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DYNAMICAL AND APPROXIMATE LEED THEORIES 

APPLIED TO LAYERS OF LARGE MOLECULES 

M.A. Van Hove and G.A. Somorjai 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, 
and 

Department of Chemistry, University of California, Berkeley, CA 94720 

Abstract 

A theoretical study is carried out of the application of the Combined 

Space Method (CSM) in low energy electron diffraction (LEED) from large 

molecules, for which rings of six carbon atoms arranged in periodic layers 

are chosen. The marked sensitivity of calculated intensity-energy (I-V) 

curves to variations of the geometry of these rings is exhibited. The 

reduction of the computation effort through approximations characterized 

by various degrees of neglect of multiple scattering is explored. It is 

shown that efficient approximate methods can be applied in the structural 

determination of large molecules at surfaces, at the very least in pre-

liminary unrefined searches through sets of plausible structures. A new 

class of approximations based on near-neighbor multiple scatt~ring is 

proposed that has efficient features for multiple use in structural 

searches • 

This work was supported by the Director, Office of Energy Research, Office 
of Basic Energy Sciences, Materials Sciences Division of the U.S. Depart­

ment of Energy under contract W-740S-ENG-48. 
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1. Introduction 

The analysis of low energy electron diffraction (LEED) intensities for 

the structural determination of adsorbed small molecules has now been 

applied to a number of relatively simple cases. These are CO, studied 

on Ni(lOO),la-d Cu(lOO),la Pd(lOO),2 and Rh(111),3 and C2H2 (acetylene) 

and C2H4 (ethylene) studied in two structures (metastable and stable) 

on Pt(111)4 and on Rh(111).5 For the hydrocarbons, most calculations 

ignored the presence of hydrogen atoms in the molecules because hydrogen 

is hardly detectable by LEED in these cases. 4 It appears that experiments 

in the near future are aiming to determine the surface structure of organic 

molecules of increasing size with more than two carbon atoms per molecule. 

It is therefore appropriate to explore the next step, that of larger 

molecules. 

A central question in considering larger molecules is whether LEED 

will have sufficient sensitivity to the various atomic positions to allow 

a structural determination~ We would like to determine the internal 

structure of the molecule as well as the molecule's position with respect 

to other molecules and to atoms in the substrate. We present here model 

calculations that confirm that surface structure analysis by LEED has 

enough sensitivity to determine the desired locations of non-hydrogen atoms. 

It then becomes important to consider the computation effort and find ways 

to reduce it. We shall test several approximations within the Combined Space 

Method,6 which is a natural choice for computing LEED intensities for many 

adsorbed molecules. Since the computation effort is strongly enhanced 

by the presence of multiple scattering, the approximations that we test 

will concentrate on the selective neglect of certain classes of multiple 

scattering paths. These approximations will be shown to retain in 
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large part the structural sensitivity of "exact" methods. In particular, 

approximations based on "near-neighbor multiple scattering" will be introduced 

in which only the multiple scattering between atoms close to each other is in­

cluded. Benzene-like C6 molecules without hydrogen are chosen as a test 

case since they present many of the features of interest of large molecules. 

2. Sensitivity of LEED I-V curves to positional parameters 

As surface model for large hydrocarbon molecules we choose a stack 

of layers, each composed of distinct rings of 6 carbon atoms (hydrogenless 

benzene molecules). Within a layer, the molecules are arranged basically 

as shown in Fig.l with intermolecular distances compatible with touching 

benzene (C6H6) molecules. The identical layers are stacked without 

lateral shift to maintain the high symmetry of the individual layers. 

(Benzene does not crystanize in this structure but seems to be able to 

grow epitaxiallly on substrates in approximately this fashion?) The 

inte~layer spacing is chosen to be either 1.5 or 2.5 A , rather smaller 

than the distance one would expect from Van der Waals molecular sizes 

(about 3.4 A ), to allow sizable interlayer effects. This system provides 

a realistic mix of small and large interatomic distances common in 

molecular crystals. Compared to the close-packed metals, one notes the 

small number of nearest neighbors, 2 in this case, and more generally 

the small number of atoms having the same distance to a given reference atom. 

To test the sensitivity of I-V curves to the atomic arrangement, the 

Combined Space Method 6 (CSM) is used to calculate I-V curves for the model 

surface, thereby including all relevant multiple scattering. Specifically, 

Renormalized Forward Scattering (RFS) is used between the layers,8a as 

many layers being included as is necessary for convergence. The multiple 
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scattering within each layer of 6 atoms per unit cell is included with 

the Reverse Scattering Perturbation (RSP) method,Sb which is limited to S 

iteration passes; this limit is usually amply sufficient in typical metal 

surfaces. Normal incidence of the primary electron beam is chosen in most 

of our calculations to benefit from symmetry. A spherical carbon atomic 

potential has been chosen which was previously used by Kesmodel4 forC 2H2 

and C2H4, and angular momenta up to t max=4 are allowed. A Debye temperature 

of 973 K and a surface temperature of 300 K are used. The imaginary part 

of the inner potential Voi is set to 5 eV, an average value often used to 

represent inelastic effects in metals, semiconductors, and insulators. 

