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Computer Simulation of Martensitic Transformations
Ping Xu

Ph..D. Dissertation

ABSTRACT

The characteristics of martensitic transformations in solids are largely determined
by the elastic strain that develops as martensite particles grow and interact. To study the
development of microstructure, a finite-element computer simulation model was
constructed to mimic the transformation process. The transformation is athermal and
simulated at each incremental step by transforming the cell which maximizes the decrease
in the free energy. To determine the free energy change, the elastic energy developed
during martensite growth is calculated from the theory of linear elasticity for elastically
homogeneous media, and updated as the transformation proceeds.

The computer model is in good agreement with the linear elastic analytic solution,
especially when the latter predicts single-variant martensite or twinned martensite with
nearly equal fractions of the two variants. The model also generates "butterfly
martensite" which has been observed experimentally. The development of similar
complex, multivariant microstructures is seen to be promoted by geometric constrains on
the transforming crystal, and is strongly affected by applied stress. Either constraint or
applied stress increases the thermal resistance to the transformation, as measured by the
difference between the Mg and Mg temperatures. When the transformation is made
reversible, phenomena such as thermoelasticity, pseudoelasticity and the shape memory
effect naturally appear. The fundamental understanding of thermal and stress-strain
hysteresis is made possible by calculating the elastic energy developed during the
transformation. When plastic deformation and frictional resistance are absent, thermal or
stress-strain hysteresis exists because of the absence of equilibrium between the driving
force and the elastic energy resistance. This non-equilibrium effect, which is also the
source of energy dissipation, is due to the elastic relaxation caused by elastic interaction
and accommodation between martensite particles of like and different variants. When the
computer model is applied to partially-stabilized-zirconia systems, it simulates the
transformation from cubic to monoclinic structure and generates twinned microstructures
that have {100} habit planes. Analysis shows that the twinning occurs not to achieve an
invariant plane, but to cancel the shear components in the transformation strain. The
twinning is also promoted by the constraint of the untransformed matrix.
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CHAPTER 1

INTRODUCTION

1.1. Martensite and Martensitic Transformation

The significant increase in the strength of steels obtained through quenching was
first discovered in the 19th cenwry. The product of quenched steels was named
"martensite” in honor A. Martens, a German metallographer who was among the first to
study the correlation between the microstructures and properties of quenched steels. Since
then the mechanism re5ponsible for producing martensite is known as the "martensitic
transformation"”.

The martensitic transformation is one of the principal processés responsible for
structural or phase transitions in crystalline materials, and it produces a wide variety of
microstructures with desirable properties. Martensitic transformations have been used to
strengthen structural steels, as well as to increase the fracture toughness of steels and
ceramics. They are also the sources of phenomena involving tﬁermoelasticity,
pseudoelasticity and shape memory éffects in manyvnox_l-ferrous and ferrous alloys.

-As defined by Cohen, Olson and Clapp [1] most recently, "A martensitic
transformation can be considered to be a first-order solid-state structural change which is
(a) displacive, (b) diffusionless, and (c) dominated in kinetics and morphology by the
strain energy arising from shear-like displacements.” During a martensitic transformation,
a parent lattice changes into a product lattice by coordinated movements of a large numbers
of atoms. This mechanical distortion of the parent lattice induces a substantial local elastic
strain. Accommodation of the transformation-induced strain determines the transformation
kinetics and makes the martensite phése grow in a pattern that keeps the elastic strain
energy at a minimum or a tolerable level, resulting in complex microstructures in the

martensite, including twins and dislocations.



The crystallography of martensite was first studied in ‘1924 by Bain [2]. He
showed that a body-centered cubic (bcc.) structure can be produced from a face-centered
cubic (fcc) structure by a contraction of approximately 17 percent in oﬁc cubic direction of
the fcc lattice énd an expansion of 12 percent in the other two directions perpendicular to it.
This process of generating a bee structure from a fcc structure involves considerably less
distortion or strain than any of the other processes which generate such structure vchange,
and the straih, named "Bain strain”, became the fundamental basis for studying the
crystallo'graphy ‘of the martensitic transformations. Similar mechanisms were also
proposed for martensitic transformations between other crystal structures. The Bain strain
is an essential ingredient of the martensite crystallographic theory, developed later in the
1950's, and the linear elastic theory, formulated in the 1970's. |

The crystallographic theory of the martensitic transformation was developed by
Wechsler, Lieberman and Read [3] to predict the crystallographic habit plane and twin
fraction of a twinned martensite plate. Bowles and Mackenzie [4] developed an equivalent
version of the crystallographic theory from a different approach almost simultaneously.
The method identifies an undistorted "invariant piane" of the transformation on which the
martensite and matrix structures fit without distortion, so that a martensite plate p.arallel to
this plane is nearly strain-free (local strains associated with twinning in the plate are
ignored). The crystallograiphi_c theory has been particularly useful for predicting the habits
and twin fractions of twinned martensite in steels and other alloys [5-71.

Despite its success, the crystallographic theory confines the martensitic
transformation as a phase transition to achieve an invariant-plane strain. The theory does
not provide direct linkage of the strain energy to the transformation kinetics, nor to the
morphology of the martensitic transformation. The theory cannot explain the complex
microstructure produced by the martensitic transformations that do not have an invariant
plane, for example, the twinning that occurs during the tetragonal to monoclinic martensitic

transformation in partially-stabilized-zirconia systems [8]. Unlike the crystallogi'aphic
2 . |



theory, the linear elastic theory, which is a new approach that emerged by the end of the
1970's, directly relates the morphology of martensité to the elastic energy induced during
the transformation, providing a new tool for theoretical studies of the martensitic

transformation.
1.2. The Linear Elastic Theory .

The applicatibn of linear elastic theory for studying martensitic transformation
requires computation of the elastic energy associated with the product of a transformation in.
a linear elastic matrix. Eshelby [9,10] develbped such a solﬁtion for an isotropic elastic
medium with an ellipsoidal inclusion undergoing any given transformation strain. By
employing the Fourier transformation, Khachaturyan extendcd Eshelby's solution to
compute the elastic energy of a particle of any shape, or particles of an arbitrary distribution
[11 - 13]. The fundamental basis of these calculations is the fact that in some solid state
transformations, such as coherent precipitations and martensitic transformations, new
phases remain coherent with the matrix. The tendency towards decreasing the elastic
energy plays an essential role in the formation of multiphase structures that develop in the
process of transformations.

There are limitations to the linear elastic theory. It linearizes the transformation
strain, which is often appreciable, and it ignores the rotational component of the finite
strain, which alters the crystallographic habit. On the other hand, it has several compensat-
ing advantages that avoid some of the shortcomings of the crystallographic theory. The
linear elastic model is not restricted to "invariant plane" transformations. It can treat
particles with intermediate shapes that might be assumed during growth. The model yields
a value for the elastic energy than can be used to measure the energetic stability of the pre-
ferred habit and can be summed with the surface energy to predict the preferred shape,
habit and composite state as a function of volume. The most valuable aspect of the linear

3 -
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elastic theory is that, it is straightforward to compute the elastic energy of an arbitrary
distribution of particles, provided that the difference between the elastic moduli of the
particle and the matrix phases is ignored {12, 13]. Itis this advantage that makes the linear
elastic theory an elegant theoretical tool for studying the relationship between the
morphology of martensite and the elastic energy, or strain energy, arising from the
niartensitic transformation.

The last advantage of the linear elastic theory makes it possible th construct compu-
tationally simple models in which a martensitic transformation is allowed to develop spon-
taneously, revealing the factors that determine the progress of the transformation and the
microstructural patterns that result. Although the analytical solutions have been obtained to
predict the habits, shape and composite structurés in the martensitic transformations [13-
16}, they provide no information about the paths that lead to these states and the possible
metastable states along the paths. To study the development of microstructure of |
martensitic transformations, a computer simulation can be used to mimic the process. A
model of this type was proposed by Wen, Khachaturyan and Morris (WKM) [17]. They
simulated a two-dimensional martensitic transformation by dividing a plane into a grid of
elefnentary sqﬁare cells with periodic boundary conditions.

This simulation method produced transformation paths and final microstructures

that were encouragingly realistic. However, the simulation was done by using the "point
| approximation", in which the finite volume or shape of the elementary cell was not taken
into account but was treated as an equivalent point [13,17,18]. This approximation
introduces error in the elastic energy interaction that becomes increasingly significant for

near neighbor terms, and has limited the further extension and development of the model.



1.3. Objectives

In this ihvcstigation, the WKM model for computer simulation Was modified to
include the effect of the volume and shape of the elementary cell. The new model was then
tested in two- and three-dimensional spaces for the stress-free condition under which the
original WKM model was used. The results of the simulation using the new model were
found to be significantly different from those.v using the original model, but were in a good
agrecment with those predicted by analytical solutions of the linear elastic theory.

Secondly, the effects of boundary conditions on the microstructural development of
the martensitic transformation were studied. In addition to the stress-free condition, the
constrained boundary condition was introduced, in which the martensitic transformation
~occurs in a crystal that is constrained by untransformed matrix. The function of the matrix
constraint was found to be remarkably important to the microstructural development and
thermal resistance to the martensitic transformation, as well as to the reversible martensitic
transformation. The transformations in the constrained crystal under external monotonic or
cyclic stress were also simulated. Thirdly, the reirersible martensitic transformation was
simulated, and the phenomena of thermoelasticity, pseudoelasticity and the shape memory
effect were studied. Finally, the model was applied to partially-stabilized-zirconia systems
to simulate the martensitic transformation from a cubic to monoclinic structure.

There are nine chapters in this dissertation. Chapter 2 presents the analytical
solutions for the preferred habit planes and composite structure of martensite particles using
the linear elastic theory. A comprehensive description of the computer simulation model is
included in Chapter 3. In Chapter 4, the computer model is tested by using it to simulate
the cases which can be solved exactly by the linear elastic theory shown in Chapter 2.
Chapter 5 presents the results of simulation of martensitic transformations under constraint
and external stresses. The results of simulations and investigation of the reversible
transformations and their related phenomena - thermoelasticity, pseudoelasticity and the

5



shape memory effects are described in Chapters 6 and 7. Chapter 8 presénts the results of
the simulation of the transformation in partially-stabilized-zirconia systems. The summary
of the work and the discussion of the possibilities of further developments of the computer

model are included in Chapter 9.



CHAPTER 2

THE SHAPE, HABIT AND COMPOSITE STRUCTURE OF AN ELASTIC
INCLUSION '

In this chapter, the linear elastic theory developed by Eshelby and modified by
Khachaturyan is used to predict the shapes, habits, and composite structures of coherent
inclusions, such as small volumes that have undergohe martensitic transformations. The
predictions will be used to compare with the results from the corhputer simulation (Chapter

4).
2.1. The Elastic Energy of a Homogeneous, Coherent Inclusion

The linear elastic theory predicts that the preferred shape of a martensitic particle is
ordinarily a thin plate parallel to a particular habit plane. It then shows that the preferred in-
ternal state of the particle falls into one of three cases: (1) A thin, single-variant plate of
martensite can fit into the parent matrix without strain. In this.case the preferred state is a
single-variant particle on the plane of perfect match (the habit plane). (2) A single-variant
plate cannot fit into the matrix without strain, but a composite plate of two alternating vari-
ants can. If the two variants share a common crystallographic plane (usually a twin plane)
then the preferred state is a thin, composite plate on the plane of perfect match. (3) Neither
a single-variant nor a composite plate can fit into the matrix without distortion. In this case
the preferred state is a thin plate with a definite habit, but the system is strained. The result
is ordinarily a complex microstructure that includes several crystallographic variants with
compensating strains.

To show these resultg mathematically, let a homogeneous, coherent inclusion form

within an elastic matrix. Neglecting the difference between the elastic constants of the in-



clusion and the matrix, and assuming linear elasticity, the elastic energy of the inclusion can

be written as the Fourier integral [13]

3 |
E =%LB(e)lO(k)12(—g;tl§§ @.1)

In this equation, O(k) is the shape function of the inclusion,

iker @3k

0(k) = [, 8(r)e o @2

where 6(r) has the value 1 if the position, r, is inside the inclusion and is zero otherwise,

and B(e) is the elastic intensity in the direction, € = k/kl,

B(e) = xijkl'egag] - eichjk(e)Gglel
= xi,-klegegl - B'e) (2.3)

In Eq. (2.3), A is the fourth-order tensor of elastic moduli, €9 is the transformation strain
tensor, the strain that would result if the matrix were transformed into the inclusion under
stress-free conditions, o0 is the transformation stress tensor,

0_~. 0 '
the tensor, {(e) is defined by its inverse, the Green's tensor

Q) =Niaejer . | 25)

and B'(e) is the relaxation function, a function of the direction, e.



2.2. The Preferred Shape and Habit

‘When the inclusion volume is lafge or the surface tension is relatively small, the
elastic energy is large compared to.the surface energy, and the preferred state of the inclu-
sion is that which minimizes the elastic energy. Several important conclusions about the
behavior of such inclusions can be _extracted from Eq. (2.1) without solving it. First, the
preferred shape of an isolated inclusion is ordinarily a thin plate with a definite habit.
When the inclusion is a thin plate with normal vector, n, the shape function reduces to a

Dirac d-function in the direction of n, and the elastic energy is

E, = % V;B(0) | : (2.6)

where Vyp is the volume of the inclusion. If B(e) has a discrete minimum for a particular
direction, € = ng, as it ordinarily does, then the elastic energy is minimized if the inclusioxi
is a thin plate perpendicular to the direction, ng, which defines its habit plane.

Secondly,- the elastic energy vanishes entirely if the transformation has an invariant
plane and the inclusion has the form of an arbitrarily thin plate that lies in that plane, since
the inclusion and matrix fit together on that plane without distortion. In infinitesimal elas-
ticity the transformation strain, €0, has an invariant plane if and only if it can be written in

the dyadic form

el = -;-(m +nl) 2.7

where 1 and n are vectors, and n can be taken to be a unit vector without loss of genérality.

Eq. (2.7) can be written in matrix form

e =5

5 2.8)

nil+liny  2n2ly  ml3+lon3

[ 2nih  mb+hing n113+11n3]
n1l3+lin3 ml3+bns  2n3l3

9
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A dyadic strain, €0, has invariant planes perpendicular to the dyad vectors,1 and n. As can

be shown by substitution into Eqgs. (2.3) and (2.4), when €0 is dyadic,

"B(n)=B(Q) =0 | (2.9)

so that the elastic energy vanishes for thin plates in the habits n or 1. This relation provides

the connection between the "elastic" and "crystallographic" theories of the habit plane;
however, as Christian has emphasized, finite deformation ordinarily removes the de-
generacy between n and 1, so there is only one invariant plane in the crystallographic the-

ory. We shall let this be the plane n.
2.3. Dyadic Transformation Strains

It is relatively easy to determine whether a particular transformation strain, €0, has
dyadic form. In a coordinate system chosen so that the coordinate direction e3 lies per-
pendicular to both of the dyad vectors, n and 1, the strain component, eg = 0 wheneverior

j= 3. Then from Eq. (2.8), €0 becomes

’1 2ml; nmb+linp 0
el = —2—[ nib+liny 2mb 0] (2.10)
0 0 0
- If the tensor is then referred to its principal axes in the (nxl) plane, its form is
A1 O O
0= 0 A2 0 ' (2.11)
0 00 |

10
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where A; and A2 are the principal strains. Comparing Eq. (2.10) with Eq. (2.11) and
using the relations njl; = Aq, nalp = A, njla + l1ny = O, the vectors n and 1 have

components along the principal axes:

o e N

Al A
;ll,ﬁ,o] (2.12)

The vector, n, is imaginary unless the principal strains, A; and A3, have oppbsite signs.
Hence €0 is dyadic if and only if one of its principal strains vanishes and the other two are
opposite in sign. | )

In general, the transformation strain is not dyadic. However, it is still often pbssi-
ble to form a composite particle that has a dyadic net transformation strain by alternating
thin strips of two different crystallographic variants of the transformation product, and
joining them internally along a plane of perfect crystallographic match, such as a twin
plane, to achieve a strain-free junction. If such a composite particle forms as a thin plate on
an invariant plane of the net transformation strain, its elastic energy is very small. The
elastic energy is not quite zero since the individﬁal elements of the composite strain the sur-
rounding matrix. However, since the strain fields of the different variants that make up the
particle cancel one another at distances much greater than their domain size, the strain
associated with such a particle is localized along its interface [13] and acts like é surface
energy.

The linear elastic theory of composite particlés is particularly simple when the trans-
formation strain is orthdrhombic or tetragonal, as, for example, is the tetragonél Bain strain

that governs the martensitic transformation in steel. An orthorhombic strain referred to its

principal axes has the form

11



g1 0 O
0= 0 e, O (2.13)
0 0 e3 |
where the ¢;; are the principal strains. €9 is tetragonal if two of the principal strains are
equal. If the parent matrix is cubic-and the principal axes of the strain parallel the cubic -
axes, theré are three distinct crystallographic variants. These are obtained by interchanging
the three principal strains. Let a composite plate be made by alternating the variant
described by (2.13) with that whose transformation strain interéhanges €11 and £33, and let

the fraction of the second variant be f. Then the net transformation strain is

g7 0 O e33 0 O
e0=(1f)] O €2 0 |+f[ O &2 O (2.14)
0 0 €33 0 0 g1

In order that €0 have dyadic form we must have

€33
f= 2.1
€33-€11 2.15)

in which case the net principal strains are
AM=en1+e33 = Ay=¢gp A3=0 (2.16)

But, since 0 < f < 1, a solution exists only if €;; and £33 have opposite signs, and Eq.
(2.12) can oply be satisfied if the sign of (€13 + €33) is opposite to that of €55. Assuming
€11 has a sign which is opposite to that of &5, and €33, an invariant plane exists if lej;| >
le3sl. Any symmetric strain tensor can be diagonalized to have an orthorhombic form.
Therefore, Eq. (2.16) and the above condition can be used for any symmetric strain to
determine whether or not it is a dyadic strain. In the case of a tetragonal strain (22 = £€33),
an invariant plane exists if and only if €;; and &2, have opposite signs, and legy! > legal.

The familiar Bain strain has this form.
12



It folloWs that the linear elastic theory disringuisﬁcs three cases. (1) The transfor-
mation strain is dyadic. In this case the preferred configuration is a single-variant particle
on the invariant plane. (2) The transformation strain is not dyadic, but there exists a com-
posite particle whose net strain is dyadic. In this case the preferred configuration is a com-
posite particle on the invariant plane of the net dyadic strain. (3) The transformation strain
is not dyadic and cannot be made so. In this case no invariant plane exists. The preferred

configuration is a thin plate on the plane that minimizes the elastic énergy.
2.4. The Two-dimensional Case

It is important to note that case (2) is lost in the two-dimensional case (plane strain).

When a two-dimensional transformation strain is referred to its principal axes in the plane it

always takes the form:
g1 0 O
0= 0 &0 - (2.16)
0O 0 0

which is dyadic if the principal strains have opposite signs and is non-dyadic otherwise.
Hence two-dimensional models of the martensitic transformation are inherently limited.
They cannot reproduce the case in which a particle develops as a composite to create an
invariant plane. The single-variant particle either has an in_vaxiant plane or it does not.
Despite this limitation, two-dimensional simulations of the martensitic transforma-
tion can be interesting and informative, as it will be Shown below. They are
computationally simplé, and do illustrate the development of multivariant microstructures to
minimize the overall elastic energy. The development of microtwinned particles can be
simulated by assuming that the elementary transformation step creates a microtwinned
particle with a net transformation strain given by Eq. (2.16). Then the normal to the
invariant plane lies in the e}, €2 plane of the simulation, and there are two variants of the

13



microtwinned particle in the plane, whose strains are related by the interchange of €;1 and
€29. When a three-dirnensibn strain is dyadic, it is reduced to a two—dimenﬁon or plane
strain like that in Eq. (2.16). Therefore, the simulation using the dyadic strain in two-
dimension case does not loose its generality but represents the transformation with a branch

of transformation strain in three-dimension space.
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CHAPTER 3

COMPUTER SIMULATION MODEL OF THE MARTENSITE
TRANSFORMATIONS

In this Chapter, the computér simulation model of the martensitic transformation is
constructed. It also includes the descriptions of several extensions of the model for
simulating the martensitic transformation in a constrained, under external stress conditions
(Chapter 5), the reversible transformations during a thermal (cooling-heating) cycle

(Chapter 6) and during a mechanical (loading-unloading) cycle (Chapter 7).
3.1. The Computer Model

The body that undergoes the transformation is ;epresented by an (n x n x n) cubic
grid in three-dimensional space, or an (n x n) square grid in two-dimensional space. The
cubic or the square grid is repeated periodically across each of its boundaries to fill the three
or two-dimensional space. Each small cube or square is an elementary cell that is the
minimum element that can undergo the martensitic transformation. For the purposes of this
paper the body is assumed to have a free boundary with no external stress.

