Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
The Composite OLAP-Object Data Model

Permalink
https://escholarship.org/uc/item/111400x4|

Authors

Pourabbas, Elaheh
Shoshani, Arie

Publication Date
2005-12-07

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/111400x4
https://escholarship.org
http://www.cdlib.org/

The Composite OLAP-Object Data
Model

Elaheh Pourabbas *
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”-CNR
Viale Manzoni, 30 I-00185 Roma, Italy
pourabbas@iasi.cnr.it

Arie Shoshani
Lawrence Berkeley National Laboratory, USA
Mailstop 50B-3238, 1 Cyclotron Road Berkeley, CA 94720 USA
shoshani@lbl.gov

Abstract

In this paper, we define an OLAP-Object model that combines the main
characteristics of OLAP and Object data models in order to achieve their
functionalities in a common framework. We classify three different object
classes: primitive, regular and composite. Then, we define a query lan-
guage which uses the path concept in order to facilitate data navigation
and data manipulation. The main feature of the proposed language is an
anchor. It allows us to fix dynamically an object class (primitive, regu-
lar or composite) along the paths over the OLAP-Object data model for
expressing queries. The queries can be formulated on objects, composite
objects and combination of both. The power of the proposed query lan-
guage is investigated through multiple query examples. The semantic of
different clauses and syntax of the proposed language are investigated.

1 Introduction

The OLAP data model [5] was introduced in order to manage multidimensional
summary databases. Similar to the Statistical Data Model [21] it consists of
three basic constructs:

1. Dimensions, where each can consist of a multi-level classification hierarchy;

2. A multidimensional object, also referred to as a “cross-product” object;

*This work was supported by a Fulbright Scholarship academic year 2004-2005 while the
author was visiting Lawrence Berkeley National Laboratory, U.S.A.

3. Summary attributes, where each is associated with the multidimensional
object.

For example, a database for “average-income by city, race, and sex”, can be
modeled in an OLAP data model, where the dimensions are City, Race, and
Sex, the multidimensional object is the cross-product (City) x (Race) x (Sex),
and the summary attribute is the “average-income”. If, in addition, cities were
organized by counties, and counties were organized into states, a classification
hierarchy City — County — State can be associated with the City dimen-
sion. Clity, Region, and Country are category attributes. This would allow the
database system to generate summarization over the classification hierarchy,
such as “average-income” for counties and states.

Various representations of these concepts were proposed, including the graph-
ical representation of Statistical Models [4], Multidimensional OLAP, or MO-
LAP [1] [6], Relational OLAP, or ROLAP [12] [20], and Data Cubes [2] [§]
[9]. However, in many applications the elements of the dimensions as well as
the elements of the classification hierarchies can be objects in their own right,
such as cities and states in the example above. In such cases, these objects can
have their own attributes (e.g. the mayor of a city, or the governor of a state).
Furthermore, such objects may be associated with other objects (such as the
hospitals in a city). This obviates the need to have concepts from the OLAP
modeling domain to be combined with the familiar object-attribute-association
models (such as the Entity-Relationship model or similar Object models).

In this paper, we define an OLAP-Object model that permits the combina-
tion of concepts from both domains. We classify three different object classes:
primitive, reqular and composite. We investigate the well-formed composite ob-
jects and we study their summarization semantics. Then, we define a query
language which uses the path concept in order to facilitate data navigation and
data manipulation. The main feature of the proposed language is an anchor.
It allows us to fix dynamically an object class (primitive, regular or compos-
ite) along the paths over the OLAP-Object data model for expressing queries.
The queries can be formulated on objects, composite objects and combination
of both. The power of the proposed query language is investigated through
multiple query examples. The semantic of different clauses and syntax of the
proposed language are investigated.

The paper is structured as follows. The next section describes the basic con-
structs of the OLAP-Object model, which are enable to capture and combine
the main characteristics of both data models. Section 3 introduces a graphical
representation of the components of the OLAP-Object data model, which are
object classes (primitive, regular, and composite) and associations (simple and
classification). Section 4 discusses the well-formed issues related to the compos-
ite object classes, and Section 5 defines their summarization semantics. Section
6 shows how paths enable us to link different object classes in order to facilitate
data navigation and query formulation. Section 7 proposes a query language
for querying OLAP-Object data model. The syntax of the proposed language
is defined in detail and for each type of the object classes the power of the

langauge is investigated through multiple query examples. Section 8 represents
the extension of the proposed langauge with concepts in order to be able to an-
swering queries that use condition caused by ellipsis in natural language (e.g.,
their, its, etc.) and recursive queries.

2 Basic Data Modeling Constructs

First, we adopt the basic concepts of an object-attribute-association model.
These include:

e Object Class represents a set of individual objects, each having a globally
unique identifier. An object class has a label (name). An object class
must have at least one attribute. Such a class is called a regular object
class.

o Attribute a property associated with an object class. Each individual ob-
ject in that class determines the attribute value associated with it. There-
fore, there is a functional dependency of the attribute on the object class.
An attribute has a label (name).

e Association a way of pairing objects from two object classes. An associ-
ation has a pair of cardinalities: one-to-one, one-to-many, many-to-many.
An association has a label (name).

For instance, let us consider two regular object classes, called Student, and
Course. The attributes of the first class are Name and Age, while the attributes
of Course are Name and Start-date. An association between these classes is
enrolls

In addition we need to have two concepts that will allow OLAP structure to be
represented in the data model. The first is a primitive object classes (such as
“race” or “sex”) that can be used for defining dimensions in the OLAP model
or classification hierarchies in the dimensions. The second is a composite object
class that supports the concept of a cross-product or data cube. We define these
next:

e Primitive object class an object class that represents a finite enumerated
set of values. The values represent the identifiers of the individual objects
in the class. A primitive object class has a label (name).

e Composite object class an object class defined over two or more object
classes, where each individual object has an identifier composed of the
identifiers of objects form each of the object classes. Each individual object
class may belong to a hierarchical classification structure. A composite
object class can have at least one attribute. A composite object class has
a label (name).

Note that a composite object class can be defined over primitive object
classes, over regular object classes, and over other composite object classes. In
this paper, we consider that a composite object class be defined over primitive
or regular object classes.

For instance, let us consider “average-income by city, race, and sex” men-
tioned in the previous section. This can be modeled as a composite object class
named Income where City, Race, and Sex are dimensions. City is a regular ob-
ject class and its attributes are Name, Major, while Race, and Sex are primitive
object classes. The attribute of the composite object class is average-income.

Finally, we make a distinction between a simple association and an summariz-
able association. A summarizable association must be one-to-many and must
pass the test of completeness and non-overlap of objects as described in [19].
Example of summarizable associations are is-in between City and State object
classes, or offer between Course and Department object classes. The object
classes related by a summarizable association defines a classification structure,
where each object class represents a level of this structure and corresponds to
different granularities of viewing data. In general, a hierarchy represents the
relationships between domains of values. Each operation on a hierarchy can be
viewed as a mapping from one domain to a smaller domain.

3 A Graphical Representation

The representation of the main components of our model, i.e. object classes
and relationships are based on nodes and arcs. More specifically, primitive
and regular object classes are represented by a simple node (), whereas a
composite object class is represented by a so-called “circledtimes” () node.
As we mentioned in the previous section, a composite object class is defined by a
set of primitive o regular classes. For simplicity, we call them component object
classes. In the graphical representation, each component class is connected to
the belonging composite class by a dashed line. Each of the above mentioned
node is labeled to indicate the name of the classes. For a clear illustration, the
attributes of each node are indicated in italic style text. Each component class
may belong to a classification structure. A classification structure is defined by
a certain number of categories

To represent a simple association or simple relationship between two object
classes, a simple labeled arc is used. The label indicates the name of relationship
and it is indicated in italic style text and lowercase letters. A summarizable
association or classification relationship between two primitive or regular classes
is illustrated by an oriented bold arc.