Typical molecular layers with their fewer collective electronic ~xcitations 

and relatively small overall electron density may give rise to weaker 

inelastic effects and thus to smaller values of Voi than metals. However, 

when electrons in n orbitals such as in the benzene rings are relatively 

delocalized, inelastic effects may be expected to increase again somewhat. 

We shall submit the model surface to three kinds of structural 

change. Within each change, the lattice constant, i.e. the distance between 

molecular centers, and the layer spacing remain fixed. 

a. The first variation starts with the layer structure of Fig.l 

and expands each molecule about its center in equal steps such that each 

atom moves radially by about O.lS A at a time (see ring a in Fig.l). 

The last step leads to a graphitic (honeycomb) arrangement of C atoms 

with a reduced unit cell so that 2/3 of the beams are extinguished. At 

each step a 6-fold rotational symmetry axis and 6 mirror planes are 

present. Representative I-V curves are shown in Fig.2. Notable is the 

small effect of the molecular expansion on the specular (00) beam. This 

results from the fact that all the atomic motions are perpendicular to 
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the momentum transfer of the specular reflection since this momentum 

transfer is perpendicular to the surface. The isolated peak at 90 eV 
o 

for the middle specular curve of Fig.2 most likely stems from a convergence 

problem; it is a significant feature that will be discussed in Section 4. 

The non-specular beams are-noticeably affected by the structural variation. 

The effect is similar in magnitude to that of a registry shift of a 

I-atom per unit cell over layer (as in simple atomic adsorption). (There 

a 0.2 to 0.3 A shift parallel to the surface is comparable in effect to 

a 0.1 A change in layer spacing.) Thus enough sensitivity is present 

to determine atomic displacements parallel to the surface of the order 

of 0.2 A , this value being of course to some extent dependent on the 

quality of other theoretical parameters such as the atomic scattering 

parameters. 

b. The next geometrical variation of the carbon rings is a rotation 

of each molecule about its axis of 6-fold symmetry, see ring b of Fig.l. 

This tests the relative positions of molecules, as opposed to the internal 

structure of molecules tested above. In Fig.3 are drawn I-V curves 

calculated for rotations in steps of 7.5°, staDang with the geometry of 

Fig.l and terminating at a 30° rotation. Now only a 6-fold axis is 

always present. The specular beam is even less sensitive to this structural 

variation than to the expansion discussed above. The non-specular beams 

show varying amounts of sensitivity, but less than is usually experienced 

in structural determinations of simpler surfaces; peaks shift here by 

only small amounts, although relative peak heights change markedly. 

This level of sensitivity is not further reduced if one averages over 

domains rotated through opposite angles (i.e. through rotations by + a 

and - a ), as one might have to do in the case of layers adsorbed on a 
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substrate. No increase in sensitivity was found in other tests involving 

similar rotations. Thus a large off-normal angle of incidence (9=40°) 

of the electron beam did not help. Also a buckling of the C6 rings did 

not enhance the sensitivity under rotation. 

The structural variations discussed above contained no movements 

perpendicular to the surface, unlike the next case. 

c. We now allow the 6-carbon rings to gradually buckle into the 

"chair" shape that cyclohexane (C6H12) adopts, i.e. alternate carbon 

atoms move in opposite directions perpendicular to the plane of the ring, 

see ring c in Fig.l. Starting with the geometry of Fig.l, the atoms 

are displaced in steps of 0.1 A , so that at each step a spacing of 

0.2 A is added between atoms within the same layer (but the average 

spacing between separate layers is kept constant). Now a 3-fold rotational 

symmetry exists, together with three mirror planes. Representative I-V 

curves are shown in Fig.4. This time the specular I-V curve clearly 

changes appreciably with these atomic displacements parallel to the 

momentum transfer. In fact, the I-V curves for most beams change sub­

stantially, which confirms the long known sensitivity of LEED to structural 

change perpendicular to the surface. One notices both here and in Figs. 2 

and 3 the persistence of some underlying peak structures; these are 

mostly due to the wave interference between separate layers whose distance 

remains constant, and are now modulated by the intralayer geometry changes. 

