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Abstract

Longitudinal Cluster Analysis with Applications to Growth Trajectories

by

Brianna Christine Heggeseth

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Nicholas Jewell, Chair

Longitudinal studies play a prominent role in health, social, and behavioral sciences as well
as in the biological sciences, economics, and marketing. By following subjects over time, tem-
poral changes in an outcome of interest can be directly observed and studied. An important
question concerns the existence of distinct trajectory patterns. One way to discover potential
patterns in the data is through cluster analysis, which seeks to separate objects (individuals,
subjects, patients, observational units) into homogeneous groups. There are many ways to
cluster multivariate data. Most methods can be categorized into one of two approaches:
nonparametric and model-based methods. The first approach makes no assumptions about
how the data were generated and produces a sequence of clustering results indexed by the
number of clusters k = 2, 3, ... and the choice of dissimilarity measure. The later approach
assumes data vectors are generated from a finite mixture of distributions. The bulk of the
available clustering algorithms are intended for use on data vectors with exchangeable, inde-
pendent elements and are not appropriate to be directly applied to repeated measures with
inherent dependence.

Multivariate Gaussian mixtures are a class of models that provide a flexible parametric
approach for the representation of heterogeneous multivariate outcomes. When the outcome
is a vector of repeated measurements taken on the same subject, there is often inherent
dependence between observations. However, a common covariance assumption is conditional
independence—that is, given the mixture component label, the outcomes for subjects are
independent. In Chapter 2, I study, through asymptotic bias calculations and simulation,
the impact of covariance misspecification in multivariate Gaussian mixtures. Although max-
imum likelihood estimators of regression and prior probability parameters are not consistent
under misspecification, they have little asymptotic bias when mixture components are well
separated or if the assumed correlation is close to the truth even when the covariance is
misspecified. I also present a robust standard error estimator and show that it outperforms
conventional estimators in simulations and can provide evidence that the model is misspec-
ified.
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The main goal of a longitudinal study is to observed individual change over time; there-
fore, observed trajectories have two prominent features: level and shape of change over
time. These features are typically associated with baseline characteristics of the individual.
Grouping by shape and level separately provides an opportunity to detect and estimate these
relationships. Although many nonparametric and model-based methods have been adapted
for longitudinal data, most fail to explicitly group individuals according to the shape of
their repeated measure trajectory. Some methods are thought to group by shape, but the
dissimilarity between trajectories is not defined in terms of any one specific feature of the
data. Rather, the methods are based on the entire vector and cluster trajectories by the level
because it tends to dominate the variability between data vectors. These methods discover
shape groups only if level and shape are correlated.

To fulfill the need for clustering based explicitly on shape, I propose three methods Chap-
ter 4 that are adaptations of available algorithms. One approach is to use a dissimilarity
measure based on estimated derivatives of functions underlying the trajectories. One chal-
lenge for this approach is estimating the derivatives with minimal bias and variance. The
second approach explicitly models the variability in the level within a group of similarly
shaped trajectories using a mixture model resulting in a multilayer mixture model. One dif-
ficulty with this method comes in choosing the number of shape clusters. Lastly, vertically
shifting the data by subtracting the subject-specific mean directly removes the level prior
to modeling. This non-invertible transformation can result in singular covariance matrixes,
which makes parameter estimation difficult. In theory, all of these methods should cluster
based on shape, but each method has shortfalls. I compare these methods with existing
clustering methods in a simulation study in Chapter 5 and find that the vertical shifted
mixture model outperforms the existing and other proposed methods.

A subset of the clustering methods are then compared on a real data set of childhood
growth trajectories from the Center for the Health Assessment of Mothers and Children of
Salinas (CHAMACOS) study in Chapter 6. Vertically shifting the data prior to fitting a
mixture model results in groups based on the shape of their growth over time in contrast
to the standard mixture model assuming either conditional independence or a more general
correlation. The group means do not drastically change between methods for this data set,
but group membership differs enough to impact inference about the relationship between
baseline covariates and distinct groups.
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Chapter 1

Introduction

Longitudinal studies play a prominent role in health, social, and behavioral sciences as
well as in the biological sciences, economics, and marketing. By following subjects over
time, temporal changes in an outcome of interest can be directly observed and studied. This
dissertation studies the task of clustering longitudinal data. Statisticians, machine learning
communities, and applied researchers have investigated this problem for other highly struc-
tured multivariate data sets such as time series and functional data, and it is important
to distinguish between these different types of data. While all of these data structures are
ordered by a variable such as time, they have different characteristics that call for different
methods. Time series are sequences of data points measured uniformly over time from ran-
dom processes on only a few units. Examples include monthly unemployment figures, yearly
global temperatures, and hourly stock prices over time [128]. Functional data are assumed
to provide information about smooth curves or functions that have been measured on a
densely sampled grid. The data include many curves, one for each observational unit, and
may be observed with substantial measurement error. Data such as hip angles over walking
cycles and height during adolescence that have underlying smooth curves are categorized as
functional data [111, 112].

In this dissertation, I focus on longitudinal data which includes sporadic repeated mea-
surements of the same outcome observed on many subjects at sparse, potentially irregular
times over a long period of time. Long-term ongoing longitudinal studies include the Na-
tional Longitudinal Survey of Youth, which has attempted to interview individuals annually
and then biannually for the past 30 years, and the Framingham Heart Study, which has
interviewed three generations of subjects biannually over the past 60 years. These long-term
studies have observed each individual as many as 30 times. The majority of longitudinal
studies only observe individuals 5 to 15 times during the follow-up period due to limited
resources. For the purposes of this dissertation, I often refer to a longitudinal time-ordered
vector of outcomes as a trajectory as a reminder that the data vectors are ordered and
represent a path of development over time.

An important question concerns the existence of distinct trajectory patterns. Cluster
analysis seeks to separate objects (individuals, subjects, patients, observational units) into
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homogeneous clusters. There are many ways to cluster multivariate data and there are a
multitude of methods and algorithms available to use. Most methods can be categorized
into one of two approaches: nonparametric and model-based methods. The first approach
makes no assumptions about how the data were generated and produces a sequence of
clustering results indexed by the number of clusters k = 2, 3, ... and the choice of dissimilarity
measure. The later approach assumes data vectors are generated from a finite mixture of
distributions. The clustering results include the conditional probability of group membership
and estimates of the parameters for the assumed data generation distribution [87, 37]. Both
of these approaches are widely used and the pros and cons of the approaches have been
discussed in depth [82, 35].

The bulk of the available clustering methods are intended for use on data vectors with
exchangeable, independent elements and are not appropriate to be directly applied to re-
peated measures with inherent dependence [36]. Recent work to cluster longitudinal data has
focused on extending and adjusting the standard clustering methods. Dissimilarity measures
have been designed to be sensitive to permutations in the time order by incorporating the
relationships between neighboring observations [15] or by calculating dissimilarity between
coefficients of a functional projection rather than the raw vectors [125, 132, 1, 131, 54]. In
the model-based approach, one can incorporate a functional basis in the mean structure [99,
41] and explicitly model the temporal correlation structure [97, 38, 89] to incorporate the
longitudinal nature into the model.

1.1 Longitudinal data

In classical univariate statistics, each individual or subject gives rise to a single measure-
ment, termed the outcome. In multivariate statistics, that one measurement is replaced by a
vector of multiple outcome measurements. In longitudinal studies, a vector of measurements
is observed for each subject, but the vector represents one outcome measured repeatedly at a
sequence of observation times. Therefore, the data have characteristics of both multivariate
and time series data.

Longitudinal data differ from multivariate data in that the time ordering imparts depen-
dence among measurements that is not present in a typical multivariate data set. They differ
from classical time series data because the data consists of a large number of independent
trajectories that are sparsely and potentially irregularly sampled over time, rather than a
few random processes that are uniformly sampled over time. These properties call for meth-
ods specific to longitudinal data [26]. Due to the sparsity, it is necessary to borrow strength
between individuals by modeling the mean outcome as a function of explanatory variables.
When there are distinct patterns in the data, averaging can be done within the groups.

In this dissertation, I let Yij represent an outcome random variable and xij be a design
vector of length p based on explanatory variables observed at time tij for individual i =
1, ..., n. I let wi be a design vector of length q based on baseline variables observed at or
before ti1. The set of repeated outcomes for individual i together in a vector is denoted as
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Yi = (Yi1, ..., Yimi
) with mean E(Yi) = µi and mi ×mi covariance matrix Cov(Yi) = Σi,

where the element in the jth row and lth column of Σi is the covariance between Yij and Yil.

The covariance matrix can be written as Σi = V
1/2
i RiV

1/2
i where Ri is a mi×mi correlation

matrix of Yi and Vi is a mi ×mi diagonal matrix with variances as the non-zero elements.
In this dissertation, individuals are assumed independent of each other; therefore, Yi and
Yi′ are independent for i 6= i′. In general, I use capital letters to represent random variables
or matrices, bold font for vectors and matrices, and small letters for specific observations.
Hence, I denote yi as the observed outcome vector for individual i.

1.2 Cluster analysis

One of our most natural abilities is grouping and sorting objects into categories. We
simplify our world by recognizing similarities, grouping similar objects, and naming the
groups. For example, when children first learn colors, different shades and hues of blue are
grouped together as blue. Similarly, golden retrievers, poodles, and terriers are all dogs.
These group labels allow us to summarize a large amount of information in a way that can
be easily understood. Identifying and labeling groups of similar items is also important
when summarizing a large data set so that information can be retrieved more efficiently by
providing a concise description of patterns of similarities and differences in the data.

Cluster analysis is one tool to explore groups within a data set and it has found its way
into various scientific disciplines. From mathematics and statistics to biology and genetics to
economics and market research, each field uses its own terminology to describe the grouping
process. It is called numerical taxonomy in biology, unsupervised pattern recognition in the
machine learning literature, and data segmentation in market research, but the problem is
same: to find groups of similar objects.

The problem is well defined, but the solution is not. There is no agreed upon criteria that
determines that one grouping is better than another. In general, most statisticians agree
that clusters should be formed by maximizing the similarity within groups and maximizing
the dissimilarity between groups. Some believe that there are naturally occurring groups
that need to be discovered, but others remark that cluster analysis can always find clusters
even if there is no true underlying group structure. However, Bonner [8] suggests that the
user is the ultimate judge of the meaning and value of the clusters. Clusters should not be
judged on whether they are true or false but rather in their usefulness. No method works well
on every data set to find meaningful groups. For this reason, there is a wealth of clustering
algorithms in the literature.

In this dissertation, the general goal of clustering is to maximize similarity within groups
understanding that the analysis is highly dependent on how the user determines individuals
to be similar. In this way, clusters are meaningful to the user while maintaining the basic
mathematical philosophy of clustering. I overview two approaches to clustering as they
provide a foundation for the methods discussed in this dissertation.
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1.3 Nonparametric clustering methods

The first clustering approach focuses on explicitly defining similarity between subjects
rather than making assumptions about how the data were generated. The three key in-
gredients to these methods are the dissimilarity measure, the clustering algorithm, and the
number of clusters.

1.3.1 Dissimilarity measures

There are many terms used for a measure to quantify the distinctiveness of a pair of
subjects. Metric, distance, dissimilarity, and similarity are all related concepts. A metric is
any function, d, that satisfies the following three mathematical properties,

(i) d(x,y) ≥ 0 with equality if and only if x = y

(ii) d(x,y) = d(y,x)

(iii) d(x, z) ≤ d(x,y) + d(y, z)

for vectors x,y, z ∈ Rm. Some people use the term distance function to describe a function
that satisfies the first two conditions but not necessarily the third condition, known as the
triangle inequality. Therefore, all metrics are also distance functions by this definition.

The most commonly used metric on Euclidean space is the Minkowski distance of order
p defined as

d(x,y) = ‖x− y‖p =

(
m∑
j=1

|xj − yj|p
)1/p

where x = (x1, ..., xm) and y = (y1, ..., ym). The metric equals the Euclidean distance when
p = 2,

||x− y||2 =

√∑
j=1

(xj − yj)2,

and the Manhattan distance when p = 1,

||x− y||1 =
∑
j=1

|xj − yj|.

As p increases to infinity, the distance converges to the Chebyshev distance,

||x− y||∞ = max
j
|xj − yj|.

Other distance measures are based on variants of the correlation coefficient. These do
not satisfy the triangle inequality and are not considered metrics. One popular distance
measure based on the Pearson correlation coefficient is defined as

d(x,y) = 1− (x− x̄)T (y − ȳ)

‖x− x̄‖2‖y − ȳ‖2
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where x̄ represents the average of the elements in x and similarly for ȳ. The codomain of this
distance function is [0, 2]. Perfect negative linear correlation results in the largest distance,
perfect positive linear correlation results in the smallest, and no linear correlation is in the
middle. The Pearson correlation coefficient can be replaced with its uncentered version to
calculate the cosine-angle distance, defined as

d(x,y) = 1− xTy

‖x‖2‖y‖2
.

When vectors are exactly the same, the angle between the vectors is 0 and the distance equals
0. On the other hand, the maximum value of 2 is attained when two vectors are 180 degrees
apart. Both of these distance measures are invariant to scaling such that d(x, a · x) = 0
for a > 0 and the Pearson correlation distance is additionally invariant to shifts such that
d(x, a · x + b) = 0 for a > 0 and a, b ∈ R.

It is also important to note that the distance functions introduced thus far require vectors
of equal length and are invariant to permutation of the order of the elements in the vector.

More generally, a similarity function satisfies the following three conditions,

(i) S(x,y) ≥ 0

(ii) S(x,y) = S(y,x)

(iii) S(x,y) increases in a monotone fashion as x and y are more similar

where objects x and y need not be vectors in Euclidean space. A dissimilarity function is
defined in the same way except that the function increases as the objects are more dissimilar.
This general definition allows the function to be flexible enough to take into account how
one deems two objects to be similar or dissimilar. In many cases the term distance and
dissimilarity is used interchangeably if the objects are numeric vectors. The choice of the
dissimilarity measure needs to be made after careful study as it can have a dramatic effect
on the final clustering results.

1.3.2 Algorithms

Clustering algorithms aim to optimize a criterion based on the chosen dissimilarity mea-
sure. Most clustering algorithms can be classified into two group according to their general
search strategies: hierarchical and partitioning algorithms. Hierarchical methods involve
constructing a tree of clusters in which the root node is a cluster containing all objects and
the leaves are clusters each containing one object. The tree can be constructed in a divisive
manner (i.e., top down by recursively dividing groups) or agglomerative manner (i.e., bot-
tom up by recursively combining groups). In order to combine groups, there are different
ways of measuring the distance between groups of objects: single-linkage, complete-linkage,
average-linkage. This approach should be used when there is a priori scientific knowledge of
a hierarchical structure in the data.
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Partition methods aim to map objects into k ≥ 2 disjoint groups by maximizing a
criterion without any larger hierarchical structure. Two popular methods include K-means
[81, 49] and partitioning around medoids (PAM) [65].

K-means is one of the simplest unsupervised learning algorithms used to solve the well-
known clustering problem. Given a set of vectors (y1,y2, ...,yn) where yi ∈ Rm for all
i = 1, ..., n, the K-means clustering algorithm aims to partition the n vectors into K sets
{C1, ..., CK} so as to minimize the sum of squared Euclidean distance to the assigned cluster
centroids denoted as

min
{Ck}Kk=1

K∑
k=1

∑
i:yi∈Ck

‖yi − µk‖22

where µ1, ...,µK are the centroids or mean vectors of the K clusters. To find the sets that
minimize the criterion, the algorithm starts by strategically or randomly choosing K data
vectors as the centroids. The general K-means algorithm proceeds by alternating between
two steps:

• Assignment step: Assign each observation to the cluster with the closest centroid. The
kth set equals

Ck = {yi : ‖yi − µj‖22 ≥ ‖yi − µk‖22 ∀ 1 ≤ j ≤ k, i = 1, ..., n}

such that every yi is in one and only one set.

• Update step: Calculate the centroid of each new set,

µk =
1

|Ck|
∑

i:yi∈Ck

yi.

The algorithm continues to iterate until the sets no longer change. Depending on the initial
partition, the algorithm is expected to converge to local optima; therefore, completing mul-
tiple random starts offers the best way to obtain a global optimum. The K-means algorithm
works best when data clusters are about equal in size and shape. The algorithm attempts to
find spherical clusters since the K-means algorithm is based on squared Euclidean distance.
If the groups are not dense spherical densities with many spurious outliers, the centroid may
not be representative of any of the cluster members.

The partitioning around medoids (PAM) algorithm attempts to overcome some of the
issues with K-means. The algorithm operates on a user-provided dissimilarity matrix rather
than squared Euclidean distance. It is robust to outliers since the medoid or middle vector for
each group is selected from the observed data vectors rather than based on mean calculations.
To find K sets of vectors to minimize the sum of dissimilarity of the vectors with their
respective medoids, K individuals are first randomly chosen as medoids denoted as ν1, ...,νK .
The PAM algorithm alternates between the following two steps:
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• Build step: Assign each observational unit to the closest medoid with respect to the
given dissimilarity matrix.

• Swap step: For each k = 1, ..., K, swap the medoid, νk, with each non-medoid ob-
servation and compute the sum of the dissimilarities of the vectors with their closest
medoid. Select the configuration with the smallest sum of dissimilarities.

The algorithm continues until there is no change in the medoids. Although it has a longer
run time, this building and swapping procedure can return a smaller sum of dissimilarity in
contrast to a simple assignment and update procedure in the K-means algorithm.

1.3.3 Choosing the number of components

A major challenge in clustering is to determine the optimal number of clusters. For the
partition methods, a maximum number of clusters is chosen Kmax < n and the algorithm
is run for each value K = 2, 3, ...., Kmax. Then, some take a direct approach to choose the
optimal K by optimizing functions of within and between cluster dissimilarity [90] or the
average silhouette [65]. Others take a testing approach by comparing a cluster summary with
its expectation under an appropriate null distribution using the Gap statistic [134] or the
CLEST approach [28].

The average silhouette has the advantage of working well with any cluster routine and
dissimilarity measure. For each vector i, the silhouette s(i) is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}

where a(i) is the average dissimilarity of the ith vector to all other vectors in its clus-
ter, A, d(i, C) is average dissimilarity of the ith vector to all vectors in cluster C and
b(i) = minC 6=A d(i, C). The overall average silhouette width s̄ is the average of s(i) over all
observational units in the data set. The chosen clustering algorithm is run and the overall
average silhouette is calculated for each possible value of K. Then the optimal K is cho-
sen to maximize the average silhouette while minimizing the within-group dissimilarities in
comparison to the between-group dissimilarities.

1.4 Model-based clustering methods

For a chosen number of clusters, partitioning and hierarchical algorithms divide vectors
into non-overlapping, non-empty sets. Each subject is in one and only one cluster. This type
of clustering is referred to as hard clustering in contrast to soft or fuzzy clustering where
each subject can be in multiple groups to varying degrees. This distinction largely impacts
subjects that are near the edge between two groups in terms of the chosen dissimilarity
measure. With hard clustering, those subjects are forced in one group. With soft clustering,
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those subjects on the edge contribute to multiple clusters to varying degrees and the clus-
tering results include association levels that indicate the uncertainty in group membership.
Probabilistic model-based methods allow for soft clustering with the possibility of formal in-
ference [39]. Assuming a probability distribution for the data provides a framework in which
to estimate the probability of group membership as well as to estimate parameters and make
inferences on the relationship between covariates and group membership. The main model
used for clustering is the finite mixture model.

1.4.1 Finite mixture model

In a general finite mixture, the density for a random variable y takes the form

f(y|θ) = π1f1(y|θ1) + · · ·+ πKfK(y|θK)

where fk and θk are the density and parameters of the kth component and πk is the probabil-
ity an observation belongs to the kth component (πk > 0;

∑K
k πk = 1). The full parameter

vector θ includes the prior probabilities πk and the component parameters θk. In many
situations, the component densities are assume multivariate Gaussian parameterized by a
mean vector µk and covariance matrix Σk,

fk(y|µk,Σk) =
exp

(
−1

2
(y − µk)

TΣ−1k (y − µk)
)√

det(2πΣk)
.

The Gaussian distribution can be reparameterized to accommodate longitudinal data and
to reduce the number of parameters. If the mean outcome values are thought to depend
on explanatory variables, the mean vectors are replaced with µk = xβk such that x is a
design matrix based on those variables that impact the mean. The covariance matrix can be
simplified by assuming a structure such as independence (Σk = σ2

kI), compound symmetry
(Σk = σ2

k(ρk11T + (1 − ρk)I)), or exponential covariance ([Σk]jl = σ2
k exp(−|tij − til|/rk)).

On the other hand, the covariance structure can be parameterized through the eigenvalue
decomposition of the form

Σk = λkDkAkD
T
k

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose elements
are proportional to the eigenvalues, and λk is a proportional constant [5]. The mixture
model can also be extended to include more complexity through further parameterizations.
If baseline factors are thought to influence group membership, the prior group probabilities
can be parameterized using a generalized logit model

πk(w,γ) =
exp(wTγk)∑K
j=1 exp(wTγj)

where γK = 0 and w is a design vector based on baseline factors.
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1.4.2 Expectation-maximization algorithm

Under the assumption that y = {y1, ...,yn} are independent realizations from the mixture
distribution f(y|θ) defined above, the log-likelihood function for the full parameter vector
θ is given by

logL(θ) =
n∑
i=1

log f(yi|θ).

The maximum likelihood estimate of θ is obtained by finding an appropriate root of the
score equation, ∂ logL(θ)/∂θ = 0. Solutions of this equation corresponding to local maxima
can be found iteratively through the expectation-maximization (EM) algorithm [25], which
was originally presented in the context of an incomplete data problem. In the clustering
case, yi is assumed to have stemmed from one of the components and the label denoting its
originating component is missing. Let zik equal 1 if yi was generated from component k and
0 otherwise. The component label vectors zi = (zi1, ..., ziK) for i = 1, .., n are assumed to be
realizations of random vectors Zi = (Zi1, ..., ZiK) that follow a categorical distribution with
probabilities π1, ..., πK . The complete data log-likelihood function, based on these component
labels and the observed data y, is given by

logLc(θ) =
K∑
k=1

n∑
i=1

zik [log πk + log fk(yi|θk)] .

The EM algorithm treats the zik as missing data and iteratively imputes the missing
values and then estimates the parameters. The expectation step (E-step) involves taking the
conditional expectation of the complete log-likelihood given the data and the current value
of the parameter estimates. Since the complete log-likelihood is linear in the unobserved
data zik, this step involves calculating the conditional expectation of Zik given the observed
data. On the tth iteration, the expectation is

Eθ(t−1)(Zik|y) = Pθ(t−1)(Zik|y)

= α
(t)
ik

using the estimates of the parameters from the previous iteration. The quantity α
(t)
ik is the

posterior probability that the ith individual belongs to component k, written as

α
(t)
ik = π

(t−1)
k fk(yi|θ(t−1)

k )/
K∑
j=1

π
(t−1)
j fj(yi|θ(t−1)

j )

for i = 1, ..., n and k = 1, ..., K.
In the maximization step (M-step), the parameter estimates for the prior probabilities

and component parameters are updated by maximizing the conditional expectation of the
complete-data log-likelihood from the E-step. On the tth iteration, the updated estimates of
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the prior probabilities π
(t)
k are calculated independently of the estimates of the component

parameters θ
(t)
k . The prior probability estimates equal

π
(t)
k = n−1

n∑
i=1

α
(t)
ik .

If the generalized logit function is used for the prior probabilities to include dependence on

baseline covariates such that πk = πk(wi,γ) =
exp(wT

i γk)∑K
j=1 exp(w

T
i γj)

, then the updated value of

γ(t) = (γ
(t)
1 , ...,γ

(t)
K−1) is an appropriate root of

K∑
k=1

n∑
i=1

α
(t)
ik ∂ log πk(wi,γ)/∂γ = 0

calculated using a numerical optimization routine. The component parameters are updated
by finding an appropriate root of

n∑
i=1

α
(t)
ik ∂ log fk(yi|θk)/∂θk = 0

at the tth iteration for each component k = 1, ..., K. Closed-form solutions to this equation
exist for many Gaussian mixture models.

The E-step and M-step are alternated repeatedly until convergence. Dempster, Laird,
and Rubin [25] showed the incomplete likelihood increases monotonically at each iteration
of this algorithm. Hence, the EM algorithm guarantees convergence to a local maximum;
global convergence may be attained by running the algorithm multiple times randomly as-
signing individuals to initial components and using the estimates associated with the one
with the highest log-likelihood. For more details about the EM algorithm, see McLachlan
and Krishnan [88].

When the algorithm has converged, the values of the parameters and posterior probabil-
ities from the last iteration are taken as the final estimates. The component estimates char-
acterize the mean and variances within the clusters and the posterior probabilities provide
the strength of group association for the soft clustering. This clustering can be translated
into a hard clustering by choosing the group label that maximizes the posterior probabil-
ity, arg maxk αik, for each subject. Then, one measure of uncertainty in the group labels is
(1 − maxk αik). A variant of the EM algorithm called the classification EM [12], in which
the posterior probabilities are converted to group indicators before the M-step, is equivalent
to the K-means algorithm for a Gaussian mixture with Σk = σI. For further discussion
about other estimation approaches besides maximum likelihood via the EM algorithm, see
McLachlan and Peel [87].
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1.4.3 Estimation issues

Although an estimation tool exists, there are potential issues of parameter identifiabil-
ity with mixture models. Frühwirth-Schnatter [40] distinguished between three types of
nonidentifiability: invariance to relabeling of components, potential overfitting, and non-
identifiability due to the family of component distribution and the covariate design matrix.
The first two issues are resolved through constraints such as θk 6= θk′ for all k, k′ = 1, ..., K,
k 6= k′. The last concern is often solved by assuming Gaussian components since finite mix-
tures of multivariate Gaussians are identifiable [133, 150]. However, Hennig [52] suggested
that the introduction of a regression structure to a Gaussian mixture requires a full rank
design matrix as well as a rich covariate domain for regression parameters to be identifiable.
On the other hand, prior probabilities parameters from a generalized logit are identifiable
by setting the parameters of one component to zero such as γK = 0 [61].

