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Rhythmic Action Synchronizes Memory Replay  

During Reinforcement Learning 

Demetris Roumis 

 

ABSTRACT 

____________________________________________________________________________ 

 

Our cognitive abilities - learning from the past, sensing the current environment, planning into the 

future, executing an action, and infusing value into an experience - all rely on precisely timed and 

widespread electrical communications across neural networks. The brain’s hippocampal 

formation receives multimodal input, forges episodic associations, and predicts future state. 

Oscillating electrical bursts originating from the hippocampus, termed ‘sharp-wave ripples’ (SWR), 

often contain patterns of previously expressed neural spike sequences, and are necessary for 

certain forms of learning and memory. The discharge of SWR-replay resonates in remote parts 

of the brain and displays specific characteristics depending on a subject’s state of awareness and 

sensory context. In the sleep state, when motoric repertoire is limited, waves of breathing 

synchronize neural activity in several regions of the brain, including SWRs of the hippocampus. 

During active sensation of the awake state, cyclic licking dynamically entrains taste-reward 

networks in subcortical and cortical areas throughout learning. However, the neural correlates 

linking oromotor movements in the active learning state to the memory system of the hippocampal 

formation have not yet been established. Given the recurrence of SWR-replay during rhythmic 

ingestion of reinforcement learning and the hierarchical coupling of orofacial behaviors, we 

hypothesized that repeated licking could provide the oscillatory framework to synchronize memory 

reactivation during active learning. We approach this question with new technology development 

to track licking events at a reward port (P-event) during behavior on a spatial alternation task. 

Additionally, we developed a modular brain implant to simultaneously record from hippocampal 
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area CA1 and medial entorhinal cortex (MEC) - interconnected brain regions that are crucial to 

episodic memory processing. Along with the co-modulation of individual neurons by licking and 

SWRs, we provide the first evidence that SWRs detected in dorsal CA1 synchronize with the 

phase of P-event cycle during learning. Furthermore, we confirmed that SWRs occurring during 

licking bouts contain neural reactivation of active navigation and trigger enhanced ripple-

frequency power in downstream MEC. These results connect movement with memory and may 

assist in addressing abnormal ingestion behaviors that negatively affect mental or physical health.
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INTRODUCTION 
____________________________________________________________________________ 

 

Association Formation in the Hippocampus 

The hippocampal formation is essential for all aspects of spatial memory, including encoding, 

consolidation, and retrieval (O'Keefe & Nadel, 1978; Riedel et al., 1999). Hippocampal pyramidal 

neurons that are active during a given experience are often referred to as ‘place cells’ because 

they get excited in a location-dependent manner - preferring specific ‘place fields’ as animals 

explore space. Plasticity mechanisms associate cells that have overlapping place fields, 

enhancing spatially continuous coactivity patterns during locomotion that remain heightened 

following navigation (O'Neill, Senior, Allen, Huxter, & Csicsvari, 2008). This post-experience 

reactivation of spatiotemporal trajectories may serve memory retrieval and consolidation by 

orchestrating the global reprocessing of episodic experience. 

 

Sharp-Wave Ripple Reactivation 

Sequences of simultaneously recorded place cells, whose collective place field assemblies reflect 

trajectories through space, are often reactivated in a time-compressed cascade during a 

hippocampal sharp-wave ripple (SWR). SWR events are brief (50–200 ms), high-frequency (150–

250 Hz) fluctuations detected in local field potential (LFP), and most often occur during a pause 

in locomotion or slow-wave sleep. The timescale of SWRs aligns with the optimal window for 

inducing synaptic plasticity and, therefore, could influence the synaptic weights between coactive 

or induced activity patterns (Buzsaki, 1989; Marr, 1971). 

 

Respiration-locked oscillations entrain Sharp-Wave Ripples  

Neural activity paced by high-frequency oscillations can spontaneously become nested in the 

phase of slow oscillations, potentially facilitating long-range communication of time-compressed 
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sequences, (Hyafil, Giraud, Fontolan, & Gutkin, 2015). Evidence from rodents (Ito, 2014; Y. Liu, 

McAfee, & Heck, 2017) and humans (Zelano, 2016) support the notion that the slow phase of 

respiration provides an oscillatory scaffold to modulate the power of faster cognitive oscillations. 

These studies also provide evidence that such cross-frequency coupling can affect memory 

performance through a dual mechanism of respiratory entrainment by both olfactory input and 

brainstem output (Fontanini & Bower, 2006). 

 

The brainstem’s rhythmogenic preBötzinger Complex is an essential element producing the 

periodic drive for coupled orofacial behaviors (Del Negro, Funk, & Feldman, 2018). Many 

preBötzinger Complex targets discharge in phase with respiration. They could influence plasticity 

and SWR occurrence across the hippocampal network (Hansen, 2017), such as locus coeruleus 

(Yackle, 2017), thalamus (Chen, Eldridge, & Wagner, 1992), and basal forebrain (Manns, Alonso, 

& Jones, 2003). Indeed, the hippocampus exhibits respiration-locked oscillations (Lockmann, 

Laplagne, Leao, & Tort, 2016; Nguyen Chi, 2016; Yanovsky, Ciatipis, Draguhn, Tort, & Brankack, 

2014), which could similarly be regulated by medial septum’s disinhibitory pacing of the 

hippocampal-entorhinal network during periods of prominent theta oscillations. Additionally, a 

recent study found evidence that a corollary discharge from the brainstem can entrain SWR 

occurrence in sleep (Karalis & Sirota, 2018). However, there has been no research that has 

examined whether such SWR entrainment by oromotor behaviors applies in the awake, freely 

behaving animal, where the sensorimotor contextual complexity is higher and often coincides with 

reward signals. 

 

Licking Induces Widespread Synchronization of Taste-Reward Network Over Learning 

For a rat performing a reinforcement-based spatial memory task, like the one presented in this 

dissertation, rhythmic licking action coincides with positive valence reward signal and SWRs, 

which often contains reactivation of preceding experience. For awake rodents, licking shares a 
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similar frequency range (4-12 Hz) (Travers, Dinardo, & Karimnamazi, 1997) with other active 

sampling behaviors, including sniffing (Kepecs, 2005), visual saccades (Kozma & Freeman, 

2001), and whisking (Fanselow & Nicolelis, 1999). Although substantially less focus has been 

given to licking, both sniffing and whisking have been shown to segment continuous sensory input 

into temporally discrete frames and synchronize activity across multiple regions in the brain 

(Kleinfeld, Ahissar, & Diamond, 2006; Nicolelis, Baccala, Lin, & Chapin, 1995).  

 

In one study connecting licking coherence and learning, Gutierrez and colleagues found that a 

population of neurons in the orbitofrontal cortex, insular cortex, amygdala, and nucleus 

accumbens tracked the oromotor rhythm of licking behavior, and showed synchronized spiking 

between neuron pairs from different regions (Ranier Gutierrez, Simon, & Nicolelis, 2010). 

Interestingly, the lick-synchronized neurons contained more information discriminating different 

tastants, a result that increased along with learning and performance. These results are in line 

with other findings of licking entrainment across several parts of the gustatory brain network, and 

altogether position rhythmic orofacial behavior as a global neural pacemaker (Fonseca, de 

Lafuente, Simon, & Gutierrez, 2018; Ranier Gutierrez & Simon, 2011; Roussin, D'Agostino, 

Fooden, Victor, & Di Lorenzo, 2012; Stapleton, Ml, Rl, Ma, & S.A, 2006). This evidence implicates 

lick-spike coherence in the gating of feed-forward sensory input and motivates our investigation 

of orofacial synchronization in the feed-back memory system. 

 

Overview of Dissertation 

In this dissertation, I address oromotor influence on memory processing. To our knowledge, there 

has not been a link between voluntary motor movement and the occurrence of SWR-replay in the 

awake, learning state. In chapter 1, we show that a significant portion of single-unit activity in the 

hippocampal area CA1 and medial entorhinal cortex (MEC) is synchronized with the licking cycle. 

Next, we show that SWR occurrence displays a licking phase preference, and that intra-licking 
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bout SWRs reactivate neural ensembles from locomotive periods. Finally, we show that the ripple-

band power in MEC is enhanced at the time of hippocampal SWRs that occur during licking bouts, 

as compared to SWRs that arise outside of licking bouts. We believe this is the first report linking 

neural reactivation to rhythmic oromotor behavior in the context of learning. These findings fill a 

gap in knowledge that was primarily due to the technical challenges of simultaneously recording 

from MEC and CA1 from a freely moving animal learning a memory task. To accomplish this 

strategy, we designed a modular brain implant for dual-site neural recording, and a reward port 

with integrated sensors that monitored orofacial movement, as described in the second chapter., 

In Chapter 3, I discuss the significance of these findings. In the Appendix, we highlight the 

importance of sleep and awake state memory reactivation. Altogether, our results enhance our 

understanding of movement’s impact on memory processing during reward-based learning. 
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Chapter 1 : Neural Reactivation is Entrained with Rhythmic Movement 
 

____________________________________________________________________________ 
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1.1 Abstract 

 

Cognition relies on precisely orchestrated electrical communication across the central nervous 

system. The brain’s hippocampal formation receives multimodal sensory input, forges episodic 

associations, and forms a prediction of future state. Oscillating electrical bursts originating from 

the hippocampus, called sharp-wave ripples, emit patterns of previously expressed neural spike 

sequences, and are necessary for formation and expression of certain forms of memory. Although 

theta oscillations have been shown to regulate global communication during locomotion, little is 

known about the behavioral regulation of neural reactivation during reward ingestion period of 

reinforcement learning. We hypothesized that repeated licking during a period of learning could 

provide the oscillatory framework to synchronize neural reactivation. We approach this question 

by tracking licking events at a reward port during learning of a spatial alternation task, while 

simultaneously recording from interconnected brain regions that are crucial to episodic memory 

processing - hippocampal area CA1 and medial entorhinal cortex. Along with co-modulation of 

individual neurons by licking and sharp-wave ripples, we discovered that neural reactivation is 

synchronized with licking phase. By demonstrating that bursts of mnemonic information across 

the hippocampal formation are aligned with rhythmic licking signals, these results advance our 

understanding of the interaction between internal reactivation and externalized rhythmic activity.  
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1.2 Introduction 

 

When an animal is locomoting, theta oscillations (4-12 Hz) in the hippocampus discretize place-

selective neural sequences that precess in phase from one cycle to the next (Burgess & O’Keefe, 

2011; J. O'Keefe, 1971; O'Keefe & Recce, 1993) while coordinating activity with extrahippocampal 

structures such as entorhinal and prefrontal cortex (Buzsaki, 2002; Fernandez-Ruiz et al., 2017; 

Mizuseki, Sirota, Pastalkova, & Buzsaki, 2009) (Benchenane et al., 2010; Siapas, Lubenov, & 

Wilson, 2005). As locomotion halts, our memory and planning system irregularly emits a high-

frequency (150-250 Hz) burst, termed ‘sharp-wave ripple’ (SWR), that permeates remote regions 

of the brain with spike patterns representing a trajectory of the past or possible future (Axmacher, 

Elger, & Fell, 2008; Yunzhe Liu, Dolan, Kurth-Nelson, & Behrens, 2019; Logothetis, 2012; Roumis 

& Frank, 2015; Vaz, Wittig, Inati, & Zaghloul, 2020). (Buzsaki, 2015; Wilson & McNaughton, 1993, 

1994). 

 

The mechanism of phase coupling has been proposed to facilitate long-term plasticity, working 

memory, and coherence of brain communication (Axmacher et al., 2010; Hyafil et al., 2015; Zheng 

& Zhang, 2015). In different states of awareness, SWR occurrence can be phase-locked to near 

theta-range oscillations, such as centrifugal ‘spindle’ oscillations (~10Hz) in sleep (Siapas & 

Wilson, 1998) which correlate with cortical dendritic activity resulting in long-term modification of 

synaptic efficacy (Geva-Sagiv & Nir, 2019; Seibt et al., 2017), as well as phasic respiration (2-4 

Hz) in both sleep and head-fixed awake states (Karalis & Sirota, 2018; Y. Liu et al., 2017; Molle 

& Benoit, 2019).  
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The rhythmogenic brainstem that paces breathing also orchestrates other orofacial actions like 

sniffing, whisking, and licking (Del Negro et al., 2018; Jeffrey D Moore, Kleinfeld, & Wang, 2014; 

Welzl & Bureš, 1977; Yackle, 2017). The commencement of cyclic licking triggers a transient 

surge in neuromodulatory discharge (Coddington & Dudman, 2018), and for rodents engaged in 

learning, this chemically catalyzed period is coincident with outcome discovery following reward-

seeking behavior. In this context, the movement associated with reward ingestion is often 

overlooked and mischaracterized as ‘immobility,’ but the oromotor system remains mobile and 

cyclic within the range of locomotive theta. Strikingly, over the course of learning to discriminate 

sensory cues, cyclic licking sharpens spike-timing precision and entrains neural activity across 

the brain’s taste-reward network (Ranier Gutierrez et al., 2010). This taste-reward network 

includes the amygdala which regulates information exchange at the rhinal interface of the 

hippocampus and neocortex (Paz, Pelletier, Bauer, & Pare, 2006), along with the nucleus 

accumbens, of whose direct connections with the hippocampus are required for successful recall 

of spatial-reward associations (Trouche et al., 2019).  

 

Although concerted sensorimotor inputs can affect the phase of hippocampal theta and facilitate 

association encoding (Arshamian, Iravani, Majid, & Lundstrom, 2018; Fell & Axmacher, 2011; 

Jutras, Fries, & Buffalo, 2013; Zelano, 2016), the coordination of licking during reinforcement 

learning with hippocampal SWR replay has remained unknown. Here we address the hypothesis 

of rhythmic licking entrainment of memory reactivation. To this end, we simultaneously record 

neural ensembles in hippocampal area CA1 and medial entorhinal cortex (MEC), along with 

detection of reward port entry events (P-events). We identified a phasic coupling between SWR 

reactivation and cyclic reward ingestion. Rhythmic licking is may therefore act as a facilitator of 

synchrony between movement, memory, and reward systems. 
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1.3 Results 

 

Memory-guided spatial learning 

Commonly, spatial memory testing registers an animal’s response through entry into a limited set 

of specific locations, motivated by their natural appetitive behavior. To investigate the role of 

licking in organizing neuronal dynamics in CA1 and MEC, we engaged rats in a reinforcement 

learning hippocampal-dependent paradigm (Kim & Frank, 2009)(L. M. Frank, E. N. Brown, & M. 