Example In Figure 1 a simple Object model is illustrated. In this example,
Student, Course, Lecturer, Department are regular classes. The attributes of
Student are Name, Address, Birthday, Age; Course and Lecturer have attributes
Start-date and Name, respectively.. The attributes of Department are Name

Name, Address

is-in

Start-date 1 1 Name

teaches-on

Course n 72\ Lecturer

enrolls

Name, Address,
Birthday, Age

Figure 1: Example of a database with regular object classes

and Address. While, “enrolls”, “offer”, “teaches-on”, and “is-in” are simple
relationships between each pair of the mentioned classes.

In Figure 2, an example of graphical representation of a composite class is
illustrated . The composite class Demographic_Group is shown by a circledtimes
node, and it is defined by the component classes Age, Sex, and City. They are
the dimensions of Demographic_Group, and are connected to the composite class
by dashed arcs. Demographic_Group has a single attribute named “Population”.
The classification relationships between pairs of regular classes, City, Region,
and Region, Country are illustrated by oriented bold arcs.

4 Well-Formed Composite Object Classes

As we mentioned in the previous section, a composite object class references
two or more object classes, or component object classes. Each component ob-
ject class (e.g., Clity) can in turn reference its own parent class (e.g., Region),
where each its value is associated with one and only one value at the parent
level; thereby modeling many-to-one relationships. This introduces a hierarchi-
cal relationship between pairs of object classes, that is a functional dependency
from one level of a hierarchy to the next level in the hierarchy. In other words,
the structure induced by functional dependencies defines a partial order on in-
stances.

Population

Derﬁ@)g’i}aphic
Group.

Figure 2: Example of a composite object class

Generally, the definition of the composite objects classes is based on the idea
to manage many-to-many relationships between component object classes. We
start to considering a binary many-to-many relationship, which is an association
between the instances of one object class with the instances of the another ob-
ject class and represents that there is no functional dependency between object
classes. For a clear description, let us consider the many-to-many relationship
enrolls between object classes Student and Course. This relationship associates
students and the courses they attend. If the relationship enrolls is not defined
by any attributes then in the database schema design it can be represented by
a many-to-many relationship (see Figure 3-(A)).

Otherwise, for instance, if the attribute Grade for the enrolls relationship is
considered, then this many-to-many relationship cannot be taken over directly
in the database design. The method which we adopt consists of to introduce
a new composite object class for the relation, named Enrollment and associate
the original object classes, i.e. Student, and Course to this composite class
(see Figure 1-(B)). Note that, a composite object class without any attribute is
equivalent to the simple many-to-many association between component object
classes, as is illustrated in Figure 3-(A).

In Entity-Relationship models, ternary or multiple binary relationships are
evaluated as part of the overall diagram and they have been analyzed in order to
coexist with other relationships. Teorey [22] has discussed the functional depen-
dencies that can be derived from various cardinalities of 1:1:1,1:1:M, 1:M:N, and
M:N:P ternary relationships. In [13], specifically, a set of rules for combining
ternary relationships with binary relationships to investigate the structural va-

enrolls
Course 7 ” Student

(A)

B)

Figure 3: Example of a binary many-to-many relationship (A) and a composite
object class (B)

lidity of ternary relationships is defined. In [14] [15] the decomposition of ternary
relationships with various cardinalities (1:1:1,1:1:M, 1:M:N, M:N:P) into binary
relationships is discussed. These studies consider mainly the issues of embedded
binary combinations in ternary relationships, their permitted combinations, and
their decomposition into multiple binary relationships. We study the ternary
and higher degree relationships in the context of composite object classes and
we define some rules in order to guarantee their well-formed structure.

Generally, the ternary relationship of cardinality 1:1:1 represents the triv-
ial cases, where the cross product of three object classes at extensional level
is defined by only one tuple; i.e. each object class is defined by one instance.
Similarly, 1:1:M cardinality represents cases where two object classes participat-
ing in the relationship are defined by one instance. This ternary relationship is
characterized by a one-to-one binary relationship and two one-to-many binary
relationships. The ternary relationship 1:M:N configures cases of two one-to-
many and one many-to-many binary relationships. The case of M:N:P represents
three many-to-many binary relationships. The relationships with cardinalities
1:1:1, 1:1:M, 1:M:N define functional dependency between object classes, while
M:N:P represents that there is no functional dependency between any pair of
object classes.

In our OLAP-Object model, a composite object captures the ternary and
higher degree relationships, where the cardinality of the binary relationships
between each pair of its component object classes is many-to-many. The fol-

lowing theorem gives the condition upon which a composite object is said to be
well-formed.

Theorem 4.1 A composite object class is well-formed if between any pair of its
component classes there is no functional dependency.

Proof: Let us consider a composite object be defined by three object classes
named X, Y, and Z. Let there is at least one pair of object classes, say X, Y,
between which there is a functional dependency. Let to each instance of X cor-
responds N instances of Y. This dependency represents the binary relationship
with 1:N cardinality between X and Y, which defines a partial order on instances
X and Y. Therefore, these two component classes result to be related by a hi-
erarchical relationship. This contradicts the definition of a composite object,
which is defined by two or more object classes, each of which can be associated
separately with a classification hierarchy. Thus, there can not be a hierarchical
relationship between any pair of component classes.

For example, if the schema of the database shown Figure 3-(B) is extended
by the object class Department, then the resulted composite object is not well-
formed (see Figure 4-(A)). As stated in Theorem 4.1, there is functional depen-
dency between object classes Course and Department. The cardinality of this
binary relationship is one-to-many. The well-formed composite object is shown
in Figure 4-(B).

5 Summarization Semantics

The summarization over composite objects must satisfy the conditions of the
summarizability discussed in [19]. These conditions are: disjointness of category
attributes (or levels) in hierarchies; completeness in hierarchies; correct use of
measure (summary attributes) with statistical functions. Disjointness implies
that instances of category attributes in dimensions form disjoint subsets of the
elements of a level. Completeness in hierarchies means that all the elements
occur in one of the dimensions and every element is assigned to some category
on the level above it in the hierarchy. Correct use of summary attributes with
statistical functions depends on the type of the measure and the aggregation
function, like COUNT, SUM, MIN, MAX, and AVERAGE.

The query expressed over composite objects will assume a number of seman-
tics in the context of our query langauge, which are defined as follows.

Definition 5.1 To summarize a category attribute over a composite object the
following semantic conditions must hold:

1. if a dimension (or component object class) is not specified in the summary
query, then the summarization must take place over all the values of its
individual objects.

Grade

Grade

G

Figure 4: Example of a non well-formed (A) and a well-formed composite object
class (B)

~

~
-

-
-
n 1

2. if a sequence of values of a certain dimension is specified in the query, then
the restriction must take place over this sequence and the remaining indi-
vidual object values are skipped out. In the result of query, the composite
object is defined by this sequence of values.

3. if a single or a range of values of a certain dimension is specified in the
query, then the summarization must take place over remaining individual
values, and the summary attribute of the composite object will be evaluated
for this single/range of values.

4. if no dimension is specified in the query, then the summarization must
take place over all the values of dimensions. This corresponds to achieve
only one value for the summary attribute of the composite object (known
as, grand-total).

Example Let us consider the composite object shown in Figure 2. Let us
consider the following query ”Find city and population in 20 + 40 age-groups”.
Population is the summary attribute to which the aggregation functions can
be applied. Note that, Sex is not specified in the query, then, according to the
Definition 5.1-(1) the composite object Demographic_Group will be summarized
over all values of Sex. Therefore, Demographic_Group is defined by City, and
Age. In the same query, a sequence of values (i.e. 20 + 40) for Age is specified,
then according to Definition 5.1-(2), the result of query is Demographic_Group
by City and Age, where Age is specified by this sequence.

In the above query, if city and population for females in 20 + 40 age-groups”
is specified, then according to Definition 5.1-(8), the value male of Sex is skipped
out and the result Demographic_Group indicates Population of female by city
and age in 20 + 40.

