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Abstract Gibbs sampling also known as Glauber dynamics is a popular technique
for sampling high dimensional distributions defined on graphs. Of special interest is
the behavior of Gibbs sampling on the Erdős–Rényi random graph G(n, d/n), where
each edge is chosen independently with probability d/n and d is fixed. While the
average degree in G(n, d/n) is d(1−o(1)), it contains many nodes of degree of order
(log n)/(log log n). The existence of nodes of almost logarithmic degrees implies that
for many natural distributions defined on G(n, d/n) such as uniform coloring (with
a constant number of colors) or the Ising model at any fixed inverse temperature β,
the mixing time of Gibbs sampling is at least n1+�(1/ log log n) with high probability.
High degree nodes pose a technical challenge in proving polynomial time mixing
of the dynamics for many models including coloring. Almost all known sufficient
conditions in terms of number of colors needed for rapid mixing of Gibbs samplers
are stated in terms of the maximum degree of the underlying graph. In this work we
consider sampling q-colorings and show that for every d <∞ there exists q(d) <∞
such that for all q ≥ q(d) the mixing time of the Gibbs sampling on G(n, d/n) is
polynomial in n with high probability. Our results are the first polynomial time mixing
results proven for the coloring model on G(n, d/n) for d > 1 where the number of
colors does not depend on n. They also provide a rare example where one can prove
a polynomial time mixing of Gibbs sampler in a situation where the actual mixing
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38 E. Mossel, A. Sly

time is slower than npolylog(n). In previous work we have shown that similar results
hold for the ferromagnetic Ising model. However, the proof for the Ising model cru-
cially relied on monotonicity arguments and the “Weitz tree”, both of which have no
counterparts in the coloring setting. Our proof presented here exploits in novel ways
the local treelike structure of Erdős–Rényi random graphs, block dynamics, spatial
decay properties and coupling arguments. Our results give the first polynomial-time
algorithm to approximately sample colorings on G(n, d/n) with a constant number
of colors. They extend to much more general families of graphs which are sparse in
some average sense and to much more general interactions. In particular, they apply
to any graph for which there exists an α > 0 such that every vertex v of the graph has
a neighborhood N (v) of radius O(log n) in which the induced sub-graph is the union
of a tree and at most O(1) edges and where each simple path � of length O(log n)
satisfies

∑
u∈�

∑
v �=u α

d(u,v) = O(log n). The results also generalize to the hard-core
model at low fugacity and to general models of soft constraints at high temperatures.

Keywords Erdős–Rényi random graphs · Gibbs samplers · Glauber dynamics ·
Mixing time · Colorings

Mathematics Subject Classification (2000) 60J10 · 65C05 · 82C20

1 Introduction

Efficient approximate sampling from Gibbs distributions is a central challenge of
randomized algorithms. Examples include sampling from the uniform distribution
over independent sets of a graph [7,8,24,25], sampling from the uniform distribution
of matchings in a graph [16], or sampling from the uniform distribution of color-
ings [5,6,12] of a graph. A natural family of approximate sampling techniques is
given by Gibbs samplers, also known as the Glauber dynamics or the heat-bath. These
are reversible Markov chains that have the desired distribution as their stationary dis-
tribution and where at each step the status of one vertex is updated. It is typically easy
to establish that the chains will eventually converge to the desired distribution.

Studying the convergence rate of the dynamics is interesting from both the
theoretical computer science and the statistical physics perspectives. Approximate
convergence in polynomial time, sometimes called rapid mixing, is essential in com-
puter science applications. The convergence rate is also of natural interest in physics
where the dynamical properties of such distributions are extensively studied, see e.g.
[18]. Much recent work has been devoted to determining sufficient and necessary
conditions for rapid convergence of Gibbs samplers. A common feature to most of
this work [6–8,12,17,19,24,25] is that the conditions for convergence are stated in
terms of the maximal degree of the underlying graph. In particular, these results do not
allow for the analysis of the mixing rate of Gibbs samplers on the Erdős–Rényi random
graph, which is sparse on average, but has a small number of denser sub-graphs. In
a recent work [21], see also [20], we have shown that for any d if 0 ≤ β < β(d) is
sufficiently small then Gibbs sampling for the Ising model on G(n, d/n) rapidly mixes
and further that the same result is true in the presence of arbitrary external field. The
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Gibbs rapidly samples colorings of G(n, d/n) 39

proofs of [21] crucially rely on the monotonicity of the Ising model and on the “Weitz
tree” [25] which is only defined for two spin models. Thus the proof does not apply
to models such as the hard-core model or to sampling uniform coloring. Other recent
work has investigated showing how to relax statements so that they do not involve
maximal degrees [5,13], but the results are not strong enough to imply rapid mixing
of Gibbs sampling for uniform colorings on G(n, d/n) for d > 1 and O(1) colors.
This is presented as a major open problem of both [5] and [21].

In this paper we give the first rapid convergence result of Gibbs samplers for the
coloring model on Erdős–Rényi random graphs in terms of the average degree and
the number of colors only. Our results yields the first FPRAS (Fully Polynomial Ran-
domized Approximation Scheme) for sampling the coloring distribution in this case.
Our results are further extended to more general families of graphs that are “tree-like”
and “sparse on average”. These are graph where every vertex has a radius O(log n)
neighborhood which is a tree with at most O(1) edges added and where for each sim-
ple path � of length O(log n) it holds that

∑
u∈�

∑
v �=u α

d(u,v) ≤ O(log n), where
α > 0 is some fixed parameter. While the number of colours needed is bounded, we
do not attempt to optimize the number or indeed give an explicit bound on it.

Subsequent to completing this work we learned that Efthymiou and Spirakis [9]
independently have also produced a scheme for approximately sampling from the
random coloring distribution in polynomial time. They take a different approach,
instead of sampling using MCMC they assign colours to vertices one at a time by cal-
culating the conditional marginal distributions making use of the decay in correlation
on the graph.

Our arguments extend to prove similar results for many other models. In particular,
they give an independent proof of rapid mixing for sampling from the Ising model for
small inverse temperature β, the hard-core model for small fugacity λ and many other
models. Note however, that the result presented here for the Ising model on general
graphs are slightly weaker than the result of [21]. Here we require that each O(log n)
radius neighborhood is a tree union a constant number of edges while in [21] an excess
of O(log n) is allowed.

Below we define the coloring model and Gibbs samplers and state our main result
for coloring. Some related work and a sketch of the proof are also given in the intro-
duction. The remaining sections give a more detailed proof.

1.1 Models

Our results cover a wide range of graph based distributions including the coloring
model, the hardcore model and any model with soft constraints.

Definition 1.1 Let G = (V, E) be a graph and let C be a set of states/colours with
|C| = q. The Hamiltonian is a function CV → R of the form

H(σ ) =
∑

u∈V

h(σ (u))+
∑

(u,v)∈E

g(σ (u), σ (v)) (1)
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40 E. Mossel, A. Sly

where h : C → R is the activity function and g : C2 → R∪{−∞} is a symmetric inter-
action function. This defines an interacting particle system which is the distribution
on σ ∈ CV given by

P(σ ) = 1

Z
exp(H(σ ))

where Z is a normalizing constant. We focus our attention on 3 classes of models.

• The coloring distribution is the uniform distribution over colorings of G with
g(x, y) = −∞1{x=y} and h ≡ 0 so the distribution is given by

P(σ ) = 1

Z

∏

(u,v)∈E

1{σ(u) �=σ(v)}. (2)

• The hardcore model with parameter β is the weighted distribution over indepen-
dents sets of G given by C = {0, 1} with h(x) = βx and g(x, y) = −∞1{x=y=1}
and

P(σ ) = 1

Z
exp

(

β
∑

u∈V

σ(u)

)
∏

(u,v)∈E

1{σ(u)σ (v)=0} (3)

where σ takes values in {0, 1}V and Z is a normalizing constant.
• If g does not take the value −∞ then we say the model has soft-constraints. This

class includes the Ising model.

For U ⊂ V we let PU be the colouring model on the subgraph induced by U . Define
the activity free system P̂ as the distribution with the activity function h set to 0. We
define the norm of the Hamiltonian as

‖H‖ := max

{

max
x∈C
|h(x)|, max

x,y∈C
|g(x, y)|

}

.

1.2 Gibbs sampling

The Gibbs sampler (also Glauber dynamics or heat bath) is a Markov chain on con-
figurations where a configuration σ is updated by choosing a vertex v uniformly at
random and assigning it a spin according to the Gibbs distribution conditional on the
spins on G − {v}.
Definition 1.2 Given a graph G = (V, E), a set C and a Hamiltonian H as in (1),
the Gibbs sampler is the discrete time Markov chain on CV where given the current
configuration σ the next configuration σ ′ is obtained by choosing a vertex v in V
uniformly at random and

• Letting σ ′(w) = σ(w) for all w �= v.
• σ ′(v) is assigned the element x ∈ C with probability proportional to

exp

⎛

⎝h(x)+
∑

w∈N (v)

g(σ (w),x)

⎞

⎠.
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Gibbs rapidly samples colorings of G(n, d/n) 41

where N (v) = {w ∈ V : (v,w) ∈ E}. Note that in the case of coloring σ ′(v) is
chosen uniformly from the set C \ {σ(w) : w ∈ N (v)}.

In the coloring model, it is not completely trivial to find an initial configuration that is
a legal coloring. However, for G(n, d/n) finding an initial coloring is easy [23]. It is
well known that with high probability if one removes all nodes of large enough degree
D′(d) from G(n, d/n) then what remains is a collection of unicyclic components. It
is easy to color each unicyclic component with 3 colors and therefore color the graph
with D′ + 3 colors. Similar arguments will allow us to find an initial coloring in the
more general setting discussed here. See [10] for a survey of algorithmic results for
finding legal coloring in sparse random graphs. For the hard-core model and models
with soft constraints, it is trivial to find an initial legal configuration.

