the most profound conclusion, however, that the engineer can take from this is that human vision is eminently
understandable, and that it lends itself to the same kinds of analysis as any other physical system. Further, if we can analyze
it, we can optimize its role in larger systems (such as automobile control) that it is an integral part of.

! Taken from Smith and Atchison, ‘The Eye and Visual Optical Instruments’, Cambridge University Press, Cambridge,
England, 1997, Chapter 26.

? Here and in what follows we assume that the incoming waves are monochromatic and coherent. We say that the waves
emitted by separate sources are coherent if they all have the same phase difference, which remains constant with respect to
time. In reality, light waves are never strictly monochromatic, nor are they strictly coherent. This, though, is a complex
subject which, fortunately, we need not take up in order to achieve the insights and results we seek. In what follows, then,
we will retain the assumption of monochromatic, coherent waves. See Garbuny, ‘Phycical Optics’, Academic Press, New
York, 1965, Chapters 1-3, and 6 for a discussion of these ideas.

3 Born and Wolf, ‘Principles of Optics’, Cambridge University Press, Cambridge, England, 1999, pp. 421-425.
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4 This is the so-called paraxial approximation (also referred to as Gaussian Optics). It assumes that all rays (actually, just the
rays of interest to us) passing through the aperture are almost parallel to the optial axis, here the z-axis. This in turn allows
us to make the usual small angle approximations, sin@=tan0=0 and cos®=1, as well as the others described above.

S LN. Sneddon, Fourier T ransforms, New York, McGraw-Hill, 1951, pp. 25 and 44.

% G.B. Airy, Transactions of the Cambridge Philosophical Society, 5 (1835), 283.
" Campbell and Gubisch, The Optical Quality of the Human Eye, Journal of Physiology, Cambridge University Press,
Cambridge, UK, October, 1966 (Volume 186, No. 3, pp. 576-593).

% Campbell and Green, Optical and Retinal Factors Affecting Visual Resolution, Journal of Physiology, Cambridge
University Press, Cambridge, UK, December, 1965 (Volume 181, No. 3, pp. 558-578).
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home ; clear all ; close all ;
format compact
pause (.01)

khkkkhkkkhkhkkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhhhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhkhkhkhkhkkhkrkk khkk *kk **x*%

o\

o\

Set Directories for Input and Output Files
%**********************************************************************************
addpath ('C:\Conspicuity\Matlab Files\', '-end');

InPutPath="'C:\Conspicuity\Input\"';

OutPutPath='C:\Conspicuity\Output\';

%**********************************************************************************

% Initialize Parameters
%**********************************************************************************
InputFileName=strcat (InPutPath, 'Img0014-02.bmp') ;
OutputFileName=strcat (OutPutPath, 'RoadSideScene') ;

InitialPlots=1 ;

PlotFinalResult=0 ;

PlotScoringGrid=0 ;

MonCSF=[0.7692;0.9155;0.9993;1.000;0.9169;0.7713;0.5952;0.4212;0.2734;0.1626;0.0888
;0.0440] ;
RGCSF=[1.0000;0.9171;0.8114;0.6823;0.5341;0.3778;0.2315;0.1158;0.0435;0.0109;0.0015
;0.00017 ;
BYCSF=[1.0000;0.9185;0.8145;0.6872;0.5403;0.3846;0.2378;0.1205;0.0461;0.0118;0.0017
;0.00017 ;

FilterFreq = 2.%[-1:.5:4.5] ; FregEnd = length(FilterFreq) ;
Ang = pi/6.*[0:1:6] ; AngEnd = length (Ang) ;
Pool = 4 ; Rho = 3*sgrt(log(2))/pi ;
Count =0 ; dtsum =0 ;

set (0, 'units', 'inches')

ScreenSizeInch=get (0, 'screensize') ;

set (0, 'units', 'pixels')

ScreenSizePix=get (0, 'screensize') ; SW=ScreenSizePix(3) ; SH=ScreenSizePix(4) ;
PixperInch=ScreenSizePix(1,3:4)./ScreenSizeInch(1,3:4);

khkkkhkkkhkhkkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhhhkhkhkhkhkhkhkkhkhkk k,k* **x*%

o\

o\

Load Scene
%**********************************************************************************
Scene=imread (InputFileName, 'bmp') ;