Besides identifiability, there are other known issues with finite mixture models. McLach-
lan and Peel [87] noted that the sample size must be quite large for asymptotic theory to
accurately describe the finite sampling properties of the estimator. Also, when component
variances are allowed to vary between components, the mixture likelihood function is un-
bounded, and each observation gives rise to a singularity on the boundary of the parameter
space [21, 66]. However, Kiefer [67] outlined theory that guarantees that there exists a par-
ticular local maximizer of the mixture likelihood function that is consistent, efficient, and
asymptotically normal if the mixture is not overfit. To avoid issues of singularities and
spurious local modes in the EM algorithm, Hathaway [50] considered constrained maximum
likelihood estimation for multivariate Gaussian mixtures based on the following constraint
on the smallest eigenvalue of the matrix ΣhΣ

−1
j , denoted as λmin(ΣhΣ

−1
j ),

min
1≤h6=j≤K

λmin(ΣhΣ
−1
j ) ≥ c > 0

for some positive constant c ∈ [0, 1] to ensure a global maximizer.

1.4.4 Choosing the number of components

Just as with partitioning methods, it is difficult to choose the number of mixture com-
ponents and the problem has not been completely resolved [87]. A natural approach is to
test the hypothesis that K = K0 against the alternative that K = K1 with a likelihood
ratio test. However, the regularity conditions do not hold for the test statistic to have its
usual asymptotic null distribution. This problem has been considered by many authors (see
McLachlan and Peel [87] for a summary) who have suggested modified test statistics [148],
approximate null distributions [77], and resampling methods to empirically estimate the null
distribution [85].

Another approach is to use information theoretic methods to select a model. A set of
candidate models are compared by measuring the information lost when the model is used
to approximate the true reality. The model with the lowest information loss and lowest
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information criterion is chosen as the best model. Two popular information criterion are the
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

The information loss can be described in term of the Kullback-Leibler (KL) information
[69] of the true distribution with respect to the fitted model. If g(y) is the true density, the
KL information of g(y) with respect to the estimated model f(y|θ̂) is∫

log[g(y)/f(y|θ̂)]g(y)dy =

∫
log[g(y)]g(y)dy −

∫
log[f(y|θ̂)]g(y)dy.

Since the first term does not involve the model, only the second term is relevant. When
comparing models, this integral can be estimated using the empirical distribution, which
places equal mass 1/n at each observation yi,∫

log[f(y|θ̂)]g(y)dy ≈ 1

n

n∑
i=1

log f(yi|θ̂)

=
1

n
logL(θ̂).

This is a biased estimate of the expected log density. Akaike [3, 2] showed that the bias is
asymptotically equal to d, where d is equal to the number of parameters in the model. Thus,
he proposed choosing a model that minimizes

AIC = −2 logL(θ̂) + 2d.

The AIC criterion is often used to choose the number of components in a mixture model.
However, many authors have observed that it is inconsistent [68] and tends to overestimate
the number of components in a mixture [130, 13].

The BIC was originally derived in a Bayesian framework as an approximation to the
integrated likelihood [124], which is used in Bayes factors to compare two models. For
further information about Bayes factors, see Kass and Raftery [64]. The BIC is calculated
as

BIC = −2 logL(θ̂) + d log n

where d is the number of parameters in the model and n is the sample size. The criterion
can be justified in a frequentist framework, but the regularity conditions breakdown for
mixture models. Nevertheless, Fraley and Raftery [37] noted considerable theoretical and
practical evidence to support the use for clustering. Unlike the AIC, the BIC has been
shown not to asymptotically underestimate the true number of components [72]. In the
context of nonparametric density estimation, Roeder and Wasserman [116] showed that the
density estimate chosen with the BIC is consistent. However, if the component densities
assumptions do not hold, Biernacki, Celeux, and Govaert [6] found that it tends to fit too
many components.

To overcome the shortcomings of the BIC for the mixture model, Biernacki, Celeux, and
Govaert [6] proposed the ICL-BIC based on the integrated complete likelihood for a mixture
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with K components,

ICL−BIC = −2 logL(θ̂) + d log n− 2
K∑
k=1

n∑
i=1

ẑik logαik

where αik is the posterior probability of individual i belonging to component k, ẑik is the
maximum a posteriori estimate of group membership, d is the total number of parameters,
and n is the sample size. The last term is an entropy term based on the strength of the group
classification. If the components of the mixture are well separated, then the entropy will
be close to zero, but when the components are largely overlapping, the entropy is large and
acts as a penalty for having poorly separated clusters. While this criteria has an additional
penalty, it is not used as frequently as BIC in practice.

When comparing information criterion between competing models, large differences cor-
respond to strong evidence for one model over the other. Kass and Raftery [64] provide
standard conventions for calibrating differences in BIC which can guide the final choice of
models. When the differences are small, the smallest number of components that fit the data
is chosen for the sake of parsimony.

1.5 Thesis outline

This dissertation is organized in the following manner. In Chapter 2, I develop a se-
ries of simulations to study the impact of misspecifying the covariance structure in finite
mixture models for longitudinal data and present finite-sample and asymptotic bias results.
In Chapter 3, I motivate the rest of the dissertation by discussing the general clustering
methodology for longitudinal data and illustrate how these methods do not cluster based
on the shape of change over time despite the natural tendency to interpret the results using
shape terminology. Chapter 4 presents three proposed methods to cluster based solely on
the shape and compares them to standard methods through a simulation study in Chapter
5. Chapter 6 applies these methods to longitudinal growth data of children. In Chapter
7, I overview the results of the dissertation, discuss the contributions, and present areas of
future work.
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Chapter 2

Covariance misspecification in
mixture models

In this chapter, I focus on finite mixture models, the model-based method of clustering
longitudinal data. Data are assumed to be generated from a mixture of Gaussian distri-
butions. While no model is perfect, misspecifying the model with simplifying assumptions
about the shape of the distributions can cause bias in the estimates. I investigate the impact
of incorrectly assuming repeated measures of the same outcome over time are independent.

2.1 Introduction

Multivariate Gaussian mixtures are a class of models that provide a flexible parametric
approach for the representation of heterogeneous multivariate outcomes potentially origi-
nating from distinct subgroups in the population. An overview of finite mixture models is
available in Chapter 1 and in many texts [35, 135, 86, 87, 40]. We can estimate covariate ef-
fects on the outcome as well as group membership probabilities by extending mixture models
to include a regression structure for both the mean and prior probabilities. See Cruz-Meśıa,
Quintana, and Marshall [18] for a review of finite mixture models with a regression mean
structure and Wedel [143] for a history of concomitant variable models that use baseline
variables to explain variation in subgroups. These extensions are used in several medical
applications [121] including epidemiology, genomics, and pharmacology in addition to other
fields including astronomy, biology, economics, and speech recognition. When the multivari-
ate outcome is a vector of repeated measures taken over time, these methods are identified
as group-based trajectory modeling [99, 100] or latent-class growth analysis [95, 94]. See
Pickles and Croudace [107] and references within for a review of mixture methods applied
to longitudinal data. The use of mixture models for multivariate data is increasing due to
computational advances that have made maximum likelihood (ML) parameter estimation
possible, via the EM algorithm, through model-specific packages such as Proc Traj in SAS
[62], FlexMix [71] and mclust [38] in R, and software such as Mplus [98] and Latent Gold
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[139].
Despite the increased use of these models, the sensitivity of estimated regression coeffi-

cients to model assumptions has only been explored to a limited degree. In a multivariate
mixture model, one must specify the component distribution, the form of the mean, the
structure of the covariance matrix, and the number of components; therefore, there are
many ways to misspecify the model. For example, in practice, the number of components
is unknown and model selection procedures based on the Bayesian information criterion are
often employed. However, if the specified covariance structure is too restrictive relative to
the truth, the estimated number of components will typically be greater than the true num-
ber because more components are needed to model the extra variability. The literature in
estimating the number of components is vast [103] and continues to debate this unresolved
issue. Owing to the potential complexity of mixture models, simplifying assumptions are
made to reduce the dimension of the parameter space, to make estimation possible, and for
computational convenience. In particular, many researchers assume Gaussian components
and/or restrict the components to have equal variance, both of which are known to result
in asymptotic bias if the assumptions are not met [44, 76]. In this chapter, I assume that
the number of components, mean structure, and distribution are known and focus on other
indeterminacies such as the covariance matrix.

In terms of the covariance matrix, correlation functions [26], eigenvalue and Cholesky
decompositions [5, 89], as well as mixed effects structures [97] are used to impose structure
and parsimony. Additionally, one common assumption is conditional independence—given
the mixture component label, the outcomes for a subject are assumed independent [105, 96].
Of the available software that estimate regression effects for the mean and prior probabilities,
most of them make this simplifying assumption. This restriction is convenient when the
data are unbalanced or if the sample size is small to make estimation of the covariance
parameters more stable. Despite the wealth of proposed covariance models, there has been
little work done in the area of mixture models with misspecified covariance structures, and the
conditional independence assumption is unlikely to hold in many multivariate data settings,
specifically in longitudinal applications. If the mixture consists of one component, the work
carried out by Liang and Zeger [75] suggests that regression estimates are asymptotically
unbiased. However, these properties do not hold with additional components since estimation
includes prior probabilities as well as component parameters.

Here, I investigate the impact of covariance misspecification on ML estimation of param-
eters and standard errors in multivariate Gaussian mixture models. In particular, our focus
is on the assumption of conditional independence for the covariance structure; therefore,
we assume the number of components, the distribution, and the mean structure is known.
This chapter is organized as follows. Section 2.2 presents the model specification. Section
2.3 describes the estimation procedure, issues, and asymptotic properties of the parameter
estimators based on the seminal results of White [146]. In Section 2.4, I present a series of
simulations of a simple misspecified example to compare asymptotic and finite-sample bias
of parameter and standard error estimates under varying levels of dependence and sepa-
ration between components. In Section 2.5, I apply these ideas to body mass index data
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from a national longitudinal study to demonstrate the effects of misspecification on potential
inferences made in practice.

2.2 Model specification

In a finite multivariate mixture, the density of a random vector y takes the form

f(y) = π1f1(y) + · · ·+ πKfK(y)

where πk > 0 for k = 1, ..., K and
∑K

k πk = 1. The parameters πk are prior probabilities,
and the functions f1, ..., fK are component densities, assumed multivariate Gaussian here.

I extend the general model to allow other factors to affect the mean as well as the prior
probabilities. Let y ∈ Rm be a random vector whose distribution, conditional on regression
covariates, x, and concomitant variables, w, is a mixture of K Gaussian densities with prior
probabilities π1(w,γ), ...., πK(w,γ). That is, the conditional mixture density for y is defined
by

f(y|x,w,θ) =
K∑
k=1

πk(w,γ)fk(y|x,θk) (2.1)

where fk(y|x,θk) denotes the m-variate Gaussian probability density function with mean
xβk and covariance matrix Σk, θk includes both βk and Σk, x is a m× p matrix, and w is a
vector of length q. The regression covariates include measures that affect the mean, whereas
the concomitant variables influence the prior probabilities. This general structure allows the
possibility that some baseline variables could be in both x and w.

I parameterize the prior probabilities using the generalized logit model with the form

πk(w,γ) =
exp(wTγk)∑K
j=1 exp(wTγj)

for k = 1, ..., K where γk ∈ Rq, γ = (γT1 , ...,γ
T
K) where γK = 0.

Throughout this chapter, I generally assume conditional independence with constant
variance within a component where Σk = σ2

kIm as the proposed estimation model, but it is
straightforward to extend the covariance model to include standard longitudinal correlation
structures such as exchangeable or exponential. Therefore, the vector of all unknown param-
eters θ consists of the prior probabilities parameters γk and the component regression and
variance parameters θTk = (βTk , σ

2
k) for k = 1, ..., K and could include correlation parameters.

2.3 Parameter estimation

2.3.1 EM algorithm

Under the assumption that y1, ...,yn are independent realizations from the mixture distri-
bution, f(y|x,w,θ), defined in equation (2.1), the log-likelihood function for the parameter
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vector θ is given by

logL(θ) =
n∑
i=1

log f(yi|xi,wi,θ).

The ML estimate of θ is obtained by finding an appropriate root of the score equation,
∂ logL(θ)/∂θ = 0. Solutions of this equation corresponding to local maxima can be found
iteratively through the EM algorithm [25], which is thoroughly described in Section 1.4.2.

2.3.2 Asymptotic properties of estimates

If the true underlying data-generating distribution is a member of the specified model
class, then ML estimation via the EM algorithm gives parameter estimates that are consistent
[140, 70]. However, if the specified model does not contain the true underlying mixture,
then the ML estimators potentially have asymptotic bias [44, 76]. Here, I am interested in
the impact of misspecifying the covariance matrix structure on parameter estimation and
inference.

General theoretical results for ML estimators are given by White [146]. Our inves-
tigation is a special case where the covariance matrices of mixture components are in-
correctly specified but the mean structure and distribution are known. Let f(y|θ) be
the assumed estimation model, g(y) be the true density, and C be a compact subset of
the parameter space. It follows that the ML estimator θ̂n is consistent for the parame-
ter vector θ∗ that minimizes the Kullback-Leibler information

∫
log[g(y)/f(y|θ)]g(y)dy =∫

log[g(y)]g(y)dy −
∫

log[f(y|θ)]g(y)dy, under some regularity conditions [146], which is
equivalent to maximizing

∫
log[f(y|θ)]g(y)dy with respect to θ.

In the case of mixture densities, this integral is mathematically intractable. Lo [76]
used a modified EM algorithm for univariate data that maximized

∫
log[f(y|θ)]g(y)dy with

respect to θ in order to estimate θ∗. This procedure could be adapted to bivariate data, but
for outcome vectors of larger dimension, this procedure is not as useful. It is known that
for outcome vectors {yi}i=1,...,n generated from the true density, under suitable regularity
conditions [59],

sup
θ∈C

1

n

n∑
i=1

log f(yi|θ)
a.s.−→ sup

θ∈C

∫ ∞
−∞

log f(y|θ)g(y)dy as n→∞

Therefore, to investigate asymptotic bias under a misspecified covariance structure when
g(y) is known, I numerically approximate θ∗ using the EM algorithm on a large sample from
g(y) of size n = 100, 000.

In addition to consistency, White [146] also showed that
√
n(θ̂n − θ∗) → N(0, C(θ∗)),

where the asymptotic covariance matrix is C(θ∗) = A(θ∗)−1B(θ∗)A(θ∗)−1, with

A(θ∗) =

{
E

(
∂2 log f(yi|θ∗)

∂θj∂θl

)}
, B(θ∗) =

{
E

(
∂ log f(yi|θ∗)

∂θj
· ∂ log f(yi|θ∗)

∂θl

)}
.



CHAPTER 2. COVARIANCE MISSPECIFICATION IN MIXTURE MODELS 18

Moreover, Cn(θ̂n) = An(θ̂n)−1Bn(θ̂n)An(θ̂n)−1
a.s.→ C(θ∗), with

An(θ̂n) =

{
1

n

n∑
i=1

∂2 log f(yi|θ̂n)

∂θj∂θl

}
, Bn(θ̂n) =

{
1

n

n∑
i=1

∂ log f(yi|θ̂n)

∂θj
· ∂ log f(yi|θ̂n)

∂θl

}
.

Following a similar procedure as Boldea and Magnus [7], I derive the score vector and Hessian
needed to calculate An and Bn for a multivariate Gaussian mixture model as specified in
this chapter. Derivations are found in Appendix A.

If the model is correctly specified, then both −An(θ̂n)−1 and Bn(θ̂n)−1 are consistent
estimators of C(θ∗) [146], and two possible variance-covariance estimates for the parameter
estimator are

Ĉov1(θ̂n) = Ŵ1 = −(nAn(θ̂n))−1

and

Ĉov2(θ̂n) = Ŵ2 = (nBn(θ̂n))−1

On the other hand, An(θ̂n)−1Bn(θ̂n)An(θ̂n)−1 provides a consistent estimator of C(θ∗) de-
spite any misspecification. Therefore, a third and robust variance estimate of the parameter
estimator is given by

Ĉov3(θ̂n) = Ŵ3 = n−1An(θ̂n)−1Bn(θ̂n)An(θ̂n)−1.

I refer to calculated standard error estimates corresponding to these three indexed variance-
covariance estimates throughout the rest of the chapter.

2.4 Simulation study

I carry out two series of simulations to examine the behavior of the ML estimators
in terms of bias under misspecification of the covariance structure for finite samples from a
multivariate mixture. Specifically, I am mainly interested in the impact of dependence in the
true error structure on bias in parameter and standard error estimates when the conditional
independence is assumed incorrectly and how this is affected by the (i) level of dependence
and (ii) the separation between mixture components. Secondly, I investigate the behavior
of the bias when the estimation structure gets closer to the true correlation structure by
comparing the bias under three correlation structures.

In all of the simulations, data sets with sample size n are generated from an m-variate
Gaussian mixture model with parameters (γk, βk, σ

2
k,Rk) for k = 1, ..., K where Rk is the

true correlation structure as follows:

• Fix K.

• For each subject, i = 1, ..., n,
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– Fix xi = 1m and wi = 1.

– Construct matrices Ak such that AkA
T
k = Rk for k = 1, .., K using the Cholesky

decomposition.

– Randomly assign group membership, hi, by drawing a value from the categorical
distribution defined by P (h = k) = πk(wi,γ) for k = 1, ..., K.

– Draw m standard normal random values ei and let

yi = xiβhi + σhiAhiei

Thus, yi ∼ N(xiβhi , σ
2
hi

Rhi). I then estimate the parameters and standard errors, ŜE1, ŜE2,

ŜE3, using constrained maximum likelihood via the EM algorithm [50] doing five random
initializations, on the basis of a multivariate mixture model with a specified correlation
structure and known design matrix.

For simplicity, I focus on an example of two Gaussian components (K = 2) with constant
mean vectors (i.e. no relationship between covariates and y), one component with indepen-
dent errors, the other with some level of dependency in the errors. For the first series, the
latter dependence is based on an exchangeable correlation structure where all outcomes in
an observational unit are equally correlated, which is mathematically equivalent to a random
intercept model if the correlation is positive.

To investigate the influence of the level of dependence, I set the vector length to m = 5,
equal prior probabilities (γ1 = 0; baseline variables have no effect), mean of the components
to β1 = 1 and β2 = 3, and the variance of the components to σ2

1 = 0.25 and σ2
2 = 1. The

errors are independent (R1 = Im) in component one and we let the level of dependence vary
with ρ = 0, 0.5, 0.99 within the exchangeable structure (R2 = ρ(1m1Tm − Im) + Im where 1m
is a m-length vector of 1’s) for component two. I present the bias of parameter estimates
and the three standard error estimates under these conditions.

Then, I consider the separation between two component distributions using the con-
cept of c-separation [20]. Two Gaussian distributions, N(µ1,Σ1) and N(µ2,Σ2), in Rm

are c-separated if ||µ1 − µ2||2 ≥ c
√
m ·max(λmax(Σ1), λmax(Σ2)) where λmax(Σ) is the

largest eigenvalue of Σ. Dasgupta [20] notes that two Gaussians are almost completely
non-overlapping when c = 2. This inequality can be rearranged to establish a measure of
separation,

S = ||µ1 − µ2||2/
√
m ·max(λmax(Σ1), λmax(Σ2)),

which is a standardized Euclidean distance between mean vectors. In this simulation, I cal-
culate the value of S for data-generating component densities as a measure of the separation
between the two components and if S > 2, the components do not overlap and are well
separated. For this series of simulations, I again use a strong level of dependence (ρ = 0.99)
in the exchangeable structure, a vector length of m = 5, but vary the mean and variance of
the second component (β2 = 3, 5 and σ2

2 = 0.25, 1, 4) to invoke different degrees of separation
between components.
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I perform 1000 replications of each simulation for sample sizes n = 100, 500, 1000. I
approximate the true standard error with the standard deviation of the replicates. To esti-
mate the asymptotic bias of the model parameters (n =∞), I complete one replication with
n = 100, 000.

The two prong simulation described above focuses on the impact of using a conditional
independence estimation model under different levels of dependence and separation in the
data-generating components. In practice, I can choose correlation structures other than con-
ditional independence. To explore the bias under difference covariance assumptions, I run a
short simulation adjusting the data-generating model from above to use an exponential cor-
relation structure, such that the dependence decreases as the time lag increases, rather than
the constant dependence from the exchangeable structure. Therefore, for component two,
the correlation between two measurements within a subject that are observed d time units
apart is exp(−d/r) where r, the range parameter, determines how quickly the correlation
decays to zero. This structure is general enough so that if r is close to zero, the correlation
matrix is close to conditional independence and if r is very large, the structure is close to
exchangeable correlation with strong dependence.

For this simulation, I continue using the two Gaussian components (K = 2) with constant
mean vectors (β1 = 1 and β2 = 3) of length m = 5 with observations at times t = 1, 2, 3, 4
and 5, one component with independent errors, and the second component with a moderate
level of dependence that decays exponentially (r = 3). I estimate the prior probability, mean,
and variance parameters assuming different correlation structures: conditional independence,
exchangeable, and exponential correlation. I estimate and compare the finite-sample bias of
parameters and standard errors by letting n = 500 with 1000 replications. Additionally, I
compare the conventional estimate Ŵ1 of the covariance matrix of θ̂ and the robust estimate
Ŵ3. If the estimation model is close to the true structure, the matrices should be similar
and Q = Ŵ−1

1 Ŵ3 should be close to the identity matrix. I calculate RJ = tr(Q)/ν where

ν is the length of θ̂, which has been termed the RJ criteria and should be close to 1 if the
estimation model is close to the truth [127, 117].

2.4.1 Results

Table 2.1 lists bias estimates for the dependence-varying simulation study. The estimates
range from close to zero when ρ = 0 to magnitudes of upwards of 0.3 when ρ = 0.99. It is
clear from this table that stronger dependence in the errors results in greater finite-sample
and asymptotic bias when estimating under the conditional independence assumption. Ad-
ditionally, the magnitude of bias seems to reach the asymptotic levels at sample sizes of
n = 500, but it is important to note that the estimates for the asymptotic bias, based on one
replication with n = 100, 000, are only numerically accurate to two decimal places for γ1, σ

2
1,

and σ2
2. We see this numerical inaccuracy when ρ = 0 since the asymptotic bias should

be zero when the conditional independence assumption is met. In terms of standard error
estimates, the bias increases with increased dependence with values ranging from 0.001 when
ρ = 0 to 0.111 when ρ = 0.99. We see a divergence between the three variance estimators
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with ŜE3, the robust estimator, consistently having the least bias (Table 2.2). When the
model is correctly specified with ρ = 0, the three estimators are similar as supported by
asymptotic theory.

Bias Estimates

n γ̂1 β̂1 σ̂2
1 β̂2 σ̂2

2

ρ = 0.00
100 -0.004 (0.006) 0.000 (0.001) -0.000 (0.001) -0.002 (0.002) -0.006 (0.003)
500 0.005 (0.003) -0.000 (0.000) -0.000 (0.000) 0.001 (0.001) -0.000 (0.001)
1000 0.004 (0.002) -0.000 (0.000) -0.000 (0.000) 0.001 (0.001) -0.000 (0.001)
∞ -0.001 0.000 0.001 -0.000 0.002
ρ = 0.50
100 0.125 (0.006) 0.031 (0.001) 0.024 (0.001) 0.106 (0.003) -0.136 (0.003)
500 0.125 (0.003) 0.028 (0.001) 0.024 (0.000) 0.101 (0.002) -0.124 (0.001)
1000 0.125 (0.002) 0.028 (0.000) 0.024 (0.000) 0.098 (0.001) -0.125 (0.001)
∞ 0.115 0.027 0.024 0.095 -0.125
ρ = 0.99
100 0.370 (0.007) 0.087 (0.002) 0.033 (0.001) 0.327 (0.005) -0.410 (0.005)
500 0.346 (0.003) 0.078 (0.001) 0.030 (0.001) 0.310 (0.002) -0.388 (0.002)
1000 0.350 (0.002) 0.079 (0.001) 0.030 (0.000) 0.309 (0.001) -0.385 (0.001)
∞ 0.353 0.082 0.031 0.315 -0.383

Table 2.1: Bias estimates (SE) of maximum likelihood parameter estimators when the covari-
ance structure of a two-component Gaussian mixture is assumed to be conditionally indepen-
dent based on 1000 replications under each mixture distribution with m = 5, γ1 = γ2 = 0,
β1 = 1, R1 = Im, σ2

1 = 0.25, β2 = 3, R2 = R(ρ) and σ2
2 = 1 where R(ρ) is the exchange-

able correlation matrix with parameter ρ. Asymptotic estimates (n =∞) are based on one
replication with n = 100, 000. Values equal to zero represent values less than 0.001.
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Bias Estimates

ρ n ŜE1(γ̂1) ŜE2(γ̂1) ŜE3(γ̂1) ŜE1(β̂1) ŜE2(β̂1) ŜE3(β̂1) ŜE1(σ̂
2
1) ŜE2(σ̂

2
1) ŜE3(σ̂

2
1)

0.00 100 0.007 0.007 0.007 0.000 0.001 -0.000 -0.001 0.001 -0.001
500 0.002 0.002 0.002 -0.000 0.000 -0.000 0.000 0.000 0.000
1000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.50 100 0.004 0.004 0.004 -0.006 -0.008 -0.002 -0.007 -0.009 -0.004
500 0.002 0.002 0.002 -0.003 -0.004 -0.001 -0.002 -0.004 -0.001
1000 -0.001 -0.001 -0.001 -0.002 -0.002 -0.000 -0.001 -0.002 -0.000

0.99 100 -0.003 -0.003 -0.002 -0.026 -0.035 -0.010 -0.013 -0.016 -0.008
500 -0.005 -0.005 -0.004 -0.011 -0.015 -0.003 -0.005 -0.007 -0.002
1000 -0.003 -0.003 -0.002 -0.007 -0.010 -0.001 -0.003 -0.005 -0.002

ρ n ŜE1(β̂2) ŜE2(β̂2) ŜE3(β̂2) ŜE1(σ̂
2
2) ŜE2(σ̂

2
2) ŜE3(σ̂

2
2)

0.00 100 0.001 0.003 0.001 -0.008 -0.004 -0.010
500 0.001 0.001 0.001 0.001 0.001 0.000
1000 0.000 0.000 0.000 0.001 0.001 0.001

0.50 100 -0.046 -0.070 -0.005 -0.019 -0.028 -0.004
500 -0.021 -0.032 -0.002 -0.010 -0.016 -0.001
1000 -0.014 -0.021 -0.000 -0.009 -0.013 -0.002

0.99 100 -0.092 -0.122 -0.017 -0.085 -0.111 -0.022
500 -0.040 -0.054 -0.006 -0.035 -0.049 -0.003
1000 -0.027 -0.037 -0.002 -0.026 -0.036 -0.004

Table 2.2: Bias estimates of the three standard error estimators (SE1, SE2, SE3) when the covariance structure of a
two-component Gaussian mixture is assumed to be conditionally independent based on 1000 replications under each
mixture distribution with m = 5, γ1 = γ2 = 0, β1 = 1, R1 = Im, σ2

1 = 0.25, β2 = 3, R2 = R(ρ) and σ2
2 = 1 where

R(ρ) is the exchangeable correlation matrix with parameter ρ. Approximate standard error is based on the estimated
standard deviation of the simulation distribution. Values equal to zero represent values less than 0.001.