While our results are given for the discrete time Gibbs sampler described above,
it will at times be convenient to consider the continuous time version of the model.
Here sites are updated at rate 1 by independent Poisson clocks. The two chains are
closely related, the relaxation time of the continuous time Markov chain is n times the
relaxation time of the discrete chain (see e.g. [1]).

We will be interested in the time it takes the dynamics to get close to the distribu-
tions (2). The mixing time τmix of the chain is defined as the number of steps needed
in order to guarantee that the chain, starting from an arbitrary state, is within total
variation distance (2e)−1 from the stationary distribution.

1.3 Erdős–Rényi random graphs and other models of graphs

The Erdős–Rényi random graph G(n, p), is the graph with n vertices V and random
edges E where each potential edge (u, v) ∈ V × V is chosen independently with
probability p. We take p = d/n where d ≥ 1 is fixed. In the case d < 1, it is well
known that with high probability all components of G(n, p) are unicyclic and of log-
arithmic size which implies immediately that the dynamics considered here mix in
time polynomial in n.

For a vertex v in G(n, d/n) let V (v, l) = {u ∈ G : d(u, v) ≤ l}, the set of vertices
within distance l of v, let S(v, l) = {u ∈ G : d(u, v) = l}, let E(v, l) = {(u, w) ∈
G : u, w ∈ V (v, l)} and let B(v, l) be the graph (V (v, l), E(v, l)).

Our results only require some simple features of the neighborhoods of all vertices
in the graph stated in terms of t and m below.

Definition 1.3 Let G = (V, E) be a graph and v a vertex in G. Let t (G) denote the
tree excess of G, i.e.,

t (G) = |E | − |V | + 1.

For v ∈ V we let t (v, l) = t (B(v, l)).
We call a path v1, v2, . . . self avoiding if for all i �= j it holds that vi �= v j .
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42 E. Mossel, A. Sly

For α > 0 we let the maximal path α-weight mα of a subgraph H ⊂ G be defined
by

mα(H, l) = max
�

∑

u∈�

∑

v:u �=v∈G

αd(u,v)

where the maximum is taken over all self-avoiding paths � ⊂ H of length at most l.

1.4 Our results

1.4.1 Colouring model

Theorem 1.1 For all d ≥ 1 there exists 0 < q(d),C(d) < ∞ such that for all
q ≥ q(d) the following holds. Let G be a random graph distributed as G(n, d/n).
Then with high probability the mixing time of Gibbs sampling of q-colorings is O(nC ).

The theorem above may be viewed as a special case of the following more general
result.

Theorem 1.2 For any 0 < a, α, t, δ < ∞ there exists constants q(a, α, t, δ) and
C = C(a, α, t, δ) such that if q ≥ q(a, α, t, δ) and G = (V, E) is any graph on n
vertices satisfying

∀v ∈ V, t (v, a log n) ≤ t, mα(G, a log n) < δ log n, (4)

then the mixing time of the Gibbs-sampler of q-colorings of G is O(nC ).

1.4.2 Hardcore model

Theorem 1.3 For all d ≥ 1 there exists C(d), β(d) <∞ such that for all β ≤ β(d)
the following holds. Let G be a random graph distributed as G(n, d/n). Then with high
probability the mixing time of Gibbs sampling of the hardcore model with parameter
β is O(nC ).

The theorem above may be viewed as a special case of the following more general
result.

Theorem 1.4 For any 0 < a, α, t, δ < ∞ there exists constants β(a, α, t, δ) and
C = C(a, α, t, δ) such that if β ≤ β(a, α, t, δ) and G = (V, E) is any graph on n
vertices satisfying

∀v ∈ V, t (v, a log n) ≤ t, mα(G, a log n) < δ log n, (5)

then the mixing time of the Gibbs-sampler of the hardcore model with parameter β is
O(nC ).
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1.4.3 Soft constraints

Theorem 1.5 For all d ≥ 1 there exists 0 < C(d), H∗(d) < ∞ such that for all
models with ‖H‖ ≤ H∗(d) the following holds. Let G be a random graph distributed
as G(n, d/n). Then with high probability the mixing time of Gibbs sampling of the
model is O(nC ).

The theorem above may be viewed as a special case of the following more general
result.

Theorem 1.6 For any 0 < a, α, t, δ <∞ and all soft constraint models there exists
constants H∗(a, α, t, δ) > 0 and C = C(a, α, t, δ) such that if ‖H‖ ≤ H∗(a, α, t, δ)
and G = (V, E) is any graph on n vertices satisfying

∀v ∈ V, t (v, a log n) ≤ t, mα(G, a log n) < δ log n, (6)

then the mixing time of the Gibbs-sampler of the model is O(nC ).

1.5 Related work

Most results for mixing rates of Gibbs samplers are stated in terms of the maximal
degree. Thus for sampling uniform colorings, the result are of the form: for every
graph where all degrees are at most d if the number of colors q satisfies q ≥ q(d) then
Gibbs sampling is rapidly mixing [6–8,12,14,17,19,24,25]. For example, it is well
known and easy to see that one can take q(d) = 2d (see e.g.[14]). Similarly, results
for the Ising model are stated in terms of β < β(d). The novelty of the result of [21]
and the result presented here is that it allows us to study graphs where the average
degree is small while some degrees may be large.

Previous attempts at studying this problem for sampling uniform colorings yielded
weaker results. In [5] it is shown that Gibbs sampling rapidly mixes on G(n, d/n) if
q = �d((log n)α) where α < 1 and that a variant of the algorithm rapidly mixes if
q ≥ �d(log log n/ log log log n). Indeed the main open problem of [5] is to determine
if one can take q to be a function of d only.

Comparing the results presented here to [20,21] we observe first that there is one
sense in which the current results are weaker. In [21] the tree excess t can be of order
O(log n) while for the results presented here t has to be of order O(1). The results
of [21] crucially use the fact that the Ising model is attractive (this is a monotonicity
property) and that it is a two spin system which allows the use of the “Weitz tree” [25].

We note that for all q and all d the mixing time of Gibbs sampling on G(n, d/n) is
with high probability at least n1+�(1/ log log n) >> npolylog(n), see [5,21] for details.
It is an important challenge to find the critical q = q(d) for rapid mixing. In particular,
the question is if the threshold can be formulated in terms of the coloring model on a
branching process tree with Poisson(d) degree distribution. One would expect rapid
mixing for in the “uniqueness phase”, but perhaps even beyond it, see [11,21,22].
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1.6 Proof technique

We briefly sketch the main ideas behind the proof focusing on the special case of
coloring.

Block dynamics and path coupling. The basic idea of the proof is quite standard.
It is based on a combination of block dynamics, see e.g. [18], and path coupling, see
e.g. [3], techniques. We wish to divide the vertex set V of the graph G into disjoint
blocks V1, . . . , VK with the following properties:

• There is at most one edge between any pair of blocks.
• For each block Vi and any boundary conditions outside the block, the relaxation

time of the dynamics restricted to Vi is polynomial in n.
• If we consider the block dynamics, where we pick a block Vi uniformly at random

and update it containing it according to the conditional probability on V \ Vi , then
it has the following property: Given two configurations σ and τ that differ at one
vertex v, the updated configurations σ ′ and τ ′ may be coupled is such a way that
the expected number of differences between them is 1−
(1/n).

The properties above imply a polynomial mixing time for the single site Gibbs-
sampling dynamics.

Block decomposition: first attempt. The main task is therefore to show that such a
decomposition into blocks exists when (4) holds and q is large enough. A key concept
in the construction of the blocks is the notion of good vertices. Roughly speaking the
blocks are constructed in such a way that the boundary of each block consists of good
vertices only.

Good vertices v are vertices that are of degree bounded by c and such that

∑

u∈G:u �=v
αd(u,v) ≤ ε. (7)

Assume for a moment that all blocks constructed are trees. In this case (7) implies that
for a large enough q and given two boundary conditions that differ at one site, it is
possible to couple the configurations inside the block with expected hamming distance
ε, which implies the desired contraction of the block dynamics. Moreover, in the case
where all the blocks are trees, we show that the second condition in (4) together with
the small effect of the boundary implies a polynomial relaxation time of the dynamics
inside the block.

Cyclic components and skeletons. More work is needed since we may not assume
that all blocks are trees. In fact, a crucial step of the construction is to show that there
are components W1, . . . ,Wr that contain all cycles of length O(log n) and such that
all degrees in Wi are bounded, the number of vertices in Wi is O(log n) and the dis-
tance between Wi and W j is �(log n). All of the properties above follow from the
assumption on the tree excess. We call the components Wi the skeletons.
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Given the skeletons Wi , we consider two types of blocks: tree blocks and the blocks
consisting of Wi and trees attaching to Wi . Using (4) we show that the mixing time
of each block is polynomial in n and that the effect of the boundary on each block is
small. This allows us to deduce a polynomial mixing time bound.

2 Proof of Theorems 1.1, 1.3 and 1.5

Proof (Theorem 1.1,1.3,1.5) The proofs follow by Lemma 2.1 below and Theorems
1.2, 1.4 and 1.6 respectively. ��
Lemma 2.1 For every d ≥ 1 there exist 0 < a, α, t, δ < ∞ such if G is a random
graph distributed according to G(n, d/n) then with high probability mα(G, a log n) ≤
δ log n and for all v ∈ V , t (v, a log n) ≤ t .

Proof It is well known that G(n, d/n) satisfies t (v, 2a log n) ≤ 1 for all v with high
probability, provided that a = a(d) > 0 is sufficiently small, see, e.g. [21]. Next we
show that if α is sufficiently small then with high probability for all v0 and all �, a
self-avoiding path of length a log n starting at the vertex v0, it holds that

∑
(�) :=

∑

u∈�

∑

v:u �=v∈G

αd(u,v) ≤ δ log n.

Considering the contribution to the sum from u /∈ B(v, 2a log n) we see that

∑
(�) ≤ (a log n)× n× αa log n +

∑

u∈�

∑

v:u �=v∈B(v0,2a log n)

αd(u,v).

