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Manipulation of the carbon storage regulator
system for metabolite remodeling and biofuel
production in Escherichia coli
Adrienne E McKee1,2†, Becky J Rutherford1,2,4†, Dylan C Chivian1,2†, Edward K Baidoo1,2†, Darmawi Juminaga1,2†,
Dwight Kuo1,2†, Peter I Benke1,2, Jeffrey A Dietrich1,2,3, Suzanne M Ma1,2, Adam P Arkin1,2,3, Christopher J Petzold1,2,
Paul D Adams1,2, Jay D Keasling1,2,3,4 and Swapnil R Chhabra1,2*†
Abstract

Background: Microbial engineering strategies that elicit global metabolic perturbations have the capacity to increase
organism robustness for targeted metabolite production. In particular, perturbations to regulators of cellular systems
that impact glycolysis and amino acid production while simultaneously decreasing fermentation by-products such as
acetate and CO2 make ideal targets. Intriguingly, perturbation of the Carbon Storage Regulator (Csr) system has been
previously implicated in large changes in central carbon metabolism in E. coli. Therefore, we hypothesized that
perturbation of the Csr system through the CsrA-CsrB ribonucleoprotein complex might increase production of biofuels
and their intermediates from heterologous pathways.

Results: We engaged the CsrA-CsrB ribonucleoprotein complex of E. coli via overexpression of CsrB. CsrB is a
350-nucleotide non-coding RNA that antagonizes CsrA, an RNA-binding protein that regulates translation of specific
mRNA targets. By using shotgun proteomics and targeted metabolomics we established that elevation of CsrB levels
leads to alterations in metabolite and protein levels in glycolysis, the TCA cycle and amino acid levels. Consequently,
we show that such changes can be suitably applied to improve the production of desired compounds through the
native fatty acid and heterologous n-butanol and isoprenoid pathways by up to two-fold. We also observed
concomitant decreases in undesirable fermentation by-products such as acetate and CO2.

Conclusions: We have demonstrated that simple engineering of the RNA-based Csr global regulatory system
constitutes a novel approach to obtaining pathway-independent improvements within engineered hosts. Additionally,
since Csr is conserved across most prokaryotic species, this approach may also be amenable to a wide variety of
production hosts.

Keywords: Metabolic engineering, Global regulators, Heterologous pathway, Carbon storage, Biofuels, Metabolomics,
Proteomics
Background
Strategies for increasing organism robustness and product
formation by manipulation of non-pathway components
have gained traction in recent years [1]. Prominent exam-
ples include the reprogramming of transcriptional machin-
ery achieved by varying the concentration or sequence of
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reproduction in any medium, provided the or
sigma factor proteins or the perturbation of regulators that
alter cellular metabolism [2-5]. Arguably, the ideal perturb-
ation(s) would lead to higher product formation by altering
central carbon metabolism, result in higher amino acid pro-
duction for the biogenesis of heterologous proteins, and
reduce fermentation by-products such as CO2 and acetate
that decrease product yield. In this study, we examined the
carbon storage regulator (Csr) system of E. coli as one
potential system that could be manipulated to bring about
such changes.
Ltd. This is an Open Access article distributed under the terms of the Creative
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iginal work is properly cited.
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The carbon storage regulator (Csr) system of E. coli has
been shown to regulate over 700 genes and can exert con-
trol over global regulatory systems, such as the stringent
response [6]. Csr influences a number of physiological
processes including central carbon metabolism, biofilm
development, motility, peptide uptake, and virulence gene
expression [7-10]. Interestingly, manipulation of Csr has
also been demonstrated to increase production of phenyl-
alanine [11,12]. As such, Csr is a key cellular subsystem
that might be exploited for increased production of com-
pounds from both native and heterologous pathways.
Csr is controlled by the RNA-binding protein CsrA [13-