(We note that in Figs. 2 and 3 an interlayer spacing of 1.5 A was chosen, 

while in Fig.4 its value is 2.5 A to avoid close spacings between atoms 

in adjoining layers.) 
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3. Approximations in the multiple scattering formalism·, 

LEED calculations that involve many atoms per unit cell in a layer 

can rapidly become very cumbersome. We shall explore the effect of 

approximations in the multiple scattering formalism that reduce the 

computational effort and we shall assess their usefulness in structural 

determination. 

In the Combined Space Method, one defines atomic layers by requiring 

that the resulting inter layer spacings (measured between the closest 

nuclear planes of adjoining layers) be at least about 1 A , while inter-

planar spacings within each layer should be less than about 1 A • This 

allows the most efficient use of plane waves b~een layers, spherical waves 

being used within layers. 6 If a layer has N atoms per unit cell, each of 

these atoms together with its periodicially equivalent atoms defines a 

"subplane" of the layer'.'. For example, the layer pictured in Fig.l has 6 

atoms per unit cell and therefore 6 subplanes.' One such subplane is em-

phasized as thick circles in Fig.5 for a similar layer. 

The full dynamical calculation first computes the multiple scattering 

within each isolated subplane i, which involves a matrix inversion (more 

exactly the solution of a set of linear equations): 

i [ L ")_1] L ~ 
T LL' = (f - t G LIo' ~ e (1) 

Here L=(t,m) and L'=( t ',m'); t i is the scattering t-matrix of a single 

atom in subplane i and is obtained directly from phase shifts at through 

(in atomic units where ~=e=m=l) 

(2) 

(Vo+iVoi is the complex inner potential). The matrix Gii is a special 
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case of the Green function Gji that we write as a lattice sum involving 

arbitrary atoms !i and Ej in subplanes i and j, respectivel~ and all 

lattice vectors ~ (defining the periodicity) 

E 
P 

(the complete formula is given in Ref.6 and is not needed in the present 

(3) 

discussion). The lattice sum is limited in extent by the electron damping 

represented by Voi • The dimension of the matrices Gii and L i is ( t max+l)2, 

i.e. the number of spherical waves present for angular momenta up to t = t max. 

The next step calculates the multiple scattering beween the subplanes 

of a layer, given L i of Eq.l. In the case of Fig.5, this basically adds 

to Lithe multiple scattering between atoms within the individual 

molecules and between inequivalent atoms in different molecules. One 

obtains matrices T~,representing all multiple scattering paths within 

the layer that terminate at subplane i. Using Beeby's formalism9 these 

matrices, arranged in vector form, are given by 
-1 

Tl 1 - L IG12 - L lGlN L 1 ... 
T2 - L 2G21 1 - L 2G2N L 2 ••• 

= • • 
• • . . . 

\;N TN - L NGNI - L. NGN2 1 

(4) 

and thus involve the inversion of a large matrix of dimension N( t max+l)2. 

When the multiple scattering is not excessively strong, the matrix 

inversion step can be replaced by a perturbation expansion in terms of 

the number of backscatterings,called Reverse Scattering Perturbation (RSP).8b 

In the results discussed in this work we have used this expansion. It 

mainly saves core space rather than computing time in the cases considered 

., 
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here. However, the approximations that we shall introduce are most 

effective within the RSP method as they directly reduce the number of 

terms that are to be included in the calculations. The detailed formalism 

of RSP is relatively more involved than that of Eq.4 and we therefore 

prefer for comprehensibility to pursue our discussion in terms of Eq.4 

rather than the expansion. 

To obtain the layer reflection and transmission coefficients for the 

scattering of a plane wave £ to a plane wave £', the matrices Ti, which 

are given in the spherical wave representation in Eq.4, are converted to 

the plane wave representation through6 

(5) 

+ 
Here A is the" unit cell area, YL are spherical harmonics and k- are the 

..& 
wavevectors for each beam £, + and - indicating propagation towards, 

resp. away from the inside of the surface; we a~so have used the quantities 

Before proposing approximations to these formulae, we should discuss 

how multiple scattering depends on the structure being investigated, 

specifically in the case of molecules as compared to the more familiar 

case of 'Jmetals. The amount of multiple scattering can be small for several 

reasons. First, the atomic scattering amplitude t i can be relatively 

small, as is the case with low atomic number elements, especially H but 

.. also C, 0 and N. Note that these are the most common elements encountered 

in molecules of practical interest, such as organic molecules. Second, 

the density of the" material can be relatively small and thereby reduce 

the chance of an electron being elastically scattered within its inelastic 
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mean free path length. Thus the inelastic effects become relatively 

large compared to the elastic effects. This holds for alkali metals, 

condensed inert gases, aluminum, silicon, graphite, and of course for 

molecular crystals, all of which have densities several times smaller than 

those of typical transition metals. In the case of molecular crystals, 

(and for silicon and graphite) one can also think in terms of a reduced 

number of nearest neighbors, of next nearest neighbors, etc. as is directly 

apparent in Fig.S; a given atom has a smaller chance of receiving waves 

scattered from neighboring atoms than in metals or in other dense material. 