Scene=double (Scene) ;

minmum=min (min (min (Scene))) ;

Scene=Scene-minmum;

maxmum=max (max (max (Scene) ) ) ;

Scene=Scene/maxmum;

[HPix,WPix, z] =size (Scene) ;
D=25 ; W=6; H=W*HPix/WPix ;
Alpha=2*atan((W/2) /D) *180/pi;
dW=floor (WPix/Alpha) ; dH=dW ;

khkkkhkkhkhkkhkhhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhkhhkhkhkhkhkkhkhkkhk,kk k,kk **x*%

% Create and Plot (If Desired) Black/White, Red/Green, and Blue/Yellow Sub-Images
%**********************************************************************************

o\

MonMatrix=(Scene(:,:,1)+Scene(:,:,2)+Scene(:,:,3))/3.;
MonScene(:, :,1)=MonMatrix ; MonScene(:,:,2)=MonMatrix ; MonScene(:,:,3)=MonMatrix ;
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RGMatrix=Scene(:,:,1)-Scene(:,:,2);

if min (min (RGMatrix) ) <0
RGMatrix=RGMatrix-min (min (RGMatrix)) ;

end

if max (max (RGMatrix))>1
RGMatrix=RGMatrix/max (max (RGMatrix)) ;

end
RGScene(:, :,1)=RGMatrix ; RGScene(:,:,2)=RGMatrix ; RGScene(:,:,3)=RGMatrix ;
BYMatrix=(Scene(:,:,1)+Scene(:,:,2)-2*Scene(:,:,3));

if min(min (BYMatrix))<O0
BYMatrix=BYMatrix-min (min (BYMatrix)) ;
end
if max (max (BYMatrix))>1
BYMatrix=BYMatrix/max (max (BYMatrix)) ;
end
BYScene(:, :,1)=BYMatrix ; BYScene(:,:,2)=BYMatrix ; BYScene(:,:,3)=BYMatrix ;

if InitialPlots==1
figure (1)
image (Scene)
Position=[10 (SH-HPix-75) WPix HPix] ;
set (gcf, 'Position',Position) ;
title('Figure 1: Original Scene', 'fontsize',12, 'fontweight', 'bold"')
figure (2)
Position=[SW-WPix-10 (SH-HPix-75) WPix HPix] ;
set (gcf, 'Position',Position) ;
image (MonScene)
title('Figure 2: Monochrome Scene', 'fontsize',12, 'fontweight', 'bold")
figure (3)
Position=[10 40 WPix HPix] ;
set (gcf, 'Position',Position) ;
image (RGScene)
title('Figure 3: Red-Green Scene', 'fontsize',12, 'fontweight', 'bold")
figure (4)
Position=[SW-WPix-10 40 WPix HPix] ;
set (gcf, 'Position',Position) ;
image (BYScene)
title('Figure 4: Blue-Yellow Scene', 'fontsize', 12, 'fontweight', 'bold")
pause(.01)
end

save (OutputFileName, 'Scene', 'MonScene', 'RGScene', 'BYScene') ;

imwrite (Scene, strcat (OutPutPath, 'OriginalScene.bmp'), 'bmp') ;
imwrite (MonScene, strcat (OutPutPath, 'BWSubImage.bmp'), 'bmp') ;
imwrite (RGScene, strcat (OutPutPath, 'RGSubImage.bmp'), 'bmp') ;
imwrite (BYScene, strcat (OutPutPath, 'BYSubImage.bmp'), 'bmp') ;

hkkkkhkkhkhkkhkhhhkhhhkhhhkhhhhhhhhhhhhhkhhhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhkhhkhkhkkkhkkhkhkk krkk **x*%

o\°

% Create Filtered Sub-Images
%**********************************************************************************
Filter=1*dw;

FilterGridx=[round (-Filter/2) :round (Filter/2)]'/round (Filtexr/2) ;
FilterGridy=FilterGridx;

