
Lawrence Berkeley National Laboratory
LBL Publications

Title
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence 
(DRAGON-AI)

Permalink
https://escholarship.org/uc/item/10x4r512

Journal
Journal of Biomedical Semantics, 15(1)

ISSN
2041-1480

Authors
Toro, Sabrina
Anagnostopoulos, Anna V
Bello, Susan M
et al.

Publication Date
2024-10-01

DOI
10.1186/s13326-024-00320-3
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/10x4r512
https://escholarship.org/uc/item/10x4r512#author
https://escholarship.org
http://www.cdlib.org/


Toro et al. Journal of Biomedical Semantics           (2024) 15:19  
https://doi.org/10.1186/s13326-024-00320-3

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of
Biomedical Semantics

Dynamic Retrieval Augmented Generation 
of Ontologies using Artificial Intelligence 
(DRAGON-AI)
Sabrina Toro1, Anna V. Anagnostopoulos2, Susan M. Bello2, Kai Blumberg3, Rhiannon Cameron4, 
Leigh Carmody5, Alexander D. Diehl6, Damion M. Dooley4, William D. Duncan7, Petra Fey8, Pascale Gaudet9, 
Nomi L. Harris10, Marcin P. Joachimiak10, Leila Kiani11, Tiago Lubiana12, Monica C. Munoz‑Torres13, 
Shawn O‘Neil1, David Osumi‑Sutherland14, Aleix Puig‑Barbe15, Justin T. Reese10, Leonore Reiser16, 
Sofia MC. Robb17, Troy Ruemping18, James Seager19, Eric Sid20, Ray Stefancsik15, Magalie Weber21, 
Valerie Wood22, Melissa A. Haendel1 and Christopher J. Mungall10* 

Abstract 

Background Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, 
environmental, and food sciences, representing consensus knowledge in an accurate and computable form. How‑
ever, their construction and maintenance demand substantial resources and necessitate substantial collaboration 
between domain experts, curators, and ontology experts.

We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON‑AI), an ontology generation 
method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON‑AI can gen‑
erate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstruc‑
tured text sources.

Results We assessed performance of DRAGON‑AI on de novo term construction across ten diverse ontologies, 
making use of extensive manual evaluation of results. Our method has high precision for relationship generation, 
but has slightly lower precision than from logic‑based reasoning. Our method is also able to generate definitions 
deemed acceptable by expert evaluators, but these scored worse than human‑authored definitions. Notably, evalua‑
tors with the highest level of confidence in a domain were better able to discern flaws in AI‑generated definitions. We 
also demonstrated the ability of DRAGON‑AI to incorporate natural language instructions in the form of GitHub issues.

Conclusions These findings suggest DRAGON‑AI’s potential to substantially aid the manual ontology construction 
process. However, our results also underscore the importance of having expert curators and ontology editors drive 
the ontology generation process.

Keywords Ontologies, Large language models, Biocuration, Artificial intelligence, Knowledge graphs, Ontology 
engineering
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Background
Ontologies are structured representations of knowl-
edge, consisting of a collection of terms organized 
using logical relationships and textual information. In 
the life sciences, ontologies such as the Gene Ontology 
(GO) [1], Mondo [2], Uberon [3], and FoodOn [4] are 
used for a variety of purposes such as curation of gene 
function and expression, classification of diseases, or 
annotation of food datasets. Ontologies are core com-
ponents of major data generation projects such as The 
Encyclopedia of DNA Elements (ENCODE) [5] and the 
Human Cell Atlas [6]. The construction and mainte-
nance of ontologies is a knowledge- and resource-inten-
sive task, carried out by dedicated teams of ontology 
editors, working alongside the curators who use these 
ontologies to curate literature and annotate data. Due 
to the pace of scientific change, the rapid generation 
of diverse data, the discovery of new concepts, and 
the diverse needs of a broad range of stakeholders, 
most ontologies are perpetual works in progress. Many 
ontologies have thousands, or tens of thousands of 
terms, and are continuously growing. There is a strong 
need for tools that help ontology editors fulfill requests 
for new terms and other changes.

Currently, most ontology editing workflows involve 
manual entry of multiple pieces of information (also 
called axioms) for each term or class in the ontology. 
This information includes the unique identifier, a human-
readable label, a textual definition, as well as relationships 
that connect terms to other terms, either in the same 
ontology or a different ontology [7]. For example, the Cell 
Ontology (CL) [8] term with the ID CL:1001502 has the 
label “mitral cell”, a subClassOf (is-a) relationship to the 
term “interneuron” (CL:0000099), a “has soma location” 
relationship [9] to the Uberon term “olfactory bulb mitral 
cell layer” (UBERON:0004186), as well as a textual defini-
tion: The large glutaminergic nerve cells whose dendrites 
synapse with axons of the olfactory receptor neurons in the 
glomerular layer of the olfactory bulb, and whose axons 
pass centrally in the olfactory tract to the olfactory cortex. 
Most of this information is entered manually, using either 
a dedicated ontology development environment such as 
Protégé [10] or using spreadsheets that are subsequently 
translated into an ontology using tools like ROBOT [11]. 
In some cases, the assignment of an is-a relationship 
can be automated using OWL reasoning [12], but this 
relies on the ontology developer specifying logical defini-
tions (a particular kind of axiom) for a subset of terms in 
advance. This strategy is used widely in multiple different 
biological ontologies (bio-ontologies), in particular, those 
involving many compositional terms, resulting in around 
half of the terms having subclass relationships automati-
cally assigned in this way [13–16].

Except for the use of OWL reasoning to infer is-a rela-
tionships, the work of creating ontology terms is largely 
manual. The field of Ontology Learning (OL) aims to use 
a variety of statistical and Natural Language Processing 
(NLP) techniques to automatically construct ontologies, 
but the end results still require significant manual post-
processing and manual curation by experts [17], and cur-
rently no biological ontologies make use of OL. Newer 
Machine Learning (ML) techniques such as link predic-
tion leverage the graph structure of ontologies to predict 
new links, but state-of-the-art ontology link prediction 
algorithms such as rdf2vec [18] and owl2vec* [19] have 
low accuracy, and these also have yet to be adopted in 
standard ontology editing workflows.

