Lawrence Berkeley National Laboratory

Recent Work

Title

COMPARISON OP NEUTRON RESONANCE SPACINGS WITH MICROSCOPIC THEORY FOR SPHERICAL NUCLEI

Permalink https://escholarship.org/uc/item/11209533

Authors

Huizenga, J.R. Behkami, A.N. Sventek, J.S. <u>et al.</u>

Publication Date

1973-10-01

Submitted to Nuclear Physics

COMPARISON OF NEUTRON RESONANCE SPACINGS WITH MICROSCOPIC THEORY FOR SPHERICAL NUCLEI

J. R. Huizenga, A. N. Behkami, J. S. Sventek and R. W. Atcher

October 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

RECEIVED LAWRENCE RADIATION LABORATORY

JAN 31 1974

LIBRARY AND DOCUMENTS SECTION

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

学校 御 やや ゆ

COMPARISON OF NEUTRON RESONANCE SPACINGS WITH MICROSCOPIC THEORY FOR SPHERICAL NUCLEI*

J. R. Huizenga, A. N. Behkami, J. S. Sventek and R. W. Atcher

Departments of Chemistry and Physics University of Rochester Rochester, New York 14627

and

Lawrence Berkeley Laboratory University of California Berkeley, California 94720

October 1973

Abstract

The nuclear level spacings determined from neutron resonance experiments for nuclei with 20 \leq A \leq 148 and 181 \leq A \leq 209 are compared with spacings calculated for spherical nuclei with a microscopic theory which includes the nuclear pairing interaction. Single particle levels of Seeger <u>et al.</u> and Nilsson <u>et al.</u> are used in the calculations. The gross features of the experimental data due to nuclear shells are reproduced with the microscopic theory. In addition, the absolute agreement between experiment and theory is reasonable (67% of the 151 cases examined agree to within a factor of 2) in view of uncertainties in the experimental data, the theoretical single particle levels and the pairing strength. Values of the spin cutoff parameter σ^2 (E), calculated with a microscopic theory, are included also for several even-even nuclei and discussed in terms of nuclear shells.

Supported in part by the U. S. Atomic Energy Commission.

[†]John Simon Guggenheim Fellow at Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720.

⁺⁺Permanent address: Department of Physics, Pahlavi University, Shiraz, Iran.
⁺⁺⁺Present address: Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720.

1. Introduction

-1-

Neutron resonance data are the most extensive source of information on nuclear level densities. In this type of experiment the nuclear energy levels are observed at an energy just exceeding the neutron binding energy, and the number of levels is obtained by counting the resonances in a particular neutron energy interval. The levels excited by neutron-resonance spectroscopy have narrowly selected values of angular momentum I and parity π quantum numbers.

Level spacing information has been obtained from slow-neutron-resonance (s-wave) data for nuclei with A values across the whole periodic table. Hence, it is possible to investigate trends and systematics of the nuclear level density as a function of A. Although the technique of neutron resonance spectroscopy is an important one in terms of level density information, it suffers from a number of sources of experimental error. First of all, the strengths of resonances of a particular spin and parity vary greatly from one resonance to another and one cannot be certain that all the s-wave resonances have been detected. Secondly, if positive means of identification have not been used, one cannot be certain that some of the resonances detected are not of p-wave character. Fortunately, these two errors are to a certain extent compensatory. Finite instrumental resolution may lead also to an underestimate of the number of resonances in cases where close-lying resonances are unresolved. For the present comparison of experimental data with theory, we have used three compilations¹⁻³) of the nuclear level spacings from neutron resonance data. These level spacings, based on different analyses of the neutron resonance data, are tabulated in Tables 1-4 according to nuclear type.

A number of authors $^{2-10}$) have analyzed the neutron resonance data with a Bethe type formula containing various phenomenological modifications to account for nuclear pairing and shells. Although several of these comparisons were reasonably successful, the degree of their success depends in large part on adjustable parameters. The purpose of this article is to make a comparison of the nuclear level spacings determined from neutron resonance experiments with spacings calculated for a large number of nuclei with a microscopic theory of interacting Fermions. Realistic sets of single particle levels for spherical nuclei are used in the calculations^{11,12}). Thė use of single particle levels obtained from a shell-model calculation in the evaluation of nuclear state densities has been discussed by several authors $^{13-30}$). However, there have been only a limited number of comparisons $^{17-20,30}$) of experimental level densities with theoretical results which are based on realistic sets of single particle levels including the nuclear pairing interaction. In the present paper the A (mass number) dependence of the level density is investigated for nuclei with 20 \leq A \leq 148 and 181 \leq A \leq 209 at an essentially constant excitation energy, namely the neutron binding energy. In a previous paper³⁰) the excitation energy dependence of the level density was investigated for several nuclei near A = 60.

-2-

2. Calculational Procedure

The level density of a spherical nucleus for a particular value of the angular momentum I is given by

$$\rho(\mathbf{E},\mathbf{I}) = \omega(\mathbf{E},\mathbf{M}=\mathbf{I}) - \omega(\mathbf{E},\mathbf{M}=\mathbf{I}+\mathbf{I})$$
(1)

where M is the projection of I on a space-fixed axis and $\omega(E,M)$ is the density of states of a particular projection M. Since many independent degrees of freedom contribute to M, the density of states $\omega(E,M)$ is expected to approach a normal distribution,

$$\omega(E,M) = [\omega(E)/(2\pi\sigma^{2}(E))^{1/2}] \exp[-M^{2}/2\sigma^{2}(E)]$$
(2)

where $\omega(E)$ is the total state density and $\sigma^2(E)$ is defined as a spin cutoff factor. From eqs. (1) and (2), one obtains to a good approximation the spin dependent level density,

$$\rho(E,I) = [(2I+1)/(8\pi)^{1/2} \sigma^{3}(E)] \omega(E) \exp [-I(I+1)/2\sigma^{2}(E)] . \quad (3)$$