[FilterX, FilterY] = meshgrid(FilterGridx,FilterGridy) ;

HPix=HPix-length (FilterGridx)+1l ; WPix=WPix-length(FilterGridy)+1l ;
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MonPoolImage = zeros (HPix,WPix) ;
RGPoolImage = zeros (HPix,WPix) ;
BYPoolImage = zeros (HPix,WPix) ;

disp(sprintf ('Beginning First of %31 Convolutions at
%$s',AngEnd*FreqgEknd, datestr (Now, 14) ) )
for iang = 1:AngEnd
Xrot = FilterX*cos(Ang(iang)) + FilterY*sin (Ang(iang)) ;
Yrot = -FilterX*sin(Ang(iang)) + FilterY*cos(Ang(iang)) ;
for ifreq = 1:FreqgEnd
to = clock;
Count Count+1;
Lambda = Rho/ (FilterFreq(ifreq) /dwW) ;
Filter = zeros(length(FilterGridy), length(FilterGridx)) ;
Filter = exp(-(Xrot.”2 + Yrot.”2)/(Lambda.”2));
Filter = Filter.*cos(2*pi* (FilterFreq(ifreq)/dW)*Xrot) ;
Filter = round(Filter);

I

MonConvResult conv2 (MonMatrix,Filter, 'valid') ;
RGConvResult conv2 ( RGMatrix,Filter, 'valid') ;
BYConvResult = conv2( BYMatrix,Filter, 'valid') ;

MonPoolImage+MonCSF (ifreq) * (MonConvResult. *Pool) ;
RGPoolImage +RGCSF (ifreq) * (RGConvResult ."Pool) ;
BYPoolImage +BYCSF (ifreq) * (BYConvResult ."Pool);

MonPoolImage
RGPoolImage
BYPoolImage

dt (Count) =etime (clock, t0) ;

dtsum=dtsum+dt (Count) ;

DT=dtsum/Count ;

ToGo= (AngEnd*FregEnd-Count) *DT;

Now=now;

Linel=sprintf ('Convolution %3i%3i: Iteration %3i of %3i; dt=%31:%5.2f min:sec;

1
J e e .

iang, ifreq, Count, AngEnd*FreqgEnd, floor (dt (Count) /60) ,rem (dt (Count) ,60)) ;
Line2=sprintf ('DT=%31:%5.2f; Completion in %3i:%5.2f or at %s', ...
floor (DT/60) ,rem (DT, 60),floor (ToGo/60) ,rem(ToGo,60), ...
datestr (Now+ToGo/ (24*3600) ,14)) ;
disp([Linel Line2]);
end
end
disp(sprintf ('Convolutions completed at %s', datestr (now,14)))

%**********************************************************************************

% Scale Pooled Images (If Necessary) Such That all Pixels Lie Between 0 and 1
%**********************************************************************************
MonPoolImage=MonPoolImage-min (min (MonPoolImage) ) ;
MonPoolImage=MonPoolImage/max (max (MonPoolImage)) ;
MonFinalResult=MonPoolImage.” (1/Pool) ;

MonOverallAvgInt=sum (sum(MonFinalResult) )/ (WPix*HPix) ;

RGPoolImage=RGPoolImage-min (min (RGPoolImage) ) ;
RGPoolImage=RGPoolImage/max (max (RGPoolImage)) ;
RGFinalResult=RGPoolImage.” (1/Pool) ;
RGOverallAvgInt=sum(sum(RGFinalResult) )/ (WPix*HPix) ;

BYPoolImage=BYPoolImage-min (min (BYPoolImage) ) ;
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BYPoolImage=BYPoolImage/max (max (BYPoolImage)) ;
BYFinalResult=BYPoolImage.” (1/Pool) ;
BYOverallAvgInt=sum(sum(BYFinalResult) )/ (WPix*HPix) ;

save (OutputFileName, 'dt', 'MonPoolImage', 'MonFinalResult', ...

