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Abstract

Background: Invasive fungal infections cause millions of infections annually, but diagnosis 

remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and 

specific molecular assays that can differentiate between colonized and pathogenic organisms from 

different clinical specimens.
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Areas covered: We reviewed the literature evaluating the current state of molecular diagnostics 

for invasive fungal infections, focusing on current and novel molecular tests such as polymerase 

chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next 

generation sequencing (mNGS).

Expert Opinion: PCR is highly sensitive and specific, although performance can be impacted 

by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal 

resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid 

and highly-sensitive diagnostic modality that can identify a wide range of fungal pathogens, 

including down to the species level, but multiplex assays are limited and HRM is currently 

unavailable in most healthcare settings, although universal HRM is working to overcome this 

limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide 

range of fungal pathogens, although some drawbacks include limited access, variable performance 

across platforms, the expertise and costs associated with this method, and long turnaround times in 

real-world settings.

Keywords

Molecular diagnostics; polymerase chain reaction; PCR; digital PCR; metagenomics; next 
generation sequencing; high resolution melt; invasive fungal disease

1. Introduction

Invasive fungal infections (IFDs) cause millions of infections and account for an estimated 

1.6 million deaths annually, twice the number of annual deaths caused by HIV/AIDS [1,2] 

and similar to deaths from tuberculosis [3]. In addition, the population at risk from IFDs 

is increasing for a number of reasons, including an increasing number of hematopoietic 

stem cell transplants (HSCT) [4–8], solid organ transplants (SOT) [9], and individuals 

receiving systemic immunosuppressive drugs and immunomodulatory therapies such as 

glucocorticoids [10], TNF-α blockers and small molecule inhibitors such as ibrutinib 

[11,12]. In addition, infections such as invasive aspergillosis (IA) are becoming increasingly 

recognized in non-immunosuppressed individuals [13], such as in those living with solid 

organ malignancy [11,14], in the intensive care unit (ICU) [11,15,16], with severe influenza 

infection (influenza associated pulmonary aspergillosis (IAPA)) [17–19], and coronavirus 

disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) [20,21], with the 

latter being at risk from other fungal infections (e.g. COVID-19-associated mucormycosis 

(CAM)) [22,23].

Early diagnosis and prompt initiation of appropriate antifungal therapy is an important 

predictor of survival in individuals with IFD [24], yet diagnosis and subsequent targeted 

treatment remains challenging, particularly during early stages of infection [15,25]. Culture-

based approaches suffer from low sensitivity [26–28] and long turnaround times [29]. 

Conventional fungal biomarkers, such as galactomannan (GM) and 1,3-β-D-glucan (BDG) 

are increasingly used but are limited by accessibility, variable turnaround times, and 

decreased sensitivity, particularly for individuals on mold-active prophylaxis or treatment 

[30–32]. For the diagnosis of Pneumocystis pneumonia (PcP), BDG has higher sensitivity 

and specificity in persons living with human immunodeficiency virus (HIV) compared 
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to those without HIV [33]. Combining biomarkers, such as GM and BDG, has been 

shown to increase the sensitivity and specificity, such as for the diagnosis of invasive 

aspergillosis [34] The sensitivity of other diagnostic tests, such as the Aspergillus-specific 

Lateral Flow Device (LFD) (OLM Diagnostics, Newcastle upon Tyne, United Kingdom) 

and the Aspergillus Galactomannan Lateral Flow Assay (LFA) (IMMY, Norman, Oklahoma, 

United States) are also lower for individuals on mold-active treatment and those without 

neutropenia [30,35,36]. Lastly, matrix-assisted laser desorption ionization time of flight 

mass spectrometry (MALDI-TOF MS) is a rapid and cost-effective method for the diagnosis 

of IFD, with pooled sensitivity and specificity of 91% and 95%, respectively, compared to 

culture [37]. One major drawback, though, is that detection is made from culture on solid 

media, so like culture these assays suffer from low sensitivity overall and long turnaround 

times. Non-culture tests are also lacking to diagnose non-Aspergillus mold infections, such 

as those caused by Mucorales, Fusarium spp., Lomentospora prolificans, and Scedosporium 
spp. [26,38].

There is an increased need for molecular assays that have both high sensitivity and 

specificity, are able to detect co-infections, can differentiate between colonization and 

invasive infection, and are able to be used on different specimens such as body fluids, 

tissue, and blood, while being low cost, easy to maintain and update. Here we review 

the current state of molecular diagnostic tests for IFDs, focusing on novel molecular tests 

such as PCR/digital PCR (dPCR), metagenomics next generation sequencing (mNGS), and 

high-resolution melt (HRM)/universal HRM.

Lastly, over the past decade there have been numerous changes to fungal taxonomy 

attributed to the use of molecular technologies to resolve evolutionary relationships between 

fungi, as well as changes to the rules governing fungal naming conventions. As a result, 

many clinically important species have undergone name changes, which were recently 

reviewed with guidance on managing name changes in the clinical setting [39]. Some 

laboratory identification system databases are now utilizing updated names, and as a result 

laboratories have progressed to reporting new names alongside the previous name for clarity. 

In support of this progress, updated species names will be used herein utilizing both the new 

and old names.

2.0 Preparation of Clinical Specimens

DNA extraction is critical to the success of polymerase chain reaction (PCR)-based 

detection of fungal pathogens [40]. Extensive evaluation by the international Fungal PCR 

Initiative (FPCRI) has standardized DNA extraction from whole blood, serum and plasma 

[40–42]. Ensuring adequate volume of sample (≥3 mL whole blood; ≥0.5 mL serum/

plasma) and a small volume elution (<100 μL) are consistent requirements irrespective of 

sample type, while removal of human DNA (potentially a PCR inhibitor) and mechanical 

lysis of fungal cells to release DNA are required to improve whole blood extraction 

efficiency. Whole blood processing remains labor-intensive and a range of automated 

commercial kits for the extraction of Aspergillus spp. DNA from serum and plasma provide 

sufficient analytical performance [41,42]. The methodology to isolate DNA efficiently from 

bronchoalveolar lavage fluid (BALF) is already optimized. For detection of Pneumocystis 
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jirovecii, nucleic acids extraction processes yielding whole nucleic acid (WNA) are 

preferred as the detection of WNA has been demonstrated to be superior to detection of 

DNA alone [43]. Given the size of the human genome, it is important to remove human 

DNA prior to performing mNGS or risk host DNA overwhelming the DNA components of 

the fungal pathogens, consuming unnecessary sequencing space and reducing the sensitivity 

of the assay [44].

For the molecular detection of many fungal pathogens the optimal specimen type remains 

to be determined. Obviously for respiratory pathogens, targeting BALF appears sensible, 

and the use of less invasive respiratory samples has, apart from Pneumocystis pneumonia, 

received less clinical validation. When investigating sepsis caused by a range of fungi, 

various blood fractions have been used to varying degrees of success [45]. When the 

organism causes fungemia, then targeting the fungal cell as the source of DNA appears 

rational, although the testing of serum/plasma (targeting free DNA (DNAemia)) and using 

generic nucleic acid extraction platforms has been successful to aid the diagnosis of invasive 

candidiasis, invasive aspergillosis, and mucormycosis [41,46,47].

Detection and/or identification of fungal pathogens in fresh or formalin-fixed paraffin 

embedded (FFPE) tissue may be useful for the identification of fungi visualized on 

histological investigation but where culture is negative or has not been performed [48,49]. 

The fungal DNA yield from FFPE is dependent on collection of tissue containing a 

significant fungal load. In FFPE tissue, DNA yield is often poor due to formalin cross-

linking and DNA degradation. Optimization of DNA extractions from tissue is underway 

and while there is currently no standard for DNA extraction from these specimens, 

commercially available tissue extraction kits offer some utility and standardization.

3.0 PCR

Candida

Standardization of molecular methods for invasive candidiasis (IC) is advancing through 

the efforts of the FPCRI. Optimal sample choice (serum, plasma, or whole blood) is yet 

to be confirmed, complicated by the transient presence of candidemia associated with the 

various forms of IC, which define the likely sources of available Candida DNA (DNAemia 

vs intracellular) [47].

