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There exist substantial concerns in the United States about 
the pervasive harms of racism, which modern scholarship 
conceptualizes as either active or passive normalization of 

racial or ethnic inequities1. (In this Article, we use ‘racism’ in the 
modern descriptive sense that does not hinge on the intent of the 
perpetrator(s); that is, actions and policies that promote race-based 
inequities are racist, whether or not such an outcome is intended.) 
Particularly worrisome is the potential for institutionalized (or 
systemic) racism—in the form of policies, regulations and norms 
that favour certain racial or ethnic groups2—to perpetuate such 
harm via democratic processes. Rigorous quantitative evidence of 
institutional racism can be difficult to come by because the effects 
of various social and institutional processes that may embed bias 
(for example, urban planning and environmental regulation) often 
overlap in space and time and thus stymie attempts at more specific 
attribution (for example, ref. 3). This in turn makes policy proposals 
that address racism head-on more difficult to justify. This has long 
been the case with environmental injustice, or the manifestation of 
systemic racism in environmental policymaking and enforcement4. 
(The term ‘environmental injustice’ is often used more broadly 
to describe disparities across multiple demographic dimensions, 
including, but not limited to, race and ethnicity. In this Article, for 
clarity, we use this more specific definition with a primary focus on 
racial and ethnic bias in environmental policy.)

Disparities in air pollution concentrations provide a clear exam-
ple of this attribution problem5,6. Air pollution is linked to a wide 
range of negative health consequences7 and is estimated to cause 
nearly 9 million premature deaths globally per year8. On average, 
these health effects are not distributed evenly among different 
demographic groups9–11, running counter to the notion that soci-
ety’s environmental burdens should be equally shared5,6,12. However, 
despite observable exposure gradients across racial and ethnic 

groups, causally ascribing such inequities to bias in environmen-
tal policy has proved difficult. (In this Article, we consider ‘envi-
ronmental policy’ to be the full landscape of policies, laws, statutes, 
regulations and enforcement mechanisms governing environmen-
tal quality. This definition includes gaps; that is, existing loopholes, 
lack of regulation and non-enforcement of rules are also forms of 
policy.) Economic and other social policymaking (for example, 
housing, transportation, education) over generations has created 
the modern geography of who lives where. Over time, myriad 
physical and social confounds—including variable atmospheric 
transport processes13, economic inequalities10,14 and neighbourhood 
demographics9,15—have become correlated with present-day pol-
lution exposures. As such, moving beyond simple observations of 
disparate but confounded exposures in contemporary cross sections 
to causal attribution of environmental injustice requires additional 
evidence. This can be achieved by a random perturbation to the sta-
tus quo16; such a shock to the policy regime was provided by the 
initial COVID-19 economic shutdown in California17.

In early 2020, governments implemented unprecedented poli-
cies to limit the public health impacts of the COVID-19 pan-
demic, including stay-at-home orders and travel limitations, with 
California instituting some of the most aggressive lock-down mea-
sures in the United States18. The well-known side effect of these 
policies was widespread economic shutdown: businesses closed, 
factories shuttered and employees temporarily discontinued their 
daily commutes19. (In California, 60.51% of businesses reported a 
decline in demand, 22.27% reported closure due to government 
mandate and only 13.9% indicated that the pandemic had no 
impact on their business20; the transport sector accounted for an 
estimated 97.5% of the decline in CO2 emissions in spring 2020 
over the same period in 201921.) Because pollutants such as particu-
late matter with diameter smaller than 2.5 μm (PM2.5) and nitrogen 
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dioxide (NO2) are produced by transportation, industrial pro-
cesses, energy production and agriculture22, pollutant concentra-
tions tend to track aggregate economic activity23,24. The lock-down 
corresponded to reductions in both satellite and ground-based 
observations of NO2 and PM2.5 concentrations, particularly in 
transportation-heavy metropolitan regions25,26. We leverage this 
period (March–April 2020) as a natural experiment that partially 
disentangles the confounding underlying legacy of historical social 
and economic policy from average air pollution exposures by  
providing a comparison between shutdown and non-shutdown 
(status quo) pollution distributions.

We employ established generalized difference-in-differences 
methods to quantify declines in ambient concentrations of two 
criteria pollutants, ground-level PM2.5 and tropospheric column 
number density NO2, during March–April 2020 and test for the 
existence of heterogeneous effects associated with the racial and 
ethnic composition of neighbourhoods. We utilize data from a rela-
tively new network of low-cost particulate matter monitors that are 
predominantly privately owned and deployed outside homes, along 
with data from state-run air-quality sensors, satellite measurements, 
demographic and socioeconomic information, geographic data and 
cell-phone-based location data. By combining these datasets, we 
disentangle the contribution of local conditions (income, mobility, 
urban geography, weather) to local air pollution exposures. Data on 
mobility—defined as the extent to which individuals spend time 
away from their homes—are particularly important: they charac-
terize variability in the shutdown’s effect on the local activity of 
different communities, as essential worker status and economic 
insecurity are associated with less time spent at home27,28.

Because the reduction of pollution when shutting down most of 
the in-person economy corresponds to the pollution burden created 
by that portion of the economy, pre-pandemic, we interpret statisti-
cally larger reductions in air pollution exposures for minority racial 
and ethnic groups—conditional on other confounding factors—as 
evidence of embedded bias in the generation and control of pol-
lution from the in-person economy in the status quo. (We use the 
term ‘in-person economy’ to refer to economic activity from busi-
nesses, including transportation to and from those businesses, that 
closed during the COVID-19 economic shutdown. As outlined in 
Executive order N-33-20 of the State of California, closures affected 
all businesses except those in 16 critical infrastructure sectors: 
chemical; commercial facilities; communications; critical manufac-
turing; dams; defence industrial base; emergency service; energy; 
financial service; food and agriculture; government facility; health-
care and public health; information and technology; nuclear reac-
tors, materials, and waste; transportation systems; and water and 
wastewater systems sectors. We note that while these sectors had 
the option to stay open, many did not, or continued operations in a 
reduced manner.) Our approach also demonstrates complementary 
inequities in the monitoring of pollution, shedding light on a path 
towards pro-actively addressing the identified inequities through 
air pollution monitoring policy that is itself environmentally just.

Results
Using daily and weekly pollution observations, along with demo-
graphic, geographic and mobility data, we estimate how much race 
and ethnicity alone explain the changes in air pollution exposures 
experienced during the COVID-19 shutdown in California. We 
account for time-varying factors (local mobility, weather, seasonal-
ity) and relatively static factors (population density, income, prox-
imity to roads) known to contribute to heterogeneous pollution 
exposures. Our approach is described in detail in Methods as well 
as schematically in Fig. 1g and Extended Data Fig. 1.

Our study area and data are summarized in Fig. 1. Daily aero-
sol PM2.5 measurements are drawn from a network of 830 moni-
tors (106 public monitors from the California Air Resources Board 

(CARB) and 724 privately owned PurpleAir monitors; Extended 
Data Fig. 2a) and cover the period from 1 January to 30 April for 
both 2019 and 2020 to facilitate comparison across economic con-
ditions at the same time of year. The low-cost PurpleAir sensors 
have been shown to correlate well with research-grade mass-based 
sensors, although they tend to have a high bias, which we have cor-
rected before analysis (Methods and Supplementary Information). 
The PM2.5 monitors are located in 733 unique census block groups 
(CBGs) across California. Satellite-derived tropospheric NO2  
(Fig. 1b) measurements from the TROPOMI instrument cover 
close to all 23,212 CBGs of California (22,503) but at an ~weekly 
timescale due to the overpass frequency of the Sentinel-5 precursor 
satellite. Local social, demographic and geographic characteristics  
(Fig. 1c–f; Methods), including income and population shares  
for race and Hispanic ethnicity, are heterogeneously distributed 
across the state; for example, income tends to be higher in coastal 
communities and cities, and the southeast and Central Valley 
regions have higher Hispanic population shares. Asian population 
share is highest in Los Angeles and the San Francisco Bay Area; 
Asian persons represent over 50% of the population in more than 
1,400 CBGs. By contrast, fewer than 300 CBGs have majority Black 
populations, and these are spread more evenly throughout the state. 
(We use terminology derived from the census (Methods); Hispanic 
ethnicity is tallied independently of other race information in the 
United States and is therefore not mutually exclusive from race 
(Supplementary Fig. 1)). This complex human geography demon-
strates the importance of rich measurement networks in addressing 
questions of environmental justice. The PurpleAir monitors provide 
a sevenfold increase in the number of sampled CBGs, although this 
increase still represents only 3.2% of all California block groups 
(Supplementary Information).

In 2019 (the year before the pandemic), without control-
ling for other sources of heterogeneity, areas with lower income 
and larger Black and Hispanic population shares were exposed 
to higher-than-average concentrations of both PM2.5 and NO2 
compared with wealthier and White, non-Hispanic communi-
ties (Extended Data Fig. 3). Such descriptive air-quality differ-
ences have long been noted by environmental justice scholars and 
advocates29–33, but these relationships are confounded by other 
drivers of pollution exposures (Extended Data Fig. 1). It is thus 
difficult to isolate any potential racial or ethnic bias in environ-
mental policy from economic forces or other policies that contrib-
uted to the distributions of different populations around the state  
(for example, redlining)34.

The COVID-19 pandemic temporarily removed a large portion 
of this confounding economic geography by ‘turning off ’ most local 
in-person economic activity in the state. Figure 2 shows the depth 
and dimensions of this natural experiment across the state. The 
unique response to the spread of COVID-19, including stay-at-home 
orders, precipitated a steep decline in the average fraction of the 
day that people spent away from their homes (hereafter, mobility), 
which took a little under two weeks after the statewide emergency 
declaration (4 March 2020) to fully emerge (Fig. 2a). Importantly, 
reductions in time away from home did not occur equally for all 
state residents. CBGs with relatively high Hispanic population 
shares had both higher baseline mobility and much smaller mobil-
ity reductions during the shutdown than those with relatively low 
Hispanic population shares (Fig. 2b and Supplementary Table 1). 
This is probably due to the greater designation of essential jobs 
and economic vulnerability among Hispanic populations, relative 
to non-Hispanic populations, that preclude working from home35. 
This disparity is present, although much less pronounced, for 
CBGs with high and low Black population shares, and the pre- and 
post-shutdown differences are reversed for CBGs with high and 
low Asian population shares. We account for these different local 
responses in the statistical framework described below.
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Using a series of generalized difference-in-differences models 
(Methods), we estimate the relative magnitudes of the reductions 
in PM2.5 and NO2 concentrations before and after the shutdown 
(adjusting for 2019 concentrations) across different demographic 
gradients (we show and discuss PM2.5 results in the main text, with 
NO2 results in the Supplementary Information, for brevity). The 
best-fit coefficients for these models (Supplementary Tables 2, 3, 6  
and 7, Fig. 3 and Extended Data Fig. 4) correspond to the statis-
tically identifiable expected changes in air pollution, across the 
COVID-19 shutdown window, for a 0% versus 100% share of a 
given demographic group at the CBG level, or roughly a doubling 
of non-share variables (for example, income, road density, popu-
lation density). (We note that estimating the population average 
change would require a stronger statistical assumption than we 
make about the similarity of other conditions between 2019 and 

2020 (for example, seasonality; see Methods).) These coefficients 
show that lower-income neighbourhoods in California experienced 
greater reductions in PM2.5 concentration (Fig. 3a); the positive and 
statistically significant coefficient for income indicates that lower 
incomes were strongly associated with a greater reduction of pollut-
ant levels during shutdown. For example, our estimates indicate that 
a block group with an average income that is half that of a wealthier 
block group would have experienced a 1.0 μg m–3 greater reduction 
in PM2.5 exposures. Changes in mobility, road density and popula-
tion density at the level of a CBG are only weakly associated with 
changes in PM2.5 concentrations (Fig. 3a).