15], which binds to the 5’ untranslated region of its target
mRNAs, often in the region spanning the Shine-Dalgarno
(SD) site [16] (Figure 1A). Interaction of CsrA with mRNA
interferes with ribosome binding, negatively impacting
translation of target transcripts. While CsrA directly regu-
lates the activity of glycolysis pathway components both
positively (glucose-6-phosphate isomerase (pgi), triose-
phosphate isomerase (tpiA), and enolase (eno)) and
negatively (fructose-1,6-bisphosphatase (fbp) and phos-
phoenolpyruvate synthetase (pps)) [17], CsrA is essential
to E. coli during growth on glycolytic carbon sources due
to its ability to limit glycogen accumulation [18]. Regula-
tion of CsrA can occur by physical interaction with CsrB,
a non-coding small RNA [19-21]. CsrB prevents CsrA
from binding target transcripts thus alleviating CsrA-
induced translation inhibition (Figure 1A). In fact, it has
been proposed that the intracellular level of CsrB is the
key determinant of CsrA activity in the cell [22].
As Csr regulates a wide variety of cellular processes

including parts of central carbon metabolism, we
hypothesized that manipulation of CsrB expression
might alter the activity of CsrA resulting in changes to
E. coli metabolism favorable to product formation. To
investigate this possibility, we evaluated the effects of
CsrB elevation on the proteome, on metabolites of cen-
tral carbon metabolism, and on the production of several
advanced biofuels or their precursors in E. coli. We
demonstrate that the Csr system can serve as an effect-
ive regulatory handle for improving production via a
number of engineered pathways, reducing the need for
extensive host-chromosome modifications.

Results
CsrB-mediated proteome changes
We reasoned that since CsrB regulatory control occurs at
the post-transcriptional level, quantitative proteomic mea-
surements would offer the most direct assessment of rele-
vant cellular changes. Therefore, we employed a shotgun
proteomics approach to compare protein levels in E. coli
with elevated CsrB levels to those from an uninduced con-
trol. We chose to profile cells during stationary phase
when Csr is most active in remodeling cellular metabolism
[23]. This also corresponds to when engineered bacteria
are typically harvested for biofuel production.
E. coli (see Additional file 1: Table S1) with or without

elevated CsrB levels were grown in Neidhardt’s MOPS
medium with IPTG for 24 hours, and harvested for prote-
omic analysis. At a 95% confidence interval, 894 proteins
(~20% genomic coverage) were identified with at least two
peptides (Figure 1B). Candidates with an average of five or
more normalized spectral counts in the induced samples
and at least a 2-fold change upon induction are listed in
Additional file 2: Table S2 (see Additional file 3: Table S5
for the complete list of proteins identified in this study).
We confirmed increased protein levels of known CsrA
mRNA targets glgB, glgC [23], and ompA [24] (Additional
file 2: Table S2), which upon CsrB elevation were observed
to rise 16.7-, 4.5-, and 2.8-fold respectively.
Using TIGR Gene Indices and gene ontology (GO) cat-

egories that provide genome-wide functional annotations
for related genes [25], we observed that CsrB elevation
significantly affected the protein abundance of several func-
tional categories (P< 0.05, multiple-test corrected hyper-
geometric enrichment test). Many of the proteins in TIGR
categories such as ‘Energy metabolism’, ‘glycogen biosyn-
thetic process’, and ‘amino acid biosynthesis’ displayed
CsrB-dependent expression changes that were greater than
twice the level observed for the control strain. In particular,
we noted several proteins involved in central carbon metab-
olism – Pck, TpiA, GapA, and Eno from glycolysis/gluco-
neogenesis, the SdhAB and SucABCD operons associated
with the TCA cycle as well as TktA, TalB, and AtpG
involved in the pentose phosphate pathway showed signifi-
cant changes in protein expression. Consistent with these
results, we also observed that genes under the regulatory
control of CysB [26] were significantly overrepresented (P
< 0.05) among proteins with altered expression. CysB has
been previously implicated in modulating carbon source
utilization during limited nutrient availability [27].
Additionally, proteins with altered expression also