The T2 Candida Panel (T2 Biosystems, Lexington, MA, United States) represents the 

pinnacle of commercial molecular tests for IC, with meta-analytical review of performance 

generating excellent performance with a sensitivity of 91% and specificity of 94%, although 

sensitivity can be limited by the prior or concurrent use of antifungal therapy or absence of 

candidemia in certain forms of invasive candidiasis [50–52]. In addition, like most Candida 
PCR assays the T2 Candida Panel can only detect a handful of Candida spp. so would miss 

infection caused by a less commonly encountered Candida species. The T2 Candida panel 

is now included as a diagnostic option for IC under the current European Organization for 

Research and Treatment of Cancer and the Mycoses Study Group Education and Research 

Consortium (EORTC/MSGERC) guidelines [48]. The meta-analytical performance of other 

Candida PCR assays for the detection of candidemia is also excellent with a sensitivity 
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of 95% and specificity of 92%, but in the absence of candidemia sensitivity can be 

compromised, although may be reflect suboptimal extraction procedures targeting DNAemia 

[47,53,54]. Other commercial Candida PCR assays are becoming available and have been 

extensively reviewed [55].

The optimal combination of fungal biomarkers for the diagnosis of IC is yet to be 

determined, but a recent evaluation of the CandID (OLM Diagnostics, Newcastle-upon-

Tyne, United Kingdom) described a clinical algorithm incorporating serum PCR and (1-3)-

β-D-glucan testing, where IC could be both confidently confirmed (post-test probability 

>80%) or excluded (post-test probability <1) dependent on the combination of test results 

[56]. Hopefully, the A-STOP trial (ISRCTN43895480) will provide insight for combining 

biomarkers to achieve an optimal IC diagnosis.

The performance of Candida PCR in pediatric patients was unclear until the BIOPIC trial 

(NCT02220790) investigated biomarker performance, including Candida PCR, in pediatric 

patients. In this study, the sensitivity and specificity of the T2 Candida was 80% and 

97%, respectively, and combining the T2 with mannan antigen ELISA increased sensitivity 

to 86% while maintaining a specificity of 95% [47,57]. The use of molecular tests 

to identify potential resistant species (C. auris, Nakaseomyces glabratus (previously C. 
glabrata) or Pichia kudriavzevii (previously C. krusei)) with potential resistance to antifungal 

therapy is feasible using species-specific assays or assays that differentiate/identify the 

species of interest. Molecular tests to identify mutations in the FKS1 and FKS2 genes 

potentially associated with echinocandin resistance may be useful, but assays to detect 

mutations associated with azole resistance may not be feasible due to the range of potential 

mechanisms (e.g. efflux pumps, increased target site expression, etc) and next generation 

sequencing may provide a solution [58].

Pneumocystis

The detection of Pneumocystis DNA using quantitative PCR (qPCR) is very sensitive 

(>95%) for the diagnosis of PcP [45]. While this high sensitivity has the potential to 

cause false positive results, this has not been demonstrated in a meta-analysis of PcP 

PCR - where specificity remains around 90% and increased through the detection of 

higher fungal burdens [59–62]. PcP PCR on non-invasive samples (serum, induced sputum, 

nasopharyngeal aspirate and oral washes) has demonstrated acceptable sensitivity (77% for 

serum and oral washes to 99% for induced sputum) while maintaining excellent specificity 

(≥90%) across all sample types [62].

When PcP PCR positivity is indicative of lower fungal burdens, combination with other 

mycological tests such as serum (1-3)-β-D-glucan (BDG)) and clinical presentations/context 

remains paramount. PcP PCR has been included into consensus guidelines for defining 

probable PcP in patients with host factors, typical radiologic findings, and PCR positivity 

[48]. Currently, these definitions do not discuss the influence of fungal burden on the 

certainty of classification, and arguably patients with a low burden of PcP require additional 

mycological evidence, such as BDG, before classification. The inability to provide a 

threshold reflected the technical diversity across the many “in-house” assays, which also 

prevents PCR becoming the reference method for PcP diagnosis.
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The FPCRI are attempting to standardize PcP PCR methodology, which is complemented 

by the availability of commercial PCR assays. A multi-center evaluation of in-house and 

commercial assays for detection of Pneumocystis from BAL fluid found that reverse 

transcriptase qPCR (RT-qPCR) assays targeting WNA were significantly superior to qPCR 

assays targeting DNA only (p<0.001), regardless of fungal load. In addition, targeting 

the mitochondrial small subunit (mtSSU) provided the lowest Cq values and superior 

analytical performance [43]. While antifungal resistance is currently uncommon in PcP, 

the molecular detection of mutations in dihydropteroate synthase (DHPS) and dihydrofolate 

reductase (DHFR) associated with resistance to sulfamethoxazole and trimethoprim have 

been identified but association with treatment failure is not always evident [45].

Aspergillus

Over the past decade Aspergillus PCR has undergone considerable standardization focused 

on the rate-limiting extraction protocol [45,63]. qPCR targeting the multi-copy ribosomal 

DNA region (e.g. 18S, Internal transcribed spacers, 28S), duplicate testing of DNA eluates, 

and inclusion of an internal control to monitor for inhibition improve performance, which 

is generally superior for the detection of A. fumigatus over other Aspergillus spp. [63,64]. 

In addition, high quantitative levels of Aspergillus DNA have been shown to be associated 

with high mortality rates at 90 days compared to those with lower Aspergillus levels (cutoff 

<150 copies/mL). Furthermore, a negative PCR level has been shown to be associated with 

higher survival rates compared to those with detectable Aspergillus PCR levels after 2 weeks 

of antifungal treatment [65].

Clinical performance varies across “in-house” and commercial assays (Table 1). A recent 

Cochrane systematic review and meta-analysis of Aspergillus PCR blood testing generated 

a sensitivity/specificity of 79% and 80%, respectively, comparable with galactomannan 

enzyme immunoassay (GM-EIA testing [66]. Comparative analytical testing as well as a 

clinical study have demonstrated plasma to be superior to serum for detection of Aspergillus 
DNA [41,67]. When testing blood, the presence of two consecutive positives increased 

specificity to 95%.

Meta-analyses of Aspergillus PCR on BALF provided sensitivities and specificities, ranging 

from 76.8–79.65% and 93.7–94.5%, respectively, with the high specificities providing 

confidence for confirming IA [68,69]. The high specificities corroborate the incorporation of 

Aspergillus PCR as a mycological criterion in the current EORTC/MSGERC guidelines for 

probable IA [48]. In blood, two or more consecutive positive Aspergillus PCR samples are 

required, in BALF two or more duplicate Aspergillus PCR positive results from BAL fluid, 

or one positive from each of whole blood/plasma/serum and BAL fluid may be considered as 

mycological evidence for aspergillosis [48]. While combined GM-EIA and PCR positivity 

is not considered in the current EORTC/MSGERC definitions, combining their use when 

testing of both BALF and blood appears optimal for both confirming and excluding IA 

[45]. The incorporation of Aspergillus PCR into the consensus definitions has increased 

the possibility for defining probable IA, although ambiguity regarding this classification for 

BALF testing has been identified, with the detection of higher fungal burdens potentially 

more indicative of disease [70,71].
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Performance in the setting of hematologic malignancy has been well studied, but less so 

in other populations (e.g., critical care or chronic respiratory disease), but testing samples 

from the focus of infection may benefit performance [45]. In pediatric populations cancer 

or have undergone allogeneic hematopoietic stem cell transplant, PCR currently has a 

grade BII recommendation for the detection of aspergillosis from serum and a grade AII 

recommendation from tissue and BAL per the 8th European Conference on Infections in 

Leukaemia (ECIL-8) [72].