We consider mobility to be a proxy for local pollution-causing 
economic activity and assume that decreased mobility directly 
corresponded to reduced vehicle emissions along with a suite of 
local business-related emissions (for example, restaurant closures).  
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Fig. 1 | Pollution and demographic data used in this study. a,b, Average surface PM2.5 (a) and tropospheric NO2 (b) concentrations in the pre-shutdown 
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Therefore, the relationship between the relative decline in local 
mobility and the relative decline in local air pollution gives insight 
into the pollution impacts of a block group’s own economic activ-
ity. Figure 3b and Supplementary Table 4 show that residents in 
lower-income neighbourhoods reduced their mobility less than 
those in richer neighbourhoods during the shutdown period. 
Combined with the fact that lower-income areas experienced a 
larger drop in PM2.5 concentrations, this finding suggests that local 
activity is not the primary driver of disparate exposures across the 
income gradient in California.

To further probe potential heterogeneity in the magnitude of 
shutdown impacts, we examine exposure changes across neigh-
bourhood demographic gradients, with and without accounting for 
various local characteristics (Fig. 3c,e and Supplementary Tables 2  
and 3). We identify substantial racial and ethnic disparities in 
air-quality improvements, even when accounting for income, road 
and population density and very fine-grained differences in weather 
patterns over space and time that strongly affect surface pollutant 
concentrations (Methods and Supplementary Information). We first 
examine the gradient for all non-White populations (that may also 
be Hispanic) and then decompose this group into the three larg-
est racial and ethnic subgroups in the state. A ten-percentage-point 
increase in the non-White population share of a census block is 
associated with a 0.26 μg m–3 reduction in PM2.5 concentration after 
the shutdown. This falls to about 0.23 μg m–3 once we include local 
mobility and allow for heterogeneous effects of the shutdown in 
terms of income, road density and population density (mobility 
impacts are shown directly in Fig. 3d and Supplementary Table 4).  
The decomposition reveals similar estimates for Hispanic and 
Asian populations, where we find reductions in PM2.5 concentra-
tions of 0.29 and 0.23 μg m–3 per 0.1 increase in population share, 
respectively. We interpret this as evidence that in-person economic 
activity places a disproportionate pollution burden on non-White  
(and specifically Hispanic and Asian communities), only about a 
seventh of which is explained by differences in incomes and other 
location characteristics.

Hispanic and Asian are the two largest racial and ethnic  
minority groups in the state, making up about 39% and 16% of the 

population, respectively. While they share some similarities in his-
torical inequitable treatment, there are several major differences 
in the socioeconomic attributes of the two groups. Acknowledging 
that we necessarily aggregate diverse subpopulations within 
racial and ethnic groups36 (Supplementary Information), Asian 
Californians are predominately concentrated in urban areas and 
have on average higher incomes and education, whereas Hispanic 
populations are more skewed towards rural areas and have on 
average lower incomes and education.37 Moreover, as described, 
the two groups had different baseline exposures and opposite 
average mobility responses to the shutdown. Despite these large 
circumstantial differences, their disproportionate exposure to 
economy-scale pollution is substantially similar, providing strong, 
albeit indirect, evidence of the influence of systemic racism in the 
mechanisms and institutions responsible for pollution control.

We do not find statistically significant pollution reductions asso-
ciated with increased Black population share. That is, while the 
shutdown economy became more equitable in its pollution distri-
bution vis-a-vis Hispanic and Asian communities, the same was not 
true for Black neighbourhoods, where substantial baseline pollution 
gradients remained unchanged. This may be in part statistical—the 
overall Black population share is around 7% and there are relatively 
few majority Black CBGs in the state (Fig. 1f)—but it also suggests 
that the in-person economy is not the main driver of pollution dis-
parities for Black communities in California.

The findings from surface air-quality data are largely consis-
tent with results from an analogous set of models using weekly 
satellite-derived NO2 concentrations as the outcome, although 
some small differences between the two reflect both coverage dis-
crepancies and the distributions of PM2.5 and NO2 sources in the 
state (Extended Data Fig. 4 and Supplementary Tables 6 and 7). 
The PM2.5 results are also robust to consideration of sub-regions of 
California, for example, excluding Los Angeles, the Central Valley 
or both (Extended Data Fig. 5), suggesting that the findings are not 
driven by the seasonality of pollution, different pollution sources, 
demographics or unique airshed dynamics of these key regions. 
For both pollutants, the importance of accounting for fine-grained 
weather patterns is evident from the difference (for example, in Fig. 3  
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and Extended Data Fig. 4) between estimates from our full model 
(All) and a model that includes all controls except weather (‘w/o 
weather’). Prevailing weather patterns (Methods) that potentially 

transport pollution do account for some of the exposure disparities 
observed, with some variation by region and pollutant, but do not 
fully explain the observed patterns.
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Discussion
In this Article, we provide new causal estimates of unequal air 
pollution exposure reductions experienced during California’s 
COVID-19 economic shutdown. Because these reduction dispari-
ties are associated with widespread economic curtailment, they 
point to systemic racial and ethnic bias in the status quo genera-
tion and control of air pollution from the state’s in-person econ-
omy. While this finding is robust to various specifications and data 
subsets, and is consistent across surface- and satellite-based data, 
our analysis nevertheless requires some contextualization and care  
in interpretation.

Importantly, while we note that exposure disparities are not 
explained by local mobility, the ability to fully distinguish local and 
non-local economic activity is limited, and representative spatial 
scales of local versus non-local may vary (for example, geographi-
cally, culturally or seasonally). We additionally note that while 
we focus on the non-local drivers of exposure disparities, local 
mobility-related pollution generation may nevertheless be caused 
by structurally unjust policy in other sectors (for example, hous-
ing or transportation). More broadly, it is important to recognize 
that contemporary and historical biases in other policy areas can 
lead to disparate average exposures, even if environmental policy 
surrounding the in-person economy were unbiased. This may be 
what explains our finding of higher average pollution exposures,  
but no disproportionate air-quality benefit from the COVID-19 
shutdowns, for Black communities in California.

Our analysis consistently identified that lower-income commu-
nities in the state are disproportionately affected by pollution from 
the in-person economy. While we primarily employed income as 
a control, this income disparity represents an important concern 
in and of itself and presents policy challenges that are unique from 
those associated with combating institutional racism. California 
has one of the highest rankings for income inequality among US 
states37, and our findings provide additional evidence that wealthier 
communities both are able to buy environmental quality (for exam-
ple, via higher housing prices that embed air quality) and can afford 
to stay at home more fully during a pandemic.

Our empirical results complement a growing body of literature 
that uses chemical transport models (or reduced complexity mod-
els) to estimate pollutant exposures and map them to local socioeco-
nomic and demographic characteristics. Importantly, such studies 
have been instrumental in identifying that a vast array of pollution 
sources contribute to baseline exposure disparities15. While these 
tools have become ever more powerful and accurate, and have the 
benefit of full coverage (compared with sparse monitoring net-
works), they do require accurate emissions inventories as inputs. 
Such inventories have rapidly improved in temporal resolution for 
long-lived greenhouse gases (for example, ref. 21) but remain noto-
riously uncertain for air pollution, especially over short timescales 
and under abnormal economic conditions38. Our analysis strategy 
based on high-frequency observations of actual ground-level (or 
atmospheric column) pollution does not require emissions invento-
ries and is thus well suited for understanding short-run changes in a 
way that modelling studies would be unable to capture.

Nevertheless, statistical studies like ours require accurate and 
unbiased characterization of the system under study and have their 
own shortcomings. For example, we cannot illuminate some of the 
more specific mechanisms of shutdown-induced variation in air pol-
lution, such as whether being near to and downwind from a major 
road is more likely for ethnic/racial minorities39,40. A key point of 
contrast to modelling studies is that we do not explicitly account 
for individual point source emissions or wind, but instead use areal 
road density summaries (Methods), and detailed temperature, pre-
cipitation and relative humidity controls (see Extended Data Fig. 6), 
to capture much of this variation. Because our analysis focuses on 
differences within census blocks over time, the average influences 

of these and other unobserved factors are taken into account. Still, 
we cannot rule out that some of our measured effects may be driven 
by either variations in emissions or meteorological conditions that 
are correlated with both the demographic characteristics of a neigh-
bourhood and the COVID-related shutdown. Future studies could 
focus on more thoroughly accounting for natural seasonal swings in 
air pollution and the full range of its spatial and temporal variabil-
ity through the inclusion of more years of data17. This was not pos-
sible here due to the short timescale of PurpleAir and Sentinel data 
availability; however, our use of 2019 as a comparison for 2020, and 
the similarity of estimates made with pre- and post-shutdown 2020 
data alone (Supplementary Table 8), underscore that the exposure 
disparities we estimate are not likely to be systematically changed by 
inclusion of more years of observations.

Beyond revealing disparities in pollution exposure generated by 
the in-person economy, our analysis also highlights inequality in 
local air pollution information. As we show, monitor placement mat-
ters for detection of exposure gradients. CARB recently re-focused 
air-quality monitoring in designated environmental justice commu-
nities41, which has resulted in a more accurate sample of the state’s 
Hispanic population distribution than (for example) PurpleAir. The 
PurpleAir monitoring network, established through the individual 
purchase and placement of (relatively) low-cost sensors, shows that 
citizen-science networks can be exceedingly useful for increasing 
the amount of public data but that those networks are unlikely to 
be optimally placed for addressing environmental justice questions 
(for which sensors are needed that accurately reflect the spatial dis-
tribution of all subpopulations). PurpleAir sensors also require care 
in correcting biases compared with monitoring-grade instruments42. 
On the public monitoring side, local governments that are respon-
sible for choosing locations of sensors mandated by the Clean Air 
Act (that is, CARB) may also strategically place sensors to improve 
their chances of being in attainment43,44. This strategic placement 
reduces the ability of those sensor networks to detect environmental 
injustice45 and makes adjustments for sampling bias, such as those 
proposed here, relevant for the larger literature (Supplementary 
Information). In addition, while we show that satellite-based obser-
vations can be helpful in understanding the spatial distribution of 
pollutants that underlies ground-based monitoring network sam-
ples, satellite data are spatially coarse compared with the average 
CBG and are more limited temporally (Supplementary Information). 
As such, satellites may not be able to replace ground-based monitor-
ing when high spatial and temporal resolution are required. While 
a more spatially dense ground measurement network would vastly 
improve the ability to detect and address environmental injustice, 
reliability, cost, distribution and data curation would need to be con-
sidered in choosing a scale-up strategy46,47.