Now, let us consider the query: "Find city and population between 20 <+ 40
age-groups”, this requires to aggregate the summary attribute Population over
a range of values of Age from 20 to 40. Therefore, by Definition 5.1-(3), the
result indicates Population of age between 20 = 40 by city.

Finally, if only population of demographic group is specified in the above
query, then Age, Sex, and City are summarized (see Definition 5.1-(4)) and the
result indicates total population.

6 Paths over the OLAP-Object Data Model

The idea of using paths to ease accessing objects in query languages goes back
to 80’s. This was given in one of the first approaches, GEM ([23]) which was
based on QUEL, and in other approaches which were the extension of SQL, like
OSQL [10], ORION [18], XSQL [16], O2SQL [3], ESQL [7], etc, or similarly in
functional-logic programming [11], [17].

Our data model is based on the concept of path, which in our believe is more
appropriate to facilitate data navigation and query formulation over OLAP-
Object databases. A path expression defines the steps to take on the path
toward the objects to be retrieved in a query. This enable us to link objects
without having to express explicit join conditions.

In our model, a path expression consists of one step, which generates a
sequence of objects. The objects in a sequence are separated by dot notation.
The sequence ends up by a colon, after which one predicate is expressed in
order to be evaluated on the properties of the terminal object class. Obviously,
a path can be defined by more steps. This because in the same path, more than
one predicate can be expressed on the properties of the terminal object or the
properties of any object in the sequence can be referred to by predicates. In our
model, paths can be applied in one dimension or step. Therefore, a multi-steps
path is split up to a conjunction of several single-step paths.

Example Let us consider the schema of database shown in Figure 1. The query
”students who are enrolled in course Mathematics offered by department Elec-
trical Engineering” is expressed in a single step as follows:
Student.Course:Name="Mathematics".Department:Name= " Electrical Engineering”

In a multi-steps path, the above query is expressed by conjunction of two paths:

Student.Course:Name="Mathematics” AND Student.Course.Department:Name=
" Electrical Engineering”

10

If between two objects more than one relationship hold, and if both objects
get involved in the path expression then only one relation should be specified.
For instance, let us consider Figure 1, where the object Student is related to
Course by an additional relationship likes. Therefore, to specify the students
who are enrolled in course mathematics, the relationship enrolls is indicated
between Student and Course. For a sake of explanation, this relationship is en-
closed in brackets. The path is shown as follows:

Student(enrolls)Course:Name="Mathematics"

Similarly, let we ask the courses taken by lecturer in department of Electrical
Engineering. The object class Course is related to Department by offer relation-
ship, and to object Lecturer by teaches_on. Since only one relationship holds
between pairs of these object classes, any reference to relationship is skipped
out in the path expression as follows:

Course.Lecturer.Departemnt:Name="Electrical Engineering”

The path expressions are defined starting from a certain regular or prim-
itive object class, and they are specified in the clause CONDITION of our
query language construct, which will be introduced in the next section. In a
composite OLAP-Object data model, the regular and/or primitive objects are
the components of a composite object, from which a path over other objects is
constructed. In other words, these objects binds composite objects of an OLAP
data model to the objects of Object data model.

Let us consider the schema of the OLAP-Object database shown in Fig-
ure 9, which is obtained combining the schemas of databases shown in Figure
2 and Figure 6. Let us ask the number of beds in wards maternity of cities
where the population female of age between 20 + 40 is greater than 100000.
The object “City”, that is a component of the composite object class “De-
mographic_Group”, is a binding object class to Object-model shown in Figure
6. The predicate expressions are defined, respectively, over Sex (female), Age
(20 = 40) and a path as follows:

City.Health Center.Ward:Name="Maternity"

Path through composite object that does not involve attribute of this object
class is a regular path. For instance, let in Figure 4-(B) an object class named
City be related to Student by lives relationship. Let us consider the query as
follows: “City of students who are enroled in course Computer Science”. This
query does not specify Grade attribute. Then, the following regular path is
allowed.

City.Student.Enrollment.Course:Name="Computer Science”

11

7 The Query Language

The main feature of the proposed query language is an anchor. It allows us to
fix dynamically an object class (primitive, regular or composite) that is invoked
from query. We call this anchor-object class. The condition expressions or path
condition expressions can be formulated on the anchor-object class or on classes
that are joint from anchor-object class through paths over the OLAP-Object
data model described in Section 6. In output, the results of a query refer to
the anchor-object class and are obtained from the evaluation of the condition
expressions. In the next subsection, the syntax of the proposed query langauge
is discussed, and the semantic of different clauses are investigated.

In query language, we need to separate the query constructs for regular ob-
ject classes (including paths on conditions and output) and composite object
classes. In subsection 7.2 and subsection 7.3, we describe the application of the
proposed query constructs to regular and composite object classes. Then, in
subsection 7.4 we show how the combination of the object query construct and
composite query construct can be applied to combined OLAP-Object schemas
without splitting the query itself into subqueries. In subsection 7.5, we dis-
cuss composite-composite queries. They invoke a given composite object class
(C;) in output but the evaluation of condition expressions depends on a second
composite object query (C;). The partial results from (C;) are provided by a
subquery. We investigate the power of the proposed query language through
multiple query examples. Note that the queries expressed over primitive ob-
ject classes (e.g., Sex) refer to their domain values (e.g., Female, Male) and the
explanation of these queries is straightforward.

7.1 The Syntax

We propose a query language which is based on four constructs, named AN-
CHOR, FROM, CONDITION, and OUTPUT. We define the syntax of
each construct. We use the symbols of Table 1 and basic structures introduced
in APPENDIX A. In APPENDIX B, the syntax of primitive, regular and com-
posite object classes is defined.

The ANCHOR clause

The ANCHOR clause takes the form
ANCHOR <anchor-class>

This clause contains either one composite object class or two or more primitive
and regular classes. If two or more primitive and regular object classes are
indicated, this represents that they belong to a composite object class. In such
a case, it requires to indicate the composite object class in the FROM clause.
We describe this next.

12

<anchor-class>::= <anchor-class-simple>|’ [’<anchor-class-composite>’]’
<anchor-class-simple>::= <primitive class> {’,’ <primitive class>}

|<primitive class> {’,’ < regular class>}

|< regular class>{’,’ <primitive class>}

|< regular class>{’,’<regular class>}
<anchor-class-composite>::= <composite class>

The main characteristic of this clause consists of to invoke all the properties
of objects in output. This is described next in the definition of the OUTPUT
clause .

The FROM clause

The FROM clause takes the form
FROM <anchor-class-composite>

This contains only one composite object class, and indicates that one or more
components (primitive or regular classes) is/are enclosed in the ANCHOR clause.

The CONDITION clause
The CONDITION clause takes the form

CONDITION <codition-expressions>
Let O be the result of evaluating the ANCHOR clause. Then, the result of
CONDITION clause is an object that is derived from O by eliminating all
tuples for which the conditional expression does not evaluate to true. If the
CONDITION clause is omitted, it indicates that the result is simply O. The
syntax of <condition-expression> is reported below.

To represent conditions caused by ellipsis, we introdcue the concept of back
reference, which is described in detail in Section 8.