Commercial Aspergillus assays can also detect the most prevalent cyp51A mutations (TR34/

L98H and TR46/Y121F/T289A) conferring resistance to triazoles (Table 1). Being a single 

copy gene, these assays typically have reduced sensitivity compared to the detection 

of the organism itself. The range of mutations identified as causal for azole resistance 

continues to increase, beyond the cyp51A gene, and methods with a broader range of 

detection, such as next generation sequencing (NGS) or pyrosequencing, but capacity for 

direct sample testing are required [73]. In a prospective, multicenter clinical evaluation, the 

Aspergenius® (PathoNostics, Maastricht, Netherlands) identified mutations associated with 

azole resistance in A. fumigatus in 14% of patients with probable IA, with 75% having azole 

resistance confirmed through susceptibility testing of a culture isolate; patients with a GMI 

in BAL fluid ≥1.0 were more likely to generate conclusive PCR results [70].

Mucorales—Increased use of molecular techniques for detection of Mucorales DNA has 

improved in the diagnosis of mucormycoses [74], where culture has poor sensitivity and 

there are no serological tests. Several conventional and qPCR assays have been described 

for detection of Mucorales DNA from fresh or FFPE tissue, BAL fluid, and serum, largely 

targeting ribosomal DNA [74–79]. In addition, quantifying the Mucorales DNA level in 

serum has been shown to have prognostic potential, as patients with decreasing and negative 

DNA levels by qPCR had improved survival compared to patients whose qPCR level 

remained positive [80]. However, as with other fungi, efficient DNA extraction is critical 

to the success of the PCR. The FPCRI is attempting to standardize Mucorales PCR and 

the performance of Mucorales PCR was reproducible across assays when testing contrived 

samples [81].

The recently published MODIMUCOR trial investigated Mucorales qPCR for the diagnosis 

and follow-up of patients with suspected IFI [46]. The qPCR detected the most common 

genera (Mucor/Rhizopus spp., Lichtheimia spp. and Rhizomucor spp.) when prospectively 

testing serum samples from 232 patients (11.6% with proven/probably infection). Sensitivity 

was 85.2% and specificity was 89.8%. The first positive result was obtained a median 

of four days earlier than the collection of culture or histopathology positive samples and 

a median of one day before imaging was performed. qPCR typically became negative a 

median of four days following initiation of amphotericin B, and survival was significantly 

higher in patients where qPCR became negative within seven days of commencing therapy 

compared to those remaining positive. The authors recommended inclusion of qPCR as a 

mycological criterion for mucormycosis in future EORTC/MSGERC definitions [46].

The recent development of commercial qPCR assays should assist Mucorales PCR 

standardization and enable direct detection of pan-Mucorales DNA [82–85]. Clinical 
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evaluation of these commercial assays remains limited. Scherer and colleagues used 

oligonucleotides specific for Mucor spp., Rhizopus spp., Rhizomucor spp., and Lichthiemia 
spp. to detect DNA in 450 BAL fluid samples from 374 patients, 10/374 having proven/

probable mucormycosis, 4/374 with probable aspergillosis and 8/374 with possible IFI. 

Sensitivity for Mucorales and Aspergillus PCR was 100% and 75%, respectively, and 

positive Mucorales PCR results were also obtained from serum in 90% of patients. Culture 

was only positive for 2/10 patients, providing support for including the PCR testing of BAL 

fluid and serum in the mucormycosis diagnostic pathway, subject to prospective clinical 

validation. It further suggests that Aspergillus-Mucorales co-infections may be relatively 

common [86].

The MycoGenie® Real-Time PCR kits (Adamtech, Pessac, France) can detect both 

Aspergillus spp. and Mucorales spp. Upon prospective testing in sera from 744 patients 

(35 with aspergillosis, 16 with mucormycosis, and four with Aspergillus-Mucorales 

co-infection), the MycoGenie® assay detected Mucorales DNA in the sera of 16/20 

mucormycosis patients, with 100% sensitivity in sera from the 14 patients with disseminated 

mucormycosis. Both Aspergillus spp. and Mucorales DNA were detected in sera from all 

four patients with co-infection [84]. Interestingly, the above studies both noted Rhizomucor 
pusillus as the most frequently detected Mucorales fungus, which is uncommonly isolated 

in culture, suggesting that this species may account for more infections than previously 

thought.

A potentially useful target for Mucorales PCR may be the multi-copy CotH gene family, 

which encodes spore coating proteins required for tissue invasion, are unique to Mucorales 

fungi and have broadly species-specific target sequence [87]. Using a mouse infection 

model, a CotH-specific PCR assay detected DNA from a variety of Murorales species in 

plasma, urine, and BAL fluid with 100% specificity, and with 90% sensitivity from urine. 

Testing urine samples from four patients with proven mucormycosis was also successful, 

warranting validation on larger numbers of human samples [87].

Rare fungi—Individual assays specific to rare yeasts are limited by the relatively low 

incidence of non-Candida, non-Cryptococcus invasive yeast infections. Incorporating the 

detection, but more so the differentiation of these rare yeasts into multiplexed or pan-fungal 

assays will likely provide an optimal diagnostic strategy, but currently clinical validation is 

limited. The molecular detection of rare yeast species requires substantial advancement [47].

In a multicenter, retrospective study from France, 81 sera samples from 15 patients 

diagnosed with proven invasive fusariosis was tested with a pan-Fusarium qPCR assay. 

DNA was detected in 14/15 patients (sensitivity 93%), with detection made a median of 6 

days prior to diagnosis by positive blood culture or biopsy. By comparison, serum GM was 

positive in 7.1% of patients and BDG positive in 58.3% of patients. qPCR was negative in 

patients with other IFD’s and in patients without IFD [88]. Endemic mycoses

The diagnosis of endemic mycoses (e.g., Coccidioides spp., Histoplasma spp., and 

Blastomyces spp.) is dependent on microscopy and culture coupled with serological or 

antigen testing, and the development of PCR-based assays thus been slow [92–96]. PCR 
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assays for detection of Histoplasma spp. have utilized a range of targets with varied 

performance (sensitivity of 67-100% and specificity of 96-100%) compared to culture and 

lacking clinical validation [92]. A whole nucleic acid qPCR targeting the mtSSU, provided 

high sensitivity (97.7% in microscopy/culture proven H. capsulatum var. capsulatum or 

H. capsulatum var. duboisii cases). This PCR was positive in 43.3% of blood samples 

from proven cases, with blood positivity associated with progressively disseminated 

histoplasmosis [93].

A recently developed duplex qPCR based targeted the proline-rich antigen 2 (PRA2) gene 

for detection and differentiation of C. immitis and C. posadasii in clinical specimens and 

cultures but has yet to be fully validated in a clinical study [97]. Other assessments 

of PCR have shown comparable sensitivity to that of culture [98]. A small number of 

in-house assays have been reported for detection and/or identification of Blastomyces spp. 

from culture, clinical specimens, or soil [94,99,100]. More recently, a duplex PCR for 

differentiation of Blastomyces dermatitidis and B. gilchristii was developed, targeting the 

BAD1 (Blastomyces adhesin) gene [96]. Retrospective testing on 33 clinical specimens 

(FFPE, bronchial washings, lung tissue, skin tissue, cerebral spinal fluid (CSF), bone 

marrow, blood, brain tissue, and sputum) from patients with confirmed blastomycosis 

detected B. dermatitidis in 5/33 [96].

In the absence of a pathogen-specific PCR assay, pan-fungal PCR may assist in identifying 

unknown fungal infections by use of universal fungal primers that amplify multicopy fungal 

DNA targets (typically ITS1/ITS2 rDNA) from clinical specimens. Sequenced amplified 

product may then be used to identify the fungus. A retrospective review of pan-fungal PCR 

tests performed on 138 samples (including tissue, CSF, BAL fluid) from 108 patients at one 

medical center found that a fungal product was identified in 41/138 (30%), but that only 19 

(46%) of these were potential pathogens [89]. Pan-fungal PCR was positive in only 11/94 

(12%) of samples with negative microscopy/histopathology. Performance of pan-fungal PCR 

is best in normally sterile specimens than respiratory tract specimens due to the presence of 

fungal colonisers/contaminants in the latter [89–91]. An audit of pan-fungal PCR requests 

in BAL fluid over a five-year period found that only 8.5% of tests yielded a clinically 

significant results, and in only 1.2% was pan-fungal PCR the only diagnostic test that led 

to the diagnosis of IFI [91]. The optimal use of pan-fungal PCR with sequencing is for 

identifying fungi in normally sterile specimens with fungal elements observed on positive 

microscopy. An alternative to sequencing for fungal identification is high resolution melt 

curve analysis, which has the advantage of being able to differentiate multiple species, as 

well as being faster and less expensive (discussed below).