The state density $\omega(E)$ is calculated with realistic sets of single particle levels^{11,12}) by the grand partition function method for a system of interacting Fermions. The Hamiltonian describing a system of paired Fermions has been discussed by various authors^{14,17,19,25,29,30}). Such a Hamiltonian is approximately diagonalized by means of a transformation where the quasiparticle excitations are considered to be independent Fermions with energy³¹

$$\mathbf{E}_{\mathbf{k}} = \left[\left(\mathbf{\varepsilon}_{\mathbf{k}} - \lambda \right)^2 + \Delta^2 \right]^{1/2}$$

where λ is the chemical potential, ε_k the single particle energy and Δ the gap parameter which gives a measure of the pairing correlation. For a paired system the logarithm of the grand partition function for one type of Fermion is given by¹⁴)

$$\ln Z(\alpha,\beta) = -\beta \sum_{k} (\varepsilon_{k} - \lambda - E_{k}) + 2 \sum_{k} \ln [1 + \exp (-\beta E_{k})] -\beta \frac{\Delta^{2}}{G}$$
(5)

where G is the pairing strength and β is related to the temperature of the system, $\beta = 1/T$. The summation is over doubly degenerate orbitals designated by k. Equation (5) is valid only if the quantities Δ , λ and β satisfy the gap equation,

$$\frac{2}{G} = \sum_{k} \frac{1}{E_{k}} \tanh \left(\frac{1}{2} \beta E_{k}\right) \qquad (6)$$

The statistical properties of a nucleus defined in terms of its neutron and proton numbers N and Z, respectively, and the total energy are given in the grand partition function $Z(\alpha_n, \alpha_p, \beta)$. The quantities α_n , α_p and β are Lagrangian multipliers associated with the particle numbers and energy. In the framework of statistical mechanics the state density which is the inverse Laplace transform of the grand partition function, is given by

LBL-2314

(4)

$$\omega(\mathbf{N},\mathbf{Z},\mathbf{E}) = \left(\frac{1}{2\pi i}\right)^{3} \int_{-i\infty}^{i\infty} d\alpha_{n} \int_{-i\infty}^{i\infty} d\alpha_{p} \int_{-i\infty}^{i\infty} d\beta \ \mathbf{Z}(\alpha_{n},\alpha_{p},\beta) \ \exp\left(-\alpha_{n}\mathbf{N}-\alpha_{p}\mathbf{Z}+\beta\mathbf{E}\right) \quad . \tag{7}$$

This integral is evaluated by the method outlined $previously^{30}$).

The spin cutoff factor σ^2 (E) is calculated also with the microscopic theory and is given by 17, 30,

$$\sigma^{2}(E) = \frac{1}{2} \left\{ \sum_{k} m_{pk}^{2} \operatorname{sech}^{2} (\frac{1}{2} \beta E_{pk}) + \sum_{k} m_{nk}^{2} \operatorname{sech}^{2} (\frac{1}{2} \beta E_{nk}) \right\}$$
(8)

The additional quantity needed to solve eqs. (7) and (8) is the ground state gap parameter Δ which is used to fix the pairing strength G. In the present calculations we have used the functional forms of Δ_p and Δ_n given in figs. 1 and 2. These relations are similar to the smooth functions reported in the literature, except for a slight reduction of 15% in their magnitude.

For the odd particle system, the statistical functions were calculated for the adjacent even-even nucleus and then the energy scale was shifted by an energy equivalent to that required to produce one quasiparticle.

3. Results and Discussion

-6-

The results of the theoretical calculations are summarized in Tables 1 to 4. In these tables both the experimental data and the theoretical results are presented in terms of level spacings. The level spacing D in eV for one parity is defined in relation to eq. (3) by

$$D(eV) = 2 \times 10^{6} / \left[\rho(E, I_{0} - \frac{1}{2}) + \rho(E, I_{0} + \frac{1}{2}) \right]$$
(9)

where each level density is defined in terms of the number of levels per MeV of a particular angular momentum and both parities and I_0 refers to the target spin. When the target spin is non-zero, s-wave neutron capture excites levels of a single parity and two values of I. For even-even targets, levels of a single angular momentum and parity, $I = 1/2^+$, are excited. The factor of 2 in eq. (9) is a result of the assumption that the number of levels of each parity are equal. Although this assumption is not expected to be valid at low excitation energies, present theoretical calculations indicate that the assumption is reasonably good at an energy corresponding to the neutron binding energy^{19,23}).

The ratios of $D_{theo.}/D_{exp.}$ for 151 nuclei are plotted in fig. 3. The agreement between experiment and theory is within a factor of 2 for 67% of the cases studied. In the preparations of fig. 3, the most favorable single value of $D_{exp.}$ was used. For some nuclei, the average value of $D_{exp.}$ from the three analyses of the experimental data gives a better agreement with $D_{theo.}$. For the values of the proton and neutron pairing gaps given in figs. 1 and 2, respectively, the values of $D_{theo.}/D_{exp.}$ scatter about the value of unity.

•

Although this outcome is interesting, it is too early to attach particular significance to it because uncertainties in the various parameters discussed below may shift the absolute values of the ratio up or down. The important results from the comparison of the microscopic theory with experimental data are, (1) that no systematic structure due to nuclear shells is evident in this ratio as a function of A and (2) that more than 2/3 of the points are within a factor of 2 of some average value of D_{theo} , D_{exp} .

The average value of D_{theo}/D_{exp} depends on the magnitude of the pairing gaps. Increasing the pairing gap by 15% increases the value of D_{theo} . (and, hence, also D_{theo}/D_{exp} .) by a factor of approximately 3. Hence, deviations in the values of the pairing gaps from the smooth trends of figs. 1 and 2 will cause fluctuations in the ratio D_{theo}/D_{exp} . In addition, we have assumed that the residual interaction matrix elements G_{kk} , are equal to a constant G which is called the pairing strength (see eq. 6). There is, however, some evidence that this is a rather good approximation³³).