Finally, while our analysis documents that the generation and 
control of pollution from California’s in-person economy dispro-
portionately and negatively affects the state’s largest racial and 
ethnic minority communities, it also has potential applications in 
environmental policymaking. The United States has a multidecadal 
history of justifying environmental regulation through the use of 
an efficiency-based net benefit criterion (the simple objective that 
regulatory benefits exceed costs)48,49. Many state and federal enti-
ties additionally mandate that regulatory impact analysis include 
assessment of impacts to disadvantaged and vulnerable groups (for 
example, refs. 49,50), and recently this has been identified as a major 
environmental policy priority51. It is difficult, however, for equity 
considerations to obtain equal footing with efficiency criteria when 
best practices for benefit–cost analysis are strictly codified52, but 
there is no standard assessment criterion for justifying interven-
tions that mitigate inequities53. For race- and ethnicity-based equity 
considerations, our methodology suggests that a net equalization 
criterion for environmental regulation could be constructed as fol-
lows and utilized in conjunction with benefit–cost analysis:
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In this framework, the pollution reduction effect we identify as 
associated with the COVID-19 shutdowns had a net equalizing 
effect (although absent inclusion of public health benefits, uniform 
reduction of regional economic activity would be unlikely to satisfy 
the net benefit criterion). (As in our analysis, controlling for income 
would be critical for any equalization criterion, not just because 
income can be a confounding factor in identifying environmental 
racism, but also because the policy mechanisms by which societ-
ies might address income-dependent environmental injustice are 
different from those for addressing environmental racism.) When 
systemic bias is driving adverse outcomes, public policy interven-
tion focused narrowly on addressing market failures may eventually 
result in reversion to inequality54. Revising regulatory impact analy-
sis protocols to include a clear, quantitative equalization standard 
would instigate a shift in focus of environmental regulation beyond 
efficient reduction of externalities.

Methods
PM2.5 data. Surface station measurements of PM2.5 were downloaded from publicly 
available PurpleAir and CARB databases (Extended Data Fig. 7). We downloaded 
all outdoor PurpleAir data available (1,891 individual stations) for January–April 
2019 and 2020. PurpleAir sensors are relatively inexpensive and are usually 
privately owned, but much of the data is publicly available. !e quality of these 
data are lower than that of data from regulatory monitors, but PurpleAir sensors 
provide unprecedented spatial coverage. Most PurpleAir sensors contain two 
Particulate Matter Sensor 5003 sensors (Plantower), which measure particle counts 
in six size bins. Counts are converted to PM2.5 using two proprietary conversions, 
one intended for indoor use and the other for outdoor use; we use the outdoor 
conversion as recommended and tested by ref. 55. We also average the two sensors 
(when available) and exclude days when daily PM2.5 measurements within the same 
unit di"er by at least 5 μm m−3 and at least 16% (ref. 42). In limited #eld evaluations, 
PurpleAir sensors have been shown to have strong correlations with high-quality 
sensors55–58. Ref. 55 also proposed a correction for e"ects of relative humidity, which 
we do not apply in part because we consider daily data rather than sub-daily. We 
do, however, apply a correction developed by the US Environmental Protection 
Agency, which tends to slightly over-correct the high bias of the PurpleAir 
instruments, meaning the presented results from these sensors are conservative 
(Supplementary Figure 2)42.

We retrieved (1 May 2020) all hourly CARB PM2.5 data in California available 
for January–April 2019 and 2020 using CARB’s Air Quality and Meteorological 
Information System (150 individual stations). Professional instruments and 
oversight, particularly for calibration, provide higher confidence in the data quality 
of the CARB sites. However, there are an order of magnitude fewer CARB stations 
than PurpleAir sensors in California, which means studies using the government 
data are statistically limited by a relatively small sample size. Unlike PurpleAir 
sensors, CARB sites often offer a wide variety of air pollutant measurements, 
although we use only hourly PM2.5 aggregated to the daily mean. For both CARB 
and PurpleAir data, days with mean PM2.5 equal to zero or greater than 500 μg m−3 
are removed as outliers. Sites for which we remove more than 10% of data are 
excluded from the entire analysis. Sites with less than 80% data coverage during 
our study period are also excluded. For models that require 2019 and 2020 data, 
we apply these requirements to both years independently. This quality filtering 
removed 5.9% of daily CARB PM2.5 data and 11.4% of daily PurpleAir data, 
resulting in data from 1,664 individual stations (119 CARB and 1,545 PurpleAir). 
However, only 830 of those (106 CARB and 724 PurpleAir) include data for 2019 
and 2020 for the pre-shutdown and shutdown period and were therefore used in 
our empirical statistical analysis.

NO2 data. We used the Copernicus Sentinel-5 Precursor Tropospheric Monitoring 
Instrument (TROPOMI, version 1.03.02) offline tropospheric NO2 column number 
density59 for mean NO2 concentrations of the developed areas of each CBG. 
TROPOMI has a resolution of 0.01 arc degrees. Data were collected for January–
April 2019 and 2020 and only for developed areas according to the US Geological 
Survey National Land Cover Database 201660. For this study, all data were prepared 
using the Google Earth Engine Python API61 and formatted as weekly means for 
each CBG. Weekly means were chosen to counteract the high frequency of missing 
data, particularly in northern California (Extended Data Fig. 8).

Climate data. For temperature, precipitation and relative humidity, we relied 
on the Gridded Surface Meteorological dataset62. This dataset provides daily 
information at 4 km resolution across the continental United States. For this study, 

data were aggregated in Google Earth Engine61 in its original daily frequency  
(for PM2.5 analysis) and as a weekly mean (for NO2 analysis) for each CBG.  
The weekly mean data were aggregated only for developed areas according to  
the US Geological Survey National Land Cover Database 201660.

Mobility data. We use SafeGraph’s Social Distancing Metrics63, which were made 
available for research as part of the company’s COVID-19 response and have 
been validated elsewhere (for example, ref. 64). SafeGraph collects and cleans GPS 
pings from about 45 million mobile devices. The data are available daily at CBG 
resolution and are close to a random sample of the population. Our primary 
measure of mobility is not social distancing but rather the percentage of time spent 
away from home. We calculate this measure on the basis of the median time (in 
minutes) that a device was observed at its geohash-7 (about 153 m × 153 m) home 
location, which SafeGraph determines as the night-time residence of the device  
in the six weeks before. The data cover the entire period of observation from  
1 January 2019 until the end of April 2020.

Demographic data. We downloaded CBG-level demographic information 
from the US Census Bureau 2018 5 yr ACS for all CBGs in California using the 
tidycensus package65 for the R programming environment66 (29 June 2020). 
Demographic features included ACS sample-based CBG-level estimates of 
population count; White race count (alone or in combination with one or more 
other races), or ‘White’; Black or African American race count (alone or in 
combination with one or more other races), or ‘Black’; Asian race count (alone 
or in combination with one or more other races), or ‘Asian’; Hispanic or Latino 
origin (of any race) count, or ‘Hispanic’; and median income. The other census 
race designations (American Indian or Alaska Native; Native Hawaiian or Other 
Pacific Islander) represent a substantially lower share of the California population 
and were therefore excluded from our analysis due to small sample sizes. The 
CBG-level ‘share’ of these groups was calculated by dividing the CBG count by the 
CBG population. Population density was calculated as the CBG population divided 
by the area of the CBG. For the aggregate comparison, we compute the share of the 
non-White population that may be Hispanic as one minus the share of Whites that 
do not also identify as Hispanic. Because Hispanic is a separate designation from 
race in the ACS (that is, those categorized as Hispanic may also be of any race), we 
evaluated how distinct Hispanic was from race variables of interest (Supplementary 
Fig. 1). On average, less than 1% of those identified at the CBG level as Hispanic 
were also identified as Black or Asian; 61% of Hispanic were White. Thus, Hispanic 
is effectively distinct from Asian and Black categorizations, and we consider 
Hispanic, Asian and Black designations to be unique demographic indicators in 
our model. The baseline reference group in the more detailed comparison contains 
all other races and ethnicities and therefore consists almost entirely of people who 
identify as non-Hispanic White.

Geographic data. We calculated road density (m km–2) using The Global Roads 
Inventory Project (GRIP4)67 vector dataset for North America. The GRIP4 dataset 
harmonizes global geospatial datasets on road infrastructure, including road 
features that can be categorized as highways, primary roads, secondary roads, 
tertiary roads and local roads. It is consistent with primary and secondary road 
classifications from the US Census TIGER/Line shapefiles for roads. To calculate 
road density for each CBG, we summed road lengths within the area of the CBG 
and divided by the area of the CBG. Calculations were done using the sf package68 
in the R programming environment66.

Study period and design. We consider three periods between 1 January and 30 
April in 2019 and 2020. The first period is ‘pre-shutdown,’ followed by a ‘transition’ 
and then ‘shutdown.’ The transition is defined as the period between the statewide 
emergency declaration (4 March 2020) and the statewide stay-at-home order  
(19 March 2020). The mobility data demonstrate that activity declined throughout 
this period (Fig. 2). This is consistent with recent literature that shows that fear was 
a potent driver of the decline in mobility and often pre-empted county-wide legal 
restrictions69. The shutdown period begins with the stay-at-home order and ends at 
the end of our study period. We exclude the transition from the analyses described 
below. This precludes the use of variation in treatment timing to assist with causal 
identification. Instead, we proceed by using the interaction between the shutdown 
and racial or ethnic composition of CBGs as the treatment, allowing us to directly 
estimate the additional pollution burden of economic activities that were halted 
during the shutdown on block groups with certain demographic compositions. 
This is standard practice, referred to as ‘generalized difference in differences’  
(see Supplementary Information for details). In our case, there is no group that 
remains untreated and no variation in treatment timing but heterogeneity in 
treatment intensity.

Empirical strategy. In our statistical analyses, our main dependent variable is 
an (average) measure of air quality (PM2.5 or NO2) in CBG i at day (or week) t. 
We focus on block groups to minimize the influence of aggregation bias or the 
‘ecological fallacy’70 and study temporal variation in air quality across block groups 
using a difference-in-differences design. Difference-in-differences methods are 
commonly used to study causal effects in economics71. Our objective is to estimate 
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the heterogeneity in the effect of the shutdown across different communities 
rather than the overall effect of the shutdown. We focus on the racial and ethnic 
composition of CBGs using population shares of California’s three biggest racial 
and ethnic minority groups (Hispanic, Asian and Black). We first establish the 
existence of air pollution exposure reduction inequities and then include a rich set 
of controls to assess the racial and ethnic inequities that remain after accounting 
for differences in mobility, income and location72–74.