<condition-expressions> ::= <conditions> | <path-conditions>
<conditions> ::= <atomic-condition> | <conditions> <conjunction> {<conditions>}

<atomic-condition> ::= <expression>|<expression> <conjunction> <expression>

13

<expression>::=<anchor-path>’:’<subexp>|<back-reference-expression>
|<object class>’:’ {’(’<subexp> <conjunction> <subexp>’)’}
|<object class>’:’<attribute name><null-operator>

|<object class><range-operator> <set-of-values>

|<object class><in-operator><query-item>

<subexp>::=<attribute name><comparison-operator> <primitive value>
<back-reference-expression>::=

<anchor-path-ref>’:’<attribute name>
<comparison-operator> <attribute name> °’(’<anchor-path-backref>’)’

<conjunction> ::= AND | OR

<comparison-operator>::= ’=’ | <’ | 7>’ | =2 el 7=
<primitive-value> ::= <numeric> | "<string>"
<null-operator> ::= NULL | NOT NULL

<range-operator> ::= EQ | BETWEEN

<set-of-values> ::= <set-of-numerics> | <set-of-strings>
<set of numerics> ::= {<numeric> ’,’ <numeric> }

<set-of strings> ::= {<string> ’,’ <string>}

<in-operator> ::= IN | NOT IN

<path-conditions>::=
<path-condition> | <path-condition> { <conjunction> <path-conditions>}
<path-condition>::=<anchor-path-1-condtion> | <anchor-path-condition>

<anchor-path-1-condition>::=
<anchor-with-composite><comparison-operator><primitive value>
| <anchor-with-composite><null-operator>

| <anchor-with-composite><in-operator><query-item>

<anchor-with-composite>::=
> [’<anchor-class-simple>’]’’ (’<composite class>’)’’:’<attribute-name>

<anchor-path-condition>::= <anchor-path>’:’<subexp>
|<anchor-path>’:’{’ (’<subexp> <conjunction> <subexp>’)’}
| <anchor-path>’:’<attribute name><null-operator>

| <anchor-path><in-operator><query-item>

14

<anchor-path> ::=

<primitive class>{’.’<primitive class>|’.’<regular class>}|
<regular class>{’.’<primitive class>|’.’<regular class>}
<anchor-path-ref> ::=

<primitive class>’ (’variable’)’{’.’<anchor-path>}|

<regular class>’(’variable’)’{’.’<anchor-path>}
<anchor-path-backref> ::=

{<anchor-path>’.’}<primitive class>’(’variable’)’|

{<anchor-path>’.’ }<regular class>’(’variable’)’

<variable>::= <primitive value>

The OUTPUT clause

The OUTPUT clause takes the form

OUTPUT <anchor-path-item-semicolonlist>

The OUTPUT clause represents the result of evaluation of the ANCHOR,
FROM, CONDITION clauses. We consider three cases for explaining anchor-
path-item. They are explained as follows.

<anchor-path-item>::= <anchor-path-1>|<anchor-path-2>|<anchor-path-3>

Case 1. The anchor-path-item takes the form
<anchor-path-1>::=<anchor-with-composite>|<anchor-path>’:’<attribute-item>

| <anchor-path>’:’’ID’

In the OUTPUT clause only the classes (primitive, regular, composite) enclosed
in the ANCHOR clause are indicated. Therefore, the results are obtained from
the evaluation of condition predicates on classes involved in the ANCHOR clause
or the classes that are joint from these through paths. The results concern any
set or all ("*” denotes all) attributes of the regular classes or classes that are
derived from summarization over one or more dimensions of a composite class.

15

The query may ask all instances of a regular class. In this case, the 'ID’ of the
regular class is indicated.

Case 2. The anchor-path-item takes the form

<anchor-path-2>::=

<anchor-path>’:’<Agg-function>’ (’<agg-attribute>’)’|<anchor-path>’:’COUNT

| [’ <anchor-class-simple> ’]’ ’(’<composite class>’)’
’:? <Agg-function> ’(’ [<attribute name>] ’)’

| >(’<composite class>’)’ ’:’ <Agg-function> ’(’ [<attribute name>]

<agg-attribute>::=null| <attribute name>
<Agg-function>: :=SUM|AVG|MIN|MAX

The aggregate function (except COUNT) are applied on summary attributes of
classes which are involved or are joint from the classes indicated in the ANCHOR
clause (e.g. SUM(Population) or Student.Course:COUNT). The COUNT function
is applied to count the tuples of a given object class (e.g., Student: COUNT).

Case 8. The anchor-path-item takes the form
<anchor-path-3>: :=<anchor-path>IN<query-item>

This occurs when a query can not be resolved in one step. In other words,
the evaluation of a given query depends on the result of a subquery which
provide the partial result in output. The complete syntax of queries is shown
in APPENDIX C.

7.2 Object Query

In this case, an anchor is a regular class and the condition expressions are
formulated either on anchor or on other regular classes along the paths (see
Figure 5). In output the result can be anchor class itself or its properties.

In the following, we give some examples of query formulated on regular classes.
They are based on the schema of database shown in Figure 1. A brief explana-
tion for some of them is given.

Query Examples

Query 1: Students who are enrolled in courses taken by lecturer Johnson.

ANCHOR Student
CONDITION Student.Course.Lecturer: Name= "Johnson"
OUTPUT Student:*

16

Condition
ANCHOR) AND/OR

W

Figure 5: Illustration of Object query

Ezplanation: In Figure 1, any pair of classes are related to each other by
one relationship. For this reason, they are omitted in the above path condition.
In this query, Student is anchor class and the condition path is constructed on
this class in order to fix the comparison predicate on the attribute Name of
Lecturer. Since no specific property is requested from the query, in output all
the attributes of Student is given.

Query 2: Students who are enrolled in courses Mathematic and Logic taken by
lecturer of the department Electrical Engineering.

ANCHOR Student
CONDITION Student.Course: (Name= "Mathematics” AND Name=""Logic")

AND Student.Course.Lecturer.Department: Name= " Electrical Engineering”
ouTPUT Student:*

Ezplanation: In the above query, the conjunction of path condition expres-
sions is shown. It is also illustrated the conjunction of comparison predicates
on the attribute Name of Course.

Query 3 Name and birthday of students and address of departments in which
the courses enrolled by students is offered by some department.

ANCHOR Student
CONDITION Student.Course.Department: NOT NULL
ouTPUT Student:(Name, Birthday); Student.Course.Department: Address

Ezplanation: In the CONDITION clause, the expression is evaluated to find
some departments which offer the courses enrolled by students. According to
the query language syntax, NOT NULL operator defines the quantifier some.
In the OUTPUT clause, the output paths are constructed over anchor class
Student.

17

Query 4: Name and birthday of students and start-date of courses enrolled by
student and taken in department Electrical Engineering

ANCHOR Student
CONDITION Student.Course.Department:Name= " Electrical Engineering”
ouTPUT Student:(Name, Birthday); Student.Course: Start-date

Query 5. Start-date of Courses taken in department Electrical Engineering and
name and address of students enrolled in these courses

ANCHOR Course
CONDITION Course.Department:Name= " Electrical Engineering”
ouTPUT Course: Start-date; Course.Student:(Name, Address)

Ezxplanation: The anchor class is Course, and the results are defined by one
property of this class and an output path.

Query 6: Name of students whose age is > 21

ANCHOR Student
CONDITION Student: Age > 21
ouTPUT Student:Name

Query 7. Number of Courses enrolled by each student

ANCHOR Student
CONDITION
ouTPUT Student.Course: COUNT

FEzxplanation: The output path represents the count of courses for each stu-
dent. This is performed by the aggregate function COUNT.

Query 8 Number of students who are enrolled in Course mathematics

ANCHOR Student
CONDITION Student.Course: Name="Mathematics"
ouTPUT Student:COUNT

Ezxplanation: In the OUTPUT clause, COUNT function is applied to anchor
class Student.

Query 9: Number of students enrolled in course Mathematics started on 25 May
offered by the department Electrical Engineering

18

Helath-
Center

N. of Bed

Figure 6: Schema of a database with regular object classes

ANCHOR Course

CONDITION Course: (Name="Mathematics" AND Start-date="25 May")
AND Course.Department: Name="Electrical Engineering”

ouTPUT Course.Student: COUNT

Query 10: In each course, give average age of students

ANCHOR Course
CONDITION
OUTPUT Course.Student: AVG(Age)
Ezplanation: In the OUTPUT clause, the aggregate function AVG is applied
to the attribute Age of the regular class Student joint through path from the
anchor class Course.