included those associated with stress response (PspA,
GrpE, AhpC), transport (CysA, TolC, SecB), and regula-
tory functions (DksA, RraA, AllR). In particular, the
change in protein expression of DksA corroborates a pre-
viously proposed regulatory interaction between Csr and
stringent response [6] (Additional file 4: Figure S1A). Cur-
rently, the stringent response transcription factor DksA
and the nucleotide secondary messenger ppGpp are
thought to activate Csr by increasing transcription of
csrB/C through BarA/UvrY, thereby relieving CsrA-
mediated repression during the stringent response [6].
However, it was also reported that CsrA has only a modest
effect on DksA gene expression. In contrast, we observed
a greater than 2.5-fold increase in the expression of DksA
upon CsrB elevation suggesting a more substantial role for
CsrA regulation of DksA expression.
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Figure 1 The carbon storage regulator system in E. coli. A) The RNA-binding protein CsrA (yellow ovals) associates with target transcripts and
impedes their translation by interfering with ribosome binding. The non-coding RNA antagonist of CsrA, CsrB (blue star), sequesters CsrA, thereby
removing the hindrance that CsrA places on translation of its targets. Not shown here are CsrD and CsrC, protein and RNA negative regulators of
CsrA. B) Averaged spectral counts for proteins in the Energy Metabolism TIGR group from samples containing the pBbA5C-CsrB plasmid (induced)
or pBbA5C plasmid (uninduced) with 500 uM IPTG harvested at 24 hours after induction. Proteins from the TCA cycle are highlighted in the
figure inset. Significant increases were observed in both these groups.
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RNA-binding motifs of CsrA
Given the technical limitations of shotgun proteomics
(limited to 20% genomic coverage in this study) we
wanted to assess the broader impact of perturbing CsrA-
mediated regulation in E. coli. Therefore, to identify pu-
tative CsrA-regulated genes, we investigated the distri-
bution of three variants of an 8-base pair (bp), position-
independent, degenerate CsrA binding motif within a
22-bp window upstream of the translational start site of
each E. coli gene (see Supplemental Methods for details
on motif generation). The first motif was derived directly
from experimentally determined binding sites (Motif 0:
[~G]ANGGAN[A/U]). We further refined Motif 0 to
generate Motif 1: [~G]A[~C]GGA[~C][A/U] and Motif
8:[~G]A[~C]GGA[~C][~G]), which showed the highest
combination of sensitivity and specificity (Additional file
4: Figure S1B,C) for proteins identified by our mass
spectrometry experiments.
Our search discovered hundreds (Motif 0: 689 genes,

Motif 1: 575 genes, Motif 8: 702 genes) of protein-
coding genes that possess putative sites immediately up-
stream of their translational start (Additional file 5:
Table S4, Additional file 3: Table S5). Examining the set
of differentially expressed proteins from our screen
revealed that they were significantly enriched for these
motifs (P< 0.02, hypergeometric enrichment test).
Among these genes, we identified previously reported
targets with roles in glycogen synthesis, peptidoglycan
formation, peptide import, and RNA metabolism [7,14].
Interestingly, we also identified CsrA-binding sites
among genes responsible for chaperones involved in the
general stress response of E. coli, iron homeostasis, and
transcriptional and translational regulators. These obser-
vations suggest that Csr regulates additional functions
than what has been described so far [6].
Next, we examined our proteomics results in conjunc-

tion with previously derived TF regulons [26]. While we
found several regulons with genes that possessed CsrA
binding sites, several regulons also had the cognate tran-
scription factor itself under putative CsrA regulation.
Examples of such systems include those involved in car-
bon utilization, stress response, and regulation of quorum
sensing and biofilms. In particular, we noted that the
FabR/FadR regulons were also putatively CsrA-regulated.
These regulons directly impact fatty acid biosynthesis and
the AtoC regulon, which includes AtoB, a key enzyme for
acetoacetyl-CoA synthesis. As such, these regulons are
critical for pathway engineering applications that rely on
acetyl-CoA as a branch point metabolite.

CsrB-mediated alterations in central carbon metabolism
From the shotgun proteomics measurements, we noted
changes in levels of several proteins from glycolysis/gluco-
neogenesis, the TCA cycle, and the pentose phosphate
pathway upon CsrB elevation. Additionally, our genome
wide survey of CsrA binding motifs suggested a potential
impact on the AtoC regulon, which affects acetyl-CoA
levels. Consequently, we proceeded to examine the direct
impact of perturbing CsrB levels on intracellular metabo-
lites associated with central carbon metabolism. E. coli
with or without elevated CsrB levels were grown in Neid-
hardt’s MOPS medium with IPTG (50μM) and harvested
after 48 hrs. All measurements were performed with li-
quid chromatography and mass spectrometry analysis ex-
cept for amino acid metabolites that were determined by
capillary electrophoresis and mass spectrometry.
Intracellular concentrations of twenty-four of the

