
UC San Diego
UC San Diego Previously Published Works

Title
Automatic Verification of Database-Centric Systems

Permalink
https://escholarship.org/uc/item/10z362p7

Journal
ACM SIGMOD Record, 43(3)

ISSN
0163-5808

Authors
Deutsch, Alin
Hull, Richard
Vianu, Victor

Publication Date
2014-12-04

DOI
10.1145/2694428.2694430

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/10z362p7
https://escholarship.org
http://www.cdlib.org/

Automatic Verification of Database-Centric Systems

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

Richard Hull
IBM Yorktown Research

Center
hull@us.ibm.com

Victor Vianu
UC San Diego & INRIA Saclay

vianu@cs.ucsd.edu

1. INTRODUCTION
Software systems centered around a database are

pervasive in numerous applications. They are en-
countered in areas as diverse as electronic commerce,
e-government, scientific applications, enterprise in-
formation systems, and business process manage-
ment. Such systems are often very complex and
prone to costly bugs, whence the need for verifica-
tion of critical properties.
Classical software verification techniques that can

be applied to such systems include model check-
ing and theorem proving. However, both have se-
rious limitations. Indeed, model checking usually
requires performing finite-state abstraction on the
data, resulting in loss of semantics for both the sys-
tem and properties being verified. Theorem proving
is incomplete, requiring expert user feedback.
Recently, an alternative approach to verification

of database-centric systems has taken shape, at the
confluence of the database and computer-aided ver-
ification areas. It aims to identify restricted but
sufficiently expressive classes of database-driven ap-
plications and properties for which sound and com-
plete verification can be performed in a fully auto-
matic way. This approach leverages another trend
in database-driven applications: the emergence of
high-level specification tools for database-centered
systems, such as interactive web applications and
data-driven business processes. We review next a
few representative examples.
A commercially successful high-level specification

tool for web applications is Web Ratio [1], an out-
growth of the earlier academic prototype WebML
[20, 17]. Web Ratio allows to specify a Web ap-
plication using an interactive variant of the E-R
model augmented with a workflow formalism. Non-
interactive variants of Web page specifications had
already been proposed in Strudel [39], Araneus [58]
and Weave [40], targeting the automatic generation
of Web sites from an underlying database. High-
level specification tools have also emerged in the

area of business process management, concomitantly
with an evolution from the traditional process-centric
approach towards data awareness. A notable expo-
nent of this class is the business artifact model pio-
neered in [63, 51], deployed by IBM in professional
services. Business artifacts (or simply “artifacts”)
model key business-relevant entities, which are up-
dated by a set of services that implement business
process tasks. A collection of artifacts and services
is called an artifact system. This modeling approach
has been successfully deployed in practice [7, 6, 21,
27, 69], and has been adopted in the OMG standard
for Case Management [9].
Tools such as the above automatically generate

the database-centric application code from the high-
level specification. This not only allows fast proto-
typing and improves programmer productivity but,
as a side effect, provides new opportunities for au-
tomatic verification. Indeed, the high-level specifi-
cation is a natural target for verification, as it ad-
dresses the most likely source of errors (the applica-
tion’s specification, as opposed to the less likely er-
rors in the automatic generator’s implementation).
The theoretical and practical results obtained so

far concerning the verification of such systems are
quite encouraging. They suggest that, unlike arbi-
trary software systems, significant classes of data-
driven systems may be amenable to automatic veri-
fication. This relies on a novel marriage of database
and model checking techniques, and is relevant to
both the database and the computer-aided verifica-
tion communities.
In this article, we describe several models and re-

sults on automatic verification of database-driven
systems, focusing on temporal properties of their
underlying workflows. To streamline the presenta-
tion, we focus on verification of business artifacts,
and use it as a vehicle to introduce the main con-
cepts and results. We then summarize some of the
work pertaining to other applications such as data-
driven web services.

1

2. BUSINESS ARTIFACTS
IBM’s business artifacts model key business-rel-

evant entities, which are updated by a set of ser-
vices that implement business process tasks. The
notion of business artifact was first introduced in
[63] and [51] (called there “adaptive documents”),
and was further studied, from both practical and
theoretical perspectives, in [6, 41, 42, 8, 54, 25,
45, 4]. (Some of these publications use the term
“business entity” in place of “business artifact”).
Some key roots of the artifact model are present
in “adaptive business objects” [61], “business enti-
ties”, “document-driven” workflow [68] and “docu-
ment” engineering [43]. The Vortex framework [47,
36, 46] also allows the specification of database ma-
nipulations and provides declarative specifications
for when services are applicable to a given artifact.
The artifact model is inspired in part by the field

of semantic web services. In particular, the OWL-
S proposal [57, 56] describes the semantics of ser-
vices in terms of input parameters, output parame-
ters, pre- and post-conditions. In the artifact model
considered here the services are applied in a se-
quential fashion. IBM has developed Siena [23], a
tool for compiling artifact-based procedural spec-
ifications into code supporting the corresponding
business process. Its open-source descendant, the
BizArtifact suite [10], has just been announced. The
Guard-Stage-Milestone (GSM) approach [25, 45] to
artifact lifecycles permits services with pre- and post-
conditions, parallelism, and hierarchy. The OMG
standard for Case Management Model and Nota-
tion (CMMN) [9], announced last year, draws key
foundational elements from GSM[55].
We next describe a minimalistic variant of the

artifact model, adequate for illustrating the results
on verification. The presentation is informal, rely-
ing mainly on a running example (the formal de-
velopment is provided in [30, 24]). The example,
modeling an e-commerce process, features several
characteristics.
1. The system routinely queries an underlying

database, for instance to look up the price of a prod-
uct and the shipping weight restrictions.
2. The validity checks and updates carried out

by the services involve arithmetic operations. For
instance, to be valid, an order must satisfy such con-
ditions as: (a) the product weight must be within
the selected shipment method’s limit, and(b) if the
buyer uses a coupon, the sum of product price and
shipping costmust exceed the coupon’s minimum
purchase limit.
3. Finally, the correctness of the business pro-