Third, large vibrations reduce the amount of multiple scattering as is 

described by the Debye-Waller factor which effectively reduces the atomic 

scattering amplitude. 6 ,8a Typical molecules have atomic vibration amplitudes 

that can be 50-100% larger than for metals at the same temperature. 

Especially terminal atoms at the end of chains can have large vibration 

amplitudes. However, in multiple scattering as opposed to single kinematic 

scattering, the correlations between the motions of neighboring atoms, i.e. 

their concerted motions, are also important and tend to counteract the 

effect of the kinematic Debye-Waller factor. lO Neighboring atoms that do 

not vibrate strongly with respect to each other may nevertheless undergo 

large amplitude vibrations together with respect to the surrounding material. 

There are factors that can enhance multiple scattering. First, 

small bond lengths provide a higher chance of second and subsequent 

elastic scatterings within a given inelastic mean free path length. 

This is particularly. relevant to the common molecules composed of C, N, 

0, and H, where the nearest-neighbor bond lengths vary beween about 1.0 

and 1.5 A as compared with bond lengths ranging between 2.5 and 3.0 A in 

metals. Second, the inelastic mean free path length itself may be larger 
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than in metals,ll namely when fewer single electron and collective 

excitations are available for inelastic interactions. This can happen es­

pecially with low-Z substances and with molecules that have few delocalized 

orbitals. 

Our approximate LEED calculations will help us evaluate the strength 

of multiple scattering in organic layers. We start the detailed description 

of approximations and their effects by plotting in Fig.6, curves a, "exact" 

I-V curves for a stack of two layers of the type shown in Fig.S; they are 

exact in the sense that the RSP and RFS expansions have converged and 

they are exact within the bounds of the parametrization of atomic scattering 

amplitude, damping, thermal effects, etc. (The choice of two rather than 

more layers will be discussed in the next Section.) 

Neglect of intra-subplane multiple scattering 

Our first approximation consists in removing some multiple scattering 

between molecules by setting T = t (cf. Eqs. 1 and 4). This removes the 

multiple scattering between periodically equivalent-atoms in different 

molecules; some intermolecular multiple scattering is left; namely that 

between periodically inequivalent atoms of different molecules, especially 

between atoms that are close to each other. In so doing we remove relatively 

unimportant multiple scattering (on account of its relatively long path 

lengths), the small effect of which is seen in the approximate I-V curves 

of Fig.6, curves b. The major gain in computation effort results from the 

skipping of the matrix generation and inversion leading to T in Eq.l 

and the use of a diagonal matrix t instead of the full matrix T in Eq.4. 
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Because L can in fact be blockdiagonalized into two smaller matrices, 

on which all operations are performed separately, the gain in computatidn 

speed is reduced, however. 

Nearest-neighbor multiple scattering with variable scattering chain length 

The next degree of approximation involves leaving multiple scattering 

only between nearest neighbors, e.g. between each carbon atom and its two 

carbon bonding partners. An additional option available within the RSP 

scheme (but not within the Beeby matrix inversion scheme) is to limit the 

number of successive nearest-neighbor hops that are allowed, i.e. the 

permissible length of the chain of nearest-neighbor scatterings, including 

any looping back to atoms from which scattering has already taken place. 

We have chosen to allow only chains of length up to 8 (Fig.6, curves c) 

or up to I (Fig.6, curves d), which is simply controlled by the number of 

passes in the RSP scheme. The nearest-neighbor-only approximation is 

achieved by setting L =t and restricting the sum of Eq.3 to vectors! such 

that 1!I<r, where r is larger than the nearest-neighbor distance but smaller 

than the next-nearest-neighbor distance, as illustrated by a small limiting 

circle around one atom in Fig.5. A somewhat larger change is now observed 

in the I-V curves shown in Fig.6, curves c, compared to when we employed 

the previous approximation, but the main peaks are not appreciably shifted; 

only their relative heights are changed. The computational advantage now 

arises from a much reduced summation in Eq.3, the vanishing of several 

matrices Gji and the resulting reductions in succeeding operations, in addi­

tion to the advantages described in the preceding approximation. 