thirty-four metabolites analyzed were elevated, with nine
intermediates demonstrating increases greater than six-
fold (Figure 2). Notably intracellular levels of lower half
glycolytic intermediates glycerol-3-phosphate (G3P), 3-
phosphoglycerate (3PG) and/or 2-phosphoglycerate
(2PG), phosphoenolpyruvate (PEP), and pyruvate (pyr)
were three- to eight-fold higher in cultures with elevated
CsrB than in control cultures. Intriguingly, intracellular
pools of acetyl-CoA increased eight fold. Acetyl-CoA is
a vital precursor to several pathways relevant to product
formation in host organisms and is likely a bottleneck to
further increases in production hosts.
In contrast to the comprehensive effect observed on

lower half glycolytic intermediates due to CsrB elevation,
the impact on the TCA cycle appeared to be more
restricted (Figure 2, Additional file 6: Table S3). We
observed greater than five-fold increases in oxaloacetate
(OAA), malate (MAL), fumarate (FUM), succinate (SUC),
and glyoxylate in cells with elevated CsrB. Despite higher
levels of these intermediates as well as acetyl-CoA, con-
centrations of citrate and/or isocitrate (I-CIT), and α-
ketoglutarate (α-KG) were unaffected upon CsrB elevation
(Figure 2, Additional file 6: Table S3).
We also examined levels of extracellular metabolites -

glucose and acetate - in the culture medium over the
course of 24-hours growth. Despite increased PEP levels,
we found that CsrB induction led to a decrease in glucose
consumption (Figure 3). This could not be explained by
differences in cell-culture density since optical density
(OD600) measurements were virtually indistinguishable
between control and induced strains. In contrast, acetate,
which is formed due to overflow metabolism, decreased as
a function of CsrB expression (Figure 3). The decrease in
extracellular acetate levels along with decreased glucose
consumption levels might partly explain the carbon redis-
tribution of intracellular metabolites described above. Add-
itional studies on other extracellular metabolites would
further shed light on the metabolic impact of CsrB, but are
beyond the scope of this work. In particular, we were intri-
gued by the rise in intracellular glyoxylate levels upon CsrB
elevation, which may have a bearing on CO2 secretion [28].
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Figure 2 Extensive metabolic remodeling is achieved through CsrB manipulation. Average fold ratio of intracellular metabolites and
proteins from central metabolism in BLR-DAJ cells bearing pBbA5C-CsrB relative to the empty plasmid (pBbA5C) alone (see Methods for details).
Certain metabolites and proteins were not analyzed (black). Fold level changes represented by colored fonts (for metabolites) or colored boxes
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Figure 3 Analysis of glucose consumption and acetate production. A) Glucose is consumed at nearly the same rate in CsrB and control
strains. B) We observe vastly decreasing amounts of the fermentation byproduct acetate in the growth medium in the CsrB strain. This suggests
the CsrB strain is more efficient in its utilization of carbon.

McKee et al. Microbial Cell Factories 2012, 11:79 Page 6 of 12
http://www.microbialcellfactories.com/content/11/1/79
CsrB-mediated alterations in amino acid levels
Increased amino acid production would be expected to
benefit a host organism by increasing the ability to pro-
duce both native and heterologous proteins and hence en-
hance product formation. While manipulation of Csr has
been previously demonstrated to increase production of
phenylalanine [11,12], its impact on other amino acids has
not been measured. In this study, we performed a compre-
hensive analysis of cellular amino-acid levels in a strain
with elevated CsrB levels versus a control. Consistent with
previous reports, we observed a 2.5-fold increase in
phenylalanine levels. Examining the levels of other amino
acids, we observed even larger changes in the levels of as-
paragine, threonine and aspartate which increased 47-,
30- and 9-fold, respectively (Additional file 6: Table S3).
Interestingly, from our central carbon metabolomics

data we observed insignificant changes in α-KG levels. As
α-KG is a TCA cycle intermediate and a precursor for the
amino acids glutamate, glutamine, and proline, we would
expect to see no changes in the levels of these amino acids.
Surprisingly, we observed substantial increases in glutam-
ate, glutamine, and proline levels (Additional file 6: Table
S3). Additionally, amino acids derived from glycolytic
intermediates that do not involve the TCA cycle (serine,
glycine and alanine) were also found at higher levels as a
result of CsrB elevation (Additional file 6: Table S3).