cess relies on database integrity constraints. For

instance, the system must check that a selected
triple of product, shipment type and coupon are
globally compatible. This check is implemented by
several local tests, each running at a distinct instant
of the interaction, as user selections become avail-
able. Each local test accesses distinct tables in the
database, yet they globally refer to the same prod-
uct, due to the keys and foreign keys satisfied by
these tables.
The example models an e-commerce business pro-

cess in which the customer chooses a product and
a shipment method and applies various kinds of
coupons to the order. There are two kinds of coupons:
discount coupons subtract their value from the to-
tal (e.g. a $50 coupon) and free-shipment coupons
subtract the shipping costs from the total. The or-
der is filled in a sequential manner (first pick the
product, then the shipment, then claim a coupon),
as is customary on e-commerce web-sites. After the
order is filled, the system awaits for the customer
to submit a payment. If the payment matches the
amount owed, the system proceeds to shipping the
product.
As mentioned earlier, an artifact is an evolving

record of values. The values are referred to by vari-
ables (sometimes called attributes). In general, an
artifact system consists of several artifacts, evolving
under the action of services, specified by pre- and
post-conditions. In the example, we use a single
artifact with the following variables:

status,prod id,ship type,coupon
amount owed amount paid,amount refunded

The status variable tracks the status of the order
and can take the following values:

“edit product”, “edit ship”, “edit coupon”
“processing”, “received payment”,
“shipping”, “shipped”, “canceling”, “canceled”.

Artifact variables ship type and coupon record
the customer’s selection, received as an external in-
put. amount paid is also an external input (from
the customer, possibly indirectly via a credit card
service). Variable amount owed is set by the sys-
tem using arithmetic operations that sum up prod-
uct price and shipment cost, subtracting the coupon
value. Variable amount refunded is set by the sys-
tem in case a refund is activated.
The database includes the following tables, where

underlined attributes denote keys. Recall that a key
is an attribute that uniquely identifies each tuple in
a relation.

PRODUCTS(id, price, availability, weight)

2

COUPONS(code, type, value, min value, free shiptype)
SHIPPING(type, cost, max weight)
OFFERS(prod id, discounted price, active)

The database also satisfies the following foreign
keys:

COUPONS[free shiptype] ⊆ SHIPPING[type] and
OFFERS[prod id] ⊆ PRODUCTS[id].

The first inclusion dependency says that each
free shiptype value in the COUPONS relation is also
a type value in the SHIPPING relation. The sec-
ond dependency states that every prod id value in
the OFFERS is the actual id of a product in the
PRODUCTS relation.
The starting configuration of every artifact sys-

tem is constrained by an initialization condition,
which here states that status is initialized to
“edit prod”, and all other variables to “undefined”.
By convention, we model undefined variables using
the reserved constant λ.
The services. Recall that artifacts evolve un-

der the action of services. Each service is specified
by a pre-condition π and a postcondition ψ, both
existential first-order (∃FO) sentences. The pre-
condition refers to the current values of the artifact
variables and the database. The post-condition ψ

refers simultaneously to the current and next arti-
fact values, as well as the database. In addition,
both π and ψ may use arithmetic constraints on
the variables, limited to linear inequalities over the
rationals.
The services shown in Figure 1 model a few of the

business process tasks of the example. Throughout
the example, we use primed artifact variables x′ to
refer to the next value of variable x.
Notice that the pre-conditions of the services check

the value of the status variable. For instance,
according to choose product, the customer can
only input her product choice while the order is in
“edit prod” status.
Also notice that the post-conditions constrain the

next values of the artifact variables (denoted by a
prime). For instance, according to choose product,
once a product has been picked, the next value of
the status variable is “edit shiptype”, which will
at a subsequent step enable the choose shiptype

service (by satisfying its pre-condition). Similarly,
once the shipment type is chosen (as modeled by
service choose shiptype), the new status is
“edit coupon”, which enables the apply coupon

service. The interplay of pre- and post-conditions
achieves a sequential filling of the order, starting

from the choice of product and ending with the
claim of a coupon.
A post-condition may refer to both the current

and next values of the artifact variables. For in-
stance, in service choose shiptype, the fact that
only the shipment type is picked while the prod-
uct remains unchanged, is modeled by preserving
the product id: the next and current values of the
corresponding artifact variable are set equal.
Pre- and post-conditions may query the database.

For instance, in service choose product, the post-
condition ensures that the product id chosen by the
customer is that of an available product (by check-
ing that it appears in a PRODUCTS tuple, whose avail-
ability attribute is positive).
Finally, notice the arithmetic computation in

the post-conditions. For instance, in service ap-

ply coupon, the sum of the product price p and
shipment cost c (looked up in the database) is ad-
justed with the coupon value (notice the distinct
treatment of the two coupon types) and stored in
the amount owed artifact variable.

Observe that the first post-condition disjunct
models the case when the customer inputs no
coupon number (the next value coupon′ is set to
undefined), in which case a different owed amount
is computed, namely the sum of price and shipping
cost.
Semantics The semantics of an artifact system

A consists of its runs. Given a database D, a run of
A is an infinite sequence {ρi}≥0 of artifact records
such that ρ0 and D satisfy the initial condition of
the system, and for each i ≥ 0 there is a service S
of the system such that ρi and D satisfy the pre-
condition of S and ρi, ρi+1 and D satisfy its post-
condition. For uniformity, blocking prefixes of runs
are extended to infinite runs by repeating forever
their last record.
The business process in the example exhibits a

flexibility that, while desirable in practice for a pos-
tive customer experience, yields intricate runs, all
of which need to be considered in verification. For
instance, at any time before submitting a valid pay-
ment, the customer may edit the order (select a dif-
ferent product, shipping method, or change/add a
coupon) an unbounded number of times. Likewise,
the customer may cancel an order for a refund even
after submitting a valid payment.