Kinematic_ approximation 

Next we perform a nearly kinematic calculation in which the diffraction 
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matrix elements for each layer neglect all multiple scattering within the 

layers. Only the Renormalized Forward Scattering now includes multiple 

scattering, namely that between the different layers (this is the Quasi­

Dynamical method used previously in other, simpler materials I2 ). Again, 

peak positions are not markedly affected, as is seen in Fig.6, curves e, 

while relative peak heights do change, which may affect the combined 

shape of overlapping peaks. Computation times of course benefit greatly 

from the kinematic approximation {we have not determined the time gains 

as they would only become fully realized under optimal recoding of the 

computer programs to exploit all the possibilities provided by the approx­

imati0rY-

For comparison, Fig.6, curves f, show I-V curves due to a single 

layer of 6-carbon rings within the kinematic approEmation, rather than 

for a stack of such layers. The lack of peaks in these curves shows that 

most of the peaks observed in Fig.6a-c are due to interference between 

different layers. It is interesting to observe that the I-layer curves of 

Fig.6f, which contain the kinematic structure factor of the rings, are almost 

featureless; the structure factor of the C6 rings has surprisingly little 

structure as a function of energy and angle, at least at our low energies. 

The peaks in the I-V curves for the stack of layers are influenced 

by the transmission and reflection coefficients of all layers, as has 

been discussed elsewhere. 6 The fact that these peaks have hardly shifted 

in energy under the various approximations shows that the layer diffraction 

matrices have not suffered substantially in those appro»mations, especially 

as far as their phases are concerned, which are the main factors affecting 

peak positions. 6 We may thus conclude that the sensitivities of I-V 
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curves exhibited in Section Z will also carryover to the approximated I-V 

curves, which is confirmed by corresponding calculations. Together with 

the fact that peak positions are mainly sensitive to atomic positfons 

(rather than non-structural parameters), this is of great importance in 

structural determination since it allows one to perform a structural 

determination with its possibly long geometrical search by using economical 

and efficient approximations such as those discussed here. Clearly the 

accuracy of a structural determination will decrease as the approximation 

becomes more severe. Nevertheless, an application of this approach to 

to Rh(lll)+(ZxZ)CZH3, with the kinematic approximation in the overlayer 

and neglecting the H atoms, produced the correct structural result within 

about 0.1 A , using an R-factor search with actual experimental data, as 

illustrated in Fig.7c.(for more details, see Ref.S). Thus a stage-wise 

determination is indicated where in the first stage a severe but time 

efficient. approximation can identify a few promising structures among a 

long list of possibilities. Then a second stage can further discriminate 

between the few promising structures and/or refine them with a less severe 

approximation. A series of such stages can be imagined. 

A note about computational aspects will conclude this Section. In 

the kinematic limit, Eq.S only changes in the sense that T
L
\,:: t~ ~£e' cJ",_, 

becomes diagonal, with trivial summations over t ' and m' to get 

(7) 

where e is the complex scattering angle between beams £+ and £+. 

This expression may at first sight seem computationally more efficient 

than Eq.S with a kinematic TiLL'. However, one must also consider the 
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effects of repeated calculations with variable atomic positions and of 

available symmetries that can be put to advantage. With variable atomic 

positions one should store the constant quantities for all 

or at least cose ~~ for all ~±' and g+. When symmetries between 

beams are taken advantage of, the number of such quantities is not simply 

reduced to that corresponding to non-degenerate beams~. This is because 

cose~ is not simply related cosen even when~" and~' are symmetry­

related, unlike the case of YL(k~p) and YL(k~/)' (see Ref.6). 

So Eq.5 retains some advantages, despite the extra summation over m and 

the correspondingly large number of L-values, namely ( ! max+I)2, since 

in the case of Eq.5 only YL(k~ ) need be stored for all L and~. Thus 

whether Eq.5 or Eq.7 is most efficient depends on the relative numbers of 

spherical waves and beams, as well as on the kind of symmetry present, 

the number of geometry variations planned, and the relative cost of 

storage and numerical operations. 

4. C~vergence questions 

Figures 2-4 include several cases of poor convergence that are identi-

fiable through the appearance of unusually sharp peaks in the I-V curves, 

namely around 85 eV in several beams. Such convergence problems are 

known to occur with perturbation methods in LEED in cases of strong multiple 

scattering, in the present case presumably between neighboring carbon 

atoms, whose distance is of the order of 1.45 A. Since we have used 

realistic physical parameters in our model calculations (in particular for 

the mean free path and the vibration amplitudes), this multiple scattering 
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should be present in real systems as well. Thus although we are dealing 

with a low Z element and with few nearest neighbors, the small bond 

lengths allow considerable multiple scattering to build up to a point 

comparable with that in strongly scattering metals. 

