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Computer Simulation of Martensitic Transformations 

Ping Xu 

Ph .. D. Dissertation 

ABSTRACT 

The characteristics of martensitic transformations in solids are largely determined 
by the elastic strain that develops as martensite particles grow and interact. To study the 
development of microstructure, a finite-element computer simulation model was 
constructed to mimic the transformation process. The transformation is athermal and 
simulated at each incremental step by transforming the cell which maximizes the decrease 
in the free energy. To determine the free energy change, the elastic energy developed 
during martensite growth is calculated from the theory of linear elasticity for elastically 
homogeneous media, and updated as the transformation proceeds. 

The computer model is in good agreement with the linear elastic analytic solution, 
especially when the latter predicts single-variant martensite or twinned martensite with 
nearly equal fractions of the two variants. The model also generates "butterfly 
martensite" which has been observed experimentally. The development of similar 
complex, multivariant microstructures is seen to be promoted by geometric constrains on 
the transforming crystal, and is strongly affected by applied stress. Either constraint or 
applied stress increases the thermal resistance to the transformation, as measured by the 
difference between the Ms and Mf temperatures. When the transformation is made 
reversible, phenomena such as thermoelasticity, pseudoelasticity and the shape memory 
effect naturally appear. The fundamental understanding of thermal and stress-strain 
hysteresis is made possible by calculating the elastic energy developed during the 
transformation. When plastic deformation and frictional resistance are absent, thermal or 
stress-strain hysteresis exists because of the absence of equilibrium between the driving 
force and the elastic energy resistance. This non-equilibrium effect, which is also the 
source of energy dissipation, is due to the elastic relaxation caused by elastic interaction 
and accommodation between martensite particles of like and different variants. When the 
computer model is applied to partially-stabilized-zirconia systems, it simulates the 
transformation from cubic to monoclinic structure and generates twinned microstructures 
that have { 100} habit planes. Analysis shows that the twinning occurs not to achieve an 
invariant plane, but to cancel the shear components in the transformation strain. The 
twinning is also promoted by the constraint of the untransformed matrix. 
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CHAPTER 1 

INTRODUCTION 

1.1. Martensite and Martensitic Transformation 

The significant increase in the strength of steels obtained through quenching was 

first discovered in the 19th century. The product of quenched steels was named 

"martensite" in honor A. Martens, a German metallographer who was among the first to 

study the correlation between the microstructures and properties of quenched steels. Since 

then the mechanism responsible for producing martensite is known as the "martensitic 

transformation". 

The martensitic transformation is one of the principal processes responsible for 

structural or phase transitions in crystalline materials, and it produces a wide variety of 

microstructures with desirable properties. Martensitic transformations have been used to 

strengthen structural steels, as well as to increase the fracture toughness of steels and 

ceramics. They are also the sources of phenomena involving thermoelasticity, 

pseudoelasticity and shape memory effects in many non-ferrous and ferrous alloys. 

As defined by Cohen, Olson and Clapp [1] most recently, "A martensitic 

transformation can be considered to be a first-order solid-state structural change which is . . 

(a) displacive, (b) diffusionless, and (c) dominated in kinetics and morphology by the 

strain energy arising from shear-like displacements." During a martensitic transformation, 

a parent lattice changes into a product lattice by coordinated movements of a large numbers 

of atoms. This mechanical distortion of ~e parent lattice induces a substantial local elastic 

strain. Accommodation of the transformation-induced strain determines the transformation 

kinetics and makes the martensite phase grow in a pattern that keeps the elastic strain 

energy at a minimum or a tolerable level, resulting in complex microstructures in the 

martensite, including twins and dislocations. 
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The crystallography of martensite was first studied in 1924 by Bain [2]. He 

showed that a body-centered cubic (bee) structure can be produced from a face-centered 

cubic (fcc) structure by a contraction of approximately 17 percent in one cubic direction of 

the fcc lattice and an expansion of 12 percent in the other two directions petpendicular to it 

This process of generating a bee structure from a fcc structure involves considerably less 

distortion or strain than any of the other processes which generate such structure change, 

and the strain, named "Bain strain", became the fundamental basis for studying the 

crystallography of the martensitic transformations. Similar mechanisms were also 

proposed for martensitic transformations between other crystal structures. The Bain strain 

is an essential ingredient of the martensite crystallographic theory, developed later in the 

1950's, and the linear elastic theory, formulated in the 1970's. 

The crystallographic theory of the martensitic transformation was developed by 

Wechsler, Lieberman and Read [3] to predict the crystallographic habit plane and twin 

fraction of a twinned martensite plate. Bowles and Mackenzie [4] developed an equivalent 

version of the crystallographic theory from a different approach almost simultaneously. 

