
UC Berkeley
Energy Use in Buildings Enabling Technologies

Title
Open Software-Architecture for Building Monitoring and Control

Permalink
https://escholarship.org/uc/item/10s3g0fh

Authors
Blumstein, Carl
Culler, David
Fierro, Gabe
et al.

Publication Date
2015

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/10s3g0fh
https://escholarship.org/uc/item/10s3g0fh#author
https://escholarship.org
http://www.cdlib.org/

Heading for odd numbered pages

Open Software-Architecture for Building
Monitoring and Control

Carl Blumstein*, David Culler‡, Gabe Fierro‡, Therese
Peffer* and Marco Pritoni+

*Berkeley Energy and Climate Institute, University of California,
Berkeley
‡Electrical Engineering and Computer Science, University of California,
Berkeley
+Mechanical and Aerospace Engineering, University of California, Davis

Abstract

Information technology can increase energy efficiency by
improving the control of energy-using devices and systems.
Awareness of this potential is not new—ideas for applications of
information technology for energy efficiency have been
promoted for more than 20 years. But much of the potential
gain from the application of information technology has not yet
been realized. Today a combination of new requirements for the
operation of the electricity system and the development of new
technology has the potential to cause a rapid increase in the
pace of adoption of improved controls. In this paper we discuss
one promising avenue for technology advancement. First, we
review some basic concepts with emphasis on open software-
architecture. Then we describe the components of XBOS, a
realization of this open software-architecture. XBOS has the
ability to monitor and control many different sensors and
devices using both wired and wireless communication and a
variety of communication protocols. Finally, we illustrate the
capabilities of XBOS with examples from an XBOS installation in
a small commercial office building in Berkeley California.

Keywords

building controls, building automation, open software-
architecture

Introduction

Information technology can increase energy efficiency by
improving the control of energy-using devices and systems.
Awareness of this potential is not new—ideas for applications of
information technology for energy efficiency have been

1

Open Software-Architecture for Building Monitoring and
Control

promoted for more than 20 years. But much of the potential
gain from the application of information technology has not yet
been realized. In an earlier paper one of the authors (Blumstein
(2011)) discussed some reasons for the slow exploitation of
information technology’s potential to increase energy efficiency.
The earlier paper also suggested that a combination of new
requirements for the operation of the electricity system and the
development of new technology could cause a rapid increase in
the pace of adoption.

This paper is about open software-architecture1 for the control
of energy use in buildings. Open software-architecture is a way
of organizing the software that links together the physical
elements of a building control system to allow the addition of
other systems or components. The reason we are concerned
about open software-architecture is that open software-
architecture is the key to creating an environment that supports
innovation. Proprietary and closed systems, which are prevalent
today, typically create barriers to innovation.

To make this clear, consider a commercial building with a
control system for its Heating Ventilating and Air Conditioning
(HVAC) system. If you want to control the lighting in the
building, the technology currently used for HVAC control cannot
easily be modified for lighting control—in practice you need to
add a completely separate control system for lighting. Further, if
the control system for lighting includes occupancy sensors and
you want to use occupancy to control HVAC, you cannot, as a
practical matter, use the lighting system’s occupancy sensors.
Still further, if you develop new software for detecting faults in
the HVAC system, you cannot easily install the new software in
the existing building control software. These are all problems
that can be solved with open software-architecture.

We will have more to say about how we addressed these
problems in a small commercial office building in Berkeley
California later in this paper. First we discuss in more detail the
idea of open software-architecture, drawing on lessons from the
Internet.

Lessons from the Internet

The most important lesson from the Internet is interoperability—
the ability of the Internet to accommodate diverse devices and
systems and enable them to work together. The practical effect
of interoperability is that equipment suppliers and software

1 Readers should be careful to distinguish between open software-
architecture and open-source software. Open software-architecture
does not necessarily involve open-source software.
2

Heading for odd numbered pages

developers can compete to supply established needs and can
innovate to create new uses. This environment has fostered
both cost reductions and rapid innovation. So, one may well ask,
can we make building monitoring and control systems look like
the Internet? The answer is, yes we can.

Doing this is facilitated by using the Internet’s open architecture
and protocol stack. The critical step is to move from a vertical to
a horizontal architecture—an essential element of open
architecture. Figure 1 provides a simplified representation of
horizontal layered architecture2 to help explain the concept.
Each layer is independent, and thus creates modularity. The
bottom layer in Figure 1, here called the hardware presentation
layer, is where the control system connects to the physical
environment. This layer interconnects sensors and actuators to
the other layers through software adaptors called drivers. The
middle layer—system services—organizes, stores, and transmits
data from the hardware presentaion layer and instructions from
the application layer. The top layer, here called the application
layer, has software applications that operate on data provided
by the system services to produce outputs in the form of
information (e.g., a dashboard) on the state of the building and
instructions for the control of building systems.