As we have seen, the neglect of multiple scattering, even in the 

kinematic limit within each layer, does not shift existing peak positions 

in I-V curves enough to particularly impair structural determination, 

especially if peak heights are disregarded. The main risk is that 

spurious peaks develop that could influence a structural determination. 

Such spurious peaks are due to the lack of current conservation that approxi­

mations entail: artificial excesses of electron current can be multiplied 

in the multiple scattering process. One example of non-convergence 

occurred around 85 eV when an infinity of 6-carbon-ring layers (rather 

than a pair of such layers) were stacked together and RFS was applied to 

that semi-infinite stack, i.e. the spurious peaks of Fig.6 blew up. This 

led to our choice of only two layers in the case of approximations. In 

cases like this one, a better approach could be to restrict the multiple 

scattering between the layers to avoid the buildup of errors; this can be 

achieved, for example,by limiting the number of passes allowed in RFS, or 

by combining a few layers into one single layer within which the chosen 

approximations are applied. 

One can sometimes visually detect and then ignore spurious peaks, but 

an R-factor analysis would blindly include such peaks and may be led 

astray in its structual predictions (however an R-factor sensitive to 

peak positions rather than peak heights and shapes should still be 

effective). It may payoff in that case to artificially reduce the 
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multiple scattering in order to avoid such spurious peaks. This may be 

achieved in the calculation by shortening the mean free path length (which 

is just another way of shortening the scattering paths) and/or by increasing 

the atomic vibration amplitudes to reduce the atomic scattering factors. 

It is well known that such manipulation does not in first approximation 

shift peak positions and should therefore not markedly impair the capability 

of structural determination. 

In the context of molecular layers adsorbed on metal surfaces, it is 

generally recommendable to make less severe approximations within the metal 

than within the molecular layers, because of the usually greater predom-

inance of multiple scattering in most metals. This can easily be implemented 

in the traditional layer approach by employing different levels of approxi-

mation within different layers and combining the layers with any of the 

known methods (RFS, transfer matrix method, layer doubling, Bloch waves, etc.). 

5. The near-neighbor multiple scattering model 

Let us examine the nature of some of our approximations in a different 

light. 'If we take the approximation which allows only single-length 

scattering paths and scatterings between nearest neighbors, we see that 

we have in effect allowed mUltiple scattering only within the small 

cluster composed of any given atom and its nearest neighbors. This cluster 

idea also appears in a different way as follows. It is apparent from Eq.5 

which, in the kinematic limit, would have the factors t~ fet'~~_' 

replacing TLL', that the exact layer diffaction properties are in fact 

calculated as a kinematical lattice sum over each of the total scattered 

waves leaving each atom of the layer. It is thus as if each atomic scatt-

ering factor t~ e of Eq.2 that appears in a kinematical formula had 
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simply been replaced by a more complex scattering factor that includes the 

multiple scattering effect of the lattice surrounding that atom, i.e. of 

a cluster of not too distant atoms. 

It is then natural to think of the approximations mentioned above as 

consisting of the replacement of each atom by a "cluster-embedded" atom 

that includes the multiple scattering effect of its nearest neighbors 

within the cluster. This near-neighbor multiple scattering model is formally 

equivalent to that described in the last sections (based on layers with 

subplanes) but provides two main advantages. First, it is the basis of 

a new class of approximations that is characterized by the use of embedding 

clusters of any suitable size and shape;13 if desired, various limitations 

on the multiple scattering within the cluster can also be included. 

Second, the near-neighbor multiple scattering model permits the storage 

of the cluster scattering properties for multiple use after a single 

calculation, because such clusters can be rotated easily in space, which 

is not readily done in the layer-with-subplane approach. This advantage 

can be derived from Pendry's formalism for dealing with the exact scattering 

from finite clusters of atoms 1a,14, as will be shown below. 

The effect of the near-neighbor multiple scattering approximations on 

I-V curves is simdar to that shown in Section 3 for the various approxima-

tions discussed there, since these approximations partly overlap. Our 

experience with those approximations thus allows us to state that the 

near-neighbor multiple scattering approximations also provide a useful 

basis for structural analysis of surfaces. 

To formalize the above considerations, let us define the t-matrix 

ij 
TLL' to represent all those multiple scattering paths within a certain 
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cluster c of atoms that start at atom j and terminate at atom i, both 

atoms j and i belonging to that cluster c. Again, approximations may 

involve neglecting some of these multiple scattering paths within the 

cluster. 
ij 

TLL' represents the amplitude of a scattered spherical wave L= 

( 1 m) due to an incident spherical wave L'=( 1 'm'), both waves being 

centered on the same artibrary point, e.g. on atom i. This is the same 

quantity defined by Pendry in Eq.27 of Ref. la, if one omits his summation 

over j and k, which stand for our i and j. An effective atom i is then 

represented by replacing its individual t-matrix t i by the t-matrix 

Ti,c= t Tij, where j ranges over all atoms in the cluster c, including i 
J 

itself. Ti,c thus includes all scattering paths within the cluster that 

terminate at atom i. In the 6-carbon ring case, each of the six C-C-C 

triplets gives rise to a t-matrix Ti,c representing each of the six 

central atoms of the C-C-C fragments. This t-matrix Ti,c then takes the 

place of Ti in Eq.5. 