'RGPoolImage' , 'RGFinalResult' ,...
'BYPoolImage' , 'BYFinalResult' ,
'-APPEND') ;

Image(:,:,1)=MonFinalResult; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
imwrite (Image, strcat (OutPutPath, 'ReconBW.bmp'), 'bmp') ;
Image(:,:,1)=RGFinalResult; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
imwrite (Image, strcat (OutPutPath, 'ReconRG.bmp'), 'bmp') ;
Image(:,:,1)=BYFinalResult; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
imwrite (Image, strcat (OutPutPath, 'ReconBY.bmp'), 'bmp') ;

%**********************************************************************************

% Construct Scoring Grid
%**********************************************************************************

Width=dw/2 ; Height=dH/2 ;
nx=round ( (WPix-1) /Width) ; ny=round((HPix-1) /Height) ;
Width= (WPix-1)/ (nx-1) ; Height=(HPix-1)/(ny-1) ;
xn(1l,1)=1 ; yn(l,1)=1 ;

for i=2:nx
xn(i,1l)=xn(i-1,1)+wWidth ;
end
for i=2:ny
yn(i,1)=yn(i-1,1)+Height;
end
xn=round (xn) ; yn=round (yn) ;

for i=1:nx-1
for j=1l:ny-1
Area=(xn(i+1) -xn(i)) * (yn(j+1)-yn(3));
MonAvgInt (i, j)=sum(sum(MonFinalResult (yn(j) :yn(j+1),xn (i) :xn(i+1)))) /Area;
MonScore (i, j) =MonAvgInt (i, j) /MonOverallAvgInt;
MonScoreGrid(yn(j) :yn(j+1) ,xn (i) :xn(i+1))=MonScore (i, j) ;

RGAvgInt (i, j) =sum(sum(RGFinalResult (yn(j) :yn(j+1),xn (i) :xn(i+1)))) /Area;
RGScore (i,j)=RGAvgInt (i, j) /RGOverallAvglInt;
RGScoreGrid(yn(j) :yn(j+1) ,xn (i) :xn(i+1))=RGScore (i, Jj) ;

BYAvgInt (i, j)=sum(sum(BYFinalResult (yn(j) :yn(j+1),xn (i) :xn(i+1)))) /Area;
BYScore (i, j)=BYAvgInt (i,]j)/BYOverallAvgInt;
BYScoreGrid(yn(j) :yn(j+1) ,xn (i) :xn(i+1))=BYScore (i, Jj);
end

end

MonScoreGrid=abs (MonScoreGrid-1) ;
RGScoreGrid=abs (RGScoreGrid-1) ;
BYScoreGrid=abs (BYScoreGrid-1) ;

MinScoreGrid=min ( [min (min (MonScoreGrid)) min (min (RGScoreGrid))
min (min (BYScoreGrid))1) ;
MaxScoreGrid=max ( [max (max (MonScoreGrid)) max (max (RGScoreGrid))
max (max (BYScoreGrid))]) ;
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MonScore= (MonScoreGrid-MinScoreGrid) /MaxScoreGrid;

RGScore= (RGScoreGrid-MinScoreGrid) /MaxScoreGrid;

BYScore= (BYScoreGrid-MinScoreGrid) /MaxScoreGrid;
OverallScoreGrid= (MonScoreGrid+RGScoreGrid+BYScoreGrid) /3;
OverallScoreGrid=0OverallScoreGrid-min (min (OverallScoreGrid)) ;
OverallScoreGrid=0verallScoreGrid/max (max (OverallScoreGrid)) ;

MonScoreGrid=MonScoreGrid-min (min (MonScoreGrid)) ;
MonScoreGrid=MonScoreGrid/max (max (MonScoreGrid)) ;
RGScoreGrid=RGScoreGrid-min (min (RGScoreGrid)) ;
RGScoreGrid=RGScoreGrid/max (max (RGScoreGrid)) ;
BYScoreGrid=BYScoreGrid-min (min (BYScoreGrid)) ;
BYScoreGrid=BYScoreGrid/max (max (BYScoreGrid))

I

save (OutputFileName, 'nx', 'ny', 'xn', 'yn', ...