Note that (a log n)×n×αa log n = o(1) ifα > 0 is small enough so that a logα+1 < 0.
In order to bound the first sum we note that

∑

u∈�

∑

v:u �=v∈B(v0,2a log n)

αd(u,v)

≤
2a log n∑

D=1

αD
∑

v∈B(v0,2a log n)

|{u ∈ � : d(v, u) = D}|.

Note that for each v ∈ B(v0, 2a log n) the size of the set {u ∈ � : d(v, u) = D}
is at most 4. Indeed suppose that there are five elements u1, . . . , u5 in this set. For
ui denote by u′i the last point on � on a shortest path from ui to v and wi be the
following point. Since � is a path it follows that the size of the set {u′i : 1 ≤ i ≤ 5}
is at least 3. Without loss of generality assume that u′1, u′2 and u′3 are distinct. Then
removing the edges (u′1, w1) and (u′2, w2)will maintain the connectivity properties of
B(v0, 2a log n) contradicting the fact that t (v0, 2a log n) ≤ 1. The argument above
implies that
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2a log n∑

D=1

αD
∑

v∈B(v0,2a log n)

|{u ∈ � : d(v, u) = D}|

≤ 4
2a log n∑

D=1

αD|{v ∈ B(v0, 2a log n) : d(v, �) ≤ D}|.

We now use the well known expansion bounds implying that in G(n, d/n) with high
probability all connected sets � of size at least a log n have at most hD|�| elements
at distance at most D from � which allows to bound the last sum as

4a log n

2a log n∑

D=1

αDhD ≤ δ

2
log n,

provided α is small enough. Finally, we recall the proof of the expansion bound. Note
that it suffices to show that for all connected sets � of size at least a log n, the number
of elements at distance exactly 1 from the set is bounded by (h − 1)|�|. By a first
moment calculation, the probability that a set with more neighbors exists is bounded
by:

n∑

s=a log n

(
n

s

)

s!
(

d

n

)s−1

P[Bin(s(n− s), d/n) > (h − 1)s]

≤
n∑

s=a log n

nds−1 P[Bin(sn, d/n) > (h − 1)s] = o(1),

provided h is large enough since by standard large deviation results,

P[Bin(sn, d/n) > (h − 1)s] ≤ E exp(Bin(sn, d/n)− (h − 1)s)

=
(

1+ d(e − 1)

n

)sn

exp(−(h − 1)s)

≤ exp (s[d(e − 1)− (h − 1)]) .

��

3 Notation and standard background

3.1 Notation

Definition 3.1 Let ∂U denote the interior boundary of U :

∂U = {u ∈ U : ∃u′ ∈ U c s.t. (u′, u) ∈ E}.

123



Gibbs rapidly samples colorings of G(n, d/n) 47

Let ∂+U denote the exterior boundary of U :

∂+U = {u ∈ U c : ∃u′ ∈ U s.t. (u′, u) ∈ E}

For U ⊆ W ⊆ V denote the exterior boundary of W with respect to U :

∂+W U = {u ∈ W c : ∃u′ ∈ U s.t. (u′, u) ∈ E}.

If T is a tree rooted at ρ and u ∈ T then we let Tu denote the subtree of u and all its
descendants. Let T+u denote Tu ∪ ∂+T Tu .

Definition 3.2 Define the α-weight of a vertex v by ϕα(v) = ∑
u �=v αd(v,u). We call

v a (c, α, ε)-good vertex if the degree of v is less than or equal to c and ϕα(v) ≤ ε.
If v is not a (c, α, ε)-good vertex then it is a (c, α, ε)-bad vertex. When there is no
ambiguity in the parameters (c, α, ε)we will simply call vertices good or bad vertices.

3.2 Relaxation and mixing times

Although not necessary for our results, to make use of existing theory it is convenient
to make the assumption that the Gibbs sampling is lazy, that is we introduce self-loop
probability of a half for all states. It is well known that Gibbs sampling is a reversible
Markov chain with stationary distribution P . Let 1 = λ1 > λ2 ≥ . . . ≥ λm ≥ −1
denote the eigenvalues of the transition matrix of Gibbs sampling. The spectral gap
is denoted by min{1 − λ2, 1 − |λm |} and the relaxation time τ is the inverse of the
spectral gap. The relaxation time can be given in terms of the Dirichlet form of the
Markov chain by the equation

τ = sup

{
2

∑
σ P(σ )( f (σ ))2

∑
σ �=τ P(σ, τ )( f (σ )− f (τ ))2

}

(8)

where f is any function on configurations, P(σ, τ ) = P(σ )P(σ → τ) and P(σ → τ)

is transition probability from σ to τ . We use the result that the for reversible Markov
chains the relaxation time satisfies

τ ≤ τmix ≤ τ
(

1+ 1

2
log(min

σ
P(σ ))−1

)

(9)

where τmix is the mixing time (see e.g. [1]). In all our examples we have
log(minσ P(σ ))−1 = poly(n) so by bounding the relaxation time we can bound
the mixing time up to a polynomial factor.

For our proofs it will be useful to use the notion of block dynamics. The Gibbs
sampler can be generalized to update blocks of vertices rather than individual ver-
tices. For blocks V1, V2, . . . , Vk ⊂ V , not necessarily disjoint, with V = ∪i Vi the
block dynamics of the Gibbs sampler updates a configuration σ by choosing a block
Vi uniformly at random and assigning the spins in Vi according to the Gibbs distribu-
tion conditional on the spins on G − {Vi }. In the continuous time version the blocks
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are updated according to independent rate 1 Poisson clocks. The relaxation time of
the continuous time Gibbs sampler can be given in terms of the relaxation time of
the continuous time block dynamics and the relaxation times of the continuous time
Gibbs sampler on the blocks.

Proposition 3.1 In the continuous time dynamics if τblock is the relaxation time of the
block dynamics and τi is the maximum the relaxation time on Vi given any boundary
condition from G − {Vi } then by Proposition 3.4 of [18]

τ ≤ τblock(max
i
τi )max

v∈V
{# j : v ∈ Vj }. (10)

3.3 Canonical paths and conductance

We will use the following conductance result which follows from Cheeger’s inequality,
see e.g. [15].

Proposition 3.2 Consider an ergodic reversible Markov chain Xi on a discrete space
� where for any two states a, b ∈ � such that P(a, b) := P(a)P(a → b) > 0 it
holds that P(a, b) > ε. Then

τmix ≤ 2/ε2.

We also make use of the method of canonical paths.

Proposition 3.3 Suppose that for any two states σ, η in the state space we have a
canonical path γ(σ,η) = (σ = σ (0), σ (1), . . . , σ (k) = η) such that each transitions
satisfies P(σ (i), σ (i+1)) > 0. Let L be the length of the longest canonical path between
two states and let

ρ = sup
(η′,η′′)

∑

(σ,η):(η′,η′′)∈γ(σ,η)

P(σ )P(η)

P(η′, η′′)

where the supremum is over pairs of states η′, η′′ with P(η′, η′′) > 0 while the sum is
over all pairs of states. Then the relaxation time satisfies

τ ≤ Lρ.

3.4 Path coupling

We use the path coupling technique [3] to bound the relaxation time. The proposition
below follows from [3] and [4], see also [2]. For two configurations σ, σ ′ ∈ CV we
denote their Hamming distance by dH (σ, σ

′) = |{v : σ(v) �= σ ′(v)}|.
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Proposition 3.4 Consider Gibbs sampling on a graph G. Suppose that for any pair of
configurations σ1, σ2 that differ in one site only, there is a way to couple the dynamics
such that if σ ′1 and σ ′2 denote the configuration after the update then:

E[dH (σ
′
1, σ
′
2)] ≤ 1− c

n
.

Then

τmix ≤ c.

4 Block mixing

For the proof we will consider block dynamics where the blocks are in some sense
weakly connected. We will bound the relaxation time of the block dynamics in terms
of single site dynamics of the sites connecting the blocks as follows. The following
Lemma is a generalization of Claim 2.9 of [2] and may be proved in a similar manner.
Here we provide an independent proof.

Lemma 4.1 Let P be any Gibbs measure taking values in C. Let U ⊂ V and fix some
boundary condition η on ∂+U. Suppose that U is the disjoint union of subsets Ui .
Further suppose that for all i there existwi ∈ Ui such that there are no edges between
U −Ui and Ui − {wi }. Let W = ∪i {wi }. Let Bi = ∂+U Ui and let

pwi (x) = PUi∪Bi (σ (wi ) = x|σ(Bi ) = η(Bi )). (11)

We define the distribution Q on CW by

Q(σ (W )) = 1

Z
P̂W (σ (W ))

∏

i

pwi (σ (wi )) (12)

where P̂ is the activity free distribution from Definition 1.1. Then the continuous time
relaxation time τQ of the Gibbs sampler for Q and the continuous time relaxation time
of the block dynamics τblock satisfies τblock ≤ max(1, τQ).

Proof Let Pη denote the probability measure on U with boundary conditions η. Then
by the Markov property and (12) it follows that PηW = Q. We note furthermore that
from the Markov property it follows that the measure Pη satisfies for any i :

Pη(σ (Bi ) = σ ′|σ(U \ Bi ) = σ ′′)
= Q(σ (wi ) = σ ′(wi )|σ(W \ {wi }) = σ ′′(W \ {wi }))
×Pη(σ (Bi \ {wi }) = σ ′(Bi \ {wi })|σ(wi ) = σ ′(wi )). (13)

Write σt for the state of the block dynamics with blocks Bi and boundary conditions
η. Write σ ′t for the state of the single site dynamics for (12). Then assuming that we
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have σ0(W ) = σ ′0 we obtain by equation (13) that the dynamics on σ and σ ′ may be
coupled in such a way that for all t :

• σt (W ) = σ ′t .
• If all the blocks (sites) in σt (σ

′) have been updated at least once then:

P(σt = σ ∗|σt (W ) = σ ∗∗) = Pη(σ = σ ∗|σ(W ) = σ ∗∗).