CHAPTER 2. COVARIANCE MISSPECIFICATION IN MIXTURE MODELS 23

Figure 2.1 shows that the relationship between the level of component separation and
the magnitude of bias is complex. As in the previous simulation, sample sizes of n = 500
and larger produce similar bias estimates so we only present the asymptotic results. When
the level of separation is high, S > 2, then the magnitude of the bias is small, but when
there is some overlap, S < 2, there is not a clear, consistent relationship between the value
of S and the magnitude of the estimated bias for all parameters. That is, for two sets of
parameter values, such as (β2 = 3, σ2

2 = 0.25) and (β2 = 5, σ2
2 = 1), that have the same level

of separation, S = 2.836, the magnitude of the bias for all parameter estimates is drastically
different for the two settings. However, in general, the bias decreases as the level of separation
increases for a fixed mean parameter. The only exception is that the estimator for the first
component mean (β̂1) has increased bias when S = 1.418 as compared to S = 0.709, but
the bias then decreases when S = 2.836. It appears that when there is high overlap between
two components, there is a point at which the bias peaks and then starts to decrease as σ2
increases even though the amount of overlap continues to increase. Lastly, similar to the
parameter estimates, the greater amount of separation results in less bias in the standard
errors with biases as large as 1.0 unit in the situation with the most overlap and as little as
less than 0.001 when components are well separated. Again, the robust estimator again has
the lowest bias.

The simulations based on dependence and separation demonstrate the finite-sample and
asymptotic bias in the ML estimators when the covariance structure is misspecified as condi-
tional independence and the mixture components overlap. However, if two components are
well separated, the misspecification of the dependence in the errors does not result in large
biases and thus any finite-sample bias could be removed potentially conventional techniques
such as bootstrapping with careful tracking of component labels [45]. Additionally, when
there is no covariance misspecification or when components are well separated, all of the
standard error estimates are similar and have little bias. However, when there is misspec-
ification in the dependence structure, the estimates basely solely on the Hessian matrix or
the score vector understate the true variability while the robust estimate has little bias. In
cases where the true level of dependence is high, the bias in the Hessian estimator, ŜE1, and
the robust version, ŜE3, can differ by as much as a relative factor of 2. In simulations not
shown, using unequal prior probabilities result in similar conclusions. When the component
proportions are unbalanced, the magnitude of bias increases when a majority of observations
units originate from the misspecified component (here component 2).

Figure 2.2 shows the absolute bias of parameter estimates under the three different covari-
ance assumptions when the data was generating with the exponential correlation structure
for component 2. As expected, when the model is correctly specified, there is very little bias.
I note that assuming the exchangeable structure, while incorrect, results in less bias than
assuming conditional independence. As the RJ criteria gets closer to 1 from 1.97 to 1.02
to 0.99 using independence, exchangeable, and then exponential, the model structure gets
closer to the true structure resulting in little bias in the parameter estimates.
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Figure 2.1: Asymptotic bias estimates of maximum likelihood parameter estimators when
the covariance structure of a two-component Gaussian mixture is assumed to be conditionally
independent based on one replication with n = 100, 000 under each mixture distribution with
m = 5, γ1 = γ2 = 0, β1 = 1, R1 = Im, σ2

1 = 0.25, R2 = R(ρ), and ρ = 0.99 where R(ρ) is the
exchangeable correlation matrix with parameter ρ. The level of separation (S) is calculated
using the true mixture distribution. For β2 = 3, variance parameters, σ2

2 = 0.25, 1, 4 result
in S = 2.836, 1.418, 0.709, respectively. For β2 = 5, variance parameters, σ2

2 = 0.25, 1, 4
result in S = 5.671, 2.836, 1.418, respectively. Values of S ≥ 2 indicate almost completely
separated components.

2.5 Body mass index data example

To look at the behavior of the parameter and standard error estimates in practice, we
use data from the 1979 National Longitudinal Survey of Youth (NLSY79). The NLSY79 is
a nationally representative sample of 12,686 young American men and women aged 14-22
years in 1979. The cohort, interviewed annually from 1979 to 1994 and biennially thereafter,
has provided health and economic data for a total of 23 interviews (until 2008). In particu-
lar, the available body weight data for the 1979 cohort span a twenty-five year period [105].
We study body mass index (BMI) over time as it is an important longitudinal measure for
public health and elucidating obesity development. Self-reported weight was collected in 17
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Figure 2.2: Bias estimates of maximum likelihood parameter estimators when the covariance
structure of a two-component Gaussian mixture is assumed to be conditionally independent,
exchangeable, and exponential structure based on 1000 replications under each mixture
distribution with n = 500, m = 5, γ1 = γ2 = 0, β1 = 1, R1 = Im, σ2

1 = 0.25, β2 = 3, R2 =
R(r) and σ2

2 = 2 where R(r) is the exponential correlation matrix based on the observation
times (1, 2, 3, 4, 5) and r = 3. Mean values of the RJ criteria are RJ = 1.97, 1.02, 0.99 for
the three covariance assumptions, respectively.

interviews and height in five of those. BMI [weight (kg)/height2 (m2)] was calculated for
each interview based on the weight and the average height.

For the purposes of this chapter, the complex sampling structure is ignored and we ran-
domly sample 500 subjects who were at least 18 years of age in 1981 and reported all 17
weight measurements. Of this sample, 51% are female, 54% are non-Hispanic/non-Black,
29.2% Black and 16.8% Hispanic. To model the BMI outcomes, I allow a quadratic rela-
tionship between mean BMI and age and include sex as a baseline concomitant variable.
Therefore, for i = 1, ..., 500, we assume that the observed data were generated according to

BMIi = βk0 + βk1 · (AGEi − 18) + βk2 · (AGEi − 18)2 + εi

with probability

πk(w,γ) =
eγk0+I(MALEi)γk1∑
j e

γj0+I(MALEi)γj1
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where εi ∼ N(0, σ2
kRik) for k = 1, ..., 4. The choice of four groups is based on previous

research [105]. Using the EM algorithm with five random initializations, we estimate param-
eters and standard errors and present the estimates that produced the highest log-likelihood.
For the sake of comparison, we complete the estimation assuming conditional independence
(Rik = Im), and under an exchangeable (Rik = ρk(1m1Tm − Im) + Im) and exponential
([Rik]jl = exp(−dijl/rk) where dijl is the Euclidean distance between the ages at the jth and
lth interviews for subject i) correlation model.

2.5.1 Results

Parameter and standard errors are estimated for a four-component multivariate Gaussian
mixture model assuming conditional independence, exchangeable, and exponential correla-
tion (Table 2.3). The regression parameter estimates are used to calculate the mean curves
for the four groups under all three covariance assumptions, and we see that the mean curves
differ between the models mainly in terms of the innermost curves (Figure 2.3). Under ex-
changeable correlation, one of the middle curves represents little BMI increase over time in
contrast to the other groups. Under the exponential correlation assumption, the two lowest
groups have a similar pattern over time, but the dependence differs between these groups
with the range parameters estimated as r1 = 2.973 and r2 = 23.579 indicating that compo-
nent 2 has more long range dependence between the BMI outcomes than component 1. Our
simulation results suggest the magnitude of bias in the parameter estimator depends on how
close the assumed correlation structure is to the truth and the overlap between components.
I note there are no well-separated components and we see bias in the mean estimates by
comparing the three covariance assumptions.

Given that the repeated outcome is BMI, we expect some dependence in the error struc-
ture within individuals. I consider the level of dependence in errors by plotting the estimated
autocorrelation function by calculating the empirical variogram of the residuals from the con-
ditional independence model [26] for each estimated component by randomly assigned each
individual to a component using posterior probabilities [141]. The estimated autocorrelation
function of the residuals shows strong dependence between residuals within 5 to 10 years and
the correlation decreases with increasing time lags (Figure 2.4). This correlation structure is
therefore neither consistent with conditional independence nor exchangeable correlation, but
rather decreases to zero which is more consistent with the exponential correlation structure.
We see that the robust standard estimators are almost twice those of estimates using the
standard estimators under conditional independence, and the RJ criteria, which compares
the conventional and robust estimates of the covariance matrix the parameters, suggests that
the exponential correlation structure is the one closest to the truth.

In this data example, we see the influence of the covariance structure on the estimates,
especially in terms of the regression parameters. With the simulation results and the RJ
criteria, we expect the exponential correlation model fits the data the best out of the three
structures. However, I note that I fixed the number of components to be four for the sake
of consistency and this may not be the optimal number of components. In practice, this
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Figure 2.3: Random sample of 500 body mass index (BMI) trajectories from NLSY79 and
mean curves for the four components estimated using a Gaussian mixture model specified
with a quadratic mean under the covariance assumptions: conditional independence, ex-
changeable, and exponential correlation. The labeled are consistent with the tables in the
text: component 1 (solid), component 2 (dashed), component 3 (dotted), and component
4 (dashed-dot). Additionally, the RJ criteria was calculated for each covariance assump-
tion: RJ = 7.34, 3.02, 2.22 under conditional independence, exchangeable, and exponential,
respectively.

value is estimated from the data as mentioned earlier. This data application highlights the
impact of covariance misspecification as well as the fact that the mean structure may not
be the only aspect differing between individuals; the level of dependence and variability also
distinguish groups of individuals.

2.6 Discussion

I have shown that covariance misspecification of a two-component Gaussian mixture may
produce very little bias in regression and prior probability parameter estimates when the com-
ponents are well separated. This is well aligned with Lo’s univariate findings [76]. However,
when there is some overlap in the component distributions, assuming the wrong correlation
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structure can produce asymptotically biased parameter estimates, the magnitude dependent
on the level of separation and how close the structure is to the truth. With misspecified mix-
ture models, the potential for biased prior probabilities and regression parameters estimates
differs from the one-component models for which general estimating equations [75] produce
unbiased estimates despite dependence present in the errors. Depending on the context and
precision of the estimates, the bias may or may not have practical significance, but it is
important to note that the ML estimators are inconsistent under covariance misspecification
and there may be substantial bias when the components are not well separated.

In addition to potential biases in the parameter estimates, the simulations provide evi-
dence that conventional standard errors estimates that are based solely on the score equation,
or the Hessian, can be extremely biased and underestimate the true variability of the esti-
mates when the covariance structure is misspecified. Therefore, standard errors should be
robustly estimated using White’s estimator that sandwiches the two conventional estima-
tors. I use the exact formula for this estimator since the numerical approximations to the
Hessian matrix and score vector are not by-products of the EM algorithm. To my knowl-
edge, very few software programs automatically use a robust standard error estimator, but
it should be implemented in every mixture model software as the default variance estimator
and presented along with standard estimators to allow for comparisons, calculation of the
RJ criteria, and the detection of misspecification bias.

Given our results, I recommend three things when estimating parameters in a mixture
model. First, count the number of subjects whose maximum posterior probability is less than
0.95. If this count is non-zero, this indirectly indicates that the component distribution are
not well separated, suggesting that specifying the correct correlation structure is important.
Second, if the components are not well separated, fit the mixture model using several correla-
tion structures such as conditional independence, exchangeable, and exponential correlation.
For each model, calculate the RJ criteria based on the conventional and robust estimated
variance-covariance matrix. Compare the parameter estimates to see if they change under
the different assumptions and assess the RJ criteria values to see which structure results in
a value closest to one. Choose the most parsimonious model that has an RJ criteria value
close to one. Third, if none of these three structure fulfills this requirement, consider a more
complex, potentially non-stationary covariance matrix as well as other sources of misspeci-
fication such as an incorrect number of components, assumed distribution, or an inflexible
mean structure.

This simulation study is limited, but the results likely apply to more complex mean
structures and a larger number of components. In future studies, the impact of bias should be
explored for more than two components with all components potentially having a misspecified
covariance structure and for non-stationary covariance structures. Additionally, mixture
models as specified in this chapter group individuals with similar trajectories over time; in
the next chapter, I discuss methods that distinguish between the shape of the trajectory and
the vertical level of the curve when grouping individuals together.
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Independence Exchangeable Exponential

Estimate ŜE1 ŜE3 Estimate ŜE1 ŜE3 Estimate ŜE1 ŜE3

γ10 0.83 0.20 0.46 0.12 0.18 0.26 0.42 0.23 0.44
γ11 -1.80 0.38 0.57 0.97 0.30 0.43 -0.89 0.73 2.28
β10 19.32 0.14 0.18 20.99 0.21 0.22 19.98 0.36 0.47
β11 0.10 0.02 0.03 0.16 0.01 0.02 0.22 0.05 0.06
β12 0.00 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00
σ2
1 2.97 0.11 0.28 6.33 0.72 1.00 5.72 0.43 0.98
ρ1 - - - 0.85 0.02 0.02 - - -
r1 - - - - - - 2.97 0.21 0.28
γ20 0.60 0.21 0.44 -0.45 0.22 0.27 0.72 0.22 0.52
γ21 0.44 0.28 0.39 0.85 0.34 0.46 1.42 0.51 1.69
β20 20.98 0.12 0.31 24.04 0.52 0.69 20.91 0.24 0.39
β21 0.24 0.02 0.02 0.20 0.03 0.07 0.19 0.02 0.03
β22 -0.00 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00
σ2
2 3.15 0.10 0.37 21.11 2.93 4.72 8.15 0.79 2.46
ρ2 - - - 0.81 0.03 0.02 - - -
r2 - - - - - - 23.58 2.02 4.21
γ30 0.28 0.22 0.48 0.13 0.19 0.28 0.17 0.25 0.53
γ31 0.53 0.30 0.40 1.07 0.30 0.42 1.74 0.51 1.58
β30 22.82 0.21 0.72 21.16 0.28 0.37 23.52 0.39 0.56
β31 0.45 0.03 0.05 0.37 0.02 0.03 0.46 0.05 0.09
β32 -0.01 0.00 0.00 -0.00 0.00 0.00 -0.01 0.00 0.00
σ2
3 6.42 0.26 1.16 11.24 1.23 2.23 13.05 1.00 2.85
ρ3 - - - 0.82 0.02 0.02 - - -
r3 - - - - - - 10.22 0.68 0.83
γ41 0 - - 0 - - 0 - -
γ40 0 - - 0 - - 0 - -
β40 25.71 0.48 0.67 22.47 0.57 0.48 24.36 1.05 0.83
β41 0.68 0.07 0.11 0.72 0.04 0.08 0.64 0.14 0.10
β42 -0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00
σ2
4 26.86 1.15 7.89 32.98 3.48 6.93 44.79 4.09 13.76
ρ4 - - - 0.68 0.03 0.04 - - -
r4 - - - - - - 8.06 0.65 0.85

Table 2.3: Parameter and standard error estimates (ŜE1, ŜE3) for a random sample of
500 from NLSY79 assuming a four-component mixture model with quadratic mean and the
following correlation structures: conditional independence, exchangeable, and exponential
correlation. Values equal to zero represent values less than 0.01. Additionally, the RJ
criteria was calculated each covariance assumption: RJ = 7.34, 3.02, 2.22 under conditional
independence, exchangeable, and exponential, respectively.



CHAPTER 2. COVARIANCE MISSPECIFICATION IN MIXTURE MODELS 30

●
●

● ● ●

●
●

●
●

● ● ●
● ●

● ● ●

● ●
● ●

●

● ● ●

●

●

●

0 5 10 15 20 25

−1.0

−0.5

0.0

0.5

1.0

Component 1

Years between observations

A
ut

oc
or

re
la

tio
n

●

●
● ●

●
● ●

● ●

●
●

●
● ● ● ●

●
● ● ●

●
● ●

●
●

●
●

●
0 5 10 15 20 25

−1.0

−0.5

0.0

0.5

1.0

Component 2

Years between observations

A
ut

oc
or

re
la

tio
n

●
●

●
●

●
● ●

●
●

● ●

● ●
● ●

●
● ●

● ●
●

●

● ● ● ●
●

●

0 5 10 15 20 25

−1.0

−0.5

0.0

0.5

1.0

Component 3

Years between observations

A
ut

oc
or

re
la

tio
n

●

● ●
● ●

●
●

● ●

●
●

● ●
●

●

●
●

● ●

●

●

● ●

● ●

● ●

●

0 5 10 15 20 25

−1.0

−0.5

0.0

0.5

1.0

Component 4

Years between observations

A
ut

oc
or

re
la

tio
n

Figure 2.4: Smoothed sample autocorrelation of component residuals of estimated Gaussian
mixture model specified with a quadratic mean and conditional independence with a random
sample of 500 body mass index trajectories from NLSY79 randomly assigned to components
based on estimated posterior probabilities.
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Chapter 3

Shape-based clustering

Longitudinal data is collected with the intent of studying the change over time. One
side effect of collecting this type of data is the inherent dependence between the repeated
measures. The last chapter provided evidence that this nuisance cannot be ignored when
clustering data using a finite mixture model. In this chapter, I discuss clustering methods
with the research goals of longitudinal studies in mind.

3.1 Motivation

There is no one way to cluster data. There are many characteristics of quantitative data
on which to base a grouping. This is not only true for data sets. We constantly group
products, people, and projects based on different qualities and characteristics. However,
we tend to forget this subjective choice when faced with a data set filled with continuous
measurements. Many automatically use squared Euclidean distance to determine similarity.
This may work adequately when the data are organized into vectors of independent explana-
tory factors all of which are equally important features of the object or subject. However,
when the vector has time-ordered structure, a dissimilarity measure that is based only the
element-wise differences between vectors ignores this important structural property of the
data.

There has been some work in adapting and developing clustering methods for longitudinal
data in the fields of behavior science and genomics [122, 43, 62, 98, 89]. Most of these methods
involve fitting a finite mixture model with adjustments to the mean or covariance to make
it more adaptable to longitudinal data. Others cluster subjects with a partition algorithm
using a dissimilarity measure developed specifically to take the time-ordered structure of
longitudinal data into account. Applying cluster methods to longitudinal data has gained
popularity in other areas of application. For example, there is a growing literature about
clustering distinct childhood body mass index growth patterns over time with a view to
determining life factors that contribute to patterns [109, 10].

The main goal of a longitudinal study is to study individual change over time. However,
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none of the standard clustering methods adapted for longitudinal data explicitly group sub-
jects based on the shape of the pattern over time. Although they claim to group similar
patterns, the similarity is not defined in terms of any one specific feature of the data but
rather just in terms of the difference in the vector elements. In the time series literature,
Wang, Smith, and Hyndman [142] suggested estimating and using global features of time
series processes such as the trend, seasonality, autocorrelation, and kurtosis to define simi-
larity when clustering. Some of these features apply to longitudinal data. The trend over
time in particular is of considerable interest. We go a step further and break trend into two
components: level and shape.

In many circumstances, these two characteristics provide distinct information that can
elicit different actions. For example, when investing in stocks, the magnitude of the share
price provides information about the value and financial practices of a company. While that
information is important, the feature that may drive a decision to buy or sell shares of a stock
is the historical change in price over time. Similarly, a high average body mass index triggers
concerns about health, but knowing how that value is changing over time indicates whether
the problem is improving or worsening and if an intervention may be necessary. When
studying gender inequality in salaries, it is important to differentiate between discrimination
in starting salaries and systematic discrimination over time. I distinguish between these two
features of a trajectory when thinking about clustering as they provide different information.

Despite the interest in the shape of the change over time, too many researchers apply a
standard clustering method without thought on the interpretation of their results. Not only
are the groups driven by the level rather than the shape of the trajectories, but the means
within a given cluster may not be representative of any specific individual’s trajectory since
it may be an average of trajectories with different shapes at the same level. It is common
for authors applying these standard clustering methods to make incorrect conclusions about
shape [147, 93, 9, 109, 84].

Imagine measuring alcohol consumption over time for a sample of young adults. This
cohort may contain individuals who never drink as well as those that have moderate or heavy
drinking habits. Besides different levels of alcohol consumption, there may be a variety of
behavior patterns over time such as escalation, reduction, or stabilization. All of these
patterns can occur at each level of alcohol consumption. Figure 3.1 illustrates a possible
scenario of four individuals, two of who drink heavily and two of who are low to moderate
drinkers. Within both levels, one of the individuals has escalating behavior and the other
is reducing alcohol consumption over time. We assume linear change for simplicity. The
shape of the curve, the slope in this case, is independent of the consumption level. If K-
means is applied to the observed vectors, two clusters are discovered that are determined
by the level of consumption with the two heavy drinkers grouped together and the two
moderate consumers in another group. Consequently, the mean trajectory for each group is
a horizontal line, which disguises the fact that the alcohol consumption is not stable for any
of the individuals. Knowing what factors impact the alcohol consumption level is important
for public health, but the knowledge of what type of people have escalating or reducing
behavior in a population informs what and when interventions need to be implemented.
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This is a trivial, highly simplified example, but it illustrates the type of results that occur
in practice [84].
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Figure 3.1: Graph of linear trajectories representing the hypothetical alcohol consumption
of four individuals.

There are factors that influence the level and perhaps other factors that affect the shape
of the patterns and it is important to separate these two relationships so as to not muddy the
interpretations. If the goal is to detect and compare groups based on their temporal change
over time, we need methods that answer the following research questions: Are there distinct
shape patterns in the data? How many patterns are there? Are there baseline factors that
impact the shape of an individual’s trajectory? In the next section, I discuss two popular
standard clustering methods in the context of clustering based on shape and highlight the
situations in which these methods fail to address such research questions.

3.2 Limitations of standard clustering methods

Two standard methods for clustering multivariate data include partition methods based
on a dissimilarity measure (e.g. Euclidean distance) and model-based methods such as finite
mixture models. These methods were introduced in the first chapter of this thesis and I now
illustrate the limitations of these methods in answering research questions about shape.
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I assume that there are n subjects such that for subject i, we observe mi repeated
measures of an outcome of interest. I denote the vector of measured outcomes as yi =
(yi1, ..., yimi

) for i = 1, ..., n and wi ∈ Rq as the design vector based on baseline variables
that may impact group membership. Lastly, the corresponding time of the data collection
for subject i is ti = (ti1, ..., timi

).

3.2.1 Partitioning algorithms

If the outcome is measured at the same times for every subject such that mi = m and
ti = t for all i = 1, ..., n, longitudinal data fit into a typical multivariate data framework
where applying a partitioning method like the K-means algorithm [81, 49] to the observed
vector is typically appropriate. See Chapter 1 for details of the iterative algorithm.

I now illustrate how this algorithm fails to address all three of the questions previously
posed. Using the simple alcohol consumption example, let n = 4, and suppose the average
number of drinks per week is collected over a ten year period, t = (15, 16, ..., 24, 25). Let
the observed outcome vectors be linear in trend as shown in Figure 3.1. Note that there are
two shape groups: increasing and decreasing. In this circumstance, the level and the shape
are not strongly associated since there are different levels within each shape group. The
K-means algorithm groups on the basis of squared Euclidean distance between individuals.
The distances between these four subjects are listed in Table 3.1.

Low Decreasing High Decreasing Low Increasing High Increasing
Low Decreasing 0 275.0 17.6 292.6
High Decreasing 275.0 0 292.6 17.6
Low Increasing 17.6 292.6 0 275.0
High Increasing 292.6 17.6 275.0 0

Table 3.1: Squared Euclidean distance matrix for the hypothetical alcohol consumption
vectors of four individuals: high level but slowly decreasing, high level but slowly increasing,
low level but slowly decreasing, and low level but slowly increasing.

The level dominates such that the subjects with the same level (high or low) are clearly
the most similar using this dissimilarity measure. The distance between those with same
shape have a distance of about fifteen times that of distances within levels. Clustering using
Euclidean distance thus detects distinct levels, and if the distinct shapes do not coincide
with the distinct levels, the K-means algorithm fails at grouping individuals based on shape
and detecting the number of trend patterns. The mean curves over time for the two groups
end up being horizontal even though the alcohol consumption is not stable over time for any
individual.

Imagine if the shape of the trajectory were correlated with the vertical level where all
of the heavy drinkers slowly decrease the number of drinks per week and the light drinkers
increase over the years; then, K-means algorithm results in clusters based on level and thus



CHAPTER 3. SHAPE-BASED CLUSTERING 35

on shape in this case (Figure 3.2). The algorithm detects the shape groups only when the
trajectories with similar shapes also have similar levels, which may be the case in some
applications but is not true for many data sets. I have focused on the K-means algorithm,
but these conclusions hold for the PAM algorithm when Euclidean or squared Euclidean
distance is used.
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Figure 3.2: Graph of linear trajectories representing the hypothetical alcohol consumption
of four individuals where shape and level are strongly associated.

Lastly, if baseline factors are related to the cluster membership, the only option is to
complete an analysis after the clustering algorithm is complete. One technique is to fit
a multinomial logistic regression model for the group labels with baseline factors as the
explanatory variables. This analysis automatically assumes that the group labels are known
and fixed; it does not take into account any variability in the algorithm or the uncertainty
in the group memberships. Therefore, any inference should be done with caution as the
standard errors are calculated conditional on cluster labels and do not take into account
other sources of uncertainty.
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3.2.2 Finite mixture models

In contrast to partition methods, finite mixture models provide a probability framework
in which to take into account the uncertainty of group memberships and simultaneously
estimate the relationship between baseline factors and groups. Additionally, the model is
sufficiently flexible to accommodate irregular sampling which frequently occurs in longitudi-
nal studies. A finite mixture model is a weighted sum of component distributions. I assume
a parametric form for these distributions and that parameters differ between components.

In general, I assume there are K latent groups that occur in the population with frequen-
cies π1, ..., πK . If subject i is a member of the kth group, the observed data vector for that
subject is given by

yi = µk + εi εi ∼ N(0,Σk).

Maximum likelihood estimation via the EM algorithm is used to estimate the model param-
eters and the posterior probabilities of whether a subject belongs to each component. These
probabilities provide a way to soft cluster subjects to groups as a subject ‘belongs’ to every
cluster with some probability. Subjects can then be hard clustered through assignment based
on the maximum posterior probability.

If the outcome vector is repeated measures over time, there are some necessary adjust-
ments that need to be made to the mixture model. The outcome vectors may not have equal
length and the measurements may not be observed at the same times between individuals.
Therefore, structure must be imposed on the mean vector and the covariance matrix. A
regression structure can be used by assuming a linear model for the mean, µk = xβk. The
design matrices based on explanatory variables x must include time components that can
model the shape of the curve. In terms of the covariance structure, most software packages
restrict the structure to conditional independence, which can be problematic as shown in
Chapter 2.