Wilson, 2000a) that elicits behaviorally relevant changes in the hippocampal-entorhinal network 

(Carr, Jadhav, & Frank, 2011; Frank et al., 2000a; Karlsson & Frank, 2009; Kay et al., 2016; 

Singer & Frank, 2009). In this paradigm, animals learn through trial and error to navigate in a 

specific sequence to three reward-ports positioned at the ends of a “W”-shaped spatial alternation 

task (W-task) (Fig. 1.1 [A-B]). The rewarded sequence is a visit to the center port, followed by a 

visit to the less recently visited outer port (Fig. 1.1[A]). On visits to a port that deviates from this 

sequence, food was simply withheld so that the only cue the animals had of an incorrect outcome 

was the absence of reward delivery. In extension to the W-task paradigm, the animals foraged for 

scattered food during “open-field” epochs (Fig. 1.1 [B]). Following a period of learning, subject 

performance became stable (Fig. 1.1 [C], Fig. S1.1 [B]). 

 

Capturing cyclical licking movement 

To detect port penetration events (P-events) and control reinforcement, we designed a device 

encasing an infrared photosensor with a liquid delivery system that was used to discharge 

sweetened evaporated milk in a flow constrained by the narrow trough access point cross-section 

(Fig. 1.2 [A-C]). We sought to test that P-events detected by this device could signal a specific 

phase of the head movement during cycles of licking bouts. We video-recorded from a camera 
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positioned to capture a close-up perspective on animal behavior at a reward port (Fig. 1.2 [D]). 

We selected five head features (eye, ear, nose, tongue, and jaw), then trained and applied a 

model to accurately reconstruct their position over time (Fig. 1.2 [E], see Methods). We then 

derived the primary oscillatory phase of each tracked feature and tested for the head-movement 

phase-consistency of P-events. We found that the P-events were tightly clustered by the feature 

movement phase and captured the vast majority of visually confirmed movement cycles. These 

results established that P-events could be used as an indicator of a lick movement phase. 

 

Recording neural activity from CA1 and MEC in freely behaving 

Next, we set out to record electrophysiologically from individual neurons expressing activity 

patterns associated with memory processing. To this end, we designed a microdrive array of 

independently moving electrode bundles (n-trodes) coupled with a modular guide-cannula that 

had been adapted for the specific brain regions of interest. After pretraining, we implanted several 

subjects using this chronic microdrive assembly (Fig. 1.3 [A]). Following recovery and n-trode 

positioning, we recorded from CA1 and MEC as animals performed for several days on the 

memory task paradigm (Fig. 1.1 [A-B]). Recording locations of n-trodes directed at CA1 and MEC 

were histologically verified (Fig 1.3 [B-E]), along with the reference electrodes in corpus callosum. 

 

Sharp wave ripples are synchronized with orofacial movement phase 

Given previous observations of phase-locking between breathing and the occurrence of SWRs, 

and the coupling of breathing with licking, we hypothesized that SWR onset during licking bouts 

would be coordinated with the licking movement phase. We first examined the onset timing of 

SWR events, detected as brief bursts in ripple-band (Fig. 1.4 [A-B]), relative to the timing of, and 

phase between, P-events. We found phase preference for SWR events, with the mean resultant 
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vector angle of the preferred phase relatively consistent across animals (Fig. 1.4 [C]). Further 

confirming this periodic coupling, we found significant non-uniformity in the cross-correlation of 

the two events (Fig. 1.4 [D]). Additionally, we confirmed that this phase-locking exists across 

consecutive sessions (Fig. 1.4 [E-F]). For the first time, these results provide evidence that 

sensorimotor activity of freely moving animals could provide the oscillatory scaffold for population 

processing of memory. 

 

Memory reactivation during licking bouts selectively occurs with SWRs 

We next asked whether the detected SWR events during licking bouts indeed contained 

reactivation of neural spike patterns. Previous studies investigating breathing and SWRs did not 

confirm whether the detected SWR events contained replayed population activity patterns, as 

only a portion of SWR events coincides with reactivation. To address this, we computed the 

similarity of spike patterns in each moment during reward ingestion to the patterns observed while 

the animal was actively navigating through space (> 4cm/s; see Methods). Our method is based 

on previous work showing reactivation of awake experience during SWRs (Peyrache, Khamassi, 

Benchenane, Wiener, & Battaglia, 2009b; Rothschild, Eban, & Frank, 2017). We found that the 

reactivation measure increased coincident with awake state intra-licking bout and extra-licking 

bout SWRs, but not during licking bouts in the absence of SWRs (Fig. 1.5 [A, C, E]). Additionally, 

since replayed patterns can consist of several spatial motifs, we computed this reactivation 

measure for the first few principal components of the population activity (see Methods). We found 

a consistent enhancement of reactivation for only SWR-times (Fig. 1.5 [B, D, F]). These results 

demonstrate that structured neural patterns reactivate during SWRs that occur within licking bout 

periods.  
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Lick-modulation of single-unit activity in CA1 and MEC 

Having found evidence for neural activity pattern reactivation, we next investigated the nature of 

the underlying P-event cycle phase preference of single units. We sorted clips of neural action 

potential waveforms (see Methods) and analyzed spiking per putative single-unit (Fig 1.6 [A]). To 

determine whether single-units were modulated by the phase of head movement during licking 

bursts, we measured the phase clustering of spike timing relative to the proportion of time elapsed 

between P-events. We found that 40% of CA1 units and MEC units showed significant phase 

modulation, compared to a phase-shuffled distribution (Fig 1.6 [E, I]). Notably, significantly P-

event phase-entrained neurons were found at all P-cycle angles (Fig 1.6 [B-D, F-H]). The fraction 

of modulated cells was significantly larger than was expected by pure chance, demonstrating a 

diverse and widespread synchronization of individual units to an awake orofacial behavior 

expressed during a learning task. 

 

Co-modulation of single CA1 units by port entry events and sharp-wave ripples  

A remaining question is whether the units that participate in SWR events are also modulated 

directly by the licking phase, and how this co-modulation is manifested during coincident events. 

As populations of neurons in the hippocampal formation have been found with multiplexed 

encoding of spatial and contextual features (L. M. Frank, E. N. Brown, & M. A. Wilson, 2000b; 

Hardcastle, Maheswaranathan, Ganguli, & Giocomo, 2017; Salz et al., 2016), and because 

previously examined regions in the taste-reward network have shown both tuned to specific 

sensory cues and to oromotor behavior (Ranier Gutierrez et al., 2010), we predicted that licking-

tuned cells were also engaged by SWRs. To this end, we examined spike rasters and peri-event 

time histogram, aligning the spike timing relative to P-events and SWRs. We found that many P-
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event modulated CA1 neurons were also SWR-modulated (Fig1.7 [A-H]). These results 

demonstrate a layered encoding of sensorimotor and memory-related information. 

 

SWRs during licking-bouts trigger ripple-power enhancement in downstream MEC 

Sharp-wave ripples containing packets of sequence replay originate in the hippocampus 

(Buzsaki, 2015) and propagate to connected brain regions. As the anatomically densest input 

and output target of the hippocampus, the entorhinal cortex is best positioned to examine the 

inter-areal communication with the hippocampus. Since the licking movement entrains neural 

activity in each individual region (Fig 1.6), we sought to investigate the relative strength of inter-

regional communication across conditions within and outside of licking-bouts. We first assessed 

the patterned synaptic input to each location through the examination of the local field potential 

(LFP) (1-400 Hz). We created complex-morlet wavelets to transform the LFP time-series into a 

time and frequency indexed signal (Fig 1.8). Aligned to all P-events, we found an ~8 Hz 

fluctuation across many frequency bands in both CA1 and MEC, indicative of widespread 

synchronization of synaptic activation during licking bouts (Fig. 1.8 [A, D]). Next, we examined 

the power in the ripple-band in MEC and CA1 during the time of SWRs that occurred either 

during to licking bouts (intra-P-event; Fig. 1.8 [C, F]) and those that did not occur near in time to 

any licking (extra P-event; Fig. 1.8 [B, E]). We found that CA1-SWR times during licking bouts 

had enhanced ripple-band power in MEC, along with an enhancement in the ~8Hz range that 

continued beyond the SWR event (Fig 1.8 [F]). These results suggest that the licking action 

could facilitate replay information across brain regions, and perhaps facilitate sequences of 

concurrent SWR events (Davidson, Kloosterman, & Wilson, 2009), which has been shown to 

enhance learning (Fernandez-Ruiz et al., 2019). 
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1.4 Discussion 

 

Understanding how oromotor activity interacts with memory replay is critical to our knowledge of 

how the internal state interacts with externalized behavior. In the present investigation, we 

identified that hippocampal SWR-replay during learning was phase-locked to the licking cycle. 

Our findings demonstrate that orofacial rhythmic movement can provide an oscillatory scaffold for 

neural activity amid active memory processing. The results also confirm that SWRs occurring 

during licking bouts contain reactivated sequences and may trigger enhanced ripple-band activity 

in MEC. These findings establish that endogenously emanating memory replay is gated by 

externally manifested sensorimotor inputs and sets the stage for further testing of the embodied 

affordances on constructive mnemonics that are vital to the sustenance of the subject.  

 

Single-unit activity in CA1 and MEC is modulated by the phase of licking and SWRs 

Licking-modulated neural activity in different brain regions has previously been identified (Ranier 

Gutierrez et al., 2010) including the insular cortex which is involved in interoception (Accolla & 

Carleton, 2008; Katz, Simon, & Nicolelis, 2001; Livneh et al., 2020) and the reward-action network 

consisting of the orbitofrontal cortex (E. T. Rolls, 2007; Tremblay & Schultz, 1999), amygdala 

(Pecina & Berridge, 2005; Schoenbaum, Chiba, & Gallagher, 1998), and nucleus accumbens 

(Mogenson, Jones, & Yim, 1980). To this picture, we add that individual neurons in area CA1 and 

MEC were modulated by the phase of licking. The distribution of preferred phases for individual 

units spanned the licking cycle, indicating a diverse responsivity to the sensorimotor input. We 

speculate that this diversity of phase preference is indicative of a traveling wave of activation or 

reflective of the multiplicity of anatomical pathways, leading to timing delays or sign changes 

between the orofacial source and hippocampal formation. The diversity of lick phase tuning that 

we observe is consistent with the heterogeneity of lick phase profiles of observed within other 
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limbic structures (Ranier Gutierrez et al., 2010). We also found that the engagement of unit activity 

by SWRs and by licking was multiplexed within a subpopulation of neurons. This demonstrated a 

direct integration of feed-back and feed-forward processes and confirms that the underlying 

components engaged during SWRs are also synchronized with the taste-reward network (Ranier 

Gutierrez et al., 2010). 

 

SWR reactivation during reinforcement learning is entrained to cyclic ingestion of reward 

Previous studies have shown learning-related lick-entrainment of sensorimotor regions that 

receive hippocampal projections (Ranier Gutierrez et al., 2010), the coupling of licking with 

breathing (Welzl & Bureš, 1977), and entrainment of SWRs to breathing in sleep and head-fixed 

awake states (Karalis & Sirota, 2018; Y. Liu et al., 2017). Our findings extend these results in 

several important ways. First, the demonstration of licking-entrainment of SWRs presents a 

candidate mechanism for the dynamics of gustatory spike-timing lick-entrainment over learning 

and behavioral states (Ranier Gutierrez et al., 2010). Second, previous investigations (Karalis & 

Sirota, 2018; Y. Liu et al., 2017) linking oromotor behavior to SWRs had not examined whether 

the detected SWRs were part of a subset which contains reactivation of active experience. 

Therefore, we describe novel evidence that neural ensembles expressed during locomotion are 

reactivated during SWRs that occurred during licking bouts, thereby establishing a link between 

reward-related memory and movement in reinforcement learning. 

 

Ripple power synchronization between hippocampus and entorhinal cortex 

Finally, we found that ripple-band power in MEC at the time of SWRs was enhanced for intra-

licking bout SWRs. This evidence supports the notion that synchronized sensorimotor oscillation 

(4-12 Hz) operating at behavioral timescales may serve as a mechanism to facilitate information 
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transmission of higher frequency (150-250 Hz) SWR-replay packets required for practical neural 

computation and synaptic plasticity, thus integrating taste-reward signaling with memory 

processing. 

 

Synchrony Between Oromotor Phase and Memory Reactivation 

Does oromotor entrainment influence behavior that relates to hippocampal function? Recording 

from intracranial electroencephalogram in humans, it has been shown that local field potential in 

the hippocampus, amygdala, and piriform cortex are all entrained to respiration, and that 

performance on a memory recall task is sensitive to the phase of nasal breathing when the 

stimulus is initially presented (Zelano, 2016). Complementary to our claim that rhythmic licking 

bouts are privileged periods regarding the efficiency of reactivated information flow, these results 

show that in humans, the efficacy of encoding sensory stimuli is predicted by an externally 

identifiable phase of orofacial behavior. 

 

Consistent with several reports of licking-related activity across the brain (R. Gutierrez, Carmena, 

Nicolelis, & Simon, 2006; Nishijo, Uwano, Tamura, & Ono, 1998; T. Yamamoto, Matsuo, 

Kiyomitsu, & Kitamura, 1988), a study in rodents discovered that proficiency in solving 

reinforcement-based associative cue learning required licking-induced synchrony across neural 

ensembles of the frontal cortex, insular cortex, nucleus accumbens, and amygdala (Ranier 

Gutierrez et al., 2010). The authors attributed the increase in spike-timing precision over learning 

to lick-coherency, as the cue-selective neurons that most effectively discriminated stimulus 

identity were most coherent with licking. Moreover, they found that lick-phase-locking was 

context-specific, showing that neural activity is perceptually relevant, and not merely an exhaust 

fume of oromotor behavior. 
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Neural activity across many regions have been shown to couple with hippocampal activity bursts 

like SWRs, including both primary and associative cortices (R. Gutierrez et al., 2006; Jadhav, 

Rothschild, Roumis, & Frank, 2016; Peyrache, Khamassi, Benchenane, Wiener, & Battaglia, 

2009a; Wang & Ikemoto, 2016; Wierzynski, Lubenov, Gu, & Siapas, 2009; Wilber, Skelin, Wu, & 

McNaughton, 2017) (Ji & Wilson, 2007; Rothschild et al., 2017; Sirota, Csicsvari, Buhl, & Buzsaki, 

2003), as well as subcortical regions including ventral striatum (Lansink et al., 2008), ventral 

tegmental area (Gomperts, Kloosterman, & Wilson, 2015), basolateral amygdala (Girardeau, 

Inema, & Buzsaki, 2017), and thalamic nuclei (Lara-Vásquez, Espinosa, Durán, Stockle, & 

Fuentealba, 2016; Yang, Logothetis, & Eschenko, 2019). It has been proposed that hippocampal 

SWRs are part of the update mechanism or teaching signal employed during learning that 

modifies the connectivity between coincident neural circuits, and we speculate that this encoding 

is orchestrated by active sensing.  