A new approach that shows promise for helping to 
automate ontology term curation is instruction-tuned 
LLMs [20] such as the gpt-4 model that underpins 
ChatGPT [21]. LLMs are highly generalizable tools that 
can perform a wide range of generative tasks, including 
extracting structured knowledge from text and generat-
ing new text [22, 23]. One area that has seen widespread 
adoption of LLMs is software engineering, where it is 
now common to use tools such as GitHub Copilot [24] 
that are integrated within software development environ-
ments and perform code autocompletion. We have previ-
ously noted analogies between software engineering and 
ontology engineering and have successfully transferred 
tools and workflows from the former to the latter [25]. 
We are therefore drawn to the question of whether the 
success of generative AI in software could be applied to 
ontologies.

Here we describe and evaluate DRAGON-AI, an LLM-
backed method for assisting in the task of ontology term 
completion. Given a portion of an ontology term (for 
example, the label/name, or the definition), the goal is 
to generate other requisite parts (for example, a textual 
description, or relationships to other terms). Our method 
accomplishes this using combinations of latent knowl-
edge encoded in LLMs, knowledge encoded in one or 
more ontologies, or semi-structured knowledge sources 
such as GitHub issues, using a Retrieval Augmented Gen-
eration (RAG) approach. RAG is a common technique 
used to enhance the reliability of LLMs by combining 
them with an existing knowledge base or document store 
[26]. RAG is typically implemented by indexing docu-
ments or records as vectors created from textual embed-
dings—the most similar documents are retrieved in 
response to a query, and injected into the LLM prompt. 
We demonstrate the use of DRAGON-AI to generate 
both logical relationships and textual definitions over ten 
different ontologies drawn from the Open Biological and 
Biomedical Ontologies (OBO) Foundry [27]. To evaluate 
the automated textual definitions, we recruited ontology 
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editors from the OBO community to rank these defini-
tions according to three criteria.

We demonstrate that DRAGON-AI is able to achieve 
meaningful performance on both logical relationship and 
text generation tasks.

Implementation
DRAGON-AI is a method that allows for AI-based auto-
completion of ontology objects. The input for the method 
is a partially completed ontology term (for example, just 
the term label, such as “hydroxyprolinuria”), and the out-
put is a JSON or YAML object that has all desired fields 
populated, including the text definition, logical defini-
tion, and relationships.

The procedure is shown in Fig.  1. As an initial step, 
each ontology term and any additional contextual 

information is translated into a vector embedding, which 
is used as an index for retrieving relevant terms. Addi-
tional contextual information can include the contents of 
a GitHub issue tracker, which might contain text or semi-
structured information of relevance to the request. The 
main ontology completion step works by first construct-
ing a prompt using relevant contextual information. The 
prompt is passed as an input to an LLM, and the results 
are parsed to retrieve the completed term object.

Indexing ontologies and ontology embeddings
As an initial step, DRAGON-AI will create a vector 
embedding [28] for each term. Each term is represented 
as a structured object which is serialized using JSON, fol-
lowing a schema with the following properties:

Fig. 1 The DRAGON‑AI ontology term completion process. (1) As an initial preprocessing step, knowledge resources (such as ontologies 
and GitHub issues) are indexed in a vector database. (2) A user provides a partial ontology term object (here, a term with only the label 
of the desired term “hydroxyprolinuria” is provided). (3) The vector database is queried for similar terms (e.g. cystathioninuria, hydroxyproline) 
or other relevant pieces of information (e.g. a GitHub issue). (4) A prompt is generated from a template, incorporating the most similar items 
in the vector database. (5) The prompt is provided as textual input to an LLM, which returns a completed JSON object. Either local or remote 
LLMs can be used. (6) The parsed object is returned to the user. Note that this figure uses YAML syntax to represent JSON objects, for the sake 
of compactness
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• id: a translated identifier for the term, as described 
below

• label: a string with a human readable label or name 
for the term

• definition: an optional string with a human-read-
able textual definition

• relationships: a list of relationship objects
• original_id: the original untranslated identifier
• logical_definitions: an optional list of rela-

tionship objects

A relationship object has the following properties:

• predicate: a translated identifier for the relation-
ship type. For bio-ontologies, this is typically taken 
from the Relation Ontology [29], or is the subClassOf 
predicate, for is-a relations

• target: a translated identifier for the term that the 
relationship points to, either in the same ontology, or 
a different ontology

Ontology terms are typically referred to using non-
semantic numeric identifiers (for example, CL:1001502). 
These can confound LLMs, which have a tendency to 
hallucinate identifiers [30]. In our initial experiments, 
we found LLMs tend to perform best if presented with 
information in the same way that information is pre-
sented to humans, presumably as the majority of their 
training data is in this form. Therefore, we chose to trans-
form all identifiers from a non-semantic numeric form 
(e.g. CL:1001502) to a symbol represented by the ontol-
ogy term label in camel case format (e.g. MitralCell). An 
example is shown in Table 1.

We create a vector embedding for each term by first 
translating the object to text, and then embedding the 
text. The text is created by concatenating the label, defi-
nition, and relationships as key-value pairs. For this 
study we used the OpenAI text-embedding-ada-002 text 
embedding model, accessed via the OpenAI API.

We store objects and their embeddings using the Chro-
maDB database [31]. This allows for efficient queries to 
retrieve the top k matching objects for an input object, using 
the Hierarchical Navigable Small World graph search algo-
rithm [32].

Indexing unstructured and semi‑structured knowledge
Additional contextual knowledge can be included in 
DRAGON-AI to inform the term completion pro-
cess – for example, publications from PubMed, articles 
from Wikipedia, or documentation intended for human 
ontology editors. One of the most important sources of 
knowledge for ontology terms is the content of GitHub 
issue trackers, where new term requests and other term 
change requests are proposed and discussed. Information 
in these trackers may be free text, or partially structured.