If conditional independence is assumed for the correlation structure, then the likelihood
function is based on squared Euclidean distances between observations and group means
scaled by the estimated variance. Akin to the K-means algorithm, maximizing the likelihood
with the original data vectors generally fails to group individuals by shape if shape and level
are weakly dependent. If the level of the outcome vector is largely determined by a random
intercept such that yi = λi1 + xiβk + εi where λi ∼ N(0, τ 2k ) and εi ∼ N(0, σ2

kI) for
subjects in the kth group, then it is possible to model the variability of the level through
the correlation structure. In general, if the distribution of the level within a shape group
is known and can be correctly modeled within each shape group, then including that into
the model can produce the shape groups. In practice, such distributions are not known and
clustering results are sensitive to incorrect assumptions.

It only takes a simple simulation to show that the standard finite mixture fails to group
individuals by shape, but Nagin’s book leads people to believe that a finite mixture model
assuming conditional independence “lends itself to analyzing questions that are framed in
terms of the shape of the developmental course of the outcome of interest” and “focuses
on identification of different trajectory shapes and on examining how the prevalence of the
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shape and the shape itself relate to predictors” [100]. This shows a gap in the understanding
present in the literature.

3.3 Methods extended for shape

There has been work done in developing and adapting clustering methods for longitudinal
data, but there has been much less discussion in the literature about the best methods to
utilize when shape of pattern over time is the feature of interest. In this dissertation, the
term shape refers to the shape of the underlying functional pattern over time.

There are many ways to describe the shape of a function. The first derivative of the
function with respect to time provides the instantaneous rate of change at a point in time.
The sign of the derivative indicates whether the function is increasing or decreasing at a
point. Local and global minima and maxima of the function are determined by where the
first derivative is zero. Lastly, the second derivative provides information about the growth
of the first derivative and thus whether the function is concave up or down at any point.

These are all aspects of the shape and they may be important in different scientific
settings. For example, when clustering genes, the location of the peaks in expression levels
may be of interest so focusing on local maxima would be useful when clustering [80]. In other
circumstances, it is only necessary to know whether the function is increasing or decreasing
so that only the sign of the first derivative is needed [106].

For this thesis, I define shape as the pattern of the function after disregarding the vertical
level. There are a few ways to compare the shape of two function using this definition. One
way is to compare the first derivatives as differentiation removes the level and uniquely
describes the shape of the remaining curve. However, it is difficult to estimate the derivative
of a discretized, noisy version of the function. Another popular approach involves calculating
the Pearson correlation coefficient between two vectors of discretized versions of the functions.
These two ideas have been implemented in a clustering framework for longitudinal data.

3.3.1 Derivative-based dissimilarity

One approach to clustering on the basis of shape is to compare derivative functions. The
first derivative of a function describes the rate of change while ignoring the intercept or level
of the original function. With longitudinal data, we do not directly observe the derivative
function for each individual. Assume that the jth observed outcome for individual i at time
tij is a realization of the model

yij = fi(tij) + εij

for i = 1, ..., n and j = 1, ...,mi where εij
iid∼ (0, σ2

i ), fi is a subject-specific differentiable,
continuous function, and mi is relatively small (usually around 5 to 10). When the obser-
vation times are consistent across individuals with mj = m and tij = tj for j = 1, ..,m and
i = 1, ..., n, Möller-Levet et al. [92] and D’Urso [29] independently suggested estimating the
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derivative of the underlying smooth function via the difference quotient by calculating the
slope of a linear interpolation between adjacent repeated measures,

f̂
′

i (tj) = (yi j+1)− yij)/(tj+1 − tj).

By the mean value theorem, this is an unbiased estimate of the true derivative f
′
i (τ) at a

point τ ∈ [tj, tj+1] such that

E(f̂
′

i (tj)) = fi(tj+1)− fi(tj))/(tj+1 − tj) = f
′

i (τ).

However, the estimate is highly variable if σ2
i is large since

Var(f̂
′

i (τ)) = 2σ2
i /(tj+1 − tj)2.

Large variability in the estimates impacts the cluster analysis if enough estimates are
far from the true derivative. The dissimilarity between two individuals is measured as the
squared Euclidean distance between the vectors of difference quotients. High variability
can lead to high dissimilarity for individuals with similarly underlying shape. One way to
minimize the variance is to maximize the time between observations. Observing only two
observations, one at baseline and another at the end of the follow-up period, minimizes the
variance but at the expense of observing the rate of change during the follow-up period.
If the times of observation are densely sampled, a functional approach smoothes out the
noise using splines to estimate the function and then the derivative function [132]. In either
circumstance, the derivatives are independently estimated for each individual and there is
no direct way to borrow strength between individuals to better estimate the derivative even
if some individuals are thought to have a common shape.

Our main concern is how well these methods cluster based on shape; therefore, it is
important to determine the behavior of the Euclidean distance using these estimated deriva-
tives and how well it can distinguish between two noisy curves in terms of their shape over
time. Assume there are three subjects (n = 3) observed ten times (m = 10) uniformly at
intervals of ∆, t1 = t2 = t3 = (∆, 2 ·∆, ..., 10 ·∆). Two subjects have the same horizontal
shape over time and the third has a positive slope, f1(t) = f2(t) = 0, f3(t) = a ∗ t, and the
variability of the noise is the same amongst the subjects, σ1 = σ2 = σ3 = σ. The outcomes
for individual i at the jth observation time equals

yij = fi(tj) + εij εij ∼ N(0, σ2)

for i = 1, 2, 3 and j = 1, ..., 10. The vectors of difference quotients for the three subjects are
denoted as dy1, dy2, dy3. I am interested in the probability of the event that the distance
between dy1 and dy2, which are both generated from the same horizontal shape, is less than
the distance between dy2 and dy3, which are generated from different shapes. Given values
for σ, ∆, a, I empirically estimate

P (‖dy1 − dy2‖22 < ‖dy2 − dy3‖22)
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by generating data for the three subjects 5000 times. I complete this simulation under
many conditions specified by a combination of a = 0.25, 1, 5, ∆ = 0.5, 1, 1.5, 2, 2.5, 3, and
σ = 0.5, 1, 1.5, 2, 2.5, 3. The estimated probabilities are plotted against the ratio, σ/∆, for
different slopes of f3(t) (Figure 3.3).
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Figure 3.3: Empirical probability that the distance between dy1 and dy2, which share the
same underlying horizontal function, is smaller than the distance between dy1 and dy3 for
different ratios of standard deviation to length of time lags (σ/∆) and slopes of the linear
function underlying y3 based on 5000 replications.

I note that as the ratio of variance to time interval increases, the probability of the two
horizontal observed vectors being closer than the two vectors from different shapes decreases
to 0.50. Therefore, if the variance is large in comparison to the sampling increments, it is
a toss up as to whether the Euclidean distance between the difference quotients correctly
determines which vectors were generated from the same shape. On the other hand, if the
variance is small relative to the time between samples, the procedure finds the two horizon-
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tal lines more similar than two lines with different slopes most of the time. As the slope
increases and thus the difference between shapes increases, the method correctly determines
similarity. There is a trade-off between bias and variance so individuals need to be observed
at intervals relative to the measurement error and degree to which the shapes differ without
compromising the ability to measure the shape. Otherwise, this procedure fails at grouping
individuals with similar patterns over time.

3.3.2 Correlation-based dissimilarity

Another approach is to calculate the Pearson correlation coefficient which is invariant to
trajectory level [15, 30, 14]. Despite the wide use, there has been little discussion about how
well the correlation does to discriminate between shapes in this context. In the multivariate
setting, one dissimilarity measure based on the Pearson correlation coefficient between two
comparable vectors is

dCor(x,y) = 1− Cor(x,y)

where

Cor(x,y) =

∑m
j=1(xj − x̄)(yj − ȳ)√∑m

j=1(xj − x̄)2
√∑m

j=1(yj − ȳ)2
.

This measure takes values between 0 and 2 with extremes attained only when there is perfect
linear positive or negative correlation. If there is zero noise, a vector with an underlying
non-constant functional shape of f(t) is perfectly positively correlated with a vector with
functional shape of a · f(t) + b where a > 0 and b ∈ R. As a result, two vectors that have the
same shape over time but at different levels have a dissimilarity of zero since the correlation
coefficient equals 1. However, two vectors with underlying functions that are scalar multiples
of each other are also placed in the same cluster despite having drastically different shapes.
While this method succeeds in grouping individuals with the same shape at different levels,
it fails in the sense that is also groups individuals with different shapes. If the function is
observed with error such that εij ∼ (0, σ2

i ), the magnitude of the correlation is generally
deflated such that the dissimilarity moves closer to the middle value of 1.

The correlation between two constant functions is undefined. With noise, the expected
dissimilarity value is 1 with variation dependent on the number of observations. In other
words, the Pearson correlation coefficient does not consistently detect two horizontal curves
to have the same shape especially with a small number of observations, which is typical in
longitudinal data. This dissimilarity measure fails to detect similar underlying shapes when
σ2
i is large, the number of observations is low, and the data set includes constant or stable

patterns over time.
The related cosine-angle dissimilarity measure has also been used to determine the sim-

ilarity of two vector profiles [30]. The measure is the uncentered version of the Pearson
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correlation dissimilarity,

dCos(x,y) = 1−
∑m

j=1 xjyj√∑m
j=1 x

2
j

√∑m
j=1 y

2
j

.

Since the mean is not subtracted from the vector elements, it is defined for two vectors
based on constant functions. However, the measure is invariant to scaling transformations
of the vectors and not invariant to vertical shifts, which are undesirable properties for a
dissimilarity measure based on our definition of shape similarity.

3.4 Discussion

The standard clustering methods generally fail to answer the three research questions
posed at the beginning of this chapter: Are there distinct shape patterns in the data? How
many patterns are there? Are there baseline factors that impact the shape of an individual’s
trajectory? There have been some attempt to adjust the input vector to group by shape, but
these methods based on difference quotients and the Pearson correlation coefficient generally
fail when data observed equals a smooth function plus moderate variability. Additionally,
both methods require data to be collected at fixed time points for all of the subjects. Ideally,
we want a method that exploits all of the properties of longitudinal data, which includes the
possibility of sporadic, irregularly sampled data.

In the next chapter, I propose three extensions of existing method that attempt to answer
the research questions above for real longitudinal data sets. Before I present the proposed
methodology, it is worth discussing two common data-generating models that allow a group
structure based on shape and individuals can differ in the vertical level within the group. In
a functional data approach [111], we assume that the jth observation for the ith individual
at time tij is

yij = fi(tij) + εij

for i = 1, ..., n and j = 1, ...,mi where εij
iid∼ (0, σ2

i ) and fi is a random function sampled
from a Hilbert space of square integrable functions on a real interval.

In a typical longitudinal data analysis approach [26], we assume that the jth observation
for the ith individual at time tij in group k is

yij = λi + µk(tij) + εij

for i = 1, ..., n and j = 1, ...,mi where λi adjusts the vertical level of an individual’s curve,
µk(t) is a continuous mean function of time for cluster k, and εij is random error that may
be correlated within subject i but independent between subjects. If λi is assumed random,
then the model is considered a random intercept model within clusters.

In the next chapter, I present three new methods adapted from related literature that
address clustering based on shape over time and then compare them with the methods
discussed in this chapter.
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Chapter 4

Proposed shape-based methods

In this chapter, I present three new clustering techniques that attempt to answer the
three research questions presented in the last chapter: Are there distinct shape patterns
in the longitudinal data? How many patterns are there? Are there baseline factors that
impact the shape of an individual’s trajectory? For each method, I discuss related work
and then introduce necessary background, notation, and the model specification. I describe
the implementation process and any foreseen issues and limitations. I then discuss the
advantages and disadvantages of each. In the next chapter, a simulation study compares the
proposed methods with those presented earlier in this thesis in addressing research questions
about shape.

4.1 Derivative spline coefficients partitioning

The first method is based on the idea that differentiation removes the level from a function
and provides information about the shape. Unlike the difference quotient method described
in Chapter 3, the proposed method smoothes out noise prior to calculating the derivative
and does not require the data to be regularly sampled for all subjects. Using techniques from
functional data analysis [111], outcome data for each individual are projected onto a func-
tional basis to estimate a smooth function of time. The estimated function is differentiated
to get an indirect estimate of the derivative function. The dissimilarity between individuals
is based on these estimates. By first removing the level, this method theoretically clusters
individuals with similarly shaped trajectories.

4.1.1 Related work

In Chapter 3, I introduced the difference quotient dissimilarity measure separately sug-
gested by D’Urso [29] and Möller-Levet et al. [92]. Möller-Levet et al. referred to this measure
as the short time-series distance and developed it to identify similar shapes in microarray
data. In contrast, D’Urso took a physics view of the data and referred to the difference
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quotient measure as the longitudinal-velocity dissimilarity measure. Additionally, he used a
difference quotient in velocities to calculate a measure inspired by acceleration and then com-
bined the cross-sectional and evolutive information of the trajectories into one dissimilarity
measure.

Similar to D’Urso, Zerbe presented three distance measures for growth curves based
on position, velocity, and acceleration [151, 122]. Rather than using difference quotients, he
suggested estimating the velocity by first fitting a polynomial of degree d to each individual’s
growth curve using least squares. For individual i, he let yi be the vector of observed
outcomes at times ti. Then, the estimated curve is f̂i(t) = (1 t t2 ... td) β̂i where

β̂i = (XT
i Xi)

−1XT
i yi

and Xi is the within-individual design matrix determined by the polynomial function eval-
uated at the observation times of individual i. The estimated derivative is equal to f̂

′
i (t) =

[0 1 2t ... dtd−1] β̂i. In other words, he suggested projecting the data onto a polynomial
basis of degree d, differentiating the basis, and calculating the estimated derivative function,
which can be represented by a polynomial basis of degree d− 1. The dissimilarity between
the ith and jth individuals based on the velocity equals

d(yi,yj) =

[∫
T

[f̂
′

i (t)− f̂
′

j(t)]
2dt

]1/2
for a chosen time interval, T . This integral is easy to evaluate since the estimated derivatives
functions are represented using a polynomial basis.

Tarpey and Kinateder [132], at the end of their functional clustering paper, briefly men-
tioned a few suggestions to cluster data after getting ‘rid of dominating variability in the
intercept.’ One of their proposals was to cluster individuals based on the derivatives of
the estimated functions. In personal correspondence with one of the authors, the details of
the implementation were clarified. After projecting individuals’ data onto a finite Fourier
basis, they differentiated the Fourier basis functions and used the K-means algorithm on
the coefficients of the derivative functions. Thus, the estimated function for individual i is
f̂i(t) = (1 sin(2πt) cos(2πt) ... sin(2πwt) cos(2πwt)) β̂i where

β̂i = (XT
i Xi)

−1XT
i yi

and Xi is the within-individual design matrix determined by the Fourier expansion eval-
uated at the observation times of individual i. Since d

dt
cos(2πwt) = −2πw sin(2πwt) and

d
dt

sin(2πwt) = 2πw cos(2πwt), the estimated derivative function for individual i is repre-
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sented using the same Fourier expansion with new coefficients

α̂i =



0 0 0 · · · 0 0
0 0 −2π · · · 0 0

0 2π 0
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 0 −2πw

0 0 0 · · · 2πw 0


β̂i

that are transforms of the original coefficients. The dissimilarity between the ith and jth
individuals based on the derivative coefficients equals

d(yi,yj) = (α̂i − α̂j)
T (α̂i − α̂j).

These two approaches use the same general procedure. Individual trajectories are smoothed
by projecting the data onto a chosen basis, the derivative of the estimated function is cal-
culated by differentiating the basis functions, and the dissimilarity between individuals is
based on the estimated derivative functions. Now with any smoothing procedure, there is a
fundamental bias-variance tradeoff. In this case, including higher ordered polynomial terms
or more sine and cosine functions in the basis decreases the bias but increases the variance.
The basis functions need to be selected so as to strike a balance between the two. The type
of basis also affects the differentiation process. For example, polynomial and Fourier bases
are computationally convenient in that differentiation results in a basis of the same type.

Despite the similarities, these two methods differ in how the dissimilarity measure is
defined between two individuals. Zerbe used the L2 distance between two derivative func-
tions; Tarpey and Kinateder calculated the squared Euclidean distance between the basis
coefficient vectors for the estimated derivative function. This reflects the diversity in the
functional cluster analysis literature; some use the L2 distance on functions [54] while others
calculate the Euclidean distance between the linear coefficients of the basis function [1, 125,
132].

Tarpey [131] reconciled these two dissimilarity measures by showing that clustering func-
tional data using the L2 metric on function space can be achieved by running K-means
on a suitable linear transformation of the basis coefficients. If y(t) is a functional realiza-
tion represented as y(t) =

∑
j βuuj(t)and µ(t) is a functional cluster mean represented as

µ(t) =
∑

j γjuj(t), then the squared L2 distance between them on interval T is∫
T

(y(t)− µ(t))2dt =

∫
T

(
∑
j

(βj − γj)uj(t))2dt

=
∑
j

∑
l

(βj − γj)(βl − γl)
∫
T
uj(t)ul(t)dt

= (β − γ)TW(β − γ)

= (W1/2(β − γ))T (W1/2(β − γ))
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where Wjl =
∫
T uj(t)ul(t)dt. Therefore, clustering with the L2 distance is equivalent to

plugging transformed coefficients, W1/2β, into the K-means algorithm. Consequently, when
the functions are represented using an orthogonal basis such as the Fourier expansion, K-
means on the coefficients is equivalent to the L2 implementation.

Both functional bases presented thus far are restrictive. The Fourier basis only works
well when the data is periodic in nature and a polynomial basis does not provide a general
structure to represent complex functions with few parameters. To allow for flexibility in the
functional shape, the observation time interval, [a, b], can be broken up into smaller interval
using L internal knots, a < τ1 < · · · < τL < b, so that polynomials of order p are fit in
each subinterval. This piecewise polynomial can be expressed as a linear combination of
truncated power functions and polynomials of order p. In other words, {1, t, t2, ..., tp−1, (t−
τ1)

p−1
+ , ..., (t− τL)p−1+ } is a basis for a piecewise polynomial with knots at τ1, ..., τL. However,

the normal equations associated with the truncated power basis are highly ill-conditioned.
A better conditioned basis for the same function space is the B-spline basis [22, 123, 19,

23], which extends the advantages of polynomials to include greater flexibility [1]. To my
knowledge, no other study has focused on clustering longitudinal data using the coefficients
of the B-spline derivative estimate.

In the following sections, I introduce B-spline functions and demonstrate how they can
be used to estimate derivative functions. Then, the implementation and practical decisions
that need to be made are presented and discussed.

4.1.2 B-spline functions

I fit a p-order spline function to each subject i in order to estimate its underlying smooth,
fi. For the sake of being self-contained, I include some background on splines. Let t ∈ [a, b]
where a, b ∈ R and ξ0 = a < ξ1 < · · · < ξL < b = ξL+1 be a subdivision of the interval
[a, b] by L distinct points, termed internal knots. The knot sequence is augmented by adding
replicates at the beginning and end, τ = [τ1, ..., τL+2p] for p ∈ N, such that

τ1 = τ2 = · · · = τp = ξ0

τj+p = ξj, j = 1, ..., L

ξL+1 = τL+p+1 = τL+p+2 = · · · = τL+2p

The spline function, f(t), is a polynomial of order p on every interval [τj−1, τj] and has p− 2
continuous derivatives on the interval (a, b). The set of spline functions of order p for a fixed
sequence of knots, τ = [τ1, ..., τL+2p], is a linear space of functions with L+p free parameters.
A useful basis B1,p(t), ..., BL+p,p(t) for this linear space is given by Schoenberg’s B-splines
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[19, 23] defined as

Bj,1(t) =

{
1 if τj ≤ t < τj+1

0 otherwise

Bj,l(t) =
t− τj

τj+l−1 − τj
Bj,l−1(t) +

τj+l − t
τj+l − τj+1

Bj+1,l−1(t)

where l = 2, ..., p and j = 1, ..., L + 2p− l. If I adopt the convention that Bj,1(t) = 0 for all
t ∈ R if τj = τj+1, then by induction Bj,l(t) = 0 if τj = τj+1 = · · · = τj+l. Hence, B1,l(t) = 0
for t ∈ R and l < p on the defined knot sequence. The B-spline function of order p is defined
by

f(t) =

L+p∑
j=1

βjBj,p(t).

Let yi = (yi1, ..., yimi
) denote a vector of repeated observations for individual i observed

at times ti = (ti1, ..., timi
) for i = 1, ..., n. I assume that yij = fi(tij)+εij such that E(εij) = 0

for all j = 1, ...,mi and i = 1, ..., n. To estimate fi, I fix the order of the B-spline to p and the
internal knots and then estimate the coefficients, βi = (βi,1, ..., βi,(L+p)) using least squares.

The estimated function is f̂i(t) =
∑L+p

j=1 β̂i,jBj,p(t) where

β̂i = (XT
i Xi)

−1Xiyi

and Xi is the within-individual design matrix based on the B-spline basis functions.
To estimate f ′i(t), the estimated function f̂i(t) is differentiated with respect to t such that

f̂ ′i(t) =

L+p∑
j=1

β̂i,jB
′
j,p(t).

Prochazkova [108] showed that this can be simplified to

f̂ ′i(t) =

L+p∑
j=1

β̂i,j

[
p− 1

τj+p−1 − τj
Bj,p−1(t)−

p− 1

τj+p − τj+1

Bj+1,p−1(t)

]
.

However, this can be written in terms of a B-spline basis of one order lower,

f̂ ′i(t) =

L+p−1∑
j=1

(β̂i,j+1 − β̂i,j)
p− 1

τj+p − τj+1

Bj+1,p−1(t).

Adjusting the knot sequence to only have p− 1 replicates at the beginning and end results
in

f̂ ′i(t) =

L+p−1∑
j=1

α̂i,jBj,p−1(t)

where α̂i,j = (β̂i,j+1 − β̂i,j) p−1
τj+p−τj+1

. These derivative coefficients, α̂i = [α̂i,1, ..., α̂i,(L+p−1)],

can be used to cluster trajectories with similar shape with the K-means algorithm [81, 49].



CHAPTER 4. PROPOSED SHAPE-BASED METHODS 47

4.1.3 Implementation

To use this method in practice, decisions about the B-spline basis need to be made.
The order of the polynomials must be selected. This together with the number of internal
knots impacts the flexibility of the B-spline function. Cubic B-splines of order four have
been shown to have good mathematical properties and are used frequently in practice [58].
However, depending on the number of data points observed per subject, it may be necessary
to use a quadratic polynomial (p = 3) due to the restriction that the sum of the order and the
number of internal knots must be less than or equal to the minimum number of observation
points per subject for estimation to be possible.

The number of internal knots plays a role in the flexibility of the class of spline functions
and should be enough to fit the features in the data. As with the order, the main limiting
factor in choosing L is the number of data points per subject. The longitudinal data sets
considered in this thesis have about five to ten data points per subjects. It is important not
to over fit the individual curves so for data with limited observation, it may only be possible
to have at most one internal knot. If there are many repeated measures, model selection
information criteria or cross-validation can be used to choose L [114]. The location of the
internal knots is another issue of discussion. There are some suggested data-driven ways to
select knot location [152], but Ruppert [120] supports fixing the knots at sample quantiles.
I generally follow this suggestion and adjust them as necessary to the areas with the most
functional activity.

Once the order of the polynomials and number and location of knots are chosen, then
smooth functions and their derivatives are estimated using least squares separately for every
subject. The coefficients from the estimated derivative functions become the input vectors
to the K-means algorithm (see Chapter 1 for more details). This algorithm converges, but
there is no guarantee that it will find the grouping that globally minimizes the objective
function. Therefore, in practice, the algorithm is run multiple times with different random
initializations and the clustering that minimizes the objective function is chosen. I use 25
random starts.

The number of clusters must be fixed in order to run the K-means algorithm. However,
K is unknown and of interest to researchers in practice. While no perfect mathematical
criterion exists, a number of heuristics (see [134] and discussion therein) are available for
choosing K. For this thesis, K is chosen for partition methods so as to maximize the overall
average silhouette width [118]. See Chapter 1 for technical details of the silhouette width.
By maximizing the overall average silhouette width, the dissimilarity between clusters is
maximized and the dissimilarity within clusters is minimized resulting in distinct groups. In
this case, the dissimilarity between two individuals is defined as squared Euclidean distance
between derivative coefficients.

K-means is a partitioning algorithm; therefore, by definition every subject is hard clus-
tered into one of the groups. There is no stated uncertainty in the group memberships even
if a subject is between two clusters. In order to estimate the relationship between baseline
variables and shape group membership, I assume the cluster labels are known. Given the
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subject grouping labels from the partition, {ci} such that ci ∈ {1, 2, ..., K} for all i = 1, ...n,
I fit a multinomial logistic regression model, which is an extension of the logistic regression
model, using the group labels as the outcome and baseline factors as explanatory variables
such that

P (ci = k|wi) =
exp(wT

i γk)∑K
j=1 exp(wT

i γj)

for all k = 1, ..., K and i = 1, ..., n with γK = 0 where wi is the design vector based
on baseline factors. The parameters γ1, ...,γK−1 are estimated via maximum likelihood
estimation. However, it is important to note that the estimated standard errors from a
Hessian calculation do not include any group membership uncertainty as the hard clustering
labels are assumed known for the estimation process.

4.2 Multilayer mixture model

The second method attempts to make up for the lack of uncertainty in groups member-
ships by using a model-based approach. Traditional clustering methods fail when the level
and shape are weakly dependent resulting in individuals with the same shaped trajectory
at different levels. As mentioned previously, if the levels within a shape group are normally
distributed, using an exchangeable correlation matrix in a finite mixture model takes that
variability into account. However, if the levels do not satisfy those assumptions, a Gaussian
mixture could be used to model the non-Gaussian distribution of levels within a shape group.

4.2.1 Related work

Model-based methods provide the probability framework that dissimilarity-based meth-
ods lack. One benefit is the ability to simultaneously take into account uncertainty about
of the parameter estimates and cluster membership. As mentioned in Chapter 1, the main
model-based method is the finite mixture model. However, a standard mixture of Gaussians
fit to the original data does not distinguish between the level and shape and clusters subjects
based on the dominant source of variability. Another limitation of Gaussian mixtures for
grouping data is that it cannot handle clusters that are non-normal. For this reason, the
mixture model has been extended to include multiple layers such that each cluster is allowed
to be a mixture [74]. For example, an obvious model for a data set with two groups each with
bimodal densities would be a multilayer mixture of two clusters each with two components
(see Figure 4.1 for a diagram of the model structure). A variation of this idea has been
used to cluster non-normal groups by fitting a mixture with many components and then
systematically combining components to make more meaningful clusters [53].