 

In addition to effecting change in synaptic networks, extensive evidence exists that active sensing 

involving expectation and volition changes the sensory response in licking (Mayrhofer et al., 2019; 

Wilkins & Bernstein, 2006), somatosensory (Krupa, Wiest, Shuler, Laubach, & Nicolelis, 2004), 

auditory (Eliades & Wang, 2008), and olfactory (Fuentes, Aguilar, Aylwin, & Maldonado, 2008) 

modalities. This is consistent with the increased delay of identification in experiments employing 

passive reward delivery via an intraoral cannula (Katz et al., 2001), compared to active sensing 

state (Poulet & Petersen, 2008). Additionally, evidence shows that sniffing-induced theta 

oscillations enhance discrimination by ensuring spike time precision in the olfactory system 

(Schaefer, Angelo, Spors, & Margrie, 2006). We suggest that the act of licking induces synchrony 

of the reward, sensorimotor, and memory systems.  
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Conclusions and Future Directions 

 

Altogether our efforts represent an advancement in understanding how the orofacial movement 

for active sampling and reward ingestion can synchronize with mechanisms of association 

formation. In addition to licking being a behavior used to monitor animal models of disorders such 

as mental illness (Galistu et al., 2011; Hartfield, Moore, & Clifton, 2003; Schepisi et al., 2014) and 

aging (Zhang, Bethel, Smittkamp, & Stanford, 2008), our results could facilitate future work to 

address critical questions in compulsive consumption of diet-induced obesity, eating disorders, 

and alcohol (Barkley-Levenson & Crabbe, 2012, 2015; Robinson & McCool, 2015) or drug 

addiction (Eastwood, Barkley-Levenson, & Phillips, 2014).  

 

In the research setting, our results suggest that more considerable attention be paid to head 

movements during periods of reduced locomotive velocity, which are often categorized as 

‘immobile.’ This terminology of the spatial memory-task behavioral state is used as a convenient 

simplification; however, given the pervasive impact on memory networks currently presented, the 

appropriate experimental design must be employed to avoid misinterpretation of neural activity.  

 

Beyond experimental diligence, the evidence of enhanced learning and dopaminergic signaling 

during active vs. passive states of sensing (Graham, Sun, & Hill, 2014; Ranier Gutierrez et al., 

2010; Lutas et al., 2019) motivates a tantalizing future study into the replay propensity across 

conditions of reward reception. Additionally, our findings do not at this time dissociate putative 

interneuron from principal neuron subtypes, which we believe the diversity of licking responses 

will be readily dissociable, given many differences, including firing rate and waveform shape (Fox 

& Ranck, 1981). Furthermore, a remaining question is whether the licking movement influences 
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hippocampal activity through sensory afference or motor efference. Lastly, higher density 

sampling of MEC will allow for distinguishing between superficial (layers 2/3) and deep (layers 

5/6) responses, which have distinct cytoarchitecture, projection patterns, and gene expression 

patterns(Burgalossi, 2011; Canto, Wouterlood, & Witter, 2008; Kobro‐Flatmoen & Witter, 2019; 

Ramsden, Sürmeli, McDonagh, & Nolan, 2015; Witter, Doan, Jacobsen, Nilssen, & Ohara, 2017). 

Altogether, we propose that cyclic licking is well suited to support coordination of reward intake 

with mnemonic processing, resulting in oromotor-facilitated learning. We believe this work will 

facilitate the efforts to understand and address the physiological dynamics underlining adverse 

consumption in diet-induced obesity and eating disorders. 
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1.6 Materials and Methods 

 

Subjects 

All experimental procedures were conducted in accordance with guidelines from the University of 

California San Francisco Institutional Animal Care and Use Committee and US National Institutes 

of Health. Four or more animals is the minimum number of subjects established as necessary to 

yield sufficient statistical power in analyses common to our investigation. Data used for the 

present report were collected from seven Long-Evans male rats, sourced from Charles River 

Laboratories at weights of 400-550 g and 6-8 months of age. Experimental animals were housed 

with additional animals with a 12-hour light cycle and had ad libitum access to rat chow (LabDiet 

5001) until the pre-training began, at which point they were single-housed, and food-restricted 

gradually to stabilize their weight to 85% of their baseline weight. After pretraining and surgery, 

animals were entered our experimental recording protocol, at which time they weighed between 

500-600 g and were 9-12 months of age. 

 

Pre-training 

Subjects were food deprived to 85% of their baseline body weight, then pre-trained to spatially 

alternate between reward ports at the ends of a 1 m long linear track, for which they received the 

liquid reward (evaporated milk plus 5% sucrose). The animals quickly became familiar with the 

reward port dispensing mechanism, and after the animals reached consistency on this linear 

alternation task (~30 rewards per 5 minutes for consecutive days), they were put back on standard 

ad libitum rat chow access for several days before implantation. 
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Microdrive 

Custom microdrive implants were designed (Autodesk Inventor) and constructed, with designs 

and instructions freely available online (Demetris, 2017). Each microdrive contained 28-30 

independently moveable bundles of 4 or 8 electrodes (n-trode). The body of the microdrive was 

3D-printed with PolyJetHD Blue or White (Stratasys Ltd.). A custom 3D printed protective housing 

encased the microdrive body, head-stage, and n-trode shuttles. The dual-site guide cannula was 

designed using CAD software and created using a combination of 3D printing of castable wax 

and metal casting to reproducibly create a modular, high-strength, high-resolution, reusable, and 

biocompatible stainless steel cannula. The electrode bundles were made of either gold-plated 

12.7 μm nichrome (Sandvik) or unplated 20 μm tungsten (California Fine Wire), with a final 

impedance of ~200-500 kOhms.  

 

Surgery 

Anesthesia was induced with isoflurane, then a cocktail of ketamine, xylazine, and atropine was 

administered while isoflurane remained at minimal levels. A ground screw was inserted in the 

skull above the left cerebellum as a global reference. The microdrive was stereotaxically 

implanted over the right hemisphere such that the center of each cannula was targeted to the 

following coordinates relative to the animal’s Bregma: MEC: AP -9.1 mm, ML 5.6 mm; CA1: AP -

3.6 mm, ML 2.2 mm. The oblong MEC cannula was longer in the medial-lateral axis and tilted 10  ̊

laterally. Once the cannulae were in place over the pial surface, Gelfoam soaked in artificial 

cerebral spinal fluid was placed between the outer cannulae diameter and the inner craniectomy 

bone surface, then top-coated with silicone gel (Dow-Corning 3-4680) and finally secured to the 

skull using 4-META/MMA-TBB (Matsumura & Nakabayashi, 1988) (C&B Metabond). Dental 
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acrylic was used to reinforce the integrity of the exposed 30 G tubing. The total surgery time for 

each implant was less than 4 hours. 

 

Adjusting n-trode position 

After 5-7 days of recovery following surgery, subjects were once again food-deprived to 85% of 

their baseline weight and reacclimated to the linear track and reward ports. Over 2-4 weeks post-

surgery, n-trodes were advanced toward the principal cell layers of dorsal CA1 and all layers of 

MEC. At least one n-trode from each cannula was positioned in corpus callosum as a reference 

to subtract non-spiking common noise and signal from the rest. Before implantation, MEC n-

trodes target depths were determined by stereotaxically aligning to a target sagittal range lateral 

to the midline. Once the W-task began, there were minimal adjustments made to the n-trode 

position. If any further n-trode repositioning occurred in between recording periods, it was done 

18 hours before the next recording and was typically less than ~25 um. 

 

Behavior 

For the first 4-12 days of recording, subjects were run on two 20-minute W-task epochs, during 

which they were required through trial and error to learn the alternation sequence of visits to the 

reward ports. The rewarded sequence was a visit to the center arm, followed by the less recently 

visited outer arm. The subjects were always rewarded at the center arm following an outer arm 

visit. Accurate visits were rewarded with sweetened evaporated milk (~100 ul) after a 1-second 

delay, while inaccurate visits received no milk. Custom 3D printed reward ports positioned at the 

three termination points of the W track arms detected port entry with an infrared light beam break. 

The reward was automatically delivered through the reward port feeding trough by syringe pumps 
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(OEM syringe pumps, Braintree Scientific) attached to food-grade plastic tubing. The animal’s 

departure from the reward port was self-paced. 

 

Five of the seven subjects were run on a variant of the previously described W-task (Karlsson & 

Frank, 2009) where for the last 3-4 days of recording, the second W-track each day was a novel 

W-maze positioned behind an opaque wall, and at a 90-degree angle relative to the first W-maze. 

All W-task epochs were flanked by 20-minute rest-box epochs. Each recording day concluded 

with two 20-minute open foraging (open-field) epochs, also flanked by 10 - 20-minute rest box 

epochs. Animals on the open-field environment were free to move through the square 

environment with raised sides and spent most of the time collecting small crumbles of food 

particles (a curated assortment of crumbled Reese's Pieces, Fruit Loops, imported chocolate 

sprinkles, and finely grated parmesan cheese) scattered randomly in advance by the 

experimenter. Most animals showed a preference for Reese’s Pieces (observation, data not 

presented). 

 

The W-shaped tracks consisted of three 75 x 7 cm arms with 3 cm high walls, separated 36 cm 

apart, and connected by a straight path at one end. The resting box measured 25 x 35 x 50 cm 

with an open top. One wall was latched and hinged to open to place or retrieve the subject and 

remained closed during rest box epochs. The open-field measured 48 x 48 x 18 inches with an 

open top. It also had one drawbridge-style wall that opened to facilitate subject placement and 

retrieval by the experimenter at the beginning and end of foraging epochs. Subjects had custom 

PCB ring array with colored lights attached to the top of the implant housing, allowing the position 

to be extracted from video recorded by a camera mounted to the ceiling.  
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Electrophysiological acquisition 

All electrophysiological data were sampled and saved at 30 kHz on a 320-channel head-stage 

using Trodes software package (SpikeGadgets LLC). Spike data were recorded relative to the 

reference n-trode and digitally filtered 600 – 6,000 Hz (2-pole Bessel for high and low-pass). Local 

field potentials were sampled at 1.5 kHz and digitally filtered 1 - 400 Hz. Analyzed LFP is relative 

to the reference n-trode. Overhead video of the experimental environment was collected at ~30 

Hz, and the position was semi-automatically reconstructed by tracking the array of diodes secured 

above the subjects’ head using online and offline tracking provided by Trodes. 

 

Data processing 

Data processing was performed using custom JavaScript, Python, and Matlab (MathWorks) code, 

along with open source packages, as noted below. 

 

Recording site identification 

At the end of the experiment, subjects were anesthetized with isoflurane, and a small electrolytic 

lesion was made at each recording site (30 μA of positive current for 3 seconds, on 2 channels of 

each n-trode). After 24 hours of recovery, the subjects were euthanized with pentobarbital and 

perfused transcardially with PBS followed by 4% paraformaldehyde in 0.1M PB. The skull was 

manually cleared of muscle then allowed to postfix in 4% paraformaldehyde, 0.1M PB for 24 

hours. Finally, the n-trodes were retracted, and the brain was removed from the skull and 

cryoprotected in 30% sucrose in PBS. Subject brains were embedded in OCT compound and 

sectioned in the sagittal plane at 50 um thickness with a cryostat. Sections were blocked (5% 

donkey serum in 0.3% Triton-X in TBS, used for all incubations) for 1 hr, incubated with 
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parvalbumin antibody overnight, washed, and subsequently incubated with fluorescent secondary 

antibody (1:400) (Alexa 568, Life Technologies). Then sections were mounted with fluorescent 

Nissl reagent NeuroTrace Blue (1:200) (Life Technologies, N-21479). Recording sites were 

reconstructed using a rat atlas and electrophysiological markers. Recording sites were designated 

within a region if the lesion or end of the n-trode track overlapped with the cytoarchitectural zone 

characteristic of each area. 

 

Reward port movement tracking 

While subjects alternated between two reward ports, a high-angle oblique video camera recorded 

a close-up of licking bouts at ~125 frames/s. An open-source software package (DeepLabCut) 

(Mathis et al., 2018) was used to track the nose, eye, ear, jaw, and tongue features, which 

included manual labeling of a subset of frames before training a model.  

 

Unit spike clustering 

Spike sorting was performed using ISO split algorithm and verified with manual curation in 

Mountainsort and Mountainview software (Chung et al., 2017; Magland & Barnett, 2016). Units 

were clustered within epochs but drift-tracked across all valid task, sleep, forage epochs. 

Clustering was performed using an event detection threshold set to 3, and valid single units scored 

isolation > 0.95, noise overlap < 0.03. Only units with at least 100 spikes were included in the 

current analysis. 
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SWR-detection 

One electrode per CA1 n-trode was chosen and band-pass filtered (150-250 Hz) to create ‘ripple-

band’ filtered trace. Then the amplitudes for the CA1 n-trodes were individually squared, summed 

across, smoothed with a Gaussian kernel (σ = 4 ms), and the square root of the smoothed sum 

was analyzed as the power envelope to detect threshold excursions greater than 2 s.d. of the 

mean power that lasted at least 15 ms. The envelope threshold crossing was designated as the 

SWR start time. The entire SWR event was defined from the time of baseline crossing before the 

threshold crossing until the envelope no longer exceeded the baseline value. SWRs occurring 

when subjects’ head speed was >4 cm/s were excluded. 