Two distinct clusters around atom i can be added, with some precaution 

to avoid double counting of paths. Thus clusters cl and c2 with the 

, where 

the single scattering by atom i itself is subtracted to avoid double inclu­

sion. Note that Ti 'C1+C1 is not equal to the exact Ti,c matrix of the 

complete cluster c=cl+c2, because some paths have been left out, namely 

those that directly connect any atom other than i in cluster cl with any 

atom other than i in cluster c2. In the carbon ring example, cl could be 

a cluster composed of one carbon atom and one of its neighbors, while c2 

would be the cluster composed of the same carbon atom and its other neighbor. 

As pointed out by Pendryla,14 any of the t-matrices used above can 

be changed in accordance with a rotation of the cluster, through the use 
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of rotation matrices l5 RLL , that operate in general on a matrix T as 

R-ITR (the inverse R-I is equal to the transpose of R). Although all 

these matrices have the potentially large dimension ( t max+I)2, making 

matrix multiplications time consuming, one in fact only needs to multiply 

expressions such as R-ITR by a vector, which contains the g-dependent 

factor of Eq .5, i.e. basically spherical harmonics used to transform 

from the spherical wave representation to the plane wave representation. 6 

Therefore, no matrix-matrix multiplication but only the much more 

economical matrix-vector multiplication is required. In addition, the 

possibility of rotations allows one also to permanently store the t-matrices 

for elementary clusters that are often encountered, in order to avoid 

having to recompute them each time (these matrices should be stored at 

each energy point, since they are energy-dependent). 

6. Summary 

We have explored the use of LEED in the structural determination of 

molecular layers with adsorption on substrates in mind. It has been 

shown that sufficient sensitivity to positional parameters is present in 

I-V curves to warrant the continued use of LEED in such cases. In view 

of the cost of full dynamical calculations in complex systems, a number 

of appoximations are proposed and several of them tested in a realistic 

case of layers composed of 6-carbon rings. It appears that the main 

features of I-V curves needed in surface crystallography, the peak positions, 

are not strongly affected by those approximations; therefore, these approxi­

mations become valuable in reducing the cost of a structural search. 

However, a negative side effect, the appearance of spurious multiple 

scattering peaks in I-V curves, is pointed out and cures are discussed. 
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A new class of approximations usi~g only near-neighbor multiple scattering 

is introduced which allows multiple use, through permanent storage and spatial 

rotations, of the scattering properties of small elementary clusters of atoms. 

It should be particularly helpful in structural searches that require a 

reliability better than that provided by kinematic approximations. 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Atomic structure of one layer of 6-carbon rings. Rings a, b, and 
c illustrate molecular expansion, rotation, and buckling, as used 
in the test calculations (+ and - signs refer to positions above 
and below the molecular plane) • 

A selection of theoretical I-V curves for a surface composed of 
layers of - 6-carbon rings, expanding as illustrated in 
Fig.la. In each panel, corresponding to separate diffracted beams, 
curves for increasing expansion are drawn above each other 
with shifted baselines. 

As Fig.2 for 6-carbon rings, rotating as illustrated in Fig.lb. 
Curves for increasing rotation are shifted upward. 

As Fig. 2 for 6-carbon rings, buckling as illustrated in Fig. lc. 
Curves for increasing buckling are shifted upwards. 

Atomic structure of one layer of 6-carbon rings, with one sub­
plane of atoms emphasized as thick-line circles. A small circle 
for lattice summation cutoff around one atom is included. 

Theoretical I-V curves for a surface composed of layers of 6-carbon 
rings (cf. Fig.5): (0,0) and (2,0) beams at normal incidence. 
The same intensity scale is used for all curves, which are shifted 
upward for clarity. 

a. "exact" calculation; 
b. T = t approximation; no intra-subplane multiple scattering; 
c. intra layer mUltiple scattering between nearest neighbors only 

in chains up to 8 long; 
d. as c. with chains up to length 1; 
e. no intralayer multiple scattering (Quasi-Dynamical approximation); 
f. kinematic approximation for one isolated layer. 