To describe the configuration of martensite in a partially transformed body, each
cell is labeled by its position vector, R, and define the function {p(R), which has the value
1 if the cell at R is filled by martensite of variant, p, and is zero otherwise. Given periodic
boundary conditions, Qp(R+RL) = Cp(R), where RL is any translation vector of the re-
peated grid. If there are o distinct variants of the martensite, the configuration is specified
by the o distribution functions, {p(R), p = 1,...,c..

To simulate the constraint imposed when the transformation occurs within a re-
stricted region of a larger body, the transformation is confined to an (m x m) subarea in the

center of the (n x n) array. Mathematically, Cp(R) is constrained to the value, 0, unless R
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is within the (m x m) subarea. The thick, untransformed border acts as a buffer that
provides mechanical constraint during the transformation. This boundary condition
provides_ a direct simulation for the transformation of isolated particles within a non-
transforming matrix. It also provides a rough model for the transformation of a restricted
region within a larger body, for example, the transformation of a single grain within a

polygranular body. If m = n, the situation is reduced to the unconstrained condition.
3.2. The Transformation Strains

For simplicity we assume that the parent phase is cubic and the three-dimensional

- transformation strain is tetragonal. The most general tetragonal strain can be written as the

sum of a pure dilation, of magnitude €4, and a pure shear, of magnitude ;. If the tetrago-
nal axis lies in the [100] direction, the transformation strain is

100 200 R+2 0 0

e%1)=eq| 0 1 0 [+g| 0 -1 0 [=¢| 0 R-1 0 CRY
001 00 -1 0 0 Rl

where R = g4/es is the ratio of dilation to shear, the dilation ratio. The transformation strain
(16) admits two other crystallographic variants which differ in the orientation of the tetrag-
onal axis. If the tetragonal axis parallels [010] the transformation strain, e0(2), has €1 =
€33 = R-l,‘-(-tzz = R+2. A tetragonal axis parallel to [001] leads to €0(3), with €1; =€ =
R-1, £33 = R+2.

| If the principal axés of a two-dimensional (plane) transformation strain parallel
those of the parent cubic crystal the strain tensors of the two variants can be written

R-10

"0 r1] 00) = e [ 5 ra1 ¢2)

) =5 [ X3 R
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where &g is the shear in the plane and the dilation ratio, R = g,/€s, is the ratio of the areal

expansion, €,, to the shear.
3.3. The Elastic Energy

To compute the encrf,;y of an arbitrary distribution éf transformed cells, specified by
the o distribution functions, {H(R), we must generé.lize Eq. (2.1) to the case in which many
different inclusions are simultaneouély present. This was done by Khachaturyan and
Shatalov [12] (see also Khachaturyan [13]). In the special case in which the inclusions are
transformed cells of volume, v, in an array of volume, V = Nv, with periodic boundary

conditions, the Khachaturyan-Shatalov equation can be written as the simple sum [13]

Eetan =3 2 Mgl @G- ¥ D i 0@
p P4

+%Z Z'qu(R-R')Cp(R)Cq(R’) (3.3)

P4 R,R’ :

where the summation is taken over all possible variants and over all cells, R, in V. In this
expression €0(p) is the transformation strain of the pth variant and Cp is the volume fraction

of the pth variant. The two-body potential, Wpq(R-R'), is given by the Fourier sum

. 2 ike(R-R'
Wpq(R-R") = %g [eiog(p)gjk(e)c&(q)el]m@e’k (R-R?) (3.4)

v

where 60(p) is the transformation stress of the pth variant, e is the unit vector in the direc-

tion of k, no(k) is the shape function of the cell,
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iker . . .
o) = J‘e T = sml(clil/Iiﬂ) sml((lg./?) sml((l;%ﬂ) 3.5)
V

where L is the edge length of the cubic élementary cell, and the summation is taken over the
permissible values of k, k; = 2—:?, where i = 1,2,3, j is any integer and n = N1/3 is the
number of cells along the edge of the volume V. The prime on the summation indicates that
the origin, k = 0, is eliminated from the sum.

The same formulae hold in the two-dimensional case, with v = a = L2, the areaof a

square cell of edge length, L, and

_ sin(kjL/2) sin{kzL/z)
nok) = k12 k2

(3.6)

Figure 3.1 shows a quadrant of mg(k)12, plotted using Eq. (3.6), which extends into Sth
Brillouin zone in two-dimensional space. _

To solve for the interparticle interaction, Eq. (3.4), it is hecessary to calculate the
Fourier sum on the right hand side. Since the bracketed term in Eq. (3.4) is independent of
the magnitude of k, and ng(k) decreases rapidly with lki, it is only necessary to consider
the terms that lie in the first few Brillouin zones about the origin. However, to evaluate the
term in brackets we require the transformation strain tensor, 69(p), for each variant, and
the matrix elastic tensor, Q(e). For the tlﬁee-dimensional case we assume the tetragonal
transformation strain given in Eq. .(3.1), which permits three variants that differ in the
choice of the tetragonal axis. We further assume that the matrix is elastically iso(trOpic with

- shear modulus, {, and Poisson's ratio, v (which we approximate as 1/3). Tﬁe trans-

formation stress of the variant with tetragonal axis along ey is

RO OJ[20 0 4R+2 0 0
oO(1)=2ues 22 0 R 0 |+«| 0 -1 0 |p=2pe| O 4R1 0 |@7)
0o orJLoo 0 0 4Rl
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The two-dimensional form of Eq. (3.7) is

| RF107710 3R+1 0
o0(1) = 2ue {m[ 01 ]+[ 0 .1 ]}Ez;ws[ o 3R ] (3.8)

In both cases the matrix elastic tensor can be written
Q..(e) = l O:: -———1—8'6' (3 9)
AT B T ED R .

When Egs. (3.7) or (3.8) and (3.9) are substituted into Eq. (3.4), the shear strain,

&s, and shear modulus, W, are gathered into the multiplicative factor, pes2, which has units

of energy. If we take this term to define the unit of energy, then Wpq(R) depends only on

the dilation ratio, R. The dilation ratio is the single material variable that determines the
pattern of transformation under a given set of conditions.

| As an illustration of the results, Figure 3.2 shows a plot of the function W1;(R-

R"), the interactibn between like particles, for a two-dimensional case in which the

transformation strain is a pure shear (R = 0). Figure 3.3 and Figure 3.4 show the plots of

Wi1(R-R") for the dilation ratio R = 0.25 and R = 1.0 respectively. In the pure shear

case, W11(R-R') has a four-fold symmetry. The dilation disturbs the four-fold symmetry,

and the interaction between near neighbor increases with the value of R.

3.4. The Free Energy

When the boundary of the solid is diathermal and deformable its equilibrium is

governed by the Gibbs free energy. When there is no traction on the boundéry the elastic
contribution to the Gibbs free energy is the elastic energy given by Eq. (3.3). If a matrix
cell at position R is transformed to a martensite particle of variant, p, the elastic part of the
Gibbs free energy changes by the amount |
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8GR =3 MuE} D 0) - LMD + X WoqRRILL(R) (310
q q.R'

The total change in the free energy when the cell at R transforms to variant p is the sum of
chemical and elastic terms when the external stress is missing and the other resistance (e.g.,

surface energy) are neglected:

AG(T, p.R) = VAG(T) + AGe(p.R) (3.11)
‘where AGy(T) is the chemical free energy change per unit volume in a stress-free transfor-
mation. AGy(T) is approximately linear in temperature for T near T, the equilibrium trans-
formation temperature:

AGy(T) = AH*(T(-T) (3.12)

It follows that a plot of the fraction transformed against AG,(T) approximates the TT curve

of the transformation, to within the scale factor, AH® (which is xﬁeasured in units of Eg).
3.5. External Stress
An external stress, 6%, changes the Gibbs free energy by the term
Gg =- VG%gij =- V; Cpo‘i}sg(pi (3- 13)
where € is the macroscopic strain induced by the transformation,

i= 20w | (3.14)
_ P -
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The formation of a martensite particle with variant, p, changes Gg by the amount

AGs(p) = - uo‘i’je‘i’j(p) (3.15)

which ordinarily depends on the variant, p, but is independent of the position, R. If we
" measure the magnitude of the external stress in units of Meg, and meashre AGg in units of
Eg = (b/2)ues2, then AGy(p) depends only on the dimensionless stress and the dilation ra-
tio, R. | |

The total change in the free energy for the transformation of the elgment (p, R)

under a stress, o¢, at a fixed temperature, T, is:
- AG(T, p.R) = VAG(T) + AGe(p.R) + AGi(0°D) | (3.16)
when the other resistance are neglected.

3.6. Frictional resistance and Plastic Relaxation

In the ideal> case the cell at R would transform spontaneously if the free energy
change, AG(T, p,R), is negative. However, to approach the experimental situation more
closely we wish to include the possibility that the transformation is opposed by a frictional
resistance that may be associated with nucleation barriers, restrictions on interface mobility,
plastic deformation, or interactions with internal defects. To phrase the simplest possible
model, the frictional resistance, AGy, is assumed a constant, independent of temperature,
particle type, or particle configuration. -

| The second effect we wish to include in the model is the possibility that some part
of the elastic strain that is stored during the transformation is relaxed by plastic
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deformation. The relaxed part of the elastic energy does not oppose further transformation
(unless it changes its form and becomes a part of the frictional resistance), and the elastic
intcractibn between the particles decreases because of the reduced elastic energy at each
position. In this case, a particle of type p, at position R, stores only a fraction, fg(p,R,T),
of the elastic energy, AGe(p.R), associated with the forward transformation. The simplest
model is used and ff, plastic relaxation factor, is set at the constant value. In the limit, ff=
1, there is no lost in the elastic energy by the plastic deformation. In the limit, ff = 0, the
elastic energy is fully relaxed.

With these assumptions, the free energy that must be supplied to transform a cell at

R to the variant, p, is
AG(T, p,R) = VAG(T) + ff AGe(p,R) + AGj(0®p) + AG, (3.17)
3.7. Reverse Transformation and Reversibility

When the transformation is reversed, the part of the elastic energy relaxed by plastic
deformation cannot be recovered. In this case, the reversion of a particle of type p, at
position R, releases only a fraction, f(p,R,T), of the elastic energy, AGe(p,R), associated
with the forward transformation. Again, for the simplicity, f{(p,R,T) is set at the constant
value f;, which is the ‘reversibility of the elastic energy. In the limit, fr =1, all of the

elastic energy is recovered; in the limit, f; = 0, no elastic energy can be recovered during

" the reverse transformation.

The total free energy change for the reverse transformation, of the element (p,R) at

temperature, T, is, then
AG'(T, p.R) = vAG,_(D+ f; (AG,(>R) + AG{(c°p)) + AG,  (3.18)
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where AG'D(T) is the chemical free energy change per unit volume for the reverse
transformation of martensite to parent phase, and AG;(T) = -AGyT) at the same
temperature; AG'e(p,R) is the part of the Gibbs free energy change when a martensite
| particle of variant p at position R is reverse to a matrix cell, and AG;(p,R) = -AGe(p,R) if
the configurations of martensite are the same when the forward and reverse transformations
of the element (p,R) take place; AG;(ce'p) is the free energy change due to the external
stress, 6¢, when a martensite particle p is reversed to a matrix cell; AG; is the frictional

resistance of reverse transformation, a constant for all martensite particles.
3.8. The Transformation Path

- The martensitic transformation modeled here is athermal. The athermal character of
the transformation has the consequence that an elementary cell within the array can

transform only if the free energy change is negative.

3.8.1. Irreversible transformation

To simulate a martensitic transformation of the two or three-dimensional bodies de-
fined above we introduce one or more martensite nuclei, which are taken to be cells that
have previously transformed. Given Wpq(R), which can be tabulated once and for all in a
computer, AGe(p,R) can be found for all untransformed cells that lie in the subarray in
which transformation is permitted. The chemical driving force, AGy, is then set at the
value that is just sufﬁcieht to make AG(T,p.R) negative for at least one cell. This cell is
transformed; mathematically, Cp(R) is set equal to one for the position R, and variant p, of
the transformed particle. The transformation of the first cell usually causes several cells to
have negative AG(p,R). The cell that does transform (Ry) and its variant (p) are chosen to

 maximize the decrease in free energy. AGe(p,R) is then recomputed, and the remaining
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untransformed cells are surveyed to identify the preferred site for the next element of the
transformation. This proéess is iterated until either all cells have transformed or all
remaining cells yield positive values of AG. Since AGy(T) is the same for every cell, this
procedure automatically chooses the transformation path that minimizes the increment to the

elastic energy in each step.

3.8.2. Reversible transformation

Similar to the forward transformation, the reverse transformation oceurs only if the
free energy change, AG'(T,p,R), is negative. In the simulation of reversible
transformatioh, the reverse transformation is allowed during cooling or loading, if the‘
internal elastic strain is sufficient to drive it, and the forward transformation is also allowed
during heating or unloading. This means that the forward transformation and reverse
transformation compete with one another at each step. However, for simplicity, the reverse
transformation is confined to the transformation from martensite to parent phase. A direct
transition between martensite variants is not permitted

At each step of transformation, AG'(T,p,R) can be computed for all transformed
cells. Then the .smallest AG(T,p,R) and AG'(T,p,R) are compared to see which is smaller
when both are negative. If AG'(T,p,R) is more negative, the variant p martensite particle
. at the location R is reversed to the matrix cell; CP(R) is reset to zero. This process is
iterated until neither can forward transformation nor reverse transformation continue and
then the driving force (chemical free energy or stress) must be increased (for c_ooling or
loading processj or decreased (for heating or unloading process). The transformation path
that is simulated by this procedure is the minimum energy path, the path that provides the
maximum decrease in free energy for each incremental step. The simulation results are

generated by using the minimum energy path throughout, except otherwise indicated.



3.8.3. Temperature-Transformation (TT) curve

To determine the form of the TT curve for the cooling process, AGy(T) is first
given the value that is just sufficient to initiate the transformation from the pre-existing
seed. This simulates a situation in which the sample is cooled ( AG(T) is decreased) until
the transformation initiates. The transformation is then continued until it either reaches
completion, or arrives at a configuration in which any further transformation would
increase the free energy (AG(T, p,R) > 0 and AG'(T, p,R) > O for every possible
incremental step). If the transformation stops before completion, the value of AGy(T) is
decreased to a value that is just sufficient to continue the transformation, and the simulation
is continued. This procedure generates a plot of the fraction transformed vs. AG(T) for
the cooling process, which gives the TT curve to within the scale factor that relates AGy(T)
and T. The TT curve for a heating process can be determined by the similar way. AGD(T)
is increased to where the reverse transformation starts. If the reverse transformation stops
before ;he all martensite particles transform to the matrix or before a desired remaining
volume percentage martensite is reached, the value of AGy(T) is increased again to a value

just sufficient to continue the reverse transformation.
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CHAPTER 4

‘COMPUTER SIMULATION OF MARTENSITIC TRANSFORMATION IN
STRESS-FREE SOLIDS

In this chapter, the simulation results of irreversiblé martensitic transformation in
stress-free solids are presented, and the shapes, habits and microstructures obtained from
the simulation are compared with the analytical results predicted by the linear elastic theory

in Chapter 2. The Gibbs free energy change includes only the chemical and elastic terms

(Eq. 3. 11))
4.1. Simulated Transformations in Three Dimensions

The threc-dimensidnal simulations were done on an 21x21x21 array. Six different
tetragonal transformation strains were used. All were of the form given in Eq. (3.1); the
dilation ratio, R, was varied to change the preferred state of the martensite particle. The
examples wére chosen to include a dyadic transformation strain, two different non-dyadic
strains, and three intermediate cases leading to various types of composite particle. In all
cases the transformation was initiated by transforming a single cell in the center of the ar-
ray. ' |

The results are shown in Figures 4.1 through 4.6. A tetragonal transformation
strain leads to three distinct variants (Eq. (3.1)) which are labelled 1,2,3 according to the
orientation of the tetragonal axis of the strain. In the ﬁgures; untransformed material is
represented by an empty cell, variant (1) by a thin, horizontal bar, vaﬁaﬁt (2) by a short,
thick vertical bar, and variant (3) by a. thin, verﬁcal bar. The origin of the transformation,
which is always a particle of variant (1), is represented by a dark square. The figures show
both intermediate configurations and the final configuration of the transformed body on

typical (100), (010) and (001) sections.
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(1) R = 1: dyadic transformation strain. In this case the transformation strains have
the simple dyadic form:

o [100 . 000 o 000
£0(1) = 3¢ ooo] e02) = 3 [010] 0(3) = 3 [ooo]
) *1000 @ %1000 ©) %1001

4.1)
The minimum energy configuration for an isolated particle is a single-variant plate with a
{100} habit. As shown in Figure 4.1, this is the morphology produced by the simulation.
A seed of variant (1) develops into a thin plate in the (100) plane, which gradually thickens
until the whole body is transformed into a single-variant martensite.

(2) R =- 0.5: composite dyadic strain. In this case the three transformation strains

03 %)98 0 3 }‘)00 0 3 [100
ev(1) = [ 1_] ev(2) = [ .1(_3] " eV(3) =5¢ [010] 4.2
2*{ 001 @ =2 001 O =2%| 001 *-2)

A composite particle with a dyadic transformation strain can be made by mixing two vari-
ants in equal proportions; for examplé, equal fractions of variants (1) and (2) give

_ 1 3 [000
€= e°(l)+§s°(2)=—2-es[000] @3)

001

S R

The composite transformation strain is best accommodated by a thin plate with habit (001).
The results of the computer simulation are shown in Figure 4.2. As expected, the
simulated transformation generates a composite plate with an (001) habit in which two
variants alternate. This plate gradually thickens to complete the transformation.

(3) R =2; non-dyadic strain. In this case the three transfqrmation strains are:

400]

100 100
80(1) = g [8(1)(1) 50(2) =g [040] 80(3) = gs[o 1 0] 4.4)

001 004
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Since all of the principal strains are positive, these variants cannot be averaged into a dyadic
strain. We are left with three separate variants, each of which has minimal energy when it |
is in the form of a plate with a habit of type {100}. The results of the computer simulation
of this case are shown in Figure 4.3. The seed is a variant of type (1), which grows into a
thin plate of variant (1) with é (100) habit. After that plate has extended through the array,
a second plate of variant (2) nucleates and grows with a (010) habit. After the original plate
has thickened somewhaf, a plate of variant (3) nucleates and grows. These plates then
thicken and new plates nucleate and grow to produce a composite microstructure in which
all three variants appear. The structure is a macrocomposite of single-variant plates; the
plates themselves are not composite.

(4) R =-2; non-dyadic strain giving rod-shaped particles. In this case the transfor-

mation strains are;

0 [%03] 0 000] &0 010
eY(1) =-3¢ 1 ev(2 =-3£[ ] eV(3 =-3£[ ] 4.5
¢Y) 5[ 001 ) 5| 001 3) 1 000 4.5)

Since the principal strains have the same sign, no dyadic composite strain can be con-
structed. The elastic theory predicts single-variant particles. However, it can be shown
that in an isotropic solid the energy of a particle with a transformation strain like e0(1) is
minimized when the particle has the shape of a rod with a [100] axis [13]. (The trans-
formed particle fits the matrix perfectly in the [100] direction, and concentrates strain in the
isotropic (100) perpendicular plane.) The computer simulation of this case is illustrated in
Figure 4.4. A seed of variant (1) grows into a rod in the [100] direction, as predicted.
Once the rod has extended across the array, rods of the other two variants form and grow,
as shown in the figure. 'fhe final microstructure consists of a complex mixture of all three
variants,

Examples (3) and (4) illustrate the tendency for non-dyadic transformation strains to

generate macrocomposite microstructures that mix discrete particles of several different
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variants. The reason is the elastic strain that accumulates in the system as such particles
grow. Particles of other variants nucleate and grow to relieve the strain.

Examples (1)-(4) illustrate the different types of behavior predicted by the elastic
theory, and show that the computer simulation can reproduce them. However, the simula-
tion is less successful in matching the theory when the minimum energy configuration is a
composite particle with a preponderance of one varianf, as illustrated by the following two
examples.

(5) R = 0; simple shear. In this case the transformation strains are pure shears of

the form

0 200
eY(1) =¢ [O 1 (_)_] 4.6)

*Loo1 |
Two pure shears of this type, for example, variants (1) and (2), can be joined to produce a

dyadic composite particle by addin g them in the mixture:

000
] 4.7)

—__—1 0 0 [
e ev(1 + ev(2) =g 010

This particle is a composite of 1/3 variant (1) and 2/3 variant (2) that fits the matrix per-
fectly when it is a thin plate on the habit plane (011). A total of six symmetrically equiva-
lent composite particles can be made in this way, whose preferred habits are the six {110)
planes. The results of computer s1mulat10n of a transformauon with this strain are shown
in Figure 4.5. The transformation begins from a seed of type (1), and develops initially as
a thick composite plate that generally f;>110ws (011). However, the fractions of the two
variants are not quite right; they are near 0.5. After some growth the transformed particle
develops into a mixture of all three variants that develops a complex microstructure.