It is not possible to predict the error in $D_{theo.}$ associated with a particular set of single particle levels. Some estimate of the uncertainty is obtained by comparing results obtained with different sets of single particle levels. In Table 5 such a comparison is made for several nuclei for single particle levels of Seeger <u>et al.</u>¹¹) and Nilsson <u>et al.</u>¹²). The overall agreement, for all nuclei, between experiment and theory for each set of single particle levels is comparable. However, the single particle levels of Nilsson <u>et al.</u> give a much superior agreement with experiment for nuclei very near ²⁰⁸Pb. As shown in fig. 3, the values of D_{theo.} for nuclei with A = 206 - 208 are too small as calculated with the levels of Seeger and Perisho.

-7-

This is associated with the 82 proton and 126 neutron shell gaps being smaller for the Seeger single particle levels than the Nilsson <u>et al</u>. single particle levels.

The theoretical values of the level spacings which are reported here were calculated with single particle levels for spherical nuclei. Although the well known statically deformed nuclei in the lanthanide and actinide regions of the periodic table are not included in this survey, some nuclei are included which may have small deformations and others which are in transition regions between spherical and deformed nuclei. This subject of the effect of deformation on the level density is discussed in the following paper³⁴). For the nuclei included here, no enhancement in the level density due to either rotational or vibrational levels is assumed. The general agreement between the experimental and theoretical spacings for the included nuclei as a function of A may be interpreted to mean that no enhancement due to collective excitation is justified. This conclusion is, however, not warranted since uncertainties in the pairing energy and single particle density mentioned earlier allow for the possibility of some contribution to the level density due to collective excitations. If such an enhancement exists, the present results indicate that it is rather independent of A.

Values of $\sigma(E)$, the square root of the spin cutoff factor, for several even-even nuclei are listed in Table 1 for excitation energies just exceeding the neutron binding energy. In fig. 4, values of $\sigma^2(E)$ for a number of eveneven nuclei are plotted at a fixed excitation energy of 7 MeV. The values of $\sigma^2(E)$ do not increase smoothly with A as expected on the basis of the macroscopic theory with a rigid-body moment of inertia. Instead the values

-8-

of $\sigma^2(E)$ show structure reflecting the angular momenta of the shell model orbitals near the Fermi energy. The total magnitude of $\sigma^2(E)$ is made up of a sum of a neutron and proton component. The trends in the values of $\sigma^2(E)$ with A calculated with the microscopic theory are in general agreement with experimental information.

In summary, the values of the level spacings and spin cutoff factors calculated with the microscopic theory including nuclear pairing for realistic sets of single particle levels are in good agreement with experiment. In particular, gross features of the experimental data due to nuclear shells are reproduced.

Acknowledgments

The authors thank P. Richardson for his help in some of the calculations.

FOOTNOTES AND REFERENCES

- J. E. Lynn, <u>The Theory of Neutron Resonance Reactions</u>, (1968), Clarendon Press, Oxford
- 2) H. Baba, Nucl. Phys. A159 (1970) 625
- 3) W. Dilg, W. Schantl, H. Vonach and M. Uhl, Preprint (1973)
- 4) T. P. Newton, Can. J. Phys. 34 (1956) 804
- 5) A. G. W. Cameron, Can. J. Phys. 36 (1958) 1040
- 6) A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43 (1965) 1446
- 7) U. Facchini and E. Saetta-Merichella, Energia Nucleare 15 (1968) 54
- 8) D. W. Lang, Nucl. Phys. 26 (1961) 434
- 9) S. K. Ghosh and A. Chatterjee, Phys. Rev. C7 (1973) 840
- 10) Additional references on this subject are contained in a recent review paper, J. R. Huizenga and L. G. Moretto, Ann. Rev. Nucl. Sci. 22 (1972) 427
- 11) P. A. Seeger and R. C. Perisho, Los Alamos Scientific Laboratory Report, LA-3751 (1957)
- S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech,
 C. Gustafson, I. L. Lamm, P. Moller and B. Nilsson, Nucl. Phys. <u>A131</u> (1969) 1
- 13) C. L. Critchfield and S. Oleska, Phys. Rev. 83 (1951) 243
- 14) M. Sano and S. Yamasaki, Prog. Theor. Phys. 29 (1963) 397
- 15) K. Kluge, Nucl. Phys. 51 (1967) 41
- 16) J. R. Grover, Phys. Rev. 157 (1967) 832
- P. Decowski, W. Grochulski, A. Marcinkowski, K. Siwek and Z. Wikhelmi, Nucl. Phys. Allo (1968) 129

18)	F. C. Williams, Jr., Nucl. Phys. A133 (1969) 33
19)	M. Hillman and J. R. Grover, Phys. Rev. 185 (1969) 1303
20)	A. V. Ignatyuk and Yu. N. Shubin, Sov. J. Nucl. Phys. 8 (1969) 660
21)	L. G. Moretto, R. Stella, V. Caramella-Crespi, Energ. Nucl. <u>17</u> (1970) 436
22)	F. S. Chang, J. B. French and T. H. Thio, Ann. Phys. <u>66</u> (1971) 137
23)	J. B. French and F. S. Chang, Statistical Properties of Nuclei, ed. J. B. Garg
	(1972) 405, Plenum Press, New York
24)	C. Bloch, Statistical Properties of Nuclei, ed. J. B. Garg (1972) 379, Plenum
•	Press, New York
25)	L. G. Moretto, Nucl. Phys. <u>A182</u> (1972) 642
26)	L. G. Moretto, Nucl. Phys. <u>A185</u> (1972) 145
27)	F. C. Williams, Jr., G. Chan and J. R. Huizenga, Nucl. Phys. A187 (1972) 225
28)	R. Vandenbosch and U. Mosel, Phys. Rev. Letters 28 (1972) 1726
29)	A. S. Jensen and J. Damgaard, Nucl. Phys. A203 (1973) 578
30)	A. N. Behkami and J. R. Huizenga, Nucl. Phys. <u>A</u> (1973) ; Earlier
	references to the literature on this subject are contained in this paper
31)	N. N. Bogoliubov, Nuovo Cimento 1 (1958) 794
32)	P. E. Nemirowsky and Yu. V. Adamchuk, Nucl. Phys. 39 (1962) 551
33)	L. G. Moretto and S. K. Kataria, Phys. Letters <u>B</u> (1973)
34)	J. R. Huizenga, A. B. Behkami, R. W. Atcher, J. S. Sventek, H. C. Britt,
	and H. Freiesleben, Nucl. Phys. A (1974)