3. SPECIFYING TEMPORAL PROPER-
TIES OF DATA-CENTRIC SYSTEMS

We are interested in verifying temporal proper-
ties of runs of data-centric systems such as business
artifacts. To this end, we use an extension of linear

3

choose product: The customer chooses a product.
π : status = “edit prod”
ψ : ∃p, a, w(PRODUCTS(prod id′, p, a, w) ∧ a > 0) ∧ status′ = ”edit shiptype”

choose shiptype: The customer chooses a shipping option.
π : status = “edit ship”
ψ : ∃c, l, p, a, w(SHIPPING(ship type′, c, l) ∧ PRODUCTS(prod id, p, a, w) ∧ l > w)∧

status′ = “edit coupon” ∧ prod id′ = prod id

apply coupon: The customer optionally inputs a coupon number.
π : status = “edit coupon”
ψ : (coupon′ = λ ∧ ∃p, a, w, c, l(PRODUCTS(prod id, p, a, w)∧

SHIPPING(ship type, c, l) ∧ amount owed′ = p+ c) ∧ status′ = “processing”
∧prod id′ = prod id ∧ ship type′ = ship type)∨
(∃t, v,m, s, p, a, w, c, l(COUPONS(coupon′, t, v,m, s)∧
PRODUCTS(prod id, p, a, w) ∧ SHIPPING(ship type, c, l) ∧ p+ c ≥ m∧
(t = “free shipping” → (s = ship type ∧ amount owed′ = p))∧
(t = “discount” → amount owed′ = p+ c− v))
∧status′ = “processing” ∧ prod id′ = prod id ∧ ship type′ = ship type)

Figure 1: Three services

temporal logic called LTL-FO. This is a powerful
language, fit to capture a wide variety of properties
of the underlying workflow. For instance, in our ar-
tifact system example, it allows us to express such
desiderata as:

If a correct payment is submitted then at
some time in the future either the prod-
uct is shipped or the customer is refunded
the correct amount.

A free shipment coupon is accepted only
if the available quantity of the product is
greater than zero, the weight of the prod-
uct is in the limit allowed by the shipment
method, and the sum of price and ship-
ping cost exceeds the coupon’s minimum
purchase value.

Similar properties are of interest for the data-
driven web services described in Section 5. In or-
der to specify such temporal properties we use an
extension of LTL (linear-time temporal logic). Re-
call that LTL is propositional logic augmented with
temporal operators such as G (always), F (even-
tually), X (next) and U (until) (e.g., see [64]).
For example, Gp says that p holds at all times in
the run, Fp says that p will eventually hold, and
G(p→ Fq) says that whenever p holds, q must hold
sometime in the future. The extension of LTL that
we use, called1 LTL-FO, is obtained from LTL by

1The variant of LTL-FO used here differs from previous
ones in that the FO formulas interpreting propositions
are quantifier-free. By slight abuse we use here the same
name.

replacing propositions with quantifier-free FO state-
ments about particular artifact records in the run.
The statements use the artifact variables and may
use additional global variables, shared by different
statements and allowing to refer to values in dif-
ferent records. The global variables are universally
quantified over the entire property.
For example, suppose we wish to specify the prop-

erty that if a correct payment is submitted then
at some time in the future either the product is
shipped or the customer is refunded the correct
amount. The property is of the form G(p → Fq),
where p says that a correct payment is submitted
and q states that either the product is shipped or
the customer is refunded the correct amount. More-
over, if the customer is refunded, the amount of the
correct payment (given in p) should be the same
as the amount of the refund (given in q). This
requires using a global variable x in both p and
q. More precisely, p is interpreted as the formula
amount paid = x ∧ amount paid = amount owed

and q as status = ”shipped”∨amount refunded =
x. This yields the LTL-FO property

(ϕ1) ∀xG((amount paid = x

∧amount paid = amount owed) →
F(status = ”shipped” ∨ amount refunded = x))

Note that, as one would expect, the global vari-
able x is universally quantified at the end. We say
that an artifact system A satisfies an LTL-FO sen-
tence ϕ if all runs of the artifact system satisfy ϕ
for all values of the global variables. Note that the
database is fixed for each run, but may be different

4

for different runs.
We now show a second property ϕ2 for the run-

ning example, expressed by the LTL-FO formula

(ϕ2) ∀v,m, s, p, a, w, c, l(G(prod id 6= λ

∧ ship type 6= λ ∧
COUPONS(coupon, ”free ship”, v,m, s)) ∧
PRODUCTS(prod id, p, a, w) ∧
SHIPPING(ship type, c, l) →
a > 0
︸ ︷︷ ︸

(i)

∧ w ≤ l
︸ ︷︷ ︸

(ii)

∧ p+ c ≥ m
︸ ︷︷ ︸

(iii)

)

Property ϕ2 verifies the consistency of orders that
use coupons for free shipping. The premise of the
implication lists the conditions for a completely
specified order that uses such coupons. The con-
clusion checks the following business rules (i) avail-
able quantity of the product is greater than zero,
(ii) the weight of the product is in the limit allowed
by the shipment method, and (iii) the total order
value satifies the minimum for the application of the
coupon.
We note that variants of LTL-FO have been in-

troduced in [37, 67]. The use of globally quantified
variables is also similar in spirit to the freeze quan-
tifier defined in the context of LTL extensions with
data by Demri and Lazić [28, 29].

Other applications of verification

As discussed in [30], various useful static analy-
sis problems on business artifacts can be reduced
to verification of temporal properties. We mention
some of them.
Business rules The basic artifact model is ex-

tended in [8] with business rules, in order to sup-
port service reuse and customization. Business rules
are conditions that can be super-imposed on the
pre-conditions of existing services without changing
their implementation. They are useful in practice
when services are provided by autonomous third-
parties, who typically strive for wide applicability
and impose as unrestrictive preconditions as pos-
sible. When such third-party services are incorpo-
rated into a specific business process, this often re-
quires more control over when services apply, in the
form of more restrictive pre-conditions. Such addi-
tional control may also be needed to ensure compli-
ance with business regulations formulated by third
parties, independently of the specific application.
Verification of properties in the presence of business
rules then becomes of interest and can be addressed
by our techniques. A related issue is the detection
of redundant business rules, which can also be re-
duced to a verification problem.