(6) R = 0.2; butterfly martensite. When R = (.2 the transformation strains have the

form
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A composite particle with a dyadic strain can be made from two variants of this type in a

nearly 3:1 proportion:
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This particle fits perfectly in the matrix if it has the form of a thin plate on the (403) plane.
However, computer simulation of transformation from a single seed shows a different
morphology (Figure 4.6). The initial particle grows as a mixture of two variants that join
along a twin plane and diverge from one another to create a "butterfly” pattern. Eventually,
the third variant also appears, creating a complex final microstructure.

The failure of the simulation to reproduce the minimum energy configuration sug-
gested by the ;heory is a result of three factors whose contributions are difficult to separate.
First, the simulated transformation proceeds one finite step at a time. Since each step is a
single variant, the transformation cannot grow in increments that contain the proportions
- that appear in the most favorable c_:ompoéitc plate. This does not present a problem when
the variant fraction is near 0.5, since variants can alternate. However, the preferred com-
posite structure is difficult to achieve when the fractions differ significantly from 0.5.
Second, a dyadic transformation strain only produces a perfect match with the matrix when
the transformed particle has the form of a thin plate. In the simulation the nucleus is cubic
in cross-section, and necessarily remains a relatively thick particle in its early stages of
growth. Third, the array is finite and relatively small. The growing particle is repeated pe-
riodically across tﬁe array boundaries, and begins to interact with its neighbors at a fairly
early stage in the transformation. (The effect of array size was studied by doing simula-

tions in a smaller array, 11x11x11, and in a larger array, 41x41x41. The results are
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quantitatively different, but qualitatively the same; all particles grew with the same initial
morphology and habit in the arrays of two different sizes.) |

While these three problems are exaggerated in the computer simulation, they also
affect martensitic transformations in real systems. Elementary volumes transform into sin-
gle variant particles that, given surface tension, have finite size. The martensite particles
initially have finite thickness and, hence, do not satisfy the assumptions of the crystallo-
~ graphic theory. Moreover, martensite particles tend to form from separate nuclei, often in
separate grains, and interact with one another at an early stage. There may, therefore, be
useful information ih the details of single particle growth in the simulation. For example,
"butterfly martensitc", which is a common morphology in the computer simulation, is also

observed in real systems [19], and has been difficult to interpret theoretically.
4.2. Simulated Transformations in Two Dimensions

The simulations of two-dimensional martensitic transformations used a 41x41 array
of square cells with periodic boundary conditions. In the part of the ;avork reported here,
the matrix was assumed to be elastically isotropic and to have square symmetry in the .
plane. The principal axes of the transformation strain were taken to lie parallel to the cell
edges. The transformation strain for these conditions was given in Eq. (3.2). The two
variants are

R-1 0

92 =¢es| ¢ Re1 (4.10)

R+1 O
e =¢es] g R-l]

When -1 £ R <1 the transformation strain is dyadic, and the preferred state of a single

martensite particle is a thin plate (line in two-dimensions) with the habit plane normal

n(1)=[\[52ﬂ,\[%J : n(2)=['\/1—'213,'\/52il| (4.11)
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When R > 1 or R < -1 the transformation strain is not dyadic, and cannot be made so by
making a composite of the two variants. The preferred state of a single particle is a thin
plate (line) with the habit that maximizes the elastic relaxation energy.

As in the three-dimensional case, when the transformation strain is dyadic and the
transformed material forms as a thin plate‘ élong its preferred habit, the elastic energy is
zero; after an unconstrained transformation the body should contain a single variant of
martensite. When the transformation strain is not dyadic, or when the particle does not
form in its preferred shape and habit, strain accumulates in the body as the transformation
proceeds. In this case even an unconstrained transformation will ordinarily produce a mi-
crostructure that is a complex mixture of martensite variants.

This behavior is illustrated by the results of the computer simulation studies pre-
sented in Figures 4.7 and 4.8. Figure 4.7 shows the appearance of the initial martensite
plate that grows from a seed of variant (1), as the dilatation ratio, R, is varied from O (pure
shear) to 1. As predicted, the transformation productis a single-variax_lt plate with a definite
habit. The predicted habit plane normal varies from [1,1] td [1,0] as R increases from O to
1. Table 4.1 compares the predicted and observed habit planes. The prediction is obeyed
re;lsonably well, although the observed habit plane rotates toward [1,0] as R increases
somewhat more quickly than the théory predicts. As in the three-dimensional case, the
discrepancy has two sources: the granular stmcture.of the computer model, which restricts
the vtransformation path, and the finite thickness of the initial particle, which changes the
preferred habit plane. If the martensite transformation is continued beyond the point shown
- in Figure 4.7, the plates thicken monotonically until the whole plane is transformed into a
single variant of martensite.

_ Figure 4.8 shows the results of a simulated transformation with R = 1.5. In this
case the predicted particle morphology is a thin, single-variant plate (line) with the normal

[1,0] (variant (1)), or [0,1] (variant (2)). Growth from a seed of variant (1) produces a
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single-variant plate with normal [1,0]. When this plate has grown across the array, the
accumulated elastic strain triggers the formation of a plate of variant (2) that grows normal
to [0,1]. the final.microstructure is a mixture of platés of the two variants. Figure 4.8(b)
illustrates an intermediate stage in the transformation. Note that plates of the two variants
do not simply thicken; new plates tend to nucleate and grow at some distance from those
that are already present. |
Finally, we contrast the results obtained here with those presented in the earlier
“work of Wen, Khachaturyan and Morris [17], in which the two-dimensional transforma-
tion produced microtwinned plates (lines) along which the two transformation variants al-
ternated. The reason for the difference is that Wen, et al. [17] used an approximation (
point approximation) to the two-particle interaction function, Wpq(R-R") (Eq (3.4). The
approximation is made by replacing the shape function of the cell, no(k) (Eq. 3.6), by a
constant such that mo(k)12 = L2 (the area of the cell) when k is in the first Brillouin zone
and zero otherwise. Figure 4.9 compares the shape function g(k)I2 and the approximation
of it (step function) when k is a one dimensional variable (at (10) direction in Figure 3.1).
This "point approximation" simplifies the calculation of Wpq(R-R?), but it exaggerates the
interaction between unlike variants. Microtwinned particles appear to maximize the number
of unlike neighbors. Figure 4.10 is the microstructure obtained from the simulation using

the point approximation.
4.3. Discussion and Conclusion

The results presented above show that one can use the linear elastic theory to con-
struct a tractable computer simulation model of the martensitic transformation that produces
transformation patterns like those observed in real systems. The simulation was tested by
comparing the shape and constitution of the initial martensite particles formed to the analytic
predictions of the elastic theory. The results are generally encouraging.
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In the three-dimensional case the elastic theory distinguishes‘ three cases, depending
on the nature of the transformation strain: (1) If the transformation strain is dyadic, the pre-
ferred transformation product should be a single-variant, thin-plate particle with a definite
habit. (2) If the strain is not dyadic, but can be made so by constructing a composite of
two variants, the preferred product should be a composite plate with a definite habit. (3) If
the strain is not dyadic and cannot be made so by forming a composite particle, the initial
product should be a thin plate (or rod) with the habit that minimizes the elastic energy. The
computer simulation is in qualitative agreement with the theory for cases (1) and (3). In
case (2), the three-dimensional computer simulation produces a properly twinned marten-
site when the predicted composite plate has equal fractions of two variants, but yields mix-
tures of thicker, single variant domains when the predicted fractions of the two variants dif-
fer significantly from 0.5. The difference between theory and simulation is not entirely due
to shortcomings of the model. The theory assumes that the martensite particle forms as an
arbitrarily thin plate with the correct internal constitution. The finite thickness of real
martensite embryos changes both the habit and internal state. In fact, the simulation gener- .
ates unusual patterns, such as "butterfly martensite", that are observed in real systems.

In the two-dimensional case the theory never predicts microcomposite particles.
The two-dimensional transformation strain is either dyadic, leading to case (1), or inher-
ently non-dyadic, leading to case (3). In both cases the initial transformation particle
should be a thin plate (line in two dimensions) with a predictable habit. In agreement, the
two—dimensional computer simulation yields thin, single-variant particles with habit planes
that are close to those predicted. Microtwinned particles are not observed.

The microstructures that result when the simulated transformation is taken to com-
pletion are also in general agreement with theory. In cases (1) and (2) an arbitrarily thin
martensite plate does not strain the matrix. Once the plate extends through the whole body,
it can simply thicken until the body transforms completely. This is the behavior produced -

by the computer simulation in case (1) and in case (2), when the simulation leads to a mi-
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crotwinned particle. In case (3), on the other hand, a growing particle produces elastic
strains in the matrix. These can ordinarily be compensated if particles of different variants
appear, creating a microstructure that is a macrocomposite of two or more variants. The
computer simulation always produces a microstructure of this type in case (3), and also
does so in examples of case (2) that do not form the favored microtwinned particle.

These fcsuits show that a martensitic microstructure is obtained only when the
martensitic plate cannot adopt a strain-free form, or when its effort to do so is frustrated.
In the simple model used here frustration happens when the plate has a composite
microstructure that is difficult to achieve under the conditions imposed by the mbdel. The
growth of a strain-free dyadic particle can also be frustrated by physical constraints that
appear naturally when the transformation occurs in a constrained or polygranular
microstructure, when multiple nucleation sites are active and give rise to interacting
particles, or when external stress modify the energetics of the transformation. These

effects have been simulated, and will be discussed in the next chapter.

Table 4.1. The predicted and observed (in computer simulation ) habit plane normals

R - n=[ny, 7] ni/ny
predicted observed predicted observed
0 {1,1] (1 1 1
- 0.180 [6,5] [1,1] 1.2 1
0.219 [5.4] [4,3] 1.25 1.33
0.3 [4,3] [2,1] 136 2
0.6 2,11 - [1,0] 2.0 oo
1.0 [1,0 [1,0] oo - oo
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CHAPTER 5

COMPUTER SIMULATION OF MARTENSITIC TRANSFORMATIONS IN
CONSTRAINED, TWO-DIMENSIONAL CRYSTALS UNDER
EXTERNAL STRESS

5.1. Introduction

In previous ch#pters the linear elastic theory is used to predict the preferred
configuration of a martensite particle and constructed a computer Qimulaﬁon model to study
the microstructures that develop in simple situations. While the linear theory is only
approximate, it does lead to a tractable model that reveals some of the factors that govern
microstructure.

An analysis of the microstructures produced m computer simulatéd transformations
of cases (2) and (3) (Chapter 4), where the transformation strain is not dyadic, suggests
that external constraints play an important role. To explore this role, the transformations in
crystals with constrained boundaries and in crystals that are subjected to external stress are
simulated. In these simulations it is assumed that the transformation strain is dyadic (Case
(1), R < 1 in Eq. (3.2)) so that any microstructure that appears is a consequence of the
constraint. As it has been pointed out in Chapter 2, when a three-dimension strain is
dyadic, it is reduced to a two-dimension or plane strain like those in Eq. (3.2), and the
simulation in two-dimension case does not loose its generality but represents the
transformation with a branch of transformation strain in three-dimension space.
Simulations in two-dimension also minimizes computer time and simplify the visual
presentation of the results.

As shown in Chapter 4, a dyadic transformation in an unconstrained crystal is ac-
complished by the grov&;th and thickening of a single-variant plate. There is, therefore, no

microstructure. Multivariant microstructures appear when geometric constraints prevent
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relaxation of the shear stresses pfoduced by the transformation. These can be relaxed, at
least in part, by forming other variants that have compensating strains. In a real crystal the
transformation is constrained by stable matrix phases, grain boundaries or other internal
defects that limit the growth of a single plate, by plastic deformation of the untransformed
matrix, and by the growth of plates that nucleate separately and interfere with one another.
In this paper we shall consider only the first of these, and study the development of the
martensitic transformation in an element of material that is embedded in an untransformed
matrix.

A second qualitative feature of a dyadic transformation in a stress-free crystal is that
the thermodynamic driving force (temperature or external stress) that is sufficient to nucle-
ate the transformation is almost sufficient to complete it. The martensite start (M) and fin-
ish (Mf) temperatures are very close to one another. When the crystal is constrained, on the
other hand, the accumulation of the transformation stress has the consequence that the
transformation becomes more difficult as it proceeds. In this case the Mg and Mg tempera-
tures are different. It is interesting to see and underétand how the TT curve (fractional
transformation versus temperature) of an athermal martensitic transformation depends on
the transformation strain and the imposed constraints.

The external stress has an important éffect on transformations that would ordinarily
lead to multivariant microstructures. The deviatoric parts of the applied stress and the
transformation strain ordinarily couple so that one martensite variant is preferred to the oth-
ers. The applied stress affects the transformation path, the microstructure and the TT
curve. The coupling between the applied stress and the martensitic transformation signifi-
cantly affects the fracture and fatigue of metastable structural materials. The role of the
stress is only partly understood. |

These issues are explored below in the context of the computer simulation model

described in Chapter 3. The transformation is irreversible, and the Gibb's free energy
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includes the chemical free energy, elastic terms caused by the martensitic transformation

' and external stress (Eq.(3.16) ).

5.2. Transformation in a Stress-Free Solid

5.2.1. The Microstructure Produced by a Pure Shear Transformation

First, let the transformation strain be a pure shear (R = 0), and let the transforma-
tion initiate from a single seed of type (1). Wheﬁ the transforming solid is unconstrained,
the transformation proceeds ihrough the growth of a single-variant plate along the (11) line,
as described in Chapter 4. The plate extends until it touches the boundaries of the array.
The plate then thickens until the whole array is transformed into a single-variant product.
However, when the transformation is constrained by its surrounding the microstructure
changes to a multivariant microstructure like that illustrated in Figure 5.1, which shows the
transformation of a 41x41 region of a 101x101 array. The two variants form alternating
bands on (11) that have almost equal areal fractions.

The source of this microstruéture is straightforward. A plate of variant (1) grows

“across the array and thickens. However, since the growing plate is consﬁ'ained by its sur-
roundings, its shear gradually accﬁmulates into a net shear stress that opposes further trans-
formation. Eventually the internal stress becomes great enough to force the nucleation of
plates of variant (2) along the sides of the original plate. As these grow, they first relax the
shear due to the excess of variant (1), and then continue to grow until their accumulated
strain forces the re-nucleation of plates of variant (1). In this way the transformation grad-
ually buildsup a microstructﬁre of parallel plates of éltemate variants.

The single-variant plates in this ;rﬁcrostructure thin as the constraint increases since

, the back-stress that opposes continued growth increases more rapidly as the constraint is

made more severe. This behavior is illustrated in Figure 5.2, which shows the results of
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simulations in which the transforming region is fixed in size (41x41) while the array is ex-
panded to provide a progressively larger untransformed buffer. As can be seen in the fig-
uie, the plate thickness decreases rapidly with array size; énd asymptotes at a thickness of
about 5 elementary cells when the array size is 80x80 or more.

Note that the microtwinning observed in this case does not develop to achieve an
invariant plane strain in the sense of the "ciystallographic theory" of martensite [3,4]. Each
variant already has an invariant plane strain (see Chapter 3). The twins form to reduce
energy by eliminating long-range shear strains in the matrik. A particularly clear
experimental example is found in the microstructurc.o‘f small, embedded particles of

zirconia (ZrO») that have transformed from a tetragonal to a monoclinic structure [20].

5.2.2. The Influence of a Dilation on the Microstructure

A dilation (R # 0) affects t_he transfqrmation path in two ways. First, R affects the
crystallographic habit. As described and illustrated in Chapter 4, the preferred habit of a
growing plate rotates as R increases from a (11) habit for R = 0 toward the {10} habit that
is preferred when IRl is large. Moreover, when R0 the preferred habits of the two vari-
ants differ; if the habit of variant (1) is (hk), that of variant (2) is (kh). Second, when R0
the transformation stress has a hydrostatic component that is the same for both variants.
The hydrostatic component cannot be relaxed by forming multiple variants, and produces
long-range stresses in the matrix that opposé the transformation.

- The microstructural consequences of these effects are illustrated in Figure 5.3,
which shows partly completed transformations for two values of the dilation ratio. In all
cases the transformation begins with the growth of a thin plate of variant (1), the variant of
the pre-existing seed. However, if the dilation is moderate to large (IRl > 0.2) this plate
grows only a short distance before particles of variant (2) nucleate. Afterward the two

variants grow simultaneously. Two growth morphologies have been observed. The first,
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and most common, is the "butterfly" morphology that is shown in Figure 5.3(a). It closely
resembles tixe martensite morphology that has been characterized éxperimentally by
Tamura, Maki and coworkers (see, for example, Reference [19]). The transformation that
creates this morphology begins as a twinned plate that grows along the (11) plane.
However, the preferred habits of the two varian;s differ from one another and differ from
(11) by angles that are mirror images of one another. As the twinned plate thickens, it
splits into two single—variaht "wings", each of which grows in a direction close to its pre- -
ferred habit. As R increases the preferred habits differ farther from (11), and the "butterfly
wings" spread. The second intermediate microstructure (Figure 5.3(b)) is the "cross"
morphology in which the single variant plates grow out from the seed in their preferred
planes and thicken to form a x-shape.

The simulations presented in Figures 5.1 through 5.3 assumed elastic isotropy.
Simulations have also been done in anisotropic media. The results show that elastic
anisotropy does not affect the qualitative results described above. Its major consequence is

to change the preferred habit for given transformation strain.

5.2.3. The TT Curve for St;ess—Frce Transformations

If we assume a driving force (AGy) that is just sufficient to start the transformation
from a pre-existing seed, then an athermal transformation can continue only so long as

there is an elementary transformation (p,R) such that
AGy + minfAGe(p,R)] < 0 (5.1)

If the configuration is such that the smallest value of AGe(p,R) > IAGy then the transfor-
mation stops, and will not begin‘ again until AGy, is lowered to achieve condition (5.1).

Simulated transformations in constrained systems often pass through a sequence of '
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metastable configurations that violate condition (5.1). Each metastable state requires a fur-
ther decrease in AG,, to continue the transformation. The result is that the transformation
develops in a series of bursts as AGy, is lowered. A plot of the fraction transformed against
AGy, is roughly equivalent to a TT curve for the athermal transformation that extends from
the martensite start (M) to the martensite finish V(Mf) temperature. |

‘When the transforming solid is unconstrained and the transformation is dyadic there
is very little thermal resistance to the transformation. Under some conditions a metastable
state is achieved when the first martensitic plate completes its growth to the boundaries of
the array, requiring a small increase in the driving force, but it is essentially true that the
whole body bursts into a single variaht martensite once the applied driving force reaches the
critical initiation value. The Ms and My temperatures are nearly the same, and the TT curve
is essentially a vertical step at M. |

The situation is very different for a transformatiori in a constrained solid, as is illus-
trated by the TT curves shown in Figure 5.4. Even when the transformatioh strain is a
pure shear (R = 0) it is difficult to eliminate the last few particles of the untransformed
phase, and AG,, must be lowered significantly to accomplish that. The microstructure at
AGy = -1.42E, after the main burst of transformation, is shown in Figure 5.5(a); the
residual phase is located at points of high stress where different variants impinge on one
another and on the array boundary. The TT curve spreads significantly as the dilational
contribution to the transformation (R) increases. This is partly because the dilation
produces a hydrostatic stress that increases monotonically as the martensite fraction
increases, and partly because transformation.at high R creates a complex multivariant
microstructure that contains many sites where internal stress fields interfere to create
unfavorable conditions. The latter effect is apparent in the microstructures shown in Figure
5.5, which show the transformation at AG\,= -1.42E( for various values of R.

(It should be noted that the numerical values of AGy, at which transformation starts

(M) for the various values of R shown in Figure 5.4 are not strictly comparable because of
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the way ihe simulation is done. In all cases the transformation initiates at a pre-existing
seed of variant (1). This seed carries the transformation strain, which is different for the
different values of R. This difference affects Mg, but has a negligible effect on the TT

curve below Mg.)
5.3. Transformation under ExtemaIIStress

It is always possible to divide an external stress into'its hydrostatic and deviatoric
components. These couple individually to the dilation and shear of the transformation
strain. Since the martensite variants differ only in their shear, it is the deviatoric component
of the stress thaf makes a qualitative change in the transformation. To illustrate and study
this effect we have investigated three aspects of the influence of external stress: the effect of
the load geometry on the martensite start temperature (M); the effect of uniaxial load o;x the
rhicrostructure_ and TT curve; and the influence of cyclic load on the martensite fraction and

microstructure.

5.3.1. The Influence of Load Geometry on Mg

Let the solid be subject to a two-dimensional stress whose principal axes are _paréllel
to tl}e axes of the array. We consider three conditions: a uniaxial tensile stress along the y-
axis.(cs‘;2 >0, 63, =0), a uniaxial compressive stress along the y-axis (65, < 0, 63, = 0),
and a two-dimensional hydrostatic stress (032 = °'§1 <0). The first two stress tensors have
a large deviatoric component; the third does not.