The following queries are formulated on the schema of the Object database
shown in Figure 6.

Query 11: Name of cities and Health-Center in the Western region of USA

ANCHOR City
CONDITION City.Region:Name="Western”

AND City.State.Region.Country:Name="USA”"
ouTPUT City:Name, City.Health-Center:Name

Query 12: N.of Beds of ward maternity in each city of USA

19

ANCHOR City

CONDITION City.Health-Center.Ward:Name="Maternity"
AND City.State.Region.Country:Name="USA"

ouTPUT City:Name, City.Health-Center.Ward:N.ofBed

Query 13: Total N.of Beds of ward maternity in each city of USA

ANCHOR City

CONDITION City.Health-Center.Ward:Name="Maternity”
AND City.State.Region.Country:Name="USA"

ouTPUT City.Health-Center.Ward:SUM(N.ofBed)

Query 14: Find ward of maternity with maximum N.ofbeds in each city of USA

ANCHOR City
CONDITION City.Health-Center.Ward:Name="Maternity”

AND City.State.Region.Country:Name="USA"
ouTpPUT City:Name, City.Health-Center.Ward:MAX(N.ofBed)

Query 15: Find ward of maternity with maximum N.ofbeds in each city of state
California

ANCHOR City
CONDITION City.Health-Center.Ward:Name="Maternity"
AND City.State:Name="California”
OouTPUT City:Name, City.Health-Center.Ward:MAX(N.ofBed)

Query 16: Find ward of maternity with maximum N.ofbeds in each region

ANCHOR Region
CONDITION Region.State.City.Health-Center.Ward:Name="Maternity"
ouTPUT Region:Name, Region.State.City.Health-Center. Ward:MAX(N.ofBed)

7.3 Composite Query

Two types of queries are considered. In Figure 7, they are indicated by Type
I and Type II. Queries Type I ask in output the summary attribute and the
condition expressions are defined on dimensions. Queries Type II ask in output

20

summary
attribute

Condition
ANCHOR) AND/OR |

Path condition @

(Type D

summary

attribute Condition

Condition
ANCHOR) AND/OR
Output Path condition .
Dimension
Dimension
(Type 1I)

Figure 7: Hlustration of Composite query

dimensions and the condition expressions are defined on summary attributes.
In the following, we illustrate these types of queries by some examples and we
describe in detail their characteristics. The following queries are formulated on
the schema of OLAP database shown in Figure 2.

Query 17 Find region by age and population for females in 20 = 40 age-groups

in USA regions

ANCHOR
FROM
CONDITION

ouTPUT

Region, Age

Demographic_Group

Age EQ {20,40}

AND Region.Country:Name="USA" AND Sex="Female”
[Region, Age](Demographic_Group): Population

Ezxplanation: This is a Type I query. It asks Population by Region and Age
with certain conditions. The Region and Age are anchor classes and they are
two dimensions of the composite class Demographic_Group. The result gives
the summary attribute Population by anchor classes. Since the anchor classes

21

are components of the composite class Demographic Group, the latter class
is indicated in the FROM clause, and the summary attribute (Population) is
calculated for anchor classes and indicated in the OUTPUT clause. In this
query, the tuples are restricted to a range of values on dimension Age, which
varies from 7207 up to 740”7, and indicated in the CONDITION clause by the
EQ operator. Similarly, the dimension Sex is restricted to ”Female”.

Query 18 Find region and population for females between 20 + 40 in USA
regions

ANCHOR Region

FROM Demographic_Group

CONDITION Age BETWEEN {20,40} AND Sex="Female"
AND Region.Country:Name="USA"

OUTPUT [Region](Demographic_Group): Population

Explanation: Query 18 is formulated on Demographic_Group but only by dimen-
sion Region. Similar to Query 12, the values of the dimension Age is restricted
to a range, and indicated by BETWEEN operator in the CONDITION clause.
This differs from the previous query because the summary attribute should be
aggregated in this range. Therefore, Demographic_Group is computed according
to the conditional predicates and the dimensions Age and Sex are summarized.

Query 19: Find region with population > 10M for females between 20 + 40 in
USA regions

ANCHOR Region
FROM Demographic_Group
CONDITION Age BETWEEN {20,40}
AND Region.Country:Name="USA"
AND [Region](Demographic_Group):Population > 100
ouTPUT [Region](Demographic_Group): Population

Query 20: Find region by age where female population is > 100000 and output
the population of such regions.

(a)

ANCHOR Region, Age

FROM Demographic_Group
CONDITION Sex="Female” AND [Region,Age](Demographic_Group):Population > 100000
OUTPUT [Region, Age](Demographic_Group): Population

Ezplanation: In Query 19 and Query 20, a condition expression over sum-
mary measure (Population) is defined.

22

Quantity

Figure 8: Schema of a composite class

Let us consider Query 20, and let the query asks the total population per
region. Then, the predicate in the OUTPUT clause will be modified as follows:

ANCHOR Region, Age

FROM Demographic_Group
CONDITION Sex="Female” AND [Region,Age](Demographic_Group):Population > 100000
ouTPUT [Region](Demographic_Group): SUM(Population)

An example of Type IT query expressed on the schema of the above mentioned
composite class is indicated as follows.

Query 21: Find region by age where female population is > 100000 and output
the population per city in these regions.

ANCHOR Region, Age

FROM Demographic_Group

CONDITION Sex="Female” AND [Region,Age](Demographic_Group):Population > 100000
ouTPUT Region.City: Population

Now let us consider Figure 8. This shows the schema of the composite class
Consumption, which gives the Quantity of consumption of wine by Age, Sex,
City, and Wine Type. These four classes are the dimensions of Consumption
and the dimension City belongs to a classification hierarchy defined by three
levels; i.e. City, Region, and Country. The following queries are given.

Query 22: Consumption of wine of female between age 20 + 40 in the cities of
USA

23

ANCHOR City

FROM Consumption

CONDITION Age BETWEEN {20,40} AND Sex="Female"
AND City.Region.Country:Name="USA"

OoOuTPUT [City](Consumption): Quantity

Query 23: Find Wine_Type by city consumed by female between age 20 + 40
where the consumption exceeds 100 gallons

ANCHOR City, Wine_Type

FROM Consumption

CONDITION Age BETWEEN {20,40} AND Sex="Female"
AND [City, Wine_Type](Consumption): Quantity > 100

OouTPUT [City, Wine_Type](Consumption): Quantity

The above query with an additional condition on Wine_Type dimension is ”Find
quantity of Wine_Type Merlot consumed by city by female between age 20 =40
where the consumption exceeds 100 gallons formulated as follows:

ANCHOR City

FROM Consumption

CONDITION Age EQ {20,40} AND Sex="Female”
AND [City](Consumption): Quantity > 100
AND Wine_Type="Merlot"

OuUTPUT [City](Consumption): Quantity

Query 24 Let us consider the query "Find countries by Wine_Type where the
consumption of male is >500 gallon and output the quantity of consumption
per region in these countries” formulated as follows:

ANCHOR Country, Wine_Type

FROM Consumption

CONDITION Sex="Male" AND [Country, Wine_Type](Consumption): Quantity > 500
ouTPUT Country.Region:Quantity

Query 25: Total population
ANCHOR *

FROM Demographic_Group
OUTPUT Demographic_Group:Population

Query 26: Population and average income by city

24

Population, Average Income

Figure 9: Example of composite-object class

ANCHOR City

FROM Demographic_Group
CONDITION
OUTPUT [City](Demographic_Group):Population;

[City](Demographic_Group): Average-Income

7.4 Composite-Object Query

As we mentioned before, composite-object queries represent a class of queries
that are formulated simultaneously on OLAP and Object data models. In this
section, we show the proposed query language is powerful to express composite-
object queries using the constructs discussed previously. For a clear explanation,
we refer to the schema of the OLAP-Object database shown in Figure 9. Let
us consider the following queries.