Redundant attributes Another design simpli-
fication consists of redundant attribute removal, a
problem also raised in [8]. This is formulated as fol-
lows. We would like to test whether there is a way
to satisfy a property ϕ of runs without using one of
the attributes. This easily reduces to a verification
problem as well.
Runtime analysis The verification techniques

described above can also be used to perform useful
runtime analysis tasks. Examples include providing
guidance to users trying to achieve certain goals,
runtime monitoring of events, what-if scenarios, and
diagnosis of anomalous behavior based on partial
traces of an artifact execution (e.g. [2]).

4. AUTOMATIC VERIFICATION OF
ARTIFACT SYSTEMS

Classical model checking applies to finite-state
transition systems. While finite-state systems may
fully capture the semantics of some systems to be
verified (for example logical circuits), most software
systems are in fact infinite-state systems, of which a
finite-state transition system represents a rough ab-
straction. Properties of the actual system are also
abstracted, using a finite set of propositions whose
truth values describe each of the finite states of the
transition system. Checking that an LTL property
holds is done by searching for a counterexample run
of the system. Its finiteness is essential and allows
to decide property satisfaction in pspace using an
automata-theoretic approach (see e.g. [22, 59]).
Consider now an artifact system A and an LTL-

FO property ϕ. Model checking A with respect to
ϕ can be viewed once again as a search for a coun-
terexample run of A, i.e. a run violating ϕ. The
immediate difficulty, compared to the classical ap-
proach, stems from the fact that TA is an infinite-
state system. To obtain decidability in this context,
the typical approach consists of using symbolic rep-
resentations of runs, as described later.
In the broader context of verification, research on

automatic verification of infinite-state systems has
also focused on extending classical model checking
techniques (e.g., see [18] for a survey). However, in
much of this work the emphasis is on studying recur-
sive control rather than data, which is either ignored
or finitely abstracted. More recent work has been
focusing specifically on data as a source of infinity.
This includes augmenting recursive procedures with
integer parameters [13], rewriting systems with data
[14, 12], Petri nets with data associated to tokens
[52], automata and logics over infinite alphabets [16,
15, 62, 28, 50, 11, 12], and temporal logics manip-
ulating data [28, 29]. However, the restricted use

5

of data and the particular properties verified have
limited applicability to the business artifact setting,
or other database-driven applications.

Artifacts without constraints or dependencies

We consider first artifact systems and properties
without arithmetic constraints or data dependen-
cies. This case was studied in [30], with a slightly
richer model in which artifacts can carry some
limited relational state information (however, here
we stick for simplicity to the earlier minimalistic
model). The main result is the following.

Theorem 4.1. It is decidable, given an artifact
system A with no data dependencies or arithmetic
constraints, and an LTL-FO property ϕ with no
arithmetic constraints, whether A satisfies ϕ.

The complexity of verification is pspace-
complete for fixed-arity database and artifacts, and
expspace otherwise. This is the best one can
expect, given that even very simple static anal-
ysis problems for finite-state systems are already
pspace-complete [66].
The main idea behind the verification algorithm

is to explore the space of runs of the artifact sys-
tem using symbolic runs rather than actual runs.
This is based on the fact that the relevant informa-
tion at each instant is the pattern of connections in
the database between attribute values of the current
and successor artifact records in the run, referred to
as their isomorphism type. Indeed, the sequence of
isomorphism types in a run can be generated sym-
bolically and is enough to determine satisfaction of
the property. Since each isomorphism type can be
represented by a polynomial number of tuples (for
fixed arity), this yields pspace verification.

It turns out that the verification algorithm can be
extended to specifications and properties that use
a total order on the data domain, which is useful
in many cases. This however complicates the algo-
rithm considerably, since the order imposes global
constraints that are not captured by the local iso-
morphism types. The algorithm was first extended
in [30] for the case of a dense countable order with
no end-points. This was later generalized to an ar-
bitrary total order by Segoufin and Torunczyk [65]
using automata-theoretic techniques. In both cases,
the worst-case complexity remains pspace.

Artifacts with arithmetic constraints and data de-
pendencies

Unfortunately, Theorem 4.1 fails even in the pres-
ence of simple data dependencies or arithmetic.
Specifically, as shown in [30, 24], verification be-
comes undecidable as soon as the database is

equipped with at least one key dependency, or if
the specification of the artifact system uses sim-
ple arithmetic constraints allowing to increment
and decrement by one the value of some atributes.
Hence, a restriction is needed to achieve decidabil-
ity. We discuss this next.
To gain some intuition, consider the undecidabil-

ity of verification for artifact systems with incre-
ments and decrements. The proof of undecidability
is based on the ability of such systems to simulate
counter machines, for which the problem of state
reachability is known to be undecidable [60]. To
simulate counter machines, an artifact system uses
an attribute for each counter. A service performs
an increment (or decrement) operations by “feed-
ing back” the incremented (or decremented) value
into the next occurrence of the corresponding at-
tribute. To simulate counters, this must be done
an unbounded number of times. To prevent such
computations, the restriction imposed in [24] is de-
signed to limit the data flow between occurrences of
the same artifact attribute at different times in runs
of the system that satisfy the desired property. As
a first cut, a possible restriction would prevent any
data flow path between unequal occurrences of the
same artifact attribute. Let us call this restriction
acyclicity. While acyclicity would achieve the goal
of rendering verification decidable, it is too strong
for many practical situations. In our running ex-
ample, a customer can choose a shipping type and
coupon and repeatedly change her mind and start
over. Such repeated performance of a task is use-
ful in many scenarios, but would be prohibited by
acyclicity of the data flow. To this end, we define
in [24] a more permissive restriction called feedback
freedom. The formal definition considers, for each
run, a graph capturing the data flow among vari-
ables, and imposes a restriction on the graph. In-
tuitively, paths among different occurrences of the
same attribute are permitted, but only as long as
each value of the attribute is independent on its pre-
vious values. This is ensured by a syntactic condi-
tion that takes into account both the artifact system
and the property to be verified. We omit here the
rather technical details. It is shown in [24] that feed-
back freedom of an artifact system together with
an LTL-FO property can be checked in pspace by
reduction to a test of emptiness of a two-way alter-
nating finite-state automaton. More significantly,
artifact systems designed in a hierarchical fashion
by successive refinement, in the style of the Guard-
Stage-Milestone approach [25, 45], naturally sat-
isfy feedback freedom. Indeed, there is evidence
that the feedback freedom condition is permissive

6

enough to capture a wide class of applications of
practical interest. This is confirmed by numerous
examples of practical business processes modeled as
artifact systems. Many of these, including typical
e-commerce applications, satisfy the feedback free-
dom condition. Feedback freedom turns out to en-
sure decidability of verification in the presence of
arithmetic constraints, and also under a large class
of data dependencies including key and foreign key
constraints on the database.