In this thesis, the goal is to have clusters be meaningful in terms of distinguishing between
shape. Therefore, the idea of multilayer mixtures can be used to model K non-normal shape
clusters composed of individuals with the same mean shape at different levels.
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Figure 4.1: Diagram of multilayer mixture model showing that each cluster is composed of
potentially more than one component.

4.2.2 Model specification

In a multilayer mixture model, K is the number of clusters and Jk is the number of
components in the kth cluster (k = 1, ..., K) such that J =

∑K
k=1 Jk is the total number

of components in the entire model. Let j uniquely index all of the components such that
j = 1, ..., J . For ease of explanation, let c(j) : {1, ..., J} → {1, 2, ..., K} be a cluster assigning
function that specifies the cluster to which a component belongs. Let f(y|µ,Σ) be the
probability density function of a multivariate normal distribution with mean vector µ and
covariance matrix Σ. Then, the probability density function for cluster k is

fk(y) =
∑

j:c(j)=k

πj|c(j)f(y|µj,Σj)

where πj|c(j) is the probability of being in component j given a subject is in cluster c(j) and∑
j:c(j)=k πj|c(j) = 1 for all k = 1, 2, ..., K. Given baseline factors, let the probability of cluster

k be πk(w,γ) = exp(wTγk)/
∑K

l=1 exp(zTγ l) such that γK = 0 and γ = (γ1, ...,γK). The
probability density function for the multilayer mixture is written as

g(y|w) =
K∑
k=1

πk(w,γ)fk(y) =
K∑
k=1

πk(w,γ)
∑

j:c(j)=k

πj|c(j)f(y|µj,Σj).
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Since every component belongs to one and only one cluster, the above equation reduces to
a regular mixture model if π̄j(w,γ) = πc(j)(w,γ)πj|c(j) with the density written as

g(y|w) =
J∑
j=1

π̄j(w, γ)f(y|µj,Σj).

To adjust this model to satisfy the goal of clustering on shape, individuals in the clus-
ters are assumed to have the same shaped trajectory over time and the varying levels are
modeled by a mixture of components. The component mean structure includes a regression
parameterization to model the smooth underlying group mean shape function over time plus
a component-specific level. The design matrix for the regression can easily include B-spline
basis functions presented in Section 4.1.2. Then, the regression parameters are constrained
to be the same within shape clusters and the intercepts are allowed to differ in each level
component. Hence, µj = λj1 + xβc(j), where x is a design matrix of B-spline basis func-
tions excluding the first basis function to allow for estimation of intercept terms for each
component. This allows the clusters to be based on shape while the components can have
different levels (see Figure 4.2 for a diagram of the model structure). Additionally, I assume
conditional independence within components, Σj = σ2

j I for all j = 1, ..., J , for simplicity and
to allow for irregularly sampled longitudinal data.

Data

Shape Cluster 2

Shape Cluster 1

Level

Component 1

Level

Component 2

Level

Component 3

Level

Component 4

Figure 4.2: Diagram of multilayer mixture model showing that each shape cluster is composed
of potentially more than one level component.
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4.2.3 Implementation

Let yi = (yi1, ..., yimi
) denote a vector of repeated observations for individual i observed

at times ti = (ti1, ..., timi
) for i = 1, ..., n. For each individual i, B-spline basis functions are

evaluated at the observation times to create design matrices xi for the mean regression and
baseline covariates are combined in design vectors wi for the group membership regression.
Now, B-splines are used so the mean structure is flexible enough to accommodate complex
shapes. The number and location of internal knots are dealt with in the same manner as in
the first proposed method.

Denote the true shape cluster identity of individual i by ηi where ηi ∈ {1, ..., K}. Then,
the parameters of the multilayer mixture model η = (η1, ..., ηn) and θ = {γk, πj|c(j), λj,βk, σ2

j ; j =
1, ..., J, k = 1, ..., K} are estimated by maximizing the classification log-likelihood function,

L(θ,η) =
n∑
i=1

log πηi(wi,γ)fηi(yi|xi)

=
n∑
i=1

log

πηi(wi,γ)
∑

j:c(j)=ηi

πj|c(j)f(yi|λj1 + xiβηi , σ
2
j I)

 (4.1)

using a modified EM algorithm called the classification expectation maximization (CEM)
algorithm [12, 87]. The modification involves adding a classification step between the expec-
tation step and maximization step where individuals are assigned to shape clusters.

In order to start the iterative algorithm, the individuals are initially assigned into shape
clusters and component groups. Initialization can involve randomly partitioning individuals
into components or strategically partitioning individuals into shape clusters using a compu-
tationally fast procedure such as the first proposed method of this thesis and then randomly
partition the individuals into components.

Let θ(t) and η(t) be the current estimates of the parameters at the tth iteration of the
algorithm. The CEM algorithm updates these estimates as follows:

1. Expectation step: For each individual i, compute the posterior probability of being in
shape cluster k

αi,k = πk(wi,γ)fk(yi|xi)/
K∑
j=1

πj(wi,γ)fj(yi|xi)

for i = 1, ..., n and k = 1, ..., K.

2. Classification step: Hard classify subjects to shape clusters according to η
(t+1)
i =

arg maxk αi,k.

3. Maximization step: For each shape cluster, use maximum likelihood estimation to
update parameter vector θ by embedding an EM procedure initialized with the current
parameter values.



CHAPTER 4. PROPOSED SHAPE-BASED METHODS 52

This algorithm increases the classification log-likelihood at each iteration. The statement
is below and the proof is in Appendix B.

Theorem 1. The classification likelihood L(θ,η) defined in equation (4.1) is non-decreasing
after each update of η and θ by the CEM algorithm. That is, L(θ(t+1),η(t+1)) ≥ L(θ(t),η(t))
for all t.

In the maximization step of the algorithm, parameters are estimated by maximizing the
likelihood for each shape cluster. However, the shape parameters are constrained to be equal
for all components within the cluster. To estimate both the component and cluster-specific
parameters simultaneously, this thesis uses computational methods suggested by Grün and
Leisch [46]. For shape cluster k, the outcome vector for subject i is temporarily replaced by
a vector of yi repeated Jk times. The new design matrix is set equal to (IJk ⊗ 1mi

,1Jk ⊗ xi)
where ⊗ refers to the Kronecker product. Lastly, the covariance matrix structure is block
diagonal with σ2

j Imi
in each block for j that satisfy c(j) = k. The likelihood function is

maximized with respect to the parameters for cluster k and its components using profile
likelihoods and a standard numerical optimization routine.

With this complex mixture structure, it is necessary to select the number of shape clusters
as well as the number of components for each cluster k. It is recommended to fix K and
then use model selection criteria to select Jk for each k = 1, ..., K. As suggested by Li [74],
the BIC is used to select Jk even though the regularity conditions do not hold as the criteria
has been shown to be a useful informal guide in practice.

Robust standard errors for the parameter estimates can be found following the same
procedure as Boldea and Magnus [7].

4.3 Vertical shifted mixture model

The goal of cluster analysis is to partition a collection of individuals into homogeneous
groups. In this thesis, similar individuals are those with the same outcome shape pattern
over time. If two curves only differ by vertical shifts, they are placed in the same group. The
first proposed method uses derivatives to implicitly remove the level and the second method
directly models the variability in the level with an additional layer of mixture models. In this
method, I consider subtracting the subject-specific mean from the outcome measurements
to remove the level. A finite mixture of densities with a mean shape curve and a covariance
function is fit to the vertically shifted data.

4.3.1 Recent work

A finite mixture model is a standard method for clustering multivariate data [36] and
has been used for longitudinal applications [98, 62]. See Chapter 1 for an extensive summary
of finite mixture models. However, for longitudinal data, the models are commonly used for
the observed data without much regard to the goal of clustering by shape.
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I suggest removing the level by subtracting out the mean outcome level prior to modeling.
Subtracting the mean is not a novel idea in statistics or even cluster analysis. In fact,
experimental data such as gene expression microarrays are often normalized to compensate
for variability in the measurement device between samples. In cluster analysis of multivariate
data, it is recommended that each variable is standardized by subtracting the mean and
dividing by the standard deviation within each variable so the variables are in comparable
units and equally contribute to the grouping process. This is not recommended for the
longitudinal setting where each variable is a repeated measurement at a different time point.

To compare shapes, we want to maintain the original scale of the data since the relation-
ship between measurements within individuals is of interest. A translation via centering [14]
or vertically shifting preserves the shape of the data over time. In general, pre-processing
the data can provide a path to answering the research question but any transformation of
the data should be carefully studied for potential unintended consequences.

4.3.2 Model specification

Let yi = (yi1, ..., yimi
) denote an outcome vector of repeated observations for individual

i, i = 1, ..., n. The vector of corresponding times of observation for individual i is denoted
as ti = (ti1, ..., timi

) and wi is a q-length design vector based on time-fixed factors that are
typically collected at or before time ti1. I assume that there are K mean shape functions
µk(t) in the population such that the outcome vector for individual i in shape group k is
realization of

yi = λi1mi
+ µi + εi, λi ∼ Fλ, εi ∼ N(0,Σk)

where Fλ is a probability distribution, 1mi
is an mi-length vector of 1’s, and µij = µk(tij)

is the jth element of a mi-length vector of mean values evaluated at the observation times,
ti. The outcome vector is determined by a mean shape function, a random intercept, and
potentially correlated random errors. The probability of having a particular shape could
depend on baseline covariates. Let ȳi = m−1i

∑mi

j=1 yij = λi + µ̄i + ε̄i be the mean of the
outcome measurements for individual i. This measure of the vertical level of the data vector
can be removed by applying a linear transformation, Ai = Imi

−m−1i 1mi
1Tmi

, to the vector
of observations. The vertically shifted vector for individual i equals

y∗i = Aiyi

= Ai(λi1mi
+ µik + εi)

= Ai(µi + εi)

= µi − µ̄i + εi − ε̄i.

Multiplying the symmetric matrix Ai to the vector yi subtracts the individual mean ȳi from
each element yi. This results in the removal of the random intercept λi, leaving the mean
function evaluated at the observation times plus random error shifted by a random constant
µ̄i + ε̄i. Clearly, we do not have to worry about Fλ, the distribution of the random intercept,
or any other time-fixed factors that only impact the level of the outcome.
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Once the level is removed, I assume the vertically shifted data y∗i follow a Gaussian
mixture of K groups with mean shape functions and random errors. If the observation times
are fixed, vertically shifted data generated from the specified model follows this Gaussian
mixture. Thus, conditional on observation times t and baseline covariates w, y∗ is assumed
to be a realization from a finite mixture model with density

f(y∗|t,w,θ) =
K∑
k=1

πk(w,γ)fk(y
∗|t,θk)

where πk(w,γ) is the prior probability of being in the kth shape component given baseline
covariates, w. To allow baseline covariates to impact the probability of having a certain
shape pattern over time, the prior probabilities are parameterized using the generalized logit
function of the form

πk(w,γ) =
exp(wTγk)∑K
j=1 exp(wTγj)

for k = 1, ..., K where γk ∈ Rq, γ = (γ1, ...,γK), and γK = 0. For continuous outcome
vectors, the component densities fk(y

∗|t,θk) are multivariate Gaussian densities with mean
and covariance dependent on time. The full vector of parameters for the model is θ =
(γ,θ1, ...,θK).

Mean Structure

Only focusing on shape, the mean is modeled as a smooth function of time represented
by a chosen functional basis. If the shape is periodic in nature, a Fourier basis is appropriate.
Another common basis is a polynomial basis such as a quadratic or cubic basis. However, this
type of basis cannot capture complex shapes with local changes with only a few parameters
like a B-spline basis.

A B-spline function of order p with L internal knots, τ1, ..., τL, is defined by a linear
combination of coefficients and B-spline basis functions

µ(t) =

L+p∑
j=1

βjBj,p(t)

where the basis functions Bj,p(t) are defined iteratively [24, 17] (see Section 4.1.2 for more
details). Values from the pth order B-spline basis functions taken at observation times ti
can be used in a design matrix xi to linearly model the mean vector. Thus, the mean of
the kth shape cluster is approximated by the linear function µk(t) =

∑L+p
j=1 βk,jBj,p(t). In

the multivariate form, the mean vector at observation times ti equals xiβk where βk =
(βk,1, ..., βk,L+p).
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Covariance Structure

There are many potential assumptions to be made about the covariance matrix. Here, we
allow the covariances to differ between clusters. Since it is common for longitudinal data to
have sparse, irregular time sampling, we need to impose structure on the covariance matrix to
allow for parameter estimation as described by Jennrich and Schluchter [60] in their seminal
paper. A common structure is conditional independence with constant variance where Σk =
σ2
kImi

. This is typically an unrealistic assumption for longitudinal data since there is inherent
dependence between repeated measures on the same unit. Compound symmetry, which is
also known as exchangeable correlation, is a popular correlation structure in longitudinal
analysis where all repeated measures are equally correlated. This is typically paired with
constant variance such that Σk = σ2

k(ρk1mi
1Tmi

+ (1 − ρk)Imi
) where −1 ≤ ρk ≤ 1 is the

correlation between any two distinct measurements within an individual. This dependence
structure describes the resulting correlation matrix of a random intercept model.

Another structure that provides a compromise is the exponential correlation structure
in which the dependence decays as the time between observations increases such that the
element in the jth row and lth column of Σk is σ2

k exp(−|tij−til|/rk) where rk > 0 is the range
of the dependence. If the range rk is small, the correlation decays quickly, but if rk is large,
there is long range dependence between measurements within an individual. This structure
is similar to the correlation matrix generated from a continuous autoregressive model of order

one such that the element in the jth row and lth column of Σk is σ2ρ
|tij−till|
k where ρk is

the correlation for measurements observed one unit of time apart. If ρk = exp(−1/rk), then
the two parameterization result in the same structure as long as the correlation between two
measures is constrained to be positive. This is a reasonable assumption for longitudinal data
in the original form but it many not be acceptable for the transformed data as discussed
later. It is important to model the covariance structure correctly as removing the vertical
level increases the potential overlap between shape components (see Chapter 2).

4.3.3 Implementation

Given a collection of independent observed outcome vectors from n individuals, y1, ...,yn,
we remove the level by subtracting the subject-specific mean from the observed outcome
vector, y∗i = yi − ȳi for i = 1, ..., n. After a visual inspection of the data, the order of
the spline and the number and location of internal knots for the B-spline mean structure is
chosen. Adding knots and increasing the order of the spline functions flexibly accommodates
the twists and turns of the mean patterns but also increases the number of parameters. The
knots can be placed at local maxima, minima, and inflection points of the overall trends
[34] or at sample quantiles based on the sampling times of all the observations [120]. Design
matrices xi are calculated using widely available B-spline algorithms for i = 1, ..., n.

Under the assumption that y∗1, ...,y
∗
n are independent realizations from the mixture dis-

tribution f(y∗|t,w,θ) defined in Section 4.3.2, the log-likelihood function for the parameter
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vector θ is given by

logL(θ) =
n∑
i=1

log f(y∗i |ti,wi,θ).

The maximum likelihood estimate of θ is obtained by finding an appropriate root of the score
equation, ∂ logL(θ)/∂θ = 0. Solutions of this equation corresponding to local maxima can
be found iteratively through the EM algorithm [25] (see Section 1.4.2 for technical details
about the EM algorithm).

Estimation requires the number of clusters to be known. In practice, this is not the case
and the value of K is chosen. The most popular way to choose K is by setting a maximum
value such that Kmax < n, fitting the model under all values of K = 2, ..., Kmax, and choosing
the value that optimizes a chosen criteria. In this thesis, I use is the Bayesian Information
Criterion (BIC) [124], defined as

BIC = −2 logL(θ̂)− d log(n)

where d is the length of θ, the number of parameters in the mixture model, and L(θ) is the
likelihood function for the parameter vector.

There are issues of identifiability with Gaussian mixture models that can be mitigated
through some minor constraints [87]. Next, we explore some unique consequences of vertically
shifting the data on modeling and estimation.

Covariance of vertically shifted data

Let Y = (Y1, ..., Ym) be a random vector observed at times t = (t1, ..., tm) such that
Y = λ1m + µ + ε where λ ∼ Fλ, µ is a vector of evaluations of a function µ(t) at times t,
and ε ∼ (0,Σ). Let Σ = V1/2R(ρ)V1/2 where R(ρ) is an m×m correlation matrix based on
the parameter ρ and potentially the associated observation times, and V is a m×m matrix
with variances along the diagonal.

One important property of this transformation is that it is not invertible; once the mean
is subtracted from the data, the original data cannot be recovered. This has an impact on
the correlation structure of the data. The covariance of the transformed random vector after
removing the mean vector equals

Cov(Y∗ − µ) = Cov(A(λ1m + µ + ε)− µ)

= Cov((A− Im)µ + Aε).

If the observation times are fixed, then µ is not random and the covariance matrix ACov(ε)AT

is singular since det(A) = 0. However, if the observation times are random, then µ is a ran-
dom vector and contributes to the overall variability. To better understand how to model
the transformed data, we explore the covariance when the observation times are fixed and
random. From this point on, Im will be written as I and 1m as 1 for simplification.
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Fixed observation times
If the observation times t are fixed, then

Cov(Y∗ − µ) = AΣAT

where Σ is the covariance of the original random errors. If the variance is constant over
time, V = σ2I, and the elements of the original vector are independent, R(ρ) = I, then the
covariance can be written as

Cov(Y∗ − µ) = σ2

(
m− 1

m

)
(a11T + (1− a)I)

where a = −1
m−1 . Therefore, if the observation times are fixed and the data has independent

errors, subtracting the estimated mean induces negative exchangeable correction between
the observations of magnitude −1

m−1 . Additionally, the variance decreases to σ2m−1
m

.
If the errors in the original data have constant variance, V = σ2I, and are exchangeable

with R(ρ) = ρ11T + (1− ρ)I, then the covariance is written as

Cov(Y∗ − µ) = σ2(1− ρ)

(
m− 1

m

)
(a11T + (1− a)I)

where a = −1
m−1 . This transformation maintains the exchangeable structure but with negative

correlation on the off diagonal and decreased variance of σ2(1− ρ)
(
m−1
m

)
.

On the other hand, if the original correlation is exponential such that the correlation
decreases as time lags increases, Cor(Yj, Yl) = exp(−|tj − tl|/ρ), the resulting covariance
after transformation is not a recognizable structure. In fact, the covariance can no longer
be written as a function of time lags. The covariance matrix is a linear combination of the
original correlation matrix, column and row means, and the overall mean correlation,

Cov(Y∗ − µ) = σ2
[
R(ρ)−m−111TR(ρ)−m−1R(ρ)11T +m−211TR(ρ)11T

]
This non-stationary covariance matrix includes negative correlations when the mean of the
correlations within each column and within each row are positive and substantial.

We have calculated the covariance of the transformed random vector under three com-
mon covariance structures for the original data assuming fixed observation times. All of
these covariance matrices are not invertible since det(A) = 0. In particular, if prior to
transformation, the errors are independent or exchangeable, the correlation of the resulting
transformed data is exchangeable equal to −1

m−1 . This particular value has significant mean-
ing as it is the lower bound for correlation in an exchangeable matrix. This means that the
true parameter value of the correlation for the transformed vector is on the boundary of the
parameter space. Therefore, even if the true structure is known, estimating parameters for
the true model is difficult. Conditional independence or the exponential structure may be
an adequate approximation to regularize the estimation, especially if m is moderately large.
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Random observation times
In practice, individuals in a longitudinal study are not typically observed at exactly

the same times but rather at sporadic times. When the times are random, µ is random
because the elements are evaluations of the function µ(t) at random times. Therefore, the
transformed vector has variability due to the random times in addition to the errors.

If the covariance of the original errors does not depend on time, then the covariance
simplifies to

Cov(Y∗ − µ) = m−2

(
m∑
j=1

V ar(tj)[µ
′(E(tj))]

2

)
11T + AΣAT

using the delta method assuming the random times t1, ..., tm are independent. This matrix
is the sum of two non-invertible matrices, which need not be non-invertible. In fact, if the
variance of the times and/or the derivative of the deterministic function µ(t) is large, the
positive magnitude of the first matrix may be large enough to counteract negative correlations
in the second matrix.

If the original covariance is dependent on the random times, the mean vector and error
structure both depend on the time. We explore the impact of transforming the data through
empirical simulations. Let the observation times equal random perturbations around spec-
ified goal times such that ti = T + τ i where τ i ∼ N(0, σ2

τI) and T = (1, 2, ..., 9, 10). We
generate n = 500 realizations of the model,

yi = µi + εi where εi ∼ N(0,Ri(ρ))

where the vector elements µij = µ(tij). We repeat the simulation under different assumptions
for the mean function and standard deviations of the observation times. Figure 4.3 shows the
estimated autocorrelation functions of the deviations of the transformed data from the mean
when Ri(ρ) is an exponential correlation matrix with range parameter ρ = 2 under varying
conditions for observations times and shape functions. As the variance of the observation
times and the magnitude of the derivative mean function increases, the estimated correlation
in the transformed space becomes positive. Thus, variability in the observations times can
result in covariance structures that are no longer singular.

In practice, if the data are regularly or very close to regularly sample, negative correla-
tions are problematic for estimation and an independence or exponential correlation structure
may be the best option. If the data are irregularly sampled, one potential covariance model
is an additive model that combines a random intercept with the exponential correlation [26],
which may be appropriately flexible to approximate the covariance of the deviations from
the mean of the transformed data.
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Figure 4.3: Estimated autocorrelation functions of the deviations from the mean from data generated with an expo-
nential correlation error structure and random observation times under different mean functions, µ(t), and standard
deviations of the random time perturbations, στ .
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Unbalanced observation times
In addition to the issues of fixed versus random sampling, having an unequal number of

observations per subject can impact the estimation of the vertically shifted model. As we saw
above, the length of the vector impacts the covariance of the transformed vector. Suppose
the outcome vectors for a sample of individuals have the same mean shape and covariance
over time, but each individual is observed a different number of times because they were
unavailable for an interview or two. Transforming the vectors by subtracting means based
on a variety of number of observations induces a different covariance structure for each
individual based on the length of outcome vector. If there is quite a bit of variability in the
number of observations, it may impact clustering to assume they share the same covariance
structure during the estimation/clustering process. However, if the number of observation
times is large for all subjects and the observation period is long, then the covariance matrices
should be similar.

Additionally, if the unbalanced nature of the data is due to lost to follow-up during a
longitudinal study, clustering based on the shape should be done with caution. If the general
shape of the curve during the observation period is not measured adequately by the number
of observations, it does not make sense to try and cluster those individuals with the rest who
have more fully observed curves.

4.4 Discussion

In this chapter, I described three different approaches to the problem of clustering irreg-
ularly sampled longitudinal data by shape. The first method focuses on clustering derivative
functions. Projecting the data onto a B-spline basis removes noise and provides an estimate
of the smooth underlying function. The derivative can then be calculated from the estimated
function. This should be an improvement over difference quotients, which simply linearly
interpolates the data points with no regard to error. One difficulty with this method is
choosing the correct order and knots for the basis so as to not over fit the data when there
are only a few data points. While this may improve upon other methods, this approach has
limitations. There is no direct way to borrow strength between individuals when estimating
their derivative function even if shape is hypothesized to be a common factor. Also, parti-
tioning methods do not lend themselves to analysis of baseline factors since by definition,
the algorithm does not provide any uncertainty estimates in group membership.

Rather than ignoring the level, the second approach attempts to directly model the
variability in the level by assuming that for each shape group, the distribution for the level
can be approximated with a Gaussian mixture model. Assuming a multilayered mixture
model provides a probability framework to take into account uncertainty while estimating the
relationship between baseline factors and group membership. However, this model requires
a large number of individuals in each shape group for the mixture to model the distribution
well. It is not clear how robust this method is for small sample and group sizes.
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Lastly, the third approach directly removes the level by subtracting individual-specific
means prior to modeling. This allows individuals to be compared without making specific
assumptions about the distribution of the level while providing the probability framework.
There are two difficulties with this method. First, subtracting an observed mean impacts
the covariance in a way that makes it harder to model with a known correlation structure.
Second, care needs to be taken when there is sparse and irregularly sampling.

I compare these methods in practice with a simulation study in the next chapter.
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Chapter 5

Simulations

In this chapter, I compare the three proposed methods presented in the last chapter with
competing clustering methods in a simulation study. The goal of this study is to examine
the performance of these methods when applied to data of individuals with the same shape
trajectory at a variety of levels. No method works well in all situations; therefore, the data
are generated under a variety of conditions to test the methods on their robustness to model
misspecification, noise, and group overlap. The ability to detect and create homogenous
shape groups indicates good performance. The outcomes of interest are the data-driven
number of groups, misclassification with reference to the generating shape groups, and the
parameter estimates for the cluster mean shape and baseline factors.

First, I describe the data-generating process used throughout the simulation study. Then,
I discuss the specific details of the simulation implementation in terms of the variety of data
conditions, methods used, and the simulation outcomes of interest. Lastly, I present the
results and compare the performance of the methods.

5.1 Data-generating process

When deciding upon the data-generating process, it is important to choose a simple
example that addresses the goals of the study and can generalize to other situations. This
simulation study is based on a population with three trajectory shapes and three outcome
levels. Since complex functions can be locally approximated with linear functions, the three
shapes used in the simulation are straight lines with different slopes—positive, negative, and
zero. We restrict some shapes to particular levels to induce a relationship between level and
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shape. The five mean functions for generating data with three shapes at different levels are

µ1(t) = −1− t (negative slope, low level)

µ2(t) = 11− t (negative slope, high level)

µ3(t) = 0 (zero slope, middle level)

µ4(t) = −11 + t (positive slope, low level)

µ5(t) = 1 + t (positive slope, high level)

Individuals follow these mean patterns with varying probabilities that depend on two baseline
factors. The first factor w1 impacts the shape and w2 impacts the level. Individuals are
randomly assigned values of these two binary factors with independent simulated tosses of
a fair coin.

Let S be a categorical random variable that indicates the shape/slope group such that
S = 1, 2, 3 refers to the negative, zero, and positive slope groups, respectively. Conditional
on the baseline factors, the probability of being in the kth shape group is

P (S = k|w1) =
exp(γ0k + γ1kw1)∑3
l=1 exp(γ0l + γ1lw1)

for k = 1, 2, 3 where γ01 = 2, γ11 = −4, γ02 = 1.5, γ12 = −2, γ03 = γ13 = 0 and w1 ∈ {0, 1}.
Since the value of w1 is determined by a fair coin toss, each shape group has about an equal
probability, marginally.