'MonOverallAvgInt' , '"RGOverallAvgInt', 'BYOverallAvgInt', ...
'MonScoreGrid' , '"RGScoreGrid' , 'BYScoreGrid' P
'OverallScoreGrid' , '-APPEND') ;
Image(:,:,1)=0OverallScoreGrid; Image(:,:,2)=Image(:,:,1);
Image(:,:,3)=Image(:,:,1);
imwrite (Image, strcat (OutPutPath, 'OverallScore.bmp'), 'bmp') ;
Image(:,:,1l)=MonScoreGrid; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
imwrite (Image, strcat (OutPutPath, 'BWScore.bmp'), 'bmp') ;
Image(:,:,1)=RGScoreGrid; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
imwrite (Image, strcat (OutPutPath, 'RGScore.bmp'), 'bmp') ;
Image(:,:,1)=BYScoreGrid; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
imwrite (Image, strcat (OutPutPath, 'BYScore.bmp'), 'bmp') ;

dkhkkkhkkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhhhkhkhhkhhhkhkkhhkhkkhhkhkhhkhkhhdkhkhkdkhkhkdkhkhkhhkhkkhhkhhhkhkkhhkhkhhkhkkhhkdkkhkd,kkhkkd,k,kkk,kkx*k*x*

o\

% Plot Reconstructed Sub-Images (If Desired)
%**********************************************************************************
if PlotFinalResult==1
figure (5)
Position=[10 (SH-HPix-75) WPix HPix];
set (gcf, 'Position',Position) ;
Image(:,:,1)=MonFinalResult; Image(:,:,2)=Image(:,:,1);
Image(:,:,3)=Image(:,:,1);
image (Image)
title('Figure 5: Final Result: Monochrome
Scene', 'fontsize',12, 'fontweight', 'bold")
figure (6)
Position=[SW-WPix-10 (SH-HPix-75) WPix HPix] ;
set (gcf, 'Position',Position) ;
Image(:,:,1)=RGFinalResult; Image(:,:,2)=Image(:,:,1);
Image(:,:,3)=Image(:,:,1);
image (Image)
title('Figure 6: Final Result: Red-Green
Scene', 'fontsize',12, 'fontweight', 'bold"')
figure (7)
Position=[10 40 WPix HPix] ;
set (gcf, 'Position',Position) ;
Image(:,:,1)=BYFinalResult; Image(:,:,2)=Image(:,:,1);
Image(:,:,3)=Image(:,:,1);
image (Image)
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title('Figure 7: Final Result: Blue-Yellow
Scene', 'fontsize',12, 'fontweight', 'bold"')
pause (.01)
end

khkkkhkkkhkhkkhkhhkhkhhhkhhhkhhhkhhhhkhhhhhhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhkhkhkhkhkhkhkkhkhkk k,kk **x*%

o\

% Plot Scoring Grid (If Desired)
%**********************************************************************************
if PlotScoringGrid==1
figure (8)
Position=[10 (SH-HPix-75) WPix HPix] ;
set (gcf, 'Position',Position) ;
Image(:,:,1)=MonScoreGrid; Image(:,:,2)=Image(:,:,1);
Image(:,:,3)=Image(:,:,1);
image (Image)
title('Figure 8: Scoring Grid: Monochrome
Scene', 'fontsize',12, 'fontweight', 'bold"')
figure (9)
Position=[SW-WPix-10 (SH-HPix-75) WPix HPix] ;
set (gcf, 'Position',Position) ;
Image(:,:,1)=RGScoreGrid; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
image (Image)
title('Figure 9: Scoring Grid: Red-Green
Scene', 'fontsize',12, 'fontweight', 'bold")
figure (10)
Position=[10 40 WPix HPix] ;
set (gcf, 'Position',Position) ;
Image(:,:,1)=BYScoreGrid; Image(:,:,2)=Image(:,:,1); Image(:,:,3)=Image(:,:,1);
image (Image)
title('Figure 10: Scoring Grid: Blue-Yellow
Scene', 'fontsize',12, 'fontweight', 'bold")
figure (11)
Position=[SW-WPix-10 40 WPix HPix] ;
set (gcf, 'Position',Position) ;
Image(:,:,1)=0OverallScoreGrid; Image(:,:,2)=Image(:,:,1);
Image(:,:,3)=Image(:,:,1);
image (Image)
title('Figure 11: Overall Scoring Grid', 'fontsize',12,'fontweight', 'bold"')
pause(.01)
end
return
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Table 1
Main Variables Used by CSFO01