25

Query 27 Find name of governors of states where average income of population
is > 20000

ANCHOR State

FROM Demographic_Group
CONDITION [State](Demographic_Group):Average-Income> 20000
OouTPUT State.Governor:Name

Ezxplanation: The query asks the name of the governors of states. This invokes
an object class from the schema of the Object model, while the condition ex-
pression is expressed over the composite object class Demographic_Group from
the OLAP data model.

Query 28: N.of Beds of ward maternity of the cities where the population of
female of age between 20 =+ 40 is > 1500000

ANCHOR City

TO Demographic_Group

CONDITION Age BETWEEN {20 40}
AND Sex="Female" AND [City](Demographic_Group): Population
AND City.Health-Center.Ward:Name="Maternity”

ouTPUT City.Health-Center.Ward:N.ofBed

Now, let us consider the schema of an OLAP-Object data model shown in
Figure 10. The OLAP data model is characterized by the composite object
Loan defined by the object classes (or dimensions) Date, Borrower, and Book.
The primitive object class Date is a level of the classification hierarchy Date —
Month — Year. The Object model defines Borrower], City, Author and Book
object classes. Type-of-Loan are Staff-loan, Faculty-loan, and Common-loan.
Query 29: All borrowers that have loaned the book ”Databases” and live in San
Francisco

ANCHOR Borrower
FROM Loan

> 1500000

CONDITION Book:Title="Databases” AND Borrower.City:Name” San Francisco”

ouTPUT Borrower:ID

Ezxplanation: This is a simple composite-object query, where the conditions are
expressed over both databases.

Query 30: Type of Loan of book ”Databases” and the name of authors

ANCHOR Book

FROM Loan
CONDITION Book:Title="Databases"
OouUTPUT [Book](Loan): Type-of-Loan; Book.Author:Name

26

Type of Loan

Name
N.of Loan

Name,
Address

Figure 10: Example of composite-object classes

27

Ezplanation: The results in OUTPUT are evaluated over composite object class
(Loan) and regular object class (Book).

Query 31: Authors of Books which are loaned more than 20 times in 2003 and
loaned from faculty

ANCHOR Book

FROM Loan

CONDITION Date.Month.Year="2003" AND [Book|(Loan): Type-of-Loan="Faculty-loan”
AND Book.N.ofLoan> 20

ouTPUT Book.Author:Name

Query 32: All the Books which are loaned in San Francisco in september

ANCHOR Book

FROM Loan

CONDITION Date.Month="September" AND [Book](Loan):N.ofLoan> 20
AND Borrower.City:Name="San Francisco”

ouTPUT Book:ID

7.5 Composite-Composite Query

These queries are formulated on multiple OLAP databases. The composite con-
struct can still be applied to answer queries, but for their complex composition
the whole query is subdivided in query-subquery. In this way, the subquery
fragment is resolved first and the result is used to give the final answer. In the
following, we illustrate some query examples that refer to the schema shown in
Figure 11.

Query 33: Consumption of wine in cities by sex where sales is > 10000$ in 2001

Queryl
ANCHOR City
FROM Sales
CONDITION Year="2001" AND |[City](Sales):Amount> 10000
ouTPUT [City](Sales):Amount

ANCHOR City, Sex

FROM Consumption
CONDITION Year="2001" AND City IN Queryl
OouTPUT [City,Sex](Consumption):Quantity

Ezplanation: Query 1 gives the list of city where sales of wine is greater than
100008 in 2001. This query is formulted on the composite object Sales. Then,
the consumption of wine is calcutated for each city retrieved from Query 1.

28

Quantity

Conéﬁiﬁption

#of Bottles, Amount

Figure 11: Example of composite-composite classes

29

In the following, similar queries are expressed. Their explanations are straight-
forward.

Query 34: Consumption of wine in states where in its cities sales is > 10000$
in 2001

ANCHOR State

FROM Consumption
CONDITION Year="2001" AND State.City IN Queryl
OouUTPUT [State](Consumption):Quantity

Ezplanation: Query 1 in this query corresponds to Query 1 in the previous
query.

Query 33: Consumption of wine by age and sex in 2003 in USA where in the
same year the sales of wine is > 100000 bottles

Queryl

ANCHOR Sales

FROM

CONDITION Year="2003" AND City.Region.Country="USA"
AND (Sales):#ofBottles> 10000

OouTPUT (Sales):#ofBottles

ANCHOR Age, Sex

FROM Consumption

CONDITION Year="2003" AND Sales IN Queryl
AND City.Region.Country="USA"

OouTPUT [Age,Sex](Consumption):Quantity

Query 34: Consumption of wine by city, age and sex in 2003 in USA where in
the same year the sales of wine in each city is > 100000$

Queryl
ANCHOR City
FROM Sales

CONDITION Year="2003" AND City.Region.Country="USA"
AND [City](Sales):#ofBottles> 10000
OUTPUT [City](Sales):#ofBottles

ANCHOR City, Age, Sex

FROM Consumption

CONDITION Year="2003" AND City IN Queryl
AND City.Region.Country="USA”"

OUTPUT [City,Age,Sex]|(Consumption):Quantity

30

Query 35: Sales of red wine in the regions of USA, where the consumption of
male in 2003 is > 300 gallon

Queryl

ANCHOR Region
FROM Consumption
CONDITION Year="2003" AND Region.Country="USA"
AND Sex="Male"
AND [Region](Consumption):Quantity > 300
OouTPUT [Region](Consumption):Quantity

ANCHOR Region
FROM Sales
CONDITION Region IN Queryl
AND Year="2003"
AND Wine_Type="Red"
OUTPUT [Region](Sales):(#ofBottles, Amount)

8 Extended Concepts

8.1 Back Reference

In this section, we consider queries which express condition caused by ellipsis in
natural language (e.g., their, its, etc.). This class of queries can be answered by
a specialized version of paths discussed in Section 6. It is called back reference
path. This represents that two condition expressions should be compared with
each other. Let us consider Figure 10, and ask the following query.

Query 36: Give the name of books, of which the authors live in the same
city of borrower.

To answer this query, city of author should be compared with city of bor-
rower. Therefore, two condition expressions are needed. For a correct formula-
tion of query, we should retrieve books from the first expression such that on
these books the second expression can be evaluated. A solution to this is to
create a reference for Book and use this in both above mentioned expressions.
The query is answered by a back reference path as follows.

Book(x).Author.City:Name=Name(City.Borrower.Book(x)

Note that the relationship between Borrower and Book is Loan. The term
Book(x) in both sides of condition expression serves as the linking variable. The

31

back reference is appropriate to express condition expressions on the values of
a class (Name of City) which should be matched over two different paths.

ANCHOR Book

FROM Loan

CONDITION Book(x).Author.City:Name=Name(City.Borrower.Book(x))
ouTPUT Book:Name

The syntax of back reference is indicated below.

<anchor-path-ref> ::=
<primitive class>’(’variable’)’{’.’<anchor-path>}|
<regular class>’(’variable’)’{’.’<anchor-path>}

<anchor-path-backref> ::=
{<anchor-path>’.’ }<primitive class>’(’variable’)’ |
{<anchor-path>’.’ }<regular class>’(’variable’)’

<variable>::= <primitive value>

The back reference construct is useful to formulate recursive queries, where
a class is related to itself by a simple association. For instance, a regular class
called Person is related to itself by Friend relationship. Let ask the following
query on this schema:

Query 37 Find people who have at least one friend with the same first name,
and return full name of person and his friend.

This query is easily formulated as follows:

ANCHOR Person
CONDITION Person(x):Friend-Name=Friend-Name(Person(y)(friend)Person(y))
ouTPUT Person(x):(First-Name,Last-Name);Person(y):(First-Name,Last-Name)

8.2 ISA

The proposed query language supports the subclass-superclass relationships in
OLAP-Object data model. A subclass is a specialization of its superclass and
inherits all the attributes associated with its super-classes. Then, a regular
object class O; isa O; means that the instances of O; are also instances of O;.