The second factor impacts the level. Let L be a categorial random variable that indicates
level group such that L = 1, 2, 3 refers to the low, middle, and high group, respectively. Only
those who follow the constant function have middle level outcome measures. For those in
either the negative or positive slope groups, the chance of the high or low level is

P (L = k|S = 1 or S = 3, w2) =
exp(ζ0k + ζ1kw2)∑

l∈{1,3} exp(ζ0l + ζ1lw2)

for k = 1, 3 and w2 ∈ {0, 1} where ζ01 = 0, ζ11 = 0, ζ03 = −3, ζ13 = 6. Again, each outcome
level group has about the same marginal probability.

For each individual, the chosen mean function is evaluated at five equidistant observation
times t = 1, 3.25, 5.5, 7.75, 10 that span the period 1 to 10 units and random noise is added to
induce variability. The random noise is made up of two independent ingredients: individual-
specific level perturbation and time-specific Gaussian measurement error. For individual i
(i = 1, ..., n) following the lth mean function, the observed outcome at the jth observation
time (j = 1, .., 5) is a realization of

yij = λi + µl(tj) + εij where εij
iid∼ N(0, σ2

ε ), λi
iid∼ Fλ(0, σ

2
λ)

where σε is the standard deviation of the measurement error, σλ is the standard deviation
of the level perturbation, and Fλ is the probability distribution of the level perturbation.
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This imposes an exchangeable correlation structure within an individual’s outcome vector
conditional on the mean function. The distribution of the level perturbation as well as the
standard deviations of the random noise are values that vary in the simulation to create
different conditions on which to test the clustering methods. The values are chosen to alter
the overlap of the groups and the signal to noise ratio and are discussed in the next section.

5.2 Implementation

In this section, I describe the random noise conditions, overview the clustering methods
included in this study, and discuss the outcomes of interest used to compare the methods in
the simulation.

5.2.1 Simulation conditions

The first ingredient of the random noise is the level perturbation. To test the sensitivity of
the methods to distributional assumptions, I use the uniform distribution and the Gaussian
distribution to generate the level perturbations. To create conditions with differing amount
of overlap between groups, I let σλ = 2 or 3 such that the vertical shift between the mean
functions with the same shape is about 4 or 6 standard deviations. The second ingredient
is the measurement error, the magnitude of which influences the signal to noise ratio. I let
σε = 0.5 or 2 to create two extreme conditions, strong and weak signals relative to noise.
The eight possible combinations represent the conditions of the data-generating process in
the simulation study.

5.2.2 Clustering methods

For each condition, I generate a data set of n = 500 individuals using the process described
above and apply each method to cluster the data into K = 2, 3, 4, and 5 groups. Each method
produces different output making direct comparisons difficult.

Partition methods produce group labels for each individual while model-based methods
result in posterior probability estimates for each individual and group. Therefore, I translate
the estimated probabilities into group labels by placing individuals into the group that has
the highest posterior probability.

Besides grouping results, the group representatives are in different formats. The K-means
algorithm results in a mean vector within each group, the interpretation of which depends
on the input vectors. On the other hand, I model the mean with spline basis functions in
the model-based clustering methods. The model output includes the estimated coefficients
for the group-specific mean functions. To make the group representatives from the partition
and model-based methods comparable, I transform all of the output into coefficients of a
differentiated B-spline function which describes the shape of the curves. I project the data
vectors onto a common spline basis, if not already in that form, differentiate the spline
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functions, and rearrange terms to calculate the coefficients of the spline function one order
lower.

The common spline used throughout the simulation study is a quadratic B-spline with
no internal knots and boundary knots at 0.5 and 10.5. A quadratic B-spline basis without
internal knots is equivalent to a Bernstein polynomial basis [79] which generalizes the stan-
dard polynomial basis; in general, I advocate using a B-spline basis that provides flexibility
and is computationally stable. As mentioned above, this function is differentiated and the
coefficients are transformed in order to get the coefficients of the derivative B-spline function
for final method comparisons. See Section 4.1.2 for more details on derivatives of B-spline
functions.

For every clustering method, I estimate the relationship between the two baseline factors,
w1 and w2, and the group membership. This estimation procedure differs between the
methods as it may simultaneously occur while estimating group parameters or after the
clustering algorithm is complete. I now overview the clustering methods used in this study.

K-means

The K-means algorithm is a general clustering procedure for numerical vectors. K groups
are determined through an iterative assignment and update process to minimize the within-
group sum of squares distance to the group mean vectors. Note that the objective function
indirectly imposes a spherical shape on the groups in the vector space.

To choose the optimal value of K in this simulation study, I use the silhouette measure,
which measures the compactness of clusters, for all applications of the K-means algorithm.
See Section 1.3 for more details.

To estimate the relationship between baseline factors and group membership produced
from the K-means algorithm, the groups labels are taken as known and become the out-
comes for a multinomial logistic regression with the observed baseline factors as explanatory
variables. Let ci be the group label produced by the clustering algorithm and wi1, wi2 be the
baseline factors for individual i, then the model assumes that

log
P (ci = k)

P (ci = K)
= γ0k + γ1kwi1 + γ2kwi2

for k = 1, .., K − 1. Estimates for the coefficients γ = (γ01, γ11, γ21, ..., γ0 K−1, γ1 K−1, γ2 K−1)
are calculated via maximum likelihood estimation as long as the number of individuals in
each group is adequately large.

K-means on original data

The K-means algorithm applied to the 500 original data vectors results in groups based
on both the level and shape. Both characteristics can play a role since this method is based
on squared Euclidean distance of the original outcome measures. In order to compare the
estimated group representatives to those of the following methods, the K group mean vectors
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are projected onto the common B-spline basis and the coefficients are then transformed into
derivative coefficients.

K-means on spline coefficients

To focus on the individual trends without noise, the original data vectors are projected
onto the common B-spline basis prior to clustering. This process in effect smoothes each
individual trajectory into a quadratic function. The vector of basis coefficients for each
individual are used as the input for the K-means algorithm. This technique originates in
the functional data analysis literature [112] and has been used as a way to decrease the
dimension of the data prior to clustering.

K-means on derivative spline coefficients

This is the first proposed method of this thesis. A slight adjustment to the previous
method allows the clustering to be based on the derivative function, which describes the
shape, rather than the original function. Before the algorithm is applied, the spline co-
efficients are transformed into coefficients of the derivative function written as a B-spline
function of one lower order.

K-means on difference quotients

Another way of clustering on the basis of derivatives is to calculate difference quotients
by taking the pair-wise differences within the ordered data vector and divide by the time
between observations,

∆ij =
yij+1 − yij
tj+1 − tj

for i = 1, ..., n and j = 1, ..., 4. The vector of difference quotients, ∆i = (∆i1, ...,∆i4), is used
as the input for the K-means algorithm.

PAM with correlation measure

Partitioning around medoids (PAM) is a variant of the K-means algorithm. Rather than
focusing on the distance to the group mean or centroid, this method uses the middle data
vector or medoid as the representative of the group, which results in a more robust procedure
less sensitive to outliers. The algorithm is general enough to allow for other measures of
dissimilarity beyond squared Euclidean distance. For this study, the chosen dissimilarity
measure is a linear transformation of the Pearson’s correlation coefficient, which measures
the linear association between two vectors and is believed to detect similarity in the shape
of longitudinal data [15, 30, 14]. The dissimilarity between two vectors is defined as

d(y1,y2) = 1− Cor(y1,y2)
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where Cor(y1,y2) is defined in Section 1.3. Perfect positive linear correlation results in a
dissimilarity of 0 and perfect negative correlation results in a value of 2. If a vector is an ad-
ditive shift of another vector, they are deemed to be similar. This is one desired property for
a clustering method in this thesis. However, the same goes for multiplicative transformations
of data vectors which change the shape of the trajectory. Therefore, this measure cannot
detect magnitude differences in the slope of trend lines and cannot distinguish between a
horizontal line and one with a positive or negative slope.

To choose the number of groups and estimate the relationship between baseline factors
and group membership, the same procedures as the K-means algorithm are used.

Finite mixture model

In contrast to the partition methods mentioned above, using a probability model allows
for uncertainty in the model parameters and group membership. The data are fit to the
model using the EM algorithm in order to maximize the likelihood function (see Section
1.4.2 for more details). Rather than being separated into K groups, mixture models allow
individuals to contribute to every group to some degrees. For example, if two groups are not
well separated, then an individual in the overlap of the groups could contribute equally to
the estimation of both groups’ parameters.

For this simulation study, I generally assume the K components of the finite mixture
model are multivariate Gaussian with a component-specific mean function that can be ex-
pressed as a quadratic B-spline with boundary knots at 0.5 and 10.5. The estimated coeffi-
cients for the mean parameters are then transformed into the coefficients for the derivative
spline function for the final comparison. Additionally, the prior probabilities of the compo-
nents are parameterized using a generalized logit function such that the logit is equal to a
linear combination of the two baseline factors. For individual i,

log
P (ci = k)

P (ci = K)
= log

πk(wi1, wi2,γ)

πK(wi1, wi2,γ)
= γ0k + γ1kwi1 + γ2kwi2.

The parameters, γ = (γ01, ..., γ2 K−1) are estimated simultaneously with the mean and co-
variance parameters. The number of components or groups is selected by minimizing the
model selection criteria, BIC, over model fits with K = 2, 3, 4, 5 (see Chapter 1 for more
details).

Finite mixture model with independence

For the standard model fit to the original data, the covariance structure is assumed to be
independent such that the variance is constant over time but differs between components.
Therefore, the only covariance parameters in the model are the component-specific variances.
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Finite mixture model with exponential correlation

As discussed in Chapter 2, assuming independence for longitudinal data when there is
inherent dependence between repeated measures can result in bias and potentially misleading
clustering results. Therefore, we use an exponential correlation structure that maintains
the stationarity of the covariance structure but allows the correlation to decay as the time
between observations increases. The number of covariance parameters increases to two per
component: variance and range of dependence.

Multilayer mixture model

This is the second proposed method of this thesis. In generalizing the standard finite
mixture model to allow shape groups to have different level groups, I assume that each shape
component of the mixture model is a mixture of level components assumed to be multivari-
ate Gaussian. In order to minimize the number of parameters to be estimated, I assume
independence between repeated measures. For this two-layered model, the prior probabili-
ties for the shape components, rather than those of the level components, are parameterized
to relate baseline factors to group membership. In addition to specifying the number of
shape components, the number of level components within each shape component need to
be set prior to estimating the parameters. It is difficult to choose both of these values in
an automatic way; therefore, we fix the number of shape components to be K = 3 since
in a simulation it is known a priori. Then we use the BIC to select the number of level
components within the shape components [74].

Vertically shifted independence mixture model

This is the third proposed method of this thesis. Rather than trying to explicitly model
the level, I remove the level prior to fitting the model by subtracting the individual-specific
mean. Before the model is fit to the data, the trajectories are vertically shifted so they
lie in the same range. The hope is that shape drives the group development once the
level is removed. As mentioned in Chapter 4, subtracting the mean impacts the covariance
structure and can result in negative correlation between repeated measures, which is hard to
model with a legitimate correlation function. In this simulation, the correlation structure of
the original data for this data-generating process is exchangeable and observation times are
fixed. Therefore, we know that the correlation of the transformed errors is exchangeable with
magnitude −1

4
. The true correlation is on the boundary of the parameter space; therefore, I

use the independence correlation structure to model the leftover correlation after removing
the mean. The same estimation and modeling procedures as the standard finite mixture
model apply.
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Vertically shifted exponential mixture model

Rather than assuming independence for the transformed vector, I use the exponential
correlation structure to model the error structure after removing the mean.

5.2.3 Outcomes of interest

For each method and condition, I generate a data set of n = 500 individuals and calculate
the following outcomes of interest. This is repeated so that we get 500 unique data sets under
each condition on which we can apply each method and summarize the results.

Number of groups

For each replication, I use the method-specific procedure of choosing the final data-driven
number of groups and record the final value of K for each data set. Note that this K is
not chosen for the multilayer mixture as the number of shape groups is fixed to be equal to
three.

Misclassification rate

To detect whether the method discovers the underlying shape structure, I fix K = 3
and compare the cluster memberships labels to the true shape group membership using a
contingency table. The cluster label columns of the contingency table are reordered such
that the trace of the 3 by 3 inner matrix is maximized to match the clusters to the true shape
groups. The sum of the off-diagonal elements of the newly permuted matrix represents the
number of misclassified individuals. This value is divided by the sample size to get the rate.
The best method results in zero misclassifications. To summarize the replications, I present
the mean misclassification rate of all 500 replications.

Adjusted Rand Index

Another way to measure the similarity between the produced clusters and the true shape
clusters is the Adjusted Rand Index [57, 90]. This measure assesses the agreement of two
partitions. In our case, the true shape groups form the reference partition and I compare it
to the cluster partition produced by the method when K = 3.

Given a set of n objects suppose U = {u1, ..., uK} and V = {v1, ..., vK′} represent two
different partitions of the objects such that ∪Ki=1ui = ∪K′j=1vj and ui ∩ ui′ = ∅ = vj ∩ vj′ for
1 ≤ i 6= i′ ≤ K and 1 ≤ j 6= j′ ≤ K ′. The amount of overlap between the two partitions
can be written in the form of a contingency table with elements nij denoting the number of
objects that are common to groups ui and vj and ni· and n·j denoting row and column sums,
respectively. Let a be the number of pairs of objects that are placed in the same group in
U and in the same cluster in V , b be the number of pairs of objects in the same group in
U but not in the same cluster in V , c be the number of pairs of objects in the same cluster
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in V but not in the same group in U , and d be the number of pairs of objects in different
groups and different clusters in both partitions. The quantities a and d are interpreted as
agreements and b and c as disagreements. The Rand Index [113] equals a+d

a+b+c+d
= a+d

(n
2)

. The

index can yield a value between 0 and 1, where 1 indicates that the clusters are exactly the
same.

One issue with the Rand Index is that the expected value of the index does not take
on a constant value and thus it is hard to evaluate raw indices. Hubert and Arabie [57]
suggested using the generalized hypergeometric distribution for the null model when the
partitions are picked at random. This leads to the Adjusted Rand Index, which is of the
form Index−Expected Index

Max Index−Expected Index
. The index is bounded above by 1 and takes on the value 0 when

the index equals its expected value. In the contingency table notation, the Adjusted Rand
Index can be simplified to ∑
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A method that performs well has an Adjusted Rand Index value close to 1. To summarize
the replications, I present the mean Adjusted Rand Index for the 500 replications.

Mean parameters

As mentioned in the brief descriptions of the methods used in the simulation, the format
for the group representative differs between each method. Six of the ten methods use the
B-spline basis to model the mean as a function and one method explicitly uses the derivative
of the B-spline function. It is not possible to map a derivative function back to the original
function. Therefore, I map the clustering representatives when K = 3 to the derivative
B-spline function so that I can compare the shape of estimated representatives within each
group. For reference, the true mean curves are projected onto the B-spline basis and then
differentiated.

Just as with the misclassification rate, it is necessary to match the group labels to the
shape groups of the true generating distribution. This is completed by permuting the columns
until the trace of the 3 by 3 inner matrix of the contingency table between the true shape
labels and the clustering group labels is maximized. Once the groups are matched to the
truth, the mean squared error (MSE) is estimated for each derivative coefficient using the
500 replications.

Baseline factors

Once groups are discovered, the natural question is to ask who are in the groups and
how else do they differ? For each condition, method, and replication, the coefficients of the
generalized logit {γk0, γk1, γk2} for k = 1, ..., K − 1 are estimated either simultaneously in
the model setting or a posteriori for the partition methods when K = 3. To summarize the
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estimates from all of the replications, I plot the density of the values and compare them to
the true generating values. The clustering is unstable if the density plot is multimodal.

5.3 Results

Tables 5.1, 5.2, and 5.3 summarize the simulations in terms of the chosen number of
groups, average misclassification rate, and average Adjusted Rand Index. It is clear from
these tables that the three standard methods—the K-means algorithm applied to original
vectors, K-means on spline coefficients, and the independent Gaussian mixture model—do
not select three groups as the optimal number of groups (Table 5.1). For almost all the
conditions, the K-means algorithm on the original data obscures any shape differences in the
data by vertically splitting the individuals in half: a high and a low group. If the noise in the
data is smoothed out prior to clustering by applying K-means to the B-spline coefficients,
five groups is favored except when high variance in the level results in overlap between
groups and the algorithm selects two groups. The BIC consistently chooses five groups for
the independent mixture model. It recognizes the five mean functions but no similarities in
shape or level. All three of these methods also do not perform well when forced to have the
true number of shape groups, K = 3. Only about 50-60% of the data is correctly specified
in terms of the generating shape groups. Small average values for the Adjusted Rand Index
confirm that groups from these methods do not match the shape groups.

If the correlation structure of the finite mixture model is generalized to exponential
correlation, there is more variability in the number of groups chosen. When the time-specific
measurement error is small (σε = 0.5), the correct number of groups is chosen about 20%
of the time (Table 5.1). Under these same circumstances, there is perfect alignment with
the generating shape groups when the method is forced to created three groups. However,
when the magnitude of the noise is large (σε = 2), three is never chosen as the optimal
number of groups and the shape groups are not discovered when K = 3. So even though
this method does not directly cluster based on shape, having a general enough correlation
structure allows the method to pick up the correct groups when the number of group is
known and the measurement error is small. However, it does not choose the correct number
of groups in the majority of simulations.

Of the established methods that are intended to group on shape, K-means on difference
quotients picks the correct number of groups only if the magnitude of the measurement
error is small relative to the strength of the signal (Table 5.2). If the variability around the
individual mean is large, the method chooses two groups and misclassifies about 38% of the
individuals when forced to have three groups. Using the correlation dissimilarity measure
with the PAM algorithm gives slightly better results with only 24-27% misclassification, but
it never chooses three groups.

Now, I compare the three proposed methods (Table 5.3). Using K-means with the deriva-
tive spline coefficients is a slight improvement over the difference quotients such that the true
number of groups is chosen more frequently even under conditions of higher measurement
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error. However, this method did not decrease the misclassification rate or increase the Ad-
justed Rand Index under those same conditions.

The multilayer mixture model is successful in correctly classifying individuals into shape
groups when the level components are well separated (σε = 0.5, σλ = 2). The method seems
to be robust to some misspecification as the results do not degrade when the level is generated
by the uniform distribution in comparison with the assumed Gaussian model. However, if
the distribution of the level is not distinctly bimodal, the misclassification rate is quite high.

Lastly, the method that prevails amongst the competition is the vertically shifted mixture
model. In this case, either correlation assumption works well. For every condition, the
method chose three groups as the optimal partition at least 99% of the time and when
forced to have K = 3, the method discovered the shape groups with little misclassification.
Only when the measurement error is large (σε = 2) did the method misclassify 5% (about
25 individuals) in terms of shape.

To compare the group representatives from all methods with the true mean shapes used to
generate the data, we transformed the estimates when K = 3 to coefficients of the derivative
spline as previously described. There are two coefficients per group and I denote them as
α11, α21 for group 1, α12, α22 for group 2, and α13, α23 for group 3. Tables 5.4, 5.5, and 5.6
present the mean squared errors for the derivative spline coefficients under the simulation
conditions for all clustering methods. When the clustering algorithm finds the shape groups
correctly, the MSE is very close to zero for all coefficients. This occurs for the vertically
shifted mixture under all conditions and both derivative-based methods and the exponential
mixture model when the measurement error is small. Additionally, the coefficients in the
multilayer mixture model have a small MSE only when the level groups are well separated.

In general, the standard methods find one group with a horizontal shape on average
indicated by values close to zero for α21 and α22. Large MSE values (close to or greater than
1) indicate clustering instability in that the method finds fundamentally different groups for
every randomly generated data set resulting in great variation in the estimates (Table 5.5
and 5.6). This occurs for a variety of reasons. In the case of the derivative spline coefficients,
overfitting the five observations results in high variability. For the correlation-based method,
the inconsistent dissimilarity between noisy horizontal vectors causes extra variability.

I have determined that some of the methods discover the shape groups under conditions
of small measurement error by comparing the group labels to the true generating labels
comparing the estimates of the mean shapes with known generating values. Lastly, I want
to know how the choice of method impacts the estimation of the relationship between baseline
factors and group membership. For simplification, we present density plots of the estimated
coefficients for group 1 and 2 for the factors w1 and w2 for only three methods—K-means
on the original data, K-means on the difference quotients, and vertically shifted exponential
mixture models—after setting K = 3. As a reminder, the first baseline factor w1 was used
to generate shape groups and the second w2 was used to generate level groups.

It is clear that the K-means on the original data picks up the relationship between the
group membership and the second baseline factor w2 (Figure 5.1). The density plots with
dashed lines for the coefficients of w2 are concentrated at non-zero values while the solid line
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densities for the coefficients of w1 revolve around zero. For the two uniform conditions with
σλ = 2, the density plots for the coefficients of w1 are bimodal, which indicates some vari-
ability in the groups chosen. Overall, K-means picks up the level groups since the coefficients
for w2 are significantly non-zero.

On the other hand, the K-means on the difference quotients finds a relationship with w1

(Figure 5.2). The average coefficient values for w1 are non-zero while the coefficients for w2

revolve around zero. However, when σε = 2, one of the density plots is bimodal indicating
variability which was indicated by a higher misclassification rate.

Lastly, with the vertically shifting exponential mixture model (Figure 5.3), there is a
significant relationship between group membership and w1, the factor that was used to
generate shape groups. The second factor is estimated to have no relationship with the final
grouping.
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Fλ σε σλ K = 2 K = 3 K = 4 K = 5 MR ARI
K-means on Original Data

Uniform 0.50 2 0 0 0 500 0.42 0.25
Uniform 2.00 2 492 0 0 8 0.42 0.25
Uniform 0.50 3 500 0 0 0 0.50 0.09
Uniform 2.00 3 500 0 0 0 0.51 0.09
Gaussian 0.50 2 0 0 0 500 0.38 0.33
Gaussian 2.00 2 273 0 0 227 0.39 0.29
Gaussian 0.50 3 412 0 0 88 0.46 0.16
Gaussian 2.00 3 500 0 0 0 0.47 0.14

K-means on Splines Coefficients
Uniform 0.50 2 0 0 0 500 0.46 0.19
Uniform 2.00 2 31 0 1 468 0.47 0.18
Uniform 0.50 3 189 0 10 301 0.48 0.17
Uniform 2.00 3 500 0 0 0 0.48 0.15
Gaussian 0.50 2 0 0 0 500 0.44 0.22
Gaussian 2.00 2 0 0 0 500 0.45 0.20
Gaussian 0.50 3 1 0 0 499 0.46 0.18
Gaussian 2.00 3 490 0 0 10 0.47 0.16

Independent Mixture
Uniform 0.50 2 0 0 2 498 0.44 0.22
Uniform 2.00 2 0 0 2 498 0.40 0.28
Uniform 0.50 3 0 0 1 499 0.49 0.12
Uniform 2.00 3 0 0 2 498 0.49 0.12
Gaussian 0.50 2 0 0 10 490 0.41 0.25
Gaussian 2.00 2 0 0 24 476 0.39 0.29
Gaussian 0.50 3 0 0 1 499 0.45 0.17
Gaussian 2.00 3 0 0 5 495 0.45 0.17

Exponential Mixture
Uniform 0.50 2 0 65 171 264 0.00 1.00
Uniform 2.00 2 0 0 23 477 0.40 0.40
Uniform 0.50 3 0 113 157 230 0.00 1.00
Uniform 2.00 3 0 0 37 463 0.41 0.35
Gaussian 0.50 2 0 114 136 250 0.00 1.00
Gaussian 2.00 2 0 0 34 466 0.41 0.38
Gaussian 0.50 3 0 141 121 238 0.00 1.00
Gaussian 2.00 3 0 1 40 459 0.41 0.35

Table 5.1: The number of times each value of K was chosen and the average misclassification
rate (MR) and average Adjusted Rand Index (ARI) when K = 3 for 500 replications of
standard clustering methods applied to data generated under different conditions for the Fλ
and the standard deviation of ε and λ.
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Fλ σε σλ K = 2 K = 3 K = 4 K = 5 MR ARI
K-means on Difference Quotients

Uniform 0.50 2 0 500 0 0 0.00 1.00
Uniform 2.00 2 480 20 0 0 0.38 0.31
Uniform 0.50 3 0 500 0 0 0.00 1.00
Uniform 2.00 3 480 20 0 0 0.38 0.31
Gaussian 0.50 2 0 500 0 0 0.00 1.00
Gaussian 2.00 2 483 17 0 0 0.38 0.31
Gaussian 0.50 3 0 500 0 0 0.00 1.00
Gaussian 2.00 3 483 17 0 0 0.38 0.31

Correlation-based PAM
Uniform 0.50 2 380 0 0 120 0.24 0.49
Uniform 2.00 2 500 0 0 0 0.27 0.46
Uniform 0.50 3 380 0 0 120 0.24 0.49
Uniform 2.00 3 500 0 0 0 0.27 0.46
Gaussian 0.50 2 403 0 0 97 0.25 0.49
Gaussian 2.00 2 500 0 0 0 0.27 0.45
Gaussian 0.50 3 403 0 0 97 0.25 0.49
Gaussian 2.00 3 500 0 0 0 0.27 0.45

Table 5.2: The number of times each value of K was chosen and the average misclassification
rate (MR) and average Adjusted Rand Index (ARI) when K = 3 for 500 replications of
clustering methods intended to group by shape applied to data generated under different
conditions for the Fλ and the standard deviation of ε and λ.
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Fλ σε σλ K = 2 K = 3 K = 4 K = 5 MR ARI
K-means on Derivative Splines Coefficients

Uniform 0.50 2 0 500 0 0 0.00 1.00
Uniform 2.00 2 15 189 164 132 0.39 0.27
Uniform 0.50 3 0 500 0 0 0.00 1.00
Uniform 2.00 3 15 189 164 132 0.39 0.27
Gaussian 0.50 2 0 500 0 0 0.00 1.00
Gaussian 2.00 2 18 191 171 120 0.39 0.27
Gaussian 0.50 3 0 500 0 0 0.00 1.00
Gaussian 2.00 3 18 191 171 120 0.39 0.27

Multilayer Mixture
Uniform 0.50 2 0.07 0.82
Uniform 2.00 2 0.29 0.35
Uniform 0.50 3 0.33 0.32
Uniform 2.00 3 0.46 0.12
Gaussian 0.50 2 0.09 0.75
Gaussian 2.00 2 0.30 0.34
Gaussian 0.50 3 0.31 0.34
Gaussian 2.00 3 0.41 0.17