Target	Ι ₀ ,π	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	(a)	D in eV exp (b)	(c)	^D Theo in eV ^d	Ø
43 _{Ca}	$\frac{7}{2}$ -	⁴⁴ Ca	3-,4-	11.16		2900	3300	3850	4.30
47 _{Ti}	$\frac{5}{2}$ -	48 _{Ti}	2-,3-	11.67	· ·	2820	1600	3120	4.45
49 _{Ti}	$\frac{7}{2}$ -	50 _{Ti}	3-,4-	11.07		3600	6000	9100	3.97
⁵³ Cr	$\frac{3}{2}$ -	⁵⁴ Cr	1-,2-	9.85		3200	5700	9090	4.01
57 Fe	$\frac{1}{2}$ -	⁵⁸ Fe	0-,1-	10.05		5900	1500	10,000	4.07
61 _{Ni}	$\frac{3}{2}$ -	62 _{Ni}	1-,2-	10.63		2300	1400	3300	4.06
⁷³ Ge	$\frac{9}{2}$ +	⁷⁴ Ge	4+,5+	10.20	:	77	62	260	5.57
⁷⁷ Se	$\frac{1}{2}$ -	78 _{Se}	0-,1-	10.50	100		120	240	5.81
83 _{Kr}	$\frac{9}{2}$ +	⁸⁴ Kr	4+,5+	10.52	200		. • •	60	5.61
87 _{Sr}	$\frac{9}{2}$ +	⁸⁸ Sr	4+,5+	11.11		210	250	100	5.42
91 _{Zr}	$\frac{5}{2}$ +	92 _{Zr}	2+,3+	8.64	315	250	110	280	5.28
95 _{MO}	$\frac{5}{2}$ +	96 _{MO}	2+,3+	9.15		100	102	60	5.75
97 _{MO}	$\frac{5}{2}$ +	98 _{Mo}	2+,3+	8.64	170	120	80	110	5.80
99 Ru	$\frac{5}{2}$ +	100 _{Ru}	2+,3+	9.67		200	34	80	6.05

Table 1. Experimental and theoretical level spacings of even Z-even N spherical nuclei.

(continued)

x

LBL-2314

12-

			10010 1	- (concin					
Target	ι,π ο	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	[(a)	exp in eV (b)	(c)	^D Theo in eV	σ
101 _{Ru}	$\frac{5}{2}$ +	102 _{Ru}	2+,3+	9.22	16	15	18	20	6.22
105 _{Pd}	$\frac{5}{2}$ +	106 _{Pd}	2+,3+	9.56	13	11	9	11	6.56
¹¹¹ Cd	$\frac{1}{2}$ +	¹¹² Cd	0+,1+	9.40	26	34	26	17	6.96
¹¹³ Cd	$\frac{1}{2}$ +	114 _{Cd}	0+,1+	9.04	25	27	25	22	7.15
115 _{Sn}	$\frac{1}{2}$ +	116 _{Sn}	0+,1+	9.57	50	50		36	7.01
117 _{Sn}	$\frac{1}{2}$ +	118 _{Sn}	0+,1+	9.33	25	65	45	33	7.11
119 _{Sn}	$\frac{1}{2}$ +	120 _{Sn}	0+,1+	9.10	30	62	70	20	7.12
129 Xe	$\frac{1}{2}$ +	130 _{Xe}	0+,1+	9.26	82		35	40	7.14
131 _{Xe}	$\frac{3}{2}$ +	¹³² xe	1+,2+	8.94	31	31	35	40	6.65
135 _{Xe}	$\frac{3}{2}$ +	136 _{Xe}	1+,2+	7.99		500		1360	5.50
135 Ba	$\frac{3}{2}$ +	136 _{Ba}	1+,2+	9.11	51	35	36	19	6.57
137 _{Ba}	$\frac{3}{2}$ +	138 _{Ba}	1+,2+`	8.61	200	460	230	160	6.16
143 _{Nd}	$\frac{7}{2}$ -	144 _{Nd}	3-,4-	7.82	72	19	36	63	6.73
145 _{Nd}	$\frac{7}{2}$ -	146 _{Nd}	3-,4-	7.57	33	25	1.9	3	6.83

Table 1. (continued)

(continued)

-13-

Target	Ι ₀ ,π	Compound Nucleus	$I_{0} \pm \frac{1}{2}$, π	E [*] MeV	(a)	D in eV exp (b)	(c)	D _{Theo} in eV ^d	σ
147 _{Sm}	$\frac{7}{2}$ -	148 _{Sm}	3-,4-	8.14	8.0	7.9	7.3	3	7.38
183 _W	$\frac{1}{2}$ -	184 _W	0-,1-	7.41	15	16	12	3	8.73
187 _{0s}	$\frac{1}{2}$ -	188 _{0s}	0-,1-	7.99	•	14	9.1	3	8.18
189 _{0s}	$\frac{3}{2}$ -	¹⁹⁰ Os	1-,2-	7.79	• •	5.0	4.3	5	7.53
¹⁹⁵ Pt	$\frac{1}{2}$ -	196 _{Pt}	0-,1-	7.92	18	19	12	15	6.28
199 _{Hg}	$\frac{1}{2}$ -	200 _{Hg}	0-,1-	8.03	70	84	75	24	5.89
201 _{Hg}	$\frac{3}{2}$ -	202 _{Hg}	1-,2-	7.76	100	110	90	20	5.48
207 _{Pb}	$\frac{1}{2}$ -	208 _{Pb}	0-,1-	7.67	8000	22,000	60,000	500	5.48
^a Data comp ^b Data comp	oiled by Lynn oiled by Baba	¹). ²).					,		

Table 1. (continued)

^CData compiled by Vonach <u>et</u> <u>al</u>.³).