If we measure the stress in units of g,

e _ .
Oy = o*UEs (5.2)
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then, according to Eq. (3.15), the stress adds the factor

AGi(1) =-20* R - 1) Eg (5.3)
AGi(2) =-20* R + 1) Eg ‘ (5.4)

to the free energy changes on forming variants (1) and (2), where Eg = 323 M e:. A two-di-

mensional hydrostatic stress

o}, =05, = o*pes | (5.5)
has the same effect on each variant

AGi(1) = AGi(Z) ='- 46*REy (5.6)

The influence of the external stress on the driving force necessary to start the trans-
formation (Mj) can be predicted from egs. (5.3)-(5.6). A uniaxial load affects the two vari-
ants differently. Assuming nucleation sites for both variants, M is controlled'by the vari-
ant that is favored by the external stress: variant (2) when 6* > 0 (tension), variant (1)
when o* <0 (compression). Given uniaxial tension, Ms should rise with o* if R >-1, and
fall if R < -1. Given uniaxial compression, Mg should increase with 6* when R < 1, de-
crease when R > 1. Given hydrostatic stress, M increases with o* if R is positive, de-
creases if R is negative; that is, a hydrostatic tension promotes a transformation that in-
creases volume while a hydrostétic compression promotes a transformation that decreases
it.

These relations are illustrated by the data shown in Figure 5.6, which plots the
value of AGy needed to initiate the simulated &ansformaﬁon in a constrained solid as a

function of the applied load. The simulations tested the three load geometries for two
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different transformation strains: a pure shear, R = 0 (Figure 5.6(a)) and a positive volume
change, R =022 (Figure 5.6(b)). When the transformation is a purev shear, hydrostatic
stress has no effect, while a uniaxial load raises AG,, by the same amount whether the load
is tensile or compressive. The only difference is that uniaxial tension nucleates variant (2)
while uniaxial compression nucleates variant (1). When R = 0.22 a hydrostatic pressure
lowers Mg (AGy) while a uniaxial load raises it. However, note the asymmetry between
tensile and compressive loading. A uniaxial tension induces a hydrostatic tension that
promotes the transformation while a uniaxial compression induces a hydrostatic
compression that opposes it. Hence the uniaxial tension is more effective in raising M.
The behavior shown in Figure 5.6(b) is hke that found experimentally by Patel and Cohen
[21]. | |

Note also that a sufficiently large and favorable stress initiates the transformation at
a positive value of AGy, which corresponds to Mg > T, the equilibrium transformation
temperature. This corresponds the situation where the applied stress is so large that it
provides an amount of negative free energy change which not only overcomes the positive
frée energy change caused by the martensitic transformation but also balance out the

positive chemical energy change.

5.3.2. The Influence of External Stress on the Microstructure and the TT Curve

Computer simulated transformations were done and studied for all the cases in-
cluded in Figure 5.6, that is, for a range of loads in uniaxial tension, compression and
hydrostatic stress, using both pure shear (R = 0) and dilational (R = 0.22) transformation
strains.

Hydrostatic stress is relatively uninteresting. Since a hydrostatic stress affects both
variants in the same way, it only affects the Mg; it does not change the microstructure, .and

simply shifts the TT curve to higher temperature. In contrast, uniaxial stresses bias the
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- transformation towards a particular variant, and have profound qualitative effects. These
are revealed in the sequence of simulations that modeled a transformation with R = 0.2
under uniaxial tension. In these simulations the transformation was done within a 41x41
array embedded in a 101x101 array, which should be large enough to eliminate the depen-
dence of the constraint on the array size (Figure 5.2).

Figure 5.7 is a plot of the fraction transformcd as a function of the driving force
(AGy) for loads that vary from 6* =0 to 6* = 1.2. The data have three features that are
particularly striking. First, the TT curve spreads monotonically as the load is increased
from o* =0 to o* = 0.8. The spread results primarily from an increase in Mg; there is very
little change in Ms. Second, the behavior near M is almost identical for o* 2 0.4. Third,
the shape of the TT curve becomes independent of the load }whcn o* 2 1.0. The ap-
pearance of the curves suggests that there is a characteristic "low-stress"” behavior that is
exemplified by the behavior at 6* = 0.2 and a characteristic "high-stress" behavior that
appears clearly at 6* = 1.0. As the load is increased from 0.2 to 1.0, an increasing fraction
of the transformation exhibits "high-stress" characteristics.

To see why this is the case, and understand the microstructures that develop, it is
useful to begin by examining the low- and high-stress limits. The stress-free transforma-
tion (o* = 0) for R = 0.2 was discussed earlier in the paper. The TT curve contains an ini-
tial step that is due to the growth of the initial, single-variant plate across the array (this ini-
tial step appears at all values of the stress). It goes to completion when the driving force is
sufficient to nucleate the thickening of the initial plate. It contains equal fractions of the two
variants, which appear in parallel bands along (11). The microstructure at almost complete
transformation is shown in Figure 5.5(a). The alternation of the two variants largely
cancels the shear developed during the transformation; only the dilation distorts the matrix.
When R = 0.2 the shear is more important than the dilation, and its cancellation allows the

transformation to proceed to completion relatively easily.
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A high-stress uniaxial iension changes the behavior in two ways. First, a uniaxial
stress in the y-direction significantly lowers the free energy required to form a particle of
variant (2) (Eq. (16)), so the Mg temperature rises significantly. Second, the stress raises
the free energy required to form variant (1). In the high-stress limit this variant does not
form at all; the final microstructure contains only variant (2). However, the absence of
variant (1) means that the shear component of the transformation strain is not compensated.
It accumulates in the matrix, producing a back-stress that opposes the transformation and
requires an increasing driving force to sustain it. The accurnulation of the uncompensated
shear strain is responsible for the large spread in the TT curve in the high-stress limit.
Once the high-stress limit has been reached (at 6* = 1.0 in this case), the transformation
path becomes independent of the stress. The shape of the curve is fixed; it is simply trans-
lated to higher temperatures as 6* increases.

While the final microstructure in the high-stress limit is uninteresting, there are
many metastable intermediate microstructures. The pattern is illustrated in Figure 5.8. In
the first stage of the transformation a plate of variant (2) nucleates, grows across the array,
and thickens to create the metastable microstructure shown in Figure 5.8(a). The preferred
habit of variant (2) is (34), so the plate is tilted slightly with respect to (11). In the next
stage of growth the plate thickens further, but because of the increasing resistance of the

‘matrix the driving force must be almost continuously increased. The thickening stage ends
at point (b) on the transformation curve (Figure 5.8(d)). At this point a second plate of
variant (2) nucleates and grows in a direction that is almost perpendicular to the original
plate, creating the microstructure shown in Figure 5.8(b) at point (c) on the transformation
curve. The crossing plate forms because its aggregate strain partly compensates the shear
of the original plate. As the transformation continues the crossed plates thicken and the
region between them is gradually filled with particles of variant (2). A late-stage metastable

microstructure is shown in Figure 5.8(c). The transformation is opposed by the -
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accumulating strain in the matrix, and the thermodynamic driving force must be
continuously increased to sustain it.

At intermediate values of the stress the transformation begins in the high-stress pat-
tern, but changes to one that more closely resembles the low-stress pattern. The reason is
that the back-stress that develops with the accumulated strain eventually becomes sufficient |
to overcome the bias toward the favored martensite variant. At this point the second variant »
appears, and the two variants alternate for the remainder of the transformation. The se-
quence is illustrated by the transformation at o* = 0.4 (Figure 5.9). The first stages of the
transformation are just like those in the high-stress limit. A plate of variant (2) grows
spontaheously on a plane near (34) and thickens until it reaches the metastable configura-
- tion shown in Figure 5.9(a). If the driving force is steadily increased (Figure 5.9(h)) the

plate thickens until it reaches the metastable configuration shown in Figure 5.9(b). At this
point a plate of variant (1) nucleates along the side of the original plate (Figure 5.9(c)).
Since the preferred habit of variant (1) is (43) rather than (34), the variant (1) platev
branches slightly away to leave a band of m&ansformed material aiong the interface. With
a further increase in driving force parallel plates with alternating variants form to produce
the microstructure in Figure 5.9(d). Additional driving force leads to the formation of a
crossing plate that is a composite of the two variants, as shown in Figure 5.9(¢). At this
point almost 80% of the sample has uaﬁsfonned. The remaining transformation mquﬁes a
continual increase in the driving force, and passes through metastable configurations like
that shown in Figure 5.9(f). Note the untransformed material along the variant interfaces,
which is due to the fact that the two variants prefer slightly different habits. The final
“microstructure, below My, is shown in Figure 5.9(g). It contains parallel plates of the two -
variants along (11). The last material to transform removes all signs of the relative tilt
between the two variants that appears in Figures 5.9(c) through 5.9(f). The final
microstructure contains a preponderance of the preferred variant (2), which is = 73% by

area. Most of the excess is due to the thick plate of variant (2) which formed at the be-
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ginning of the transformation. By the time the second variant forms, the accumulated shear
strain has overcome the preference for variant (2); the two variants are almost equally rep-
resented in the subsequent transformation.

Figure 5.10 shows selected metastable configurations from the transformation at ¢*
= (.6. Since the applied stress is higher than in the example shown in Figure'5.9, we
expect the transformation to proceed further along' the high-stress path before the second
variant intrudes. This happens. While the second variant appears in the metastable |
configuration at point (c) on the transformation curve in Figure 5.9(h) (¢* = 0.4), only one
variant is present at the equivalent point at 6* = 0.6 (Figure 5.10(b)). The transformation
follows the high-stress path to point (c) by nucleating a crossing plate of the same variant.
However, the second variant does appear in the transition from points (b) to (c) on the
transformation curve (Figure 5.10(c)). By point (c), which corresponds to about 80%
transformation, thé microstructure bears a strohg qualitative resemblance to that found at
the corresponding point of the transformation at 6* = 0.4 (Figure 5.9(c)), and is very
similar in its subsequent behavior. The final microstructure consists of parallel plates on
(11). The microstructure contains about 78% variant (2), ﬁm most of the excess in the
single-variant plates that formed first.

An analysis of the microstructures of samples transformed at intermediate su'esseé _
between o* = 0.2 and 6* = 0.8 shows that the unfavored variant appears at almost identical
values of AGy, between -0.54 and -0.69Eq. The transformation behavior at values of AGy
below this range, specifically including the value of My, is almost independent of the load.
These phehornena reflect the fact that the unfavored variant forms only after accumulated
strain has overcome the bias against it from the external stress. The subsequent behavior is
similar because the two variants are equally favored for the remainder of the transforma-

tion.

48



5.3.3. Transformation under Cyclic Load |

To study the influence of a cyclic load on the extent of martensitic transformation
and the resulting microstructure we again assumed a transformation strain of R = 0.2, set
AGy at -0.265Eq, and imposed a uniaxial stress that was cycled in one of two saw-tooth
patterns: between 6* = 0.5 and o* = -0.5, and between o* = 0.5 and o* = 0. The load
was raised and lowered in equal increments that were varied from 1/4 to 1/10 of the
maximum. The results were insensitive to the value of the increment.

Raising the load from 6* = 0 to o* = (.5 causes a stress-induced transformation
that creates the thick band of variant (2) martensite shown in Figure 5.11(a), which is
almost identical to Figure 5.8(a). The fraction transformed is = 30%. However, de-
creasing the load causes additional transformation; a decrease to o* = 0 produces the bands
of variant (1) shown in Figure 5.11(b), and these bands grow significantly wﬁen the load
is further decreased to o* = -0.5 (Figure 5.11(c)). Still more martensite forms if the cycle
is repeated. The microstructure asymptotes to that shown in Figure 5.11(d) after several
cycles. The final mértensite fraction is 94%, more than three times the amount formed in
the original excursion to ¢* = (.5.

A similar result is obtained when the cycle is confined to the range 0 < 6* < 0.5.
The asymptotic fraction of martensite is 64%, which is less than in the fully reversed cycle,
but is still more than twice the fraction formed under a monotonic load of ¢* = 0.5.

The reason that cyclic loads promote the transformation is apparent from the mi-
crostructures shown in Figure 5.11. Loading the body to ¢* = 0.5 creates a variant (2)
plate that is compaﬁble with the temperature and the external load. Since the martensite
transformation cannot be reversed, the body is subjected to a residual stress when the -
tensile load is relaxed. The residual stress is sufficient to induce the formation of a
significant amount of variant (1), which removes part of its shear component.

Subsequently loading the body to o* = -0.5 induces further transformation to variant (1),
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which is favored by the compressive stress. When the load is removed, this creates an
unbalanced internal stress that promotes the formation of variant (2). The transformation
continues on further cycling until the only untransformed elements that are left are so highly
loaded by the accumulated internal stress that neither maximum load is sufficient to trigger
their transformation. Experimental observations of martensitic transformation at the tip of a

growing fatigue crack [22] suggcst that this me:chanism is pertinent to many systems.
5.4. Discussion and Conclusion

The model assumes an athermal, irreversible martensite transformation that has a
dyadic transformation strain and occurs in a crystal that is embedded in an untransformed
body. It neglects interfacial tension and the difference between the elastic constants of the

' martensite and the matrix. The results illustrate the influence of the constraint and the im-
posed stress on the microstructure and the thermal resistance to the transformation (AM =
Ms - My).

The matrix constraint causes complex, multivariant microstructures and separates
M; and My. The reason is that the constraint prevents relaxation of the transformation strain
at the crystal boundary. The shear strain is relaxed by introducing multiple variants that
compensate one another. However, the compensation is incomplete, so the thermal resis-
tance to the transformation increases. The dilational part of the transformation has two ef-
fects. It changes the habits of the martensite variants and produces interesting microstruc-
tures, such as "butterﬂy martensite” in partially transformed crystals. It also increases AM
since it produces a hydrostatic stress that cannot be compensated by introducing other vari-
ants.

The applied stress can be divided into its hydrostatic and deviatoric components.
The hydrostatic component affects all variants the same. If the transformation strain is
partly dilational, a hydrostatic stress changes Mg without altering the microstn_xcturé or the
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thermal.resistance (AM). The deviatoric sﬁess couples to the shear part of the transforma-
tion strain, and, hence, changes the relative energies of the variants. This increases Mg for
transformation to the favored variant and produces a microstructure that is rich in the fa-
vored variant. It also increases Mg-M, since single-variant transformations must be sus-
tained against an accumulating, uncompensated shear. The transformation can be regarded
as a mixture of a high-stress, single-variant mode and a low-stress, multivariant mode.
The former dominates the early stages of the transformation. The latter becomes dominant
in the late stages of the transformation, since the accumulating internal shear eventually
eliminates the energy difference between the two variants. The thermal resistance (AM)
increases with the magnitude of the deviatoric stress until the high-stress limit is reached
and only one variant appears. The microstructure is most complex at intermediate stress
where both variants develop in a complex internal stress field. |

When the applied stress is cyclic the crystal undergoes a progressive transformation
during successive stress cycles; a high fraction is transformed even when the peak stress is
relatively low. The reason is that the martensite that has already formed becomes a source

of intense internal stress when the stress is reversed, promoting further transformation.
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CHAPTER 6

COMPUTER SIMULATION OF REVERSIBLE MARTENSITIC
TRANSFORMATIONS _ |
-- PART I: THERMAL HYSTERESIS AND THERMOELASTICITY

6.1. Introduction

In Chapter 4 and Chapter 5, the linear elastic theory was used to construct a
computer simulation model for martensitic transformations in simple solids. The model
helps to show how the elastic energy that develops during the transformation controls the
microstructure and determines the thermal resistance to the transformation, which is
measured by the difference (AM) between the martensite start and finish temperatures (M
- and My). For simplicity, the transformation was assumed irreversible; once an element of
martensite formed, it could neither revert to the parent phase nor change its crystallographic

variant.

While it is often reasonable to assume irreversibility in the treatment of a martensitic
transformation during continuous cooling, the transformation can always be reversed by
heating, and, in many cases, it can also be reversed by an applied stress. The
characteristics of the reverse martensite transformation are both scientiﬁcallyihtcresting and
technologically important. They govern the thermal hysteresis of the reverse
transformation on heating, and are responsible for such phenomena as thermoelasticity,
pseudoelasticity, and the shape memory effect. They may also influence the microstructure
 that results from the transformation. In this and the next chapter, therefore, the computer
simulation model is extended to reversible transformations. The simulations presented in
this chapter are done in the absence of external stress, and the discussion is concerned

primarily with thermoelasticity.
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6.2. Background

6.2.1. Thermal Resistance and Thermal Hysteresis

The thermal resistance to an athermal martensitic transformation affects both the
transformation and its reverse. Experimental observations show that on cooling, the
transformation initiates at a martensite start temperature, M;, and is only completed when
the material is cooled to below the martensite finish temperature, Mf. When the
transformation is reversed by heating, reversion begins at a temperature Ag = Mg, and is
completed at the temperature Af 2> MS. In practice, Ag > Mf and Af > M, so there is a
thermal hysteresis associated with the reverse transformation.

Two generic mechanisms contribute to themial resistance: elastic strain due to the

. misfit between the parent and product phases, and frictional resistance. The elastic strain
that accumulates as the transformation proceeds oppbses its continuation and promotes
reversion, since the elastic energy stored into the system can be the part of driving force for
reverse transformation if the reversion does happen. However, the elastic strain can be
relaxed in either of two ways: by displacement at free surfaces, and by plastic deformation
within the crystal. Relaxation of the elastic strain reduces the thermal resistance of the
transformation. On the other hand, relaxation of the elastic strain may increase thermal
resistance if it increases the value of frictional resistance, that is, if the elastic energy
-changes its‘ form into irreversible energy. The frictional resistance opposes the
transformation in either direction (though the frictional resistance to the forward and reverse
transformations will, generally, differ). There are three possible sources of friction:
activation barriers that restrict the mobility of the martensite-matrix interface, nucleation
barriers that oppose the formation of new particles, and dissipative processes, such as a

plastic deformation of the matrix.
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The computer simulation results presented in Chapter 5 show that the thermal
resistance is also affected by the boundary conditions under which the transformation takes
place. When the transformation occurs under the unconstraihed condition, the Mg and M¢
temperature are essentially the same and the TT curve is a vertical line. When the
transforming body is constrained by its surroundings, the transformation stops after a
fraction of the body has transformed and continues only when temperature is further
reduced. The thermal resistance of the reverse transformation and thermal hysteresis must .
also be influenced by the boundary conditions, since the unconstrained body and the
constrained body have different elastic strain conditions after the transformations are
completé. As will be discussed later, the final strain condition determines the
characteristics of reverse transformation, and therefore, determines whether or not the

transformation is thermoelastic.

6.2.2. Thermoclasticity and Reversible Transformations

Thermoelastic martensite was originally defined to describe "thermoelastic
equilibrium" achieved during a martensitic transformation in which the chemical driving
force is balanced by the elastic resistance. At the thermoelastic equilibrium, the

 transformation stops, leaving the material in a partially lransformed condition. A decrease
in temperature leads to the growth of the martensite, and an increase in temperature leads to
the shrinkage of the martensite - a reverse transformation. The elastic energy stored into
the system is the part of driving force for the reverse transformation when the
transformation temperatxfre is above the chemical equilibrium temperatﬁrc,’ To, of two
phases (when martensite is low temperature phase), and is the only source of driving force
for the reverse transformation when the transformation temperature is below the To.

Thermoelastic martensite was first documented by Kurdjumov and Khandros [23]

in 1949 shortly after Kurdjumov [24] predicted it. Since then, thermoelastic martensitic
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transformations have been observed and studied in many alloys. Among them, noble-
metai based alloys such as Au-Cd, Ag-Cd, Cu-Zn, Cu-Zn-Al and Cu-Al-Ni have been
- studied most intensively. Thermoelésticity in the martensitic transformation of an iron-
based alloy was first reported by Dunne and Wayman {25] in 1973 for an ordered Fe-Pt
alloy with a composition near Fe3Pt. Materials that are experimentally recognized as
thermoelastic haye relatively small temperature hysteresis; the Mg and Af temperatures are
close to one anothér. Moreover, the transformation path is approximately reversible; the
last martensite particle to form tends to be the first to disappear.

The reverse transformation in thermoelastic martensite is differenf from the
traditional reverse transformation in which the high-temperature phase must be nucleated if
the transformation is reversed by heating. Systems that exhibit this behavior are called
non-thermoelastic. In this case there is no residual elastic strain to assist the reverse
transformation since the transformation strain is fully relaxed by freé surface or plastic
deformation. Most Fe-based alloys are of this type; transformations in these materials tend
to have relatively large temperature hysteresis (Af >> M) and transformation paths that do

not reverse.

6.2.3. The Problems to be Solved

In the study of thermoelastic martensitic transformations, the experimental
observations have left many problems which are still unsolved, and have generated

considerable discussion in the literature.