A key concern is that differences in air quality are driven by interannual cycles 
in pollution and particle concentration that are unrelated to the shutdown75. 
We address this issue in several ways. First, we subtract observed air quality in 
2019 from the 2020 value. All annual differences, after aligning the weekdays, 
are denoted by Z̃

JU

= Z

JU

− Z

JU−���

. Second, we flexibly control for local weather 
conditions in 2020 and 2019 (see Extended Data Fig. 6 and Supplementary 
Information for details on selection of weather controls). Finally, we allow for 
a rich set of day or week fixed effects that capture the remaining differences in 
synoptic scale weather patterns. Putting all this together, we use Ordinary Least 
Squares to estimate the heterogeneous effect of the shutdown using variants of the 
following specification:
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where dt is an indicator for the post-shutdown period, YL
J

 are the population shares 
of the three minority groups studied here or other (relatively) time-invariant 
location characteristics k that vary at the CBG level, .̃

JU

 is the annual difference in 
mobility on day t in CBG i (constructed analogously to Z̃

JU

), G����(·)
JU

 and G����(·)
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approximate the nonlinear response of pollution and particle concentration to 
weather with interacted fixed effects for each decile of temperature (T), relative 
humidity (RH) and precipitation (P) in the corresponding year, λt are day (or week) 
fixed effects, μi are CBG fixed effects (capturing changes in the number of stations 
in a block group across years), and eit is an error term. We cluster all standard errors 
on the county level, as stay-at-home and local health ordinances are spatially and 
temporally correlated at this level.

We are interested in γk, which captures the heterogeneous impact of the 
shutdown across different demographic gradients (see Supplementary Information 
for a derivation). The baseline effect of the shutdown, dt, is not statistically 
identified without the assumption of constant seasonal emissions patterns, as that 
baseline effect occurs simultaneously for all block groups in California (Extended 
Data Fig. 9) and is therefore collinear with seasonal shifts in air quality that are 
unrelated to the COVID-19 shutdowns. Heterogeneous impacts are identified 
by variation among block groups experiencing a COVID-19 shutdown-related 
air pollution change only and can be interpreted as the effect of the shutdown 
relative to some baseline. This requires a weaker assumption: that the interannual 
differences in pollution are not simultaneously correlated with the timing of the 
shutdown and the spatial distribution of race and income. Our weather controls 
make this a plausible assumption by accounting for systematic differences in 
temperature, humidity and rainfall across different parts of the state. We interpret 
the coefficient on dt × %Hispanic as the difference in pollutant concentration for 
a block group that is 100% Hispanic relative to a block group that is 0% Hispanic. 
Differences in air pollution concentrations across the shutdown window are 
typically reductions in air pollution, which we consider to be equivalent to the 
expected increase after a return to ‘business-as-usual’ conditions. We address the 
representativity of monitor placement in both CARB and PurpleAir networks by 
comparing estimates based on each network alone, both networks combined, and 
both combined with weights derived to make the sampled locations (that is, CBGs 
with monitors) match state demographics (see Extended Data Figs. 2b and 10, and 
Supplementary Information for details).

Software. All data processing and analysis other than acquisition and 
pre-processing of mobility information were done using the R programming 
environment66 and the Python API for Google Earth Engine61. ArcGIS was used 
to make the maps in Fig. 1 and Extended Data Figs. 2 and 8, and Adobe Illustrator 
was used for final assembly of composite figures.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The pollution, weather and demographic data used in this project are all publicly 
available. PurpleAir data are accessible via public API, CARB data can be found at 
https://www.arb.ca.gov/aqmis2/aqmis2.php. Gridded NO2 data (https://developers.
google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_NO2) 
and GridMet weather data (https://developers.google.com/earth-engine/datasets/
catalog/IDAHO_EPSCOR_GRIDMET) are available via Google Earth Engine. 
Mobility data from Safegraph are available to academic researchers (https://www.
safegraph.com/academics) but may not be reposted in raw format. GRIP4 road 
data are available at https://www.globio.info/download-grip-dataset, and ACS data 

were accessed via R using the tidycensus package. All publicly available raw data for 
this project can be found in our project dataverse (https://doi.org/10.7910/DVN/
ZXVB7A), and processed and derived data can be found in our GitHub repository 
(https://github.com/jaburney/CA-COVIDEJ-2022). Finally, we have provided an 
online tool to facilitate exploration of the data at the CBG scale (https://sabenz.
users.earthengine.app/view/covid-ej).

Code availability
Replication code is maintained in our GitHub repository (https://github.com/
jaburney/CA-COVIDEJ-2022).
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Extended Data Fig. 1 | Why the COVID-19 ‘shock’ offers new insight into questions of environmental justice. For simplicity, imagine 5 communities 
across (for example) a state, represented by the five colors here. These locations each have a different racial/ethnic composition, represented here for 
simplicity in one dimension, as the share of the population that is Hispanic. Many observations of environmental injustice rely on cross-sectional analyses, 
either A without or B accounting for potential slower-moving confounds. C However, many high-frequency variables contribute to ambient pollution levels 
and might be correlated with geography and socioeconomic variables; panel analysis with repeat observations over time allows for inclusion of these 
types of covariates, and can thus account for the contributions that (for example) natural weather patterns make to exposure disparities. However, even 
a panel analysis is subject to potential confounding, and interpretation of residual exposure disparities as environmental injustice caused by the economy 
remains problematic. The COVID-19 economic shock creates a large perturbation that ‘turns off’ a portion of the economy, and thus reveals the footprint 
of pollution caused by that in-person economic activity. We test for whether this shock changes exposure gradients (that is, whether the shock looks like 
D or E, and as such whether the in-person economy is contributing to environmental racism. F The ability to account for mobility in this framework further 
allows the separation of very local activity from broader activity (see Supplementary Information Text). (For clarity, G shows the heterogeneous shock in 
time series).
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Extended Data Fig. 2 | PM2.5 networks and weights. A Location of public (California Air Resources Board (CARB) and United States Environmental Protection 
Agency (EPA)) PM2.5 monitors, as well as privately-owned PurpleAir PM2.5 monitors used in this study. B Weights used in the model to better represent the 
Californian population. Each dot represents one census block group. C Distribution of weights generated by the raking process, across sensor types.
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Extended Data Fig. 3 | Baseline associations between income, race, ethnicity and pollution exposure. Relationships between pooled January-April 2019 
PM2.5 and NO2 observations and census block group demographics, without controlling for other sources of heterogeneity. The line represents the best 
linear fit. Red text shows slope of fit line, *** indicates p!<!1e-3; NS = not statistically significant.
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Extended Data Fig. 4 | Same as Fig. 3, but for weekly NO2. Since NO2 measurements are from the TROPOMI satellite instrument, they cover all census 
block groups in California. Qualitative differences between NO2 estimates (A,C,E) and Fig. 3a,c,e thus represent a combination of coverage, and differences 
in PM2.5 and NO2 distributions. Differences in mobility between these estimates (B,D,F) and Fig. 3b,d,f are due to coverage differences (representing 
mobility in all census block groups here and mobility census block groups with Purple Air stations for Fig. 3) and weekly versus daily analysis. Values of the 
coefficients in parts A and C are given in Table S6 and part E in Table S7.
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Extended Data Fig. 5 | Same as Fig. 3, but excluding Los Angeles County (A-D), the Central Valley (E-H) and both (I-L). There is no change in patterns 
when re-estimating our models without these regions, highlighting that climate or demographic differences in these key regions is not a key driver of the 
total observed differences.
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Extended Data Fig. 6 | Choice of, and sensitivity to, weather controls specification. A Sensitivity of main results (Fig. 3) to different functional forms of 
climate variables (temperature, precipitation, and relative humidity). B Mean squared error (MSE) of models fit with different functional forms of weather 
controls and no other covariates, cross-validated, for both PM2.5 and NO2 models (see Supplementary Information text (‘Selection of weather controls’) for 
additional details.). Tables S9-S10 show the MSE statistics for each specification, and the number of observations dropped due to unique weather controls 
values. We selected interacted vigintile fixed effects as the optimal structure for this analysis based on the combination of lowest MSE for PM2.5 and very 
few dropped observations, even with full interactions of temperature, precipitation, and relative humidity bins.
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Extended Data Fig. 7 | Daily mean PM2.5 concentration summary. Daily measurements from CARB and PurpleAir sensor networks during the study 
period, in 2019 and 2020, after quality control filtering.
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Extended Data Fig. 8 | Map of the number of observations in the TROPOMI NO2 product. For the time periods pre-shutdown and shutdown for 2019 and 
2020 the numbers of observations are shown for each pixel (1 km resolution). Note that the pre-shutdown period is longer than the shutdown period.
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Extended Data Fig. 9 | Regional mobility changes in CA. Percent change of mobility is shown for nine regions of CA relative to the mean mobility of 
each region in January 2020. The urban regions like the Bay Area, Southern CA, and the Southern Border show the largest mobility decrease during the 
shutdown. The onset of mobility decline occurred essentially simultaneously throughout the state.
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Extended Data Fig. 10 | Monitor locations, weighting, and influence on impact estimates. The public (CARB) and private (PurpleAir) PM2.5 sensor 
networks used in this study are not evenly distributed across the state, which affects how different census block groups contribute to estimated impacts. 
On the left we show post-shutdown concentration changes across various census block group gradients (as in Fig. 3), but estimated using different 
samples – the public CARB network only (green), the private PurpleAir network only (purple), both together but unweighted (brown), and both together 
and weighted (red). (These weighted estimates correspond to the estimates presented in Fig. 3.) The panels on the right show the representation of 
demographic and geographic features due to sensor placement within the different sensor networks. Compared to the distribution of these features by 
all census block groups in California (black lines), the distribution of census block groups with CARB or PurpleAir monitors can be quite different. The 
distribution of CARB and PurpleAir combined after weighting (red) matches the all-group state-wide distribution much more closely (see Supplementary 
Information for details).
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Supplementary Text

Data and Methodology Details

California as a study location. California is uniquely well-suited context for this study: it

is the fifth largest economy in the world (1, 2); it is one of the most racially and ethnically

diverse states in the country (3), and one of only a handful in which non-Hispanic Whites

make up less than half the population (4); it is home to four of the top 20 most populous

U.S. cities (5); and despite improvements in air quality in the late 1900s and early 2000s

(6, 7), several California cities still regularly rank as having the most polluted air in the

United States (8). Finally, California citizens live under a historically rich tapestry of

environmental regulation – from the Clean Air Act and its amendments at the federal

level to local district level rules – that control air pollution from essentially every source in

the state. California also has a long history of environmental activism by and on behalf of

disadvantaged communities, which have historically experienced higher pollution exposures

(9). As such, it is a favorable location for trying to tease apart environmental racism

from the legacy of economic policy and other confounds that might also lead to disparate

environmental exposures.

However, we note that the use of California as a study region makes interpretation of

our results more straightforward than might be the case in other regions, or over larger

spatial scales. First, California’s mild climate and predictable seasonality makes it easier

to compare two years of observations than would be the case in more variable climates.