Contour plots of R-factors for the comparison of experimental and 
theoretical LEED I-V curves for Rh(111)+(2x2) C2H3 (ethylidyne with 
C-C axis perpendicular to surface in hcp-type hollow site; hydrogen 
ignored in theory). The Rh-C and c-c layer spacings are varied. 
Panel a uses "exact" (i.e. converged) calculations, while panel b 
uses the kinematical approximation in the double carbon layer. 
The plotted R-factor is an average over five different established 
R-factor definitions, cf. Ref. 5. Contour levels are separated 
by 0.025,.;" 



24 

(a) ( b) ( c) 

XBL 812-181 

Fig.l '. 

.. 



.. 

-en -

.c 
~ 

c ->, -en 
c: 
Q) -c: 

a 

25 

IIIIII ! I 
(23) beam 

I I I I i [ II I I I I I I I I ! I' ! 

Expanding C6 rings' I II 

I II e~6~ II III 
1\1 1(34) beam I\! 

V
1

\ ! I I 1\1 

II i!\ : \ II ~, \ 
! i ! A WlJI\ 1\ i;\ Iii I I! I I ' 1 1/1\ \t 

! i I I, j I f11 1 1,1 I j I! I iii I 
:: !:! I':! i~: " , 'I '! i i ! I II' 1 1 , , [ 'I': i, , 

,',' i i ~[ 'I / \ I \ ii' !! !, I!, iii i ! i \ 111\ \ 
' ~ ~.j, JI i ~ ! i [l 11 1\ 

/ 
I ' [ , 

ii" Ii, ! 
i II: II II \:\ i[ il ! i 

" [I I I \1' I .j.--

! j! 1W1 I \ Ii!! , , I I I I , I 

, i ! , I 1 I :\ iii ~ 
!: ,! :\: I~:' 

i; 1'- Iii \ \1 I j i ::: 
1 I I!i " \ j :,: :: i I 

'ii i I 1}lL ! I' 

50 a 
Energy (e V) 

50 100 

XBL-812-184 

Fig.2 



-(/) -

-
>­-(/) 

c 
Q) -c 

o 

26 

: ':\. \:\,\U' I! i ! 1 : : : .\\;: :; i: i 'I I, I I JI 
; I" : I ; I I,., ' I 

, . I:; i 'I: I i J II I \ ,\\ . II : . :, . ,: i . f-.I... 

50 

Fig.3 

o 
Energy (eV) 

50 100 

XBL-812-182 

.. 

.. 



, 

-(f) -c: 
::::J 

>-
~ 

0 
~ -..Q 
~ 

0 -
>--(f) 
c: 
Q) -c: 

• 

,. 
o 

27 

I I II II I 1 I I! I : Iii: ill I ! I !If iii' 1 i ' 
(2.3) beam iAiI' Buckling C6 rings ~ 

rli\ 11'18"='0°1/1111 ~i'l\ 
I k 1 I ,I I 1\ 

II 1\ I I (~4) beam 1/1\1\ I 

Ir II I!I\~ Ii, I II 1\1\ 
1\1/ II r\~ I 1\ Li\~ 

II ~~I~ r\l\ I 1\ 11\1\ 
1/ \ 1\1\1'- r I !! 1 \ t I 1\ I 

II 

I 
1 
I 

I 1/111\ 
I ~ 1\[; 

i ~~I\ 1\ 
I I ~l\l\ 
I II I'\v 
i ! 'f\. 

i i :! I r ! 
, i i: 'I i

l 
I, 

' I ' 1 

I Ii I j i i 

I" 

1\ 
1\ 

[.I 

1 : 

~ 
50 

1\ 

l' 

[.Iv 

1/ I 
! 

l ' II i 
i ! 

! r ' i ! ' ! i 

Ii ! i 
i i i I ! I 

If 

( 

\ 

! i I I I!! j 

(12)beam 
I! I 

I 

I\~l\ \ 
II '"'~ /\ 1 i 

\ ~ l/ 1\ IJ 
1(1\1/11 1\ ~\ 

1\1\ 
1'-

f ~\ IJ l\ 
\\!\ J 

! 1\ Jll I) f\. i\ f\ 
1 liN II i I 

111+ 
! 
I 

i i ! : I ' i ' i I I r 
I I 

o 
Energy (eV) 

50 100 

XBL-812-183 

Fig.4 



28 

XBL-812-178 

.. 

Fig.S 



• 

-
C/) 

c: 
Q) 1001c -c: 

29 

2 Layers of Cs rings 

8 = 0° 

(00) beam 0.4!)/0 

0.3% 

0.2% 

0 20 40 60 80 100 20 . 40 
Energy (eV) 

Fig.6 

(20) beam 

60 80 100 

XBL-812-177 



30 
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