2 The phrase “layered architecture” does not refer to spatial
relationships among the system’s components; rather, it refers to
logical relationships. The “layers” are an abstraction. Here we are
using the word “layers” as a heuristic; it has more specialized
meanings in other contexts.

3

Figure 1 A simplified representation of layered architecture for building
monitoring and control

Open Software-Architecture for Building Monitoring and
Control

Not all control is initiated on the application layer; some
happens autonomously on the sensor/actuator layer—for
example, lights might be directly controlled by an occupancy
sensor. And not all instructions from the application layer are

accepted. For example, a smoke alarm may override an
instruction to open a damper. To make this more concrete,
consider a building appropriately equipped with sensors,
actuators, and applications. Suppose that the operator of the
building wishes to minimize energy use during the peak time on
a hot day by precooling the building so it can ride through the
peak time. An application in the application layer contains a
model of the building that can predict the best time to turn on
the air conditioning based on the outdoor temperature, the
indoor temperature, the weather forecast, and other variables
all of which are resident in a database in the system services
layer. The application gets the data from the database and
predicts the best time to turn on the chillers, say, 7:00AM. If
sensors and controllers in the hardware presentation layer
determine that operation is safe, the chillers will be turned on at
7:00AM.

4

Heading for odd numbered pages

The difference between horizontal and vertical architecture is
not in the functions that need to be performed. Sensing and
actuating, data management and applications need to happen
in monitoring and control systems regardless of the
architecture. The difference is in the separation of these

functions. In a vertical system a “black box” might, for example,
have hard-wired connections to sensors and actuators and have
applications with built-in data structures that were inaccessible
to other applications. Horizontal layered architecture can keep
the functions from becoming entangled and allow devices and
software from different suppliers to interoperate.

Figure 2: The XBOS layered architecture, consisting of Hardware devices, a
Hardware Presentation Layer, System Services layer, and an Application layer.
Drivers in the Hardware Preentation Layer present vendor supplied hardware
devices (sensors and actuators) to the Hardware Abstraction Layer as canonical
devices (for example, as a generic thermostat.

Open Building Control Architecture—the XBOS
Example

Figure 2 illustrates the eXtensible Building Operating System
(XBOS) a realization of an open software-architecture control
system. This program has evolved from several years of work at

5

Open Software-Architecture for Building Monitoring and
Control

UC Berkeley (see Dawson-Haggerty et al. (2013)). A more
detailed description of XBOS can be found in Fierro (2015).

XBOS is built on UC Berkeley’s simple Measurement and
Actuaction Profile (sMAP), an open-source information
infrastructure for buildings and grids. The Hardware
Presentation Layer, shown in Figure 2, includes drivers for
network thermostats, lighting control, and general control, along
with more than fifty other open source drivers3 for energy
metering, demand response notification, BACnet, Modbus,
commercial BMS systems, weather metering, thermal
monitoring, air quality monitoring, and so on.

While control systems based on open software-architecture are
much more versatile than vertically architected systems, open
software-architecture systems do present some challenges. An
example is the need of recognizing new devices connected to
the system. XBOS handles this problem with a discovery service,
which automatically detects new devices on the network, finds
and installs the appropriate sMAP driver, and configures it to
that particular installation. This discovery service is similar to
“plug and play” as it appears in various forms in consumer
markets, such as plugging in a new hardware device into a PC or
laptop. However, it does not depend on vendor products
implementing a particular discovery standard. The discovery
service receives notification of the presence of a new device, it
probes the device using a collection of detection scripts to
identify what it is; once identified, the service pulls in the
appropriate driver for the device, creates the configuration file
integrating the driver and the particular site, and connects the
device to the system.

Vertically architected systems do not require a discovery service
because, by design, they do not interact with initially unknown
devices. Other challenges for open software-architecture are
discussed in Fierro (2015)

Installation of XBOS in the Offices in the
Berkeley Kress Building

The research team developed a pilot test of the XBOS platform
in a commercial building in Berkeley, California that was built in
1935. The 700 square meter top floor of the building holds
private offices, open plan office space, a kitchen, and a
conference room; a server room for the office is on the
mezzanine level. The heating, cooling and ventilation system is
provided by five packaged roof-top units each controlled by

3 in https://github.com/SoftwareDefinedBuildings/smap/tree/master/python/
smap/drivers
6

https://github.com/SoftwareDefinedBuildings/smap/tree/master/python/smap/drivers
https://github.com/SoftwareDefinedBuildings/smap/tree/master/python/smap/drivers

Heading for odd numbered pages

programmable thermostats. The overhead fluorescent lighting
system is generally controlled by wall switches, with occupancy
sensors in the private offices; some corridor lighting remains on
permanently.