A. The origin of thermal hysteresis

The thermal hysteresis (or temperature hysteresis) exists in thermoelastic

transformations although it is relatively small compared with that in non-thermoelastic
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transformations. | Energy dissipation is observed during the thermal cycle of the
transformation and reversion. The origin of/ the thermal hysteresis as well as its related
dissipating effect has not been fully established. A number of investigators, including
Deng and Ansell [26], believe that the primary cause of thermal hysteresis is the frictional
resistance to the motion of martensite boundaries. The mechanisms of the frictional
resistance are associated with the movements of interphase, interplate and twin boundaries,
as reviewed by Krishnan, et al.[27]. Further, Ortin and Planes pointed out [28] that the
thermal hysteresis 1s due to not only the frictional resistance to the motion of martensite
boundaries but also due to other kinds of irreversible energy changes, such as interfacial
energy and the effect of plastic accommodation. However, Olson and Cohen [29] argued
that there will be a small residual hysteresis even in the absence of frictional effects. They
concluded that the martensitic nucleation and initial growth as well as the final reversion
occur away from the thermoelastic equilibrium. In a recent symposium, Ortin and Planes
[30] pointed out that the accommodation of elastic strain energy by forming different
variants of martensite particles should be considered as a contribution to ihe thermal
hysteresis and energy dissipation in thermally-indﬁced transformations. But so far no

theoretical analysis or experimental work has been doné to clarify the issue.

B. Relations between the characteristic temperatures

This problem concerns the lbcation of the Mg, My, Ag and Ag terhperamres with
respect to the equilibrium temperature, T, the temperature at which AGE’>M = (), where
AGE'>M is the chemical free energy change for the martensitic transformation. If the
transformation is ideally non-thermoelastic and the nucleation barriers opposing the
- forward énd reverse transformations are approximately the same, then Ag> T > Mg, and

To should be approximately bracketed by the two temperatures:
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To= 5 (Ms + A9 6.1)

Kauffman and Cohen [31] have shown that this relation holds for many Fe-based alloys.
On the other hand, thermoelastic effects tend to depress Ag and Af with respect to Tp.
Dunne and Wayman [25] noted that Ag may fall below M, and divided thermoelastic
transformations into two classes: Class I ( Ag> M), and Class IT (Mg > Ag). However, it
is not clear whether this classification is mechanistically meaningful. In their effort to solve
the contradiction between Eq. (6.1) and Class II thermoelastic transformation in which Mg
> As, Tong and Wayman [32] defined another characteristic temperature, T;), at which
AG:;‘/I'>P + AGKI;::I'>P =0 where AGZVDP and AG¥'>P are the chemical free energy change
and non-chemical free energy change for the reverse martensitic transformation

respectively, and proposed the following relations:

Ar>To> Mg (6.2)
and

AS§T6>Mf (63)

for both Class I and Class II transformations. In Tong and Wayman's analysis, the Eqs.
(6.2) and (6.3) were obtained by neglecﬁng the influence of elastic strain energy on the
formation of a first isolated plate at Mg and its reversion at Af. They concluded that, in any
éase, Ag>To. On the other hand, Olson and Cohen {29,33] argued that As lies below T in
an ideal thermoelastic transformation; their argument is trivially correct if there is no thermal

hysteresis since, in this case, Af =Mz < Tp.
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C." Reversibility of the transformation path

Duhne and Wayman [25] and Tong and Wayman [32] have published sequential
metallographic analyses of the growth and shrinkage of martensite plates during
thermoelastic transformations. Their photographs (see particularly Figure 2 of reference
[25]) illustrate a transformation path that is very nearly reversed; nonetheless, there are

noticeable differences between the paths taken on heating and on cpoling. During cooling,
| the thickening of the first few martensite plates is favored more than the nucleation and
growth of the other plates. While during heating, all plates thin and shrink at roughly the
same speed and the thickness of these plates is more uniform. It is not clear whether these
differences are natural features of thermoelastic martensite, or whether they necessarily |
reflect deviations from ideality. No attention has been paid to the path differences among
the investigations of thermoelastic martensitic transformations, and it has been widely
accepted that the reversible transformation path is a characteristic of the thermoelastic‘
transformation. The reason is probably due to the small thermal hysteresis observed in the
most thermoelastic transformations. Questions that arise from this issue are: (1) What is
the thermodynamic criterion of the path differences? (2) What is the relationship between
the thermal hysteresis and the reversibility of the transformation paths taken on heating and
on cooling? For example, if the transformation and reverse paths are exactly reversed, will
thermal hysteresis still exist?

The above three problems are representativé of the unahswered questions in the
study of thermoelastic martensitic transformation. The bottom line of these qucstions‘ is:
what are the characteristics of thermoelasticity? The other features which are traditionally
considered as the characteristics of thermoelasticity are: a small chemical driving force, a
small transformation shape deformation, a matrix with a high flow stress, and no burst or

spontaneous transformations, etc. It is apparent that understanding of the mechanism of
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thermal hysteresis is the key to the other features, and therefore it will be the one on which

our discussion concentrates in this chapter.

6.2.4. The Approach of Present Chapter

In this chapter, the computer simulation model and the procedure developed for the
reverse transformation (described in Chépter 3) are used to study the thermal hysteresis and
the reversibility of the transformation path during martensitic transformations, as well as
the effects of the relaxation of the elastic strain by plastic deformation, the reversibility of |
the elastic strain energy, and frictional resistance. The simulations are dbne in two-
dimensional space, and the transformation suaiﬁs used are dyadic. The free energy
changes for the martensitic transformation and reversion are shown in Egs. (3.17) and

(3.18), provided that the changes caused by external stresses are omitted:
AG(T, p,R) = VAGH(T) + ff AGe(p,R) + AG; 6.4)
AG'(T, pR) = vAG (T)+ f; AG,(p.R) + AG, (6.5)

Martensitic transformations under both unconstrained and constrained conditions
are simulated. To simulate the transformation under the constraint imposed by an
untransformed matrix, the transformation is confined to an array of 41 x 41 cellsina 101 X
101 grid that is repeated periodically. To simulate the transformation under the
unconstrained condition, the transformation occurs in an array of 41 x 41 cells which is the
same size as the array of the grid. The transformation is initiated from a single seed in the
center of the array. The simulation is then specified by five variables: the dilation ratio, R,

which has a value of 0.2 - 0.25, the relaxation factor, ff (0 < ff < 1), the reversibility factor
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fr (0 <f; £ 1), the transformation and reverse frictional resistance, AG; and AG;, which
can have any value. |

The model used here is simple and is idealized, but does permit a reasonably
accurate treatment of the elastic energy developed during the transformation and a clean
separation between the effects of elastic resistance, relaxation and reversibility of elastic
strain, frictional resistance and geometric constraint on thermal hysteresis and on the
reversibility of the transformation path. Therefore, the results of the computer simulation
may provide some physicalb insights to the phenomena which are difficult to obtain from

experimental observations.
6.3. Simulation Results and Discussion

In most of the results presented below, the forward transformation (parent phase to
martgnsite) and reverse transformatioxi (martensite to parent phase) compete with one
another at each step, that is, the forward and reverse transformations are reversible at each
step of the thermal cycle. However, for the reference, we first consider how the relaxation
factor, ff, and forward frictional resistance, AG;, influence a transformation that cannot be
reversed, ;hat is, a transformzition in which the reversion of the martensite is not allowed
during cooling. Then the effect of fy is ignored in reversible transformations (i.e., ff is

always equal to 1).

6.3.1. The Influence of Relaxation and Friction on an Irreversible Transformation

In Chapter 5, we studied the microstructure and thermal resistance o_f an irreversible
transformation in a constrained crystal. The change of Gibbs free energy includes the
chemical free energy and elastic energy caused by the martensitic transformation only (Eq.

(3.11)), and the effects of fr and AG; were not considered (ff = 1, AGy = 0).‘ When the
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transformation strain is a pure shear (R = () , the microstructure is simple: the bands of two
martensite variants alternate along (11) planes, which are the preferred habit planes for this
value of R. When the dilation in the transformation strain is non-zero (R #0), however,
the p;-eferred habits of the two variants rotate in opposite directions from (11), with the
consequence that the crystal develops complex t§vo-variant patterns, described as
"butterflies" and "crosses", in fhe early stages of the transformation. Since the
transformation is irreversible, these patterns are retained. Subseéuent martensite particles
fill a matrix that is perturbed by these patterns, with the consequence that the final
microstructure is a complex, two-variant mixture (not well arranged twinned bands) with a
relatively high elastic energy. Figure 6.1 is the seQuence (or path) of the irreversible:
transformation with R = 0.25. The chemical driving force, IAGy! must Be raised
significantly to completé the transformation, so the thermal resistance, AM = M¢- Mg
increase monotonically with the magnitude of R (Figure 5.4).

When the relaxation factor, f, and the frictional resistance, AG;, are included in the
Gibb's free energy, the simulation results show that, for irreversible transformations, the
sequence of tr.ﬁnsfonnation is fixed by the Qa]ue of R; it is not changed by ff or AG;.
However, the difficulty of accomplishing each transformation step is affected. Increasing
AG; simply translates the TT curve to lower térnperatures; M; and My are lowered by the
same amount. Decreasing ff raises both Mg and Mg, but has a much stronger effect on Mg,
and narrows the TT curve. The reason is that, as fy decreases, less elastic strain is
accumulated to oppose the transformation. Figure 6.2 illustrates the effect of fron TT

curves.

6.3.2. Reversible Transformation of a Constrained Crystal during Cooling

The possibility of martensite reversion during cooling should simplify the

microstructure (shown, for example, in Figure 6.1) and decrease the thermal resistance,
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since it creates the additional freedom tb reduce the elastic energy and to eliminate
undesirable configurations that form during the forward uénsformation.

First, let us consider the reversible transformation with f = fy = 1 and AG; = AG;
= 0. Figure 6.3 illustrates the growth of the martensite on cooling when R =0.25. A thin
plate first grows out from the seed at the center. Note a particle of variant (2) seen in Figure
6.3(a) and 6.3(b) disappears in t_he configuration shown in Figure 6.3(c), and the satellite
plates that grow perpendicularly out in Figure 6.3 (e) and 6.3(f) revert to the parent phase
and then transform to the particles of the opposite variant. The final microstructure consists
of alternating, parallel plates of the two martensite variants, in contrast to the éomplex
microstructure that develops in the irreversible case (Figure 6.1). Figure 6.4 compares thé
TT curves for the two cases. The value of Mg is the same (the transformation cannot be
reversed until it has begun), but the value of Mg is much higher in the reversible case; the
thermal resistance to the transformation is significantly lower. |

The influence of the reversible transformation during cooling decreases as R
becomes smaller, and almost disappears for R <(0.2. In this case the rotation of the habits
is not obvious (see Chapter 5), and the irreversible transformation generates a simple

‘microstructure of parallel plates, so there is little need for the reverse transformation.

The reversible transformatioq during cooling becomes less important as the
reversibility factor, f;, decreases or the reverse frictional resistance, AG;, increases. When
fr < 0.5, the reverse transformation bécomes ineffective in relieving the accumuiated elastic
strain. When AG'r becomes large (AG; 2 2.0 in the dimensionless form used here), the
reverse transformation does not occur to any significant degree.

It is interesting to note that the reverse transformation also becomes unimportant
when there is a large frictional resistance, AGy, to the forward transformation. This effect
is illus&ated in Figure 6.5, which compares the TT curves during cooling for three values
of the forward frictional resistance, given ff=f; =1 and AG; =0. Increasing the frictional

resistance to the forward transformation, AGy, not only decreases Mg, but also increases
62 ‘



the thermal resistance, AM = Mg - My, until it approaches the value of the irreversible
transformation. The reason is that, as AG; is increased, the chemical driving force, IAG,,
for the martensitic transformation must also be increased to bring it about. The chemical
driving force opposes the reverse transformation. As AG; increases the reverse
transfdrmation becomes more and more difficult until, eventually, the transformation

becomes effectively irreversible.
6.3.3. Reverse Transformation of a Constrained Crystal during Heating

A. Reverse transformation with full reversibility of elastic energy

| Assume that a constrained crystal has been cooled to below Mg to complete the
martensitic transformation. Let it then be heated to reverse the transformation. Let us first
consider the reversion in the absenéc of the relaxation of elastic energy and frictional
resistance (fr=f; =1, AG; = AG; =A0). As an example, we use the case illustrated in
Figure 6.3. The microstruéturc before reversion is shown in Figure 6.3(h). Figure 6.6(a)
to Figure 6.6(h) show the development of the transformation as the sample is heated.
Comparing with Figure 6.3(a) to Figufe 6.3(g), one can easily see that the transformation
path is not the reverse of that followed on cooling.

Figure 6.6(a) is taken near the beginning of the reverse transformation, and has the
same number of martensite particles as in Figure 6.3(g). The two configurations are not
exéctly the same, but they are very similar. The elementary cells that transformed last
during cooling have very high elastic energy, and revert most easily when the sample is

‘heated. As temperature is ihcreased, however, the pattern of the reverse transformation
| diverges from that taken during cooling. Comparing Figure 6(b), 6(c) ahd 6(d) with
- Figure 6.3(f), 6.3(¢) and 6.3(d) reveals the qualitative difference in the pattern. During

cooling, the crystal transforms by the sequential growth of martensite plates, while during
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heating many plates thin simultaneously. .Figure 6.6(e) to 6.6(h) show the completion of
the reverse transformation through the shrinkage of the last two plates. The plate that
reverses last (Figure 6.6(h)) is the plate that tfansfoﬁned first on cooling (Figure 6.3(a))
although its shrinkage is not exactly the reverse of its growth.

The reason for the path difference during cooling and heating in the simulation is
.straightforward, and is due to the fact that many distinct plates form during the forward
transformation which takes place in a constrained crystal. The criterion of the
transformation or reversion used in the simulation is the minimum energy path.. The
minimum energy path selects the parent cell to transform which introduces the minimum
elastic energy increase during cooling; it selects the martensite particle to reverse which
causes maximum elastic energy reduction during heating. If we ignore the last stages of
the transformation, which are nearly reversible, the forward transformation occurs through
plate growth aﬁd thickening into the matrix. New plates nucleate and grow to compensate
the matrix strain from the plates that have already formed (see Chapter 5). As a
consequence, the plate interiors in the fully transformed microstructure have relatively low
elastic energy; the high-energy sites are along the boundaries where plafes impinge on one
another. When the transforr'nation‘ is reversed during heating, these high-energy sites
transform first, and all plates thin and shrink almost simultaneously, resulting in a very
different path from the forward path. The two paths resemble one another only at the
beginning and the énd. The first few cells to reverse are  the last to form, since these have
very high elastic energy. The last cells to reverse are the first to form; when there is only
onc.plate left to be transformed, the energetics of the forward and reverse transformations
are nearly the same. If the seed is irreversible, the particle which reverses last is usually the
one which transformed first and is adjacent to the seed. When the seed is allowed to
reverse, the particlé which reverses last is not necessarily the one that is adjacent to the
seed. But the plate which disappears last is still one which forms first because of its largest

size. In reality, seeds of martensite are pre-existing defects and are normally irreversible.
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Figure 6.7 is the TT curve of the reversible transformation for both cooling and
heating processes. There are three important features of this curve: (1) the existence of a
hysteresis, (2) the position of Ag, above Mg, and (3) the position of Ag, below Tg (where
AGy =0). The essential coincidence of Ag and Mg is due to the fact that the last particle
transforms when the temperature is just sufficiently low to make its total free energy
negative. Since, in the absence of elastic relaxation, the reversion 6f this particle recovers
the elastic energy needed to form it, the free energy for the reverse reaction becomes
negative when the temperature is raised incrementally above Mg. The TT éurve of heating
cannot be the same as that of cooling, because the paths of the forward and reverse
transformations are not exactly reversed, and the elastic energy changes of the
transformation and reversion are different. The elastic relaxation must contribute to the
hysteresis, as it does to the irreversible transformation path. More detailed discussions
about fundamental reason of the hysteresis in the TT curve and the position of T relative to

- Arwill appear in the discussion section.

B. The influence of reversibility and reverse frictional resistance

When the reversibility factor, fy, is less than 1, Ag is raised above My and the
fhermal hysteresis is increased. The effect is illustrated in Figure 6.8, which compares thé
TT curves for four values of the reversibility factor. The reason for this behavior is
straightforward. As f; decreases, less elastic energy is available to drive the reverse
transformation. In the limit f; = 0, no elastic energy is recovered; the transformation is
driven éntirely by the chemical energy, and, in the absence of frictional resistance, occurs at
To. |

Figure 6.9(a) through Figure 6.9(h) show the sequence of the reverse
transformation during heating when the reversibility, fr, is 0.2. The reversibility factor, fr,

affects the reverse transformation during cooling, therefore, the microstructural evolution
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and the final martensite configuration at the transformation completion temperature, Mg, are
different from those obtained when fr =1. As a consequence, the microstructural evolution
Shown in Figure 6.9 is not the same as that shown in Figure 6.6. But one characteristic is
preserved: all martensite plates thin and shrink almost simultaneously, starting from the
boundaries of the martensite plates.

When the revérse frictional resistance, AG;, is not zero, the reverse transformation
become more difficult. The effect is to‘raise Ag and Ay, so the hysteresis is increased. |
Figure 6.10(a) and 6.10(b) compare the TT curves with different values of the reverse
| ﬁ-ictional resistance during heating for two values of the reversibility (fy = 1 and f; = 0.5)

assuming the forward frictional resistance AG; is zero.

The influence of the reversibility and reverse frictiohal resistance is illustrated in
Figure 6.11, which includes plots of Ag and A (in chemical energy unit) as a function of -
AG; for different values of the reversibility factor, f;. The M for the frictionless forward
transformation (AG; =‘O) is also shown in the figure for comparison. Ag and Af change
almost linearly with AG;. The rei'ersibility of the elastic energy has dramatic effects on Ag
but very little influence bn Af. As shown in Figure 6.11(a), Ag can be below or above Mg,
and below or above Ty, depending on the reversibility and the value of reverse frictional
resistance. As discussed above, frictional resistance to the forward transformation

decreases M and M, and, hence, also affects the relative positions of Ag, Mg and To.

Table 6.1. The effects of reversibility and transformation resistance on

Mg, Mg, Ag and Ag temperatures
Variables M Mg As Ar
fr l N l T )
AGr T i l / /
AGY T N l T 7

T --increase, | -- decrease, N -- no effect, / -- no direct effect



Table 6.1 summarizes the effects of the reversibility of elastic energy (f;), and
forward and reverse frictional resistance on the characteristic temperatures, Mg, Mg, Agand

Af,

6.3.4. Interrupted Transformations of a Constrained Crystal

To study the reverse transformation of a partially transformed microstructure,
simulations were done in which the temperature was decreased to Tj, where Mg > T] > Mg,
and then increased until the martensite was completely reversed to the parent phase. To
study the effect of partially reversed transformations, the temperature was decreased to T,
then increased to Tp, where Af > Th > T}, and then decreased again until the martensite
transformation is complete. Let T, denotes the temperature where the reverse
transformation starts during heating from T}, and Tp denotes the temperature where the
forward transformation starts during cooling from Th.

Figure 6.12 includes TT curves for partial transformed cycles for three
combinations of the reversibility and the values of forward and reverse frictional resistance.
Note that the reverse transformation of a sample cooled to T} completes at Ag, whatever the
value of T} is. The reason is that the last plate to reverse is always the same, so the last
stage of the reverse transformation is independent of T;. The temperature, T,, where the
revcrsioh begins is always above As. Thése results reproduce experimental observations
on thermoelastic alloys [39]. If Agis below Mg (Figure 6.12(a)), when T is above the Ag,
the reversion starts as soon as heating begins. After a small amount of reversion, the TT
curve merges into the TT curve for the reversion of fully transformed materials, and
overlaps with it at all higher temperatures.

Figure 6.13 compares TT curves of samples that are partially transformed by
- cooling to T}, heating to Ty, (which must be greater that Ta to initiate reversion), and then

cooled to complete the martensitic transformation. The effect depends on the extent of
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reversion, that is, on the difference, Th - To. When the extent of reversion is small (< 1%
of the transformed particles), there is little or no effect on the transformation path when
' uansformatioﬁ resumes, and there is little or no hysteresis in the TT curve between 'f] and
Th (Figure 6.13(a)). As the extent of reversion increases (for example, the case shown in
Figure 6.13(b) involves about 15% reversion), thermal hysteresis becomes apparent in the
cycle Ty -> Th -> Ty, and the shape of the TT curve between Tj and Mg is also changed.

The final configuration is also affected.