We used the GitHub API to load GitHub issues and 
store the resulting JSON objects, which are indexed with-
out any specialized pre-processing. The text-serialized 
form of the GitHub JSON object is used as input for the 
embeddings. We store these JSON objects separately 
from the main ontology term objects.

Prompt generation using Retrieval Augmented Generation
At the core of the DRAGON-AI approach is the genera-
tion of a prompt that is passed as input to an LLM. The 
prompt includes the partial term, and an instruction 

Table 1 Example JSON structure used in DRAGON‑AI

In this example, OBO format syntax is shown at the top, including the non-semantic numeric identifier (id), the term label (name), the SubClass_Of relationship (is_a), 
another relationship using terms from the Relation Ontology (RO) and the Uberon ontology, and the human-readable textual definition

The corresponding JSON object form shown is below, including the camel case format of the term label (id), the non-semantic numeric identifier (original_id), 
the relationships using a predicate and target properties, also in camel case format, and the term definition. It should be noted that the JSON form omits some 
information from the OBO Format (e.g. the provenance of the definition)

id: CL:1,001,502
name: mitral cell
is_a: CL:0000099 ! interneuron
relationship: RO:0002100 UBERON:0004186 ! has-soma-location\ olfactory bulb mitral cell layer
definition: “The large glutaminergic nerve cells whose dendrites synapse with axons of the olfactory receptor neurons in the glomerular layer 
of the olfactory bulb, and whose axons pass centrally in the olfactory tract to the olfactory cortex” [MP:0009954]

{
“id”: “MitralCell”,
“original_id”: “CL:1,001,502”
“relationships”: [
{ “predicate”: “SubClassOf”, “target”: “Interneuron”},
{ “predicate”: “HasSomaLocation”, “target”: “OlfactoryBulbMitralCellLayer”}
],
“definition”: “The large glutaminergic nerve cells whose dendrites synapse with axons of the olfactory receptor neurons in the glomerular layer 
of the olfactory bulb, and whose axons pass centrally in the olfactory tract to the olfactory cortex”
}
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directing the model to complete the term, filling missing 
information, and return as a JSON object.

In order to guide the LLM to create a term that is 
similar in style to existing terms, and to guide the LLM 
to pick existing terms in relationships, we provide addi-
tional context within the prompt. This additional context 
includes existing relevant terms, provided in the same 
JSON format as the intended response. When prompting 
LLMs, it is common to include a small set of examples 
to help guide the model to provide the best responses 
(few-shot learning). One approach here is to use a static 
or fixed set of examples, but the drawback of this is that 
the pre-selected examples may not be applicable to the 
specific request from the user. Ideally, examples would be 
selected based on relevancy.

We use RAG as the general approach to retrieve the 
most relevant information. As a first step, the partial 
term object provided by the user is used as a query to the 
ontology terms loaded into the ontology vector index. An 
embedding is created from the text fields of the object 
(using the same embedding model as was used to index 
the ontology), and this is used to query the top k results 
(k is 10 by default). These form the in-context examples 
for the prompt. The intent is to retrieve terms that are 
similar to the intended term to inform the prediction 
of the completed term; for example, if the query term is 
“hydroxyprolinuria”, then similar terms in the ontology 
such as “cystathioninuria” will be informative.

Each retrieved example forms an input–output training 
pair which is concatenated directly into the prompt by 
serializing the JSON object, for example:

 input:
{“label”: “cystathioninuria”}
output:
{“definition”: “excretion of excessive amounts of cysta-

thionine in the urine”,
“Relationships”: [ {“predicate”: “subClassOf”, “target”: 

“Aminoaciduria”} ] }
To diversify search results, we implement Maximal 

Marginal Relevance (MMR) [33] in order to re-rank 
results. This helps with inclusion of terms that inform 
multiple cross-cutting aspects of the requested term, 
including terms from other relevant ontologies. For 
example, if the input is “hydroxyprolinuria” then the 
highest-ranking terms may be other phenotypes involv-
ing circulating molecules, but by diversifying search 
results we also include relevant chemical entities from 
ChEBI like “hydroxyproline”.

Optionally, additional information other than the 
source ontology can be included in the prompt. This 
potentially includes GitHub issues (accessed via the 
GitHub API), documentation written by and for ontology 
developers, and PubMed articles. For this study we only 

made use of GitHub issues. For these sources we also use 
a RAG method to select only the most semantically simi-
lar documents.

Different LLMs have different limits on the combined 
size of prompt and response. In order to stay within these 
limits, we reduce the number of in-context examples to 
the maximum number that still fits within the limit, or 
the number provided by the user, whichever is greater.

Prompt passing and result parsing
DRAGON-AI allows for a number of different ways 
to extract structured information as a response. These 
include using OpenAI function calls, or using a recur-
sive-descent approach via the SPIRES algorithm [34]. 
For this study we evaluated a pure RAG-based in-context 
approach, as shown in Fig. 1.

This prompt is presented to the LLM, which responds 
with a serialized JSON object analogous to the in-context 
examples. This response is parsed using a standard JSON 
parser, with additional preprocessing to remove extrane-
ous preamble text, and the results are merged with the 
input object to form the predicted object.

Relationship predictions are further post-processed 
to remove relationships to non-existent terms in the 
ontology or imported ontologies. Some of these corre-
spond to meaningful relationships to terms that have yet 
to be added. In the future, the system may be extended 
to include a step that fills in missing terms, but the cur-
rent behavior is to be conservative when predicting 
relationships.