The XBOS platform installation consisted of a miniature
computer (FitPC), Ethernet switch, and Wireless Access Point;
this provided the means for all control systems and sensors—no
matter what network protocol—to communicate with the
computer. For example, some equipment required proprietary
gateways (such as for ZigBee devices such as the Enlighted
lighting controller and the Rainforest power meter); other
equipment used simple USB dongles (EnOcean lighting
controllers communicating at 902 MHz and the environmental
sensors using 802.15.4). The computer held the sMAP drivers for
communicating with all sensors and controllers, and the
database, archiver, and services (such as discovery described
above). A total of five smart thermostats, three different lighting
controllers, two general controllers, 14 sets of indoor
environmental sensors and one power meter were controlled by
XBOS.

XBOS’s integrated control system provides several advantages
over vertical solutions. The unified interface greately improves
user interaction as the building manager can access all the
devices from a single dashboard. It is possible to develop such
an interface, because data from heterogeneous devices is made
uniform by the hardware presentation layer. Devices can be
organized and grouped in different ways. For instance one can
easily access all the lighting in the building or all the systems
(HVAC, lighting, plug loads and additional sensors) in a room.
This simple feature is not currently available in vertically
integrated and isolated systems, since each vendor uses
separate intefaces that require distinct logins. It is almost
impossible to exchange data between commercial interfaces. In
addition, XBOS develops a building-level scheduler to enforce
policies on the whole building. For instance, when a calendar
event occurs, all the devices are notified, synchronized and their
setpoints adjusted. The ability of accessing external sensors
allows creating customized control schemes. For example one
can control the HVAC system based on temperature
measurements in rooms that are actually occupied.

7

Open Software-Architecture for Building Monitoring and
Control

One example of application that takes advantage of the rich
sensor environment in this field test is shown in Figure 3. Smart
meter electric data is combined with thermostat runtime and
building operation hours to disaggregate energy use as a
function of building activity. The program distinguishes the
baseload energy use (standby power and constant operation of
all the devices), the activity-based energy use (extracted using
opening hours), the startup and lag energy use (before and after
business time and above the baseload) and the weather-related
energy use (calculated associating HVAC runtime with smart
meter data).

Another key features of XBOS is that it operates on a ‘canonical
representation’ of a building, a generalized description of
functional relationships between buildings components. Because
of this feature, new applications can be easily written, without
knowing the details of the different devices and their
communication protocols. The Hardware Abstraction Layer
provides a common interface to devices like thermostats or

lighting controllers. This type of architecture, commonly used in
information technology (for example in Android smart phones),
has not yet been adopted in building systems.

Conclusion

We believe there is a compelling case for building controls
based on open software-architecture. As we have noted, the

Figure 3: XBOS Energy Disaggregation Application. In the top graph, note the
coincidence of spikes in KW consumption (left scale, blue line) and the HVAC
state (right scale, red line). In this instance just one roof-top unit is operating.
Small spikes occur when the fan comes on; larger spikes occur when both the
fan and the compressor come on.

8

Heading for odd numbered pages

practical effect of the interoperability that open software-
architecture can provide is that equipment suppliers and
software developers can compete to supply established needs
and can innovate to create new uses. This can foster both cost
reductions and rapid innovation. However, there are significant
impediments to the widespread adoption of this technology.
Once they make a sale, purveyors of proprietary vertically-
integrated control systems have a captive customer. Because
only the original seller can perform maintenance and provide
product upgrades, this customer lock-in is highly profitable.
Companies with established products are not enthusiastic about
changing their business models.

It is possible that there is more opportunity for open software-
architecture in smaller buildings where the dominant controls
companies do not have a large presence. This is part of the
motivation for targeting XBOS at the small commercial building
market. However, this strategy is not likely to succeed if the
work is done in isolation. The XBOS software is open source4 and
we are hopeful that others will want to use it and continue its
development.

Acknowledgment

The authors drew extensively from the work of the brilliant UC
Berkeley graduate students in the LoCal and Software Defined
Buildings research groups, namely Michael Andersen, Stephen
Dawson-Haggerty, Andrew Krioukov, Jorge Ortiz, and Jay Taneja,
as well as others. This work was supported by the National
Science Foundation and the Department of Energy.

References

Blumstein, Carl. (2011). Energy Efficiency, Information
Technology, and the Electricity System. Proc. 2011 Conference
on Energy Efficiency, European Council for an Energy-Efficient
Economy, Paris, France.

Dawson-Haggerty, Stephen, Krioukov, Andrew, Taneja, Jay,
Karandikar, Sagar, Fierro, Gabe, Kitaev, Nikita, and Culler,
David. (2013). BOSS: Building Operating System Services. In
Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation.

Fierro, Gabe et al. (2015) XBOS: An Extensible Building
Operating System,
https://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-
197.html

4 https://github.com/SoftwareDefinedBuildings/XBOS
9

https://github.com/SoftwareDefinedBuildings/XBOS

Open Software-Architecture for Building Monitoring and
Control

10

Heading for odd numbered pages

11