Second, the lack of coal and fuel heating oil use in California means that the regional

(anthropogenic) aerosol chemistry is relatively simple – California’s PM2.5 includes

primary carbonaceous aerosols produced by transportation, and secondary nitrates

produced by transportation and agriculture (10). There are relatively few other primary

sources of particulate matter in California compared to other regions, particularly outside

of the state’s summer-fall wildfire season, which contributes a large organic carbon

burden to the region (11). Our study location and timing also mean that satellite-

based NO2 observations are more highly correlated with PM2.5 than they would be

in other locations, because the same emissions sources contribute to both in the state

(predominantly transportation and agriculture). Studies in more complicated climates,

and with a more diverse set of aerosol particulate matter (and precursor) emissions

will potentially require more sophisticated statistical techniques to address potential

unobserved sources of heterogeneity and to assess whether changes in pollution chemical
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composition differ across population subgroups.

Overview of why the COVID-19 related economic slowdown offers new insight into

questions of environmental justice. Extended Data Figure 1 compares several quantitative

approaches to questions of environmental justice present in the literature. Many

environmental justice studies note, as in Extended Data Figure 1A or B, that at any given

moment in time (a cross-sectional analysis), ambient pollutant concentrations are higher

for communities of color. Here, a best-fit line to cross-sectional observations would lead

to an estimate of ∆, or the expected difference in exposure between a 100% Hispanic

community and a 100% non-Hispanic community. Accounting for slower-moving confounds

in a multi-dimensional analysis, as in B, can change the estimate of ∆. In the case shown,

accounting for income can increase the estimate of ∆, if Hispanic households tend to have

lower incomes than non-Hispanic households. Many time-varying factors can also confound

this relationship. Importantly, expanding to panel (observations across time) analysis, as

in Extended Data Figure 1C, allows inclusion of weather variables, and various time cycles

known to contribute to changes in pollution, like day-of-week and seasonal effects.

While panel studies allow for inclusion of time-varying covariates, it is still the case that

the economy (including both point and mobile sources that emit pollutants like primary

PM and other precursors that contribute to secondary PM formation), geography (where

humans live, including factors like population density and proximity to roads and other

steady-state emissions locations), and climate (annual weather cycle and associated daily

and seasonal emissions) typically exist together over a fairly narrow set of conditions.

Populations change slowly over time, as does the general structure of the economy. As

such, even in panel analyses, it remains difficult to account for enough factors such that

residual exposure disparities can be confidently attributed to the broader scale economy.

A large perturbation to the system, as the COVID-19 pandemic has created, moves

one piece of the system (the local and non-local in-person economy) far outside the

historical experienced conditions. This allows for a much more robust attribution of the

change between pre- and post- slowdown conditions to economic factors. The ability

to additionally account for ‘own’ (or local) mobility further allows disaggregation of

experienced disparities into those that might be caused by geographic conditions (e.g.,

communities of color may need to commute more in general, or may be more likely to be

essential workers who cannot work from home) and general influence of the broader scale

economy. We explain below how this intuition also maps to a statistically well-identified

question.
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Identification of heterogeneous treatment effects. Consider a simplified version of our

specifications in the main text with a single interaction of the treatment status (post-

shutdown), dit, with a binary, cross-sectional measure of differential exposure to the

treatment, xi:

yit = τdit + γ(dit × xi) + zit + µi + λt + uit. (1)

where zit captures the effects of weather and other observed unit by time variation.

All else is defined as before, but note that yit is now in levels to further simplify the

exposition. Using annual differences does not fundamentally alter these results but

changes all difference-in-differences (DID) interpretations to a triple DID which allows for

more complex forms of unobserved heterogeneity.

This set-up allows us to make two points:

1) With staggered treatment (dit "= dt for all i) and no heterogeneity in the treatment

effect (γ = 0), τ̂ is a standard DID estimate. Differencing over time, rearranging and

taking expectation delivers

τ̂ = E[∆yit|∆dit = 1]− E[∆yit|∆dit = 0] = (τ +∆zit +∆λt)− (∆zit +∆λt) = τ (2)

which can be written as ∆ȳtreat − ∆ȳcontrol. However, the overall treatment effect τ is not

statistically identified in our setting, where all observations after a particular calendar date

are treated, so that dit = dt for all i, and we do not observe any unit with ∆dit = 0.

Hence, dt and λt are perfectly collinear. Omitting the time effects, λt would lead us to be

able to estimate τ but would also lead us to mistakenly attribute state-wide shocks, ∆λt,

to the treatment effect.

2) Without staggered treatment but heterogeneity in the treatment effect (γ "= 0), we

can only identify the effect of the heterogeneous exposure, γ, relative to some baseline

exposure captured by τ . The treatment effect for each observation now becomes τ + γxi

but τ is still collinear with λt. With binary xi, the heterogeneous treatment effect is
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captured by

γ̂ = E[∆yit|∆dit = 1, xi = 1]− E[∆yit|∆dit = 1, xi = 0]

− {E[∆yit|∆dit = 0, xi = 1]− E[∆yit|∆dit = 0, xi = 0]}

= E[∆yit|∆dit = 1, xi = 1]− E[∆yit|∆dit = 1, xi = 0]

=(τ + γ + zit +∆λt)− (τ + zit +∆λt) = γ

which is another DID estimate that compares the effect of the treatment in groups with

xi = 1 to those with xi = 0. With continuous xi this becomes a generalized DID estimate,

where we, for example, compare the effect of the shutdown in block groups with a positive

share of the Hispanic population to those without any Hispanic residents.

Sensor placement and weighting. Unbiased estimates of experienced pollution changes

require that the sample of observations be random and representative. Yet it is well-

understood that ground-based monitors might be placed in a non-representative sub-

sample of census block groups, as government-funded CARB stations are relatively sparse,

and PurpleAir monitors are privately purchased and installed. We find that CARB

monitor placement (intentionally) oversamples California’s disadvantaged communities –

these public monitors are more likely to be placed in poorer, more rural, and more racially

and ethnically diverse neighborhoods (Extended Data Figure 10A-F). The PurpleAir

network is unsurprisingly slanted towards wealthier locations and under-represents the

Hispanic population of California (Extended Data Figure 10A-F). While both do not

reflect the true distribution of population characteristics, the sheer size of the Purple Air

networks implies that it spans a large variety of communities.

Choice-based sampling implies that monitor placement is correlated with the error term

of our regression equation. Estimation which ignores endogenous sampling is generally

biased, but consistent estimates can be obtained by weighting the regression function

with the inverse probability of selection (12). We use iterative proportional fitting—

a standard post-stratification procedure—to match the marginal distributions of the

endogenous sample of monitors to known census population margins. We determine the

marginal distributions of the population by computing the cell frequencies for each of

the more detailed ACS variables used in the analysis (the Hispanic, Asian, and Black

population shares, as well as income, road density and population density) per vigintile

(20 bins) of the census data. A process called ‘raking’ then finds post-stratification

weights which adjust the endogenous sample such that it resembles the set of target

distributions (Extended Data Figure 10). The process is able to fit individual distributions
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in our data very well, but involves some trade-offs in terms of how well it matches any

particular distribution when more than one target variable is used. Calculating the inverse

probability of selection directly on a large contingency table would require a much coarser

portioning of the data, resulting in a substantially worse fit. All fixed effects regressions in

the main text which use ground-based monitors are estimated using weighted least squares

if not otherwise noted.

We re-estimate impacts using several subsets of census block groups, including only

CARB monitors, only PurpleAir monitors, and both networks combined with and without

weighting (Extended Data Figure 10). While the racial disparities estimated in the

weighted sample are consistent with most unweighted samples (in the sense that the

uncertainties overlap), there are important gains from using both networks together and

weighting the observations. The CARB-only estimates fail to detect significant differences

in pollution for most variables, including income. The bias towards more rural areas in the

state’s CARB network manifests itself in large estimates for the effect of road density on

air pollution disparities. The unweighted distribution of the PurpleAir network is usually

closer to the distribution of the underlying population characteristic in the ACS data.

The sampled locations closely approximate the population distribution only once both

networks are combined and weighted. Using the weights increases the (absolute) size of

the pollution disparity estimated for Asian populations by about 41% and the effect of

income by 29%.

We do not report results where we separately derive weights for the census block groups

cover by either the CARB or PurpleAir sensors. The selective placement of CARB sensors

together with their low number of observations in particular makes it impossible to derive

weights which “undo” the over-representation of disadvantaged communities (additional

results are available on request). We need both systems to cover the joint distribution

of race/ethnicity, income, population density and road density in California. We can,

however, use the full distribution of weights to investigate what these weights tell us about

the potential for each set of monitors to provide information on disparities. Figure 2C

shows the distribution of weights across CARB and PurpleAir sensor types and shows

that more CARB sensors are highly upweighted by our weighting process than PurpleAir

sensors. This makes sense–given the endogenous placement of sensors discussed above and

in the main text–we should expect some CARB sensors to be deliberately placed where

there are few other monitors or in locations where residents would be unlikely to purchase

a PurpleAir sensor.
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We note that unlike the surface PM2.5 networks, NO2 satellite data cover the entire state

and are thus perfectly representative. However, a remaining potential sampling issue with

satellite data are biases related to missing data (for example, due to cloud screening in

rainy seasons). Extended Data Figure 8 shows the distribution of observations in the

satellite NO2 record. Some pixels (1km) have have only a few observations, particularly in

the pre-shutdown winter period, and areas that tend to have cloudcover later in the spring

(e.g., the Sierra Nevada range) also have more missing observations. However because data

are primarily missing for rural areas, this only translates into 5 census block group with

available demographics but incomplete weekly NO2 observations.

Selection of weather controls. We have included variables to control for temperature,

relative humidity, and precipitation in the same day (PM2.5) or week (NO2) as the

dependent variable measurement. Most importantly, these controls help reduce the

variability caused by weather differences between 2019 and 2020. For example, if areas

with larger Asian populations also received more rainfall in 2020 after the shutdown, we

might mis-attribute the subsequent reduction in PM2.5 concentrations to the shutdown

rather than to the weather.

The form of the function which maps these three variables onto concentrations is unknown

to us, so we searched for a specification which had good out-of-sample performance,

didn’t use too many degrees of freedom, and where interacted fixed effects specifications

contained few bins with only one observation (effectively dummying out that observation).

This exercise sought to find a well-fitting but not overfit specification that left enough

observations for the main models to work well, and that did not accidentally remove

observations from geographic areas with extremes in one or more of the variables.

Tables S9 and S10 as well as Extended Data Figure 6 show the results of these

specification searches. The categories of functional forms that we tried included interacted

fixed-width fixed effects (one, two, five, ten, twenty) of native units, fixed effects created to

split the data into evenly sized groups (decile, vigintile), a cubic spline, polynomial fits

(first, second, and third degree), uninteracted fixed effects, and a specification with no

adjustment. In the tables, we show each of the first four classes of models using both 2019

and 2020 weather variables or only 2020 weather variables, meaning we included one or

both of f 2020 (T,RH, P )it+f 2019 (T,RH, P )it. To test the performance of each specification

we ran a regression of weather variables on pollutant using a randomly chosen 70% of

CBGs and tested the performance on the remaining 30%. Tables S9 and S10 show the

average out of sample mean squared error (MSE) for each specification across 100 random
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splits, the standard deviation of those estimates (Std. Dev), the degrees of freedom used

by each specification (DoF), and the number of observations which are dummied out

because they singularly correspond to a fixed effect (Lost). Both tables are ranked from

lowest to highest MSE.