Evaluation
We used 10 different ontologies in our evaluation: the 
Cell Ontology (CL) [8], UBERON, the Gene Ontology 
(GO), the Human Phenotype Ontology (HP) [35], the 
Mammalian Phenotype Ontology (MP) [36], The Mondo 
disease ontology (MONDO), the Environment Ontol-
ogy (ENVO) [37], the Food Ontology (FOODON), the 
Ontology of Biomedical Investigations (OBI) [38], and 
the Ontology of Biological Attributes (OBA) [39]. These 
were selected based on being widely used and impact-
ful and covering a broad range of domains, from basic 
science through to clinical practice, with representa-
tion outside biology (the Environment Ontology and 
FoodOn). This selection also represents a broad range of 
ontology development styles, from highly compositional 
ontologies making extensive use of templated design pat-
terns (OBA) to more individually structured. All selected 
ontologies make use of Description Logic (DL) axioma-
tizations, allowing for the use of reasoning to auto-clas-
sify the ontology, providing a baseline for comparison. 
Table 2 shows a summary of which tasks were performed 
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and evaluated on which ontologies. Table 3 has details of 
the models that were used in the study.

We subdivided each ontology into a core ontology plus 
a testing set of 50 terms. Where possible, we selected test 
terms from the set of terms that were added to the ontol-
ogy after November 2022, to minimize the possibility of 
test data leakage. This was not possible for ENVO, which 
has a less frequent release schedule, with the most recent 
release at the time of analysis being from February 2023, 
so this ontology included terms added in 2021 and 2022. 
Uberon also had fewer new terms in 2023, so the test set 
for this ontology was 40 terms.

We chose three tasks: prediction of (1)  relationships, 
(2) definitions, and (3)  logical definitions. For each task, 
the test set consists of ontology term objects with the 
field to be predicted masked (other fields such as the 
ontology term identifier were also masked, as these are 
another source of training data leakage). For example, to 
predict relationships, the text objects have only labels and 
text definitions present. We excluded OBI, HP, and MP 
from the logical definition analysis as these ontologies 
have more complex, nested logical definitions that don’t 
conform to the simple style supported in DRAGON-AI. 
We only evaluated textual definitions for nine of the ten 
ontologies based on evaluator expertise.

We tested three models (gpt-4, gpt-3.5-turbo, and 
nous-hermes-13b-ggml) against all ontologies for the 
three tasks. The first two models are proprietary closed 
models accessed via an API; the latter model is open, and 
was executed locally on an M1 MacOS system.

Relationship prediction evaluation
One of the main challenges in ontology learning is evalu-
ation, since the construction of ontologies involves some 
subjective decisions, and many different valid represen-
tations are possible [40]. An additional challenge is that 
ontologies allow for specification of things at different 
levels of specificity. For the relationship prediction task, 
we chose to treat the existing relationships in the ontol-
ogy as the gold standard, recognizing this may penalize 
alternative but valid representations.

If a predicted relationship matches a relationship that 
exists in the ontology, this counts as a true positive. If a 
predicted relationship is more general than a relationship 
in the ontology, then we do not count this as a full true 
positive, but instead treat it as an intermediate between 
true positive and false negative. We use Information 
Content (IC) based scores, in the same fashion as Criti-
cal Assessment of Function Annotation (CAFA) evalu-
ations [41]. The IC of an ontology term is calculated as 
the negative log of the probability of observing that 

Table 2 Ontologies and ontology versions used for evaluation

For each ontology we used the standard release product, except for GO, where we used the go-plus version, which has additional relationships to other ontologies. 
We took the most recent available version of each ontology, and separated the most recent terms into a test set. The minimum (oldest) date of each term is shown

Ontology Version Date of oldest term in 
test set

Terms Tested Tasks Performed and Evaluated

CL 2023–07‑20/cl.owl 2023–01‑10 50 all

ENVO 2023–02‑13/envo.owl 2021–05‑14 50 all

FOODON 2023–05‑03/foodon.owl 2023–01‑01 50 all

GO 2023–07‑27/extensions/go‑plus.owl 2023–01‑03 50 all

HP 2023–07‑21/hp.owl 2023–01‑16 50 relationships, definitions

MONDO 2023–08‑02/mondo.owl 2023–04‑01 50 all

MP 2023–08‑09/mo.owl 2023–02‑08 50 relationships, definitions

OBA 2023–08‑24/oba.owl 2022–11‑26 50 all

OBI 2023–07‑25/obi.owl 2022–12‑14 50 relationships

UBERON 2023–07‑25/uberon.owl 2023–01‑18 40 all

Table 3 Models evaluated, plus their versions/checkpoints

The OpenAI training set cutoff dates are based on what is reported on the OpenAI website

Model Checkpoint / Version Training set cutoff Access Description

gpt‑3.5‑turbo 0613 2021–09 API Proprietary model from OpenAI

gpt‑4 0613 2021–09 API Proprietary model from OpenAI

nous‑hermes‑13b‑ggml 2023–06 2023–02 Local Local quantized model fine‑
tuned from llama
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term as a subsumer of a random term in the ontology, 
IC(t) = -log(P(t)). We calculate the IC of the broader pre-
dicted term (ICp) and the narrower expected term (ICe), 
and assign the true positive to be the ratio ICp/ICe, and 
the false negative as 1-ICp/ICe.

A relationship (s, p, o) is counted as more general if 
the target node is traversable from the subject node over 
a combination of is-a (subClassOf) relationship and p 
relationship.

As a baseline, we also include OWL reasoning results 
using the Elk reasoner [42]. This is only applicable to 
subsumption (SubClassOf) relationships. For each sub-
sumption relationship in the ontology, we remove the 
relationship and use the reasoner to determine if the 
relationship is recapitulated. We use the OWLTools [43] 
tag-entailed-axioms command to do this. As all ontolo-
gies use OWL Reasoning as part of their release process, 
the precision of reasoning, when measured against the 
released ontology, is 1.0 by definition. However, recall and 
F1 [44] can be informative to determine breadth of cover-
age of reasoning.

Definition prediction evaluation
For the definition prediction task, we could not employ 
the same strategy as evaluation, as it is very rare for a pre-
dicted definition to be an exact match for the one that was 
manually authored in the ontology – however, these can-
not be counted as false positives as they may still be good 
definitions. We therefore used two methods for evalu-
ating definitions: (1)  measuring the semantic distance 
between predicted definition and curated definition using 
BERTScore [45]; (2) manual assessment of predicted and 
curated definitions. For scoring definitions, we used the 
bert-score package from PyPI, and used default param-
eters (English language, roberta-large as model).