Vertically Shifted Independent Mixture
Uniform 0.50 2 0 499 1 0 0.00 1.00
Uniform 2.00 2 0 499 1 0 0.05 0.87
Uniform 0.50 3 0 499 1 0 0.00 1.00
Uniform 2.00 3 0 499 1 0 0.05 0.87
Gaussian 0.50 2 0 499 0 1 0.00 1.00
Gaussian 2.00 2 0 498 2 0 0.05 0.87
Gaussian 0.50 3 0 499 0 1 0.00 1.00
Gaussian 2.00 3 0 498 2 0 0.05 0.87

Vertically Shifted Exponential Mixture
Uniform 0.50 2 0 500 0 0 0.00 1.00
Uniform 2.00 2 0 500 0 0 0.05 0.87
Uniform 0.50 3 0 500 0 0 0.00 1.00
Uniform 2.00 3 0 500 0 0 0.05 0.87
Gaussian 0.50 2 0 500 0 0 0.00 1.00
Gaussian 2.00 2 0 499 1 0 0.05 0.87
Gaussian 0.50 3 0 500 0 0 0.00 1.00
Gaussian 2.00 3 0 499 1 0 0.05 0.87

Table 5.3: The number of times each value of K was chosen and the average misclassification
rate (MR) and average Adjusted Rand Index (ARI) when K = 3 for 500 replications of
proposed clustering methods applied to data generated under different conditions for the Fλ
and the standard deviation of ε and λ.
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Fλ σε σλ α11 α21 α12 α22 α13 α23

K-means on Original Data
Uniform 0.50 2 0.71 0.71 0.09 0.09 0.72 0.72
Uniform 2.00 2 0.78 0.77 0.06 0.06 0.80 0.80
Uniform 0.50 3 0.87 0.88 0.01 0.01 0.88 0.88
Uniform 2.00 3 0.88 0.89 0.01 0.01 0.89 0.88
Gaussian 0.50 2 0.92 0.92 0.01 0.01 0.91 0.92
Gaussian 2.00 2 0.90 0.91 0.02 0.02 0.89 0.90
Gaussian 0.50 3 0.89 0.89 0.01 0.01 0.89 0.90
Gaussian 2.00 3 0.89 0.89 0.01 0.01 0.88 0.91

K-means on Splines Coefficients
Uniform 0.50 2 0.50 0.50 0.21 0.22 0.53 0.53
Uniform 2.00 2 0.49 0.55 0.23 0.29 0.53 0.58
Uniform 0.50 3 0.52 0.53 0.23 0.24 0.59 0.59
Uniform 2.00 3 0.56 0.63 0.26 0.29 0.60 0.69
Gaussian 0.50 2 0.49 0.49 0.19 0.20 0.56 0.56
Gaussian 2.00 2 0.47 0.55 0.21 0.29 0.54 0.62
Gaussian 0.50 3 0.68 0.69 0.14 0.14 0.69 0.70
Gaussian 2.00 3 0.64 0.76 0.16 0.20 0.64 0.76

Independent Mixture
Uniform 0.50 2 0.87 0.87 0.01 0.01 0.87 0.87
Uniform 2.00 2 0.85 0.86 0.02 0.02 0.87 0.86
Uniform 0.50 3 0.85 0.85 0.02 0.02 0.86 0.86
Uniform 2.00 3 0.84 0.83 0.02 0.02 0.86 0.85
Gaussian 0.50 2 0.88 0.88 0.01 0.01 0.88 0.88
Gaussian 2.00 2 0.86 0.86 0.02 0.02 0.86 0.86
Gaussian 0.50 3 0.91 0.91 0.01 0.01 0.90 0.90
Gaussian 2.00 3 0.90 0.88 0.01 0.01 0.89 0.90

Exponential Mixture
Uniform 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 2 0.28 0.30 0.38 0.37 0.26 0.27
Uniform 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 3 0.12 0.13 0.39 0.37 0.10 0.09
Gaussian 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 2 0.26 0.25 0.41 0.40 0.24 0.24
Gaussian 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 3 0.12 0.12 0.39 0.37 0.11 0.11

Table 5.4: Mean squared error for derivative spline coefficients when K = 3 for 500 repli-
cations of standard clustering methods applied to data generated under different conditions
for the distribution of λ and the standard deviation of ε and λ.
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Fλ σε σλ α11 α21 α12 α22 α13 α23

K-means on Difference Quotients
Uniform 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 2 0.10 0.09 0.20 0.17 0.10 0.10
Uniform 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 3 0.10 0.09 0.20 0.17 0.10 0.10
Gaussian 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 2 0.10 0.09 0.20 0.18 0.10 0.10
Gaussian 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 3 0.10 0.09 0.20 0.18 0.10 0.10

PAM with Correlation Measure
Uniform 0.50 2 0.91 0.91 0.46 0.46 1.88 1.85
Uniform 2.00 2 1.22 1.17 0.64 0.66 2.14 2.02
Uniform 0.50 3 0.91 0.91 0.46 0.46 1.88 1.85
Uniform 2.00 3 1.22 1.17 0.64 0.66 2.14 2.02
Gaussian 0.50 2 0.83 0.87 0.47 0.46 1.77 1.77
Gaussian 2.00 2 1.20 1.31 0.67 0.64 1.95 2.12
Gaussian 0.50 3 0.83 0.87 0.47 0.46 1.77 1.77
Gaussian 2.00 3 1.20 1.31 0.67 0.64 1.95 2.12

Table 5.5: Mean squared error for derivative spline coefficients when K = 3 for 500 repli-
cations of clustering methods intended to group by shape applied to data generated under
different conditions for the distribution of λ and the standard deviation of ε and λ.
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Fλ σε σλ α11 α21 α12 α22 α13 α23

K-means on Derivative Splines Coefficients
Uniform 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 2 0.50 0.49 1.21 1.29 0.41 0.51
Uniform 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 3 0.50 0.49 1.21 1.29 0.41 0.51
Gaussian 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 2 0.46 0.45 1.26 1.27 0.48 0.52
Gaussian 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 3 0.46 0.45 1.26 1.27 0.48 0.52

Multilayer Mixture
Uniform 0.50 2 0.02 0.02 0.01 0.01 0.03 0.03
Uniform 2.00 2 0.12 0.12 0.01 0.01 0.12 0.11
Uniform 0.50 3 0.33 0.33 0.03 0.03 0.33 0.32
Uniform 2.00 3 0.40 0.40 0.02 0.02 0.42 0.40
Gaussian 0.50 2 0.01 0.01 0.00 0.00 0.01 0.01
Gaussian 2.00 2 0.13 0.13 0.01 0.01 0.13 0.13
Gaussian 0.50 3 0.31 0.32 0.02 0.02 0.29 0.29
Gaussian 2.00 3 0.35 0.34 0.01 0.01 0.34 0.35

Vertically Shifted Independent Mixture
Uniform 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 2 0.01 0.01 0.01 0.01 0.01 0.01
Uniform 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 3 0.01 0.01 0.01 0.01 0.01 0.01
Gaussian 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 2 0.01 0.01 0.01 0.01 0.01 0.01
Gaussian 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 3 0.01 0.01 0.01 0.01 0.01 0.01

Vertically Shifted Exponential Mixture
Uniform 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 2 0.01 0.01 0.01 0.01 0.01 0.01
Uniform 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Uniform 2.00 3 0.01 0.01 0.01 0.01 0.01 0.01
Gaussian 0.50 2 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 2 0.01 0.01 0.01 0.01 0.01 0.01
Gaussian 0.50 3 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian 2.00 3 0.01 0.01 0.01 0.01 0.01 0.01

Table 5.6: Mean squared error for derivative spline coefficients when K = 3 for 500 repli-
cations of proposed clustering methods applied to data generated under different conditions
for the distribution of λ and the standard deviation of ε and λ.
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Figure 5.1: Density plots of estimated multinomial coefficients from analysis after running K-means on original data
under simulation conditions. Coefficients for group 3 are fixed equal to 0. Solid: w1, dashed: w2. Thin: group 1, thick:
group 2.
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Figure 5.2: Density plots of estimated multinomial coefficients from analysis after running K-means on difference
quotients under simulation conditions. Coefficients for group 3 are fixed equal to 0. Solid: w1, dashed: w2. Thin:
group 1, thick: group 2.
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Figure 5.3: Density plots of simultaneously estimated multinomial coefficients from the vertically shifted exponential
mixture model under simulation conditions. Coefficients for group 3 are fixed equal to 0. Solid: w1, dashed: w2. Thin:
group 1, thick: group 2.



CHAPTER 5. SIMULATIONS 83

5.4 Discussion

This study provides evidence against standard clustering methods and insight into the
strengths and weaknesses of the proposed methods to cluster by shape. K-means on original
data finds groups based mainly on level. K-means on spline coefficients generalizes the
original K-means to work with irregularly sampled data, but does not improve performance
when the number of observations is small. The finite mixture model with independence also
fails to detect shapes when shape and level are not perfectly correlated. Surprisingly, the
mixture model with exponential correlation was able to detect the three shape groups when
measurement error was small, but it fails to select the correct number of groups.

Of the two methods previously thought to detect shape, PAM with the correlation mea-
sure failed on all accounts in this simulation. Not only did it choose the incorrect number of
shape groups, it could not find the shape groups when forced to have the correct number of
shape groups. Quotient differences, on the other hand, worked well when measurement error
was small. It was able to choose the correct number of groups and find the shape groups.

The K-means on the derivative spline coefficients is an attempt to use the derivative for
clustering while accommodating irregularly sampled data. For data with small measurement
error, this method performed well. However, under larger measurement error, it performed
worse than difference quotients. This primarily was due to the small number of observation
times over which the data are smoothed for each individual. I imagine the performance would
improve with more observations over time. The multilayer mixture model worked well when
the data fit into the shape group, level component framework such that the components are
well separated. Unfortunately, this is not a realistic for most data sets. Vertically shifting the
data prior to fitting a mixture model outperformed the rest of the methods. Measurement
error and overlap had little impact on the results. It consistency found the three shape
groups even when the covariance was not modeled perfectly.

These results are limited as I focused on only one generating framework. The shapes are
straight lines with very few observations. While this is restrictive, it does not drastically
deviate from real data sets with long range trends. An interesting extension of this simulation
would be to change the slopes of the lines to further explore how the separation impacts the
proposed models. I kept the data generating correlation simple by including a random
intercept on top of independent errors. One could try a more complex structure to detect
the impact of covariance misspecification like in Chapter 2. Despite these limitations, the
conclusions should generalize to similar situations.
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Chapter 6

Data application

6.1 Introduction

Obesity has become one of the most burdensome public health issues that faces the
United States today [138]. This epidemic impacts children and adults alike. A recent study
estimates that about 32% of children in the U.S. are overweight or obese [102]. This alarming
statistic has been a call to action for public officials and parents to change how we live and
eat. However, encouraging healthy diets and physical activity through increased education
and community involvement has seen limited success [47, 78]. It is generally accepted that
genetic, metabolic, and environmental factors in addition to behavioral factors play a role in
regulating a child’s weight [138]. Yet, the exact determinants of childhood obesity are poorly
understood.

As it is difficult to change the behavior of individuals, recent research has focused on other
potential causes and venues for intervention. One hypothesis is that exposure to hormone-
altering chemicals prenatally and during early postnatal development disrupt and reprogram
the metabolic system to favor weight gain [137]. A number of rodent studies suggest that
prenatal exposure to endocrine disrupters such as bisphenol A (BPA) is associated with
increased body weight after adjusting for exercise and amount and type of food [119, 4, 55,
56, 91, 129, 144, 149]. A small number of cross-sectional human studies suggest a positive
association between BPA and obesity in children and adults [11, 126, 136]. However, only one
study has investigated human prenatal BPA exposure and they found a significant negative
association between prenatal exposure and body mass index at age 9 but only in girls [48].

To fully understand the potential impact of prenatal chemical exposure on childhood
growth development, it is necessary to observe the height and weight of children during the
time between infancy and adolescence. Quality longitudinal growth studies are becoming
more common, but most data analyses do not fully take advantage of the longitudinal nature
of the data and only look at two cross-sectional points to determine change over time. In
the past few years, researchers have noted the importance of the entire growth trajectory of
individuals with a view to determine if there are distinct growth trajectory patterns [109, 10,
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73, 42]. In this case, we determine whether growth trajectory patterns are associated with
early factors such as prenatal BPA exposure.

6.1.1 Body mass index trajectories

Quantifying and evaluating children’s growth involves measuring both height and weight.
Body mass index (BMI), calculated as weight (kg)/height2 (m2), is used as an indicator of
total body fat for most individuals [115]. BMI is also used to clinically classify individuals
as overweight or obese. The Center for Disease Control (CDC) publishes clinical charts
that include BMI-for-age reference growth curves in terms of percentiles and z-scores using
cross-sectional data from National Health and Nutrition Examination Survey (NHANES).
The z-scores are not intended for longitudinal analysis as the CDC performs different nor-
malizing transformations for each age in months to resolve the skewed sex and age-specific
distributions for BMI. Since the reference data is cross-sectional, the charts may not reflect
typical age-related patterns of BMI change. Therefore, we concentrate on the original BMI
trajectories rather than of BMI z-scores over time.

One way to detect alterations in growth patterns is to apply cluster analysis methods to
childhood BMI trajectory data. Then, additional analysis can be completed to estimate the
relationship between growth patterns and early life factors such as exposure to BPA as well
as other important factors such as maternal BMI, maternal smoking, maternal gestational
weight gain, maternal age, birth weight, and duration of breastfeeding which have been
suggested to be potential predictors of increased risk of a high-rising BMI growth as well as
the early and late onset of obesity [109, 10, 73].

6.1.2 Clustering

The clustering methods used in many longitudinal applications including growth tra-
jectories are typically based on a finite mixture model, which is a probabilistic model for
representing groups within the overall population that occur with different frequencies but
are not known a priori. In the simplest form, the mixture density for the random outcome
vector y is a weighted sum of K group densities written as

f(y|θ) =
K∑
k=1

πkfk(y|θk)

where πk is the probability of belonging to the kth group and πk > 0 for all k = 1, .., K and∑K
k=1 πk = 1. The probability densities fk are typically assumed to be multivariate Gaussian

for continuous outcomes such as BMI. With longitudinal data, the main goal is to study the
change over time so the mean within each group is modeled conditional on the observations
times t. This model is the basis for many popular methods and software that have rapidly
become commonplace in the growth trajectory literature.
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The Proc Traj add-on package for SAS [62], used in the BMI literature [109, 10], fits
group-based trajectory models. These models are finite mixture models such that for a con-
tinuous outcome measure, the group distributions are assumed to be multivariate Gaussian
with a polynomial mean function and the repeated measures within an individual are as-
sumed independent conditional on the group membership. Thus, the model assumes that
the outcome data yi = (yi1, ..., yimi

) observed at times ti = (ti1, ti2, ..., timi
) for subject i who

belongs to group k is generated according to

yi = β0k + β1kti + β2kt
2
i + β3kt

3
i + εi

where εi ∼ N(0, σ2I) for a cubic mean model. Additionally, the group probabilities can be
modeled using a generalized logit function to allow time-stable covariates determine group
membership (setting γK = 0 for identifiability),

πk =
exp(γTkwi)∑K
l=1 exp(γTl wi)

where wi is a design vector based on time-stable covariates.
Another software program, Mplus [98], commonly used in the literature [73, 42], fits a

generalization of this mixture model, termed a growth mixture model, which allows random
effects in the mean structure to account for within-group variation that is ignored in the
Proc Traj model specification. Assuming a distribution for the cluster-specific slope and
intercept coefficients attempts to model within-individual dependence that is inherent in
repeated measures. These random effects can be incorporated into the distribution of the
errors. Thus, the observed data for subject i is assumed to be generated by

yi = β0k + β1kti + β2kt
2
i + β3kt

3
i + εi

where εi ∼ N(0,Σik) with Σik = ΛiΨkΛ
T
i + Θk, where Θk is the covariance matrix of the

random errors, ΨK is the covariance matrix for the random effects, and

Λi =

 1 ti1 t2i1 t3i1

1
...

...
...

1 timi
t2imi

t3imi


This model is equivalent to the Proc Traj model when Ψk = 0 and Θk = σ2I for all
k = 1, ..., K. It is important to note that the random effects indirectly specify a complex,
non-stationary covariance structure. This is problematic since misspecifying the covariance
structure in finite multivariate Gaussian mixture models can cause bias in the mean estimates
and result in an incorrect number of chosen groups as seen in Chapter 2. Special attention
should be paid to modeling the dependence inherent in repeated measures of an outcome over
time. I recommend fitting a model using a well-known stationary correlation structure such
as exchangeable or exponential correlation before fitting a complex non-stationary model via
random effects.
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These model-based methods are typically understood to group individuals such that
members of the same group share a similar pattern of change over time [42]. This suggests
that two individuals with similar patterns of change but different vertical levels would be
grouped together. However, model parameters and subsequently group membership are
estimated by maximizing a likelihood function, which is based on Euclidean distance between
observed data and group means if normality is assumed (see Chapter 3). This process
results in groups being primarily determined by the level despite subtle differences in the
shape especially if the level and shape of a trajectory are independent or weakly dependent.
Therefore, these methods do not directly group trajectories on shape and resulting groups
may include growth trajectories of the same level but different shapes over time. This
translates into estimated group memberships and means not accurately representing shape
groups present in the data.

Due to this misunderstanding, researchers present the results of a mixture model anal-
ysis by discussing the shape of the estimated mean growth pattern for each group [109,
10]. However, the mean only represents the average shape of all trajectories in the group;
perhaps no one individual follows the path of the mean especially when the groups are not
homogeneous in terms of shape. Additionally, the estimated relationships between risk fac-
tors and the resulting groups are deceitful when the group descriptions are inaccurate and
misunderstood. Care needs to be taken when making conclusions based on these methods
especially in describing the shape of the trajectories within each group.

The goal of this research is to group individuals on the basis of the shape of their growth
trajectory, so it is appropriate to compare the new methods proposed in Chapter 4 with
those used in practice on a real data set. The vertically shifted mixture model is based on
the same foundation as those described above. The main difference is that rather than fitting
a model to the original data, the input for the model is the transformed or vertically shifted
data vector. Each individual’s mean BMI is subtracted from all of their measured BMI
values. In effect, each individual is normalized to have mean zero and the level is removed
without eliminating the variability at any time point. By removing the mean prior to fitting
a multivariate Gaussian mixture model, we allow the clustering method to focus directly on
the shape rather than the level. Thus, the resulting groups can be honestly summarized by
describing the shape of the mean trajectory of the group and estimated associations with
risk factors can be interpreted accurately in terms of shape groups. I illustrate the difference
between the methods with longitudinal BMI data on a sample of children living in the Salinas
Valley, CA.

6.2 Data

The Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS)
Study is a longitudinal birth cohort study designed to assess the health effects of pesticides
and other environmental exposures on the growth and development of low-income children
living in the agricultural Salinas Valley, CA [31, 33]. Of 601 pregnant women enrolled in the
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study in 1999-2000, a total of 527 mostly Latino mother-child singleton pairs were followed
through a live-birth delivery and 327 pairs continued to be followed through the 9-year
interview. Baseline maternal characteristics were measured at the start of the study and
maternal urine and blood samples were taken twice during pregnancy and then again shortly
after delivery to measure levels of pesticide and chemical exposure. Child height and weight
were measured without jackets and shoes by trained staff at interviews that occurred at
birth and when the child was approximately 1, 2, 3 1

2
, 5, 7, and 9 years of age. BMI was

calculated as weight (kg) divided by height squared (m2) for ages 2 and over. The exact age
of the child was also recorded due to variability in the interview times. For this thesis, we
limit our analysis to 303 children who have at least four recorded BMI measures. Details of
the study are published elsewhere [32]. All study activities were approved by the Committee
for the Protection of Human Subjects at the University of California, Berkeley.

For illustrative purposes, we limit the discussion to two baseline risk factors, maternal
pre-pregnancy BMI and BPA exposure. One of the strongest known predictors of a child’s
BMI is maternal pre-pregnancy BMI. At the start of the study, the maternal height was
measured and used together with self-reported pre-pregnancy weight to calculate the BMI.
During the first and second half of pregnancy, maternal BPA exposure was measured via
urine samples. See Harley et al. [48] for details of how the concentrations were measured.

Characterizing BMI growth trajectories of children and distinguishing distinct patterns
are of great importance to public health officials. We use this data set to illustrate the
differences between the clustering methods and how they work in practice with real data.

6.3 Cluster methods

I use the standard and novel methods described in this thesis and compare the clustering
groups and the inference on baseline factors that may be related to cluster membership.
Specifically, we fit a multivariate Gaussian mixture with conditional independence like Proc
Traj (Model 1), a multivariate Gaussian mixture with exponential correlation (Model 2),
and the vertically shifted mixture model proposed in Chapter 4 (Model 3). There is some
variability in the observation times, but the growth is rather gradual so the independence
assumption may be the best approximation for the covariance of the transformed data in
Model 3.

All of these model-based methods require a mean structure. I use a B-spline basis to
model the mean function. Based on the visual inspection of the data, I determine that
quadratic basis functions with one internal knot should be sufficient to model the complexity
given the limited number of time points. The internal knot is place at the median age of 5
years.

To compare the methods in terms of baseline factor relationships, I fit the model with
two different factors: maternal pre-pregnancy BMI, which is known to impact the child’s
BMI, and the log base two transformed maternal BPA exposure during pregnancy, which is
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hypothesized to impact growth trajectories. The relationships are estimated separately from
each other but simultaneously with the other model parameters.

To estimate parameters for all of the models, I use maximum likelihood estimation via
the EM algorithm. The algorithm is run five times for each model with random starts and
the final estimate are from the fit with the highest likelihood. For each model, the number of
groups is chosen by fitting the models for K = 2, 3, 4, 5, 6 and choosing the value of K that
minimizes the BIC. To make inferences about the parameters, I estimate the robust sandwich
standard error for the parameter estimators [146]. Odds ratios for the baseline factors are
calculated by exponentiating the coefficients and are presented with exponentiated confidence
intervals.

The cluster groups are visualized by plotting individual BMI trajectories colored accord-
ing to the group assignment made by maximizing the posterior probability. The group means
are represented in the adjoining panel. For the vertically shifted model, the group means
are shifted such that the mean BMI at the age 2 equals the average BMI of the individuals
in the particular group at the age 2 interview.

6.4 Results

Figure 6.1 shows the clustering results for the three mixture models with maternal pre-
pregnancy BMI as a baseline factor that impacts group membership. The chosen number
of groups for each model is K = 5, K = 4, and K = 5 for Model 1, 2, and 3, respectively.
Model 1 as compared to Model 2 requires more groups to model the variability within the
BMI trajectories due to the limited correlation structure. Neither Model 1 nor Model 2
group individuals based on the shape of their trajectories, but it is hard to see this without
comparing the plot of groups trajectories to those from Model 3. The plot from the last
model brings attention to individuals with high BMI levels at age two with relatively stable
trajectories over time and individuals with moderate BMI levels whose BMI drastically
increased over the follow-up period. Both of these types of individuals are categorized with
trajectories with very different shapes in the other two models.

It is interesting to note that the mean shapes do not drastically change between the three
models even though group membership changes (right side of Figure 6.1). Thus, the number
of membership changes is relatively small in this case so as to not to change the shape of
the means for this data set. Even though it is tempting to compare the starting levels of
the mean curves, it is important to realize that the level was removed to focus on the shape
in Model 3 and the artificial levels for presentation are based on the average BMI at age 2
within the groups. Thus in Model 3, group 1 includes more individuals with lower BMI at
age 2 in comparison to the other models.

Table 6.1 presents the estimated odds ratios comparing group membership odds for a one
unit increase in maternal pre-pregnancy BMI. The reference group has the highest numerical
label with the most stable shape over time. There seems to be a consistent monotone trend in
the odds ratios for pre-pregnancy BMI as the derivative of the trajectory shape increases, but
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the inference depends on the model used. We see that it highly predicts group memberships
in Model 1 as the individuals are divided mainly by BMI level. However, generalizing the
correlation structure in Model 2 increases the standard error enough to decrease the strength
of the evidence. While the point estimates are similar for Model 3, the standard errors are
slightly smaller but not enough to provide strong evidence that maternal pre-pregnancy BMI
also impacts the growth pattern over time.

Odds Ratio 95% CI P > |z|
Model 1: Group 1 1.32 (1.2, 1.45) 0
Model 1: Group 2 1.24 (1.14, 1.35) 0
Model 1: Group 3 1.15 (1.04, 1.27) 0.006
Model 1: Group 4 1.11 (1.02, 1.21) 0.017
Model 1: Group 5 (ref.) - - -
Model 2: Group 1 1.3 (0.85, 1.98) 0.232
Model 2: Group 2 1.23 (0.88, 1.73) 0.23
Model 2: Group 3 1.11 (0.88, 1.39) 0.387
Model 2: Group 4 (ref.) - - -
Model 3: Group 1 1.28 (0.92, 1.79) 0.136
Model 3: Group 2 1.24 (0.93, 1.67) 0.143
Model 3: Group 3 1.18 (0.89, 1.55) 0.247
Model 3: Group 4 1.04 (0.85, 1.28) 0.7
Model 3: Group 5 (ref.) - - -

Table 6.1: Odds ratio estimates and confidence intervals for a one unit increase in maternal
pre-pregnancy BMI comparing each group to the reference group for the three mixture models
(Model 1: independence, Model 2: exponential, Model 3: vertically shifted).

Figure 6.2 shows the clustering results for the three mixture models with maternal BPA
exposure during pregnancy as a baseline factor that impacts group membership. The chosen
number of groups for each model is K = 5, K = 4, and K = 5 for Model 1, 2, and 3,
respectively. The clustering looks very similar to those from the models with pre-pregnancy
BMI. The main differences occur with Model 3. The group means slightly differ in shape
from those with maternal BMI. This is natural since all of the parameters include group
membership are simultaneously estimated. Therefore, baseline factors have a minor influence
on the group membership for a trajectory in the overlap between two groups. This change
of group can be enough to change the mean curve.

Table 6.2 gives the estimated odds ratios comparing group membership odds for a one unit
increase in log base 2 transformed maternal BPA exposure. The reference group is again the
last group with the most stable trajectory shape. In generalizing the correlation structure
(Model 2 vs. Model 1), the estimated relationship between BPA and group membership
changes. Specifically, the odds ratio estimates for group 2 switches from 0.9 in Model 1 to
1.24 in Model 2. This suggests that increased BPA increases the probability of being in
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group 2 in comparison to group 4. This magnitude change is maintained by the vertically
shifted model (Model 3), and the standard errors are smaller relative to Model 2 to provide
more evidence that there is small effect of BPA exposure on the shape of the growth curve
over time.