In the proposed query language, isa is not considered as a “distinct” associ-
ation between regular object classes. In other words, if a regular object class O;
is a specialization of regular object class O; and it is invoked by a query, then
the query is evaluated on its super-class O;.

32

For instance, let us consider Worker_Student be a subclass of Student in
Figure 1, and a query asks the name and type of work of students enrolled
in course Mathematics. According to the query syntax, the anchor class is
Worker_Student, but the path condition expression is formulated on Student;
that is Student.Course:Name="Mathematics”. Similarly, the output is defined
on Student (see below).

ANCHOR Worker_student ISA Student
CONDITION Student.Course: Name="Mathematics”
OUTPUT Student:COUNT

The syntax of anchor class is extended to enclose isa association as follows.

<anchor-class>::= <anchor-class-simple>
| > [’<anchor-class-composite>’]’

<anchor-class-simple>::= <primitive class> {’,’ <primitive class>}
|<primitive class> {’,’ < regular class>}

< regular class>{’,’ <primitive class>}

|< regular class>{’,’<regular class>}

|<regular class> ISA <generic-regular class> {’,’<anchor-class-simple>}

<anchor-class-composite>::= <composite class>
<generic-regular class>::= <regualr class>

9 Conclusions

In this paper, we proposed a data model that combines the main characteristics
of OLAP and Object data models in order to achieve their functionalities in
a common framework. We classified three different object classes: primitive,
regular and composite. We investigated the well-formed composite objects and
we studied their summarization semantics. Then, we defined a query language
which uses the path concept in order to facilitate data navigation and data
manipulation. The main feature of the proposed language is an anchor. It
allows us to fix dynamically an object class (primitive, regular or composite)
along the paths over the OLAP-Object data model for expressing queries. The
power of the proposed query language was investigated through multiple query
examples. The semantic of different clauses and syntax of the proposed language
were investigated.

References

[1] Arbor Software Corporation. Arbor Essbase.
http://www.arbosoft.com/essbase.html, 1996.

33

[2] Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional
Databases. Proceedings of the 13th International Conference on Data Engi-
neering - ICDE’97, pp. 232-243, 1997.

[3] Bancilhon, F., Cluet, S., Delobel, C.: A Query Language for an ObjectO-
riented Database System. In 2nd International Worshop on Database Pro-
gramming Languages (DBPL), pp. 301-322, 1989.

[4] Chan, P., Shoshani, A.: SUBJECT: A Directory Driven System for Orga-
nizing and Accessing Large Statistical Databases. Conference on Very Large
Data Bases, pp. 553-563, 1981.

[5] Codd, E. F., Codd, S.B., Salley, C.T.: Providing OLAP (On-Line Analytical
Processing) to User-Analysts: An IT mandate. Technical report 1993.

[6] Colliat, G.: OLAP, Relational, and Multidimensional Database Systems.
ACM Sigmod Record, 25(3):64-69, 1996.

[7] Gardarin, G., Valduriez, P. ESQL2: An Object-Oriented SQL with F-Logic
Semantics , IEEE International Conference on Data Engineering, Phoenix,
pp. 320-327, 1992.

[8] Gray, J., Bosworth, A., Layman,A., Pirahesh, H.: Data cube: a Relational
Aggregation Operator Generalizing Group-by, Cross-tabs and Subtotals.
Proceedings of 12th IEEE International Conference on Data Engineering,
pp- 152-159, 1996.

[9] Gyssens, M., Lakshmanan, L.V.S.: A Foundation for Multidimensional
Databases. Conference on Very Large Data Bases - VLDB’97, pp. 106-115,
1997.

[10] Fishman, D., Beech D., Cate, H., Chow, E., et al.: IRIS: An Object-
Oriented Database Management System, ACM Transaction on Information
Systems, 5(1), 4869, 1987.

[11] Frohn, J., Lausen, G., Uphoff, H.: Access to Objects by Path Expres-
sions and Rules. Proceedings of 20th International Conference on Very Large
Databases-VLDB, pp. 273-284, 1994.

[12] MicroStrategy, Inc. MicroStategy’s 4.0 Prodct Line.
http://www.strategy.com, 1997.

[13] II-Yeol Song, Jones T. H., and Park, E. K.: Binary relationship imposition
rules on ternary relationships in ER modeling. Proceedings of the second
international conference on Information and knowledge management, CIKM
’93, Washington, D.C., United States, ACM Press, pp. 57-66, 1993.

[14] TI-Yeol Song, Jones, T.H. : Ternary relationship decomposition strategies
based on binary imposition rules. 11TH International Conference on Data
Engineering, pp. 485-492, 1995.

34

[15] Jones, T. H., II-Yeol Song: Analysis of Binary/Ternary Cardinality Combi-
nations in Entity-Relationship Modeling. Data and Knowledge Engineering,
19(1): 39-64 (1996).

[16] Kifer, M., Lausen, G., Wu, J.:Querying Object-Oriented Databases. In
Proceedings of the ACM SIGMOD international conference on Management
of data, pp. 393—403, 1992.

[17] Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and
Frame-Based Languages, Journal of the ACM, 42, 1995.

[18] Kim, W.: A Model of Queries for Object-Oriented Databases. In Proceed-
ings of the International Conference on Very Large Databases, pp. 423-432,
1989.

[19] Lenz, H.-J., Shoshani, A.: Summarizability in OLAP and Statistical Data
Bases. In Proceedings of Ninth International Conference on Scientific and
Statistical Database Management-SSDBM, Ioannidis. Y. E. and Hansen D.
M. (Eds.), August 11-13, 132-143, Olympia, Washington, USA, IEEE Com-
puter Society Press, 1997.

[20] Red Brick systems, Inc. Red Brick Warehouse 5.0..
http://www.redbrick.com, 1997.

[21] Shoshani, A.: OLAP and Statistical Databases: Similarities and Differ-
ences. Proceedings of 16th ACM Symposium on Principles of Database Sys-
tems, pp. 185-196, 1997.

[22] Teorey, T.J.: Database Modeling ad Design. The Entity Relationship Ap-
proach. Morgan-Kauffman, 1990.

[23] Zaniolo, Z: The Database language GEM. In Proceedins of the ACM SIG-
MOD Conference on Management of Data. pp. 207-218, 1983.

35

Table 1: Symbols used in the BNF notation

’ Symbols ‘ Semantic

Indicates the equivalence of the left hand side

of a statement to the right hand side of the statement.

| Indicates an alternative.

<> Encloses schema construct.

{ } Encloses an optional construct that can appear zero o more times.
[]

!

Encloses an optional construct that can appear no more than once.
Encloses terminals.

Encloses continuation.

“abc-semicolonlist” | It represents a sequence of one or more “abc” in which each

pair of adjacent “abc” is separated by a semicolon.

APPENDIX A

This appendix includes the table of symbols and the basic structures used
to define the syntax of the proposed query language.

Basic Structures

<digit>:=0[1]...]9

<lower-case-letter>::= albl...|z
<upper-case-letter>::= A|B|...|Z
<comparison-symbol>::= =| < | > | = | =

<assignment-symbol>::= :=

<sign>::= + | -
<special-symbol>::=! | [$ | % [&l @ [# | Cl)| *l+1]-1]°_
<letter>::= <lower-case-letter> |<upper-case -letter>

<boolean-value>::= TRUE | FALSE

<unsigned-integer>::= <digit> <digit>

<integer>::= [<sign>] <unsigned-integer>

<real-number>::= [<integer>].<unsigned-integer> [(El|e) <sign> <unsigned-integer>]

<numeric>::= <integer> | <real-number>

36

<character>::= ’<letter>’ | ’<digit>’ | ’<special-symbol>’| ’> °

<string>::= ’<character> <character>’

<case-string>::= <lower-case-string> | <upper-case-string>
<lower-case-string>::= <lower-case-letter> | <lower-case-letter> <letter>
| <digit> | -

<upper-case-string>::= <upper-case-letter> | <upper-case-letter> <letter>
| <digit> | ’-?