 

Port entry event cycle phase modulation of spiking and SWR occurrence 

For each cluster’s spikes that occurred between two port-entry events during a lick burst, the time 

duration between the first lick to each spike was taken in proportion to the full inter-lick interval 

(ILI), making the range of possible values between 0 and 1. The distribution was then transformed 

as the proportion of 0 to 2𝛑𝛑, in order to convert into polar coordinates. The phase modulation 

score then followed a method previously described (Karalis & Sirota, 2018). Briefly, the strength 

of phase modulation was defined as the log of the Rayleigh Z metric (ln(R^2/n)). Spike proportions 

of inter-lick intervals was shuffled for each cluster and the phase modulation score recomputed, 

and repeated 1000 times to create a shuffled distribution from which the 95% threshold of shuffled 

values was used as a significance test. This threshold value matched the values used by previous 

studies employing this phase modulation score. The analysis for the lick phase modulation of 

SWR was similar to phase modulation analysis of unit spiking. 
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Sharp-wave ripple and port entry event cross-correlation 

For each recording day, the cross-correlation between port-entry events and SWR start times 

were calculated in 10 ms bins at up to 0.5-second lag. Each cross-correlation histogram was first 

normalized by the square root of the product of the number of events. To z-score the cross-

correlation histogram, the SWR times were circularly shuffled 1000 times by a random amount 

within the 1 second window to create 100 shuffled cross-correlation histograms. Each real and 

shuffled cross-correlation histogram was smoothed with a 20 ms s.d., 160 ms wide Gaussian. 

The real cross-correlation values were then z-scored relative to the distribution of shuffled values 

within each bin. We averaged the cross-correlation z-score 20ms centered on 0-lag to get an 

approximate 0-lag value.  

 

Reactivation Strength 

For a given W-task epoch, spike trains from multiple, simultaneously recorded cells when the 

animal’s velocity was > 4cm/s were binned at 100 ms and z-transformed. The correlation matrix 

of the binned spike trains was then computed and diagonalized. The spike trains from a 2 second 

window around each event (intra-lick bout SWR, extra-lick bout SWR, and P-event were then 

binned and z-transformed. Note that detected events were all from when the animal was < 4 cm/s. 

A measure of instantaneous similarity,  termed reactivation strength (Peyrache, Benchenane, 

Khamassi, Wiener, & Battaglia, 2010; Peyrache et al., 2009a), of the event-centered spiking 

activity at each time bin (population vector) with the locomotive eigenvalue was then computed.  
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1.5 Figures 

 

Figure 1.1 | Spatial alternation task on the W-maze 

 

 

 (A) Schematic of rewarded behavior on the spatial alternation W-maze task. Ports located at 
the termination of the center and outer arms registered arrivals and dispensed sweetened milk 
as reward. Rewarded performance is as shown in sequence – center arm port dispensed 
reward if preceded by either outer arm visit, and outer arm ports dispensed reward if preceded 
by, first, a visit to the other outer arm, and then to the center arm. (B) Rest-box epochs flank 
spatial alternation task on the W-shaped maze and epochs spent freely foraging on an open-
field environment. (C) Log cumulative reward for all animals on the W-maze task as a function 
of trial. One trace per animal. 
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Figure 1.2 | Port-Crossings Capture a Consistent Phase of Movement During Lick Bursts 

 (A) Rendering of the port from top-front perspective. (B) Section of the port showing the input 
and output (blue arrows) piping of the milk and the exposed trough where the subject could 
access the reward. The red circle marks one side of the infrared light sensor which was 
triggered on each port entry (P-event). (C) Side profile of the reward port with the rat’s 
schematized movement during licking bouts. (D) Video frame showing tracked markers on 
animal’s ear, eye, nose, tongue, and jaw. (E) Example of a lick burst showing y-axis (tongue: 
x-axis) pixel position of tracked markers. The vertical pink lines indicate the time of P-events. 
The vertical dotted gray line is the time of reward pump delivery onset. (F)  Polar histogram of 
the tracked phases of the jaw and eye at the time of P-events.  
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(A) (Left) Pictures of a completed microdrive assembly, prior to implantation, from the top and 
bottom perspective. (Middle and Right) Schematic showing the microdrive assembly, guide-
cannula, and electrode bundle tracks penetrating the brain. Note that the MEC tracks were 
further lateral than the hippocampal tracks, schematic is purely for illustration of relative 
anterior/posterior positioning. (B) Sagittal, dual fluorophore tagged histological section through 
dorsal hippocampus showing electrolytic lesions at recording sites in CA1 (yellow arrows), 
including expanded inset on right. Parvalbumin is stained red, Neurotrace stained neuronal 
cell bodies blue. scale bar: 500 um (C) Sagittal summary schematic of final recording depth of 
all electrodes emanating from the hippocampal-directed guide-cannula for all subjects. 
Locations have been aligned to the nearest representative section adapted from a rat brain 
atlas (Paxinos, 2007). (D) Histological section showing MEC-directed cannula tracks, with 
close-up inset on the right. Note that only the ventral two yellow arrows are recordings in MEC. 
(E) Summary schematic of all final recording sites of MEC-directed electrode bundles. 
Locations outside of MEC were not included in further analysis. 

Figure 1.3 | Electrophysiological and histological validation of recording sites 
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 (A) Example data showing SWR events highlighted as yellow vertical lines and P-events as 
blue vertical lines. Combined ripple-band (150-250 Hz) power for all CA1 sites (white trace) 
overlaid on ripple-band power for individual (row wise) CA1 sites in this subject (heatmap). 
Schematize animal positioned at a reward port is to the left. (B) SWR-triggered LFP 
spectrogram in CA1. (C) Polar histogram of SWR occurrence relative to P-cycle phase for all 
animals (purple; grey: shuffled). Black dots show mean resultant vector for individual animals. 
(D) Z-normalized cross-correlation of SWR onset relative to the time of P-events for one 
animal. (E) Peri-P-event histogram of SWR onset, with each row per day for one animal. (F) 
Polar histogram of corresponding SWR times relative to the phase of P-event cycle, per day. 

Figure 1.4 |Rhythmic Bursts of Licking Entrain Sharp-Wave Ripple Events 
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 (A) Binned (100ms) time-series of reactivation strength (see Methods) for one subject. grey 
solid line is mean reactivation strength centered on SWR’s that occurred outside of detected 
licking bouts. Purple is mean reactivation strength centered on SWR’s that occurred within 
detected licking bouts. Red is mean reactivation strength centered on P-events that occurred 
within detected licking bouts. Shaded area denotes sem. Note the increase in reactivation 
strength during SWRs, but not XP events (B) Mean reactivation strength for the top four 
principal components of extra-lick-bout SWRs (top), intra-lick-bout SWRs (center), and P-
events events (bottom). 

Figure 1.5 | Rhythmic Bursts of Licking Entrain Neural Reactivation 
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Figure 1.6 | Licking modulates neural activity in the hippocampal formation 

 

 (A) Example time-series data segment during a licking burst. Port entry events (P, vertical blue 
lines) are overlaid on neural spiking data from CA1 (grey) and MEC (green). Schematized 
animal positioned at a reward port is to the left. (B) Spike-raster and peri-event time histograms 
aligned to the detection of port-entry event for a CA1. (C) Polar histogram of P-phase spiking 
for unit shown in B. (D) Z-normalized firing rate per unit (row) over two full P-event cycles. (E) 
Cumulative percent of units by phase modulation score. Vertical dotted line denotes 95% 
threshold of phase-shuffled phase-modulation score distribution. (F-I) Plotting conventions as 
in B-E, but for MEC. 
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Figure 1.7 | CA1 units co-modulated by sharp-wave ripple and port entry events 

 

(A) SWR-aligned spike raster and peri event time histogram for one CA1 unit. Note that the 4-
8 Hz rhythmicity preceding the SWR-modulation. (B) Spike phase histogram for the same CA1 
unit as in A, centered on port entry events. (C) A second example of a CA1 unit, but in a 
different animal, showing co-modulation by SWR and (D) P-event phase. (E) An example CA1 
unit in a third animal, also showing co-modulation by SWR and (F) P-event phase. (G-H) A 
second unit from same animal as in C-D, showing SWR modulation, but with an overall lower 
firing rate. 
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Figure 1.8 | SWR-Triggered Ripple Power in MEC During Licking Bouts 

 

(A) Mean P-event centered LFP from CA1 recording sites in one subject over all W-maze 
epochs. (B) Hippocampal SWR-triggered spectrogram from CA1 n-trodes during times when the 
animal was not engaged in licking. (C) Hippocampal SWR-triggered spectrogram from CA1 n-
trodes during times when the animal was engaged in licking. (D) Spectrogram from MEC n-
trodes triggered by P-events. (B) Hippocampal SWR-triggered spectrogram from MEC n-trodes 
during times when the animal was not engaged in licking. (C) Hippocampal SWR-triggered 
spectrogram from MEC n-trodes during times when the animal was engaged in licking. 



   
 

39 
 

1.7 Supplemental Figures 

 

Supplemental Figure 1.1 | Behavioral Performance on W-task 

 

 

 

 

 

 

 

 

 

 

 

(A) Dynamic analysis of learning to estimated probability of an accurate trial for one animal 
over several days. Rewarded trials are marked with a green tick at the top, and unrewarded 
trials in grey. Solid blue line indicates the mode of the probability distribution, and the shaded 
region indicates the 90% confidence interval. Grey vertical lines mark epoch boundaries, black 
lines mark the start of each day, and the horizontal dotted line indicates chance performance 
(0.5). 
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Chapter 2 : Modular Toolbox for Behavioral Electrophysiology 
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2.1 Abstract 

 

In order to measure spike-scale dynamics, the zeros and ones of electrical brain activity, bundles 

of conductive threads are positioned near the neural source of interest. From research in animal 

models, including that of mental disorders, it is increasingly evident that decoding cognitive state 

requires single-cell to multi-population levels of functional network dissection. Methods of 

simultaneously listening to many cells in multiple circuits over the timescale of learning are 

essential to make significant inroads with neurological therapies. While electrophysiology has 

enjoyed development over many decades, it remains a challenge to scale the electrophysiological 

recordings with independently targetable electrodes to the multi-population level for a period of 

learning. For instance, the device needs not to encumber behavior, and the recordings must be 

stable enough to detect single-unit spiking across multiple circuits while animals actively move 

around for hours at a time. Additionally, experiments in small animals almost exclusively require 

multiple subjects and consistency of protocol across an entire cohort of animals requires extreme 

precision at maximal efficiency. Otherwise, excessive divergence in methodology will either 

render the data unusable or force the use of more than the minimal number of animal lives. This 

underscores how technology development that reduces approach variability and maximizes 

population sampling can directly minimize animal sacrifice and support reproducible science. 

Presently, we describe the context, process, and validation of our electrophysiological and 

behavioral recording system, featuring an independently moveable array of electrode bundles for 

recording from multiple regions of the brain, as well as a reward control and oromotor behavior 

tracking device. This technology development and approach has now been validated by many 

researchers over a period of 3 years using an array of behavioral paradigms and targeting of 

different brain regions. Altogether, the key improvements discussed here increase efficiency and 

reduce experimental variability, allowing for recording from populations of single units from the 

multiple areas in the behaving rat with high signal quality. 
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2.2 Introduction 

 

Although many new techniques for recording from the neural activity are being developed, 

including those employing optical or laminar probes, drivable electrode arrays continue to be a 

primary electrophysiological technique. In part, this is because they are relatively inexpensive and 

have a rich history of probing brain structures that lay deep below the cranial surface without 

having to resect or demonstrably damage overlying neural tissue (Aharoni, Khakh, Silva, & 

Golshani, 2019; Andermann et al., 2013; Ghosh et al., 2011). Additionally, the microdrive 

approach allows for the indefinite capacity to adjust the recording location of each individual 

electrode bundle at any point in an experiment while remaining flexible enough not to damage 

surrounding tissue during animal movement. This allows for either increasing the number of 

neurons recorded or continuing to follow the same neurons in the face of an inevitable gradual 

recording position drift. 

 

Like the present report, previous drive designs utilized an array of rotating threaded rod 

components to enable the independent linear translation of the rod-coupled electrode bundles. 

However, these other approaches have differed in the specific mode of operation, choosing either 

hand-crafted shuttles affixed to guide pins, 3D printed shuttle guides (Blair, 2015; "Halo-18 

Microdrive . Neuralynx," ; Jakob Voigts, Newman, Wilson, & Harnett, 2019; J. Yamamoto & 

Wilson, 2008), or a combination of 3d printed body with a fixed shuttle spring (J. Voigts, Siegle, 

Pritchett, & Moore, 2013). Our approach to the moveable drive leverages the higher precision and 

lower cost of manufacturing inherent in injection molding, compared to other additive 

manufacturing processes. Likewise, for other components, we matched manufacturing 

technology to the specific constraints and tolerances while minimizing costs.  
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Recent designs for microdrive arrays have utilized 3D-printed components, validating it as the 

foundational technology to produce the core microdrive body component. Likewise, we used 

computer-aided design software (Adobe Autodesk Inventor, Fusion 360) to make 3D-printable 

components for microdrive body, housing, position tracking adapter, and reward port body. 

Additionally, we use printed circuit board design software (Eagle) to make an electrode interface 

board, position tracking board, and reward port circuit board. Finally, we exploited recent 

technological developments in metal casting and 3D modeling to create a modular guide cannula 

that mates with the microdrive body and can be adapted to target any combination of brain 

regions. 

 

Our toolbox allows for the reduction in mechanical variability and manual assembly involved in 

otherwise hand-crafting many additional components, as was the state of affairs in our lab before 

these developments. In addition to 3D-printing, we exploit multiple technologies to accommodate 

specific design constraints of different components. Towards validation of our approach, we show 

results of successful recording from various brain regions, on multiple memory task environments, 

and decoding of spatial information from spiking in the hippocampus. We have released the 

toolbox, including design files and part ordering information online at 

https://github.com/droumis/physiology.  
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2.3 Results 

Each major component of the toolbox is described below with information about component 

context, design decisions, materials, and equipment, along with step-by-step procedures. First, 

the electrophysiological and behavioral validation of the toolbox is presented. Then, the protocol 

describes the microdrive assembly, including electrode shuttles, electrode interface board, 

microdrive body, modular cannula, and housing. The last protocol section covers environmental 

monitoring and behavioral control with the position tracking diode array and the reward port.  