For the manual evaluation, we enlisted ontology editors 
and curators to score predicted and curated definitions.

We first aggregated all generated definitions using all 
models along with the definitions that had previously 
been manually curated for the test set terms. We assigned 
each evaluator a task of evaluating a set of definitions by 
scoring using three different criteria. See supplementary 
methods for the templates used. The three scoring crite-
ria were:

• Biological accuracy: is the textual definition biologi-
cally accurate?

• Internal consistency: is the structure and content of 
the definition consistent with other definitions in the 
ontology, and with the style guide for that ontology?

• Overall score: overall utility of the definition.

For each of these metrics, an ordinal scale of 1–5 was 
used, with 1 being the worst, 3 being acceptable, and 
5 being the best. Assigning a consistency score was 
optional. Evaluators could also choose to use the same 
score for accuracy and overall score. Additionally, the 
evaluator could opt to provide a confidence score for their 
ranking, also on a score ranging from 1 (low confidence) 
to 5 (high confidence). We provided a notes column to 
allow for additional qualitative analysis of the results.

At least two evaluators were assigned to each ontology. 
Evaluators received individualized spreadsheets and were 
blinded from the source of the definition. They worked 
independently, and did not see the results of other evalu-
ators until their task was completed. Evaluators were also 
asked to provide a retrospective qualitative evaluation of 
the process, which we include in the discussion section.

To measure inter-annotator agreement we calculated 
the Intraclass Correlation Coefficient (ICC) measure. A 
one-way analysis of variance (ANOVA) model was fit-
ted to the data, treating the evaluator as a random effect. 
From the ANOVA table, we extracted the mean squares 
between evaluators (MSB) and the mean squares within 
evaluators (MSE). The ICC was then calculated using the 
formula:

We calculated the ICC for three metrics: accuracy, con-
sistency, and score. As a baseline, values above 0.5 are 
considered to indicate moderate consistency, with 0.75 
and over indicating good consistency.

Aggregating ICCs
The overall ICC values for accuracy, consistency, and 
score were computed by filtering the dataset based on a 
minimum confidence threshold and then applying the 
ICC calculation method to each metric. This provided 
a robust measure of inter-rater reliability for each of the 
evaluated metrics.

Execution
Our workflow is reproducible through our GitHub repos-
itory [46], also archived on Zenodo [47]. A Makefile is 
used to orchestrate extraction of ontologies, splitting 
test sets, loading into a vector database, and performing 
predictions. A collection of Jupyter Notebooks is used to 
evaluate and analyze the results.

Results
AI‑generated relationships have high precision 
but moderate recall
For each generated term across all 10 ontologies, we eval-
uated the generated relationships by comparing them to 

ICC = (MSB−MSE)/(MSB+ (k− 1)×MSE)
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existing relationships in the ontology. We subdivided this 
evaluation into two parts: (1) evaluating only subsuming 
parents (is-a/SubClassOf relationships) and (2)  evaluat-
ing all relationships (making use of heterogeneous rela-
tionship types). We compared AI-generated relationships 
against the use of DL reasoning using the Elk reasoner.

The aggregated results of the evaluation are summa-
rized in Table 4. In all cases, the best performing model 
for use with DRAGON-AI is gpt-4. On the SubClassOf 
subtask, the best performing model has high precision 
(0.894), which is comparable with, but less precise than, 
using DL reasoning (which by its nature always has maxi-
mal precision). On this subtask, DRAGON-AI has better 
recall and F1 than using reasoning. For the heterogene-
ous relationship subtask, the overall scores are lower 
(0.802 for precision), but still indicate strong perfor-
mance. Note that this subtask is outside the capabilities 
of DL reasoning.

We also observed that different ontologies may be more 
or less amenable to relationship prediction, as shown in 
Fig.  2. However, note that the test set distribution may 
not be reflective of the overall distribution in the ontol-
ogy, as we limited testing to new terms only.

AI‑generated definitions score well, but less than existing 
definitions
For all ontologies, we generated text definitions for each 
term in the test set, providing only the label and relation-
ships, plus logical definitions if present. We evaluated the 
definitions automatically using semantic similarity, and 
manually using expert evaluation.

The BERTScore results are shown in Table  5. We 
include as a baseline the score of the definition versus a 
randomly selected definition across all ontologies. The 
results show that predicted definitions generally have 
good correspondence with manually curated definitions 
(with gpt models having an F1 >  = 0.92). While gpt-0.3.5-
turbo has higher scores than gpt-4, with nous-hermes-
13b last, the difference is minimal.

While the BERTScore method can be used to rank 
individual models, it does not directly inform us of the 

quality of the generated definitions. In addition, just 
because a generated definition doesn’t semantically 
match a curated definition, it doesn’t indicate that the 
generated definition is of poorer quality, as there are 
many valid ways to construct a definition for a concept.

In order to understand the quality of the generated def-
initions, we employed manual evaluation. Generated def-
initions were evaluated by curators and ontology editors 
and scored according to different criteria. The ICC values 
for accuracy, consistency, and overall score were 0.799, 
0.737, 0.770, indicating moderate to good consistency.

Overall, definitions authored by human curators scored 
highest on all three metrics (Table  6). DRAGON per-
formed acceptably (consistently above a grade of 3, which 
was considered acceptable) regardless of the underlying 
model, with gpt models outperforming the only open 
model evaluated (nous-hermes-13b). The performance 
gap between curated definitions and generated defini-
tions is statistically significant for all score types. The gap 
between gpt-3.5-turbo or gpt-4 and the open model was 
also statistically significant. However, the gap between 
gpt-3.5-turbo and gpt-4 was not significant.

The results of the manual evaluation are also available 
on HuggingFace [48].

Experts are more likely to detect flaws in AI‑generated 
definitions
The difference between the manually authored defini-
tions and the best AI generated definitions is statistically 
significant, yet moderate in effect. We hypothesized that 
this difference would decrease as the evaluator confi-
dence decreases – i.e. less confident evaluators would be 
less able to discriminate between a good definition and 
plausible yet flawed definition.