Extended Data Figure 6B shows the distribution of MSE estimates across 100 70%/30%

cross-validations for each specification for PM2.5 and NO2. Panel A shows the coefficients

from our main model using a subset of the weather specifications. Our preferred

specification is vigintile fixed effects, interacted, for both 2019 and 2020. This specification

minimized MSE in the PM2.5 regressions and was second in NO2 regressions, while

drastically reducing the degrees of freedom used and the observations dummied out.

Race and ethnic group aggregation. There is important variation within racial and ethnic

groups not represented by the group aggregations evaluated in this study. Racial and

ethnic groups were not disaggregated into subgroups because of data availability and

methodological suitability. Asian subgroup identification, for example, is not available

in the ACS at the CBG level, only at the tract level. Even when summarizing Asian

subgroups at the tract level, disaggregated population counts are small. Even the largest

Asian subgroups (Filipino and Chinese) would have fewer samples than our current

smallest primary group (Black). Therefore, Asian subgroup analyses would face sampling

issues from which we would be unable to draw clear conclusions using the methods in this

study. We already faced a similar issue with respect to sample size for Black populations

(see main text Results). Analyses of subgroup dynamics would be valuable, but our study

does not employ a design appropriate for that investigation.

Additional discussion of mobility results

Consistent with other research (13–16), we find large differences in mobility across

different income and racial groups. Census block groups with high Hispanic and Black

populations had smaller mobility reductions during the shutdown than predominantly non-

Hispanic White neighborhoods (0.8 pp for every 10 pp increase in the population share).

However, these differences can be completely accounted for by allowing for heterogeneous

effects in income. This suggests that mobility during the pandemic is mainly a function

of the economic ability to stay home and the probability of belonging to the essential

workforce, rather than other characteristics associated with different neighborhoods. This

does not hold for block groups with a greater share of the Asian population. Here we

8



estimate a 0.20 pp decrease in mobility for a 10 pp increase in the census block group

Asian population share. The effect falls to -0.14 pp but remains highly significant even

after allowing for heterogeneous responses to other block group characteristics.
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Supplementary Figures
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Figure S1: Summary of Hispanic ethnicity and race for California census block

groups. A Distributions of the percentages of the total population categorized as White, Black,
Asian, and Hispanic, and B the percentages of either the Hispanic or non-Hispanic portion of
the total population categorized as White, Black, and Asian at the census block group (CBG)
level according to the U.S. Census Bureau 2018 5-year American Community Survey (ACS). The
total number of CBGs was 23,212. The boxplots display the median (50th percentile), two hinges
(25th and 75th percentiles), and two whiskers (largest value ≤ 1.5*IQR; IQR is the distance
between hinges); statistical outliers were included in the distribution calculation, but excluded
from the visualization.
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Figure S2: Regression slopes of nearly co-located (<100m) PurpleAir and
CARB PM2.5 measurements (2019 and 2020 Jan-Apr outdoor in CA) as a
function of distance between the PurpleAir and CARB sensors. Color indicates
the correlation coefficient. Marker size indicates the number of points used for the
regression. The dashed horizontal line indicates the median. Point size indicates number
of points available for the sensor pairs. The three panels show the same comparison with
no correction (left), the RH correction proposed in Tryner et al. (2020), and the EPA
correction used in the study (right). The RH correction may not be sufficient in our
case because we use daily mean data. The EPA correction we implement is conservative.
Several PurpleAir sensors are paired with the same CARB sensors (in one case as many as
32). 29 unique CARB sensors are represented here, meaning they have a PurpleAir sensor
within 100m. Three sensor pairs were excluded from the figure because the correlation was
very low (< 0.2).
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Supplementary Tables

Racial/Ethnic category Percentile Pre-shutdown Post-shutdown % change

Hispanic 10 46.7 19.0 -59.4
Hispanic 90 53.6 39.1 -27.1
Asian 10 54.1 40.0 -26.1
Asian 90 46.3 18.6 -59.8
Black 10 48.7 29.2 -40.0
Black 90 54.0 38.4 -28.9

Table S1: Average pre-/post-shutdown percent of time spent away from home for the 10th
and 90th percentile CBG of population percentage of each group. For example, the first row
represents the CBG at the tenth percentile of Hispanic population proportion, which went from
46.7% to 19.0% of their time spent away from home, representing a 59.4 percent decrease in
mobility. This table summarizes Figure 2B in the main text.
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Dependent variable: Difference in PM2.5 [µg m−3]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mobility −0.421 −0.321 0.260 −0.119
(0.159)∗∗ (0.162)∗ (0.220) (0.160)

Income 0.992 0.587 0.903 0.526
(0.171)∗∗∗ (0.158)∗∗∗ (0.251)∗∗∗ (0.163)∗∗∗

Road Density 0.007 0.017 0.102 −0.002
(0.017) (0.017) (0.040)∗∗ (0.018)

Population Density −0.018 0.120 −0.104 0.087
(0.059) (0.055)∗∗ (0.119) (0.053)

% non-White and/or Hispanic −2.566 −2.549 −2.102 −2.574 −2.771 −2.956 −2.291
(0.216)∗∗∗ (0.217)∗∗∗ (0.268)∗∗∗ (0.214)∗∗∗ (0.230)∗∗∗ (0.814)∗∗∗ (0.279)∗∗∗

CBG FEs ! ! ! ! ! ! ! ! ! ! !

Day FEs ! ! ! ! ! ! ! ! ! ! !

f 2019 (T,RH, P ) ! ! ! ! ! ! ! ! ! – !

f 2020 (T,RH, P ) ! ! ! ! ! ! ! ! ! – !

Observations 73,255 73,255 73,255 73,255 73,255 73,255 73,255 73,255 73,255 73,255 73,255

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S2: Results of our PM2.5 regressions compare the post-shutdown difference from 2020 to 2019 to the pre-shutdown difference.
The first four columns correspond to Figure 3A, all other columns to Figure 3C. Mobility is represented as percentage of time spend
away from home and coefficients are the estimated difference between 0 and 100%. The coefficients for income, road density and
population density correspond to one logarithmic unit, while the coefficients for our demographic variables correspond to changes
between 0 and 100% population share. Regressions focusing on the demographic variables (columns 5 to 11) are run for seven models:
no control variables, controlling for mobility, controlling for income, controlling for road density, controlling for population density,
controlling for everything but excluding weather effects, and controlling for all and weather effects. Standard errors clustered at the
county level are shown in parentheses below point estimates.
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Dependent variable: Difference in PM2.5 [µg m−3]

(1) (2) (3) (4) (5) (6) (7)

Mobility −0.277 0.217 −0.128
(0.154)∗ (0.203) (0.160)

Income 0.582 0.987 0.535
(0.157)∗∗∗ (0.223)∗∗∗ (0.164)∗∗∗

Road Density 0.009 0.096 −0.006
(0.018) (0.040)∗∗ (0.019)

Population Density 0.109 −0.101 0.088
(0.053)∗∗ (0.114) (0.052)∗

% Hispanic −2.858 −2.835 −2.333 −2.858 −3.017 −3.190 −2.493
(0.257)∗∗∗ (0.257)∗∗∗ (0.314)∗∗∗ (0.257)∗∗∗ (0.271)∗∗∗ (0.711)∗∗∗ (0.331)∗∗∗

% Asian −1.885 −1.941 −2.028 −1.903 −2.218 −3.435 −2.298
(0.498)∗∗∗ (0.483)∗∗∗ (0.390)∗∗∗ (0.505)∗∗∗ (0.416)∗∗∗ (1.075)∗∗∗ (0.340)∗∗∗

% Black −0.623 −0.597 −0.168 −0.635 −0.862 1.062 −0.377
(0.819) (0.816) (0.799) (0.811) (0.801) (1.196) (0.793)

CBG FEs ! ! ! ! ! ! !

Day FEs ! ! ! ! ! ! !

f 2019 (T,RH, P ) ! ! ! ! ! – !

f 2020 (T,RH, P ) ! ! ! ! ! – !

Observations 73,255 73,255 73,255 73,255 73,255 73,255 73,255

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S3: Results of our PM2.5 regressions compare the post-shutdown difference from 2020
to 2019 to the pre-shutdown difference. The columns correspond to Figure 3E. Mobility is
represented as percentage of time spend away from home and coefficients are the estimated
difference between 0 and 100%. The coefficients for income, road density and population
density correspond to one logarithmic unit, while the coefficients for our demographic variables
correspond to changes between 0 and 100% population share. The regressions are run for seven
models: no control variables, controlling for mobility, controlling for income, controlling for road
density, controlling for population density, controlling for everything but excluding weather
effects, and controlling for all and weather effects. Standard errors clustered at the county level
are shown in parentheses below point estimates.
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Dependent variable: Difference in Mobility (% away from home)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Income −0.121 −0.130 −0.127 −0.124
(0.010)∗∗∗ (0.009)∗∗∗ (0.011)∗∗∗ (0.010)∗∗∗

Road Density −0.005 −0.005 −0.001 −0.002
(0.002)∗∗ (0.002)∗∗∗ (0.002) (0.002)

Population Density −0.013 −0.017 −0.010 −0.009
(0.002)∗∗∗ (0.003)∗∗∗ (0.003)∗∗∗ (0.003)∗∗∗

% non-White and/or Hispanic 0.055 −0.047 0.058 0.085 −0.045 −0.026
(0.018)∗∗∗ (0.017)∗∗∗ (0.018)∗∗∗ (0.018)∗∗∗ (0.026)∗ (0.019)

CBG FEs ! ! ! ! ! ! ! ! !

Day FEs ! ! ! ! ! ! ! ! !

f 2019 (T,RH, P ) ! ! ! ! ! ! ! – !

f 2020 (T,RH, P ) ! ! ! ! ! ! ! – !