4.0 digital PCR (dPCR)

Droplet digital PCR partitions the PCR process into thousands of individual PCR reactions, 

where post amplification end-point fluorescence is used to differentiate positive and negative 

partitions and estimate the DNA concentration in the sample obviating the need for a 

standard curve. This highly reproducible process can be multiplexed to detect individual 

pathogens and to screen for mutations potentially associated with antifungal resistance, 

has the potential for enhanced detection of low DNA concentrations, particularly relevant 
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to fungal infection and has increased tolerance to inhibition compared to qPCR [101]. 

Currently, digital PCR for the detection of fungal DNA is limited to Candida spp., 

Aspergillus spp., and Pneumocystis jirovecii and the presence of mutations potentially 

associated resistance to antifungal treatment (Table 2). However, clinical validations are 

limited by small sample size, uncertain case classification and lack of a control population. 

Extensive clinical validation of these tests is required.

5.0 Metagenomics Next Generation Sequencing

Metagenomic next-generation sequencing (mNGS) to detect microbial cell-free DNA 

(mcfDNA) in plasma might be a promising approach to diagnosing IFI’s, potentially 

allowing for earlier detection and diagnosis of fungal infections when other biomarkers 

tests from blood are still negative, and hypothesis-driven targeted testing is not yet feasible 

[102,103]. An example of this is the diagnosis of Fusarium solani by mNGS in the ongoing 

outbreak associated with epidural anesthesia in Matamoros Mexico.

While multiple platforms exist (Table 3), most data to date has been produced for the 

Karius® Inc. (Redwood City, California, United States) assay, which is commercially 

available in the United States and can identify and quantitate plasma mcfDNA of 

approximately 1,000 clinically relevant pathogens, including fungi, bacteria, DNA viruses 

and eukaryotic parasites [104]. The limited invasiveness of blood sampling, the potential 

for faster diagnosis compared to conventional testing, and the possibility of identifying 

a wide range of infections has made this method an attractive add-on to the diagnostic 

armamentarium across microbiology [103], although performance may differ between 

different mNGS platforms [105]. Testing of cerebrospinal fluid (CSF) by mNGS is most 

frequently performed at the University of California San Francisco Center for Next-Gen 

Precision Diagnostics (San Francisco, California, United States). As another benefit, NGS 

tests usually give quantitative test results, and kinetics of these results may also hold 

significant value for outcome prediction and treatment stratification [106].

A recent two center cohort study evaluated the Karius® Inc. mcfDNA sequencing test in 

218 plasma samples from a cohort of 114 patients with severe COVID-19 infection in the 

ICU found that mcfDNA sequencing held promise as a sensitive and highly specific test 

for the diagnosis of CAPA, with a sensitivity of 83% and specificity of 97% [106]. An 

important added benefit of mcfDNA sequencing is its hypothesis-free testing approach and 

potential for identifying other rare fungal pathogens. Indeed, the test was able to detect 

Rhizopus microsporus in a patient that had been suspected to have CAPA, but inconclusive 

mycological test results, and also Candida spp. and Pneumocystis jirovecii in patients that 

had clinical suspicion and mycological test results indicating invasive infections with these 

pathogens [106]. In another study, plasma mcfDNA sequencing detected the same fungus 

identified from the biopsy tissue at the genus level in 7 of 9 patients with proven mold 

disease, with sites of infection including lung, peri-pancreatic lymph node, heart, brain, 

sternum, and small bowel [102]. In addition, the test was able to detect Aspergillus lentulus, 

a cryptic Aspergillus spp. that is difficult to differentiate from A. fumigatus by conventional 

methods and requires alternative antifungal therapy to the treatment of A. fumigatus 
infections [102]. Among 36 mostly immunocompromised patients, mNGS detected one to 
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five organisms in 21 of these patients (14/21 bacteria, 8/21 fungi, and 6/21 viruses) [107]. 

Positive tests prompted therapy changes in 12 of 21 patients, and of note, seven of eight 

fungi identified were considered clinically pathogenic with disease sites including sinus, 

liver and lung [107]. Another recent analysis evaluated 82 Karius® mcfDNA tests from a 

mixed cohort of adults and children who were mostly immunocompromised and found the 

Karius Test® results led to a positive impact on clinical patient management in 6 (7.3%), and 

negative impact in 3 (3.7%) cases [103]. Of note, in 3 of the 6 cases where the Karius Test® 

had a positive clinical impact the test led to early diagnosis of fungal infections (including 

IC, mucormycosis, and IA) that had been missed by conventional methods, but were later 

confirmed [103]. In one additional mucormycosis case, the test was also able to identify 

the causative Mucorales genus, but also wrongly identified a number of bacterial pathogens 

leading to escalation of antibacterial coverage that was in retrospect deemed unnecessary, 

leading to negative assessment of the clinical utility [103]. In a case report, mNGS was able 

to provide a diagnosis of mediastinal aspergillosis within 24 hours from when the clinical 

specimen was obtained, which was 5 days before histopathological results were available 

and 2 weeks prior to culture results being available to guide treatment [108].

The utility of plasma mcfDNA testing to diagnose fungal CNS infections has also been 

described [109,110]. In these reports, A. fumigatus and Cladophialophora bantiana were 

found to be the causative pathogens of CNS infections. Although this may provide 

additional information regarding the etiologic agent responsible, in cases where mass 

lesions attributed to fungal organisms are observed, surgical resection is often a key 

component of management. Additionally, it is likely publication bias exists for these reports 

and prospective evaluation of plasma mcfDNA testing is needed for the sensitivity and 

specificity of testing for CNS infections to be determined.

mNGS testing of CSF samples is also commercially available and has been evaluated in 

a prospective multicenter study involving hospitalized patients with idiopathic meningitis, 

encephalitis or myelitis [111]. In this study, 214 patients were enrolled and results made 

available to the treating physician. Of 58 infections in 57 patients, 19 (33%) were 

diagnosed by conventional testing and mNGS, 26 (45%) by conventional testing only, 

and 13 (22%) by mNGS only. Overall, mNGS diagnosed 32 infections compared to 27 

infections with conventional testing only. Among the fungal diagnoses in this study, mNGS 

of the CSF identified Cryptococcus neoformans and Candida tropicalis, although missed 

cases of disseminated aspergillosis, CNS mucormycosis, an angioinvasive fungal disease 

(not otherwise specified) identified on pathology samples, and cryptococcosis with a serum 

cryptococcal antigen titer of 1:8. These cases were likely missed due to the lack of organism 

present in the cerebrospinal fluid (e.g. mass lesions or non-CNS infections with encephalitis 

from other causes), however mNGS remains a promising testing modality for potential use. 

Subsequent case reports have observed positivity in CSF samples compared to negative 

results concurrently obtained from blood [112].

While these results outline the promise of NGS/metabolomic testing for the diagnosis 

of fungal infections, limited access to testing, cost and highly specialized expertise, and 

subsequent long turnaround time are still large barriers to implementing these tests into 

routine patient care. In addition, there is a lack of standardization of mNGS across assays, 
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including the bioinformatics analysis [113], and challenges with the removal of human DNA 

from clinical specimens, as previously discussed. This is particularly an issue with clinical 

specimens from non-sterile sites such as BAL. Interpretation of results may be easier from 

specimens obtained sterile sites such as serum, CSF, and tissue from deep biopsies [114].

Further studies are therefore needed to evaluate the potential real-world impact of NGS 

testing and to identify optimal ways of utilizing these tests alongside conventional 

microbiological methods. Improved access to testing is required to demonstrate clinical 

utility given that the management of deadly IFDs is time critical. Until faster turnaround 

time can be achieved, these tests may primarily serve a role in the evaluation of patients 

without a diagnosis despite intensive investigation. Testing may also be performed as 

adjunct/confirmatory test, however this conflicts with the significant associated cost.