When we plot the performance gap between the best 
performing model and human curation, we can see a clear 
correlation between performance gap and confidence, 
with the lowest confidence showing no discrimination 
between model-generated and human curation  (Fig.  3). 
The correlation is highly significant (Pearson correlation 
coefficient 0.973).

Table 4 DRAGON‑AI results for relationship prediction task

We partition into two subtasks: filtered for SubClassOf, and filtered for all relationship types (heterogeneous relationship predictions). We also show OWL DL 
Reasoning results for the SubClassOf task. Note that by definition OWL DL reasoning is always completely precise as all entailments follow from existing axioms

SubClassOf Task All Relationship Types Task

method model precision recall F1 precision recall F1

DRAGON gpt‑3.5‑turbo 0.846 0.419 0.561 0.758 0.446 0.562

DRAGON gpt‑4 0.894 0.5 0.642 0.802 0.505 0.62
DRAGON nous‑hermes‑13b 0.73 0.353 0.476 0.64 0.355 0.457

Reasoner n/a 1.0* 0.337 0.504 n/a n/a n/a
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DRAGON‑AI can read and interpret GitHub issues 
to improve performance
We investigated whether providing background knowl-
edge from GitHub issue trackers would improve the 
quality of generated definitions. All of the evalu-
ated ontologies are in the OBO Foundry, and all have 

their own issue tracker. These trackers are used by the 
broader community (domain experts, curators, users 
of the ontology) to file issues requesting changes to 

Fig. 2 Metrics for relation prediction across 10 ontologies (gpt‑4 results only, filtered for SubClassOf/is‑a and all relationship types)

Table 5 DRAGON‑AI BERTScore evaluation

Scoring of generated definition against curated definition using BERTScore

method model name F1 P R

DRAGON gpt‑3.5‑turbo 0.923 0.933 0.914

DRAGON gpt‑4 0.920 0.928 0.912

DRAGON nous‑hermes‑13b 0.916 0.922 0.910

Random Selection n/a 0.838 0.845 0.832

Table 6 DRAGON‑AI performance on definition generation task

A comparison of base performance of DRAGON on definition generation when 
compared with existing editor-provided definitions. Evaluator scores shown 
for three score categories (accuracy, consistency, and overall score). Evaluators 
evaluated definitions generated by three different models, alongside existing 
ontology definitions. Evaluators were not shown the source of definitions until 
after evaluation

method model name accuracy score consistency

DRAGON gpt‑3.5‑turbo 4.058 3.632 3.735

DRAGON gpt‑4 3.97 3.567 3.689

DRAGON nous‑hermes‑13b 3.776 3.389 3.566

curator human 4.326 4.069 4.13
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the ontology or new terms. These issues are writ-
ten largely in natural language, sometimes in a semi-
structured form. For example, a typical request for the 
Cell Ontology is exemplified in issue 2241 [49], which 
requests a new term “liver-resident natural killer cell”. 
The requestor also provides a candidate textual defini-
tion, synonyms, and relationships to other terms. An 
issue may also include further comments from ontology 
editors to others, sometimes with extended discussions 
before arriving at consensus. Ontology editors typically 
work through issues in the GitHub tracker, implement-
ing them manually using the Protégé ontology editing 
tool. Assistance with this task is therefore helpful for 
the general ontology editing workflow.

In order to leverage GitHub requests, we applied 
the method RAG  + github, in which RAG is used to 
retrieve both the most relevant ontology terms and the 
most relevant GitHub issues, and both are included in 
the prompt. We restricted this analysis to two models 
(gpt-4 and gpt-3.5-turbo) and three ontologies (CL with 
2121 issues, UBERON with 2300 issues, and ENVO 
with 1436 issues indexed).

Including the GitHub issues improved performance 
of all models, although performance was still beneath 
manually authored definitions (Table 7). The difference 
between RAG with and without GitHub is statistically 
significant for both accuracy and score.

Overall, this indicates that generative AI can make 
use of sources of information intended primarily for 
humans as a part of their term creation workflow.

Logical definitions can be generated with high accuracy 
in some ontologies
We evaluated the ability of DRAGON-AI to generate 
logical definitions across four different ontologies. Only 
a subset of ontologies was used, as other ontologies did 
not have a sufficient number of logical definitions in 
newly added terms to test against, or logical definitions 
did not conform to the simple genus-differentia form.

The results are shown in Fig.  4, demonstrating wide 
variability.

Fig. 3 Performance gap vs confidence level. If an evaluator lacked confidence in their assessment (lower confidence level), they were more likely 
to assign an LLM‑generated definition a comparable score to a human curated one. As the evaluator confidence increases, the evaluator is more 
likely to rank the LLM‑generated definition lower than the human one

Table 7 Comparison of scores when GitHub issues are included 
as background knowledge

Method Model name Accuracy Score Consistency

DRAGON gpt‑3.5‑turbo 4.067 3.626 3.709

DRAGON + gh gpt‑3.5‑turbo 4.182 3.717 3.733

DRAGON gpt‑4 4.041 3.608 3.754

DRAGON + gh gpt‑4 4.241 3.805 3.893

curator human 4.439 4.158 4.182



Page 11 of 16Toro et al. Journal of Biomedical Semantics           (2024) 15:19  

Discussion
Generative AI shows promising capabilities to assist 
in ontology editing workflows, but should be used 
with caution
Our results demonstrate the feasibility of incorporating 
generative AI into ontology development workflows. For 
relationship generation, when we compare with exist-
ing ontology relationships, we demonstrate high preci-
sion, and moderate recall/F1. This indicates that results 
are generally correct, but may be incomplete. Even when 
AI results do not conform to asserted relationships in 
the ontology, they frequently represent a valid perspec-
tive that could be incorporated. For definition genera-
tion, AI-authored definitions rank close to yet lower than 
human-authored ones. The DRAGON-AI system is also 
able to leverage textual information from other sources 
to enhance its results. Additionally, DRAGON-AI is able 
to leverage additional textual sources of information such 
as GitHub issues.