^dCalculated with spherical single particle levels of Seeger and Perisho¹¹). The theoretical spacing is for two spin states.

Target	ı,π	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	(a)	D in eV exp (b)	(c)	D _{Theo} in eV ^d
24 _{Mg}	0+	25 _{Mg}	$\frac{1}{2}$ +	7.63		170,000		1,000,000
³² S	0+	- ³³ s	$\frac{1}{2}$ +	8.94	350,000	87,000		77,000
40 _{Ar}	0+	41 _{Ar}	$\frac{1}{2}$ +	6.41			90,000	286,000
⁴⁰ Ca	0+	41 _{Ca}	$\frac{1}{2}$ +	8.56	49,000	50,000	45,000	74,000
⁴² Ca	0+	43 _{Ca}	$\frac{1}{2}$ +	8.25	28,500	28,500	28,000	59,000
⁴⁴ Ca	0+	45 Ca	$\frac{1}{2}$ +	7.71	50,000	55,000	33,000	148,000
46 _{Ti}	0+	47 _{Ti}	$\frac{1}{2}$ +	8.98	30,000	45,000	22,000	40,000
48 _{Ti}	0+	49 _{Ti}	$\frac{1}{2}$ +	8.24	15,000	20,000	25,000	200,000
50 _{Ti}	0+	51 _{Ti}	$\frac{1}{2}$ +	6.48	120,000	18,000		380,000
50 _{Cr}	0+	⁵¹ Cr	$\frac{1}{2}$ +	9.44	16,500	19,000	21,000	76,000
⁵² Cr	0+	⁵³ Cr	$\frac{1}{2}$ +	8.11	44,000	46,000	47,000	39,000
⁵⁴ Cr	0+	⁵⁵ Cr	$\frac{1}{2}$ +	6.44	23,500	48,000	66,000	95,000
54 Fe	0+	⁵⁵ Fe	$\frac{1}{2}$ +	9.55	25,000	21,000	20,000	20,000
56 Fe	0+	⁵⁷ Fe	$\frac{1}{2}$ +	7.97	29,000	21,000	25,000	62,000

Table 2. Experimental and theoretical level spacings of even Z-odd N spherical nuclei.

LBL-2314

(continued)

Target	^Ι , ^π	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	(a)	D _{exp} in eV (b)	(c)	D _{Theo} in eV ^d
58 _{Ni}	0+	59 _{Ni}	$\frac{1}{2}$ +	9.30	27,000	21,000	22,000	21,000
60 _{Ni}	0+	61 _{Ni}	$\frac{1}{2}$ +	8.12	23,000	21,000	17,000	39,000
62 _{Ni}	0+	63 _{Ni}	$\frac{1}{2}$ +	7.14	19,500	19,500	19,000	39,000
64 _{Ni}	0+	65 _{Ni}	$\frac{1}{2}$ +	6.40	28,500	28,500	28,000	64,000
64 _{Zn}	0+	65 _{Zn}	$\frac{1}{2}$ +	7.99	1800	3400	3600	9000
66 _{Zn}	0+	67 _{Zn}	$\frac{1}{2}$ +	7.06	5000	5600	6000	6200
68 _{Zn}	0+	69 _{Zn}	$\frac{1}{2}$ +	6.60	· ·	20,000	10,000	27,000
70 _{Ge}	0+	71 _{Ge}	$\frac{1}{2}$ +	7.43	1700	2000	1330	4000
⁷² Ge	0+	73 _{Ge}	$\frac{1}{2}$ +	6.80	- 2100	3900	1550	10,000
74 _{Ge}	0+	75 _{Ge}	$\frac{1}{2}$ +	6.50	8500	8500	3900	14,000
76 _{Ge}	0+	77 _{Ge}	$\frac{1}{2}$ +	6.03	8000	8000	4200	43,000
⁷⁴ Se	0+	⁷⁵ Se	$\frac{1}{2}$ +	8.05	250	200	370	170
⁷⁶ Se	0+	77 _{Se}	$\frac{1}{2}$ +	7.42	1200	1200	700	1800
⁷⁸ Se	0+	79 Se	$\frac{1}{2}$ +	6.99	3700	4500	1000	4500
	······							(

Table 2. (continued)