It is important to recognize the limitations of mNGS testing. These prior studies have 

reported some cases of false-positive results deemed by adjudication panels involved in 

the patients’ care as unlikely causes of the disease presentation. The results should thus 

be interpreted in the context of each individual patient to avoid unnecessary treatment and 

additional diagnostic investigation.

6.0 High-Resolution Melt/Universal Digital High-Resolution Melt

Real-time PCR is often combined with High-Resolution Melt (HRM) analysis to 

discriminate target organisms or resistance genes and distinguish true positives from false-

positives [115–118]. HRM technology offers a rapid, simple, cost-effective, and highly-

sensitive method for nucleic acid screening, making it an appealing option for profiling 

samples prior to or instead of more extensive sequencing analyses. HRM is closed-tube 

based analysis that does not require post-processing, thus avoiding external nucleic acid 

contamination, and easing requirements for test operators compared to NGS approaches that 

cannot currently be carried out in clinical laboratories on a large scale. Like NGS, HRM 

is highly-flexible and can use probe-free methods with the use of DNA intercalating dyes 

that produce sequence-specific melting temperatures (Tm) due to factors such as the melting 

rate, GC content, PCR buffer, and amplicon size. Additionally, while traditional approaches 

may require time-consuming cultivation or reliance on phenotypic characteristics, HRM can 

rapidly detect and differentiate fungal pathogens based on their unique genetic profiles in 

less than 4 hours, resulting in a swifter diagnostic turnaround time that enables clinicians 

to initiate appropriate treatment promptly compared to conventional testing [119]. HRM 

analysis is also capable of detecting mutations or single nucleotide variations (SNVs) and 

discriminating heterozygotes by comparing Tm shifts or changes in curve shape [120,121].

Despite the promise of filling a crucial clinical niche, to-date standardized fungal HRM 

diagnostic platforms are largely unavailable in the healthcare setting. Several of the 

previously mentioned commercially-available PCR-based assays employ HRM but are not 

yet FDA approved. However, Biofire® (bioMérieux) has two FDA-cleared assays utilizing 

HRM to differentiate yeasts (Table 4). The BioFire® FilmArray® Meningitis/Encephalitis 

(ME) Panel (BioFire Diagnostics, Salt Lake City, Utah, United States) can discriminate 

Cryptococcus (C. neoformans/C. gattii) from 6 other bacteria and 7 viruses from 0.2 ml of 
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CSF fluid in as little as an hour. Previous studies have shown an overall agreement ranging 

from 93–99% between the ME panel and conventional diagnostic testing, and has shown 

98.2% agreement with clinico-laboratory assessment in a large scale 705 patient study [122]. 

The BioFire® FilmArray® Blood Culture Identification (BCID) Panel (BioFire Diagnostics, 

Salt Lake City, Utah, United States) is run on positive blood cultures and can differentiate 

Cryptococcus (C. neoformans/C. gattii), C. albicans, Nakaseomyces glabratus (previously 

C. glabrata), Pichia kudriavzevii (previously C. krusei), C. parapsilosis, C. tropicalis, 
and C. auris among 23 bacteria while simultaneously detecting bacterial antimicrobial 

resistance genes in nested format by HRM. This BCID panel has demonstrated 94-99% 

agreement compared to conventional culture methods, and the largest known study of 2207 

positive blood culture samples had 99.2% sensitivity among all yeast isolates [123,124]. 

Despite concerns for false-positive and false-negative results these Biofire® assays have 

demonstrated high utility and offer real-time broad detection coverage results [125]. 

Substantial cost is also a consideration and further system improvements and research is 

necessary before routine HRM analytics for a broader span of fungal organisms can be 

performed.

In one study of 100 patients suspected of having IFD, blood cultures were positive in 57 

cases and negative in 43 cases. HRM was positive in 14 cases, including C. tropicalis (4), 

Nakaseomyces glabratus (previously C. glabrata) (4), and Pichia kudriavzevii (previously 

C. krusei) (6). HRM sensitivity was 24.6%, specificity 100%, positive predictive value 

100%, and negative predictive value 50% [126]. HRM analysis has been shown to be 

capable of distinguishing most clinically-important species of Candida, and in separate 

studies has shown discrimination of individual species in C. parapsilosis and Nakaseomyces 
glabratus (previously C. glabrata) complexes, and up to 23 different species of Candida 
simultaneously [127–131]. Another study demonstrated how HRM could detect mutations 

in the ERG11 gene in Candida conferred with azole resistance [132]. The ability of HRM 

to rapidly differentiate species within the Candida complex, including C. parapsilosis, C. 
metopsilosis, and C. orthopsilosis, is of clinical note as each species in the complex is not 

easily phenotypically distinguishable and can exhibit a unique epidemiology, virulence, 

and antifungal susceptibility, and most current commercial tests do not discriminate 

between species within Candida complexes. These studies highlight the potential for rapid 

approaches of broad-based Candida detection and identification followed by specific loci 

targeting for subtyping or resistance identification, as well as the possibility to multiplex 

different targets in a single assay.

HRM has also been able to discriminate between C. neoformans var. grubii, C. neoformans 
var. neoformans, and C. gattii species by analyzing ITS regions [133,134]. Another analysis 

of HRM was able to give conclusive identification and clade classification of Pythium 
insidiosum [135]. HRM studies assay have also been described for other high priority 

pathogens and endemic fungi as well. Specific assays as well as panfungal assays have been 

developed for Fusarium spp. and species complexes [136–138]. Another study used HRM 

to differentiate C. immitis, B. dermatitidis, H. capsulatum, and Paracoccidioides brasiliensis 
from other clinically-relevant yeast and molds in a single test [139].
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There have been many studies evaluating HRM to differentiate Aspergillus spp. Facilitated 

by its high-throughput modality, many of the most frequent Aspergillus resistance mutations 

have been characterized by HRM as well [140–142]. The ITS1-5.8S region has been 

used to discriminate A. fumigatus, A. flavus, A. niger, and A. terreus from clinical and 

environmental isolates [143], and a probe-based HRM method has shown that the ITS2 

region was sufficient to discern isolates from A. fumigatus, A. flavus, and A. ustus, but 

not A. terreus, A. nidulans, and A. niger from clinical specimens [144]. However, in other 

studies different ITS2 primers and a probe-free HRM assays were able to differentiate 

A. niger, A. flavus, A. fumigatus, and A. terreus [138,145]. In addition, HRM has been 

demonstrated to discriminate between A. fumigatus, A. terreus, and A. flavus from patient 

sera among clinically-relevant yeasts and molds using the complete ITS region through a 

combination of primers [134]. The Aversi ITS assay primers (Eurogentec, Liège, Belgium) 

showed high discrimination between A. versicolor, A. creber and A. sydowii [146]. HRM 

and barcoding assay was able to amplify two targets in the beta-tubulin gene to differentiate 

A. fumigatus, A. lentulus, A. terreus, A. flavus, A. niger, and A. tubingensis [147]. 

Collectively the above studies highlight HRM as a valuable tool for accurate and efficient 

species identification within the Aspergillus genus, but it remains to be seen whether there 

is a specific target and probe-free HRM methodology that can differentiate all clinically 

relevant Aspergillus spp. simultaneously by HRM.

While there are no standard molecular detection assays for mucormycetes, advances in 

HRM have allowed for identification at the species level. In one study, HRM was able to 

identify species of R. arrhizus, R. microsporus, M. circinelloides, and Lichtheimia species 

complexes [148]. HRM analysis was applied on amplicons generated from semi-nested real-

time PCR mucormycete-specific18S rDNA primers to accurately identify R. microsporus, R. 
oryzae, M. racemosus, M. circinelloides, R. pusillus, and L. corymbifera [149]. A follow-up 

study retested samples identified as positive by HRM with novel species-specific primers 

and qPCR to boost the sensitivity and specificity to 100% and 98%, respectively, while 

exhibiting 99% negative predictive value [150]. The same group used ITS primers and 

HRM to differentiate M. racemosus and M. circinelloides among Aspergillus spp. and 

clinically relevant fungal pathogens [138]. In another study, Mucorales strains (8 genera, 11 

species) were differentiated among non-Mucorales strains (9 genera, 14 species) by HRM, 

demonstrating 100% sensitivity and specificity rates with a limit of detection at 3 rDNA 

copy/qPCR reaction using degenerate primers targeting the 18S region of the rDNA [151].