6.3.5. Transformation and Reverse of an Unconstrained Crystal during a Thermal Cycle

The results presented above are obtained from simulation of the transformations of
a constrained crystal. The results from the transformations of an unconstrained crystal are
illustrated in Figure 6.14 through‘ Figure 6.16. For the purpose of comparison, the
configurations in Figﬁre 6.14 and Figure 6.15 are plotted such that the number of cells of
the parent phase (blank) in each configuration of Figure 6.15 is the same as the number of
-mmgnsite particles in each corresponding configuration of Figure 6.14. As shown in
Figure 6.14, the martensitic transformation occurs through the growth of a single plate
from the pre-existing seed, which then thickens to transform the whole crystal. The
feverse transformation, as illustrated in Figure 6.15, is exactly the same: a plate of austenite
grows out from the seed, which is selected at random, and thickens until the parent phase is
restored. The habit of the parent phase in the martensite phase is exactly the same as that of
the martensite phase in the parent phase. (Note the sequences iﬁ Figure 6.14 and Figure
6.15 are not identical, since a martensite particle of variant (2)' appears in the beginning of
transformation (Figure 6.14(a)) and then disappears later because the transformation is
reversible.) The TT curves for the transformation and reversion are illustrated in Figure
6.16. In these results, the growth from the initial seed leads to complete transformation;

the Mg and Mt temperatures are essentially the same, so are the Ag and Af temperatures.
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The frictional resistance, AG; and AG;, which are positive make the transformation and
reversion more difficult, and hence decrease Mg and increase Ag (broaden the hysteresis
loop). If frictional resistance is the same for both transformation and reversion, the
equilibrium temperature, T, lies midway between M and A (Eq.(6.1)) when the effects
of fr and f; are not considered (ff = f; = 1). If AG; is different from AG;, M; and Ag are
asymmetric about T to a degree that is linearly proportional to the difference between AG;
and AG..

Figure 6.17 plots the total energy versus the fraction of martensite during forward
and reverse transformations. It shows that the total elastic energy in the transforming
crystal initially increases, then decreases, and vanishes when the transformation is
complete. The total ela\.sﬁc energy in the final transformed, single variant body is zero since
the martensite is fully relaxed. The change of the total energy during the reverse
transformation is the same as that of the forward transformation, because when a martensite
particle reverses to the parent phase, it causes a elastic strain field which is exactly the same
as that created by a martensite particle in a parent matrix. Since the reverse transformation
starts from a strain-free crystal and the elastic energy is not the part of the driving force for
the reverse transformation, the transformation is non-thermoelastic.

This result has clarified the situations in which the Eq.(6.1) will be satisfied --

| when the transformed martensite phase is fully relaxed and no elastic energy is stored in the
solid, or the elastic energy stored during forward transformation cannot be reversed, and

“the values of frictional resistance for the transformation and reversion are the same.
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6.4. Discussion and Conclusions

6.4.1.. Thermal Hysteresis and Dissipative Effect

The most important result of the simulation) is that the thermal hysteresis exists even
when the elastic energy is fully reversible (no plastic deformation) and the frictional
resistance is absent. Frictional resistance and plastic relaxation can add substantially to the
magnitude of the hysteresis, but they are not the fundamental sources of it. To eliminate
the contribution of the irreversible transformation path to the hysteresis, transformations in
which the reversion of martensite during heating is forced to follow the exactly reversed
path during cooling ("exactly reversed path" in short) were investigated. Thé following are
the results of the investigation.

Consider that the reversibility factor, fr, is 1 and the value of frictional resistance is

zero, then from Eqgs. (6.2) and (6. 3), the criterion for the forward transformation is

AG(T, p,R) = VAGy(T) + AGe(p,R) < 0 | (6.6)
and for the reverse transformation

AG/(T', pR) = VAG(T)+ AG,(.R) <O . (6.7)
: Sin‘ce AG'D(T ) = - AGy(T"), and because of the exactly reversed path, when the volume

fraction of martensite during the reversion is the same as that during the forward

transformation, then

AG,(p.R) = -AGe(pR) . " (6.8)
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therefore, for any given martensite volume fraction, we obtain
-0 AGY(T') < AGe(p,R) < -0AG(T) | 69

Eq. (6.9) clearly tells us that, at each step of the transformation, the elastic energy
increment, AGe(p,R), generated during thé cooling process must be bounded between the
TT curves of cooling and heating. The TT curves are the plots of fraction of mancnsitc‘
versus the negative of the chemical energy change during cooling and heating, -AGy(T) and
—AGy(T"). Figure 6.18 shows the results of the TT curves and AG(p,R) curve from the
simulation using the exactly reversed path. The reverse transformation was not allowed
during cooling to avoid complications in the simulation.

The physical meaning of Eq. (6.9) and Figure 6.18 is very clear. The driving force
must be greater or equal to the transformation resistance for both forward and reverse
transformations. During cooling, the driving force for the forward transformation of a
martensite particle of variant p at location R is -AG(T) = IAGJI‘)I, and the resistance is

AGe(p.R). During heating, the elastic energy AGe(p,R) becomeS the driving force for the
reverse transformation of the martensite particle, and the resistance comes from the
chemical free energy increment -AGy(T"). Therefore, in Figure 6 18 the driving forces are
always on the right side of the resistance.

As shown in Figure 6.18, .the elastic energy increment does not monotonically
increase with the fraction of martensite. Because of that, the transformation is not always
in thermoelastic equilibrium'where VAG(T) + AGe(p,R) = 0. Only when near the
completion of the transformation, does thermoelastic equilibrium hold and the two TT
curves overlap.

These results demonstrate that the thermal hysteresis generated when the
transformation and reversion follow the exactly reversed path is due to non-equilibrium

effects between the chemical driving force and the elastic energy resistance. The size of the
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hysteresis loop, or Ay, is determined by the smallest elastic energy increment, (AGe)mins
during cooling. In other words, the size of the hysteresis is determined by the amount of
the elastic relaxation. The greater the elastic relaxation, the larger the hysteresis. If
(AGe)min > 0, Ag < To; if (AGe)min < 0, A¢ > To. Figure 6.18 is an example of the later
case. _

" If we set T' = T in Eq. (6.9), then the hysteresis disappears when the TT curves for

cooling and heating overlap, and
-1 AGy(T) = AGe(p,R) (6.10)

holds for ahy given martensite fraction. If AGe(p,R) increases monotonically with

martensite fraction, Eq. (6.10) remaihs equal with decreasing T. In the other word, if the

- thermoelastic equilibrium always holds during the forward transformation, no thermal
hysteresis should exists.

Figure 6.19 compares the TT curves from the exactly reversed path and the
minimum energy path. The TT curve during heating from the minimum energy path is in
between the TT curve during cooling and the TT curve during heating from the exactly
reversed path, resulting in a smaller hysteresis loop. This shows that the minimum energy

- path requires a less superheating and is energetically favored. It also indicates that the
thermoelastic equilibrium is only a sufficient condition, not a necessary condition for the
disappearance of the thermal hysteresis. Since the thermal hysteresis from the minimum
energy path is always smaller than that from the exactly reversed path, under the condition
of Eq. (6.10), the minimum energy path is the same as the exactly reversed path, and the
TT curves of both paths overlap.

In general, AGe(p,R) does not always increase monotonically with martensite
fraction, because of the microstructural relaxation of the elastic energy that develops during

the transformation. The elastic relaxation comes from not only the elastic strain
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accommodations of martensite plates of different variants, but also from the interaction of
martensite particles of same variants. To understand this, we need to see how the elastic
energy increment varies with the growth of martensite plates.

Ina éonstrained crystal, as the first thin layer of martensite of the single variant
grows in its length direction the elastic energy increment decreases despite increasing total
elastic energy. This is because when the transformation strain is invariant, the formation of
a thin plate relaxes and minimizes the elastic energy of the system, as it has been shown in
Chapter 4 and Chapter 5. Once the thin layer reaches the constrained boundary and is
forced to thicken, the elastic energy increment increases abruptly, and then decreases again
with the growth of the new layer of martensite. The formation of plates with the second
variant is another source of elastic relaxation. As a consequence, the elastic energy
increment alternates with the increase of martensite volume fraction. On the other hand, the
chemical driving force is constant for every particle that transforms at a given temperature.
The transformation starts at the initial driving force (Ms), and no additional chemical
driving force needs to be added until the point when the accumulated elastic energy in the
system is so large that the elastic energy increment for an additional particle io transform
- exceeds its chemical driving force, that is, a thermoelastic equilibrium is reached. The
transformation continues after the temperature is lowered. The elastic energy increment
again varies with the development of the martensitic transformation, but soon reaches the
thermoelastic equilibrium again because of the substantial amount of elastic energy
accumulated in the system. Temperature must be lowered again in order to allow the
transformation to continue, and the transformation is only completed when Mg is reached.

When thé transformation takes place in an unconstrained crystal, it starts at Mg,and
cdntinues to its completion wfthbut reaching the thermoelastic equilibrium (exception
occurs for some values of the dil.ation ratio, R, where a slight increase of chemical free
energy is needed). As an example, in Figure 6.20, the TT curve is a vertical line (Mg = Mg

or Ag = Ay), and the elastic energy increment alternates between negative and positive
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values when the martensite plate grows and thickens. The peaks of the elastic energy
increment curve which have negative values are where the transformation of a thin layer is
completed; the peaks with positive values are where the thickening of the existing
martensite plate starts by transforming a cell of a new layer z;djacent to the plate.

It is because of the lack of equilibrium between the chemical driviﬁg force and the
elastic energy increment, that there is excess energy which then changes into heat and
dissipates.

The above discussion clarifies that: (1) The essénce of the thermal hysteresis,
which exists even when plastic relaxation and frictional resistance are absent, is the absence
of equilibrium between the chemical driving force and elastic energy resistanée; such non-
equilibrium transformation is due to the elastic relaxation caused by the elastic interaction
between martensite particles of the same or different variants, and is the source of the
energy dissipation. (2) The burst phenomenon in the martensitic transformation, which is
reflected as a vertical segment in TT curves, is a consequence of the hon—equilibrium
transformation. It is not an indication that no elastic energy is involved in the
transformation as claimed by Deng and Ansell {26].

Although thermal hysteresis is observed in the most thermoelastic transformations,
it is not a criterion for a thermoelastic transformation. On the contrary, the existence of
thermal hysteresis indicates that thermoelastic equilibrium does not always exist. For the
convénience in the following discussion, wé define an ideal thermoelastic transformation,
in which the elastic energy is fully reversible (no effect of plastic deformation) and the
frictibnal resistance is abserit; thermoelastic equilibrium is achieved at every step of the
martensitic transformation, so that Ag = Mg, Af = M, and the thermal hysteresis does not

exists.
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6.4.2. The position of Torcla.tivc to Mg, My, Ag, and Af

From the simulation results and the discussion of thermal hysteresis, the answer to
this question is straight forward. When the martensitic transformation leads to a fully
relaxed microstructure, as in the case of the unconstrained transformation of a siﬁgle crystal
or a transformation that is fully relaxed by plastic deformation, then the forward and
reverse transformations should be approximately symmetric abdut the equilibrium
temperature, Tg, which will lie half-way between Mg and Ag (Eq. (6.1)). In a constrained
crystal, the accumulated elastic strain facilitates the reverse transformation. If the
transformation is ideally thermoelastic, Ag = Mr and Af .= Mg; if the transformation is not
ideally thermoelastic, and r;o plastic relaxation or the frictional resistance exist, then Ag =
Mg and Af> Mg, and Ag can be below T or above To depending on the paths of reverse
transformation and the amount of elastic rela#ation, or the minimum elastic energy

“increment generated during cooling. When plastic relaxation and frictional resistance are
important, Ag and Af have no necessary relation to Mg, My and Tg beyond the

thermodynamic requirement that Ag 2 Mgand Af = Ms.

6.4.3. The Ireversibility of Transformation Path

The martensitic transformation path is only strictly' reversible, that is, the
transformation and reversion sequences are exactly reversed, when the reversion of an
element of martensite releases precisely the mechanical energy that was needed to create it.
The simulation suggests that this is rarely the case, even in the absence of friction and
plastic relaxation. The reason is the elastic relaxation during the transformation, as -
discussed in Section 6.4.1. When the transformation takes place in a constrained crystal,
thermoelastic equilibrium occurs in the very last stages of the transformation where the

transforming elements are highly strained. These elements are readily reversed when the
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temperature is increased above My, and the transformation path is reversible in the early
stages of the reverse transformation. In this case, the constraint is essential.

Using the minimum energy path as the transformationl criterion, the computer
simulation model generates the irreversible transformation path. The similarity of the
characteristics of the martensite morphologies during cooling and heating produced by the
computer simulation (see Figure 6.3 and Figure 6.6) to that of experimental observations
[25] demonstrates that the minimum energy path criterion does have its physical basis. The

"minimum energy path results in a smaller thermal hysteresis compared with the exactly

reversed path, and requires less superheating and is thermodynamically favored.

6.4.4. The Influence of Reversibility on the Martensitic Transformation

One of \\rcry interesting results of this invéstigaﬁon is the significant influence of
reversibility on the thermal resistance, AM = M; - Mf, and on the microstructure produced
by athermal rﬁartensitic transformations in constrained crystals. The growth and
impingement of multiple martensite plates creates local regions of high elastic energy. If
reversion is possible, these regions can be eliminated by reverse transformation, which
- allows the microstructure to rearrange itself into a simpler configuration in which the elastic
.energy is significantly reduced. The result is a more regular microstructure and a smaller
thermal resistance AM (a higher value of Mg). This microstructural relaxation is opposed
by any factor that makes reversion more difficult. Hence the final microstructure is more
complex, and AM is increased, if the reversibility factor, f;, is less than 1 or if the frictional
resistance, AG; is relatively large. |

Since the elastic energy stored in the system acts as a driving force for the reverse
transformation when it is released. during heating, the reversibility factor of the elastic
energy, fr, has a strong influence on the starting temperature of the reverse transformation,

Ags. When f; is zero during heating, the reverse transformation from martensite to the
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parent phase can happen only when the temperature is above or at To depending on whether
there is elastic or fxictionai resistance for the reverse transformation, and the transformation
is not thermoelastic.

From the above discussion, it is reasonable to state that the reversibility of the

elastic energy is a unique factor which determines the thermoelasticity of a material.

6.4.5. Thermoelasticity

Thermoelasticity is characterizedAby the transformation and growth of martensite
plates upon cooling and reversion and shrinkage of the martensite plates upon heating.
Non-thermoelastic transformation is distinguished from the thermoelastic transformation by
the function of the elastic energy during the reverse transformation. The thermoelastic
transformation is triggered by strain-induced reversion of martensite plates, and the elastic
energy acts as a driving force for the reverse transformation. Non-thermoelastic
transformation is triggered by the independent nucleation of the high-temperature phase,
and no elastic energy assists the reverse transformation. Any effect which tends to reduce
the loss of elastic energy, and therefore, the loss of the reversibility of the elastic energy,

‘should be regarded as pi'omoting thermoelasticity. The simulation suggests that plastic
deformation and frictional resistance reduce the thermoelasticity and have their effect in
different ways. Plastic deformation relaxes the elastic energy and changes it into an
irreversible form, and therefore, decreases the reversibility of the elastic energy. Frictional
resistance, which includes the effects from boundary friction, surface energy, and plastic
deformation, is essentially irreversible energy. The transformation by independent
nucleation can occur before strain-induced reversion of martensite does, if the value of
frictional resistance is substantially large (since high Ag and Af temperatures). The
characteristics observed in many thermoelastic transformations, such as, a small chemical

driving force, a small transformation shape deformation, and a matrix with a high flow
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stress (or the critical resolved shear stress) [5,25,34], are not defining features for
thermoelastic behavior. They are, however, the conditions under which plastic
deformation will not or at least less likely to occur during the transformation, hence the
elastic energy loss is minimum and the thermoelastic transformation is more likely to be
preserved. The reversibility of the elastic energy and frictional resistance vary with
composition, transformation strains, transformation mechanism and material properties
(e.g.,the critical resolved shear stress), etc., and can change with processing history. This
is the reason that some alloys exhibit large thermoelasticity and others small, and why some
alloys traditionally considered to be non-thermoelastic show thermoelastic features under
certain conditions [35-44]. It is not surprising that some systems vdo not meets the strict
conditions for either thermoelasticity or non-thermoelasticity and have niixed features.

In most so called thermoelastic transformations, thermoelastic equilibrium is not
always achieved, as it has been concluded in section 6.4.1. The constraint is essential for
the transformation to reach the thermoelastic equilibrium. It is only in the ideal
thermoelastic transformation that thermoelastic equilibrium is obtained. at every step of the -

transformation and thermal hysteresis disappears.
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CHAPTER 7

COMPUTER SIMULATION OF REVERSIBLE MARTENSITIC
TRANSFORMATIONS
-- PART II: PSEUDOELASTICITY AND THE SHAPE MEMORY
' EFFECT

, In this chapter, the simulation of reversible martensitic transformation is extended to
include external stresses, and the results of an investigation of pseudoelasticity and the

shape memory effect are presented.
7.1. Introduction

Pseudoelastic behavior is a mechanical analog to the thermoelastic transformation.
The martensite transforms continuously with increasing applied stress, and reverses
continuously when the stress is decreased. The "plastic” strain is caused by the shape
strain accompanying the formation of martensite and recovers when the transformation is
reversed. The total strain may or may not be completely recovered depending on whether
irreversible deformation occurs or not, or whether there is a transformation resistance.
Figure 7.1 is the schematic drawing of an experimental stress-strain curve first published
by Burkart and Read [45] for indium-thallium alloys in 1953. The experimental’
temperature was fixed at a value greater than that of the reverse completion temperature Ag,
- A hysteresis exists in a stress-strain curve under such conditions. In Figure 7.1, o is the
stress where the induced transformation from parent phase to martensite phase starts during
loading, o is the stress where the transformation is completed, and o3 is the stress where
the reverse transformation from martensite phasé to parent phase starts during unloading.
The stress-strain curve, and hence the hysteresis was found as a function of tésting

temperature and crystal orientation [46,47].
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Pseudoelasticity can be obtained not only by stress-induced martensitic
transformation, but also by variant-reorientation [48-51] when external stress is applied on
a crystal consisting of martensite. This type of pseudoelasticity can be compared to the
elastic ﬁwiming and untwinning in crystals [52]. In this case, o is the stress where the
variant-reorientation starts during loading. Wasilewski [53] concluded that if the martensite
is stressed between Mg and Ag (Ag < My), where Ay is the lowest temperature at which the
stress-assisted reorientation can occur, the reversion from martensite to austenite is only a
transient intermediate step, which is followed by the immediate and also stress-assisted.
transformation of this austenite to another martensite 'variant with a different orientation
from that of the original martensite. Although it is difficult to niake Wasilewski's two-step
mechanism visible experimentally, there are indications [27] that this two-step mechanism
can occur on an atomic scale.

Pseudoelasticity can also be caused by the combination of transformation and
reorientation of martensite. For an example, the transformation is first induced by applying
external stress, then the reorientation takes place when this Stress-induccd martensite is
further stressed. The multiple plateaus observed in some stress-strain curves was
considered as a consequence of such combined effect [50].