Odds Ratio 95% CI P > |z|
Model 1: Group 1 0.84 (0.58, 1.21) 0.345
Model 1: Group 2 0.9 (0.65, 1.25) 0.542
Model 1: Group 3 1.04 (0.75, 1.46) 0.804
Model 1: Group 4 0.92 (0.65, 1.29) 0.618
Model 1: Group 5 (ref.) - - -
Model 2: Group 1 0.79 (0.56, 1.11) 0.181
Model 2: Group 2 1.24 (0.84, 1.83) 0.285
Model 2: Group 3 1.01 (0.73, 1.39) 0.956
Model 2: Group 4 (ref.) - - -
Model 3: Group 1 0.8 (0.49, 1.29) 0.356
Model 3: Group 2 1.33 (0.95, 1.87) 0.095
Model 3: Group 3 1.01 (0.71, 1.43) 0.948
Model 3: Group 4 0.88 (0.6, 1.29) 0.52
Model 3: Group 5 (ref.) - - -

Table 6.2: Odds ratio estimates and confidence intervals for a one unit increase in maternal
BPA exposure during pregnancy in log base 2 units comparing each group to the reference
group for the three mixture models (Model 1: independence, Model 2: exponential, Model
3: vertically shifted).

6.5 Discussion

To explore the population in terms of their heterogeneous growth patterns over time,
we used multivariate finite mixture models. Rather than averaging out all of the interesting
growth patterns, mixture models allow for a finite number of relationships. Standard mixture
models group these relationships based on the feature that dominate the variability. If this
feature is the level of the trajectory, the estimation of the mixture model may not highlight
interesting patterns over time. Therefore, we use a simple adjustment to remove the vertical
level and only focus on how the children’s growth changes over time.

For this data set, the mean functions do not drastically change between the standard
model and the vertically shifted model, but the group memberships change. Moving individ-
uals between groups impacts the interpretation of baseline factors and their association with
the probability of being in a particular group. The well-studied association of pre-pregnancy
BMI and child’s BMI level [145] is supported with this data set. However, this data set does
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not provide strong evidence for an association with the shape of the growth pattern. This is
an important distinction to make as genetic factors may impact early childhood BMI but not
necessarily determine the growth trajectory over time. While this data set does not provide
strong evidence to suggest that prenatal exposure to BPA is associated with the level or
shape of the growth pattern, the shift in the estimates between Model 1 and Model 3 for
the second group of late gainers highlights the importance of investigating the factors that
impact level and those that impact shape separately.



CHAPTER 6. DATA APPLICATION 93

2 4 6 8 10

10

15

20

25

30

35

40

Age in years

B
M

I

Model 1

2 4 6 8 10

10

15

20

25

30

35

40

Age in years

M
ea

n 
B

M
I

Group  1
Group  2
Group  3
Group  4
Group  5

2 4 6 8 10

10

15

20

25

30

35

40

Age in years

B
M

I

Model 2

2 4 6 8 10

10

15

20

25

30

35

40

Age in years

M
ea

n 
B

M
I

Group  1
Group  2
Group  3
Group  4

2 4 6 8 10

10

15

20

25

30

35

40

Age in years

B
M

I

Model 3

2 4 6 8 10

10

15

20

25

30

35

40

Age in years

M
ea

n 
B

M
I

Group  1
Group  2
Group  3
Group  4
Group  5

Figure 6.1: Clustered BMI trajectories colored according to the group assignment made by
maximizing the posterior probability and group mean functions for three mixture models
(Model 1: independence, Model 2: exponential, Model 3: vertically shifted) with maternal
pre-pregnancy BMI as the baseline factor.
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Figure 6.2: Clustered BMI trajectories colored according to the group assignment made by
maximizing the posterior probability and group mean functions for three mixture models
(Model 1: independence, Model 2: exponential, Model 3: vertically shifted) with maternal
BPA exposure during pregnancy as the baseline factor.
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Chapter 7

Conclusions

Longitudinal data sets include measurements repeated at potentially irregularly intervals
over time on a relatively large number of subjects. This highly structured data requires
methods that account for the time-ordering and dependence between measurements on the
same subject. I focus on cluster analysis methods, propose new methods to group longi-
tudinal data by the pattern of outcome change over time, and compare the performance
of standard clustering methods with the proposed in answering research questions about
change over time.

7.1 Contributions

This thesis makes several original contributions. The first major contribution is the
study of covariance misspecification in mixture models in Chapter 2. When components of
a mixture model overlap, it is important to correctly model the within-vector dependence
to avoid asymptotic and finite sample bias in the parameter estimates when the number of
components is known. Naively assuming conditional independence may bias the clustering
results and lead to incorrect conclusions. This is contrast to most longitudinal data analysis
in which the mean can be estimated in an unbiased manner without modeling the inherent
dependence and robust standard error estimate are used for inference. Although not studied
in this thesis, covariance misspecification also impacts the choice of the optimal number of
components in a mixture model when it is not known a priori. If the dependence structure is
more complex than the assumed model, more components are needed to model the variability
and dependence. This has practical importance when fitting a mixture model to longitudinal
data as there is inherent dependence within subjects. This work adds to and is consistent
with the limited literature on misspecifying mixture in that well-separated components are
more robust to misspecification.

When clustering longitudinal data, it is important to consider how two trajectories are
deemed similar. Longitudinal studies are typically carried out to directly study the change
over time. The second contribution of this thesis is raising awareness that most clustering
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algorithms do not group individuals based on how trajectories change over time. Rather,
most methods, including the standard finite mixture model, group individuals on the feature
that dominates the variability, which is often the overall outcome level. The few methods
that have been suggested to cluster based on shape are limited as they only succeed in certain
circumstances.

The third contribution is adapting and extending standard methods to cluster based
on shape while overcoming the shortfalls of the current methodology. The three proposed
methods approach the problem from different angles. All of the methods have issues and
challenges, but vertically shifted mixture models outperforms them when in clustering short
noisy trajectories.

Lastly, this thesis studies growth trajectories by clustering children growth trajectories
into distinct groups and estimating the relationship between baseline factors and group mem-
bership. The proposed vertically shifted mixture model is fit to CHAMACOS BMI outcome
data and the results are juxtaposed with those from standard clustering methods that are
currently used in the literature. In this data set, level and shape are moderately related so
the group mean curves are similar between clustering methods, but the groups differ enough
in composition to impact the direction and inference of the relationship with baseline fac-
tors. Maternal pre-pregnancy BMI is significantly associated with growth trajectory groups
primarily determined by level but not necessarily with those based on shape. On the other
hand, this study provides some modest evidence to suggest that prenatal exposure to BPA
may impact the rate of growth but not necessarily the level of BMI.

7.2 Limitations

While this thesis attempts to be thorough in its study of these clustering methods, it
cannot be exhaustive. The study on covariance misspecification primarily focuses on wrongly
assuming conditional independence when the true data-generating dependence for one of
the groups is exchangeable with constant variance. There are infinitely many simulation
possibilities for generating and estimating covariance models. Additionally, the trends used
to generate the data were limited to horizontal lines over time knowing that more complex
shapes translate into more well-separated components. To fully understand the impact of
misspecification, one could study different mean shapes, more components, non-stationary
generating covariance structures and varying vector lengths. However, the study highlighted
key issues of assuming independence for longitudinal data, choosing a covariance model, and
the impact of component separation on clustering. More suggestions for more simulation
studies are listed at the end of Chapter 2.

The context in which I discuss and compare different clustering methods is a longitudinal
data set with only five to ten repeated outcome measurements sparsely observed over time,
which is common in the field of public health. Some of the methods discussed may work
better on longer trajectories. In that case, if the data are sampled on a dense grid, more
analysis options are available in the functional data analysis literature. While the restricted
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scope may be considered a shortfall of this thesis, I believe it is worth focusing our attention
on this type of data set since it is a common structure in practice.

In terms of the proposed methods, the vertically shifted mixture model excels in practice
even though there are theoretic issues. By subtracting the mean, the transformed vector
lies on a subspace of one dimension smaller and thus the covariance matrix of the vertically
shifted vector is always singular no matter the original dependence structure. However, we
model the covariance of the deviations from the mean for the transformed vectors. If the
observation times are the same for every individual, this matrix is singular and regularization
of the covariance matrix is necessary for estimation. When this is the case, the vertically
shifted model may not be able to accurately detect subtle shape differences due to the
misspecification in the covariance matrix. If the data are observed at random times, the
transformation may have a valid covariance matrix and modeling may be more accurate.

Many believe that the gold standard for longitudinal studies is to measure individuals at
evenly spaced, regular times. However, there is no scientific reasoning for this uniform tem-
poral design [16]. Rather, the observation times should be based on the expected trajectory
shape; more observations are needed during times of rapid or non-linear change. Work in
this thesis suggests a random temporal design may be preferable when vertically shifting the
data, but it is also important to have enough data points throughout the follow-up period
to thoroughly observe individual trajectories. Therefore, a temporal design should be cho-
sen based on the expected shape plus some systematic or random variability in the actual
measurements times.

7.3 Future work

In addition to answering questions, the work in this thesis leads to many new questions.
Mixture models are sensitive to assumptions and incorrectly modeling the covariance struc-
ture can lead to bias. However, it is hard to know whether there is bias when modeling
with real data. For most statistical models, resampling methods can be used to estimate the
magnitude of the bias; however, implementation for mixture models is not straightforward.
Grün and Leisch [45] provided suggestions for bootstrapping finite mixture models as a di-
agnostic tool but did not discuss the issue of bias. This is an area needing more work as
practitioners need some indication that the results are potentially misleading due to bias.

While this thesis has focused on longitudinal data with few time observations, some
of the clustering methods discussed in this thesis may perform better when there is more
data points per person. Future work should include increasing the number of observations
when comparing the three proposed methods. Additionally, as the number of observations
increases, the line that distinguishes longitudinal data from functional data is blurred. It
is worth determining the point at which functional clustering algorithms may be more ap-
plicable than those proposed in this thesis. It is also worth investigating the possibility of
extending these ideas of shape to non-continuous outcome data [62] as well as multivariate
longitudinal trajectories [63, 29].
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I have limited the discussion to only include basis functions of time in the design matrix
for the mean regression, but the model is general enough to allow other covariates. However,
including time-fixed covariates that only impact the vertical level is futile when clustering
based on shape. If these covariates are thought to impact the shape, one can include them
in the generalized logit design vector so as to estimate the association with shape group
membership. On the other hand, time-varying covariates can be used to model the mean
trajectory shape. However, the interpretation of the estimated coefficients in the context
of clustering is not straightforward. Nagin et al. [101] suggested using time-varying binary
covariates to model abrupt or sharp changes in individual trajectories caused by life course
turning points. However, if these binary covariates change states multiple times during
the follow-up period, a hidden Markov model or switching regression models [110] may be
more appropriate. Future work needs to consider the interpretation of shape clusters when
continuous time-varying covariates are introduced into the mean structure as groups are
formed not only on the basis of the relationship with time but also with these new covariates.

One of the largest contributions of this thesis is separating shape and level into two dis-
tinct characteristics of longitudinal trajectories. Research questions usually focus on one or
the other so it is important to separate these features so as to not muddle the interpretations
when doing clustering analysis. One suggestion for systematically studying both features is
to complete a pseudo two-part model in which two mechanisms impact the outcome values.
The standard two-part model views a semicontinuous univariate outcome response as the
result of two processes, one determining whether the outcome is 0 and the other determining
the actual value if it is non-zero. This idea was first introduced in the econometrics literature
to describe health expenditures using a pair of regression equations, one for the probability
of expenditure and one for the conditional mean of expenditure [27, 83]. Two-part models
have been applied to longitudinal data [104], but we do not want to split our response into
zeros and non-zeros. Rather, we have a time-ordered outcome response that we believe re-
sulted from two processes, one determining the level and the other determining the pattern
of change over time. In many longitudinal applications, researchers are interested in both
shape and level and want to study them simultaneously.
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Appendix A

Standard errors derivations

Let y1, ...,yn be a sample of independent m-variate random vectors drawn from mixture
model

f(y|x,w,θ) =
K∑
k=1

πk(w,γ)fk(y|x,θk)

where fk(y|x,θk) is the density for a multivariate Gaussian with mean xβk and covariance
matrix Σk. The log-likelihood is written as

L(θ) =
n∑
i=1

log f(yi|xi,wi,θ)

where the complete parameter vector is θ = (γT1 , ...,γ
T
K−1,θ

T
1 , ...,θ

T
K)T and θk includes mean

and covariance parameters. The score vector is defined by q(θ) =
∑n

i=1 qi(θ), where

qi(θ) =
∂ log f(yi|xi,wi,θ)

∂θ
= ((qγ1i )T , ..., (q

γK−1

i )T , (qθ1i )T , ..., (qθKi )T )T

and the Hessian matrix defined by Q(θ) =
∑n

i=1 Qi(θ), where

Qi(θ) =
∂2 log f(yi|xi,wi,θ)

∂θ∂θT
=



Qγ1γ1
i · · · Q

γ1γK−1

i Qγ1θ1
i · · · Qγ1θK

i
...

. . .
...

...
. . .

...

Q
γK−1γ1
i · · · Q

γK−1γK−1

i Q
γK−1θ1
i · · · Q

γK−1θK
i

Qθ1γ1
i · · · Q

θ1γK−1

i Qθ1θ1
i · · · Qθ1θK

i
...

. . .
...

...
. . .

...

QθKγ1
i · · · Q

θKγK−1

i QθKθ1
i · · · QθKθK

i


.

Also, we define

φik = πk(wi,γ)fk(yi|xi,θk), αik =
φik∑
k φik

(A.1)

bik = Σ−1ik (yi − xiβk), Bik = Σ−1ik − bikb
T
ik, (A.2)
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Theorem 2. For the multivariate Gaussian mixture model, the contribution of the ith
observation to the score vector with respect to the parameters, γk (k=1,...,K-1) and θk
(k = 1, .., K), is given by

qγki = (αik − πk(wi,γ))wi, qθki = αikcik.

The contribution of the ith observation to the Hessian matrix is given by

Qγkγk
i = [αik(1− αik)− πk(wi,γ)(1− πk(wi,γ))]wiw

T
i

Qγkγl
i = −[αikαil − πk(wi,γ)πl(wi,γ)]wiw

T
i

Qγkθk
i = αik(1− αik)wic

T
ik, Qγkθl

i = −αikαilwic
T
il

Qθkθk
i = −(αikCik − αik(1− αik)cikcTik), Qθkθl

i = −αikαilcikcTil (k 6= l).

where cik and Cik are defined as follows.

If Σik = σ2
kI, then θk = (βk, σ

2
k) and

cik =

(
xTi bik

−1
2

tr(Bik)

)
, Cik =

(
1
σ2
k
xTi xi

1
σ2
k
xTi bik

1
σ2
k
bTikxi

1
2σ2

k
tr(Λik)

)

where Λik = Σ−1ik − 2Bik.

If Σik = σ2
kRik, then θk = (βk, σ

2
k, ρk) and

cik =

 xTi bik
−1

2
tr(BikRik)

−σ2
k

2
tr(BikR

′
ik)

 ,

Cik =


1
σ2
k
xTi R−1ik xi

1
σ2
k
xTi bik xTi R−1ik R

′

ikbik
1
σ2
k
bTikxi

1
2σ2

k
tr(ΛikRik)

1
2

tr(ΛikR
′

ik)

bTikR
′

ikR
−1
ik xi

1
2

tr(ΛikR
′

ik)
σ2
k

2
tr(ΛikR

′

ikR
−1
ik R

′

ik)


where Λik = Σ−1ik − 2Bik, Rik is a correlation matrix based on the parameter ρk, and R

′

ik is
the derivative of Rik with respect to ρk.

If Σik = ν2kJ + σ2
kRik, then θk = (βk, σ

2
k, ρk, ν

2
k) and

cik =


xTi bik

−1
2

tr(BikRik)

−σ2
k

2
tr(BikR

′
ik)

−1
2

tr(BikJ)

 , Cik =

(
xTi Σ−1ik xi (C1

ik)
T

C1
ik C2

ik

)
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with

C1
ik =

 bTikRikΣ
−1
ik xi

σ2
kb

T
ikR

′

ikΣ
−1
ik xi

bTikJΣ−1ik xi

 ,

C2
ik =

 1
2

tr(ΛikRikΣ
−1
ik Rik)

σ2
k

2
tr(ΛikRikΣ

−1
ik R

′

ik)
1
2

tr(ΛikRikΣ
−1
ik J)

σ2
k

2
tr(ΛikR

′

ikΣ
−1
ik Rik)

(σ2
k)

2

2
tr(ΛikR

′

ikΣ
−1
ik R

′

ik)
σ2
k

2
tr(ΛikR

′

ikΣ
−1
ik J)

1
2

tr(ΛikJΣ−1ik Rik)
σ2
k

2
tr(ΛikJΣ−1ik R

′

ik)
1
2

tr(ΛikJΣ−1ik J)


where J is an m×m matrix of 1’s, Λik = Σ−1ik − 2Bik, Rik is a correlation matrix based on
the parameter ρk, and R

′

ik is the derivative of Rik with respect to ρk.

Proof. I follow a procedure similar to Boldea and Magnus [7]. Let g(w) =
∑K

j=1 exp(wTγj).

Then πk(w,γ) = exp(wTγk)
g(w)

. Taking the logarithm of both sides, we get

log πk(w,γ) = wTγk − log g(w) (A.3)

Note that ∂ log g(w)/∂γj = πj(w,γ)w. Then,

d log πk(w,γ)

dγj
= I(j = k)w − πj(w,γ)w for j = 1, ..., K − 1

d2 log πk(w,γ)

dγjdγ
T
l

= [−I(j = l)πj(w,γ) + πj(w,γ)πl(w,γ)]wwT for j, l = 1, ..., K − 1

(A.4)

Let φik and αik be defined as in (A.1). Then since f(yi|xi,wi,θ) =
∑K

k=1 φik, we obtain

d log f(yi|xi,wi,θ) =
df(yi|xi,wi,θ)

f(yi|xi,wi,θ)
=

K∑
k=1

dφik∑K
j=1 φij

=
K∑
k=1

αikd log φik (A.5)

and

d2 log f(yi|xi,wi,θ) =

(
d2f(yi|xi,wi,θ)

f(yi|xi,wi,θ)
−
(
df(yi|xi,wi,θ)

f(yi|xi,wi,θ)

)2
)

=

∑K
k=1 d

2φik∑K
k=1 φik

−

(∑K
k=1 dφik∑K
k=1 φik

)2


=

(
K∑
k=1

αik(d
2 log φik + (d log φik)

2)− (
K∑
k=1

αikd log φik)
2

)
(A.6)
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To evaluate these, we first need the first- and second-order derivatives of log φik. Since,

log fk(yi|xi,θk) = −m
2

log(2π)− 1

2
log |Σ−1ik | − (yi − xiβk)

TΣ−1ik (yi − xiβk)

we find

d log fk(yi|xi,θk) = −1

2
d log |Σik|+ (yi − xiβk)

TΣ−1ik d(xiβk)

− 1

2
(yi − xiβk)

TdΣ−1ik (yi − xiβk)

= −1

2
tr(Σ−1ik dΣik) + (yi − xiβk)

TΣ−1ik d(xiβk)

+
1

2
(yi − xiβk)

TΣ−1ik dΣikΣ
−1
ik (yi − xiβk)

and

d2 log fk(yi|xi,θk) = −1

2
tr(dΣ−1ik dΣik)− d(xiβk)

TΣ−1ik d(xiβk) + (yi − xiβk)
TdΣ−1ik d(xiβk)

− (yi − xiβk)
TΣ−1ik dΣikΣ

−1
ik d(xiβk)

− (yi − xiβk)
TΣ−1ik dΣikΣ

−1
ik dΣikΣ

−1
ik (yi − xiβk)

=
1

2
tr(Σ−1ik dΣikΣ

−1
ik dΣik)− d(xiβk)

TΣ−1ik d(xiβk)

− 2(yi − xiβk)
TΣ−1ik dΣikΣ

−1
ik d(xiβk)

− (yi − xiβk)
TΣ−1ik dΣikΣ

−1
ik dΣikΣ

−1
ik (yi − xiβk)

and hence, using (A.4) and the definitions (A.1)-(A.2),

d log φik = d log πk(wi,γ) + (yi − xiβk)
TΣ−1ik d(xiβk)−

1

2
tr(Σ−1ik dΣik)

+
1

2
(yi − xiβk)

TΣ−1ik dΣikΣ
−1
ik (yi − xiβk)

= widγk − πk(wi,γ)widγ · + bTikd(xiβk)−
1

2
tr(BikdΣik)

and

d2 log φik = d2 log πk(wi,γ)− d(xiβk)
TΣ−1ik d(xiβk)− 2(yi − xiβk)

TΣ−1ik dΣikΣ
−1
ik d(xiβk)

− (yi − xiβk)
TΣ−1ik dΣikΣ

−1
ik dΣikΣ

−1
ik (yi − xiβk) +

1

2
tr(Σ−1ik dΣikΣ

−1
ik dΣik)

= −dγT· π·(wi,γ)wiw
T
i dγ · + dγT· π·(wi,γ)π··(wi,γ)wiw

T
i dγ ··

− d(xiβk)
TΣ−1ik d(xiβk)− 2bTik(dΣik)Σikd(xiβk)

− 1

2
tr(Σ−1ik − 2Bik)dΣikΣ

−1
ik dΣik
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For specific structures of Σik, we substitute in derivative of Σik.

If Σik = σ2
kI, then θTk = (βTk , σ

2
k) and

dΣik = dσ2
kI.

If Σik = σ2
kRik, then θTk = (βTk , σ

2
k, ρk) and

dΣik = dσ2
kRik + σ2

kR
′

ikdρk.

If Σik = ν2kJ + σ2
kRik, then θTk = (βTk , σ

2
k, ρk) and

dΣik = dν2kJ + dσ2
kRik + σ2

kR
′

ikdρk.

Using these calculations, we can rewrite the previously equations with the definitions of cik
and Cik in the the theorem,

d log φik = widγk − πk(wi,γ)widγ · + cTikdθk (A.7)

and

d2 log φik = −dγT· π·(wi,γ)wiw
T
i dγ · + dγT· π·(wi,γ)π··(wi,γ)wiw

T
i dγ ·· − dθTkCikdθk (A.8)

Inserting (A.7) in (A.5), and (A.8) and (A.7) in (A.6) completes the proof.

By definition, the conventional variance-covariance estimates are
An(θ̂n) = n−1

∑n
i=1 Qi(θ̂n) and Bn(θ̂n) = n−1

∑n
i=1 qi(θ̂n)qTi (θ̂n).
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Appendix B

Ascending property of the CEM
algorithm

Theorem 1. The classification likelihood L(θ,η) defined in Section 4.2 is non-decreasing
after each update of η and θ by the CEM algorithm. That is, L(θ(t+1),η(t+1)) ≥ L(θ(t),η(t))
for all t.

Proof. We now prove the ascending property of the CEM algorithm used to estimate pa-
rameters in the multilayer mixture model, which is stated in Theorem 1 in Chapter 4. We
need to show that

L(θ(t+1),η(t+1)) ≥ L(θ(t),η(t)). (B.1)

The CEM algorithm alternatives between optimizing η and θ, keeping the other fixed. After
the classification step, the parameter vector is updated from (θ(t),η(t)) to (θ(t),η(t+1)). Then
the maximization step updates (θ(t),η(t+1)) to (θ(t+1),η(t+1)). To prove B.1, it suffices to
show that

L(θ(t),η(t+1)) ≥ L(θ(t),η(t))

L(θ(t+1),η(t+1)) ≥ L(θ(t),η(t+1)).
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Note that

L(θ(t),η) =
n∑
i=1

log

πηi(wi,γ
(t))

∑
j:c(j)=ηi

π
(t)
j|c(j)f(yi|λ(t)j 1 + xiβ

(t)
ηi
, (σ2

j )
(t)I)


≤

n∑
i=1

max
ηi

log

πηi(wi,γ
(t))

∑
j:c(j)=ηi

π
(t)
j|c(j)f(yi|λ(t)j 1 + xiβ

(t)
ηi
, (σ2

j )
(t)I)


=

n∑
i=1

log

πη(t+1)
i

(wi,γ
(t))

∑
j:c(j)=η

(t+1)
i

π
(t)
j|c(j)f(yi|λ(t)j 1 + xiβ

(t)

η
(t+1)
i

, (σ2
j )

(t)I)


= L(θ(t),η(t+1))

for all η. This is true because in the algorithm,

η
(t+1)
i = arg max

ηi
πηi(wi,γ

(t))
∑

j:c(j)=ηi

π
(t)
j|c(j)f(yiλ

(t)
j 1 + xiβ

(t)
ηi
, (σ2

j )
(t)I).

Thus, we have L(θ(t),η(t+1)) ≥ L(θ(t),η(t)). To prove the other part of the inequality, note
that

L(θ,η(t+1)) =
n∑
i=1

log

πη(t+1)
i

(wi,γ)
∑

j:c(j)=η
(t+1)
i

πj|c(j)f(yi|λj1 + xiβη(t+1)
i

, σ2
j I)


=

K∑
k=1

n∑
i=1

I(η
(t+1)
i = k) log

πk(wi,γ)
∑

j:c(j)=k

πj|c(j)f(yi|λj1 + xiβk, σ
2
j I)


=

K∑
k=1

n∑
i=1

I(η
(t+1)
i = k) log πk(wi,γ)

+
K∑
k=1

n∑
i=1

I(η
(t+1)
i = k) log

∑
j:c(j)=k

πj|c(j)f(yi|λj1 + xiβk, σ
2
j I)

≤ max
γ

K∑
k=1

n∑
i=1

I(η
(t+1)
i = k) log πk(wi,γ)

+
K∑
k=1

max
πj|c(j),βk,λj ,σj for j:c(j)=k

n∑
i=1

I(η
(t+1)
i = k) log

∑
j:c(j)=k

πj|c(j)f(yi|λj1 + xiβk, σ
2
j I)

= L(θ(t+1),η(t+1))

for all θ. This suggests that L(θ,η(t+1)) can be maximized by first using numerical opti-
mization to find γ that maximizes the first term, and then the rest of the parameters can be
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optimized separately for the mixture model within each cluster using the samples assigned
to the cluster by η(t+1). The maximization step in the CEM computes θ(t+1) exactly in this
fashion. Therefore, we have L(θ(t),η(t+1)) ≤ L(θ(t+1),η(t+1)).