LBL-2314

տ

Target	ι _, π	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	(a)	D _{exp} in eV (b)	(c)	D _{Theo} in eV ^d
⁸⁰ Se	0+	⁸¹ Se	$\frac{1}{2}$ +	6.71	4300	1600	1200	10,000
82 _{Se}	0+	83 _{Se}	$\frac{1}{2}$ +	5.94	7000	6900	6700	69,000
80 _{Kr}	0+	⁸¹ Kr	$\frac{1}{2}$ +	7.86	530			1100
84 _{Sr}	0+	85 _{Sr}	$\frac{1}{2}$ +	8.53	- - -	350	40 0	950
⁸⁶ sr	.0+	87 _{Sr}	$\frac{1}{2}$ +	8.43		2100	1000	4800
88 _{Sr}	0+	⁸⁹ sr	$\frac{1}{2}$ +	6.51	55,000	12,000	12,000	12,000
90 _{Zr}	0+	⁹¹ Zr	$\frac{1}{2}$ +	7.24	4500	3300	5000	2100
92 Zr	0+	93 _{Zr}	$\frac{1}{2}$ +	6.78	1200	3400	2500	4200
94 Zr	0+	95 Zr	$\frac{1}{2}$ +	6.48	2400	3300	2400	7500
92 _{Mo}	0+	93 _{MO}	$\frac{1}{2}$ +	8.07			700	900
94 _{Mo}	0+	95 _{MO}	$\frac{1}{2}$ +	7.38			430	670
96 _{Mo}	0+	97 _{Mo}	$\frac{1}{2}$ +	6.82		1200	290	1400
¹¹² Cd	0+	^{' 113} Cd	$\frac{1}{2}$ +	6.54	200	200	198	200
¹¹⁴ Cd	0+	¹¹⁵ Cd	$\frac{1}{2}$ +	6.15	160		157	560

Table 2. (continued)

(continued)

-17-

Target	Ι ₀ ,π	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	<u>(</u> a)	D in eV exp (b)	(c)	D _{Theo} in eV ^d
¹¹² Sn	0+	113 _{Sn}	$\frac{1}{2}$ +	7.74	108	140	20	330
114 _{Sn}	0+	115 _{Sn}	$\frac{1}{2}$ +	7.53	150	320	300	230
116 _{Sn}	0+	117 _{Sn}	$\frac{1}{2}$ +	6.94	180	250	250	350
¹¹⁸ Sn	.0+	119 Sn	$\frac{1}{2}$ +	6.48	180	730	• 600	290
¹²⁰ Sn	0+	121 _{Sn}	$\frac{1}{2}$ +	6.18	200	240	180	1700
¹²⁴ Sn	0+	125 _{Sn}	$\frac{1}{2}$ +	5.73	400	250	2500	8500
130 _{Ba}	0+	131 Ba	$\frac{1}{2}$ +	7.49	· · · · · · · · · · · · · · · · · · ·	120	55	140
134 _{Ba}	0+	135 _{Ba}	$\frac{\overline{1}}{2}$ +	6.98	• • •	380	140	230
136 _{Ba}	0+	137 _{Ba}	$\frac{1}{2}$ +	6.90	8000	3800	600	1850
138 _{Ba}	0+	139 _. Ba	$\frac{1}{2}$ +	4.82	10,000	9600	10,000	18,000
136 _{Ce}	0+	¹³⁷ Ce	$\frac{1}{2}$ +	7.64			58	63
140 _{Ce}	0+	¹⁴¹ Ce	$\frac{1}{2}$ +	5.43	•	3000	3000	5500
¹⁴² Ce	0+	¹⁴³ Ce	$\frac{1}{2}$ +	5.18	1000	1000	1000	8900
142 _{Nd}	0+	143 _{Nd}	$\frac{1}{2}$ +	6.14			415	1700
	·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·			······································	(continued)

Table 2. (continued)

LBL-2314

18-

Target	Ι ₀ ,π	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	(a)	Dexp in eV (b)	(c)	D _{Theo} in eV
144 _{Nd}	0+	¹⁴⁵ Nd	$\frac{1}{2}$ +	5.77	. <u></u>		537	1200
180 _H f	0+	181 _{Hf}	$\frac{1}{2}$ +	5.70		140	125	100
180 _W	0+	181 _W	$\frac{1}{2}$ +	6.65			18	8
182 _W	0+	183 _W	$\frac{1}{2}$ +	6.20	55	56	66	24
184 W	0+	185 _W	$\frac{1}{2}$ +	5.76		93	89	140
186 _W	0+	187 _W	$\frac{1}{2}$ +	5.47	150	87	123	890
186 _{Os}	0+	187 _{Os}	$\frac{1}{2}$ +	6.30			30	33
192 _{Pt}	0+	193 _{Pt}	$\frac{1}{2}$ +	6.25		140		90
198 _{Hg}	0+	199 _{Hg}	$\frac{1}{2}$ +	6.65	99	100	90	120
200 _{Hg}	0+	201 _{Hg}	$\frac{1}{2}$ +	6.22	2200	1300	1300	440
202 _{Hg}	0+	203 _{Hg}	$\frac{1}{2}$ +	6.00	2400			1600
204 _{Pb}	0+	205 _{Pb}	$\frac{1}{2}$ +	6.76	•		270 0	530
206 _{Pb}	0+	207 _{Pb}	$\frac{1}{2}$ +	7.11		24,000	50,000	800
208 _{Pb}	0+	209 Pb	$\frac{1}{2}$ +	4.84		110,000	105,000	41,000

Table 2. (continued)

(continued)

-19-

a Data compiled by Lynn¹).

^bData compiled by Baba²).

^CData compiled by Vonach <u>et</u> <u>al</u>.³).

^dCalculated with spherical single particle levels of Seeger and Perisho¹¹). The theoretical spacing is for

-20-

_BL-2314

one spin state.

Target	ι ₀ ,π	Compound Nucleus	$I_0 \pm \frac{1}{2}$, π	E [*] MeV	(a)	D in eV exp (b)	(c)	D Theo in eV ^d
50 _V	6+	51 _v	$\frac{11}{2}$ +, $\frac{13}{2}$ +	11.05	1100	2610	1300	1800
138 La	5-	139 La	$\frac{9}{2}$ -, $\frac{11}{2}$ -	8.78	23	41	23	6
a Data com Data com	piled by I piled by I	Lynn ¹). Baba ²).	loten di secondo di se		****			
^C Data com	piled by V	Vonach <u>et</u> al. ³).			• • • •		
d Calculat	ed with sp	pherical singl	e particle level	s of Seeger a	and Perisho ¹¹). The theor	cetical spaci	ng is for

Table 3. Experimental and theoretical level spacings of odd Z-even N spherical nuclei.