Note that the probability that at least one block has not been updated by time t is at
most |W |e−t . Let Pt denote the distribution of σt and similarly Qt . Given an opti-
mal coupling between Qt and Q consider the coupling of Pt to P where given two
configurations (σ ′1, σ ′2) distributed according to the coupling, we let σ1 be distributed
according to the conditional distribution given σ ′1 and similarly for σ2. Moreover by
the argument above it follows that we may define σ1 and σ2 is such a way that if
σ ′1(W ) = σ ′2(W ) and all blocks have been updated then σ1 = σ2. This implies that

dT V (P
t , Pη) ≤ dT V (Q

t ,Q)+ |W |e−t .

Since the relaxation time measures the exponential rate of convergence to the distri-
bution we conclude that τblock ≤ max(1, τQ). ��

Our bounds on the relaxations times of trees will be given in terms of their path
density defined as follow:

Definition 4.1 For a tree T ⊂ G rooted at ρ we let the maximal path density be
defined by

m(T, ρ) = max
�

∑

u∈�
deg(u)

where the maximum is taken over all self-avoiding paths � ⊂ T starting at ρ.

4.1 Colouring model

Next we prove two lemmas which will be used together with Lemma 4.1 to prove
relaxation bounds below.

Lemma 4.2 Let W be a star with center v and k leaves. Let

Q(σ (W )) = 1

Z
PW (σ (W ))

∏

w∈W

pw(σ(w))

where the pw are functions such that for all w ∈ W ,
∑

x∈C pw(x) = 1 and for all
w ∈ W,x ∈ C either pw(x) > (qδ)−1 or pw(x) = 0. Further assume that for some
c ≤ q − 3 we have that for all w ∈ W − v, #{x ∈ C : pw(x) = 0} ≤ c. Then the
relaxation time τ of the Gibbs sampler on Q is at most Ck where C is a constant
depending only on c, δ, q.
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Proof We first show that the chain is ergodic by constructing a path between any two
configurations σ and η with Q(σ ) and Q(η) > 0. Since for each leaf w there are at
least 3 colours x with pw(x) > 0 we can find a colour x(w) such that pw(x(w)) > 0
and σ(v) �= x(w) �= η(v). The path is constructed by changing the states of the
leaves to x(u), then changing the state of v to η(v), then finally changing the states
of the leaves to η(u). Now by the hypothesis there are at most qk+1 colourings of W
so Z ≤ qk+1 so we have that Q(σ ),Q(η) > (q2δ)−(k+1). For two adjacent states
σ and σ ′ with Q(σ ),Q(σ ′) > 0, we have Q(σ → σ ′) ≥ (qδ(k + 1))−1 and so
Q(σ, σ ′) ≥ (q2δ)−(k+1)(qδ(k + 1))−1. From Proposition 3.2 it now follows that

τ2 ≤ ((qδ(k + 1))2(q2δ)k+1)4 ≤ 4kq20kδ20k,

as needed. ��
Similarly, it is easy to see the following lemma.

Lemma 4.3 Let W be a graph with k vertices of maximum degree d. Let

Q(σ (W )) = 1

Z
PW (σ (W ))

∏

w∈W

pw(σ(wi ))

where the pw are functions such that for all w ∈ W ,
∑

x∈C pw(x) = 1 and for all
w ∈ W,x ∈ C either pw(x) > (qδ)−1 or pw(x) = 0. Further, for some c ≤ q−d−2
we have that for all w ∈ W , #{x ∈ C : pw(x) = 0} ≤ c. Then the relaxation time of
the Gibbs sampler on Q is at most Ck where C is a constant depending only on c, δ, d
and q.

We can now obtain polynomial mixing time results for the treelike blocks that will
be used in the construction.

Theorem 4.1 Let T ⊆ U ⊂ V such that T is a tree rooted at ρ and so that there are
no edges between T − {ρ} and U − T . Suppose that for all u ∈ T , #{v ∈ V − U :
(v, u) ∈ E} < c and that for each u ∈ T ,

sup
σ(∂+U Tu)

sup
x∈C

sup
y∈C:P

T+u (σ (u)=y|σ(∂+U Tu)) �=0

PT+u (σ (u) = x|σ(∂+T ))

PT+u (σ (u) = y|σ(∂+T ))
≤ δ (14)

For some l ≥ 1 assume there are at most l edges between {ρ} and U − T . Let τ
be the relaxation time of the continuous time Gibbs sampler on T . If q ≥ c + l + 2
then for any boundary condition η on ∂+T we have that τ ≤ Cm(T,ρ) where m(T, ρ)
is the maximal path density on T and where C is a constant depending only on c, δ, q
and l.

Proof We proceed by induction on m(T, ρ). If T is a single point then τ = 1 and so
τ ≤ Cm(T,ρ). Now suppose ρ has children u1, . . . , uk ∈ T . By induction the relax-
ation time of the Gibbs sampler on Tui , τi ≤ Cm(Tui ,ui ) and by the definition of the
maximal path density m(Tui , ui ) ≤ m(T, ρ)−k. Let τblock denote the block dynamics
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on T with blocks {{ρ}, Tu1 , . . . , Tuk }. Applying Lemma 4.1 and 4.2 we get that the
block dynamics satisfies τblock ≤ Ck . Then by Proposition 3.1 we have that

τ ≤ τblock max
i
{1, τi } ≤ CkCm(T,ρ)−k ≤ Cm(T,ρ)

which completes the result. ��
Lemma 4.3 above will be used for the analysis of blocks in the construction that do

contain cycles.

4.2 Hardcore model

Lemma 4.4 Let W be a graph and let

Q(σ (W )) = 1

Z
P̂W (σ (W ))

∏

w∈W

pw(σ(wi ))

where the pw are functions such that for some δ and all w ∈ W , δ < pw(0) < 1 and
pw(0) + pw(1) = 1. Then the relaxation time τ of the Gibbs sampler of Q satisfies
τ ≤ C |W | where C depends only on β and δ.

Proof We use the method of canonical paths from Proposition 3.3. Let σ and η be
two configurations with Q(σ ) and Q(η) > 0. We define the canonical path to be a
path which begins from σ , then sequentially changes states of all the vertices to 0 and
then sequentially changes the state of w ∈ W to 1 if η(w) = 1. Clearly each path is
of length at most 2|W |. Now suppose η′, η′′ is a step in some path. They must differ
at exactly one site w ∈ W and suppose that η′(w) = 1 and η′′(w) = 0. If (η′, η′′)
is in the canonical path γ(σ,η) then σ ≥ η′ under the canonical partial ordering. Now

P[η′ → η′′] = pw(0)
|W | ≥ δ

|W | . Then

∑

(σ,η):(η′,η′′)∈γ(σ,η)

P(σ )P(η)

P(η′, η′′)
≤

∑

σ :σ≥η′
P(σ )

P(η′, η′′)

= P[η′ → η′′]−1
∑

σ :σ≥η′
exp(β

∑
u σ(u))

∏
u pw(σ(u))

exp(β
∑

u η
′(u))

∏
u pw(η′(u))

≤ |W |
δ
(1+ exp(max(β, 0))δ−1)|W |.

Similarly the same bound holds for pairs with η′(w) = 0 and η′′(w) = 1 so ρ ≤
|W |
δ
(1+ exp(max(β, 0))δ−1)|W |. From Proposition 3.3 it now follows that

τ2 ≤ 2|W |2
δ

(1+ exp(max(β, 0))δ−1)|W | ≤ 10|W | exp(max(β, 0)|W |)δ−|W |,

as needed. ��
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Theorem 4.2 Let T ⊂ V be a tree rooted at ρ. Then for the continuous time
dynamics τ ≤ Cm(T,ρ) where m(T, ρ) is the maximal path density on T and where C
is a constant depending only on β.

Proof We proceed by induction on m(T, ρ). If T is a single point then τ = 1 and
so τ ≤ Cm(T,ρ). Now suppose ρ has children u1, . . . , uk ∈ T . By induction the
relaxation time of the Gibbs sampler on Tui satisfies τi ≤ Cm(Tui ,ui ). By definition
of the maximal path density m(Tui , ui ) ≤ m(T, ρ) − k. Let τblock denote the block
dynamics on T with blocks {{ρ}, Tu1 , . . . , Tuk }. We define W = {ρ, u1, . . . , uk} and
the distribution Q on CW by

Q(σ (W )) = 1

Z
P̂W (σ (W ))

∏

w∈W

pwi (σ (wi ))

and pwi is as in equation (11). Applying Lemma 4.1 with W = {ρ, u1, . . . , uk} implies
that τblock = τQ where τQ is the relaxation time of the Gibbs sampler on the measure
Q. In the hardcore model for any vertex v and any boundary condition σ(V −{v}) on
V − {v} we have that P(σ (v) = 0|σ(V − {v})) ≥ 1

1+eβ
, the probability that the spin

at v is 0 given that the spins of all its neighbors are 0, and so each pw(0) ≥ 1
1+eβ

. It

follows that in Lemma 4.4 we can take δ = 1
1+eβ

and so τblock ≤ Ck for sufficiently
large C . Then by Proposition 3.1 we have that

τ ≤ τblock max
i
{1, τi } ≤ CkCm(T,ρ)−k ≤ Cm(T,ρ)

which completes the result. ��

4.3 Soft constraint models

For soft constraint models, bounding the mixing time is simplified by the fact that
removing an edge adds at most a constant multiplicative factor to the relaxation time.

Theorem 4.3 Let τ be the relaxation time of the continuous time Gibbs sampler on a
tree T ⊂ V . Given arbitrary boundary conditions,

τ ≤ exp(4‖H‖m(T ))
where ‖H‖ is the norm of the Hamiltonian.