Observations 73,255 73,255 73,255 73,255 73,255 73,255 73,255 73,255 73,255

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S4: Results of our mobility regressions compare the post-shutdown difference from 2020 to 2019 to the pre-shutdown difference.
The first three columns correspond to Figure 3B, all other columns to Figure 3D. The coefficients for income, road density and
population density correspond to one logarithmic unit, while the coefficients for our demographic variables correspond to changes
between 0 and 100% population share. Regressions focusing on the demographic variables (columns 4 to 9) are run for six models:
no control variables, controlling for income, controlling for road density, controlling for population density, controlling for everything
but excluding weather effects, and controlling for all and weather effects. Standard errors clustered at the county level are shown in
parentheses below point estimates.
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Dependent variable: Difference in Mobility (% away from home)

(1) (2) (3) (4) (5) (6)

Income −0.109 −0.108 −0.106
(0.010)∗∗∗ (0.011)∗∗∗ (0.011)∗∗∗

Road Density −0.004 −0.001 −0.002
(0.002)∗∗ (0.002) (0.002)

Population Density −0.012 −0.007 −0.007
(0.003)∗∗∗ (0.003)∗∗ (0.003)∗∗

% Hispanic 0.084 −0.015 0.084 0.101 −0.020 −0.001
(0.022)∗∗∗ (0.025) (0.022)∗∗∗ (0.021)∗∗∗ (0.034) (0.025)

% Asian −0.200 −0.173 −0.193 −0.164 −0.168 −0.149
(0.054)∗∗∗ (0.025)∗∗∗ (0.053)∗∗∗ (0.052)∗∗∗ (0.028)∗∗∗ (0.027)∗∗∗

% Black 0.093 0.008 0.099 0.120 0.009 0.029
(0.047)∗ (0.049) (0.047)∗∗ (0.047)∗∗ (0.055) (0.051)

CBG FEs ! ! ! ! ! !

Day FEs ! ! ! ! ! !

f 2019 (T,RH, P ) ! ! ! ! – !

f 2020 (T,RH, P ) ! ! ! ! – !

Observations 73,255 73,255 73,255 73,255 73,255 73,255

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S5: Results of our mobility regressions compare the post-shutdown difference from 2020
to 2019 to the pre-shutdown difference. The columns correspond to Figure 3F. The coefficients
for income, road density and population density correspond to one logarithmic unit, while the
coefficients for our demographic variables correspond to changes between 0 and 100% population
share. The regressions are run for six models: no control variables, controlling for income,
controlling for road density, controlling for population density, controlling for everything but
excluding weather effects, and controlling for all and weather effects. Standard errors clustered
at the county level are shown in parentheses below point estimates.
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Dependent variable: NO2 [µmol/m2]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mobility 1.318 2.234 9.232 2.968
(1.957) (1.994) (3.833)∗∗ (1.128)∗∗

Income 3.244 2.123 −4.934 1.901
(2.559) (3.124) (3.884) (2.840)

Road Density 0.245 0.240 2.737 0.373
(0.206) (0.197) (0.634)∗∗∗ (0.081)∗∗∗

Population Density −1.753 −1.503 −6.643 −1.629
(0.409)∗∗∗ (0.400)∗∗∗ (1.988)∗∗∗ (0.360)∗∗∗

% non-White and/or Hispanic −7.378 −7.588 −5.489 −7.354 −4.306 −28.596 −2.599
(2.469)∗∗∗ (2.532)∗∗∗ (3.986) (2.448)∗∗∗ (2.504)∗ (6.682)∗∗∗ (3.887)

CBG FEs ! ! ! ! ! ! ! ! ! ! !

Day FEs ! ! ! ! ! ! ! ! ! ! !

f 2019 (T,RH, P ) ! ! ! ! ! ! ! ! ! – !

f 2020 (T,RH, P ) ! ! ! ! ! ! ! ! ! – !

Observations 370,378 370,378 370,378 370,378 370,378 370,378 370,378 370,378 370,378 370,379 370,378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S6: Results of our weekly NO2 regressions compare the post-shutdown difference from 2020 to 2019 to the pre-shutdown
difference. The first four columns correspond to Extended Data Figure 4A, all other columns to Extended Data Figure 4C. Mobility
is represented as percentage of time spend away from home and coefficients are the estimated difference between 0 and 100%.
The coefficients for income, road density and population density correspond to one logarithmic unit, while the coefficients for our
demographic variables correspond to changes between 0 and 100% population share. Regressions focusing on the demographic
variables (columns 5 to 11) are run for seven models: no control variables, controlling for mobility, controlling for income, controlling
for road density, controlling for population density, controlling for everything but excluding weather effects, and controlling for all and
weather effects. Standard errors clustered at the county level are shown in parentheses below point estimates.
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Dependent variable: NO2 [µmol/m2]

(1) (2) (3) (4) (5) (6) (7)

Mobility 0.923 8.722 2.298
(2.055) (4.101)∗∗ (1.232)∗

Income 4.020 −3.143 3.669
(3.336) (5.217) (3.042)

Road Density 0.328 2.788 0.417
(0.195)∗ (0.671)∗∗∗ (0.086)∗∗∗

Population Density −1.468 −6.478 −1.588
(0.413)∗∗∗ (1.951)∗∗∗ (0.345)∗∗∗

% Hispanic −6.433 −6.535 −2.579 −6.305 −3.489 −27.299 0.179
(2.725)∗∗ (2.690)∗∗ (3.194) (2.636)∗∗ (2.554) (9.195)∗∗∗ (3.194)

% Asian −20.406 −20.363 −20.024 −20.912 −17.146 −38.339 −17.067
(3.967)∗∗∗ (3.980)∗∗∗ (4.032)∗∗∗ (4.104)∗∗∗ (3.872)∗∗∗ (12.817)∗∗∗ (4.005)∗∗∗

% Black 3.973 3.865 8.142 3.855 7.254 −11.928 10.910
(7.627) (7.788) (10.244) (7.599) (7.776) (6.480)∗ (9.914)

CBG FEs ! ! ! ! ! ! !

Day FEs ! ! ! ! ! ! !

f 2019 (T,RH, P ) ! ! ! ! ! – !

f 2020 (T,RH, P ) ! ! ! ! ! – !

Observations 370,378 370,378 370,378 370,378 370,378 370,379 370,378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S7: Results of our weekly NO2 regressions compare the post-shutdown difference from
2020 to 2019 to the pre-shutdown difference. The columns correspond to Extended Data Figure
4E. Mobility is represented as percentage of time spend away from home and coefficients are
the estimated difference between 0 and 100%. The coefficients for income, road density and
population density correspond to one logarithmic unit, while the coefficients for our demographic
variables correspond to changes between 0 and 100% population share. The regressions are run
for seven models: no control variables, controlling for mobility, controlling for income, controlling
for road density, controlling for population density, controlling for everything but excluding
weather effects, and controlling for all and weather effects. Standard errors clustered at the
county level are shown in parentheses below point estimates.
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Dependent variable:

Difference in PM2.5 [µg m−3] PM2.5 in 2020
(1) (2) (3) (4) (5) (6)

Mobility −0.232 −0.128 −0.228 −0.395∗

(0.140) (0.160) (0.176) (0.215)
Income 0.412∗∗∗ 0.535∗∗∗ 1.071∗∗∗ 1.348∗∗∗

(0.125) (0.164) (0.190) (0.275)
Road density 0.008 −0.006 0.013 −0.006

(0.022) (0.019) (0.031) (0.025)
Population density 0.051 0.088∗ −0.229∗∗∗ −0.108∗

(0.039) (0.052) (0.048) (0.058)
% Hispanic −2.629∗∗∗ −2.278∗∗∗ −2.493∗∗∗ −3.242∗∗∗ −1.758∗∗∗ −2.008∗∗∗

(0.268) (0.284) (0.331) (0.478) (0.497) (0.567)
% Asian −0.984∗ −1.629∗∗∗ −2.298∗∗∗ −0.536 −0.544 −1.545∗∗

(0.564) (0.386) (0.340) (0.869) (0.556) (0.599)
% Black −0.642 −0.565 −0.377 −2.251 −0.568 −1.521

(0.965) (0.958) (0.793) (1.404) (1.246) (1.429)

Weighted – – ! – – !

CBG FEs ! ! ! ! ! !

Day FEs ! ! ! ! ! !

f 2019 (T,RH, P ) ! ! ! – – –
f 2020 (T,RH, P ) ! ! ! ! ! !

Observations 73,255 73,255 73,255 73,255 73,255 73,255

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S8: PM2.5 2020-2019 difference vs 2020 values for all of California. Results of three
PM2.5 regressions: without controls or weights, with controls and without weights, and with
both controls and weights. The first three columns correspond to the estimates in the paper,
the second three columns estimate the same quantities using only 2020 data. The dependent
variable is the level of PM2.5 rather than the inter-annual difference, and mobility corresponds
to the level of mobility rather than the difference. We only include 2020 weather variables in
columns 3-6 rather than the both years. Standard errors clustered at the county level are shown
in parentheses below point estimates.

The estimates have slight differences in magnitude but are the same sign and significance level in
both specifications. This has two implications. First, the weather controls do a good enough job
that differencing out the previous year does not make an enormous difference, though it does add
precision to the estimates. Second, it is possible to consistently estimate these effects without
access to previous years data.
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Rank Model MSE Std. Dev. DoF Lost
1 By vigintile 22.3 1.3 4041 409
2 By decile 22.6 1.4 735 16
3 By 2-unit increment 22.8 1.3 5808 2441
4 By 5-unit increment 23.3 1.4 1078 260
5 Cubic spline 23.7 1.5 22 0
6 Uninteracted 23.8 1.5 480 40
7 By 1-unit increment 23.8 1.1 15597 8969
8 By 10-unit increment 23.9 1.5 269 34
9 By vigintile, 2020 25.2 1.5 1992 152
10 By 2-unit increment, 2020 25.5 1.5 2086 908
11 By 20-unit increment 25.5 1.6 61 6
12 By 1-unit increment, 2020 25.6 1.5 5800 3674
13 By decile, 2020 25.6 1.6 360 10
14 By 5-unit increment, 2020 25.9 1.6 391 91
15 Cubic spline, 2020 26.0 1.6 43 0
16 By 10-unit increment, 2020 26.2 1.6 97 12
17 1st degree polynomial 26.6 1.6 7 0
18 By 20-unit increment, 2020 26.7 1.7 25 3
19 2nd degree polynomial, 2020 27.0 1.5 10 0
20 3rd degree polynomial, 2020 27.1 1.4 20 0
21 1st degree polynomial, 2020 27.9 1.7 4 0
22 base 28.9 1.8 1 0
23 2nd degree polynomial 31.9 2.0 28 0
24 3rd degree polynomial 34.1 2.4 71 0