Note that we do not expect AI-generated axioms to 
be perfect in order for them to be useful. We envision 
DRAGON-AI being used as part of an autocomplete sys-
tem within existing ontology development environments 
like Protégé, or in tabular editing environments used in 
conjunction with tools such as ROBOT, or as part of an 
integrated agent-based development environment such 
as OpenDevin [50]. Here the editor can be presented with 
suggested axioms to add, based on partial information 
they have entered, with the ability to easily accept, reject, 
or modify AI-generated suggestions, and ultimately even 

the ability to interact with the system using natural lan-
guage in order to hone results. This kind of autocomplete 
paradigm is already widely used in software development 
environments through tools such as GitHub Copilot. 
Copilot has been widely adopted by software develop-
ers (over one million paid subscribers), with most users 
self-reporting increased productivity [51]. This is despite 
the fact that Copilot suggestions are only accepted 30% 
of the time, in contrast with the precision of 82% we have 
achieved for ontology completion.

However, any such tool should be used with caution. 
For software development, some studies have shown that 
while AI tools can boost productivity, they can also be 
a liability for novice users [52]. Our results also showed 
that novice editors are more likely to be “tricked” by 
the AI. We demonstrated that if an evaluator had lower 
confidence in a domain, they were more likely to accept 
a generated definition on face value, even if incorrect. 
Evaluators with more experience in a domain are more 
likely to spot subtle problems with generated terms. We 
informally call this the “gaslighting effect”, and in fact a 
number of evaluators commented on the fact that they 
thought they were being “gaslit” by the AI. This is similar 
to a previously observed phenomenon of LLMs “sand-
bagging” their users [53]. This means that AI should be 
used with caution, particularly in the hands of less expe-
rienced ontology editors. Of course, it is also important 
to point out that ontology developers can make mistakes 
without AI, and all ontologies should employ appropri-
ate centralized QA/QC measures. In fact, assisting with 

Fig. 4 F1 score of logical definition prediction across four ontologies
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whole-ontology QA/QC represents a potential useful 
future application of AI.

Overall, our goal is to enhance the experience of ontol-
ogy editors and improve productivity. A recent study 
indicates that generative AI can help restructure tasks 
towards idea generation and away from tedious repeti-
tive tasks [54]. Our vision for DRAGON-AI is a tool that 
allows ontology editors and curators to employ their 
deep understanding of a domain to efficiently translate 
that knowledge, minimizing tedious tasks such as copy-
ing information from reference sources.

Challenges in evaluating ontologies by LLMs
There are a number of challenges in evaluating the effec-
tiveness of LLMs in ontology generation, including test 
data leakage and the inherent subjectivity of ontology 
construction.

Test data leakage occurs when the LLM training sets 
are contaminated with benchmark data. This is common, 
due to the fact they are trained on internet-sized corpora 
[55, 56]. Most LLMs have effectively memorized most 
public bio-ontologies. To minimize the possibility of test 
data leakage, we used only terms that had been added 
to ontologies after the training data cutoff of the major 
GPT models. However, this limited the size of the test 
corpus, and may have potentially limited the generaliz-
ability of the results, at least within ontologies (for many 
ontologies, the terms entered in a one-year period may 
not be representative of the overall content of the ontol-
ogy). It also makes it hard to evaluate the effectiveness of 
LLMs on de novo ontology construction, since the RAG 
approach makes heavy use of existing terms. Ontologies 
such as the GO and the Cell Ontology have existed for 
over two decades, and are the combined efforts of a mas-
sive number of editors, curators, and domain experts. 
We consider it a strength of the DRAGON-AI method 
that it is able to leverage this prior work via RAG when 
generating new terms; we consider this task relevant to 
the day-to-day efforts of biological ontology developers. 
However, it also means we did not address the question 
of how well the approach would perform on constructing 
an ontology from scratch, or from an early state. We are 
currently exploring the use of DRAGON-AI in the crea-
tion of de novo ontologies in the environmental domain. 
We have created an experimental ontology of over a 
thousand environmental variables and parameters for use 
in earth system simulation [57].

It is also important to emphasize that the success of AI 
methods on the ontologies we evaluated depends largely 
on the previous work of hundreds of ontology editors and 
curators working over decades. Ontologies are included 
within the datasets used in LLM pre-training, so the 

LLM already comes pre-equipped to recognize common 
patterns employed within these ontologies.

The paradigm of using terms added after the training 
date cutoff for evaluation is likely to become even less 
effective over time, as it becomes easier to update models 
with new data. The version of gpt-4 and gpt-3.5-turbo we 
used in this evaluation had a training date cutoff of Sep-
tember 2021, but the latest versions of these models have 
far more recent cutoffs. The open models we used also 
had recent cutoffs. Training a model from scratch with an 
older cutoff for evaluation purposes is simply not feasi-
ble due to the massive costs involved in pre-training. It is 
therefore vital that we invest in efforts to evaluate ontol-
ogy generation on new domains using terms that have 
not been used in pre-training.

The other challenge involves the inherent subjectiv-
ity of ontology construction; there are different ways to 
represent the same thing. For our relationship predic-
tion task we took the terms that were created by ontology 
editors as the gold standard, but the predicted relation-
ships that do not match these terms are not necessarily 
incorrect. When we manually examined the relationships 
counted as false positives, many were alternate represen-
tations, or simply relationships missing from the ontol-
ogy (see Supplementary material).

To overcome both these challenges, investing more in 
expert human evaluation is essential.

Future directions
Customizing RAG 
One of the strengths of DRAGON-AI is in-context learn-
ing from existing terms in the ontology. However, not all 
terms in an ontology are of equal quality. Ontologies that 
have been developed over long time frames may include 
“legacy” terms that do not serve as good exemplars. We 
therefore plan to extend the approach to allow the user 
to influence the ranking of terms returned by RAG, for 
example by prioritizing newer terms (presumably these 
are more reflective of current best practice in the ontol-
ogy), or allowing the use of metadata that marks certain 
terms as being good examples of best practice for par-
ticular kinds of terms.