The main limitation often cited for HRM is the breadth of taxa in the assay panels. However, 

many of the above studies have employed a variety of universal fungal primers which 

are capable of broad-based screening of multiple pathogens simultaneously. Furthermore, 

universal screening with HRM is not limited to a specific set of known fungal pathogens. Its 

ability to rapidly identify a wide range of known pathogens while also reporting unknowns 

makes it a valuable diagnostic tool across clinical settings. This is especially beneficial 

in populations where different pathogens can cause infection and in cases where less 

common or novel pathogens could emerge which are often the most problematic in terms 

of resistance or virulence. The issue lies in the single bulk-reaction constraints from typical 

PCR well-plate formats for melt analysis, which cannot detect low-level nucleic acid targets 

in heterogeneous samples and have the potential to produce complex melt curves that pose 
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challenges in interpretation [152]. As a result, to provide a comprehensive HRM diagnostic 

from the above studies and approaches carries the disadvantages of multiple assays having 

to be run on each sample which adds cost and labor or multiplexing specific targets which is 

widely associated with reduced sensitivity.

Different instruments as well as assay compositions can result in differing degrees of 

Tm variability [152–154], yet clustering analysis has shown high conservation between 

instruments which allows for high reproducibility and cross validation between institutions 

or multi-center studies even if different instruments are used [155]. Engineering controls 

can help overcome differences in pipetting, reagents, and DNA isolations kits used, which 

all can affect Tms to the point of incorrect clustering leading to false-positives [156]. 

Regardless, melt curve shapes may still be reliably identified irrespective of Tm variation 

[157–160]. The FDA approved BioFire ME and BCID assays have been evaluated by the 

FDA across test sites and instruments with reproducibility results showing high percent 

agreement with the expected results and Tm standard deviations of ≦0.5 °C in the ME panel 

and max observed range between Tms of ≦2.2 °C in the BCID panel[161,162].

Goshia et al. recently described a rapid long amplicon fungal universal HRM (U-dHRM) 

assay coupled with ML capable of detecting and identifying invasive mold infections in 

<5 hours, reporting findings such as identification of rare molds in culture-negative BAL 

samples [157]. The fungal U-dHRM assay also did not show a clear correlation between 

dHRM results and BAL galactomannan levels, which was a topic not discussed in the 

previous Aspergillus HRM literature. Advancing universal HRM to a digital platform where 

individual genomes are sequestered into separate picoliter-sized compartments overcomes 

these issues, has shown increased sensitivities compared to qPCR HRM, and can allow for 

multiple pathogens from co-infections to be detected simultaneously. HRM based internal 

controls also improve the absolute quantification accuracy of dPCR [118]. U-dHRM also 

intrinsically provides absolute quantification results which allows for monitoring disease 

progression and informing treatment options [153]. Machine learning (ML) has significantly 

enhanced the progression of U-dHRM towards becoming a vital high-throughput diagnostic 

tool as well [134,157–159]. ML pipelines for U-dHRM handle data preprocessing such as 

noise reduction and removing artifacts or background signals and then providing automatic 

analysis of potentially thousands of melt curves from each patient sample. By using 

classification and prediction models that identify specific melt curve features, complex 

or very similar melt curves can be discriminated with 99%-100% accuracy, allowing for 

infectious pathogens to be rapidly identified and reducing time-to-results. A rapid long 

amplicon fungal U-dHRM assay coupled with ML capable of detecting and identifying 

invasive mold infections in less than 3 hours was recently described, reporting findings 

such as identification of Aspergillus spp. in BAL samples from patients with probable IPA 

where qPCR had resulted in negative, rare molds detected in culture-negative samples, and 

multiple Aspergillus spp. within one BAL sample [163]. The fungal U-dHRM assay also did 

not show a clear correlation between dHRM results and BAL galactomannan levels, which 

was a topic not discussed in the previous Aspergillus HRM literature. This suggests that 

U-dHRM may serve as an independent method allowing for a combined diagnostic approach 

for Aspergillus IMI infections. These results indicate that U-dHRM possesses desirable 
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attributes for various profiling applications that demand a combination of speed, sensitivity, 

quantitative capabilities, and broad profiling capacity.

8.0 Conclusion

IFDs cause millions of infections annually but the diagnosis in many cases remains 

challenging. As outlined in this review, advances have been made in the field of molecular 

diagnostics for the diagnosis of IFDs, and each diagnostic test has advantages and 

disadvantages (Table 5). Of the diagnostic modalities discussed, PCR testing is the most 

commercially available. Standardization of these assays has been an issue across settings, 

although this is improving, particularly for the diagnosis of infections from Candida and 

Aspergillus spp. Both HRM and mNGS are rapid, highly-sensitive modalities that can 

identify a wide range of fungal pathogens, but performance of PCR can be impacted 

with concurrent antifungal use, and currently, no molecular assay can reliably differentiate 

between colonizing and pathogenic organisms when testing non-sterile clinical specimens, 

such as BALF, and where multiple organisms are part of the mycobiome. In addition, 

there are very few commercial HRM and mNGS assays available, so these technologies are 

currently unavailable in most healthcare settings. Importantly, despite advances in molecular 

diagnostics for IFDs, there continues to be a need for low-cost and easy to use diagnostics 

for IFDs, particularly in resource-limited settings where these assays may be too costly or 

access to equipment and laboratory personnel and space are limited. Truly point-of-care 

molecular tests that may be beneficial in these settings are still lacking.

9.0 Expert Opinion

Given the increasing population at risk from IFDs, emergence of antifungal resistance, and 

limited antifungals available to treat IFDs, improved diagnostic modalities are crucial for the 

timely diagnosis, accurate surveillance, and management of IFDs. Given the low sensitivity 

and long turnaround times of traditional diagnostic modalities such as culture, and decreased 

sensitivity of conventional fungal biomarkers for individuals on antifungals for prophylaxis 

or treatment, molecular assays can help fill a niche. Still, as discussed molecular assays have 

limitations, and in many cases the best approach may be to use these assays in combination 

with culture-based approaches and conventional biomarkers.

As the COVID-19 pandemic underscored, where a significant number of secondary 

infections due to Aspergillus spp., Mucorales, and Candida spp. were observed, there is 

a wide range of individuals with varied clinical presentations that are at risk for IFDs. 

In addition, occupational exposures to dimorphic fungi in endemic regions of the U.S. 

involving immunocompetent individuals has been well-documented [164–166], as well as 

occupational exposure to Aspergillus spp. [167] and non-Aspergillus molds [168]. IFDs 

following combat-related injuries, primarily from Mucorales, are increasingly recognized 

[169,170]. Traumatic implementation of contaminated environmental material has been 

associated with mucormycosis post environmental disaster and a nationwide outbreak of 

fungal meningitis occurred after patients received contaminated corticosteroids injections 

[171,172]. Particularly, for these non-Aspergillus molds, molecular testing is the only 

approach towards diagnosis, other than traditional diagnostics such as culture. Given the 
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recognition that a wide variety of individuals with diverse risk factors are at risk from IFDs, 

continued validation, standardization, and acceptance of these modalities is crucial.

Although PCR molecular testing is recommended by a number of international consensus 

guideline groups for the diagnosis of IFD [26,48,173], currently neither mNGS or HRM 

are recommended given a lack of data, standardization, and validation of these modalities. 

In addition, as previously discussed there are limited mNGS and HRM platforms that are 

commercially available and clinical validation is currently limited. There is the need for 

more inclusion of these diagnostic assays in clinical trials, so more rigorous evaluation can 

be done under standardized conditions where confounders and variability among patients 

and clinical settings is limited. We call on the Food and Drug Administration (FDA) and 

European Medicines Agency (EMA) to ensure that molecular diagnostic testing is included 

in more clinical trials, particularly given molecular methods for the detection of Aspergillus, 

Pneumocystis and Candida spp. are now included in the EORTC/MSGERC definitions [48].