Proof We proceed by induction on m with a similar argument to the one used in [21]
for the Ising model. Note that if m = 0 the claim holds true since τ = 1. For the
general case, let v be the root of T , and denote its children by u1, . . . , uk and denote
the subtree of the descendants of ui by T i . Now let T ′ be the tree obtained by removing
the k edges from v to the ui , let P ′ be the model on T ′ and let τ ′ be the relaxation
time on T ′. By equation (8) we have that

τ/τ ′ ≤ maxσ P(σ )/P ′(σ )
minσ,τ P(σ, τ )/P ′(σ, τ )

≤ exp(4‖H‖k). (15)
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Now we divide T ′ into k + 1 blocks {{v}, T 1, . . . , T k}. Since these blocks are not
connected to each other the mixing time of the block dynamics is simply 1. By
applying Proposition 3.4 of [18] we get that the relaxation time on T ′ is simply the
maximum of the relaxation times on the blocks,

τ ′ ≤ max{1, τ i }.
where τ i is the relaxation time on T i . Note that by the definition of m, it follows
that the value of m for each of the subtrees T i satisfies m(T i ) ≤ m − k, and there-
fore for all i it holds that τ i ≤ exp(4‖H‖(m − k)). This then implies by (15) that
τ ≤ exp(4‖H‖m) as needed. ��

5 Correlation decay in tree blocks

In this subsection we prove that if we look at a tree block, all of whose leaves are
good, then for large enough q we have the correlation decay property (14).

Definition 5.1 For 0 < λ < 1 and U ⊂ V define the block boundary weighting as
the function defined by:

ψλ(v) = ψ(v) =
∑

w∈∂+U

λd(w,v),

for all v ∈ U .

Lemma 5.1 If every vertex in ∂+U is (c, α, ε)-good then for all λ ≤ α2,

ψ(v) ≤ ελ

α2

Proof Let v ∈ U and let u ∈ ∂+U be an exterior boundary vertex which minimizes
the distance to v. Then

ψα2(v) ≤
∑

w∈∂+U

α(d(v,u)+d(u,w)) ≤
∑

w �=u

αd(w,u) = ϕα(u) ≤ ε. (16)

and the result follows since for λ ≤ α2 we have ψλ(v) ≤ λ
α2ψα2(v). ��

5.1 Colouring

Lemma 5.2 Suppose that T = (VT , ET ) is an induced subgraph of G = (V, E) that
is a tree and suppose that for all v ∈ VT , ψ(v) ≤ 1. Then there exists a qλ such that
for q > qλ and all v ∈ VT :

sup
σ(∂+T )

sup
x∈C

sup
y∈C:P(σ (v)=y|σ(∂+T )) �=0

P(σ (v) = x|σ(∂+T ))

P(σ (v) = y|σ(∂+T ))
≤ exp(ψ(v)) (17)

where the supremum is over all boundary conditions σ(∂+T ) on ∂+T .
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Proof Fix v as the root of the tree. We will prove the result by induction on the size of
the tree. When the tree consists of a single vertex v the quantity in the left hand side
of (17) is clearly 1.

Let u1, . . . , ul be the children of v in T . Consider the graph G ′ = (V ′, E ′) obtained
from G by removing the vertex v and all adjacent edges. Let

δi = sup
σ(∂+T Tui )

sup
x∈C

sup
y∈C:P

T+ui
(σ (ui )=y|σ(∂+T Tui )) �=0

PT+ui
(σ (ui ) = x|σ(∂+T Tui ))

PT+ui
(σ (ui ) = y|σ(∂+T Tui ))

(18)

For w′ ∈ Tui write ψi (w
′) = ∑

w∈∂+T Tui
λd(w,w′). Note that ψi is the function ψ for

the subtree Tui in the graph G ′. Note moreover that for allw we have ψi (w) ≤ ψ(w).
By the induction hypothesis we therefore have δi ≤ exp(ψi (ui )). Let di = #{w ∈
V ′ \ Tui : (w, ui ) ∈ E} and note that there are at least q − di elements y ∈ C with
PT+ui

(σ (v) = y|σ(∂+Tui )) > 0 so

min
y
{PT+ui

(σ (v) = y|σ(∂+Tui )) : PT+ui
(σ (v) = y|σ(∂+Tui )) > 0} ≤ 1

q − di

and so by (18) we have

max
y

PT+ui
(σ (v) = y|σ(∂+Tui )) ≤

δi

q − di
. (19)

Since diλ ≤ ψi (ui ) ≤ 1, taking q > 2/λ yields q − di > q/2. When 0 ≤ x ≤ 1 we
have ex − 1 ≤ 2x so δi − 1 ≤ 2ψ(x). And since x

1−x is increasing in x

sup
1− PT+ui

(σ (v) = x|σ(∂+Tui ))

1− PT+ui
(σ (v) = y|σ(∂+Tui ))

= 1+ sup
PT+ui

(σ (v) = y|σ(∂+Tui ))− PT+ui
(σ (v) = x|σ(∂+Tui ))

1− PT+ui
(σ (v) = y|σ(∂+Tui ))

≤ 1+
δi−1{di=0}

q−di

1− δi
q−di

(By (19) and since x
1−x is increasing)

= 1+ δi − 1{di=0}
q − di − δi

≤ 1+ δi − 1{di=0}
q/2− e

(since δi ≤ e and q − di > q/2)

≤ 1+ 4(δi − 1{di=0})
q

(taking q ≥ 4e)
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≤ 1+ 8ψi (ui )+ 4di

q
(since δi − 1 ≤ 2ψ(x))

≤ exp

(
8ψi (ui )+ 4di

q

)

where the supremum is taken over all x, y ∈ C and boundary conditions on ∂+Tu .
Now note ψ(v) ≥ λ∑

i ψi (ui ) (it may be strictly greater due to the contribution of
the neighbors of v outside T ). Therefore:

sup
σ(∂+T )

sup
x∈C

sup
y∈C:P(σ (v)=y|σ(∂+T )) �=0

P(σ (v) = x|σ(∂+T ))

P(σ (v) = y|σ(∂+T ))

=
∏

i

sup
1− PTui

(σ (v) = x|σ(∂+Tui ))

1− PTui
(σ (v) = y|σ(∂+Tui ))

≤ exp

(
8ψi (ui )+ 4di

q

)

≤ exp

([
8

qλ
+ 4

qλ2

]

ψ(v)

)

which completes the induction provided that q is large enough so that

q ≥ max
(

4e, 8
λ
+ 4

λ2

)
. ��

The following corollary follows immediately from Lemma 5.2 and Lemma 5.1.

Corollary 5.1 For all c, α > 0 and ε > 0 there exists a q for which the following
holds. Let T ⊂ V be a tree such that every vertex in ∂+T is (c, α, ε)-good. Then for
any 0 < λ < 1 there exists a qλ such that for q > qλ,

sup
σ(∂+T )

sup
x∈C

sup
y∈C:P(σ (v)=y|σ(∂+T )) �=0

P(σ (v) = x|σ(∂+T ))

P(σ (v) = y|σ(∂+T ))
≤ exp

⎛

⎝
∑

w∈∂+T

λd(w,v)

⎞

⎠

where the supremum is over all boundary conditions σ(∂+U ) on ∂+U.

5.2 Hardcore model

Lemma 5.3 Suppose that T = (VT , ET ) is an induced subgraph of G = (V, E) that
is a tree. For v ∈ VT and η a boundary condition on ∂+T let Pη denote the measure
P(σ (v) = ·|σ(∂+U )). Then if βλ = log λ then for all β < βλ and v ∈ VT :

dT V (P
η1
, Pη

2
) ≤ ψλ(v) (20)

for any two boundary conditions η1 and η2 on ∂+T where dT V is the total variation
distance.
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Proof Since the left hand side of equation (20) is bounded by 1 we can assume that
ψ(v) ≤ 1. Fix v as the root of the tree. We will prove the result by induction on the
size of the tree. Let u1, . . . , ul be the children of v in U and let w1, . . . , wm be the
children of v in ∂+T . Consider the graph G ′ = (V ′, E ′) obtained from G by removing
the vertex v and all adjacent edges and let PηTui

denote P ′(σ (ui ) = ·|η). Then

dT V (P
η1
, Pη

2
) =

∣
∣
∣P(σ (v) = 0|η1)− P(σ (v) = 0|η2)

∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

1

1+ eβ
∏l

i=1 Pη
1

Tui
(0)

∏m
i=1 1{η1

wi=0}
− 1

1+ eβ
∏l

i=1 Pη
2

Tui
(0)

∏m
i=1 1{η2

wi=0}

∣
∣
∣
∣
∣
∣
∣

≤ eβ
∣
∣
∣
∣
∣

l∏

i=1

Pη
1

Tui
(0)

m∏

i=1

1{η1
wi=0} −

l∏

i=1

Pη
2

Tui
(0)

m∏

i=1

1{η2
wi=0}

∣
∣
∣
∣
∣

≤
{
λ m ≥ 1

eβ
∣
∣
∣
∏l

i=1 Pη
1

Tui
(0)−∏l

i=1 Pη
2

Tui
(0)

∣
∣
∣ m = 0

(21)

Now if m ≥ 1 then ψ(v) ≥ λ so dT V (Pη
1
, Pη

2
) ≤ ψ(v). This establishes equation

(20) for trees of size 1. We now proceed by induction.
Observe the simple inequality that if 0 ≤ x1, . . . ,xq ≤ 1 and 0 ≤ y1, . . . , yq ≤ 1

then

∣
∣
∣
∣
∣

q∏

l=1

xl −
q∏

l=1

yl

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

q∑

j=1

(x j − y j )

j−1∏

l=1

xl

q∏

l= j+1

yl

∣
∣
∣
∣
∣
∣

≤
q∑

j=1

∣
∣x j − y j

∣
∣ . (22)

Applying equation (22) to equation (21) we get that when m = 0,

dT V (P
η1
, Pη

2
) ≤ eβ

l∑

i=1

∣
∣
∣Pη

1

Tui
(0)− Pη

2

Tui
(0)

∣
∣
∣ .