Elevation of CsrB levels in E. coli improves production via
engineered biofuel pathways
Our shotgun proteomics and targeted metabolomics data
suggests that manipulation of Csr leads to accumulation
of glycolytic and TCA cycle intermediates, decreased
levels of fermentation by-products, and improved levels of
both chaperones and DNA repair enzymes. These charac-
teristics are highly desirable in the engineering of meta-
bolic pathways. However, most strategies employed for
improving compound production from metabolic path-
ways have primarily relied on manipulating the compo-
nents of the pathways themselves [29-31]. Therefore, we
wanted to test whether perturbing this global regulator ra-
ther than pathway components themselves might lead to
improved production characteristics. Consequently, we
tested the ability of increased CsrB levels to improve pro-
duction of advanced biofuels and their precursors that
have been targeted in recent metabolic engineering studies
[32,33]. Specifically, we tested production from the native
fatty acid (FA) pathway of E. coli, the n-butanol pathway
(from Clostridium acetobutylicum), and the mevalonate
pathway (from Saccharomyces cerevisiae).
FA biosynthesis commences with acetyl-CoA and

malonyl-CoA as precursors followed by a series of con-
densation and elongation steps. Each step of the elong-
ation cycle adds two carbons to a growing fatty acid- acyl
carrier protein chain (Figure 4). Our binding site analysis
suggests that translation of at least two known regulators
of fatty acid metabolism, FabR and FadR, may be con-
trolled by CsrA (Additional file 5: Table S4). FabR modu-
lates fabB and fabA expression to balance the unsaturated:
saturated FA ratio of acyl chains [34]. In contrast, the dual
regulator FadR functions as a switch that coordinately reg-
ulates the machinery required for fatty acid β-oxidation
and the expression of a key enzyme in FA biosynthesis
[35]. FadR also represses the entire set of degradative (fad)
genes but activates the expression of fabA.
Consequently, we hypothesized that Csr regulation of

FabR and FadR, along with an elevated level of acetyl-
CoA afforded by CsrB upregulation might impact both
FA levels as well as the degree of saturation. We tested
this hypothesis in a strain overexpressing a leaderless
version of the tesA product (`TesA) with either CsrB or
an empty plasmid control. Cytosolically localized `TesA
can act on a range of acyl-CoA molecules to produce



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Overexpression of CsrB improves production through engineered biofuel pathways. A) Overexpression of CsrB improved
production of total free fatty acids, detected as fatty acid methyl esters (FAMEs) by 1.8 fold in E. coli overexpressing L-tesA after 72 hrs relative to
an empty plasmid control. Overexpressed E. coli genes are indicated in color. B) Inclusion of overexpressed CsrB nearly doubled total
productionof 1-butanol yielded from E. coli co-expressing the C. acetobutylicum butanol pathway, relative to an empty plasmid control. C.
acetobutylicumgenes are designated in bold font. C) CsrB overexpressed with an engineered mevalonate pathway and the amorphadiene
synthase (ADS) geneproduced approximately twice the amorphadiene after 48 hrs relative to a control. Genes from S. cerevisiae and
heterologous genes are designated in bold font.
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free fatty acids (FFAs) and FA ethyl esters [37-40]. E. coli
overexpressing `TesA and elevated CsrB produced 76%
more saturated and unsaturated FAs than control
cultures bearing `TesA and an empty plasmid control
(from 233 mg/L to 430 mg/L in 48 h) (Figure 4a). CsrB-
mediated regulation improved total production of C12,
C14, C16:1, C16, and C18:1 and C18:3 FAs, although the
degree of increase was not equivalent across the FA
spectrum analyzed, perhaps due to altered regulation of
FabR as noted above. Notably we observed a shift from
medium towards long chain FAs with levels of C16 and
C18:1 and C18:3 FAs increasing approximately 3-fold
which also represented a greater fraction of the total FA
pool (Additional file 4: Figure S2).
Next, we examined the effect of Csr perturbation on the