In the near future, molecular diagnostics for the diagnosis of IFD will be available that 

are highly sensitivity and specificity, but more so are also low cost, easy to maintain 

and update, and can differentiate between colonizers and pathogenic organisms. Platforms 

will have standardized methodology and there will be a number of mNGS and HRM 

commercial assays able to diagnose non-Aspergillus molds, mixed infections and infections 

from dimorphic fungi and also identify potential antifungal resistance through the detection 

of a wide range of genetic mechanisms, allowing for more targeted treatment approaches 

with a wide range of antifungal classes approved by then [174,175]. The application of 

mNGS will permit syndromic diagnostic testing, limiting the need for pathogen specific 

assays, with the broad detection range providing an alternative to classical microbiology. 

The application of NGS to the host will have the potential to identify patients predisposed 

to IFD, permitting personalized patient management [176]. Importantly, true point-of-care 

(POC) molecular diagnostics will be available in settings in low and middle-income 

countries that will complement antigen tests such as the Aspergillus-specific LFD and the 

Aspergillus Galactomannan LFA that can be performed near patients in hospitals, clinic, or 

theatres or war. Clinical mycology societies will collaborate with the involvement of low 

and middle-income countries to determine and overcoming shortcomings in the molecular 

diagnosis of IFD, develop mycology guidelines, and disseminate information broadly also 

via social media [177] regarding the epidemiology, diagnosis, and treatment of IFDs for both 

health practitioners and the lay public.
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Article Highlights

• Polymerase chain reaction (PCR) is a highly sensitive and specific molecular 

assay and can identify mutations associated with antifungal resistance, 

although performance can be impacted by prior/concurrent antifungal use.

• Droplet digital PCR (dPCR) can be multiplexed to detect individual 

pathogens and to screen for mutations potentially associated with antifungal 

resistance, has the potential for enhanced detection of low DNA 

concentrations, particularly relevant to fungal infection and has increased 

tolerance to inhibition compared to quantitative PCR, although current 

options are still limited.

• High resolution melt (HRM) is a rapid and highly-sensitive diagnostic 

modality that can identify a wide range of fungal pathogens, including down 

to the species level, but multiplex assays are limited and HRM is currently 

unavailable in most healthcare settings.

• Metagenomics next generation sequencing (mNGS) offers a promising 

approach for rapid and hypothesis-free diagnosis of a wide range of 

fungal pathogens, although some drawbacks include limited access, variable 

performance across platforms, the expertise and costs associated with this 

method, and long turnaround times in real-world settings.

• True point-of-care molecular diagnostics assays are still needed that are 

available in lower resource settings and that can complement culture and 

conventional fungal biomarkers.
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Table 1.

List of commercially-available PCR-based assays for detection of fungal infections, and associated resistance 

mutations.

Product Manufacturer Method PCR Target, species and resistance 
mutations* detected

Invasive Aspergillosis 

Affigene Aspergillus tracer Cepheid, Rolling 
Meadows, IL, USA

Real-time PCR Target unknown
Aspergillus spp.

A. fumigatus Bio-Evolution Bio-Evolution, Bry-sur-
Marne, France

Real-time PCR ITS1 region
A. fumigatus

artus® Aspergillus diff. RG PCR Qiagen, Düsseldorf, 
Germany

Multiplex real-time 
PCR

Target unknown
A. fumigatus, A. terreus, A. flavus

AsperGenius® Species and 
AsperGenius® Resistance

PathoNostics B.V., 
Maastricht, Netherlands

Multiplex real-time 
PCR

28S rDNA
A. fumigatus complex, A. terreus, 
Aspergillus spp.

TR34/L98H and TR46/Y121F/T289A 
mutations

Aspergillus spp. ELITe MGB® Kit ELITechGroup S.p.A, 
Turin, Italy

Quantitative real-time 
PCR

18S rDNA
Aspergillus spp. (A. niger, A. nidulans, 
A. terreus, A. flavus, A. versicolor, A. 
glaucus)

AspID OlmDiagnostics, 
Newcastle, UK

Multiplex real-time 
PCR

Target unknown
Aspergillus spp., A. terreus

FungiPlex®Aspergillus and 
Fungiplex®Aspergillus Azole_R

Bruker Daltonik GmbH, 
Bremen, Germany

Multiplex real-time 
PCR

Target unknown
Aspergillus spp. (A. fumigatus, A. flavus, 
A. niger), A. terreus

TR34 and TR46 mutations

LightCycler Septifast Roche Diagnostics, 
Mannheim, Germany

Multiplex real-time 
PCR

ITS region
A. fumigatus (and Candida spp.)

Magicplex Sepsis Real-Time Test Seegne, Seoul, South 
Korea

Multiplex real-time 
PCR assay

Target unknown
A. fumigatus (and Candida spp.)

MycoReal Aspergillus Ingenetix GmbH, Vienna, 
Austria

Real-time PCR with 
melt curve analysis

ITS2 region
A. fumigatus, A. flavus, A. nidulans, A. 
niger, A. terreus

MycoGENIE®Aspergillus Species 
and MycoGENIE®Aspergillus 
fumigatus and resistance TR34/L98H

Ademtech, Pessac, France Duplex real-time PCR 
assay

28S rDNA
Aspergillus spp., A. fumigatus

TR34/ L98H mutations

Pneumocystis jirovecii 

PneumoGenius® PathoNostics B.V., 
Maastricht, Netherlands

Multiplex real-time 
PCR assay

mtLSU rDNA
Pneumocystis jirovecii
DHPS mutations codons 55 and 57

MycoGENIE®Pneumocystis jirovecii Ademtech, Pessac, France Duplex real-time PCR 
assay

mtLSU rDNA
Pneumocystis jirovecii

EliTech InGenius PCR Assay EliTech Group, Bothell, 
WA, USA

Duplex real-time PCR 
assay

mtLSU rDNA
Pneumocystis jirovecii

Bio-Evolution PCR Bio-Evolution, Bry-sur-
Marne, France

Duplex real-time PCR 
assay

mtLSU rDNA
Pneumocystis jirovecii

FTD-Pneumocystis jirovecii kit Fast Track Diagnostics, 
Luxembourg

Duplex real-time PCR 
assay

mtLSU rRNA
Pneumocystis jirovecii

RealStar Pneumocystis jirovecii PCR 
Kit

Altona Diagnostics, 
Hamburg, Germany

Duplex real-time PCR 
assay

mtLSU rDNA
Pneumocystis jirovecii
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Product Manufacturer Method PCR Target, species and resistance 
mutations* detected

RealCycler® PJIR Kit Progenie Molecular, 
Valencia, Spain

Duplex real-time PCR 
assay

mtLSU rDNA
Pneumocystis jirovecii

RIDA®GENE Pneumocystis jirovecii R-BiopharmAG, 
Darmstadt, Germany

Duplex real-time PCR 
assay

mtLSU rDNA
Pneumocystis jirovecii

PneumoID OLM Diagnostics, 
Newcastle Upon Tyne, 
United Kingdom

Multiplex real-time 
PCR assay

Target unknown

MycAssay Pneumocystis Myconostica Duplex real-time PCR 
assay

mtLSU rDNA
Pneumocystis jirovecii

Invasive Candidiasis

AusDiagnostics Sepsis panel AusDiagnostics Pty Ltd, 
Mascot, NSW, Australia

Multiplex tandem PCR ITS1 or ITS2 regions
C. albicans, N. glabratus, P. kudriavzevii, 
C. parapsilosis, C. tropicalis.