:é

•

two spin states.

-21-

Target	Ι ₀ ,π	Compound Nucleus	$I_{o} \pm \frac{1}{2}, \pi$	E [*] MeV	(a)	D _{exp} in eV (b)	(c)	D Theo in eV
19 _F	$\frac{1}{2}$ +	20 _F	0+,1+	6.90		55,000		300,000
23 _{Na}	$\frac{3}{2}$ +	24 _{Na}	1+,2+	7.00	270,000	66,000		57,000
27 _{Al}	$\frac{5}{2}$ +	²⁸ A1	2+,3+	7.73	54,000	26,000		23,000
31 _P	$\frac{1}{2}$ +	32 _P	0+,1+	7.95	•	21,000		18,000
³⁵ C1	$\frac{3}{2}$ +	³⁶ C1	1+,2+	8.58	5600	40,000		6000
³⁷ C1	$\frac{3}{2}$ +	³⁸ c1	1+,2+	6.11		37,000		31,000
³⁹ K	$\frac{3}{2}$ +	40 _K	1+,2+	7.80	1. 1. 1.	10,000		15,000
41 _K	$\frac{3}{2}$ +	42 _K	1+,2+	7.53	•	10,000		8500
⁴⁵ Sc	$\frac{7}{2}$ -	46 _{Sc}	3-,4-	8.92		1600	1100	1500
51 _V	$\frac{7}{2}$ -	52 _v	3-,4-	7.38	3600	4390	4900	2900
55 _{Mn}	$\frac{5}{2}$ -	56 _{Mn}	2-,3-	7.37	2100	2970	1900	2000
⁵⁹ Co	$\frac{7}{2}$ -	60 _{Co}	3-,4-	7.55	960	1530	1300	1700
⁶³ Cu	$\frac{3}{2}$ -	64 _{Cu}	1-,2-	7.93	1200	1060	580	450
65 _{Cu}	$\frac{3}{2}$ -	66 _{Cu}	1-,2-	7.08	2000	1170	1000	930

Table 4. Experimental and theoretical level spacings of odd Z-odd N spherical nuclei.

LBL-2314

22

(continued)

<u> </u>		Compound	1	* E		D in eV	· · · ·	D
Target	ι,π	Nucleus	$I_{0} \pm \frac{\pi}{2}, \pi$	MeV	(a)	(b)	(c)	in eV ^d
69 Ga	$\frac{3}{2}$ -	70 _{Ga}	1-,2-	7.66	340	320	320	160
71 _{Ga}	$\frac{3}{2}$ -	72 _{Ga}	1-,2-	6.52	170	.190	370	700
75 _{As}	$\frac{3}{2}$ -	76 _{As}	1-,2-	7.33	87	87	87	65
79 Br	$\frac{3}{2}$ -	80 _{Br}	1-,2-	7.88	57	61	60	50
⁸¹ Br	$\frac{3}{2}$ -	82 _{Br}	1-,2-	7.60	51	52	80	220
85 _{Rb}	$\frac{5}{2}$ -	86 Rb	2-,3-	8.65	130	1100	130	160
87 _{Rb}	$\frac{3}{2}$ -	88 Rb	1-,2-	6.08	1200	1800		680
89 _Y	$\frac{1}{2}$ -	90 _Y	0-,1-	6.87	1000	1600	3000	500
93 _{Nb}	$\frac{9}{2}$ +	94 Nb	4+,5+	7.23	70	36	64	22
99 _{Tc}	$\frac{9}{2}$ +	100 _{Tc}	4+,5+	6.59	24	26		33
103 _{Rh}	$\frac{1}{2}$ -	104 _{Rh}	0-,1-	7.00	19	10	27	60
107 _{Ag}	$\frac{1}{2}$ +	108 _{Ag}	0+,1+	7.27	14	50	23	45
¹⁰⁹ Ag	$\frac{1}{2}$ +	110 _{Ag}	0+,1+	6.80	13	19	18	40
113 _{In}	$\frac{9}{2}$ +	114 _{In}	4+,5+	7.31	6.5	7.1	[.] 11	. 9

Table 4. (continued)

(continued)

đ,

Target	Ι,,	Compound Nucleus	$I_{0} \pm \frac{1}{2}, \pi$	E [*] MeV	(a)	D in eV exp (b)	(c)	D Theo in eV ^d
115 _{In}	$\frac{9}{2}$ +	116 _{In}	4+,5+	6.78	6.7	9.5	11	4
127 _I	$\frac{5}{2}$ +	128 ₁	2+,3+	6.83	13	19	14	5
129 ₁	$\frac{7}{2}$ +	130 ₁	3+,4+	6.46	18	21		18
¹³³ Cs	$\frac{7}{2}$ +	¹³⁴ Cs	3+,4+	6.89	20	21	20	14
139 La	$\frac{7}{2}$ +	140 La	3+,4+	5.17	73	110	260	140
141 _{Pr}	$\frac{5}{2}$ +	142 _{Pr}	2+,3+	5.85	51	84	90	50
147 _{Pm}	$\frac{7}{2}$ +	148 _{Pm}	3+,4+	5.90	5.2	5.7		5
¹⁸¹ Ta	$\frac{7}{2}$ +	182 Ta	3+,4+	6.06	4.4	4.3	4.3	0.7
185 _{Re}	$\frac{5}{2}$ +	186 _{Re}	2+,3+	6.18	3.8	3.2	3.3	2
187 _. Re	$\frac{5}{2}$ +	188 _{Re}	2+,3+	5.87	4.5	6.4	3.8	3
¹⁹¹ Ir	$\frac{3}{2}$ +	¹⁹² Ir	1+,2+	6.20	3.1	3.2	2.8	6
193 _{Ir}	$\frac{3}{2}$ +	¹⁹⁴ Ir	1+,2+	6.07	8.2	8.5	8.0	12
197 _{Au}	$\frac{3}{2}$ +	198 _{Au}	1+,2+	6.51	17	16	16	12
203 _{T1}	$\frac{1}{2}$ +	204 _{T1}	0+,1+	6.65	2000	2200	2000	1250
205 _{T1}	$\frac{1}{2}$ +	206 _{T1}	0+,1+	6.54	10,000	19,000	4000	300

Table 4. (continued)

LBL-2314

24

a Data compiled by Lynn¹).