Theorem 4.2. [24] It is decidable, given an ar-
tifact system A whose database satisfies a set of key
and foreign key constraints, and an LTL-FO prop-
erty ϕ such that (A, ϕ) is feedback free, whether ev-
ery run of A on a valid database satisfies ϕ.

The intuition behind decidability is the following.
Recall the verification algorithm of Theorem 4.1.
Because of the data dependencies and arithmetic
constraints, the isomorphism types of symbolic runs
no longer suffice, because every artifact record in a
run is constrained by the entire history leading up to
it. This can be specified as an ∃FO formula using
one quantified variable for each artifact attribute
occurring in the history, referred to as the inherited
constraint of the record. The key observation is that
due to feedback freedom, the inherited constraint
can be rewritten into an ∃FO formula with quan-
tifier rank2 bounded by k2, where k is the number
of attributes of the artifact. This implies that there
are only finitely many non-equivalent inherited con-
straints. This allows to use again a symbolic run
approach to verification, by replacing isomorphism
types with inherited constraints.

Beyond restrictions for verification

The decidability results described above are subject
to restrictions on the artifact specification. How-
ever, a practical verifier needs to also deal with
specifications that do not obey such restrictions.
As typical in software verification, this can be done
by abstracting the given specification to one that
satisfies the restrictions, and verifying the result-
ing abstraction. Such a verifier is guaranteed to be
sound (it is never wrong when it claims correctness
of a specification), but is possibly not complete (it
may produce false negatives, i.e. candidate counter-
examples to the desired property, which need to be
validated by the user). The technical challenge lies
in automatically generating the abstraction such
that it gives up only as little completeness as nec-
essary for decidability.
2The quantifier rank of a formula is the maximum num-
ber of quantifiers occurring along a path from root to
leaf in the syntax tree of the formula, see [53].

Other work on verification of artifact systems

Recently, a line of work on automatic verification of
database-centric business processes (specified using
formalisms isomorphic to artifact systems) has in-
troduced a variant of the verification problem in
which properties are checked only over the runs
starting from a given initial database. During the
run, the database may evolve via updates, inser-
tions and deletions. In particular, it may be ex-
tended with fresh values provided as input through-
out the run. Since inputs come from an infinite do-
main, this verification variant remains infinite-state.
The property languages are fragments of first-order-
extended µ-calculus [26]. Decidability results in
this context are based on sufficient syntactic restric-
tions. One such restriction ensures that the number
of fresh input values is bounded throughout every
run [26, 44]. The restriction exploits an analogy be-
tween artifact system runs and sequences of chase
steps with embedded dependencies, and it corre-
sponds to the notion of ”weakly acyclic” set of de-
pendencies [38]. A complementary type of restric-
tion allows an unbounded number of distinct inputs
during the run, but not their unbounded accumula-
tion within the database, implying a bound on the
latter’s size. This restriction, called ”generate-recall
acyclicity”, is based on a data flow analysis of how
cyclic generation of fresh inputs interacts with their
cyclic storage (recall) during the run [44]. [5] de-
rives decidability of the verification variant by also
disallowing unbounded accumulation of input val-
ues, but this condition is postulated as a semantic
property (shown undecidable in [44]).
Additional results on formal analysis of artifact-

centric business processes in restricted contexts
have been reported in [41, 42, 8]. Properties inves-
tigated in these studies include reachability [41, 42],
general temporal constraints [42], and the existence
of complete execution or dead end [8]. Citations [41,
42] are focused on an essentially procedural version
of artifact-centric workflow, and [8] is the first to
study a declarative version. For the variants con-
sidered in each paper, verification is generally un-
decidable; decidability results were obtained when
rather severe restrictions are placed, e.g., restricting
all guards on state transitions to be ”true” [41], re-
stricting to bounded domains [42, 8], or restricting
the language for conditions to refer only to artifacts
(and not their attribute values) [42]. None of the
above papers permits an arbitrary global database,
separate from the artifacts. See [49] for a survey on
data-centric business process management, and [19]
for a survey of corresponding verification results.

7

5. DATA-DRIVEN WEB SERVICES
The goal of the Web services paradigm is to en-

able the use of Web-hosted services with a high de-
gree of flexibility and reliability. Web services can
function in a stand-alone manner, or they can be
“glued” together into multi-peer compositions that
implement complex applications. To describe and
reason about Web services, various standards and
models have been proposed, focusing on different
levels of abstraction and targeting different aspects
of the Web service. We refer to [48] for a tutorial.
We illustrate with an example the WebML ap-

proach to specifying data-driven web services, for-
mally studied in [32, 33].
Consider the common scenario of a web service

that takes input from external users and responds
by producing output. The contents of a Web page
is determined dynamically by querying the underly-
ing database as well as the state. The output of the
Web site, transitions from one Web page to another,
and state updates, are determined by the current in-
put, state, and database, and defined by first-order
queries. We are interested in services specified by a
high-level tool such as WebML (and Web Ratio).
We illustrate in Figure 2 a WebML-style spec-

ification of an e-commerce Web site selling com-
puters online. New customers can register a name
and password, while returning customers can login,
search for computers fulfilling certain criteria, add
the results to a shopping cart, and finally buy the
items in the shopping cart.
A run of the above Web site starts as follows.

Customers begin at the home page by providing
their login name and password, and choosing one
of the provided buttons (login, register, or cancel).
Suppose the choice is to login. The reaction of
the Web site is determined by a query checking if
the name and password provided are found in the
database of registered users. If the answer is pos-
itive, the login is successful and the customer pro-
ceeds to the Customer page or the Administration
page depending on his status. Otherwise, there is
a transition to the Error page. This continues as
described by the flowchart in the figure.