Similar to the thermal hysteresis, the origin of the stress-strain hysteresis as well as
its related dissipating effect is not well understood. In Chapter 6, it was-concluded from
our investigation that the fundamental source of the thermal hysteresis is the absence of
equilibrium between the chemical driving force and the elastic resistance. It is my belief
that the explanation of the stress-strain hysteresis is similar to that of the thermal hysteresis,
and the only difference is that, in this case, the dnvmg force includes chemical energy
and/or éxter_nal stress. |

The shape memory effect often occurs if a macroscopic deformation is accompanied
by a martensitic transformation under an applied stress, and is not reversed by removing

the applied stress, but by heating after the removal of the applied stress. There are very
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close interrelations between thermoelasticity, pseudoelasticity and the shape memory effect.
Wayman and Shimizu concluded [54] that the shape memory effeét can be universally
correlated with a martensitic transformation that is thermoelastic in nature. Delaey et al.
[55] pointed out that if the reverse transformation is incomplete when the applied stress is
reduced to zero in the pseudoelastic case, the residual martensite can be reversed by
hez;ting, resulting in the shape memory effect. The experimental work by Guilemany and
Gil [56] show that the recovered strain after releasing the applied stress also changes with
loading cycle. The first cycle produces a higher residual strain or lower recovery of the
shape change than the subsequent cycles, resulting in a training effect under stress.
Guilemany and Gil believe that such a training effect is due to interactions between
martensite plates which cause localized plastic strain and/or irreversible martensite pinned
by defects. There is a lack of experimental and theoretical ;vidcncc which can prove this
.explanation. |
In this chapter, the simulation results will be presented to show how the stress-
strain curve and the amount of strain which can recover vary with loading temperature and
loading cycles, how the revefsibility of the elastic energy and reverse frictional resistance
 affect the strain recovery after the applied stresé is released, and how they affect the reverse
transformation of the remaining martensite by heating after the stress is released,
reproducing the shape memory effect. The evidence form the simulation Will also be
presented to show that the essence of sfress—strain hysteresis is the exact analogy of the
thermal hysteresis -- the free energy change due to the applied stress is not always in

equilibrium with the elastic energy increment due to the martensitic transformation.
7.2. Computer Simulation Model

The computer model for simulating the reversible transformation under external
stress has been described in Chapter 3. The transformation in an constrained crystal is

81



simulated. The total Gibbs free energy changes for the transformation and reversion of an
element (p,R) under an external stress, 6¢, at a fixed temperature, T, are shown in Egs.
(3.17) and (3.18). For siinplicity, the effects of the relaxation factor, ff, and forward

frictional resistance, AGy, are neglected (fr= 1, AG; =‘O)v:
AG(T, p,R) = VAGy(T) + AGe(p,R) + AG;(G*p) a.n
AG'(T, p.R) = VAG, (T)+ £ (AG_(p.R) + AG,(0p)) + AG, (7.2)

To plot stress-strain curves which are generated from the simulation, the
‘macroscopic strain induced by the transformation must be calculated. From Eq. (3.14),
when a uniaxial stress is imposed at the y-direction of a transforming body, the

macroscopic strain induced by the transformation at the y-direction is
== 250 9

where sgz(p) is the transformation strain component of a martensite particle of variant p,
and Cp is the volume fraction of variant p martensite. Substituting 8(2)2(1) =¢g([R - 1),
£9,(2) =eg(R + 1), T3 = N1/N and {p = Ny/N into Eq. (7.3), we have

- Ny-N
ey =€n= &~y

+ er 2L 74

where N and N are the numbers of martensite particles of variant (1) and (2) respectively,
and N is the total number of cells. If we measure the stress in units of &g, 0";2 = o*peg,
the relation of G* versus gy/es qualitatively reflects features of a stress-strain curve
produced by the martensitic transformation. If the scéond term at the right side of Eq. (7.4)

is omitted, we obtain a simpler expression
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- N» -
&y = ey/ €= 2NN1

, (7.5)
If ey = 1, the completely transformed body consists of only martensite particles of variant
(2); if &y = 0, the body consists of either no martensite particles or has an equal number of
martensite particles of both variants.

| The stress-strain curves can be qualitatively represented by o*-Ey, or c*-gy, where

o* = cgzlues, Ey and &y are described in Eq. (7.4) and Eq. (7.5) respectively.

The forward and reverse transformations are allowed during both loading and
unloading proéesses, unless otherwise indicated. The transformation directly from one

variant of martensite to the second variant of martensite is not considered.

7.3. Results and Discussion

7.3.1. Reversible Transformation under External Stress -- Pseudoelasticity

A. The Influence of Loading Temperature and Lbading Cycle on Stress-Sﬁain Relation

The simulations were conducted for different values of chemical driving force,
AGy, corresponding to different températures, and a uniaxial stress that was cycled
between o* = 3.0 and 0. A dilation ratio of 0.2 (R =0.2) is assumed in the transformation
strain. From the temperanne-&ansformation (TT) curve during a thermal cycle for R =0.2,
fr=1and AG; = 0, the values of the chemical free energy corresponding to Mg, My, As,
and'Af can be found: -AGy(Ms) = 1.25, -AGy(Mg) = -AGy(As) = 1.96, and -AGy(Af) =0
Hence, the values of -AGy, are chosen ranging from -0.5 (T > M) to 3.5 (T < Ms). When
T > M, the initial body is the parent phase, and there is a single martensite particle of

variant (2) as a seed. When M > T > M, the initial body contains a fraction of martensite
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transformed thermally at that temperature. When T < Mg, the initial body contains only
martensite particles with two variants transformed thermally.

~ Since the second term in Eq. (7.4) only adds a constant to € and does not change
the shape of stress-strain relations, in the following, all stress-strain curves are presented
by o*-gy.

Figure 7.2(a) to (h) are o*-gy curves from the simulation at eight different
temperatures. Figure 7.2(a) and 7.2(b) show only the first cycle of o*-gy curve, since the
curves of the higher cycle are identical to that of the first one. Figure 7.2(c) through 7.2(h)
plot the 6*-€y curves of the first and the second cycle. The o*-g, curve during unloading
of the second cycle overlaps the unloading section of the first one. The o*-gy curves of the |
third and higher cycles are identical to that of the second cycle.

The following are the observations from Figure 7.2. (1) When loading temperature
T > Mg, the stress, .1, where the martensite transformation starts, decreases with
decreasing temperature ((a) through (d)). (2) When loading temperature T < Mg, the stress,
Oc1, is where the reorientation or change of the martensite variant occurs (Note: it is
actually the stress where the reverse transformation of martensite to the parent phase during
loading begins since the direct transformation from one variant to the other is not allowed).
At this temperature rénge, Ccl inéreases with decreasing temperature ((f) through (h)). (3)
The stress, 62, where the transformation or reorientation completes 'during loading,
increases with decreasing temperature. (4) The stress where the reverse transformation
starts during unloading decreases with decreasing temperature. (5) At the end of the first
cycle, the reméining strain increases with decreasing temperature. In other words, the net
récovered strain decreases after the stress is released with decreasing temperature. (6) At
the end of the second, or higher cycle, the strain (refer to the starting point of the second
cycle) is completely recovered. (7) The hysteresis widens with decreasing temperature

because of increasing 6 and decreasing oc3.



The above observations from Figure 7.2 have obvious physical reasons: When
loading temperature T > M, the parent phase is thermodynamically favored. The higher
the temperature, the more difficult the martensitic transformation is. Therefore, the stress at
which the induced transformation starts increases with temperature. When loading
temperature T < My, martensite is thermodynamically favored. The degree of difficulty of
the reverse transformation from the martensite to the parent phase increases with decreasing
temperature. Therefore, the stress at which the reorientation starts during loading increases
with decreasing temperature, and the stress where the reverse transformation starts during |
unloading decreases with decreasing temperature.

Strictly speaking, pseudoelasticity"is realized when loading temperature is equal or
above Ar. The o*-gy curves of such type are shown in Figure 7.2 (a) and 7.2 (b), where
the transfonhétion—induced strain is completely recovered at the end of the first loadirig
cycle. When some or all transformation-induced strain remains after the removal of the
applied stress, as shown in Figure 7.2 (c) to 7.2 (h), the phcno:ﬁenon is called

pseudoplasticity since the remaining strain resembles that created by plastic deformation.

B. The Influence of Loading Temperature and Loading Cycle on Microstructure

When loading temperature is above or close to Ag, (see the o*-gy curves in Figure 2
(a) and (b)), the stress-induced martensite consists of entirely or almost entirely variant (2)
particles. The martensite particles reverse to the parent phase completely when the applied
stress is released to zero. Figure 7.3 shows an example of the configurations at eight
different stresses in the first loading-unloading cycle when -AGv=-0.5 (T > Af). The
whole body transforms into variant (2) martensite (ey. = 1) before reaching the maximum
stress. The o*-gy curve shows a vertical segment after the co_mpletidn of the
transformation since the pure elastic strain caused by the Young's modulus is not shown in

the relation. If the maximum applied stress is lower, e.g.; o* =10, the final transformed
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configuration looks like that shown in Figure 7.3 (b) and the reversion starts from that
point if the bapplied stress is reduced. As the loading and unloading cycles, the shape
change induced by the martensitic transformation and reversion repeats just like a rubbe;r
band. _

When the loading temperature is relatively low but still above M; (see o*-gy curves
in Figure 7.2 (c) and 7.2(d)), the martensite particles induccd_by the initial load contain
both variants, but.with higher fraction of variant (2). Subsequential increase of the load
causes the reversion of variant (1) and the transformation of variant (2). When the load is
decreased from its maximum, the amount of particles of variant (2) decreases, and at the
same time the amount of particles of variant (1) increases. After the load is reduced to zero,
the partial mancnﬁtc particles of both variants remain and do not reverse to the parent
~ phase. Since the number of particles of two variants are not the same, the net strain is not
zero. Figure 7.4 shows the configurations at different stresses during the first loading- |
unloading cycle when -AGu=1.0. At this temperature ( Af> T > Mjy), a thin plate with
variant (2) particles forms at 6* = 0.15. At o* = 0.3, about 91% of the total cells have
trahsfoxmed into martensite 6f both variants (Figure 7.4 (a)). Figure 7.4(b) through 7.4@)
show the configurations at the other three different applied stresses (6* = 0.6, 1.05 and
1.5) during the loading of the first cycle. When o* = 1.65 or higher, all variant (1)
particles are reversed into the parent phase and then transformed into varianf (2) particles.
During the unloading of the first cycle, the reversion does not start until the applied stress is
réduced to o* = 0.9 at which some of variant (2) particles are reversed to the parent phase
(Figure 7.4(é)). Figure 7.4(f) through 7.4(h) show the configurations at three different
applied stresses (c* = 0.6, 0.3 and 0) during the unloading of the first cycle. Since the
martensite is not completely reversed at zero stress, the morphologies generated during
loading of the second cycle are different from those in the first cycle and, therefore, the o*-
gy curve during the loading of the second cycle is different from that of the first one.

Figure 7.5(a) through 7.5(d) show configurations at four different applied stresses (6* =
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0.45,0.9, 1.35 and 1.65) during the loading of the second cycle. When o* is higher than
1.65 only the particles of variant (2) exist.

When the loading temperature is lower than Mg (see the o*-gy curves in Figure 7.2
(e) through 7.2(g)), a martensite particle of variant (1) is reversed to the parent phase and
then immediately transformed to variant (2) particle. This reversion-transformation process
starts and proceeds at the boundaries of martensite plates of two variants. The macroscopic
effect is the movement of twin boundaries. During unloading, the number of martensite
particles of variant (2) which reverse to the parent phase and subsequently transform to
variant (1) reduces with decreasing temperature. Figure 7.6 shows configurations during
the loading ((a)-(d)) and unloading ((e)-(f)) in the first cycle when -AGv=2.0, a
. temperature just below the M. The initial configuration at zero stress consists two variants
‘with almost even volume fraction (Figure 7.6(a)). Before the applied stress, o*, reaches
the maximum, all variant (1) particles have transformed back to the parent phase and then to
variant (2) (at 6* = 2.1). During unloading, the number of martensite particles of variant
(2) which reverse to the parent phase and then transform into 'variant (1) increases with
decreasing load. At the end of the first cyéle, more than 70% of the strain is recovered and
the configuration at that point is shown in Figure 7.6(d). When the loading temperature is
much lower that Mg (-AGv = 3.5), less than 10% of martensite particles are still variant (1)
at the maximum load. Figure 7.7 shows the configurations at four different stresses during
loading. Unloading has almost no effect on the 6*-gy curve and configuration, as shown
in Figure 7.7 (d). There is no recovered strain at zero load.

Figure 7.8 is the plot of the recovered strain after the applied stress is released at the
end of the first cycle versus the loading temperature (-AGv). The recovery of the strain is

complete when T 2 Ay, and decreases drastically with decreasing temperature when T < M.
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C. The Influence of Maximum Stress

Since the maximum stress used for generating the results shown in Figure 7.2 is
high (o* = 3.0), all the particles are variant (2) at the maximum stress regardless of loading
temperatures and of the number of cycles. Therefore, the morphologies and 6*-gy curves
produced in the higher cycles are exactly the same as those produced in the second cycle,
since in our simulation the elastic energy change.is determined by the configuration only.
In reality, an energy fluctuation may occur-and the morphologies and stress-strain curves of
different cycles may not coincide. If the stress reaches the fnaximum and the transformed
body consists both variants, the 6*-&y curves do not overlap even at higher cycles because
the morphologies are not identical at the same load. Figure 7.9 shows the TT curve of such
case when the maximum stress, 6*, is 2.0 and -AGv = 2.0. The net fraction of variant (2)
does not reaches 1.0 until the end of loading in the second cycle, and the remaining strain at
the end of second cycle is negative (with respect to the strain at the starting point of the |
second cycle). The c*-gy curve of the third cycle does ﬁot coincide with that of the second

cycle since the initial configurations at zero stress of the two cycles are different.

D. The Influence of Reversibility of Elastic Energy and Frictional Resistance

Figure 7.10 shows the 6*-gy curve when the reversibility, fr, is reduced to 0.5 and
the frictional resistance, AG;, is still zero for a maximum stress 3.0 and - AGv = 1.0 (Af >
T >Mg). Comparing this With Figure 7.2(d) which shows the 6*-gy curve for fr = 1, we
can see that lowering the reversibility increases the stress, ¢, under which all particles
transform or reorientate to variant (2), decreases the stress, o¢3, where the reverse
transformation starts during unloading, and decreases the strain recovered after the stress
is released to zero. Figure 7.11 shows the o*-gy curves when fy = 1 and AG;= 1.0 (a) and

2.0 (b) respectively. The effect of AG'r on the o*-gy curve is the same as that of lowering
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reversibility, and when AG'r = 1.0, the o*-gy curve is almost the same as that shown in
Figure 7.10 where f;y = 0.5. When AG; = 2.0 (Figure 7.11 (b))., the recovered strain after
the stress is reléased is less than 0.2. While when AG; = 0 (Figure 7.2 (d)), the recovered
strain is more than 0.8. _

The smaller the reversibility, f, or the larger the reverse frictional resistance, AG;,
the closer the micrdstructurc produced by the reversible transformation is to that in the

irreversible case.

7.3.2. The Strain Recovery After Unloading -- Shape Memory Effect

To simulate the shape memory effect, the stress-induced transformation must show
pseudoplasticity at the end of a loading cycle. Then the temperature (-AGv) is increased
gradually until all martensite particles are reversed to the parent phase. Three cases are
selected: (1) T <Mt (-AGv=13.0), f;=1, AG; =0; 2) Ms<T < Af (-AGv = 1.0), fr = 0.5,
AG,=0; (3) Ms<T < Af (-AGv = 1.0), fy = 1.0, AG,= 1.0. The o*-gy curves of these
cases have been shown in Figure 7.2 (g), Figure 7.10 and Figure 7.11 (a) respectively.
The top portions in Figure 7.12(a) through 7.12(c) are the o*-gy curves of the first loading
cycle of these three cases; the bottom parts in Figure 7.12(a) through 7.12(c) are the
temperature-transformation (TT) curves and temperafurc—strain relations obtained after
unloading. |

Figure 7.12 (a) (case 1) shows that if the loading and unloading are done at the
fixed temperature (-AGv= 3.0) below Mg, about 20% of the strain is recovered after the
unloading, while no martensite is reversed to the parent phase. The strain recovery is due
to the variant-reorientation, that is, variant (2) particles transform to variant (1) particles
through the reversion to the parent phase first. After unloading, then subsequent increases
in temperature causes the recovery of the strain and reversion of martensite. Although both

strain and volume fraction of martensite decrease with increasing temperature, the rates of
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decreasing are different at different temperature ranges. As shown in Figure 7.12 (a), there
are three temperature regions. In the first region, where T < My, the strain increases
drastically but the change of the fraction of martensite is zero. In the second region, where
M < T < Mg, the rate of the strain recovery is decreased to about a half of that of the first
region, and a little martensite is reversed to the parent phase. In the third region, the rate of
the strain recovery is the same as that of the second region, but the fraction of martensite
decreases dramatically inth the increasing temperature until the reversion is complete near
A¢. The microstructure shows that, in the first region, the recovefed strain is due to the
variant-reorientation. In the third region, the remaining strain is recovered mainly by the
reverse transformation of the martensite to the parent phase. The reverse transformation
completes at or a little below the Af which is below T (see Chapter 6). R
Figure 7.12 (b) (case 2) and 7.12 (c) (case 3) compare the effects of the |
reversibility of the elastic energy and reverse frictional resistafxce on strain recovery.' In
both cases, the reveréion and strain recovery are complete at their reverse transformation
completion temperature, Af. The completion of reverse transformation for the case 3
requires much higher temperature since the existence of reverse transformation resistance
has shifted Af up (see Ch/apter 6). At this loading temperature, the martensitic
transformation is induced by the applied stress (since T > My) and the strain recovered
during unloading is due to mainly the variant-reorientation. As shown in Figure 7.12 (b)

and 7.12(0); about 98% of the particles are martensite after the stress is released to zero.

7.4. Discussion and Conclusion

7.4.1. The Source of Stress-Strain Hysteresis of Pseudoelasticity

From Figure 7.2 it can be seen that a stress-strain hysteresis exists even when the

temperature is higher than Af and that the strain is completely recovered after the stress is
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released. In Chapter 6 it has been shown the thermal hysteresis is due to the absence of
thermoelastic equilibrium. To show this is also true for the stress-strain hysteresis, the
reverse transformation during unloading that follows exactly the reverse sequence of the
forward transformation during loading ("exaétly reversed path” for short) was simulated.
Using the same procedure employed in Chapter 6, the following relation can be

obtained from Eqgs. (7.1) and (7.2) (when f; = 1 and AG; = 0) for the exactly reversed path

- 0 AG(T) - AGj(o¢'p) £ AGe(p,R) < -VAG(T) - AG;(c®p) (7.6)
\

The above relation shows that the elastic energy increment, AGe(p,R), of the loading
process for any given martensite volume fraction must be bounded between the Stress-
‘Transformation (ST) cﬁrves of the loading and unloading. The ST curves are the plots of
fractioﬂ of martensite particles versus the negative of the free energy change caused by the
applied stress plus the chemical free energy change during loading and unloading, : Q)
AG(T) + AGj(o®p)) and - (v AG(T) + AGj(c®'p)). Since temperature is fixed, the
~ effect of chemical energy on both transformation and reversion is the same. Figure 7.13
illustrates thev ST curves and AGe(p,R) curve from the simulation of the exactly reversed
path. Again as in the thermoelastic transformation (Chapter 6), the reverse transformation
is not allowed during loading to avoid complication of the simulation. Figure 7.13 shows
that thé elastic energy increment, AG¢(p,R), does not monotonically increase with the
fraction of martensite particles. However, since the free Ienergy caused by the applied
stress is proportional to the net fraction of mértensite particles of variant (2), which is
favored in the tension, - the equilibrium condition, where VAG(T) + AGe(p,.R) +

AGj(o®p) = 0, does not always exist.
Figure 7.14 compares the ST curves from the exactly reversed path and minimum

energy path. The ST curve generatéd from the minimum energy path produces a smaller

hysteresis loop.
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Setting ¢¢' = ¢© in Eq. (7.8), then only the equation
-0 AGy(T) - AGj(c®p) = AGe(p,R) ' (7.7

holds for any volume fraction of martensite. This means, if the equilibrium always holds
during loading. no stress-strain hysteresis should exists and the minimum energy path is

the same as the exactly reversed path.

7.4.2. Training Effect under Stress

At certain temperatures and applied stresses, the strain produced in the second or
higher loading cycles is completely recovered after the stress is released, while there is
remaining strain in the first cycle. The conditions under which the Figure 7.2 is generated
exclude any effects caused by dislocation structures since no plastic deformation or any
frictional resist;mce is considered. The réason for the training effect found in the simulation
is that, after a complete loading cycle one martensite variant is favored. At a certain
~ loading temperature and maximum applied stress, all partiéles transform into variant (2)
when the maximum stress is reached. During unloading, the amount of particles of variant
(2) which can reverse to the parent phase and then transform to variant (1) is determined by
loading temperature. The lower the loading temperature, the lower the stability of the
parent phase and the possibility of the reversion from the martensite phase to the parent
- phase. At one extreme, as shown in Figure 2 (h), when the vloading temperature is much
lower that Mg, no particles can reverse after the stress is released, and the retained

martensite is mostly variant (2).
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7.4.3. The Shape Memory Effect

The shape memory effect can be realized only when materials show
pseudoplasticity and are thermoelastic in nature. It can be utilized most effectively when
deformation (or loading) temperature is below the Mg, so that the strain induced by the
martensitic transformation and reorientation is at its maximum when the applied stress is
released. During the heating process which‘follows the removal of the applied stress, the

strain recovery is mainly due to the martensite reorientation when temperature is below Mg
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CHAPTER 8
COMPUTER SIMULATION OF MARTENSITIC TRANSFORMATIONS

OF A
CUBIC TO MONOCLINIC STRUCTURE

8.1. Introduction

The cbmputer simulations in previous chapters were done in an ideal crystal, and
the system was considered isotropic. In this chapter the computer simulation model is
applied to partial-stabilized-zirconia systems to simulate the martensitic transformation from
a cubic to a monoclinic structure as an approximation of the transformation from a
tetragonal to a monoclinic structure. ‘

Twinning occurs in small particles which are embedded in cubic zirconia matrix
during the transformation from tetragnal to monoclinic strueture. This phase
transformation increases the fracture toughness of the material [8]. The twinning,
however, cannot be explained by the crystallographic theory since no invariant plane is
found in the twinned monoclinic structure [20]. One explanation for the twinning is the
constraint imposed by untransformed cubic matrix, because the formation of twins reduces
the total shape change under the constraint [26]. To my knowledge, however, so far there
is no theoretical study or computer simulation that has been done to cpnclusively determine
the source of such twinning. It has been shown in Chapter 4 through Chapter 7 that the
constrained boundary imposed by untransformed matrix promotes the twining in a two-
dimensional space. In the following sections, the simulation results of the martensitic
transformation in three-dimensiohal space under the stress-free and constrained condition

are presented, and the role of the constraint for the twinning is discussed.
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8.2. Computer Simulation Model

The simulation is done in a cubic system of three-dimensional space without
external stresses. The driving force is provided by chemical free energy (undercooling).
The model used here is essentially the same as that described in Chapter 3 except that the
transformation strain is monoclinic, and the elastic system is cubic (non-isotropic). These
differences are elaborated in the following.