production of target compounds from various codon-
optimized heterologous pathways. Since the heterologous
pathways for n-butanol and amorphadiene production
both employ acetyl-CoA as a branch-point precursor
(Figure 4b and Figure 4c), we hypothesized that the
enhanced acetyl-CoA pool afforded by CsrB-mediated
regulation might increase production titers. n-Butanol can
be produced using a four-gene pathway derived from
Clostridium acetobutylicum [41,42], while amorphadiene
is synthesized through the five-gene mevalonate pathway
from Saccharomyces cerevisiae in conjunction with the
corresponding synthase from Artemisia annua [43] (see
Additional file 1: Table S1 for details on parts and com-
position). We found that CsrB-mediated regulation
enhanced total n-butanol production from 48 mg/L to
90 mg/L, an 88% increase, when cells were induced with
20 mM arabinose. Total production of amorphadiene
increased 55% (from 60 mg/L to 93 mg/L in 48 h).

Discussion
A proposed model of regulatory interplay connecting
Csr and stringent response systems in E. coli involves
the transcription factor DksA and the nucleotide sec-
ondary messenger ppGpp [6]. These activate csrB/C
transcription to relieve CsrA mediated regulation during
stringent response [6]. In the current study, we exam-
ined the impact of directly elevating CsrB levels thereby
bypassing this native regulatory machinery. We per-
formed a systems level analysis to assess the global im-
pact of the aforesaid perturbation. Our proteomics and
metabolomics analyses suggest that induced CsrB eleva-
tion results in the accumulation of glycolytic intermedi-
ates. In particular, we observed that CsrB-mediated
deregulation of CsrA drives overexpression of the CsrA-
targeted glgCAP operon (Figure 2), which would result
in the accretion of the storage polysaccharide glycogen.
Other alterations in central carbon metabolism included
dramatic increases in the levels of acetyl-CoA and sev-
eral amino acids, with concurrent decrease in acetate
levels (Additional file 6: Table S3).
We also found that CsrB impacts the expression of the

stringent response regulator DksA (Additional file 2:
Table S2). DksA is responsible for transcriptional activa-
tion of CsrB (and therefore indirect deregulation of
CsrA) during stringent response [6]. Additionally, we
found a CsrA binding-site in the 5’UTR of DksA. This
suggests that CsrB (through CsrA) directly regulates
DksA, thereby forming a positive feedback loop. This
model would predict that increased CsrB levels should
also increase levels of DksA. In fact, we found that eleva-
tion of CsrB levels produced a 2.5-fold increase in pro-
tein levels of DksA. While a previous study [6] has
shown that increased DksA expression transcriptionally
activates CsrB/C, our findings strongly suggest that a
post-transcriptional positive feedback loop also links
CsrA/B and the stringent response regulator DksA.
Classic symptoms of the stringent response [44] such

as increased amino acid biosynthesis and decreased
ribosomal protein production (Additional file 2: Table
S2) also appear to be amplified by CsrB overexpression.
These complement typical features of the Csr system
[6] such as increased carbon metabolism and motility
(Additional file 2: Table S2) among others. Our findings
suggest that ectopic amplification of CsrB in E. coli
somewhat mimics the conditions of stringent response
in that resources are diverted away from cellular growth
and division and towards amino acid synthesis. This
was evidenced by a near universal increase in amino-
acid levels as exemplified by a 44-fold increase in
asparagine levels. Interestingly, we also noted that CsrB
elevation also significantly modulated the protein
expression of the ArcA regulon (P< 0.005) which has
previously been implicated in stringent response [45].
These results further strengthen the proposed link
between Csr and the stringent response [6].
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While it is possible that catabolism of isoleucine
present in the medium might account for some of the
improved compound production and carbon redistribu-
tion observed, we believe this effect to be marginal. In
support of this, we observed an insignificant decrease in
intracellular isoleucine levels (1.4-fold, P~0.1) between
test and control strains. Additionally, we observed no
evidence for changing protein levels or CsrA binding
sites among genes involved in protein recycling or
proteolysis.