Table S9: Results of cross-validated PM2.5 selection of weather controls according to MSE
criterion as shown on the left side of Extended Data Figure 6B. Each row corresponds to one
of the specifications we considered for controlling for temperature, humidity, and precipitation.
Rows are ordered from smallest to largest out of sample mean squared error (MSE). We also
include the degrees of freedom used by the specification as well as the number of observations
which cannot be used to estimate the parameters of interest because they uniquely correspond to
a fixed effect. Main regressions use the ‘By vigintile’ specification
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Rank Model MSE (1e-11) Std. Dev. (1e-11) DoF Lost
1 By 1-unit increment 143.00 3.60 14453 3995
2 By vigintile 178.30 5.10 7467 590
3 By 2-unit increment 209.60 5.70 3844 815
4 By decile 238.60 6.40 1355 25
5 By vigintile, 2020 285.60 7.70 3654 297
6 By 1-unit increment, 2020 289.80 13.00 5419 1363
7 Uninteracted 304.50 8.10 317 8
8 By 5-unit increment 307.00 8.70 523 45
9 By decile, 2020 334.00 9.20 670 13
10 Cubic spline, 2020 342.60 12.20 43 0
11 By 2-unit increment, 2020 371.60 10.60 1318 196
12 By 10-unit increment 372.30 10.50 111 5
13 By 5-unit increment, 2020 401.20 11.70 173 12
14 By 10-unit increment, 2020 420.60 12.00 38 2
15 By 20-unit increment, 425.90 12.00 29 0
16 Cubic spline 436.00 19.00 22 0
17 By 20-unit increment, 2020 438.60 12.50 12 0
18 1st degree polynomial 438.60 12.30 7 0
19 2nd degree polynomial, 2020 455.30 13.40 10 0
20 1st degree polynomial, 2020 465.00 13.70 4 0
21 Base 466.20 13.90 1 0
22 3rd degree polynomial, 2020 478.60 17.60 19 0
23 3rd degree polynomial 738.10 79.20 64 0
24 2nd degree polynomial 818.20 99.00 28 0

Table S10: Results of cross-validated NO2 selection of weather controls according to MSE
criterion as shown on the right side of Extended Data Figure 6B. Each row corresponds to one
of the specifications we considered for controlling for temperature, humidity, and precipitation.
Rows are ordered from smallest to largest out of sample mean squared error (MSE). We also
include the degrees of freedom used by the specification as well as the number of observations
which cannot be used to estimate the parameters of interest because they uniquely correspond
to a fixed effect. Main regressions use the ‘By vigintile’ specification because it uses many fewer
degrees of freedom and drops fewer observations than the ‘By 1’ specification, and is consistent
with what is used in the PM2.5 specification.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data were downloaded from public repositories using code written by the authors in R and the Google Colab Python interface with Google 
Earth Engine.

Data analysis Software used for analysis included RStudio and R statistical software (version 4.0.x), and Google Colab Notebooks. These codes are available 
in our group GitHub repository (https://github.com/jaburney/CA-COVIDEJ-2022). We used ArcGIS to generate several of the maps, and Adobe 
Illustrator to assemble final figures. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The pollution, weather, and demographic data used in this project are all publicly available. PurpleAir data are accessible via public API (https://api.purpleair.com/), 
CARB data can be found at (https://www.arb.ca.gov/aqmis2/aqmis2.php). Gridded NO2 data (https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S5P_NRTI_L3_NO2) and GridMet weather data (https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET) are 
available via Google Earth Engine. Mobility data from Safegraph are available to academic researchers (https://www.safegraph.com/academics) but may not be 
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reposted in raw format. All publicly-available raw data for this project can be found in our project dataverse (https://doi.org/10.7910/DVN/ZXVB7A), and processed 
and derived data can be found in our GitHub repository (https://github.com/jaburney/CA-COVIDEJ-2022). Finally, we have provided an online tool to facilitate 
exploration of the data at the Census Block Group scale (https://sabenz.users.earthengine.app/view/covid-ej).

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This is a retrospective, empirical study that relates ground-based PM2.5 and satellite-based NO2 pollution measures to Census Block 
Group demographics and uses the COVID-19 shutdown in spring of 2020 to statistically identify disparate pollution reductions across 
California's largest racial and ethnic minority groups. The panel analysis controls for weather, population density, road density, 
mobility (defined as the % of the day spent away from home), income, location-specific-time-invariant effects, and temporal effects 
(day of week, day of year).

Research sample The sample is present-day California Census Block Groups (CBGs) as defined and measured in the 2018 American Community Survey 
(ACS). There are 23,212 Census Block Groups in California at this time.

Sampling strategy We retained all CBGs for which a complete record of observations over time time period existed. For satellite-based NO2 
measurements, this was near-full coverage (22,503 CBGs). For ground-based PM2.5 measurements, 733 unique CBGs were 
represented in the data.

Data collection PM2.5 Data: Surface station measurements of particulate matter with diameter smaller than 2.5 microns (PM2.5) were downloaded 
from publicly available databases from PurpleAir and the California Air Resources Board (CARB). We downloaded all outdoor 
PurpleAir data available (1891 individual stations) for Jan-Apr 2019 and 2020. We retrieved (May 1, 2020) all hourly CARB PM2.5 data 
in California available for Jan-Apr 2019 and 2020 using CARB's Air Quality and Meteorological Information System (AQMIS), and 
calculated the daily mean (150 individual stations). 
 
NO2 Data: We used the Copernicus Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI, version 1.03.02) Offline 
tropospheric  NO2 column number density for mean NO2 concentrations of the developed areas of each census block group. 
TROPOMI has a resolution of 0.01 arc degrees. Data were collected for Jan-Apr 2019 and 2020 and only for developed areas based 
on the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2016. For this study, all data was prepared using the 
Google Earth Engine Python API and formatted as weekly means for each census block group. Weekly means were chosen to 
counteract the high frequency of missing data, particularly in northern California. 
 
Climate Data: For temperature, precipitation, and relative humidity we relied on the Gridded Surface Meteorological dataset 
(GridMet). GridMet provides daily information at 4-km resolution across the continental USA. For this study, data were aggregated in 
Google Earth Engine in its original daily frequency for each PM2.5 measurement station, and as a weekly mean for the NO2 Data for 
each census block group. The weekly mean data was only collected for developed areas based on the U.S. Geological Survey (USGS) 
National Land Cover Database (NLCD) 2016.    
 
Mobility Data: We use SafeGraph's Social Distancing Metrics, which were made available for research as part of the company’s 
COVID-19 response, and have been validated elsewhere. SafeGraph collects and cleans GPS pings from about 45 million mobile 
devices. The data are available daily at census block group resolution and are close to a random sample of the population. Our 
primary measure of mobility, not social distancing, is the percent of time spent away from home. We calculate this measure based on 
the median time (in minutes) that a device was observed at its geohash-7 (about 153m x 153m) home location, which SafeGraph 
determines as the night time residence of the device in the 6-weeks prior. The data cover the entire period of observation from Jan 
1, 2019 until the end of April 2020.  
 
Demographic Data: We downloaded census block group level demographic information from the U.S. Census Bureau 2018 5-year 
American Community Survey (ACS) for all CBGs in California using the tidycensus package for the R programming environment (June 
29, 2020). Demographic features included ACS sample-based CBG-level estimates of: population count; White race count (alone or in 
combination with one or more other races), or ``White"; Black or African American race count (alone or in combination with one or 
more other races), or ``Black"; Asian race count (alone or in combination with one or more other races), or ``Asian"; Hispanic or 
Latino origin (of any race) count, or ``Hispanic"; and median income. The other census race designations (American Indian or Alaska 
Native; Native Hawaiian or Other Pacific Islander) represent a substantially lower share of the California population, and were 
therefore excluded from our analysis due to small sample sizes. The CBG-level ``share" of these groups was calculated by dividing the 
CBG count by the CBG population. Population density was calculated as the CBG population divided by the area of the CBG. For the 
aggregate comparison, we compute the share of the non-White population which may be Hispanic as one minus the share of Whites 
which do not also identify as Hispanic. Because Hispanic is a separate designation from race in the ACS (i.e., those categorized as 
Hispanic may also be of any race), we evaluated how distinct Hispanic was from race variables of interest. On average, less than 1% 
of those identified at the CBG level as Hispanic were also identified as Black or Asian; 61% of Hispanic were White. Thus, Hispanic is 
effectively distinct from Asian and Black categorizations, and we consider Hispanic, Asian, and Black designations to be unique 
demographic indicators in our model. The baseline reference group in the more detailed comparison contains all other races and 
ethnicities and therefore consists almost entirely of people who identify as non-Hispanic White.  
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Geographic Data: We calculated road density (m/km2) using The Global Roads Inventory Project (GRIP4) vector dataset for North 
America, downloaded at https://www.globio.info/download-grip-dataset (April 4, 2020). The GRIP4 dataset harmonizes global 
geospatial datasets on road infrastructure, including road features that can be categorized as highways, primary roads, secondary 
roads, tertiary roads and local roads. It is consistent with primary and secondary road classifications from the U.S. Census TIGER/Line 
shapefiles for roads. To calculate road density for each CBG, we summed road lengths within the area of the CBG, and divided by the 
area of the CBG.

Timing and spatial scale Analysis covers the period of January 1 - April 30 of both 2019 and 2020 for the state of California. The unit of analysis is the Census 
Block Group. Gridded satellite observations and weather data are aggregated to the CBG scale for analysis.

Data exclusions For both CARB and PurpleAir data, days with mean PM2.5 equal to zero or greater than 500 μg/m3 were removed as outliers. Sites 
for which we removed more than 10% of data were excluded from the entire analysis. Sites with less than 80% data coverage during 
our study period were also excluded. For our statistical models requiring 2019 and 2020 data, we applied these requirements to both 
years independently. This quality filtering removed 5.9% of daily CARB PM2.5 data, and 11.4% of daily PurpleAir data, resulting in 
remaining data from 1664 individual stations (119 CARB and 1545 Purple Air). However, only 830 of those stations (106 CARB and 
724 PurpleAir) include data for 2019 and 2020 for the pre-shutdown and shutdown period, and were therefore used in our empirical 
statistical analysis. This corresponded to 733 unique CBGs with surface PM2.5 measurements. All other data were available for these 
CBGs.

Reproducibility Several features of our data and design facilitated robustness checks: The use of two distinct pollutants as outcomes, one measured 
on the ground and one by satellite, offered one opportunity. The different spatial coverage for the two pollutants, as well as the 
different spatial coverage of the ground-based monitoring networks also offered another. In addition, we tested many different 
sensible control and weighting schemes, with very similar results. Complete code is provided for reproducibility.

Randomization Not applicable. This is a retrospective, quasi-experimental study.

Blinding Not applicable.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Disparate air pollution reductions during California’s COVID-19 economic shutdown
	Results
	Discussion
	Methods
	PM2.5 data
	NO2 data
	Climate data
	Mobility data
	Demographic data
	Geographic data
	Study period and design
	Empirical strategy
	Software
	Reporting Summary

	Acknowledgements
	Fig. 1 Pollution and demographic data used in this study.
	Fig. 2 The COVID-19 ‘mobility shock’.
	Fig. 3 Impact of the economic shutdown on (left) PM2.
	Extended Data Fig. 1 Why the COVID-19 ‘shock’ offers new insight into questions of environmental justice.
	Extended Data Fig. 2 PM2.
	Extended Data Fig. 3 Baseline associations between income, race, ethnicity and pollution exposure.
	Extended Data Fig. 4 Same as Fig.
	Extended Data Fig. 5 Same as Fig.
	Extended Data Fig. 6 Choice of, and sensitivity to, weather controls specification.
	Extended Data Fig. 7 Daily mean PM2.
	Extended Data Fig. 8 Map of the number of observations in the TROPOMI NO2 product.
	Extended Data Fig. 9 Regional mobility changes in CA.
	Extended Data Fig. 10 Monitor locations, weighting, and influence on impact estimates.