Another area we intend to explore is the use of hybrid 
vector store and graph database backends, layered on 
existing triple stores such as Ubergraph [58]. This would 
allow for precise structured queries in retrieval, in addi-
tion to retrieval based on semantic similarity of texts.

Incorporation into ontology editing environments
In order for AI methods to be successful, they need to be 
seamlessly integrated into ontology editing workflows. 
For future development, we are considering a number of 
different potential workflows.
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The first workflow would be integrating AI methods 
into existing ontology development tools such as Protégé 
via a plugin. The plugin would function analogous to AI-
based code completion in software development envi-
ronments; the editor would create a new term, provide 
a label, and the plugin would suggest a completed term, 
which the editor could either accept outright, accept and 
then modify, or reject.

The second workflow would be integration into a tabu-
lar editing environment, where the editable tables are 
used as part of a tabular template-driven workflow, sup-
ported by a tool such as ROBOT templates [11], Dead 
Simple Design Patterns (DOSDPs) [59], OTTR templates 
[60], or LinkML [61].

The third workflow would be to design a new kind of 
user interface that reflects a potential new role for ontol-
ogy editors, with less emphasis on data entry and more 
on high level specification of requirements and evalu-
ation and honing of AI generated content. Here the 
interface may focus on text-oriented interactions, as in 
ChatGPT, coupled with easy ways to guide the AI. To 
this end, we have commenced work on a general-purpose 
AI-driven curation Integrated development environment 
(IDE) called CurateGPT [62]. All of the workflows evalu-
ated in this manuscript are supported in the current UI. 
However, a number of challenges need to be overcome to 
make this IDE usable. Some of these challenges involve 
the current low latency of LLM prompt completion; 
others involve making the interface more user friendly, 
which will require extensive feedback and iterative test-
ing from ontology editors and curators.

A fourth workflow is integration directly into LLM chat 
interfaces. One such mechanism is the “GPTs” feature of 
ChatGPT. We have recently developed a ROBOT tem-
plate GPT helper [63] and used this in the development 
of the Artificial Intelligence Ontology (AIO) [64].

Regardless of which interface paradigm is followed, 
we believe the most important functionality is a simple 
and intuitive way to accept, reject, or modify AI gener-
ated suggestions, as well as recording these responses, in 
order to continually improve the system.

Automated methods to validate generative AI results
In order to increase performance, and in particular, 
quality and reliability of results, we are exploring a two-
pronged approach to including automated validation as 
part of the DRAGON-AI workflow.

The first approach is to couple DRAGON-AI with an 
OWL reasoner: this will allow for filtering of redundant 
relationships, as well as inference of implicit relation-
ships. Note that the recall of OWL reasoning increases 
with the degree of axiomatization in ontologies, and 
many ontologies are under-axiomatized. Here we 

propose an approach involving generation of additional 
constraint style axioms, such as disjointness axioms, that 
will allow for OWL reasoners to detect errors in gener-
ated terms. It should also be possible for DRAGON-AI 
to both generate and populate ontology design patterns 
such as DOSDPs.

The second approach involves using methods such as 
RAG to try to find evidence for generated statements in 
the literature. In many ontologies, statements are accom-
panied by provenance information, such as bibliographic 
references or references to sources such as Wikipedia. 
In future studies we aim to combine DRAGON-AI with 
the Evidence Agent in CurateGPT [62], which is able to 
retrieve relevant references and apply as evidence. This 
could also be used as an additional filter.

Support for additional workflows
In this paper we demonstrate the use of DRAGON-AI 
for term generation. However, for many ontologies, new 
term requests only constitute one part of the overall 
workflow. Maintenance and correction of existing terms 
can also be resource-intensive, especially for ontologies 
with tens of thousands of terms collected over decades. 
Often it is necessary to “refactor” ontologies, where large 
numbers of terms are modified together, for example, 
as part of an overhaul of how a particular area of biol-
ogy is reflected. We aim to extend DRAGON-AI to sup-
port these additional workflows, and, in particular, to 
make use of rich information already present in many 
GitHub issue trackers that couple requested changes with 
enacted changes, in order to build something more like 
an autonomous agent that is able to work through large 
numbers of requested changes specified in free text, 
interacting with domain experts and ontology editors 
through conversational mechanisms.

Conclusions
Building and maintaining ontologies is time-consuming 
and requires substantial human expertise. DRAGON-AI 
demonstrates the potential of generative AI approaches, 
in conjunction with human oversight, to facilitate these 
tasks. DRAGON-AI can draw on structured knowl-
edge from multiple ontologies, as well as textual sources 
including GitHub issues that request ontology changes.

We tested DRAGON-AI on three ontology editing 
tasks: prediction of relationships, term definitions, and 
logical definitions. Its performance was evaluated by 24 
ontology editors and curators who worked independently 
of each other; each ontology was reviewed by at least 2 
evaluators. Based on these evaluations, we found that 
AI-generated relationships had high precision but mod-
erate recall, suggesting that they were generally correct 
but incomplete. The AI-generated term definitions were 
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found to be decent but not as good as human-generated 
definitions. One interesting finding was that the more 
experienced the evaluator was, the more difference they 
tended to perceive in the quality of the human-generated 
vs. AI-generated definitions.

We are investigating ways to incorporate generative AI 
approaches into existing ontology development work-
flows. Our ultimate goal is not to replace human ontol-
ogy editors, but rather to augment their deep domain 
expertise with tools that minimize tedious, repetitive 
tasks and make ontology creation and editing more effi-
cient without sacrificing accuracy.

Availability and requirements
Project name: DRAGON-AI.

Project home page: https:// github. com/ monar ch- initi 
ative/ curate- gpt (DRAGON-AI is implemented as part of 
the CurateGPT suite of tools).

Operating system(s): Platform independent.
Programming language: Python.
Other requirements: N/A.
License: BSD-3.
Any restrictions to use by non-academics: none; free to 

reuse and modify.
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