Conclusions
Given the ubiquity of engineered pathways that rely on
glycolysis for producing biologically-derived compounds,
results from this study would be expected to have broad
implications. Indeed, we demonstrated improved hydro-
carbon production through three distinct routes engi-
neered for generating advanced biofuels by simple
manipulation of this ribonucleoprotein regulatory
scheme in E. coli. While it is tempting to speculate that
the increased amino acid levels due to CsrB elevation
may also be used to improve biofuel production through
synthetic non-fermentative pathways [46], such valid-
ation remains to be performed.
This approach obviates the need for extensive host or-

ganism modification in simply requiring overexpression
of a single non-coding RNA. It remains to be seen if
such an approach can be applied synergistically with
other approaches for improving production. As such,
this study shows that targeting of the carbon storage
regulator and stringent response systems can be a
powerful means with which to increase targeted com-
pound production in metabolic engineering applications.
This approach is likely generalizable to other pathways
and organisms.

Materials and methods
Host strain
E. coli DH5a (F- endA1 glnV44 thi-1 recA1 relA1 gyrA96
deoRnupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17
(rK
- mK

+), λ–) was used for cloning and DNA amplification.
E. coli strain BLR (ΔtyrR; ΔpheA/L; aroF[P148L]; tyrA
[M53I; A354V]) [36,47,48] was used as the base strain
(BLR-DAJ) in this study. This strain is auxotrophic for
phenylalanine and isoleucine [49].

Plasmids for advanced biofuel production
CsrB was amplified from E. coli MG1655 using primers
CsrB_F/R. Restriction enzymes BamHI and XhoI were used
to insert CsrB into the medium copy vectors pBbA5A and
pBbB5C, with the lacUV5 promoter (PlacUV5) and the chlor-
amphenicol or ampicillin resistance genes, respectively. The
C. acetobutylicum butyryl-CoA biosynthetic operon (crt,
hbd, etfAB, hbd) and alcohol dehydrogenase (adhE2) were
amplified from C. acetobutylicum ATCC824 genomic DNA
(ATCC) using primers F76/F73 and F72/F74, respectively.
The vector backbone (containing a p15a origin), chloram-
phenicol selective marker, trc promoter (Ptrc), and LacIQ

was amplified using primers F75/F77. The three PCR
products were assembled using the SLIC protocol [50],
producing plasmid pBMO49. The atoB gene from E. coli
(PCR amplified using primers F92/F93) and an additional
Ptrc promoter (PCR amplified using primers F90/F91) were
inserted 5’ of adhE2 to generate plasmid pBMO50 using
BglII and BamHI restriction sites. Plasmids for fatty acid
production [37] and amorphadiene production [30] and the
respective extraction procedures are described elsewhere.

Medium composition and growth conditions
Individual colonies were grown overnight at 37°C in LB
medium and passed 1:100 for an additional night of
growth in Neidhardt MOPS medium containing 0.5 or
1.0% glucose for metabolite analysis or heterologous path-
way production experiments, respectively. Glucose was
the sole carbon source used in all production experiments.
All metabolite production experiments were carried out in
defined media (Neidhardt MOPS) [51] supplemented with
12.5 g/L [49] and 10.0 g/L phenylalanine. E. coli were
seeded at 1:100 dilutions into either 5-mL shake tubes or
50-ml shake flasks (metabolomics experiments) and
grown at 30°C or 37°C with appropriate antibiotics. IPTG
(Sigma-Aldrich) was added at the concentrations indicated
to induce CsrB. Except where noted, all metabolite and
production data were collected at 48 hrs after induction.
All data presented are the averaged results of biological
triplicates.

Proteomics sample preparation & analysis
Cells were centrifuged at 8000 × g at 4°C and frozen in
liquid nitrogen. Protein extraction was performed
using chloroform/methanol (Wessel and Flugge, 1984)
followed by desiccation in a vacuum concentrator
(ThermoSavant). Samples were reconstituted in 200 μL
of 100 mM ammonium bicarbonate with 20% (v/v)
methanol to a final concentration of 0.25 μg/μL. Disul-
fide bonds were reduced with 5 mM TCEP for 30
minutes, and alkylation was performed with 200 mM
iodoacetic acid for 30 minutes in the dark. Trypsin
(1 μg/μL) was added to a final concentration of 1:50
(trypsin:sample), and incubated at 37°C overnight.
Samples were washed for 10 min at a 15 μL/min flow rate