By the inductive hypothesis applied to the tree Tui , we have that

|Pη1

Tui
(0)− Pη

2

Tui
(0)| ≤

∑

w∈∂+Tui

λd(w,ui ) = 1

λ

∑

w∈∂+Tui

λd(w,v)

so
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dT V (P
η1
, Pη

2
) ≤ eβ

l∑

i=1

|Pη1

Tui
(0)− Pη

2

Tui
(0)| ≤ ψ(v)

which completes the induction. ��

5.3 Soft constraint models

Lemma 5.4 Suppose that T = (VT , ET ) is an induced subgraph of G = (V, E) that
is a tree. For v ∈ VT and η a boundary condition on ∂+T let Pη denote the measure
P(σ (v) = ·|σ(∂+U )). Then there exists an Hλ > 0 depending only on λ such that if
‖H‖ < Hλ and v ∈ VT :

dT V (P
η1
, Pη

2
) ≤ ψλ(v) (23)

for any two boundary conditions η1 and η2 on ∂+T where dT V is the total variation
distance.

Proof Since the left hand side of equation (23) is bounded by 1 we can assume that
ψ(v) ≤ 1. Let K = 4(e‖H‖ − e−‖H‖). We can take Hλ to be small enough so that
4K < λ and for 0 ≤ x ≤ 1/λ we have exp(−xK ) ≤ 1 − xK/2 and exp(2Kx) ≤
1 + 4Kx. Fix v as the root of the tree. We will prove the result by induction on the
size of the tree. Let u1, . . . , ul be the children of v in U and let ul+1, . . . , um be the
children of v in ∂+T . Consider the graph G ′ = (V ′, E ′) obtained from G by removing
the vertex v and all adjacent edges, let P ′ denote the induced soft constraint model on
G ′ and let PηTui

denote P ′(σ (ui ) = ·|η). Then for all i and z ∈ C,

∑
yi∈C eg(z,yi )Pη

1

Tui
(yi )

∑
yi∈C eg(z,yi )Pη

2

Tui
(yi )
= 1−

∑
yi∈C eg(z,yi )

(
Pη

2

Tui
(yi )− Pη

1

Tui
(yi )

)

∑
yi∈C eg(z,yi )Pη

2

Tui
(yi )

≥ 1− 2
(

e‖H‖ − e−‖H‖
)

dT V

(
Pη

1

Tui
, Pη

2

Tui

)

≥ exp
(
−KdT V

(
Pη

1

Tui
, Pη

2

Tui

))

Similarly we have

∑
yi∈C eg(z,yi )Pη

1

Tui
(yi )

∑
yi∈C eg(z,yi )Pη

2

Tui
(yi )
≤ exp

(
KdT V

(
Pη

1

Tui
, Pη

2

Tui

))
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Then for each x ∈ C,

Pη
1
(v)(x)

Pη2
(v)(x)

=
eh(x)∏m

i=1
∑

yi∈C eg(x,yi )Pη
1

Tui
(yi )

∑
z∈C eh(z)∏m

i=1
∑

yi∈C eg(z,yi )Pη
1

Tui
(yi )

/ eh(x)∏m
i=1

∑
yi∈C eg(x,yi )Pη

2

Tui
(yi )

∑
z∈C eh(z)∏m

i=1
∑

yi∈C eg(z,yi )Pη
2

Tui
(yi )

=
eh(x)∏m

i=1
∑

yi∈C eg(x,yi )Pη
1

Tui
(yi )

eh(x)∏m
i=1

∑
yi∈C eg(x,yi )Pη

2

Tui
(yi )

/
∑

z∈C eh(z)∏m
i=1

∑
yi∈C eg(z,yi )Pη

1

Tui
(yi )

∑
z∈C eh(z)∏m

i=1
∑

yi∈C eg(z,yi )Pη
2

Tui
(yi )

≤ exp

⎛

⎝2K
m∑

i=1

dT V (P
η1

Tui
, Pη

2

Tui
)

⎞

⎠ .

Then

dT V (P
η1
, Pη

2
) =

∑

x∈C

∣
∣
∣Pη

1
(x)− Pη

2
(x)

∣
∣
∣

=
∑

x∈C
Pη

2
(x)

∣
∣
∣
∣
∣

Pη
1
(x)

Pη2
(x)
− 1

∣
∣
∣
∣
∣

≤ exp

(

2K
m∑

i=1

dT V (P
η1

Tui
, Pη

2

Tui
)

)

− 1

Now suppose that T is a single vertex {v} so u1, . . . um are all in ∂+T and so ψ(v) =
mλ. If m = 0 then dT V (Pη

1
, Pη

2
) = ψ(v) = 0. If 1 ≤ m ≤ 1/λ then

dT V (P
η1
, Pη

2
) ≤ exp(2K m)− 1 ≤ 4K m ≤ λm = ψ(v)

while if m > 1/λ then ψ(v) > 1. So this verifies the case when T is a single point.
For the induction step our inductive hypothesis says that

dT V

(
Pη

1

Tui
, Pη

2

Tui

)
≤

∑

w∈∂+Tui

λd(w,ui ) = 1

λ

∑

w∈∂+Tui

λd(w,v).

If ψ(v) ≤ 1 then
∑m

i=1 dT V

(
Pη

1

Tui
, Pη

2

Tui

)
≤ 1

λ
and so

dT V (P
η1
, Pη

2
) ≤ exp

(

2K
m∑

i=1

dT V (P
η1

Tui
, Pη

2

Tui
)

)

−1 ≤ 4KdT V

(
Pη

1

Tui
, Pη

2

Tui

)
≤ ψ(v)

which completes the induction. ��
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6 Block construction

Lemma 6.1 For two (c, α, ε)-bad points u, u′ we define u ∼ u′ if there is a path
u = u1, u2, . . . , uk = u′ such that no two consecutive vertices on the path ui , ui+1
are (c, α, ε)-good. Then ∼ is an equivalence relation of (c, α, ε)-bad vertices in G.

Proof The relation is clearly reflexive and symmetric. Suppose that there is a path
u ∼ u′ and u ∼ u′′. Then there exist paths u = v1, v2, . . . , vk = u′ and u =
w1, w2, . . . , wl = u′′ such that no two consecutive vertices are (c, α, ε)-good. Let
i = max( j : v j ∈ {w1, w2, . . . , wl}) and suppose that vi = w j . Then the path
u′ = vk, vk−1, . . . , vi , w j+1, w j+2, . . . , wl = u′′ is a path with no two consecu-
tive (c, α, ε)-good vertices so u′ ∼ u′′. Hence ∼ is transitive and is an equivalence
relation. ��

We now describe our method for partitioning G into smaller blocks for some fixed
(c, α, ε).

• Two (c, α, ε)-bad points u, u′ are in the same block if and only if u ∼ u′.
• A (c, α, ε)-good vertex is in the same block as any bad point it is adjacent to.
• A (c, α, ε)-good vertex not adjacent to any bad point forms a separate block

By Lemma 6.1 the first point defines a partition of the (c, α, ε)-bad vertices. If a good
vertex v is adjacent to bad vertices u1 and u2 then u1, v, u2 has no two consecutive
good points so u1 ∼ u2 and hence good points are assigned to exactly one block.
Hence this defines a partition of G into blocks whose boundaries are all (c, α, ε)-
good. We will abuse notation and let ∼ denote the equivalence relation on all G for
this partition.

Lemma 6.2 Suppose that G satisfies equation (4). Then for any 0 < L < ∞ there
exists (c, α, ε) such that every self-avoiding path u1, u2, . . . , uL log n contains two
consecutive (c, α, ε)-good vertices ui , ui+1.

Proof We can assume that L ≤ a and set ε = 3δ
L . Then since

∑L log n
i=1 ϕα(ui ) < δ log n

at most L
3 log n of the ui have ϕα(ui ) ≥ ε. If c = ε

α
and if ϕα(ui ) < ε then

deg(ui ) =
∑

u:(u,ui )∈E

αd(u,ui )−1 ≤ 1

α
ϕα(ui ) < c

so ui is (c, α, ε)-good. Since the path u1, u2, . . . , uL log n contains at least 2
3 L

log n(c, α, ε)-good vertices it must contain two consecutive good vertices. ��
The following corollary is immediate from the definition of the equivalence rela-

tion.

Corollary 6.1 Suppose that G satisfies equation (4). Then for any 0 < L <∞ there
exists (c, α, ε) such that if u ∼ v then d(u, v) < L log n.
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Our next step is to define a partition of the graph into blocks whose boundaries are
good vertices and such that each block is either a tree or a tree plus some bounded
number of edges. The decomposition into blocks relies on the following combinatorial
lemma.

Lemma 6.3 Consider a graph G = (V, E) where V is the disjoint union of VG and
VB. Assume further that for all v ∈ V it holds that t (v, a log n) ≤ t and that every
self avoiding path u1, . . . , uL log n contains two consecutive elements in VG, where
(20t + 2)L < a. Then we can partition G into blocks {Vj } such there is at most one
edge between any two blocks. Moreover, for all j , the diameter of Vj is less than
(20t + 2)L log n, it holds that ∂Vj ⊂ VG, and Vj satisfies one of the following

• It is a tree.
• There exist vertices wi and disjoint subsets Ui ⊂ Vj such that each Ui is a tree

of depth at most 2L log n, V j = ∪iUi and wi ∈ Ui , there are no edges between
Ui − wi and Vj −Ui . Furthermore the distance between ∂Vj and W j = ∪iwi is
at least L log n and the subgraph W j has |W j | ≤ 20t L log n and largest degree
at most 2t .

Corollary 6.2 Suppose that G satisfies equation (4). Then there exists 0 < L < ∞
and (c, α, ε) such that we can partition G into blocks {Vj } such there is at most one
edge between any two blocks. Moreover, for all j , the diameter of Vj is less than
(20t + 2)L log n, it holds that ∂Vj ⊂ VG, and Vj satisfies one of the following

• It is a tree.
• There exist vertices wi and disjoint subsets Ui ⊂ Vj such that each Ui is a tree

of depth at most 2L log n, V j = ∪iUi and wi ∈ Ui , there are no edges between
Ui − wi and Vj −Ui . Furthermore the distance between ∂Vj and W j = ∪iwi is
at least L log n and the subgraph W j has |W j | ≤ 20t L log n and largest degree
at most 2t .