Verification of data-driven web services

The verification problem for database-driven web
services has been studied using a transducer-based
formal model, called Extended Abstract State Ma-
chine Transducer, in brief ASM+ . The transducer
model captures in a simple way the essential fea-
tures of relational database-driven reactive systems.
The model is an extension of the Abstract State
Machine (ASM) transducer previously studied by

Spielmann [67]. Similarly to the earlier relational
transducers of Abiteboul et. al. [3], ASM+ trans-
ducers model database-driven reactive systems that
respond to input events by producing some output,
and maintain state information in designated rela-
tions. The control of the device is specified using
first-order queries. The main motivation for ASM+

transducers is that they are sufficiently powerful to
simulate complex Web service specifications in the
style of WebML. Thus, they are a convenient vehi-
cle for developing the theoretical foundation for the
verification of such systems, and they also provide
the basis for the implementation of a verifier.
As in the case of business artifacts, restrictions

are needed on the ASM+ transducers and proper-
ties in order to ensure decidability of verification.
The main restriction, first proposed in [67] for ASM
transducers, is called “input boundedness”. The
core idea of input boundedness is that quantifica-
tions used in formulas of the specification and prop-
erty are guarded by input atoms. For example, if
pay is an input, the LTL-FO formula (where B is
shorthand for before)

∀x (G (∃z(pay(x, z) ∧ price(x, z)) B ship(x)))

is input bounded, since the quantification ∃z is
guarded by pay(x, z). This restriction matches nat-
urally the intuition that the system modeled by the
transducer is input driven. The actual restriction
is quite technical, but provides an appealing pack-
age. First, it turns out to be tight, in the sense that
even small relaxations lead to undecidability. Sec-
ond, as argued in [32, 33], it remains sufficiently rich
to express a significant class of practically relevant
applications and properties. As a typical example,
the e-commerce Web application illustrated in Fig-
ure 2 can be modeled under this restriction, and
many relevant natural properties can be expressed.
Third, as in the case of artifacts without depen-
dencies or arithmetic, the complexity of verification
is pspace (for fixed-arity schemas). Moreover, the
proof technique developed to show decidability in
pspace provides the basis for the implementation
of an actual verifier, described next.

The WAVE Verifier

While the pspace upper bound obtained for ver-
ification in the input-bounded case is encouraging
from a theoretical viewpoint, it does not provide
any indication of practical feasibility. Fortunately,
it turns out that the symbolic approach described
above also provides a good basis for efficient imple-
mentation. Indeed, this technique lies at the core
of the wave verifier, targeted at data-driven Web
services of the WebML flavor [35, 31].

8

Hone page(HP)

Name

passwd

cancel

Desktop

My order laptop

Product detail page(PP)

Product detail

Add to cart

laptop Search(LSP)

Desktop search

Ram:

Hdd:

Display:

search

login

back

Cart detail

Continue shopping

submit

M

Error Message

homepage

Continue shopping

logout

View cart

Continue shopping

logout

View cart

Continue shopping

back Continue shopping

logout
logout

back View cartView cart Continue shopping

View cart

Pending Order (POP)

Pending Order

logout

Order status(OSP)

Order status

cancel

back View cart Continue shopping

logout

Cancel confirmation page(CCP)

logout

View cart

Administrate order page (AP)

Order

logout

ship

back Continue contol

Shipment confirmation page(SCP)

Continue control

logout

register

register

Your registration is successful,

Now you are log in

Continue shopping

logout

Buy items in cartEmpty cart

delete

View cart Continue shoppingback

Continue Shopping

Credit Verification

Continue control

New user Page(NP)
Error Message page(MP)

Name

Passwd

Re-passwd

clear back

Customer page(CP) logout

Sucessful Registration(RP)

Desktop Search(DSP)

Desktop search

Ram:

Hdd:

View Order page(VOP) logout

Order status

search

Product index page(PIP)
logout

Matching products

back View cart

Deletion confirmation page(DCP)

logout

Cart Content(CC) logout

User payment(UPP) logout

Confirmation page(COP)
Payment

CC No:

Expire date

Order detail

back View cart Continue shopping

Figure 2: Web pages in the computer shopping site.

9

The verifier, as well as its target specification
framework, are both implemented from scratch.
Thus, we first developed a tool for high-level, ef-
ficient specification of data-driven Web services, in
the spirit of WebML. Next, we implemented wave

taking as input a specification of a Web service us-
ing our tool, and an LTL-FO property to be ver-
ified. The starting point for the implementation
is the symbolic run technique. Indeed, the veri-
fier basically carries out a search for counterexam-
ple symbolic runs. However, verification becomes
practical only in conjunction with an array of addi-
tional heuristics and optimization techniques, yield-
ing critical improvements. Chief among these is
dataflow analysis, allowing to dramatically prune
the search for counterexample runs.
The verifier was evaluated on a set of practically

significant Web application specifications, mimick-
ing the core features of sites such as Dell, Expe-
dia, and Barnes and Noble. The experimental re-
sults are quite exciting: we obtained surprisingly
good verification times (on the order of seconds),
suggesting that automatic verification is practically
feasible for significant classes of properties and Web
services. The implementation and experimental re-
sults are described in [31], and a demo of the WAVE
prototype was presented in [34].

Compositions of ASM+ Transducers

The verification results discussed above apply to
single ASM+ transducers in isolation. These re-
sults were extended in [35] to the more challeng-
ing but practically interesting case of compositions
of ASM+ transducers, modeling compositions of
database-driven Web services. Asynchronous com-
munication between transducers adds another di-
mension that has to be taken into account. In an
ASM+ composition, the transducers communicate
with each other by sending and receiving messages
via one-way channels. Properties of runs to be veri-
fied are specified in an extension of LTL-FO, where
the FO components may additionally refer to the
messages currently read and received.
Towards decidable verification, we extend in a

natural way the input-boundedness restriction. Ad-
ditional restrictions must be placed on the message
channels: they may be lossy, but are required to
be bounded. With these restrictions, verification is
again shown to be pspace-complete (for fixed-arity
relations, and expspace otherwise). The proof is
by reduction to the single transducer case.
The above model of compositions assumes that

all specifications of participating peers are available
to the verifier. However, compositions may also in-

volve autonomous parties unwilling to disclose the
internal implementation details. In this case, the
only information available is typically a specifica-
tion of their input-output behavior. This leads to
an investigation of modular verification. It consists
in verifying that a subset of fully specified trans-
ducers behaves correctly, subject to input-output
properties of the other transducers. Decidability re-
sults are obtained in [35] for verification, subject to
an appropriate extension of the input-boundedness
restriction.