with a buffer consisting of 94% (v/v) acetonitrile, 0.1% (v/v)
formic acid and 5.9% H2O on a Pepmap100 μ-guard col-
umn (Dionex-LC Packings, Sunnyvale, CA). Samples were
then applied to a Pepmap100 analytical column (75-μm i.d.,
150-mm length, 100 Å, and 3 μm) for 60 minutes at a flow
rate of 300 nL/min. Column pressure was equilibrated with
buffer for two minutes. Samples were analyzed on a LC-MS
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/MS system consisting of an Eksigent TEMPO nanoLC-2D
coupled to an AB Sciex (Foster City, CA) 5600 Triple-TOF
mass spectrometer running Analyst TF™ 1.5.1 (AB Sciex) in
IDA experiment mode.
Spectra were processed using PeakView v1.1.1.2 (AB

Sciex), analyzed with Mascot 2.2 (Matrix Science) and
imported in Scaffold v3.2.0 (Proteome Software Inc,
Portland, OR USA) for analysis. A database of all E. coli
ORFs (MicrobesOnline) was searched using a peptide toler-
ance of 100 ppm, allowing for 1 missed trypsin cleavage
and carboxymethyl modifications. Proteins were identified
with at least two 95% confidence peptides. For analysis of
fold changes, only proteins with at least five spectral counts
were considered.

Sampling, quenching, and extraction of metabolites
Separation of metabolites for the analysis of glycolysis and
TCA cycle intermediates was conducted on a fermentation
monitoring HPX-87 H column with 8% cross linkage (150-
mm length, 7.8-mm internal diameter, and 9-μm particle
size; Biorad, CA, USA). Pyruvate separation was conducted
on a ZIC-HILIC column (250-mm length, 2.1-mm internal
diameter, and 3.5-μm particle size; Merck SeQuant, MA,
USA). Samples were run on an Agilent Technologies 1100
Series HPLC (Agilent Technologies, CA, USA).
For analysis of amino acids, CE separations were per-

formed in a 100 cm, 50-μm i.d. ~365-μm o.d. (total volume
1963 nL), untreated, fused-silica capillary (PolyMicro
Technologies) via the Agilent CE system (Agilent Tech-
nologies). Details on subsequent experimental protocols are
provided in the Supplemental Methods.

Motif analyses and statistical testing
Using experimentally determined CsrA binding sites from
previous studies [23,52-55] and our proteomics results, we
identified genome wide targets putatively regulated by
CsrA. Details of this motif analyses are provided in Supple-
mental Methods. Tests for statistical enrichment of motifs
and functional categories were performed using the hyper-
geometric enrichment test [56]. Multiple-test correction of
test statistics was performed using the Benjamini-Hochberg
method [57]. Gene ontology annotations were obtained
from AMIGO [58] while TIGR gene indices were obtained
from Microbes Online [25].
Additional files

Additional file 1: Table S1. Plasmids and Primers Used in this Study.

Additional file 2: Table S2: Whole cell proteomic analysis for CsrB
elevation in E. coli.

Additional file 3: Table S5. Whole---cell proteomics analysis.

Additional file 4: Figure S1. A) Interaction between Csr and the
stringent response [6]. B) CsrA RNA-binding motifs. P-values refer to
statistical enrichment (hypergeometric enrichment test) of motifs among
proteins with changing expression. C) Sensitivity and Specificity
(Harmonic mean) of various motifs. Figure S2. Analysis of the

harmonic mean of precision and recall (F1-measure) of various
motifs. Figure S3. Overexpression of CsrB alters the distribution of
free fatty acids towards longer chain fatty acids. Cultures of E. coli co-
expressing the L-tesA gene and either CsrB or an empty plasmid control
were analyzed for production of saturated and unsaturated FAs of
lengths 12-18 yielded after induction and growth for 72 hrs in Neidhardt
MOPS minimal medium. Inclusion of CsrB leads to an improvement in
total production. Shown here is the percentage that each medium and
long chain FA contributes to total FA production. Overexpression of CsrB
alters the distribution of production towards longer chain FAs, with a
decrease seen in C12 and an increase in C14, C16, and unsaturated C18
FAs. FAs were derivatized to FAMEs for GC-FID analysis.

Additional file 5: Table S4. Predicted CsrA binding sites.

Additional file 6: Table S3. Metabolites impacted by CsrB
overexpression.
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