# Variable Description
1 | Alpha Visual Angle (in Degrees) Subtended by Scene
2 | Ang Aray of Rotational Angles That Will be Applied to Original Scene
Array of Blue/Yellow Contrast Sensitivity Function Values Corresponding to Spatial
3 | BYCSF . . . i
Filter Frequencies Contained in FilterFreq
4 | BYFinalResult Final Reconstructed Blue/Yellow Subimage
5 | BYScene Blue/Yellow Subimage of Scene
6 | BYScoreGrid Blue/Yellow Scoring Grid Array
71D Distance (in Meters) from Observer to Actual Scene
. Two-Dimensional Array of Filter Values for a Particular Spatial Frequency and
8 | Filter .
Rotational Angle
9 | FilterFreq Array of Spatial Filter Frequencies That Will be Applied to Original Scene
10 | FilterX Unrotated X-Coordinate of Filters
11 | FilterY Unrotated Y-Coordinate of Filters
12 | FreqEnd Size of FilterFreq Array
13 | H Height (in Meters) of Area Encompassed by Scene
14 | InputFileName Full Path and Name of File Containing Scene to be Analyzed
15 | InputPath Directory Containing Scene to be Analyzed
16 | Lambda Parameter Used in Construction of Filters
Array of Monochrome Contrast Sensitivity Function Values Corresponding to Spatial
17 | MonCSF . . . o
Filter Frequencies Contained in FilterFreq
18 | MonFinalResult Final Reconstructed Monochrome Subimage
19 | MonScene Monochrome Subimage of Scene
20 | MonScoreGrid Monochrome Scoring Grid Array
21 | OutputFileName Full Path and Name of File to Which Results Will be Saved
22 | OutPutPath Directory to Which Results Will be Saved
23 | OverallScoreGrid | Sum of Monochrome, Red/Green, and Blue/Yellow Scoring Grid Arrays
24 | Pool Pooling Factor
Array of Red/Green Contrast Sensitivity Function Values Corresponding to Spatial
25 | RGCSF . . . g
Filter Frequencies Contained in FilterFreq
26 | RGFinalResult Final Reconstructed Red/Green Subimage
27 | RGScene Red/Green Subimage of Scene
28 | RGScoreGrid Red/Green Scoring Grid Array
29 | Rho Parameter Used in Construction of Filters
30 | Scene The Original Scene to be Analyzed (Assumed to be a Bitmapped Scene)
31 [ W Width (in Meters) of Area Encompassed by Scene
32 | Xrot Rotated X-Coordinate Used in Construction of Filters
33 | Yrot Rotated Y-Coordinate Used in Construction of Filters
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Table 2
Intermediate and Temporary Variables Used by CSF01
# Variable Description
1 | AngEnd Size of Ang Array
2 | Area Area of a Scoring Grid Square in Pixels
3 | BYAvgint Array Giving the Average Intensity of Each Blue/Yellow Scoring Grid Square
4 | BYConvResult Result of the convolution of the Current Filter with the Blue/Green Subimage
5 | BYMatrix Intermediate Array Used to Construct Blue/Yellow Sub-Image
6 | BYOverallAvglint | Average Intensity of the Entire Blue/Green Reconstructed Subimage
7 | BYPoollmage Intermediate Array Used in Calculating Final Reconstructed Blue/Yellow Sub-Image
8 | BYScore Array Giving the Ratio of Average Intensity to Overall Intensity for Each Blue/Yellow
Scoring Grid Square
9| dH Number of Vertical Pixels per Degree of Visual Angle
10 | dW Number of Horizontal Pixels per Degree of Visual Angle
11 | FilterGridX Intermediate Array Used in Constructing Filters
12 | FilterGridY Intermediate Array Used in Constructing Filters
13 | Height Height (in Pixels) of a Square One Degree of Visual Angle to a Side (=Width)
14 | HPix Width (in Pixels) of Scene
15 | iang For-Loop Variable
16 | ifreq For-Loop Variable