 

Validation of Technology Development 

 The tools presented here have been tested by a multitude of researchers targeting many 

brain regions on various behavioral tasks. Despite other protocols focusing on arbitrary thresholds 

for size, weight, shape, and precision, we approached definitive validation of the microdrive 

design through evidence of whether behavioral learning patterns were altered by the presence of 

the device. To this end, we used a 6-arm, automated variant of the spatial alternation task, in 

which animals first were rewarded at any reward well, then the contingency changed to where 

only a certain sequence of three arms was rewarded. Finally, an additional contingency of a 

different set of three arms was rewarded, requiring animals to recognize and adjust to the 

changing task demands (Kastner et al., 2019). This task is sensitive to different behavioral 

strategies, and as such, is ideal for monitoring extended behavioral learning. We found that 

animals implanted with this protocol’s microdrive were indistinguishable in their learning and 

performance, as measured by reward probability(Kastner et al., 2019). These results demonstrate 

that investigations utilizing our microdrive design are applicable to normal behavior and do not 

encumber the relevant behavior. 
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 Next, we investigated whether the recording quality was high enough to detect known 

features of neural activity. First, we pooled all the spike waveforms from each hippocampal area 

CA1 electrode bundle in an awake, behaving rat and then decoded spatial location during 

detected sharp-wave ripples, looking for the existence reactivated spatial trajectories, which we 

readily found (Fig. 2.1 [B]). Finally, we clustered spiking from CA1 and medial entorhinal cortex  

(MEC) and confirmed place cell units in CA1 with phase precession (Fig. 2.1 [C]), along with grid 

cell firing in MEC (Fig. 2.1 [D]). These results provide evidence for the integrity, signal quality, 

and behavioral compatibility of our toolbox. 

 

2.4 Microdrive brain implant for chronic extracellular recordings in freely moving animals 

 

2.4.1 Electrode Drive 

Context 

The purpose of the drive component in a microdrive assembly is to adjust the position of the 

shuttle-coupled electrode bundle (Fig. 2.2 [A]). The primary force is caused by the manual 

rotation of a custom circular nut with a retaining collar that is embedded within an injection molded 

shell by casted Metabond. This mechanism provides a controlled thrust in short increments, 

translating radial spin into linear translation by radially stabilizing the shuttle component with guide 

pins. The inner of the two metal tube travels with the shuttle and is directly coupled to the n-trode, 

while the outer guide pin remains in place.  

 

The primary novel part of this work is the design, testing, and validation of the shuttle shell system. 

Before this work, drives in our lab were constructed by the time-intensive layering of dental acrylic 

around a circular nut and metal tubes. This was tedious because multiple layers of acrylic needed 
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to dry, and challenging because the nut had to be rotated inside the drying acrylic at precisely the 

right moment. Turning the nut too early would create a space around the nut, which could cause 

vibrations to move the electrode in the brain and severely reduce the sufficient recording time and 

stability. Rotating the nut too late would crack the fragile acrylic, which would manifest in 

unpredictable changes during an experiment, or catastrophic loss of the recording site. 

Additionally, the dental acrylic shuttles required extensive sanding to reduce the size and form 

the final shape. The presently described protocol automates the shuttle formation and removes 

the need for precise timing in the drying of adhesive.  

 

Procedure 

1. For each n-trode drive, prepare 

a. 4cm 23G tubing 

b. 3.5cm 23G tubing. Ream ends with a needle and ensure a 30G wire or tube can easily 

thread. Roughly score the outside end, up to ~10mm, with a Dremel.  

c. 4cm 0-80 threaded rod. Notch 10mm of one end halfway through and make a rounded 

point on the other end. Check that a circular nut can translate from the sharp end to below 

the notch without a change in resistance. 

2. Clean shell by rotating a 23g needle through the 23G holes, starting from the bottom. 

3. Screw the nut onto the rod with the two teeth facing notch, flat lip facing pointed end (Fig. 

2.2 [B]). Apply lube to the nut.  

4. Slide a shell up the rod and encase the nut. The base lip of the nut should sit flush within the 

bottom seat of the shell, and the top teeth of the nut should begin just below the top surface 

of the shell (Fig. 2.2 [C]). 

5. Repeat steps 2-4 for remaining drives. 
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6. Place a drop of cold and fresh Metabond into each shell window (Fig. 2,2 [D]). Turn each nut 

halfway, then apply another drop if necessary. Ideally, Metabond will be flush with outside of 

shell. 

7. Let fully curate for ~1hr. 

8. Release the nut from the Metabond by first unscrewing the entire shuttle from the rod, then 

use a flathead screwdriver to turn the nut teeth. The nut should now turn smoothly within the 

shuttle. 

9. If the nut is too tight after Metabond is cured, add more lube to any exposed part of the nut 

and spin with hand drill until looser. 

10. Ensure the tube is parallel with the rod, then use pliers to put a 3.5cm 23g tube into the inner 

hole of the shuttle, leaving ~2-4mm of the roughened end sticking above the shuttle surface. 

Apply thick superglue around the exposed roughened 23g and onto the depression on the 

shuttle (Fig. 2.2 [E]).  

11. Insert the longer 23g tube into the outer shuttle hole. 

12. Test that the shuttle can travel smoothly down the rod, bringing along the inner tube (Fig. 2.2 

[F]). 

 

2.4.2 Modular guide cannula  

Context 

The purpose of the guide-cannula is to direct the electrodes into the brain region of interest. 

Previously, directing electrodes to multiple brain regions was error-prone because of the 

difficulties inherent in hand-manufacturing various approach angles and adapting cannula tips to 

the dimensions of the uneven cranial surface. Additionally, depending on the distance between 

brain regions and the approach strategy, having multiple bundles of n-trode tubes could put 

excessive force on the cannula mold, formerly made of hand-layered dental acrylic, that the 
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targeting could be displaced and warped over time, causing unexpected and brain recording. This 

could cost months of time and work to detect and correct.  

 

To address these issues, I designed a novel guide cannula system that is machine-fabricated and 

directly mates with the microdrive body. The primary innovative aspect of this system is the 

modularity to adapt to any recording target, while keeping the microdrive coupling alignment 

consistent and fixed (Fig. 2.3 [A]). These developments allow for reproducible and simultaneous 

targeting of multiple brain regions necessary for investigating neural networks at a systems level. 

 

Procedure  

1. Determine the position, angle, and dimensions for each cannula. Test injections of a 

colored dye can help determine implant coordinates. 

2. Use these parameters to adapt the guide-cannula template in CAD software. 

3. Place order for modified guide-cannula design to be 3D printed in high-definition castable 

wax and metal cast in stainless steel, see ordering details in the repository.  

4. Use a drill to thin the chamfer of cannulae tips (Fig. 2.3 [B-C]). This reduces the required 

craniectomy diameter during surgery while remaining within the design constraints of the 

manufacturer. 

5. Use 4 x 0-80 screws and matching nuts to secure the cannula to the microdrive (Fig. 2.3 

[D-F]).  
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2.4.3 Electrode Interface Board 

Context 

The electrode interface board (EIB) is an accessible head-stage breakout to the electrode wires 

(Fig 2.4 [A]). I designed an EIB that mates with the microdrive body and the head-stage offered 

by the SpikeGadgets company. The mechanism of electrode attachment is by insertion into a via, 

or plated through-hole, of soft gold, and subsequent pinning using micro-serrated small gold pins 

supplied by the Neuralynx company, as is shared with other microdrive protocols. When pressed 

into an electrode-loaded EIB via, these pins strip the insulation of the electrode wire and hold the 

exposed wire against the deposited soft gold via. Because of the fragility of the electrode wires, 

considerable trial and error was required before finding a suitable PCB fabrication pipeline and 

parameter set. Notably, the EIB must be made with special request 99.9% gold plating (Grade A: 

Hardness range is 70 Knoop). Additionally, the screw holes on the EIB must be countersink milled 

to retain a flush surface for the head-stage and extender board to attach. Below, I detail the steps 

of populating the EIB with connectors. 

 

Procedure  

1. Apply a thin layer of superglue along the center of the EIB connector pad, avoiding contact 

with metal traces (Fig. 2.4 [B]). 

2. Place connector on pad without spreading glue onto connector feet or metal trace pads. 

Ensure alignment between all pads and connector feet. Let the glue completely dry before 

proceeding. 

3. Apply flux to all connector feet and EIB pads.  

4. Use a small amount of solder to secure corners of connector feet to pads (Fig. 2.4 [C]). 
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5. Apply addition solder to remaining feet/pad interfaces, starting from one end and lightly 

dragging the soldering iron across all contacts. The solder should distribute to all contact 

points (Fig. 2.4 [D]). 

6. Apply a very thin layer of superglue to insulate the contacts (Fig. 2.4 [E]). 

7. Test alignment of connectors by plugging in head-stage 

8. With a multimeter, test all connector lines with EIB electrode via, including all neighboring 

pairs for shorts. Use solder wick to remove any excess solder causing shorts between 

neighboring contacts. 

 

2.4.4 Microdrive body fabrication 

Context 

The purpose of the microdrive body is to hold the individual drives together with the guide-cannula 

and EIB. The previous iteration of the microdrive body was attached to head-stage and guide-

cannula through the time-intensive and error-prone manual layering of dental acrylic. Additionally, 

the protective casing for the previous microdrive was constructed from a surgical glove box 

cardboard that was loosely taped together. Critical improvements to the microdrive design include 

built-in mating with the novel modular guide-cannula, attachment points for the novel and robust 

protective casing, and attachment points for the EIB. The protocol below describes the process 

of joining together all the components of this new microdrive assembly. 
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Procedure  

1. Create the skull-attached part of the ground wire by soldering a 2” insulated cable to the two 

threads closet to the head of a bone screw. This may require liberal use of flux. Solder the 

other end to a 2 x 2 male Mill-max connector (Fig. 2.5 [A]). 

2. Create the microdrive-attached part of a ground wire by soldering a 2” insulated cable to a 2 

x 2 female Mill-max connector, leaving the other end bare (Fig. 2.5 [B]). 

3. Drill a small hole through the side of the microdrive body. Avoid puncturing any drive holes. 

Thread the open end of the braided ground wire through the hole. 

4. Solder this wire to the ground via on the EIB and glue the female Mill-max to the outer side of 

the microdrive body.  

5. Insert two 0-80 threaded rods through the smaller two holes on the top of the microdrive head 

(Fig. 2.5 [C]). The threaded rod reinforces the full length of the neck of the microdrive. Cut 

the top of the threaded rod until flush with the top of the microdrive head. 

6. Insert two 2-56 nuts under the head of the drive (Fig. 2.5 [D]). These will secure the EIB to 

the microdrive body. Glue the nuts in place without compromising the threads. 

7. Screw the EIB to the head of the drive using countersink screws. 

8. Load four 0-80 nuts into the side compartments of the microdrive (Fig. 2.5 [E]). These will 

secure the housing to the drive body. 

9. For each n-trode, prepare one: 

a. ~9cm of 5.5mil steel wire. Ensure the ends are not crimped. 

b. ~8cm of 30G hypodermic stainless-steel tubing. Ensure the ends are not crimped. 

10. Thread each 5.5mil wire into a 30G tube. Then thread each 5.5mil-loaded 30G through one 

of the guide-cannula holes from the bottom. Continue threading through the microdrive body 

(Fig. 2.5 [F]). Use a drop of superglue at the interface of the bottom of the microdrive and 

each 30G to prevent slippage. 
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11. Once all the 30G tubes have been installed into the microdrive body, pull the 5.5mil wire from 

the top so that only ~2mm is protruding from the bottom.  

12. Use the Dremel with a diamond-tip blade to cut off excess 30G, making flush with the bottom 

surface of each cannula (Fig. 2.5 [G]).  

13. Using forceps, push 5.5mil wire from the top of the 30G to poke through the newly cut surface 

at the bottom of the cannula. If unable to move, use a hypodermic needle to poke the bottom 

of the cannula to separate the 5.5mil from the 30G. 

14. Pull 5.5 mil wire from the bottom so that only a ~2mm is protruding from the top of 30G. Using 

a diamond-tip Dremel blade, cut the 30G 2mm above the head of the microdrive body (Fig. 

2.5 [H]). 

15. Push the 5.5 mil wire through the 30G from bottom to ream out the newly cut end of 30G. 

Ensure that 5.5 mil can travel up and down the 30G. 

16. Use a camera mounted on surgery scope to take a closeup picture of the bottom of the 

cannula, then one at a time, push a 5.5mil wire through the bottom of the cannula, and note 

which number n-trode corresponds to each 30G hole on the bottom of the cannula. 

17. For each n-trode drive, mark the lower 2mm of the inner 23G with a sharpie to note the upper 

limit of travel. Thread inner 23G of each shuttle onto a 30G emanating from the top of the 

microdrive. Screw the 0-80 rod of the shuttle into the center hole of each microdrive body 

shuttle position. Use pliers to insert outer 23G into outer hole.  

18. Screw each shuttle down the threaded rod until resistance is felt. This is where the inner 23G 

reaches its limit towards the bottom of the microdrive body. Mark this bottom limit on the inner 

23G with a marker.  

19. If any shuttles touch each other when lowered, remove offending shuttles and shave to make 

thinner, then reinsert onto microdrive. 

20. For each shuttle, remove 5.5mil wire from 30G, then cut 3cm piece of polyimide and insert 

into inner 23G, and down into the 30G, leaving 2-3mm to stick out of the top.  
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21. Cut a 1 x 1mm piece of lab tape. Make a slit halfway through to the center of the tape. Place 

the tape around the exposed polyimide. This will prevent it from falling further into the 30G 

while loading the n-trode and will avoid having to use glue at this stage. 

22. For each n-trode, trim untwisted ends to the same length, ~4mm above where they are fused. 

Thread the knotted end of the n-trode through a non-plated hole on the EIB, aimed at the 

corresponding shuttle. Use a 1mm piece of foam to fill the non-plated hole to hold the n-trodes 

in place. 

23. Guide the twisted end of the n-trode into the polyimide and lower until it comes out of the 

bottom, leaving enough slack at the top to allow the shuttle full travel.  

24. Use forceps to pin each of the electrode wires into the corresponding plated EIB vias. Press 

pins firmly to ensure connection.  

25. Load remaining drives with n-trodes and continue pinning all electrodes to EIB. Check for any 

cut wires and redo if needed. 

26. With all shuttles at the top of their travel, trim n-trodes coming out of cannula to the same 

length. 

27. Check the connectivity of the n-trodes. Replace any electrode with a pre-plating resistance > 

6 MOhm.  

28. Glue n-trodes to polyimide, then remove the tape from polyimide and glue polyimide to the 

23G. 

29. Apply glue to the interface of the pin/electrode/EIB to hold in place. 

30. ETO sterilize microdrive. This may take a couple of days. 

31. Lower one n-trode to the desired length, noting where on the n-trode it was protruding from 

the cannula when the shuttle was fully retracted. Cut the n-trode at this point with serrated 

scissors at a 45-degree angle. Repeat for remaining n-trodes. 