<constant>::= <numeric> | <string> | <character>

Types

<types>::= <base-type> | <template-type> | <user-defined-type>

<base-type> ::= <char-type> | <boolean-type> | <integer-type> | <floating-type>
| <string-type>

<char-type> ::= CHAR

<boolean-type> ::= BOOLEAN

<integer-type> ::= <signed-integer> | <unsigned-integer>
<signed-integer> ::= <signed-long-integer> | <signed-short-integer>
<signed-long-integer> ::= LONG

<signed-short-integer> ::= SHORT

<unsigned-integer> ::= <unsigned-long-integer> |<unsigned-short-integer>
<unsigned-long-integer> ::= UNSIGNED LONG

<unsigned-short-integer> ::= UNSIGNED SHORT

<floating-type> ::= FLOAT | DOUBLE

<string-type> ::= STRING

<template-type> ::= <set-type> | <list-type>| <array-type>
<set-type> ::= SET ’<’ <types> ’>’

37

<list-type> ::= LIST ’<’ <types> ’>’

<array-type> ::= <array-tag> ’<’ <postitive-integer> ’,’ <types> ’>’
| <array-tag> ’<’ <types> ’>’

<array-tag> ::= ARRAY

<postitive-integer> ::= [+] <unsigned-integer>
<user-defined-type>::= <user-defined-type-name> <simple-type>
<user-defined-type-name> ::= <case-string>

Attributes

<object-attributes> ::= <object-attribute> {<object-attribute }
<object-attribute>::= <simple-attribute> |<tuple-attribute>

<simple-attribute> ::=

ATTRIBUTE <simple-attribute-name> ’:’<single-or-set-or-list><class-type>
<simple-attribute-name> ::= <attribute-name>
<attribute-name> ::= <case-string>

<tuple-attribute>:=

ATTRIBUTE <tuple-attribute-name> ’:’ <single-or-set-or-list><component-classes-type>
<tuple-attribute-name> ::= <attribute-name>

<single-or-set-or-list> ::= <set-of> | <list-of> | <null>

<component-classes-type> ::= <class-type> ’,’<class-type>

<class-type> <types>

38

APPENDIX B
Object Classes

<object class> ::=<primitive object class> | <regular object class>
| <composite object class>

Primitive object class

<primitive object class> ::= PRIMITIVE OBJECT CLASS <object class name>
<attibute list>

<primitive object class name> ::= <class name>
<class name> ::= <case-string>
<attibute list> ::= <null>

Regular object class

<regular object class> ::= REGULAR OBJECT CLASS <object class name>
<regular object identifier> <attibute list>

<regular object class name> ::= <class name>
<class name> ::= <case-string>
<attibute list> ::= <object-attibutes>

Composite Object class

<composite object class>::= COMPOSITE OBJECT CLASS <object class name>
<object classes> <attibute list>

<object class name>::= <class name>

<class name>::= <case-string>

<object classes>::= <object class> {’,’ <object class>}— <object-class-category>
’,? <object class> | <object-class-category> {’,’ <object class-category>}

<object-class-category>::=<regular class> ’—’<regular class> {’—’<regular
class>}
<attibute list>::= NULL | <object attibutes>

39

APPENDIX C
Query Syntax

<query-item> ::= <anchor-statement><from-statement> <condition-paths-statement>
<output-statement>

<anchor-statement> ::= ANCHOR <anchor-class>
<anchor-class>::= <anchor-class-simple>
| > [’<anchor-class-composite>’]’

<anchor-class-simple>::= <primitive class> {’,’ <primitive class>}
|<primitive class> {’,’ < regular class>}
|< regular class>{’,’ <primitive class>}

|< regular class>{’,’<regular class>
g g
|<regular class> ISA <generic-regular class> {’,’<anchor-class-simple>}

<anchor-class-composite>::= <composite class>
<generic-regular class>::= <regualr class>

<from-statement>: :=FROM <anchor-class-composite>

<condition-paths-statement> ::= CONDITION <condition-expressions>
<condition-expressions> ::= <conditions> | <path-conditions>|<null>

<conditions> ::= <atomic-condition> | <conditions> <conjunction> {<conditions>}
<atomic-condition> ::= <expression>|<expression> <conjunction> <expression>
<expression>::=<anchor-path>’:’<subexp>|<back-reference-expression>

|<object class>’:’ {’(’<subexp> <conjunction> <subexp>’)’}

|<object class>’:’<attribute name><null-operator>

|<object class><range-operator> <set-of-values>

|<object class><in-operator><query-item>

<subexp>::=<attribute name><comparison-operator> <primitive value>
<back-reference-expression>::=

<anchor-path-ref>’:’<attribute name>
<comparison-operator> <attribute name> ’(’<anchor-path-backref>’)’

40

<conjunction> ::= AND | OR

<comparison-operator>::= ’=’ | <’ | > | =2 | =2 | 2|=?
<primitive-value> ::= <numeric> | "<string>"
<null-operator> ::= NULL | NOT NULL

<range-operator> ::= EQ | BETWEEN

<set-of-values> ::= <set-of-numerics> | <set-of-strings>
<set of numerics> ::= {<numeric> ’,’ <numeric> }

<set-of strings> ::= {<string> ’,’ <string>}

<in-operator> ::= IN | NOT IN

<path-conditions>::=
<path-condition> | {<path-condition> <conjunction> <path-conditions>}
<path-condition>::=<anchor-path-1-condtion> | <anchor-path-condition>

<anchor-path-1-condition>::=
<anchor-with-composite><comparison-operator><primitive value>
| <anchor-with-composite><null-operator>

| <anchor-with-composite><in-operator><query-item>

<anchor-with-composite>::=
> [’<anchor-class-simple>’]’’ (’<composite class>’)’’:’<attribute-name>

<anchor-path-condition> ::=< anchor — path >''< subexp >
|<anchor-path>’:’{’ (’<subexp> <conjunction> <subexp>’)’}
| <anchor-path>’:’<attribute name><null-operator>

| <anchor-path><in-operator><query-item>

<anchor-path>::=
<primitive class>{’.’<primitive class>|’.’<regular class>}|
<regular class>{’.’<primitive class>|’.’<regular class>}

<anchor-path-ref> ::=

<primitive class>’(’variable’)’{’.’<anchor-path>}|
<regular class>’(’variable’)’{’.’<anchor-path>}
<anchor-path-backref> ::=

{<anchor-path>’.’ }<primitive class>’(’variable’)’ |

{<anchor-path>’.’ }<regular class>’(’variable’)’

<variable>::= <primitive value>

<output-statement>: :=OUTPUT <anchor-path-item-semicolonlist>
<anchor-path-item>::= <anchor-path-1>|<anchor-path-2>|<anchor-path-3>

41

<anchor-path-1>::=<anchor-with-composite>|<anchor-path>’:’<attribute-item>

| <anchor-path>’:’’ID’
<anchor-with-composite>::=’[’<anchor-class-simple>’]’

> (’<composite class>’)’’:’<attribute-name>

<anchor-path> ::=

<primitive class>{’.’<primitive class>|’.’<regular class>}|
<regular class>{’.’<primitive class>|’.’<regular class>}

<attribute-item>::=<attribute-name>|’*’
<attribute-name>::=
’(’<attribute name>’,’<attribute name>{’,’<attribute name>}’)’

<anchor-path-2>::=

<anchor-path>’:’<Agg-function>’ (’<agg-attribute>’)’ |<anchor-path>’:’COUNT
| [’<anchor-class-simple>’]’ ’(’<composite class>’)
?:?’<Agg-function>’ (’ [<attribute name>]’)’

<agg-attribute>::=null| <attribute name>

<Agg-function>: :=SUM|AVG|MIN|MAX

<anchor-path-3>::=<anchor-path> IN <query-item>

42