For simplicity the parent phase is assumed to be a cubic structure, instead of
tetragonal structure. Due to the crystallographic symmetry, there are total 12 variants of
monoclinic transformation strain. For the purpose of this work, it is adequate to choose 4

variants in the simulation;

re1 0y re1 0 -y
g(l) = 0820] e2)=| 080
Ly 0 &3 -7 0 &3
rep 00 ren 0 07
e(3)=| 0 & 7] ed)=| 0 g1y (8.1)
L0 v &3 [ 0 -y &3

Two sets of values of the transformation straih are used in the simulation. These values
along with the references are listed in Table 8.1. The elastic constants obtained from a
cubic yttria-stabilized zirconia system [57] are used in the elastic energy calculation (units =

1012 dyn/cm?2): ¢y = 3.94, c12=0.91 and ca4 = 0.56.

Table 8.1. The values of the transformation strain

set €11 €22 €33 Y Reference
1 - 0.0054 0.0125 0.0387 0.0753 58
2 0.00997 0.02594 0.02622 0.08133 59
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8.3. Simulation Results

When the transformation takes place in an unconstrained crystal, the simulations
using the two sets of values of the transformation strain produce different microstructures.
| Figure 8.1 is a three-dimensional configuration generated by the first set of the values listed
in Table 8.1. Initially, a seed of variant (1) is placed in the center of the cube. Although
the four variants compete with each other in the simulation, the final configuration consists
of two variants (variant (1) and variant (2)) of mo;xoclinic martensite phase in a twinned
structure. Figure 8.2 is a schematic drawing of the final configuration showing the shape
change. For the second set of the values of the transformation strain, the final
configuration consists of all four variants (Figure 8.3). If only two variants (variant (1)
and variant (2)) are used in the simulation, the final configuration is a fine twinned structure
(Figure 8.4). -

When the transforming crystal is constrained by untransformed matrix, the
simulation using the first set of the transformation strain generates a fine twinned structure,
as shown in Figure 8.5. Figure 8.6 shows the configurations of two different cuboids
generated by applying different amount of the cons&aint in three directions, when only the
two variants are used. The twinned monoclinic structures have {001} twm planes. The
constraint has little effect on the final configurations when the simulation is done by using
the second set of the transformation strain, and the configurations are similar to those

shown in Figure 8.3 and Figure 8.4.

8.4. Disscusions and Conclusion

As discussed in Chapter 2, a strain is dyadic if, and only if, one of its principal
strains vanishes and the other two are opposite in sign. In order to use this criterion to

determine a dyadic strain or a composite dyadic strain, the transformation strain presented
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in Eq. (8.1) is diagonalized, and the values listed in Table 8.1 are used to find the principal
strains. Table 8.2 lists the principal strains of the two sets of transformation strains for
variant (1)s. The principal strains of variant(2)s can be obtained by exchanging the values

of €1 and €3 of variant (1)s.

Table 8.2. The principal strains

set €1 £ €3 Reference
1 0.0951 0.0125 -0.0618 58
2 0.0998 0.0259 -0.0636 59

First, it is very simple to determine that the transformation strain of each set is not
dyadic, since none of its three principal strains is zero. Second, using the condition
provided in Chapter 2, it is clear that a composite dyadic strain cannot be achieved by
combining variant (1) and variant (2) in Eq. (8.1), since le3! < leql (or le! < le3! for variant
(2)s) and ¢ + €3 has the same sign as €.

It can be concluded that the transformation strains in Eq. (8.1) with the values in
Table 8.1 fall into the category of non-dyadic sirain where a transformation strain is not
dyadic and cannot be made so by creating a composite strain. The non-dyadic
transformation strain produces a multivariant microstructure to minimize the net elastic
strains.

The experimental observations and the simulation results presented in Figures 8.1
through 8.6 show that the volume fraction of each of the variants in the twinned structure is

about 0.5. Taking a average strain of variant (1) and variant (2) in Eq (8.1), we obtain
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1 1 Te10 0 |
e= %e(1) + %6(2) =[8 e 23] (8.2

which cancels the shear components, ¥, and becomes an orthorhombic strain. But since
none of the strain components in Eq. (8.2) is zero, the net strain is not a dyadic, or an
invariant strain. Therefore, the twinning in this case is not to achieve an invariant plane
strain, as concluded by Kelly and Ball [20] after their applying the crystallographic theory,
but to relieve the partial elastic strain energy by canceling the shear components.
| These simulation results illustrate that the microstructures are determined by the
transformation strains and boundary conditions. The constraint imposed by an
untransformed matrix promotes the twinning.
The two sets transformation strains produce different microstructures, as shown in
Figure 8.1 and Figure 8.3, although both are non-dyadic strains. The second set has a
larger volume expansion than the first one, but it is not clear whether this is the reason for

the difference. Further investigation needs to be done to claﬁfy this issue.
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CHAPTER 9
SUMMARY

9.1, The Computer Simulation Model

This dissertation reports a computér simulation of martensitic transformations. To
study the development of microstructure, a finite-element computer simulation model was
constructed to mimic the transformation process. The transformation is athermal and
simulated at each incremental step by transforming the cell which maximizes the decrease in
the free energy. To determine the free energy change, the elastic energy developed during
martensite growth is calculated from the theory of linear elasticity for elastically
homogeneous media, and updated as the transformation proceeds. The model separates the
effects of elastic resistance, relaxation and reversibility of elastic strain, frictional
resistance, geometric constraint and external stress on the thermal resistance, microstructure
and stress-strain relations during martensitic transformation and reversion. |

The model is simplé but very fruitful in increasing our understanding of the
martensitic transformation and its related phenomena. It successfully produces the
preferred microstructures of martensite, which can be predicted analytically from the linear
elastic theory. It also generates unusual microstructures, such as "butterfly martensite”
which have been observed experimentally. It illustrates the increased accuracy obtained by
using the finite volume of the elementary cell instead of a point approximation and clarifies
the physics of studies that are conducted by simulation in two dimensions. It reveals the
characteristics of thermal resistance of the transformation and produces complex,
multivariant microstructures when the transformation is constrained by an untransformed
matrix on Whiéh external stresses are or are not present. The model simulates the reversible
martensitic transformation and has expanded our understanding of thermal and stress-strain

hysteresis as well as the features of thermoelasticity, pseudoelasticity and the shape
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memory effect. | When plastic deformation and frictional resistance are absent, thermal
hysteresis exists because of the absence of equilibrium between the chemical free energy
and the elastic eﬁergy during transformation at any volume fraction of martensite. This
non-equilibrium effect is due to the elastic relaxation caused by elastic interaction and
accommodation between martensite particles of same and different variants, and which is
also the source of energy dissipation. Applied to the partially-stabilized-zirconia systems,
the model simulates the trahsformation from cubic to monoclinic structure and generates
twinned microstructures that have {100} habit planes. It has verified that, the twinning in
small particles that are embedded in cubic zirconia matrix is not to achieve an invariant
plane, but to reduce the transformation shape change and minimize the elastic energy.
The success and excitement of this model should not only to be judged by how
“close to experirhental observations the martensite mdrphologies from the simulation are, but
also by the amount of insight on martensitic transformations it provides to the broader

understanding of unsolved problems.
9.2. Extensions of the Model

The model is not limited to the study of martensitic transformations, but is useful
for any transformations which are primarily controlled by elastic strain energy. The model
can be easily extended to study coherent precipitations and ordering-disordering reactions
which are primarily dominated by elastic energy arising during the transformations. With
necessary modification, the model can be used even to study plastic deformation.
Traditional studies of plastic deformation are based on dislocation theories. The new
approach proposed here views plastic deformation from a different perspective. When a
part of a crystal is plastically deformed, it can be treated as if it undergoes a martensitic
transformation with its transformation strain being equal to the plastic strain. The stress
and strain distributions caused by the localized plastic strain are treated as those due to a
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- misfit inclusion in an elastic media. This idea was first suggested by Eshelby [9,10]. But
to my knowledge, there has been no research work reported in the literature on applying

. this model.

9.2. Possible Changes to the Model

Several possible changes to the model might be useful in increasing understanding
of elastic strain inducc;,d transformations.

First, the effects of transfdrrha_tion ériteria other than the minimum energy pathcan
be easily obtained by changihg the transforrﬁatibn criterion in the model. The examples of
t};e criteria are (1) the negative energy criterion in which the transformation is permitted to |
all elements that give a negative free energy change once they are transformed, and (2) the
X percentage criterion in which X percent (randomly picked) of all elements that give a
negative free energy change is allowed to transformed at each step. Since the elastic energy
change at each step depends on the number of existing transformed particles and the
interactions between them and is a function of the morphology of the transformation
product, the change of transformation criteria will alter the morphology at each
transformation step. It is interesting to see how microstructures change with the change of
the criteria and what additional information can be obtained from difference criteria.

Secondly, in Chapter 6 and Chapter 7, the reverse transformation is confined to the
transformation from martensite to parent phase only. The reverse transformation from one
vax:iant to the other can be added into the model without too much difficulty. This will
reveal an additional possible transformation path and give us an idea which path, the

martensite-parent transformation or the variant-variant transformation, is more realistic or

more energetically favored.
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Thirdly, matrix plasticity can be incorporated into the model in the conjunction of
the simulation of plastic deformation. The elastic energy controlled transformation and the
.plastic deformation will co-exist in sirnuiation, which is closer to reality.

Finally, the difference in elastic constants between the martensite and the matrix has
been ignored in the model. The heterogeneity of elastic modulus changes both the two-
particle elastic interaction and the interaction with the external stress. Its ultimate effect is
similar to that of 'the transformation strain [10] and will be reflected in microstructural

| changes (e.g., habit changes). It is, however, very difficult to incorporate such a modulus
effect into the model because it depends on the shape of the transformed region. The
features of the modulus effect may be revealed by using approximations of the elastic

heterogeneity.
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Fig. 3.1 ~ Aplot of a quadrant of shape function, nok)12, extended into 5th
Brillouin zone in a two-dimensional space.
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(a) - (b)
{c) (d)
Fig. 4.1 A simulated martensitic transformation with R = 1. (001) and (010)
cross-sections are shown after 50 transformation steps ((2) and (b)),
and 200 steps ((c) and (d)).
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2. The transformed
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region is shown: (a) after a variant (1) plate forms; (b) after a variant

(2) plate forms; and (c) after‘a variant (3) plate forms.
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after a variant (2) rod forms; and (c) after a variant (3) rod forms.
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Simulated martensitic transformations in two dimensions showing
the influence of the dilation ratio (R) on the constitution and habit of
the initial martensite plate: (a) R =0, (b)) R =0.22, (c) R=0.3,
and (d)R=1.
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{c)

The microstructure obtained from the simulation in two dimensions

using the point approximation (R

Fig. 4.10



Fig. 5.1 The microstructure generated by a pure shear transformation (R =0)
in a stress-free crystal embedded in an untransformed matrix.
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Fig. 5.4
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The value of the driving force, AGy, (or, equivalently, the
temperature, Ms) required to initiate transformation as a function of

- the dimensionless stress magnitude, 6*, for hydrostatic stress and
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Fig. 5.6(b)
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Fig. 5.8  The pattern of transformation in the high-stress limit (6* = 1.2) for
‘R =0.2. The TT curve is plotted in (d); (a) - (c) show the
microstructures that correspond to the corresponding points labeled
in (d).

132



Fig. 5.9

The pattern of transformation at intermediate stress (c*=0.4) forR

=0.2. The TT curve is plotted in (h); (a) - (g) show the

microstructures that correspond to the corresponding points labeled

in (h).
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Fig. 6.1 The microstructural evolution generated by a simulated irreversible
transformation (R = 0.25) during cooling process.
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Fig. 6.3
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The microstructural evolution generated by a simulated reversible
transformation (fr = 1, R = 0.25) during cooling process.
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Fig. 6.6(Cont.) The microstructural evolution generated by a simulated reversible
transformation (f; = 1, R = 0.25) during heating process.
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Fig. 6.8
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The temperature-transformation (TT) curves of reversible
transformations (R = 0.25) with different values of f;.
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R =0.25

Fig. 6.11(a) The effects of the reversibility, f;, and reverse frictional resistance,
o AG,. on A, the starting temperature of the reversion of martensite.
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Fraction of Martensite Particles

Fig. 6.12(a)
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The temperature-transformation (TT) curves for partial
transformations (R = 0.25) with f; = 1, and AG; = AGr =1.
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Fig. 6.12(b) The temperature-transformation (TT) curves for partial |
transformations (R = 0.25) with f; =1, AG;=1, and AGr =2.0.
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Fig. 6.12(c) The temperature-transformation (TT) curves for partial
transformations (R = 0.25) with f; = 0.5, and AG, = AGr =1.
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Fig. 6.13(a)  The temperature-transformation (TT) curves for a partial reversion
with f;=1,AG; =1.0 and AGr = 2.0 when the amount of reversed

martensite is less than 1% (R = 0.25).
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Fig. 6.13(b) The temperature-transformation (TT) curves for a partial reversion
with fr=1, AG; =1.0and AGr = 2.0 when the amount of reversed

martensite is about 15% (R = 0.25).
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Fig. 6.14 The microstructural evolution generated by a simulated reversible
transformation (f; = 1, R = 0.25) of an unconstrained crystal during
cooling process.
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Fig. 6.15 The microstructural evolution generated by a simulated reversible
transformation (fr = 1, R = 0.25) of an unconstrained crystal during
" heating process.
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Fig. 6.16
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The temperature-transformation (TT) curves for the
transformations of an unconstrained crystal shown in Fig. 6.14 and
Fig. 6.15
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Total Elastic Energy

Fig. 6.17
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The fraction of martensite versus total elastic energy generated
during the transformation and reversion of an unconstrained crystal
(R =0.25).
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Fig. 6.18 The temperature-transformation (TT) curve and elastic energy

increment curve for the exactly reversed path.
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Fig. 6.19 The temperature-transformation (TT) curves for the exactly

reversed path and the minimum energy path.
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transformation of an unconstrained crystal.
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 Fig. 7.1

Stress

Strain

The schematic drawing of stress-strain curve showing
pseudoelasticity caused by stress-induced martensitic

transformation.

166



4 T T Y T Y T ¥ T T T
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1.2

Fig. 7.2(a) The o* -gy curve of a simulated reversible transformation (fr=1, R
' = (.2) at a loading temperature T > Af (-AGv = - 0.5).
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Fig. 7.2(b) The o* -ey curve of a simulated reversible transformation (fr=1,R
: = (.2) at a loading temperature T = Af (-AGv = 0.0).

)
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A>T>M (-AG, =0.5)

2nd cycle

Ist cycle

0.0 0.2 04 0.6 0.8 1.0 1.2

Fig. 7.2(c) The o* -gy curve of a simulated reversible transformation (fy = 1, R
= (0.2) at a loading temperature Af> T > Mg (-AGv = 0.5).
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Fig.7.2(d)  The 6* -gy curve of a simulated reversible transformation (fr = 1, R
= (.2) at a loading temperature Af> T > M; (-AGv = 1.0).
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Fig. 7.2(e) The o* -gy curve of a simulated reversible transformation (fr= 1, R
= (.2) at a loading temperature Mg > T > M (-AGv = 1.5).
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Fig. 7.2(f) The o* -gy curve of a simulated reversible transformation f:=1,R
= (.2) at a loading temperature T < Mg (-AGv = 2.0). '
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Fig. 7.2(g) The o* -gy curve of a simulated reversible transformation (f; = 1., R
=0.2) at a loading temperature T < Mg (-AGv = 3.0).
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Fig. 7.2(h) The o* -gy curve of a simulated reversible transformatidn f:=1,R
= (.2) at a loading temperature T < Mr (-AGv = 3.5).
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0.9, 0.6, 0.3 and 0.0 (min.).

(g)

transformation during the first loading-unloading cycle when Ag>
T > M (-AGy, = 1.0): (a)-(d) loading, o* = 0.3, 0.6, 1.05 and 1.5;

(e)-(h) unloading, o*
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Fig. 7.6

(c) {d)

The microstructural evolution generated by a simulated reversible
transformation during the first loading-unloading cycle when T <
Mt (-AGyp = 2.0): (a)-(d) loading, o* = 0.0 (min.), 1.05, 1.5 and
2.1; (e)-(h) unloading, 6* = 0.45, 0.3, 0.15 and 0.0 (min.).
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Fig. 7.6(Cont.) The microstructural evolution generated by a simulated reversible
transformation during the first loading-unloading cycle when T <
Mg (-AGy = 2.0): (a)-(d) loading, 6* = 0.0 (min.), 1.05, 1.5 and
2.1; (e)-(h) unloading, o* =0.45, 0.3, 0.15 and 0.0 (min.).
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{c)

The microstructural evolution generated by a simulated reversible
transformation during loading of the second cycle when T < Mg

Fig. 7.7

~

0.0 (min.), 2.4, 2.7, and 3.0 (max.).

(-AGy = 3.5): (a)-(d) o*
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Fig. 7.8 The plot of the recovered strain, gy, versus -AGy (loading

temperature).
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Fig. 79

Ok

T T

T<M, (-AG, = 2.0)

2nd cycle

/

Ist cycle

0.0 02 0.4 0.6 0.8 1.0 12

The o*-gy curves of a simulated reversible transformation (fr = 1,

"R = 0.2) at a loading temperature T < Mg (-AGv =2.0) and a

maximum stress o* = 2.0,
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Fig. 7.10

4 1 T T Y v LA

A¢>T>M_(-AG, = 1.0)

=05

1st cycle

0.0 0.2 0.4 0.6 0.8 1.0 1.2

The o*-gy curves of a simulated reversible transformation (R =0.2)
at a loading temperature T > M (-AGv = 1.0) with fy = 0.5 and AG,
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Fig. 7.1 l(a) The o*-€y curve of a simulated reversible transformation (R = 0.2)
at a Joading temperature T > M (-AGv = 1.0) with fy = 1 and AG, =
1.0. : ‘
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Fig.7.11(b) The 6*-gy curve of a simulated reversible transformation R=0.2)

at a loading temperature T > M (-AGv = 1.0) with f; = 1 and AG =
2.0. : '

187



T T T v ¥ v T 7 T

T <M; (-AG, =3.0)

O*

-AG \)(T)

L Ay Fraction of Martensite

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 7.12(a)  The stress-strain (0*-€y), temperature-transformation (TT) and
temperature-strain relation of a simulated reversible transformation
(R = 0.2) showing the shape memory effect when the loading
temperature T < Mf (-AGy = 3.0), fr=1, and AG = 0.
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Fig. 7.12(b) The stress-strain (*-£y), temperature-transformation (TT) and
temperature-strain relation of a simulated reversible transformation
(R = 0.2) showing the shape memory effect when the loading
temperature Af > T > M (-AGy = 1.0), fy=0.5,and AG =0.
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Fig. 7.12(c)  The stress-strain (c*-£y), temperature-transformation (TT) and
temperature-strain relation of a simulated reversible transformation
(R = 0.2) showing the shape memory effect when the loading
temperature Af >T > M (-AGy = 1.0), fr=1, and AG = 1.0.
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Fig. 7.13 The stress-transformation (ST) curve and the elastic energy

increment curve for the exactly reversed path.
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Fig.7.14 The stress-transformation (ST) curves for the exactly reversed path

and the minimum energy path.
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The microstructure generated by a simulated transformation using
the transformation strain value of set 1 (see the text in Chapter 8)

Fig. 8.1

in a stress-free cubic system.
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Fig. 8.2 The schematic drawing of the shape change of the transformation
- shown in Fig. 8.1. ' :
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The microstructure generated by a simulated transformation using

Fig. 8.3

the transformation strain value of set 2 (see the text in Chapter 8)

in a stress-free cubic system.
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A

the transformation strain value of set 2 (two variants only, see the
196

The microstructure generated by a simulated transformation using
text in Chapter 8) in a stress-free cubic system.

Fig. 8.4



yA

The microstructure generated by a simulated transformation using

Fig. 8.5

the transformation strain value of set 1 (see the text in Chapter 8)

in a cube constrained by an untransformed matrix.
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transformation strain value of set 1(two variants only, see the text in
Chapter 8) in two cuboids constrained by an untransformed matrix.

The microstructures generated by simulated transformations using the

Fig. 8.6
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