32. Install cone and cap housing to microdrive while not actively working on microdrive, and again 

immediately before surgery. 
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2.5 Environmental Monitoring and Behavioral Control 

 

2.5.1 Position Tracking Diode Assembly 

Context 

The purpose of the diode assembly is to facilitate position tracking of the animal from a ceiling-

mounted camera in low-light conditions with potential occlusion from wires and suspension 

system. Previously, the animal was tracked from a light ring that was constructed from bending 

plastic and taping copper as metal traces to which LEDs were soldered. There was also a second 

cluster of lights on a ‘tail’ component that protruded behind the animal’s head. Common issues 

with this design were that the tail often led to the animal bumping into walls or having a startle 

response from the looming stimulus. Additionally, there was no standardization to the size, height, 

or placement of LEDs, which could affect speed, head-direction, and position generalizations 

across experiments. Additionally, because the light ring had been attached directly to pre-

amplifiers, each wall collision would potentially damage the head-stage or introduce a noise 

artifact. Key improvements presented here include the design of a printed circuit board for the 

light ring and a 3D printed casing that coupled to the microdrive housing cone. These 

improvements standardized the tracking light and reduced risk to head-stage electronics. 

 

Procedure 

1. The head-stage has a 3-pin female Mill-max connector, with the outermost pins to route power 

and ground for the tracking array. Using a ~2” insulated two-wire cable, construct a jumper by 

soldering a 3 x 1 male Mill-max on one end and a 2 x 2 male Mill-max on the other side. On 

the side with 3 x 1 Mill-max, do not solder the middle pin to a wire. On the 2 x 2 side, solder 

two pins to each wire (Fig. 2.6 [A]).  
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2. Solder female 2 x 2 Mill-max to PCB ring (Fig. 2.6 [B]). Solder adjacent pads together as 

shown (Fig. 2.6 [B]). 

3. Solder five red (toward the back of the animal) and five green (toward the front of the animal) 

surface mount LED’s on PCB ring at diode symbol (Fig. 2.6 [C]). Orient the anode away from 

the ring center. Use a multimeter to confirm polarity. Note that many LED’s come with a green 

stripe corresponding to the anode.  

4. Solder a resistor next to each LED installed (Fig. 2.6 [C]). 

5. Check completed ring light with a 5V DC power supply (Fig. 2.6 [D]). Confirm that less than 

~20 uA current is being drawn to power the light. Exceeding this may cause damage to head-

stage.   

6. Use superglue or transparent epoxy to insulate any exposed traces or pads.  

7. Install PCB ring into 3D printed housing and adhere nuts to mating point (Fig. 2.6 [E-F]). 

 

2.5.2 Reward Port 

Context 

Previous reward wells suffered from several issues. First, the interface was not compatible with 

modern electrophysiological systems. Second, liquid reward often accrued in the well. This led to 

animals occasionally receiving reward on inaccurate trials by collecting the reward leftover from 

previous correct trials. Third, the zone of detection was positioned such that animals triggered 

reward delivery when they would step on the reward well when they were exploring beyond the 

edge of the track. Finally, older designs did not have a built-in sensor cue delivery system to aid 

in memory tasks. The method presented here improves upon these limitations with a novel 

reward-port design with a draining trough, a constrained trigger zone, and integrated electronics 

for modern electrophysiological systems. 
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Procedure 

1. The reward port will arrive with the back panel attached to the front of the port. Separate 

rear panel by cutting through attachment pegs with clippers. Smooth remaining peg 

fragments with sandpaper. 

2. Install the hex nuts into their sockets (Fig. 2.7 [A]). The nuts should be held in place by 

friction, and not fall out on their own. Ensure that screws align with nut. 

3. Snap the RJ45 connector through the backside of the PCB, aligning to the set of 12 holes. 

Solder the metal RJ45 pins to the PCB in place (Fig. 2.7 [B]). 

4. Solder the resistors to the labeled pads (Fig. 2.7 [B]; R1: 1.02 kOhm; R2: 10 kOhm). 

5. Optional. Install LED on the trough-facing side of PCB to use as a controllable sensory 

cue, along with resistor R3 (resistor dependent on LED selected). 

6. Wrap the cylindrical heads of PT and IR LED with electrical tape; only the rounded tip 

should remain exposed. This prevents unwanted light scatter and adds a tighter fit to the 

reward port to prevent liquid entry to the electronics.  

7. Cover the PT and IR LED pins with heat-shrink and heat with heat gun. 

8. With reward port’s trough facing away, insert the head of the IR LED into the left side of 

the port, PT into the right side. With the ground pin on the bottom bend the pins at 90 

degrees into the side grooves of the reward port. Remove heat-shrink that protrudes into 

the PCB seat.  

9. Thread the PCB onto the IR LED and PT pins so that the PCB rests on the back of the 

reward port. The RJ45 jack should be aligned with the bottom opening of the port. Screw 

the PCB to the reward port. Then solder the pins to the PCB and snip any part of the 

soldered pins that protrude beyond the solder joint (Fig. 2,7 [B-C]). Cover the back of the 

PCB with electrical tape to insulate from back housing. 
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10. Slide the back panel onto the back of the reward port and screw in place on the side holes. 

11. Secure the reward port to the behavioral track using the port legs (Fig. 2.7 [D]).  

12. Some users have experienced lick-artifact in electrophysiological recordings. One 

possible solution has been to add a grounding wire from the behavioral track to the reward 

liquid using an alligator clipped to the track with a wire in contact with the liquid (Fig. 2.7 

[E]). Other users have found success leaving the reward wells in a desiccator when not in 

use. Others have found success, ensuring that the PCB components are well insulated 

and not making contact with the reward port.  

13. Some 3D printed materials, and printers, are too fragile for many mating cycles of the 3D 

printed tubing screws threads. Some users have opted to add off-the-shelf Luer lock 

plastic components to the 3D-printed tubing holes using super glue or dental cement. 

Others have used an adaptor that very seldomly needs to be removed, thereby moving 

the mating cycle stress to the easily replaceable adapter.  (Fig. 2.7 [E]).  
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2.6 Discussion 

 

Electrophysiology in freely moving animals has been limited by technical bottlenecks related to 

scaling up the recording sites and the complexity involved in simultaneously targeting multiple 

brain regions. Previous investigations in our lab have been hindered by time-consuming 

microdrive fabrication, a skill that trainees had to master before recordings could begin. It was our 

attempt here to increase reproducibility and standardization by using computer aided design and 

modern manufacturing technologies to reduce variability and increase likelihood of interpretable 

experiments. Our toolbox has now been tested by many users with various requirements, and 

succeeds using an integrated design approach, where the sensor circuit board was embedded 

within the reward port body, the modular cannula and EIB mated with the microdrive body, and 

the ring circuit board coupled to the microdrive housing through an adapter. We show validation 

of our toolbox with recordings from the established results of spatial selectivity and phase 

precession, along with indistinguishable learning performance between implanted and non-

implanted animals. 

 

The remaining drawback to our approach is the reliance on hand-pinning electrode wires to the 

electrode interface board and the use of custom milled nuts. Future work can address this 

shortcoming by utilizing off the shelf components or employ a different mechanism of linear 

translation. Connectorization may also be improved upon by printing flexible circuit traces that 

connect the head-stage to individual electrode shuttles, easing the path to process automation. 

 

Future improvements to the reward port include the integration of additional sensors or close-up 

video capture, in order to further enrich the environmental monitoring; a mini ~100 frames/second 
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camera could be integrated within the reward port housing. Altogether, these tools represent a 

coordinated effort across software design programs and manufacturing processes to facilitate 

research required for impactful research into our cognitive processes. 
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2.7 Figures 

 

Figure 2.1 | Validation of Microdrive Implant 

  

(A) Microdrive-Implanted and nonimplanted animals learn similarly on an automated 6-arm 
variant of the W-track spatial alternation task over contingency changes. In the leftmost 
contingency, animals are rewarded for visiting any port (errors occur when they go down the 
arm, but do not poke in the reward well). In the next contingency, animals were rewarded for 
visiting the third arm (‘home’) in between alternations to the 2nd and 4th arms (3-2-3-4-3…). The 
next contingency has the 2nd arm as the ‘home’ and the animal must alternate outbound trials 
to the 1st and 3rd arms (2-1-2-3-2…)., is exploration where the animals get rewarded wherever 
they go. (B) Spatial decoding of multiunit from dorsal hippocampal area CA1 on a 3 arm W-
track task during a locally detected sharp wave ripple event. Top shows spikes from each n-
trode by row. Middle is decoded posterior of linearized position. The three panels within this 
posterior plot are the three W arms stacked center, right, left arms from bottom to top, with the 
reward port locations at the bottom of each. The animal’s current position is at the center reward 
port and is demarcated with a dashed red line. (C) Example of theta-phase precession from a 
CA1 recording site. Top row shows 2D trajectory-type separated animal position (gray) and 
spike locations colored by phase of hippocampal theta. Bottom shows first and second W-maze 
epoch of the session stacked vertically, for the corresponding trajectory-type. (D) Example of 
unit recorded in medial entorhinal cortex showing grid-like firing pattern. Raw spike positions 
are in red and animal position is shown as a gray path. (E) 2D autocorrelation of unit shown in 
D, highlighting the periodic nature of the firing pattern.  
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Figure 2.2 | Fabrication of the N-Trode Drive 

  

 

 

 

 

 

 

 

 

 

 

(A) Image of drive showing the terminology used in the protocol. (B) Nut is screwed on to the 
rod and thin machine lubricant is applied around the outside of the nut. (C) Shuttle shell is 
pushed up to encase the nut. (D) With the nut’s lower lip sitting below the exposed side window 
of shell, Metabond is applied through the window and left to cure. After curing, the nut is twisted 
free of the Metabond, but will remain encased in place within the shell, completing the shuttle. 
(E) The side of the top inner 23G tube is glued to the top of the shuttle shell, (F) creating the 
mechanism for rotational to linear thrust bearing. 
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Figure 2.3 | Modular Guide-Cannula 

 

 

 

 

 

 

 

 

 

(A) Guide-cannula featuring a fixed coupling base and customizable targeting cannulae. (B) 
Chamfering the cannulae tip. (C) Cannula that has been beveled. (D) Sectioned schematic of 
the microdrive showing the cannula mating with the microdrive body using 4 screws and nuts. 
(E) Underside view of cannula mated with microdrive body. (F) Image showing cannula of 
completed microdrive with tubing and n-trodes emerging from the bottom. 
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Figure 2.4 | Populating Electrode Interface Boards 

 

 

 

 

 

 

(A) Electrode interface board featuring pads for leveraged disconnection and countersink 
holes to mate with microdrive body. B) Blue region highlights where think layer of superglue 
should be applied on the EIB. (C) pink arrows and yellow marks show where to solder the 
ground pins to the connector. (C) yellow lines show where to connect all the connector feet to 
the EIB pads. (D) Blue region shows where to apply thin layer of superglue to reinforce solder 
joints. (F) Gold pins are used to attach the electrode to the EIB. A side profile of the extender 
board is also show attached with head-stage 
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Figure 2.5 | Microdrive Assembly 

 

(A) Skull attached component of the ground-wire. Male Mill-max connector with braided cable 
and soldered to a bone screw. (B) The microdrive-attached component of the ground-wire. 
Female Mill-max connector with braided cable. Bare end will be soldered to EIB ground. (C) 
Arrows show insertion of threaded rod into the neck of microdrive. (D) Arrows show nuts in 
microdrive neck. (E) Nuts are secured in the side holes as attachment points for housing. (F) 
Section through microdrive shows metal tubing for a single n-trode. (G) Metal tubing is cut as 
to be flush with the bottom of the cannula. (H) Metal tubing is trimmed at the top of the 
microdrive.  
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Figure 2.6 | Position tracking diode array 

  

 

 

 

 

(A) Jumper cable connecting the diode array to the head-stage. (B) Female Mill-max soldered 
to the diode ring. The adjacent pads are shorted together as shown in pink. (C) Surface mount 
resistors and LEDs populate the diode ring. (D) Test the diode array to ensure proper current 
draw. (E) Diode array mates with 3D-printed adapter. (F) Adapter mates with microdrive 
housing. 
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Figure 2.7 | Entry Detection and Reward Delivery Port 

  

 

 

 

 

 

 

 

 

 

 

 

 

(A) Exposed back view of reward port demonstrating insertion points in pink for hex nuts with 
model (top) and completed real (bottom) view. (B) Pink rectangle highlights RJ45 pins snapped 
into place and soldered to PCB. Blue rectangles show resistor pads. Green rectangles show 
IR LED and PT pins soldered to the PCB and trimmed. (C) Completed PCB showing the face-
to-face positioning of IR LED, and PT in pink. The heat-shrink on the pins are highlighted by 
the green rectangles. The reward port is omitted in order to visualize components. (D) Front 
view of completed reward port showing position of screws for attaching port to behavioral track. 
(E) Tubing adapter to reduce mating cycles with reward port, and to allow grounding with an 
alligator clip. 
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Chapter 3 : Conclusion and Discussion 
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3.1. Significance of Memory Reactivation Synchronization with Rhythmic Movement 

 

Previous evidence suggested that whisking and sniffing may act to stereotypically fragment the 

stream of exploratory sensory processes (Halpern, 1983; Kepecs, Uchida, & Mainen, 2006; 

Kleinfeld et al., 2006; J. D. Moore, 2013; Nicolelis et al., 1995; Tort, Brankačk, & Draguhn, 2018). 

Recent work demonstrated that the respiration phase was synchronized with sharp-wave ripple 

(SWR) occurrence (Karalis & Sirota, 2018; Y. Liu et al., 2017), motivating the question if other 

rhythmic orofacial oscillations may influence hippocampal activity. Crucial evidence has linked 

licking with increasing spike-timing precision over the course of learning and across the 

sensorimotor-reward brain regions (Ranier Gutierrez et al., 2010). And although there are direct 

projections between these regions and the hippocampal formation, it remained unclear whether 

quasiperiodic licking input during reward-based learning could influence SWR-replay. 

 

To this picture, our novel findings contribute the alignment of SWR-replay with the licking phase 

at the reward port of a spatial alternation task, implicating coordination of sensorimotor-reward 

networks with memory processing. Our study is the first to examine the orofacial modulation of 

SWR occurrence in freely behaving animals learning a memory task. These findings suggest that 

feed-forward and feed-back processes may be exploiting cross-frequency coupling to minimize 

energy expenditure or gate the encoding and integration of ongoing behavior with the 

implementation of prior learning.  