^bData compiled by Baba²).

^CData compiled by Vonach <u>et</u> <u>al</u>.³).

^dCalculated with spherical single particle levels of Seeger and Perisho¹¹). The theoretical spacing is for two spin states.

25-

	_	Compound	- <u> </u>			D _{exp} in eV		D Theo	in eV
Target	ι,π o	Nucleus	$1_{0} \pm \frac{1}{2}, \pi$	MeV	(a)	(b)	(c)	(d)	<u>(</u> e)
49 _{Ti}	$\frac{7}{2}$ -	50 _{Ti}	3-,4-	11.67	· ·	3600	6000	9100	23,000
61 _{Ni}	$\frac{3}{2}$ -	62 _{Ni}	1-,2-	10.63		2300	1400	3300	2600
101 _{Ru}	$\frac{5}{2}$ +	102 _{Ru}	2+,3+	9.22	16	15	18	20	13
115 _{Sn}	$\frac{1}{2}$ +	116 _{Sn}	0+,1+	9.57	50	50		36	470
117 _{Sn}	$\frac{1}{2}$ +	118 _{Sn}	0+,1+	9.33	25	65	45	33	350
¹¹⁹ Sn	$\frac{1}{2}$ +	120 _{Sn}	0+,1+	9.10	30	62	70	20	130
137 Ba	$\frac{3}{2}$ +	138 Ba	1+,2+	8.61	200	460	230	160	1300
185 _{Re}	$\frac{5}{2}$ +	186 _{Re}	2+,3+	6.18	3.8	3.2	3.3	2	8
187 _{Re}	$\frac{5}{2}$ +	188 _{Re}	2+,3+	5.87	4.5	6.4	3.8	3	7
187 _{0s}	$\frac{1}{2}$ -	188 _{0s}	0-,1-	7.99		14	9.1	3	10
189 _{0s}	$\frac{3}{2}$ -	190 _{0s}	1-,2-	7.79		5	4.3	5	8
¹⁹³ Ir	$\frac{3}{2}$ +	¹⁹⁴ Ir	1+,2+	6.07	8.2	8.5	8.0	12	12
195 _{Pt}	$\frac{1}{2}$ -	196 _{Pt}	0-,1-	7.92	18	19	12	15	15
·		· · · · · · · · · · · · · · · · · · ·					•	(cont	inued)

Table 5.	Comparison of	theoretical	level	spacings	calculated	with	spherical	single	particle	levels	of	Seeger
	•		and	Perisho	l) and Nils	son e	t al. ¹²).					

-26-

D _{mboo} in e		eV	D in	· · ·	 F*		Compound		
(d))	(c)	(b)	(a)	MeV	$I_{0} \pm \frac{1}{2}, \pi$	Nucleus	Ι,Π	Target
12	6	16	16	17	6.51	1+,2+	198 Au	$\frac{3}{2}$ +	197 Au
24	5	75	84	70	8.03	0-,1-	200 _{Hg}	$\frac{1}{2}$ -	199 Hg
20	0	90	110	100	7.76	1-,2-	202 _{Hg}	$\frac{3}{2}$ -	201 _{Hg}
300 5	0	4000	19,000	10,000	6.54	0+,1+	206 _{T1}	$\frac{1}{2}$ +	205 _{T1}
800 11,	0	50,000	24,000		7.11	$\frac{1}{2}$ +	207 _{Pb}	0+	206 Pb
500 €	0	60,000	22,000	8000	7.67	0-,1-	²⁰⁸ РЬ	$\frac{1}{2}$ -	207 Pb
······································				<u> </u>			Lynn ¹).	npiled by	a Data co
							Baba ²).	mpiled by	b Data com
						<u>L</u> . ³).	Vonach <u>et</u> <u>a</u>	npiled by	c Data com
			Perisho ¹¹).	Seeger and	evels of S	ngle particle :	spherical si	ted with	d Calcula
		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	<u>al</u> . ¹²).	Nilsson <u>et</u>	evels of 1	ngle particle	spherical si	ted with	^e Calcula
			Perisho ¹¹). <u>al</u> . ¹²).	Seeger and Nilsson <u>et</u>	evels of s	L. ³). ngle particle : ngle particle :	Vonach <u>et a</u> spherical si spherical si	npiled by ted with ted with	^C Data con ^d Calcula ^e Calcula

Table ~41

1

фĽ.

-27-

Figure Captions

- Fig. 1. Proton pairing gap Δ_p as a function of proton number used in the microscopic state density calculations.
- Fig. 2. Neutron pairing gap Δ_n as a function of neutron number used in the microscopic state density calculations.
- Fig. 3. The ratio of the theoretical level spacing to the experimental level spacing as a function of mass number. The different symbols refer to the different types of nuclei. Closed symbols refer to theoretical spacings calculated with single particle levels of Seeger and Perisho¹¹) and the open symbols refer to theoretical spacings calculated with single particle levels of Nilsson <u>et al.¹²</u>). The ratios $D_{theo.}/D_{exp.}$ plotted in this figure are calculated with the most favorable single value of $D_{exp.}$ listed in Tables 1 to 4.
- Fig. 4. The spin cutoff parameter, σ^2 , for an excitation energy of 7 MeV is plotted as a function of the mass number A for even-even spherical nuclei.

-28-

XBL7310-4252

Fig. l

-30-

LBL-2314

-31-

Fig. 3

Fig. 4

-LEGAL NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

. 10

,