Proof Letting VG be the set of good vertices and VB the set of bad vertices, the proof
of the corollary follows from Lemma 6.3 by taking L such that (20t + 2)L < a and
choosing (c, α, ε) according to Corollary 6.1. ��
We now prove Lemma 6.3.

Proof The first step of the proof will be the construction of W = ∪W j ⊂ V . Beginning
with W as the empty set we can add to W in three ways:

• If u1, u2, . . . , um is a self-avoiding path of vertices in V −W such that u1 and um

are adjacent and 3 ≤ m < 5L log n then add {u1, u2, . . . , um} to W .
• If u1, u2, . . . , um is a self-avoiding path in V − W such that both u1 and um are

adjacent to W and 2 ≤ m < 5L log n then add {u1, u2, . . . , um} to W .
• If u1 is adjacent to two vertices in W then add {u1} to W .

The construction of W ends when no more additions are possible.

Claim 1 W does not depend on the order of the additions.
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Proof Note that if W ′ and W ′′ are two different W ’s obtained for different order of
additions then one may add all elements in W ′ \W ′′ to W ′ and vice-versa. ��
Claim 2 At each stage of the construction no connected component W j of W is a
tree; each connected component W j of W has

|W j | ≤ (10Lt (W j )− 5L) log n,

where t (W j ) is the tree excess of W j .

Proof We split the additions into three cases. If u1, u2, . . . , um is not adjacent to
any component of W then this creates a new component Wnew of W . This must be
achieved by an addition of the first type. The new component must contain a loop
and have tree excess at least 1 and |Wnew| is less than 5L log n which is less than
(10Lt (Wnew)− 5L) log n.

Next suppose that an addition u1, u2, . . . , um is adjacent to exactly one existing
component Wold of W . Then the addition forms a new component Wnew which con-
tains a new loop so t (Wnew) ≥ t (Wold)+ 1. On the other hand

|Wnew| ≤ (10Lt (Wold)− 5L + 5L) log n ≤ (10Lt (Wnew)− 5L) log n.

Finally the addition u1, u2, . . . , um may be adjacent to two or more components
W1, . . . ,Wk of W and so forms one new component Wnew from these. Then t (Wnew) ≥∑l

j=1 t (W j ) and

|Wnew| ≤ 5L log n+
∑
|W j | ≤ (10Lt (Wnew)− 5L) log n.

��
Claim 3 When the construction of W is completed, each component W j of W is of size
at most 20t L log n and tree excess at most t . The distance between two components
of W is at least 5L log n. All the degrees in W are bounded between 1 and 2t .

Proof We have seen that at each of the additions the tree excess of a component
increases by at least one. Suppose one of the components of W satisfies |W j | >
20t L log n. If at some point in the construction the maximum diameter of a compo-
nent is D then after an addition the new maximum diameter is at most 2D+ 5L log n.
So at some point in the construction there must have been a component W j with

(

10t − 5

2

)

L log n ≤ |W j | ≤ 20t L log n.

Let v ∈ W j . Then W j ⊂ B(v, 20t L log n) so t (W j ) ≤ t (v, 20t L log n) ≤ t . Then

|W j | < (10Lt (W j )− 5L) log n ≤ (10t − 5)L log n,

which is a contradiction. Hence every component of W has size at most 20t L log n
and tree excess at most t . By construction all components are separated by distance at
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least 5L log n. Since the tree excess is at most t and by construction W has no leaves
the largest degree is at most 2t . ��

As in Lemma 6.1 for u, u′ ∈ VB we write u ∼ u′ if there is a path connecting u to
u′ with no two consecutive vertices belonging to VG . For each component W j of W
we define Vj as

Vj := {u ∈ V : ∃u′ ∈ V, u ∼ u′, d(u′,W j ) ≤ L}

By construction W j ⊂ Vj and if d(u,W j ) ≤ L log n then u ∈ Vj while if d(u, w j ) ≥
2L log n then by Corollary 6.1 u �∈ Vj . It follows that the components Vj are disjoint
and are not adjacent. We will show that the components satisfy the hypothesis of the
lemma.

Suppose that there exist two self-avoiding paths u0, u1, . . . , ul and v0, v1, . . . , vm

with ul = vm , u0, v0 ∈ W j and u1, . . . , ul , v1, . . . , vm ∈ Vj −W j which are not iden-
tical, (i.e. for some i , ui �= vi ). If l+m ≤ 5L log n then u0, u1, . . . , ul , v0, v1, . . . , vm

must contain a loop of length less than 5L log n which could be added to W contradict-
ing our assumption. So without loss of generality l ≥ 5

2 L log n. Then there exists u′
with u′ ∼ u 5

2 L log n and d(u′,W j ) ≤ L log n. Then there exists a path in the equiva-

lence class of u′ from u 5
2 L log n to u′ with length at most L log n. Since d(u′, w) ≤ L

for some w ∈ W there also exists a path from u′ to w in {u : d(u,W ) ≤ L} ⊂ Vj

with length at most L log n. Combining these paths there is a path from u 5
2 L log n to w

in Vj of length at most 2L log n. Combining this path with u0, u1, . . . , u 5
2 L log n we

must have a loop of length at most 9
2 L log n. But this could be an addition to W which

is a contradiction. Hence for each u ∈ Vj − W j there is a unique self-avoiding path
from u to W j in Vj −W j . It follows that we can partition Vj into {Ui } as required.

Those points in VB that are not in some Vj can be placed in blocks according to their
equivalence class from the relation ∼. All such extra blocks are trees of maximum
diameter L log n. Finally, vertices v ∈ VG belong to the block defined by u ∈ VB if
(u, v) is an edge E and if no such edge exists v is a separate block. ��

7 Block relaxation times

7.1 Colouring model

Lemma 7.1 Suppose that G satisfies equation (4). For sufficiently large q the relax-
ation times of the Gibbs sampler on each of the blocks constructed in Lemma 6.3 is
bounded by nC .

Proof In the blocks Vj which are trees any path is of length at most 20t L log n so

m(Vj , v) ≤ 1

α
mα(Vj , 20t L log n) ≤

(

1+ 20t L

a

)
δ

α
log n.

By Theorem 4.1 and Lemma 5.2 the relaxation time is bounded by nC .
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Now consider a block Vj of the second type. We divide Vj into its sub-blocks Ui .
Each Ui is a tree and every v ∈ ∂+Vj

Ui is (c, α, ε)-good. Any path in Ui has length at
most 2L log n so

m(Ui , wi ) ≤ 1

α
mα(Ui , 2L log n) ≤

(

1+ 2L

a

)
δ

α
log n.

Then by Theorem 4.1 and Lemma 5.2 the relaxation time of the Gibbs sampler on
each Ui is bounded by nC ′ .

Take q sufficiently large so that Lemma 5.2 holds with log λ < −4/L . Then for
wi ∈ W j ,

sup
σ(∂+V j

Ui )

sup
x,y∈C

PUi∪∂+V j
Ui
(σ (wi ) = x|σ(∂+Vj

Ui ))

PUi∪∂+V j
(σ (wi ) = y|σ(∂+Vj

Ui ))
≤ exp

⎛

⎜
⎜
⎝

∑

v∈∂+V j
Ui

λd(wi ,v)

⎞

⎟
⎟
⎠ (24)

≤ exp

⎛

⎜
⎜
⎝

∑

v∈∂+V j
Ui

λL log n

⎞

⎟
⎟
⎠ (25)

≤ exp(n−3) (26)

so P(σ (wi ) = x|σ(∂+Vj
Ui )) ≥ q−1 exp(−n−3). Then by Lemmas 4.1 and 4.3 the

relaxation time of the block dynamics with blocks {Ui } is bounded by nC ′′ . Then by
Proposition 3.1 we have that the relaxation time of the Gibbs sampler on Vj is bounded
by nC . ��

7.2 Hardcore model

Lemma 7.2 Suppose that G satisfies equation (4). For sufficiently small β the relax-
ation times of the Gibbs sampler on each of the blocks constructed in Lemma 6.3 is
bounded by nC .

Proof In the blocks Vj which are trees, any path is of length at most 20t L log n so

m(Vj , v) ≤ 1

α
mα(Vj , 20t L log n) ≤

(

1+ 20t L

a

)
δ

α
log n.

By Theorem 4.2 the relaxation time is bounded by nC .
Now consider a block Vj of the second type. By Lemmas 4.1 and 4.4 the relaxation

time of the block dynamics with blocks {Ui } is bounded by nC ′′ . Then by Proposition
3.1 we have that the relaxation time of the Gibbs sampler on Vj is bounded by nC .

��
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7.3 Soft constraints

Lemma 7.3 Suppose that G satisfies equation (4). For small ‖H‖ the relaxation times
of the Gibbs sampler on each of the blocks constructed in Lemma 6.3 is bounded by
nC .

Proof In the blocks Vj which are trees any path is of length at most 20t L log n so

m(Vj , v) ≤ 1

α
mα(Vj , 20t L log n) ≤

(

1+ 20t L

a

)
δ

α
log n.