6. CONCLUSIONS
Database-driven systems provide the backbone

of many complex applications for which verifica-
tion is critically important. A fortunate develop-
ment facilitating this task is the emergence of high-
level specification tools centered around database
queries, that provide a natural target for verifica-
tion. The results we described suggest that verifi-
cation may indeed be feasible for significant classes
of database-driven systems so specified. The theo-
retical results, as well as the preliminary implemen-
tation of an actual verifier exhibiting suprisingly
good performance, are made possible by a novel
coupling of techniques from database theory and
model checking. The encouraging results suggest
that this approach is quite promising, and may be
just the starting point of a fruitful marriage between
the database and computer-aided verification areas.

7. REFERENCES
[1] Web Ratio. http://www.webratio.com/.
[2] S. Abiteboul and V. Vianu. Collaborative

data-driven workflows: think global, act local.
In PODS, 2013.

[3] S. Abiteboul, V. Vianu, B. Fordham, and
Y. Yesha. Relational transducers for electronic
commerce. JCSS, 61(2):236–269, 2000.

[4] B.B.Hariri, D.Calvanese, G. D. Giacomo,
R. D. Masellis, and P.Felli. Foundations of
relational artifacts verification. In BPM, 2011.

[5] F. Belardinelli, A. Lomuscio, and F. Patrizi.
Verification of gsm-based artifact-centric
systems through finite abstraction. In ICSOC,
2012.

[6] K. Bhattacharya, N. S. Caswell, S. Kumaran,
A. Nigam, and F. Y. Wu. Artifact-centered
operational modeling: Lessons from customer
engagements. IBM Sys. Journal, 46(4), 2007.

[7] K. Bhattacharya et al. A model-driven
approach to industrializing discovery
processes in pharmaceutical research. IBM
Systems Journal, 44(1), 2005.

10

[8] K. Bhattacharya, C. E. Gerede, R. Hull,
R. Liu, and J. Su. Towards formal analysis of
artifact-centric business process models. In
BPM, 2007.

[9] BizAgi and Cordys and IBM and Oracle and
SAP AG and Singularity (OMG Submitters)
and Agile Enterprise Design and Stiftelsen
SINTEF and TIBCO and Trisotech
(Co-Authors). Case Management Model and
Notation (CMMN), FTF Beta 1, Jan. 2013.
OMG Document Number dtc/2013-01-01,
Object Management Group.

[10] D. Boaz, L. Limonad, and M. Gupta.
BizArtifact: Artifact-centric Business Process
Management, June 2013.
http://sourceforge.net/projects/bizartifact/.

[11] M. Bojanczyk, A. Muscholl, T. Schwentick,
L. Segoufin, and C. David. Two-variable logic
on words with data. In LICS, 2006.

[12] A. Bouajjani, P. Habermehl, Y. Jurski, and
M. Sighireanu. Rewriting systems with data.
In FCT’07.

[13] A. Bouajjani, P. Habermehl, and R. Mayr.
Automatic verification of recursive procedures
with one integer parameter. Theoretical
Computer Science, 295:85–106, 2003.

[14] A. Bouajjani, Y. Jurski, and M. Sighireanu. A
generic framework for reasoning about
dynamic networks of infinite-state processes.
In TACAS’07.

[15] P. Bouyer. A logical characterization of data
languages. Inf. Processing Letters, 84(2), 2002.

[16] P. Bouyer, A. Petit, and D. Thérien. Algebraic
approach to data languages and timed
languages. Inf. and Comp., 182(2), 2003.

[17] M. Brambilla, S. Ceri, S. Comai,
P. Fraternali, and I. Manolescu. Specification
and design of workflow-driven hypertexts.
Journal of Web Engineering, 1(1), 2002.

[18] O. Burkart, D. Caucal, F. Moller, and
B. Steffen. Verification of infinite structures.
In Handbook of Process Algebra, pages
545–623. Elsevier Science, 2001.

[19] D. Calvanese, G. De Giacomo, and
M. Montali. Foundations of data-aware
process analysis: a database theory
perspective. In PODS, 2013.

[20] S. Ceri, P. Fraternali, A. Bongio,
M. Brambilla, S. Comai, and M. Matera.
Designing data-intensive Web applications.
Morgan-Kaufmann, 2002.

[21] T. Chao et al. Artifact-based transformation
of IBM Global Financing: A case study. In
BPM, 2009.

[22] E. M. Clarke, O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, 2000.

[23] D. Cohn, P. Dhoolia, F. Heath, F. Pinel, and
J. Vergo. Siena: From powerpoint to web app
in 5 minutes. In ICSOC, 2008.

[24] E. Damaggio, A. Deutsch, and V. Vianu.
Artifact systems with data dependencies and
arithmetic. In ICDT, 2011.

[25] E. Damaggio, R. Hull, and R. Vacuĺın. On the
equivalence of incremental and fixpoint
semantics for business artifacts with
guard-stage-milestone lifecycles. Information
Systems, 38:561–584, 2013.

[26] G. De Giacomo, R. D. Masellis, and
R. Rosati. Verification of conjunctive
artifact-centric services. Int. J. Cooperative
Inf. Syst., 21(2):111–140, 2012.

[27] H. de Man. Case management: Cordys
approach. BP Trends (www.bptrends.com), 2009.

[28] S. Demri and R. Lazić. LTL with the Freeze
Quantifier and Register Automata. In LICS,
2006.