 

A potential reason for the previous scarcity of attention on this issue was the technical and 

integrative complexity of these experiments. As presently depicted, such experiments require 

multi-domain specialization to develop customized tools for sufficient chronic sampling of units 

across multiple recording sites from animals freely behaving during a learning task, while 

simultaneously monitoring port entry events. These developments form the primary technological 
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advance of this dissertation and is freely available to the research community as an open-source 

novel electrophysiological and behavior toolbox. Demonstrated by the successful adoption of 

these tools in diverse experiments, these tools advance enhance research capability and reduce 

the harm to animals by working to reduce experimental variability. 

 

Altogether our efforts represent an advancement in understanding how the orofacial movement 

for active sampling and reward ingestion can synchronize with mechanisms of association 

formation. In addition to licking being a behavior used to monitor animal models of disorders such 

as mental illness (Galistu et al., 2011; Hartfield et al., 2003; Schepisi et al., 2014) and aging 

(Zhang et al., 2008), our results could facilitate future work to address critical questions in 

compulsive consumption of diet-induced obesity, eating disorders, and alcohol (Barkley-

Levenson & Crabbe, 2012, 2015; Robinson & McCool, 2015) or drug addiction (Eastwood et al., 

2014).  

 

Our results suggest that more considerable attention be paid to head movements during periods 

of reduced locomotive velocity, which are often categorized as ‘immobile.’ This terminology of the 

spatial memory-task behavioral state is used as a convenient simplification; however, given the 

pervasive impact on memory networks currently presented, the appropriate experimental design 

must be employed to avoid misinterpretation of neural activity. Understanding how oromotor 

activity interacts with memory replay is critical to our knowledge of how the internal state interacts 

with externalized behavior. A remaining question is whether the licking movement influences 

hippocampal activity through sensory afference or motor efference.  
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3.2 Reafference and Corollary Discharge Underlying Replay-Movement Synchrony 

 

What are the likely pathways linking oromotor rhythmicity and hippocampal modulation? A study 

in humans implicated the olfactory reafferent rhythm in the modulation of hippocampal delta 

oscillations (0.5– 4 Hz) (Zelano, 2016), with hippocampal delta activity elsewhere being shown to 

entrain the occurrence of SWRs (Axmacher et al., 2008). Two other studies in rodents have 

implicated respiration in the entrainment of SWR occurrence, one during sleep (Karalis & Sirota, 

2018), and the other during awake head fixation (Y. Liu et al., 2017). Interestingly, these studies 

come to somewhat opposing conclusions as to the anatomical pathway of influence. In the sleep 

study, SWR synchronization remains following an olfactory afferent disruption, which leads the 

authors to conclude that the respiratory corollary discharge emanating from the brainstem likely 

plays the modulatory scaffold for hippocampal output. The study in the awake, head-fixed state 

found a reduction in SWR entrainment after the suppression of olfactory reafference, leading them 

to conclude an olfactory reafference as being the primary SWR orchestrator. What could explain 

the discrepancy between these studies? 

 

First, the method of disruption of sensory activity differed, and therefore the nature of manipulated 

activity likely changed. The awake study used a bilateral injection of viral vector construct, which 

expressed designer receptors exclusively activated by designer drugs, allowing for temporary 

suppression of respiration-locked sensory projections onto the olfactory bulb. In contrast, the 

sleep study used methimazole injection, which ablates olfactory epithelium that hosts the 

mechanoreceptor-expressing sensory neurons (Bergman, Ostergren, Gustafson, & Brittebo, 

2002; Grosmaitre, Santarelli, Tan, Luo, & Ma, 2007), effectively depriving the olfactory bulb of 

respiratory input.  
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Second, although the awake state study had animals head-fixed in place, the animals were still 

in opposing states of arousal with different sensorimotor contextual complexity. Notably, the 

functional specialization of SWRs in sleep vs. awake states differs in multiple characteristics 

(Roumis & Frank, 2015), which may be indicative of the varying weight of influence of sensory vs. 

motor activity. The evidence of respiratory pathway of impact on the hippocampus appears to be 

a dual mechanism of entrainment, emerging from both olfactory reafferent and respiratory 

corollary discharge emitted by the brainstem (Karalis & Sirota, 2018), with dynamic degrees of 

reliance depending on state and context. 

 

These studies provide insight into a potential pathway for licking influence on the hippocampus, 

because, during licking bouts, the slower breathing oscillation is cross-frequency coupled with the 

faster licking oscillation (Welzl & Bureš, 1977). Additionally, respiration and licking have 

separately been shown to entrain overlapping networks in the frontal cortex, nucleus accumbens, 

and amygdala (Ranier Gutierrez et al., 2010; Karalis & Sirota, 2018), and they both are controlled 

by overlapping brainstem pacemaker circuits. Although there is a coordination of rhythmic 

oromotor behaviors by shared brainstem circuitry, the pathway underlying the present results 

must additionally take into consideration the gustatory network that licking primary engages. As 

noted, a previous study found licking modulation in multiple regions (Ranier Gutierrez et al., 2010) 

including the insular cortex which is involved in interoception (Accolla & Carleton, 2008; Katz et 

al., 2001; Livneh et al., 2020), and the reward-action network consisting of the orbitofrontal cortex 

(E. T. Rolls, 2007; Tremblay & Schultz, 1999), amygdala (Pecina & Berridge, 2005; Schoenbaum 

et al., 1998), and nucleus accumbens (Mogenson et al., 1980).  The amygdala, insula, and cortex 

all project to the nucleus accumbens, forming an integration point for oromotor evaluation. The 

confluence of lick-induced spike synchrony across multiple targets of hippocampal input and 

output suggests many pathways of possible influence. 
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3.3 Active sensing is associated with effective processing 

 

Neural activity and environment control behavior. Predictable timing of neural reactivation relative 

to the phase of an externally manifested action implies the existence of a consciously triggered 

global clock that can hierarchically orchestrate spike timing and thereby affect synaptic 

modification. From an ethological perspective, a voluntary movement that is shown to synchronize 

the activity of memory and taste-reward networks will impact how information flows in the brain 

and therefore have the potential to change reward-driven behavior and affect the survival of the 

organism. 

 

In addition to effecting change in synaptic networks, extensive evidence exists that active sensing 

involving expectation and volition changes the sensory response in licking (Mayrhofer et al., 2019; 

Wilkins & Bernstein, 2006), somatosensory (Krupa et al., 2004), auditory (Eliades & Wang, 2008), 

and olfactory (Fuentes et al., 2008) modalities. This is consistent with the increased delay of 

identification in experiments employing passive reward delivery via an intraoral cannula (Katz et 

al., 2001), compared to active sensing state (Poulet & Petersen, 2008). Additionally, evidence 

shows that sniffing-induced theta oscillations enhance discrimination by ensuring spike time 

precision in the olfactory system (Schaefer et al., 2006). 

 

From these findings, it’s clear that learning induces a significant functional reorganization of neural 

activity throughout significant components of the taste–reward and memory networks. We 

speculate that cross-frequency coupling between ~8 Hz licking oscillations in both the motor and 

sensory circuits interact with hippocampal SWRs through cross-frequency coupling. This may 

thereby serve as a mechanism to transfer information from sensorimotor brain networks operating 
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at behavioral timescales to the fast processing required for practical neural computation and 

synaptic plasticity, thus integrating taste-reward signaling with memory processing.  

 

3.4 Speculative Role of Synchrony Between Oromotor Phase and Memory Reactivation 

 

Does oromotor entrainment influence tasks relate to hippocampal function? Recording from 

intracranial EEG in humans, it has been shown that LFP in the hippocampus, amygdala, and 

piriform cortex are all entrained to respiration, and that performance on a memory recall task is 

sensitive to the phase of nasal breathing when the stimulus is initially presented (Zelano, 2016). 

Complementary to our claim that rhythmic licking bouts are privileged periods regarding the 

efficiency of reactivated information flow, these results show that in humans, the efficacy of 

encoding sensory stimuli is predicted by an externally identifiable phase of orofacial behavior. 

 

Foundationally, a study in rodents discovered that proficiency in solving reinforcement-based 

associative cue learning required licking-induced synchrony across neural ensembles of the 

frontal cortex, insular cortex, nucleus accumbens, and amygdala (Ranier Gutierrez et al., 2010). 

This is consistent with other reports of licking-related activity in these regions (R. Gutierrez et al., 

2006; Nishijo et al., 1998; T. Yamamoto et al., 1988). Additionally, the authors attributed the 

reduction in spike timing variability over learning to lick-coherency, as the cue-selective neurons 

that most effectively discriminated stimulus identity were selectively synchronized activity with 

licking. Moreover, it was found that for most lick-synchronized neurons, phase-locking was epoch-

specific, showing that neural activity was content-specific, and not merely an exhaust fume of 

oromotor behavior.  

 

Relevant to learning, neural activity in many regions have been shown to couple with hippocampal 

activity bursts like SWRs, including associative cortices (R. Gutierrez et al., 2006; Jadhav et al., 
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2016; Peyrache et al., 2009a; Wang & Ikemoto, 2016; Wierzynski et al., 2009; Wilber et al., 2017), 

primary sensory cortices (Ji & Wilson, 2007; Rothschild et al., 2017; Sirota et al., 2003), ventral 

striatum (Lansink et al., 2008), ventral tegmental area (Gomperts et al., 2015), basolateral 

amygdala(Girardeau et al., 2017), and thalamic nuclei(Lara-Vásquez et al., 2016; Yang et al., 

2019). We speculate that hippocampal SWRs are part of the directed teaching signal employed 

during learning, acting to engrave association between coincident neural activity orchestrated by 

active sensing. 

 

Integrating prior evidence of widespread taste-reward network lick-locking with present results 

depicting the lick-phase alignment on hippocampal activity, we speculate that SWR-related 

synaptic change is differentially induced during, and because of, active sensing. We suggest that 

licking-induced synchrony of SWR’s represents a convergence of the sensory association system 

with memory retrieval and formation system. And perhaps that after learning, the role of rhythmic 

behavior, through minimization of variability during ongoing sensorimotor state transition, 

supplants the SWR function of long-range information transmission across the gustatory-

association network. 
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Abstract 

Waking and sleeping states are privileged periods for distinct mnemonic processes. In waking 

behavior, rapid retrieval of previous experience aids memory-guided decision making. In sleep, 

a gradual series of reactivated associations supports consolidation of episodes into memory 

networks. Synchronized bursts of hippocampal place cells during events called sharp-wave 

ripples communicate associated neural patterns across distributed circuits in both waking and 

sleeping states. Differences between sleep and awake sharp-wave ripples, and in particular the 

accuracy of recapitulated experience, highlight their state-dependent roles in memory 

processes. 
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Introduction 

The ebb and flow of waking and sleeping states imposes structure and periodicity on all 

mammalian life. In addition to the state of awareness, neural states that accompany waking and 

sleeping differ drastically in several dimensions, including the level of neuromodulators, 

widespread synchronization, and responsiveness  to input from external stimuli (Diekelmann & 

Born, 2010a). These features dissociate the neural context of waking and sleeping states and 

manifest in distinct memory processing (Barnes & Wilson, 2014; Diekelmann, Buchel, Born, & 

Rasch, 2011; A. Rolls et al., 2013). While awake, rapidly retrieved memories influence 

prediction, deliberation, and evaluation. Often, a decision must be made following only a short 

period of deliberation, suggesting a need for rapid and precise memory retrieval. In sleep, fresh 

memories are gradually strengthened, transformed, and integrated into the ensemble of 

amassed knowledge in the process of system-level consolidation (Dumay & Gareth Gaskell, 

2012; Inostroza & Born, 2013). Here, the need for rapidity and precision may be relaxed, and 

indeed a high fidelity representation may not be optimal for building more generalized 

representations. 

 

Memory reactivation, serving both retrieval and consolidation, entails repetition of previously 

experienced episodic associations. Reactivation is commonly detected in the context of patterns 

of activity in spatially selective cells in subregions of the hippocampus (Carr et al., 2011). The 

hippocampus is essential for all aspects of spatial memory, including encoding, consolidation, 

and retrieval (O'Keefe & Nadel, 1978; Riedel et al., 1999). Hippocampal pyramidal neurons that 

are active during a given experience are often referred to as ‘place cells’ because a large 

fraction of them fire in a location-dependent manner - preferring certain ‘place fields’ as animals 

explore space. Plasticity mechanisms associate cells with neighboring place fields, enhancing 

neighbor coactivity following their activation during exploration (O'Neill et al., 2008). During a 

pause in active exploration or while asleep, bursts (100-200 ms) of place cell activity occur 
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within distinct high-frequency (150-250 Hz) fluctuations in the hippocampal local field potential, 

called sharp-wave ripples (SWRs; Fig. A.1 [A]; (Buzsaki, 1986)). Sequences of simultaneously 

recorded place cells, whose collective place field assemblies reflect trajectories through space, 

are often reactivated in a time-compressed cascade during hippocampal SWRs (Fig. A.1[A-B]). 

The timescale of SWRs aligns with the optimal window for inducing synaptic plasticity, and 

therefore could influence the encoding of memory traces in synaptic weights (Buzsaki, 1989; 

Marr, 1971). 

 

SWRs have garnered significant attention as a common phenomenon for broadcasting 

mnemonic messages, in both waking and sleeping states (Carr et al., 2011; O'Neill, Pleydell-

Bouverie, Dupret, & Csicsvari, 2010). However, the processing demands of waking and sleep 

are distinct, and differences in sleep and awake SWR replay events may support these distinct 

functions. Here we review recent developments addressing this issue and discuss the 

hypotheses that SWR replay during the waking state serves to mediate awake memory retrieval 

(Carr et al., 2011) and update navigational planning with respect to current perceptual input, 

whereas SWR replay during sleep is fundamentally geared to gradually consolidate a memory 

trace into a broader framework of existing memories. 