CandID® and AurisID® OlmDiagnostics, 
Newcastle, UK

Multiplex real-time 
PCR assay

Target unknown
C. albicans, C. dubliniensis, N. glabratus, 
P. kudriavzevii, C. parapsilosis and C. 
tropicalis, and Candida auris

FilmArray Blood Culture 
Identification (BCID) Panel1

BioFire Diagnostics, Salt 
Lake city, Utah, USA

Multiplex real-time 
PCR assay

Target unknown
C. albicans, N. glabratus, P. kudriavzevii, 
C. parapsilosis and C. tropicalis

FungiPlex® Candida and FungiPlex® 

Candida auris
Bruker Daltonik GmbH, 
Bremen, Germany

Multiplex real-time 
PCR assay

Target unknown
Candida spp. (C. albicans, C. parapsilosis, 
C. dubliniensis, C. tropicalis), N. glabratus, 
P. kudriavzevii, and C. auris

Magicplex Sepsis Real-Time Test Seegne, Seoul, South 
Korea

Multiplex real-time 
PCR assay

Target unknown
C. albicans, N. glabratus, P. kudriavzevii, 
C. parapsilosis and C. tropicalis (and A. 
fumigatus)

MycoReal Candida Ingenetix, Vienna, Austria Real-time PCR with 
melt curve analysis

ITS2 region
C. albicans, C. dubliniensis, N. glabratus, 
P. kudriavzevii, C. lusitaniae, C. 
parapsilosis and C. tropicalis

SeptiFast Real-time PCR Roche Diagnostics, 
Mannheim, Germany

Multiplex real-time 
PCR assay

Target unknown
C. albicans, N. glabratus, P. kudriavzevii, 
C. parapsilosis and C. tropicalis

SepsiTest-UMD Molzym Molecular 
Diagnostics, Bremen, 
Germany

PCR and Sanger 
sequencing

18S rDNA
All fungal species

T2Candida T2 Biosystems, 
Lexington, MA, USA

T2 magnetic resonance ITS2 region
C. albicans/C. tropicalis, N. glabratus 
complex/ P. kudriavzevii, and C. 
parapsilosis complex

Sepsis Flow Chip Master Diagnostica, 
Granada, Spain

Multiplex PCR with 
automated reverse dot 
blot hybridization.

Target unknown
C. albicans, Candida spp.

Mucormycosis

MucorGenius® PathoNostics B.V., 
Maastricht, Netherlands

Multiplex Real-time 
PCR assay

28S rDNA
Pan-Mucormycete
Rhizopus spp., Mucor spp., Lichthiemia 
spp., Cunninghamella spp., Rhizomucor 
spp.

MycoGenie®Aspergillus spp./
Mucorales spp.

Ademtech, Pessac, France Duplex Real-time PCR 
assay

28S rDNA
Aspergillus spp. and Rhizomucor 
pusillus, Mucor indicus, M. circinelloides, 
M. plombeus, Rhizopus arrhizus, R. 
stolonifer, Lichtheimia corymbifera, L. 
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Product Manufacturer Method PCR Target, species and resistance 
mutations* detected

glauca, Cunninghamella bertholletiae, and 
Mycotypha species

FungiPlex® Mucorales Bruker Daltonik GmbH, 
Bremen, Germany

Target unknown
Rhizopus spp., Lichtheimia spp.
Cunninghamella spp., Rhizomucor 
spp., Mucor spp., Actinomucor spp., 
Apophysomyces spp.
Saksenaea spp., Syncephalastrum spp.

DNA: Deoxyribonucleic acid; ITS: internal transcribed spacer; PCR: polymerase chain reaction; spp: species

*
Resistance mutations where applicable

Of note, Nakaseomyces glabratus (previously C. glabrata) and Pichia kudriavzevii (previously C. krusei))
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Table 2.

The use of digital PCR for the detection of Fungal DNA.

Target Sensitivity Specificity Cases/Controls Comments Reference

Aspergillus spp. 94% 100% 16/4 Respiratory samples, Positivity rate of digital PCR 
superior to QPCR. Digital PCR more tolerant of the 
presence of PCR inhibitors

[178]

100% NA 10/NA Serum, Free DNA fragments in serum are usually 
short, consequently digestion of DNA does not 
increase copy number

[179]

Candida spp. 94% 79% 20/25 Blood, Positivity rate and accuracy of digital PCR 
superior to QPCR

[180]

56% NA 16/NA Blood, Combination testing using qPCR and dPCR 
detected 94% of cases

[181]

Pneumocystis jirovecii 92% 88% 19/35 BALF, DHPS and DHFR mutation detection [182]

62% N/A 37/N/A Sputum [183]

44% N/A 82/N/A BALF, included pts where a diagnosis of PcP was not 
conclusive

BALF: Bronchoalveolar lavage fluid; DHFR: Dihydrofolate reductase; DHPS: Dihydropteroate synthase; DNA: Deoxyribonucleic acid; ITS: PcP: 
Pneumocystis pneumonia; PCR: polymerase chain reaction; spp: species
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Table 3.

List of commercially-available Metagenomic next-generation sequencing assays for detection of fungal 

infections, and associated resistance mutations.

Product Manufacturer Method mNGS target, Pathogens (# of species)

Karius® Redwood City, 
California, USA

mNGS Aspergillus spp. (43), Candida spp. (32)
Fusarium spp. (24)
Mucor spp. (5)
Penicillium spp. (24)
Rhizomucor spp. (3)
Rhizopus spp. (3)
Scedosporium spp. (4)
B. dermatitidis, C. immitis, C. gattii, C. neoformans, H. capsulatum, P. jirovecii 
ITS2,

CosmosID® Germantown, Maryland, 
USA

mNGS

CD Genomics Shirley, New York USA mNGS ITS1 and ITS2

Novogene Sacramento, California, 
USA

mNGS ITS1/ITS1–1F, ITS2, 18S

DISQVER® Noscendo, Duisburg, 
GERMANY

mNGS 16 000 microbial species covering more than 1500 pathogens and can detect 
bacteria, DNA viruses, fungi, and parasites

DNA: Deoxyribonucleic acid; ITS: internal transcribed spacer; mNGS: metagenomic next-generation sequencing; spp: species
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Table 4.

List of commercially-available High Resolution Melt assays for detection of fungal infections, and associated 

resistance mutations.

Product Manufacturer Method HRM target fungal pathogens

Biofire® FilmArray® 

Meningitis/Encephalitis (ME) 
Panel

Salt Lake City, Utah, USA HRM C. neoformans and C. gattii

Biofire® FilmArray® Blood 
Culture Identification (BCID) 
Panel

Salt Lake City, Utah, USA HRM C. neoformans, C. gattii, C. albicans, C. glabrata, C. 
krusei, C. parapsilosis, C. tropicalis, and C. auris

LightCycler® Septifast Roche Diagnostics, 
Mannheim, Germany

Multiplex real-
time PCR

A. fumigatus, C. albicans, C. tropicalis, C. parapsilosis, 
C. glabatra, C. krusei

MycoReal Aspergillus® (ingenetix GmbH, Austria) HRM A. fumigatus, A. flavus, A. nidulans, A. niger, and A. 
terreus

AsperGenius® Species and 
AsperGenius® Resistance

PathoNostics B.V., 
Maastricht, Netherlands

Multiplex real-
time PCR

28S rDNA
A. fumigatus complex, A. terreus, Aspergillus spp.

TR34/L98H and TR46/Y121F/T289A mutations

MucorGenius® PathoNostics B.V., 
Maastricht, Netherlands

Multiplex Real-
time PCR assay

28S rDNA
Pan-Mucormycete
Rhizopus spp., Mucor spp., Lichthiemia spp., 
Cunninghamella spp., Rhizomucor spp.

Magicplex™ Sepsis Real-
Time Test

Seegne, Seoul, South 
Korea

Multiplex real-
time PCR assay

Target unknown
A. fumigatus (and Candida spp.)

DNA: Deoxyribonucleic acid; HRM: High-resolution melt; PCR: polymerase chain reaction
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Table 5.

Novel molecular tests to diagnose fungal infections: Pros and Cons.

Molecular Test Pros Cons

PCR/Digital PCR High sensitivity and specificity
Can detect mutations to antifungals
Can identify a wide range of pathogens, including rare 
pathogens

Assays lack standardization across settings
Specificity can be limited with concurrent 
antifungal use

Metagenomics/Next 
Generation Sequencing

Rapid diagnosis
Can identify a wide range of pathogens, including rare 
pathogens
Quantitative results

Variable performance across different platforms
Limited access to testing modality
Long turnaround times

High-Resolution Melt Rapid diagnosis
Highly sensitive and specificity
Can identify a wide range of pathogens to the species level
Detect mutations or single nucleotide variations

Largely unavailable in the healthcare setting
Limited availability of multiplex assays

PCR: Polymerase chain reaction
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