[29] S. Demri, R. Lazić, and A. Sangnier. Model
checking freeze LTL over one-counter
automata. In FoSSaCS, 2008.

[30] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu.
Automatic verification of data-centric
business processes. In ICDT, 2009.

[31] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and
D. Zhou. A verifier for interactive, data-driven
web applications. In SIGMOD, 2005.

[32] A. Deutsch, L. Sui, and V. Vianu.
Specification and verification of data-driven
web services. In PODS, 2004.

[33] A. Deutsch, L. Sui, and V. Vianu.
Specification and verification of data-driven
web services. JCSS, 73(3):442–474, 2007.

[34] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. A
system for specification and verification of
interactive, data-driven Web applications. In
SIGMOD, 2006.

[35] A. Deutsch, L. Sui, V. Vianu, and D. Zhou.
Verification of communicating data-driven
Web services. In PODS, pages 90–99, 2006.

[36] G. Dong, R. Hull, B. Kumar, J. Su, and
G. Zhou. A framework for optimizing
distributed workflow executions. In DBPL,
1999.

[37] E. A. Emerson. Temporal and modal logic. In
J. V. Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B:
Formal Models and Sematics, pages 995–1072.
North-Holland Pub. Co./MIT Press, 1990.

[38] R. Fagin, P. G. Kolaitis, R. J. Miller, and

11

L. Popa. Data exchange: Semantics and query
answering. In ICDT, 2003.

[39] M. F. Fernández, D. Florescu, A. Y. Levy,
and D. Suciu. Declarative specification of web
sites with Strudel. VLDB Journal, 9(1), 2000.

[40] D. Florescu, K. Yagoub, P. Valduriez, and
V. Issarny. WEAVE: A data-intensive web
site management system(software
demonstration). In EDBT, 2000.

[41] C. E. Gerede, K. Bhattacharya, and J. Su.
Static analysis of business artifact-centric
operational models. In SOCA, 2007.

[42] C. E. Gerede and J. Su. Specification and
verification of artifact behaviors in business
process models. In ICSOC, 2007.

[43] R. Glushko and T. McGrath. Document
Engineering: Analyzing and Designing
Documents for Business Informatics and Web
Services. MIT Press, Cmabridge, MA, 2005.

[44] B. B. Hariri, D. Calvanese, G. De Giacomo,
A. Deutsch, and M. Montali. Verification of
relational data-centric dynamic systems with
external services. In PODS, 2013.

[45] R. Hull, E. Damaggio, R. D. Masellis,
F. Fournier, M. Gupta, F. H. III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam,
P. Sukaviriya, and R. Vacuĺın. Business
artifacts with guard-stage-milestone lifecycles:
Managing artifact interactions with conditions
and events. In ACM DEBS, 2011.

[46] R. Hull, F. Llirbat, B. Kumar, G. Zhou,
G. Dong, and J. Su. Optimization techniques
for data-intensive decision flows. In ICDE,
2000.

[47] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong,
B. Kumar, and G. Zhou. Declarative
workflows that support easy modification and
dynamic browsing. In Proc. Int. Joint Conf.
on Work Activities Coordination and
Collaboration, 1999.

[48] R. Hull and J. Su. Tools for design of
composite web services. In SIGMOD, 2004.

[49] R. Hull, J. Su, and R. Vacuĺın. Data
management perspectives on business process
management: tutorial overview. In SIGMOD,
2013.

[50] M. Jurdzinski and R. Lazić. Alternation-free
modal mu-calculus for data trees. In LICS,
2007.

[51] S. Kumaran, P. Nandi, T. Heath,
K. Bhaskaran, and R. Das. ADoc-oriented
programming. In Symp. on Applications and
the Internet (SAINT), 2003.

[52] R. Lazić, T. Newcomb, J. Ouaknine,

A. Roscoe, and J. Worrell. Nets with tokens
which carry data. In ICATPN’07.

[53] L. Libkin. Elements of Finite Model Theory.
Springer, 2004.

[54] R. Liu, K. Bhattacharya, and F. Y. Wu.
Modeling business contexture and behavior
using business artifacts. In CAiSE, 2007.

[55] M. Marin, R. Hull, and R. Vacuĺın. Data
centric bpm and the emerging case
management standard: A short survey. In
BPM Workshops, 2012.

[56] D. Martin et al. OWL-S: Semantic markup for
web services, W3C Member Submission,
November 2003. http://www.daml.org/services/.

[57] S. A. McIlraith, T. C. Son, and H. Zeng.
Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

[58] G. Mecca, P. Merialdo, and P. Atzeni.
Araneus in the era of XML. IEEE Data
Engineering Bulletin, 22(3):19–26, 1999.

[59] S. Merz. Model checking: a tutorial overview.
In Modeling and verification of parallel
processes. Springer-Verlag New York, 2001.

[60] M. L. Minsky. Computation: finite and
infinite machines. Prentice-Hall, 1967.

[61] P. Nandi and S. Kumaran. Adaptive business
objects – a new component model for business
integration. In Proc. Intl. Conf. on Enterprise
Information Systems, 2005.

[62] F. Neven, T. Schwentick, and V. Vianu.
Finite State Machines for Strings Over
Infinite Alphabets. ACM Transactions on
Computational Logic, 5(3):403–435, 2004.

[63] A. Nigam and N. S. Caswell. Business
artifacts: An approach to operational
specification. IBM Systems Journal, 42(3),
2003.

[64] A. Pnueli. The temporal logic of programs. In
FOCS, 1977.

[65] L. Segoufin and S. Torunczyk. Automata
based verification over linearly ordered data
domains. In STACS, 2011.

[66] A. Sistla and E. Clarke. The complexity of
propositional linear temporal logic. J. of the
ACM, 32:733–749, 1985.

[67] M. Spielmann. Verification of relational
transducers for electronic commerce. JCSS.,
66(1):40–65, 2003.

[68] J. Wang and A. Kumar. A framework for
document-driven workflow systems. In BPM,
2005.

[69] W.-D. Zhu et al. Advanced Case Man-
agement with IBM Case Manager. Available at
http://www.redbooks.ibm.com/abstracts/sg247929.html?Open.

12