17 | InitialPlots =1 if Original Scene, Monochrome, RG and BY Subimages are to be drawn
=0 if not
18 | MaxScoreGrid Intermediate Variable Used to Scale OverallScore Grid Between 0 and 1
19 | MinScoreGrid Intermediate Variable Used to Scale OverallScore Grid Between 0 and 1
20 | MonAvgInt Array Giving the Average Intensity of Each Monochrome Scoring Grid Square
21 | MonConvRes Result of the convolution of the Current Filter with the Monochrome Subimage
22 | MonMatrix Intermediate Array Used to Construct Monochrome Sub-Image
23 | MonOverallAvgint | Average Intensity of the Entire Monochrome Reconstructed Subimage
24 | MonPoollmage Intermediate Array Used in Calculating Final Reconstructed Monochrome Sub-image
25 | MonScore Array Giving the Ratio of Average Intensity to Overall Intensity for Each
Monochrome Scoring Grid Square
26 | nx Width in Scoring Grid Squares of Scene
27 | ny Height in Scoring Grid Squares of Scene
28 | PixperInch Array Giving the Horizontal and Vertical Resolution (in Pixels per Inch) of the
Monitor Screen
29 | PlotFinalResult =1 if Reconstructed Monochrome, RG and BY Subimages are to be drawn
=0 if not
30 | PlotScoringGrid =1 if Monochrome, RG and BY Scoring Grids are to be drawn, =0 if not
31 | Position Position of Lower Left Corner (in Pixels) of Figure to be Drawn
32 | RGAvgInt Array Giving the Average Intensity of Each Red/Green Scoring Grid Square
33 | RGConvResult Result of the convolution of the Current Filter with the Red/Green Subimage
34 | RGMatrix Intermediate Array Used to Construct Red/Green Sub-Image
35 | RGOverallAvglnt Average Intensity of the Entire Red/Green Reconstructed Subimage
36 | RGPoollmage Intermediate Array Used in Calculating Final Reconstructed Red/Green Sub-image
37 | RGScore Array Giving the Ratio of Average Intensity to Overall Intensity for Each Red/Green
Scoring Grid Square
38 | ScreenSizelnch Array Giving the Width and Height (in Inches) of the Monitor Screen
39 | ScreenSizePix Array Giving the Width and Height (in Pixels) of the Monitor Screen
40 | SH Monitor Screen Height in Pixels (Used to Position Figures)
41 | SW Monitor Screen Width in Pixels (Used to Position Figures)
42 | Width Width (in Pixels) of a Square One Degree of Visual Angle to a Side
43 | Wpix Height (in Pixels) of Scene
44 | xn Array Containing the Left-Most X-Coordinate of Each Scoring Grid Square
45 | yn Array Containing the Bottom-Most Y-Coordinate of Each Scoring Grid Square
46 | z Number of “Layers” in Scene (For Bitmapped Scenes, z=3)
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Table 3

Progress Variables Used by CSF01

# | Variable Description
1 | Count Progress Variable Giving the Number of Convolutions Completed Thus Far
3| dt Progress Variable Giving the Time to Complete the Current convolution
5| DT Progress Variable Giving the Average Time to Complete a Convolution, Based on the
Convolutions Completed Thus Far
4 | dtsum Progress Variable Giving the Time Taken to Complete the Number of Convolutions
Specified by Count
7 | Linel String Variables Giving Estimate of Time Remaining to Complete Convolutions
8 | Line2 String Variables Giving Estimate of Time Remaining to Complete Convolutions
7 | Now Progress Variable Giving the Current Time
2 |t0 Progress Variable Giving the Time at the Start of the Current Convolution
6 | ToGo Progress Variable Giving an Estimate of the Time Required to Complete the

Remaining Convolutions
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