By Theorem 4.3 the relaxation time is bounded by nC .
Now consider a block Vj of the second type. Let V ′j be the block obtained by

removing each of the edges in the skeleton W j and let τ ′ be the relaxation time on V ′j .
In the proof of Lemma 4.3 we showed that removing an edge affects the relaxation
time by a factor of at most exp(4‖H‖) so τ ≤ n80‖H‖tτ ′. In V ′j each of the trees Ui is
separated so τ ′ is simply the maximum of the relaxation times of the Ui . By Theorem
4.3 the relaxation time is bounded by nC ′ so each of the Ui are bounded by nC ′ so
τ ≤ nC . ��

8 Mixing time of block dynamics

We use the partition from Lemma 6.3 as blocks for the block dynamics of the Gibbs
sampler and use path coupling to bound the mixing time of the block dynamics. Let
dH denote the hamming distance of two distributions. Suppose that T ⊂ V is a tree, let
v ∈ ∂+T be (c, α, ε)-good and let η, η′ be two boundary conditions on ∂+Vj which
differ only at v and suppose that ρ is the only vertex in T adjacent to v. We must
couple two states σ(T ), σ ′(T ) so that they are distributed as Q and Q′ respectively
where Q(σ (T )) = P(σ (T )|η) and Q′(σ ′(T )) = P(σ ′(T )|η′). This can be done as
follows. Root T at ρ and let←−u denote the parent of u ∈ T . First couple σ(ρ) and
σ ′(ρ) according to their marginal distributions P(σ (ρ)|η) and Q′(σ ′(ρ)|η′) so as to
minimize their total variation distance. Proceed inductively down the tree by coupling
σ(u) and σ ′(u) according to P(σ (u)|η, σ (←−u )) and P(σ ′(u)|η, σ ′(←−u )) so as to min-
imize the total variation distance. When σ(←−u ) = σ ′(←−u ) then σ(u) = σ ′(u). We will
show that we can bound the expected hamming distance of these coupled distributions.

8.1 Colouring model

Lemma 8.1 Let T be a tree such that ψ(u) =∑
w∈∂+T λ

d(w,u) < ε for all u ∈ T . If
δ > 0 then for some sufficiently large q = q(δ, ε, λ), the above coupling has

EdH (σ (T ), σ
′(T )) ≤ δ.

Proof Recalling that v is good, fixing 0 < γ < δε
α

we have that ϕγ (v) < δ. For all
u ∈ T we have that #{w ∈ V − T : (w, u) ∈ E} ≤ ε/λ. By Lemma 5.2 we choose q
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large enough so that for each u ∈ T and x ∈ C, P(σ (u) = x|η) < γ/2. Then

dT V (P(σ (u) = ·|η, σ (←−u )), P(σ (u) = ·|η, σ ′(←−u ))) ≤ 2 max
x

P(σ (u) = x|η) < γ.

So given that σ(←−u ) and σ ′(←−u ) disagree then σ(u) and σ ′(u) disagree with probabil-
ity at most γ . It follows that the probability that σ(u) and σ ′(u) disagree is at most
γ d(u,v) and so EdH (σ (T ), σ ′(T )) ≤∑

u∈T γ
d(u,v) ≤ ϕγ (v) < δ as required. ��

Lemma 8.2 Let Vj be a block constructed from Lemma 6.3. If v ∈ ∂+Vj and
η, η′ are boundary conditions on ∂+Vj which differ only at v then for sufficiently
large q = q(a, α, t, δ) we can couple colourings σ(Vj ), σ

′(Vj ) distributed as
P(σ (Vj )|η), P(σ ′(Vj )|η′) respectively so that

EdH (σ (Vj ), σ
′(Vj )) ≤ δ.

Proof The case when Vj is a tree follows by Lemma 8.1 so we consider the blocks of
the second type. Let v be adjacent to Ui . If σ 1(W j ) and σ 2(W j ) are two colourings
of W j then by equation (24)

P(σ 1(W j )|η)
P(σ 2(W j )|η) =

∏

i

P(σ 1(wi )|η(∂+Vj
Ui ))

P(σ 2(wi )|η(∂+Vj
Ui ))

≤
∏

i

exp(n−3) ≤ exp(n−2)

and so the total variation distance between P(σ (W j )|η) and the free measure on
colourings on W j is O(n−2). It follows that we can couple σ(W j ) and σ ′(W j ) so
that they agree with probability 1 − O(n−2). On the event they disagree there are at
most |Vj | ≤ n disagreements so this event contributes O(n−1) disagreements to the
expected value. So now on the event that σ(W j ) = σ ′(W j ) for all k �= i we can set
σ(Uk − {wk}) = σ ′(Uk − {wk}) since they have the same boundary conditions. This
just leaves σ(Ui − {wi }) and σ ′(Ui − {wi }) to be coupled. Now Ui − {wi } is a tree
which has every boundary vertex (c, α, ε)-good except perhaps wi . Then repeating
the argument of Corollary 5.1 we have that when λ = α2

ψ(u) ≤ λ+
∑

u′∈∂+Ui−{wi }
λd(u′,u) ≤ λ+ ε.

Applying Lemma 8.1 to Ui − {wi } completes the result. ��
Lemma 8.3 There exists q̄ such that for q > q̄ the relaxation time of the discrete time
block dynamics with blocks {Vj } from Lemma 6.3 is O(n).

Proof Choose q large enough so that in Lemma 8.2 we can take δ < 1
c . By the method

of path coupling described in Section 3.4 it is sufficient to show that if σ0, σ
′
0 are two

colourings with dH (σ0, σ
′
0) = 1 differing only at v then we can couple one step of the

block dynamics so that the new pair σ1, σ
′
1 has

Ed(σ1, σ
′
1) ≤ 1− β/n
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for some β > 0. Let K be the number of blocks. We couple them as follows. If the
block Vj chosen by the block dynamics contains v then we set σ(Vj ) = σ ′(Vj ) and
have d(σ1, σ

′
1) = 1. If the block chosen is adjacent to v then we couple Vj accord-

ing to Lemma 8.2. The expected number of new disagreements is at most δ. If Vj

neither contains nor is adjacent to v then we set σ(Vj ) = σ ′(Vj ) and the number of
disagreements does not change. Now if v is adjacent to some blocks Vj it must be in
the boundary and so therefore must be (c, α, ε)-good. Since it has degree at most c it
is adjacent to at most c blocks so

Ed(σ1, σ
′
1) ≤ 1− 1

K
+ c

δ

K
≤ 1− β/n

where β = 1− cδ which completes the proof. ��

8.2 Hardcore model

Lemma 8.4 Let T be a tree such that ψ(u) =∑
w∈∂+T λ

d(w,u) < ε for all u ∈ T . If
δ > 0 then there exists β∗ = β∗(δ, λ, ε) such that if β < β∗, the above coupling has

EdH (σ (T ), σ
′(T )) ≤ δ.

Proof Let γ > 0 such thatϕγ (v) < δ. We can chooseβ small enough so that eβ
1+β < γ .

For all u ∈ T , P(σ (u) = 1|η) ≤ P(σ (u) = 1|σ(V − {u}) ≡ 0) = eβ
1+β < γ . Then

dT V (P(σ (u) = ·|η, σ (←−u )), P(σ (u) = ·|η, σ ′(←−u )))
≤ ∣

∣P(σ (u) = 1|η, σ (←−u ))− P(σ (u) = 1|η, σ ′(←−u ))∣∣ < γ.

So given that σ(←−u ) and σ ′(←−u ) disagree then σ(u) and σ ′(u) disagree with probabil-
ity at most γ . It follows that the probability that σ(u) and σ ′(u) disagree is at most
γ d(u,v) and so EdH (σ (T ), σ ′(T )) ≤∑

u∈T γ
d(u,v) ≤ ϕγ (v) < δ as required. ��

The following results follow similarly to the colouring model.

Lemma 8.5 Let Vj be a block constructed from Lemma 6.3. For δ > 0 there exists
β∗ = β∗(a, α, t, δ) such that for β < β∗ if v ∈ ∂+Vj and η, η′ are boundary
conditions on ∂+Vj which differ only at v then we can couple states σ(Vj ), σ

′(Vj )

distributed as P(σ (Vj )|η), P(σ ′(Vj )|η′) respectively so that

EdH (σ (Vj ), σ
′(Vj )) ≤ δ.

Lemma 8.6 There exists β∗ = β∗(a, α, t, δ) such that for β < β∗ the relaxation time
of the block dynamics with blocks {Vj } from Lemma 6.3 is O(n).
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8.3 Soft constraints model

Lemma 8.7 Let T be a tree such that ψ(u) = ∑
w∈∂+T λ

d(w,u) < ε for all u ∈ T .
If δ > 0 then there exists H∗ = H∗(δ, λ, ε) > 0 such that if ‖H‖ < H∗, the above
coupling has

EdH (σ (T ), σ
′(T )) ≤ δ.

Proof Let γ > 0 such that ϕγ (v) < δ. Repeating the argument of Lemma 5.3 we can
choose ‖H‖ small enough so that

dT V (P(σ (u) = ·|η, σ (←−u )), P(σ (u) = ·|η, σ ′(←−u ))) < γ.

The remainder of the proof follows similarly from Lemma 8.4. ��
The following results follow similarly from the colouring model.

Lemma 8.8 Let Vj be a block constructed from Lemma 6.3. For δ > 0 there exists
H∗ = H∗(a, α, t, δ) such that for ‖H‖ < H∗ if v ∈ ∂+Vj and η, η′ are boundary
conditions on ∂+Vj which differ only at v then we can couple states σ(Vj ), σ

′(Vj )

distributed as P(σ (Vj )|η), P(σ ′(Vj )|η′) respectively so that

EdH (σ (Vj ), σ
′(Vj )) ≤ δ.

Lemma 8.9 There exists H∗ = H∗(a, α, t, δ) such that for ‖H‖ < H∗ the relaxation
time of the block dynamics with blocks {Vj } from Lemma 6.3 is O(n).

9 Main results

The main results now follows easily using the block dynamics approach of Proposition
3.1.

Proof (Theorem 1.2) For large enough q, by Lemma 8.3 the relaxation time of the
block dynamics of the Gibbs sampler on G with blocks {Vj } from Lemma 6.3 is O(n).
By Lemma 7.1 the relaxation time of the Gibbs sampler on each block is bounded by
nC ′ . Then by Proposition 3.1 we have that the relaxation time is O(nC ′+1). There are
at most qn colourings of G so log(1/minσ P(σ )) ≤ n log q so the mixing time of the
Gibbs sampler is bounded by O(nC ′+2) which completes the result. ��

The proofs of Theorems 1.4 and 1.6 follow similarly.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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