 

The Role of Awake SWR Replay 

The vicarious representations of spatial paths extending beyond an animal’s current position 

could be an efficient component for deliberating and evaluating possible routes to reach a goal 

(Carr et al., 2011; Johnson, 2007; Pfeiffer & Foster, 2013; Yu & Frank, 2015). In a causal test of 

a role for awake SWR events, Jadhav et al. (Jadhav, 2012) found that waking SWR activity was 

necessary for navigational memory-guided decision making in rats. The authors employed a 

spatial alternation task with a ‘W’ shaped maze on which the animals were rewarded at each 

arm’s end for navigating in the following order: outbound-left, inbound-center, outbound-right, 
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inbound-center, and so on (Fig. A.1 [C]). Brief pulses of electrical stimulation, delivered 

immediately upon awake SWR onset, selectively disrupted SWRs and lead to a highly 

significant impairment in performance of the outbound alternation rule, which depends on 

integrating immediate past experience with the task rule. Parallel results came from a study in 

which awake SWR detection during learning triggered a bright light which led to an impairment 

in trace eyeblink conditioning in rabbits, likely because the light disrupted neocortical activity 

associated with SWRs (Nokia, Mikkonen, Penttonen, & Wikgren, 2012). 

 

Subsequent studies have begun to identify a relationship between the content of SWRs and 

behavior (Dupret, O’Neill, Pleydell-Bouverie, & Csicsvari, 2010; Singer, Carr, Karlsson, & Frank, 

2013). Using the ‘W’ maze spatial alternation task (Fig. A.1 [C]), Singer and colleagues (Singer 

et al., 2013) found a greater degree of coordination in the pairwise firing of place cells in the 

waking state during SWRs that preceded a correct outbound decision, compared to an incorrect 

decision, on a trial-by-trial basis. This suggests that failure to reactivate the appropriate 

assembly representing possible future paths may lead to errors in navigational decision making. 

Interestingly, they did not find a consistent bias for the reactivated trajectory representation to 

reflect the subsequent navigational choice of the animal. This latter finding is in line with recent 

arguments positioning hippocampal replay as primarily communicating possible trajectory 

options for downstream circuits to evaluate (Johnson, 2007; Wikenheiser & Redish, 2015; Yu & 

Frank, 2015). In contrast, another study, employing an ‘open field’ foraging task, did detect a 

bias for the content of awake replay events to represent space in the general direction of the 

subsequent behavior – although there were still many replay events sweeping toward alternate 

locations. The relative hippocampal involvement in prediction, deliberation, and evaluation is 

likely influenced by task, learning stage, and environment. 
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Finally, we note that awake replay occurs in both the forward direction, consistent with the 

animal’s experience, as well as in the reverse direction, with the relative prevalence and control 

of these sequences likely reflecting different processes (Csicsvari, 2007; Davidson, 2009; Diba, 

2007; Foster, 2006; Gupta, 2010; Wikenheiser & Redish, 2013). For instance, reverse replay in 

the waking state commonly occurs when the animal has arrived at a goal location, potentially 

supporting on-line reinforcement learning (Carr et al., 2011; Davidson, 2009; Diba, 2007; Foster, 

2006). Forward replay in the waking state is more prevalent in anticipation of a trajectory, when 

deliberation of future paths and spatial working memory is critical (Carr et al., 2011; Diba, 2007). 

The task-location specificity of forward and reverse awake replay suggests an actively 

controlled retrieval system related to ongoing behavior. 

 

The Role of Sleep SWR Replay 

In contrast to the role of memory retrieval for active planning, replay in sleep is a component of 

system consolidation, which is thought to involve a quantitative and qualitative transformation of 

representations, stabilizing, decontextualizing, and integrating associations into distributed 

hippocampal-cortical circuits according to the statistical structure of experienced episodes 

(Frankland & Bontempi, 2005; Inostroza & Born, 2013; Lesburgueres et al., 2011; McClelland, 

McNaughton, & O’Reilly, 1995; Tse et al., 2011; Winocur, Moscovitch, & Bontempi, 2010). 

Consistently, evidence indicates that sleep promotes mnemonic flexibility in inference tasks that 

are enriched by the inductive capacity to link remote fragments of episodic representations 

(Coutanche, Gianessi, Chanales, Willison, & Thompson-Schill, 2013; Durrant, Taylor, Cairney, 

& Lewis, 2011; Ellenbogen, Hu, Payne, Titone, & Walker, 2007; Tse et al., 2007; Verleger, 

Rose, Wagner, Yordanova, & Kolev, 2013; Wagner, Gais, Haider, Verleger, & Born, 2004). 

 

Memory stabilization and integration in sleep is thought to require reactivation of awake neural 

patterns, serving to direct synaptic modifications across hippocampal-neocortical networks 
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(Buzsaki, 1996; Diekelmann & Born, 2010b; McClelland et al., 1995; Sutherland & McNaughton, 

2000). Hippocampal SWR replay and cortical reactivation primarily occurs during periods of 

slow-wave sleep (SWS) (Ji & Wilson, 2007; Peyrache et al., 2009a; Wierzynski et al., 2009). 

Evidence of a direct link between SWR-related replay in sleep and memory processes has been 

provided by a number of studies employing a spatial memory task (de Lavilleon, Lacroix, Rondi-

Reig, & Benchenane, 2015; Dupret et al., 2010; Girardeau, 2009; Nakashiba, Buhl, McHugh, & 

Tonegawa, 2009). If SWR replay assemblies percolate mnemonic messages across distributed 

circuits, a significant swath of the brain’s activity should be temporally aligned with SWRs. Such 

evidence was recently reported in a study showing globally coordinated response patterns from 

monkey whole-brain functional magnetic resonance imaging at the time of hippocampal SWRs 

while the subjects alternated between sleeping and waking (Logothetis, 2012). 

 

Additionally, SWR sequences in the sleeping state have been shown to favor the forward 

direction, maintaining the overall temporal structure of the animals’ actual experience 

(Kudrimoti, Barnes, & McNaughton, 1999; Lee, 2002; Nadasdy, Hirase, Czurko, Csicsvari, & 

Buzsaki, 1999; Skaggs & McNaughton, 1996; Wikenheiser & Redish, 2013). In order to infer 

future events based on previous exposure to a particular instance, preserving the appropriate 

overall temporal order of episodic fragments may be a crucial feature in the face of 

decontextualization processes. Fittingly, sleep has been shown to selectively strengthen the 

forwardly learned associations of word or picture sequences during post-sleep waking retrieval 

(Drosopoulos, Windau, Wagner, & Born, 2007; Griessenberger et al., 2012). 

  

The Fidelity of Replay 

A critical feature of awake SWRs is the fidelity of recapitulated experience, as accurate portraits 

of established trajectories are crucial for rapid memory-driven behavioral performance. Karlsson 

and Frank (Karlsson, 2009) recorded from principal neurons in hippocampal areas CA1 and 
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CA3 while rats performed the W-track alternation task (Fig. A.1 [C]) flanked by ‘sleep-box’ 

sessions. Strikingly, their analyses reveal that awake SWRs contained overall higher fidelity 

recapitulations of previously experienced traversals through place fields than SWRs recorded in 

sleep-like states (Fig. A.2).  

 

Furthermore, recent evidence couples fidelity of replay with an additional level of coherence 

across hippocampal areas within and across hemispheres. Carr et al. (Carr et al., 2012) found 

that increased synchrony of ‘slow’ gamma oscillations (20-50 Hz) across CA3 and CA1 regions 

was predictive of replay fidelity in the waking state, suggestive of an internal clocking 

mechanism to coordinate sequential reactivation across the hippocampal network. In contrast, 

spiking during SWRs in sleep-like states was less modulated by slow gamma with no clear 

relationship between gamma synchrony and the fidelity of replay. 

 

Beyond the coupling of hippocampal slow gamma oscillations in the waking state, sleep SWRs 

are temporally coordinated with oscillating ‘Up’ and ‘Down’ states of widespread activation and 

suppression of cortical activity, respectively (Diekelmann & Born, 2010b; Peyrache, Battaglia, & 

Destexhe, 2011; Phillips et al., 2012; Siapas & Wilson, 1998; Sirota et al., 2003). These 

oscillations are linked to the retention and integration of new learning into existing knowledge 

structures (Marshall, Helgadottir, M€olle, & Born, 2006; Tamminen, Lambon Ralph, & Lewis, 

2013). Synchronized interaction between the hippocampus and prefrontal cortex (PFC), one of 

the major sites of hippocampal output, is critical for system consolidation (Preston & 

Eichenbaum, 2013), occurs largely coincident with SWRs during SWS (Benchenane, 2010; 

Wierzynski et al., 2009), and specifically includes reactivated cortical patterns of awake 

experiences (Euston, Tatsuno, & McNaughton, 2007; Peyrache et al., 2009a). Recording in the 

PFC, Peyrache et al. (Peyrache et al., 2009a) found that the temporal dynamics of reactivation 

strength, or the accuracy with which population activity in sleep corresponded to waking 
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experience, peaked immediately preceding a transition from Down to Up states, which is 

temporally aligned with a prevalence of SWRs (Battaglia, Sutherland, & McNaughton, 2004; 

Peyrache et al., 2009a). Given that hippocampal SWRs can occur during both Up and Down 

states (Battaglia et al., 2004; Isomura, 2006), this raises an intriguing possibility that the phase 

of certain cortical oscillations are linked with the relative fidelity of replay transmission in the 

hippocampal-cortical axis. For instance, widespread activation or suppression of cortical activity, 

respectively associated with Up or Down states, could either influence the cortical receptivity to 

input patterns from the hippocampus, or variably infuse noise into an ensuing hippocampal 

replay assembly. Additionally, recent work demonstrated that the medial entorhinal cortex, part 

of the main input and output structure between the hippocampus and neocortex, contains 

persistent Up states that can span multiple quantized neocortical Up/Down states and influence 

the activity levels of the hippocampus, potentially gating the form of transmission across the 

hippocampal-neocortical axis around the time of SWR replay (Hahn, McFarland, Berberich, 

Sakmann, & Mehta, 2012). 

 

A Role for ‘Noisy’ Replay 

It seems intuitive that high fidelity replay would promote effective decision-making during 

waking, but how could lower fidelity, ‘noisy’ recapitulations of experience serve the mnemonic 

functions of sleep?  Importantly, sleep allows the brain to consolidate sparse data and store the 

statistics of the environment into a semantic memory system, allowing for inductive predictions 

about the future. Inspired by computational linguistics, Battaglia and Pennartz (Battaglia & 

Pennartz, 2011) advance an illustrative approach of how memory networks, trained by ‘noisy’ 

episodic replay, could become schematized and generative, constructing episodes based on 

past experience and allowing for prediction in the face of uncertainty. In this way, the 

comparatively more random organization of sleep SWR replay may be a feature rather than a 
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bug, serving to fulfill the transformational consolidation process and supporting the capacity to 

build rich schemata from only a limited number of episodic associations.  

 

Recent evidence is consistent with the idea that adding ‘noise’ to the relevant neural circuits 

during sleep consolidation alters the specificity, but not necessarily the strength, of learning. 

Barnes and Wilson (Barnes & Wilson, 2014) conditioned electrical stimulation in the rat olfactory 

bulb (OB) with a foot-shock, an established paradigm for subsequently eliciting the rat’s natural 

fear response to the conditioned olfactomimetic stimulation. However, in intervening SWS bouts 

between conditioning and testing, they stimulated a naive (not previously conditioned) OB site, 

likely eliciting a very different activity pattern than that which was conditioned. Surprisingly, this 

manipulation, which consisted of introducing novel and seemingly irrelevant activity during the 

period of memory consolidation, did not decrease the strength of the trained memory 

association. Instead, this manipulation led to memory generalization, as observed by fear 

response to previously unpaired odors. Together, these studies suggest that the level of 

interference during periods of consolidation can influence the precision of memory expression, 

and furthermore predicts that over-rigidity in sleep replay, relative to awake, may impair the 

ability to flexibly use past memory in a novel context. 

 

Conclusion 

SWRs may be a common neurophysiological phenomenon for broadcasting mnemonic 

messages in both waking and sleeping states, the importance of which is underscored by 

recently documented impairments of sequence reactivation in models of schizophrenia (Phillips 

et al., 2012; Suh, Foster, Davoudi, Wilson, & Tonegawa, 2013), dementia (Cheng & Ji, 2013; 

Witton et al., 2014), and aging (Gerrard, Burke, McNaughton, & Barnes, 2008). Causal 

manipulations lend strong support to this role for SWRs, but elucidation of their intrinsic features 

is necessary to understand the mechanisms supporting distinctive memory processes. Awake 
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SWRs proceed both forward and reverse, entail a more veridical account of experience, and 

can predict future behavior. Sleep SWRs mainly unfold in the forward direction, are generally 

more noisy depictions of past actions, and are tightly coordinated with cortical oscillations. 

Together, the evidence supports the hypotheses that SWR replay during the waking state 

serves to support retrieval and planning, whereas SWR replay during sleep is geared to 

gradually consolidate a memory trace into a broader framework of existing memories.  
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Figures 

 

 

 

 

(A) Sequential spiking from place cells during an awake SWR. Bottom, rows depicting the 
spiking of individual place cells in CA1 or CA3 activated during the SWR. Top, the filtered 
local field potential signal (150–250 Hz) from one tetrode with the color bar showing the 
separation of each 15-ms decoded bin. (B) Probability distributions of decoded locations for 
the spiking in each associated colored bin in a. Inset shows a cartoon of the replayed 
trajectory. (C) Schematic depicting the rewarded behavioral sequence of the ‘W’ track task. 
Adapted with permission from ref. (Carr, Karlsson, & Frank, 2012). 

Figure A.1 | SWR Reactivation of Spatial Sequences 
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Karlsson and Frank(Karlsson, 2009) calculated the extent to which the linear spatial distance 
between the peaks of place field pairs belonging to a remote ‘W’ environment predicted the 
relative timing of their SWR spikes for all place cell pairs. The normalized cross-correlation 
histograms of all the pairs is shown in order of their place field distances, with the signature 
of the degree to which the place-field distances are linked to their SWR timing being 
represented by the emergent ‘V’ shape centered at 0-ms latency. (A) Awake SWRs during 
the first sleep-box session of the day, prior to the daily exposure of the ‘W’ track task (R2 = 
0.025). (B) Awake SWR replay during task performance shows the most robust remote 
replay (R2 = 0.1736; see ref. [55] for further explanation of behavioral paradigm). (C) SWRs 
during waking bouts in the post-task sleep-box, after exposure to the ‘W’ maze task (R2 = 
0.1164). (D) SWRs during quiescent, sleep-like states in the sleep-box, after exposure to the 
‘W’ maze task (R2 = 0.0693). R2 values were computed by taking the correlation of the 
distance between place field peaks and the absolute value of the relative spike timing 
measure. Adapted with permission from ref. (Karlsson, 2009). 

Figure A.2 | The quality of SWR replay of remote task trajectories is higher during awake 
than quiescent periods 
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