The method identifies an undistorted "invariant plane" of the transformation on which the 

martensite and matrix structures fit without distortion, so that a martensite plate parallel to 

this plane is nearly strain-free (local strains associated with twinning in the plate are 

ignored). The crystallographic theory has been particularly useful for predicting the habits 

and twin fractions of twinned martensite in steels and other alloys [5 - 7]. 

Despite its success, the crystallographic theory confines the martensitic 

transformation as a phase transition to achieve an invariant-plane strain. The theory does 

not provide direct linkage of the strain energy to the transfonnation kinetics, nor to the 

morphology of the martensitic transformation. The theory cannot explain the complex 

microstructure produced by the martensitic transformations that do not have an invariant 

plane, for example, the twinning that occurs during the tetragonal to monoclinic martensitic 

transformation in partially-stabilized-zirconia systems [8]. Unlike the crystallographic 
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theory, the linear elastic theory, which is a new approach that emerged by the end of the 

1970's, directly relates the morphology of martensite to the elastic energy induced during 

the transformation, providing a new tool for theoretical studies of the martensitic 

transformation . 

1.2. The Linear Elastic Theory 

The application of linear elastic theory for studying martensitic transformation 

requires computation of the elastic energy associated with the product of a transformation in 

a linear elastic matrix. Eshelby [9,10] developed such a solution for an isotropic elastic 

medium with an ellipsoidal inclusion undergoing any given transformation strain. By 

employing the Fourier transformation, Khachaturyan extended Eshelby's solution to 

compute the elastic energy of a particle of any shape, or particles of an arbitrary distribution 

[11 - 13]. The fundamental basis of these calculations is the fact that in some solid state 

transformations, such as coherent precipitations and martensitic transformations, new 

phases remain coherent with the matrix. The tendency towards decreasing the elastic 

energy plays an essential role in the formation of multi phase structures that develop in the 

process of transformations. 

There are limitations to the linear elastic theory. It linearizes the transformation 

strain, which is often appreciable, and it ignores the rotational component of the finite 

strain, which alters the crystallographic habit. On the other hand, it has several compensat­

ing advantages that avoid some of the shortcomings of the crystallographic theory. The 

linear elastic model is not restricted to "invariant plane" transformations. It can treat 

particles with intermediate shapes that might be assumed during growth. The model yields 

a value for the elastic energy than can be used to measure the energetic stability of the pre­

ferred habit and can be summed with the surface energy to predict the preferred shape, 

habit and composite state as a function of volume. The most valuable aspect of the linear 
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elastic theory is that, it is straightforward to compute the elastic energy of an arbitrary 

distribution of particles, provided that the difference between the elastic moduli of the 

particle and the matrix phases is ignored [12, 13]. It is this advantage that makes the linear 

elastic theory an elegant theoretical tool for studying the relationship between the 

morphology of martensite and the elastic energy, or strain energy, arising from the 

martensitic transformation. 

The last advantage of the linear elastic theory makes it possible to construct compu­

tationally simple models in which a martensitic transformation is allowed to develop spon­

taneously, revealing the factors that determine the progress of the transformation and the 

microstructural patterns that result. Although the analytical solutions have been obtained to 

predict the habits, shape and composite structures in the martensitic transformations [13-

16], they provide no information about the paths that lead to these states and the possible 

metastable states along the paths. To study the development of microstructure of 

martensitic transformations, a computer simulation can be used to mimic the process. A 

model of this type was proposed by Wen, Khachaturyan and Morris (WKM) [17]. They 

simulated a two-dimensional martensitic transformation by dividing a plane into a grid of 

elementary square cells with periodic boundary conditions. 

This simulation method produced transformation paths and fmal microstructures 

that were encouragingly realistic. However, the simulation was done by using the "point 

approximation", in which the finite volume or shape of the elementary cell was not taken 

into account but was treated as an equivalent point [13,17,18]. This approximation 

introduces error in the elastic energy interaction that becomes increasingly significant for 

near neighbor terms, and has limited the further extension and development of the modeL 

4 



1.3. Objectives 

In this investigation, the WKM model for computer simulation was modified to 

include the effect of the volume and shape of the elementary cell. The new model was then 

tested in two- and three-dimensional spaces for the stress-free condition under which the 

original WKM model was used. The results of the simulation using the new model were 

found to be significantly different from those using the original model, but were in a good 

agreement with those predicted by analytical solutions of the linear elastic theory. 

Secondly, the effects of boundary conditions on the microstructural development of 

the martensitic transformation were studied. In addition to the stress-free condition, the 

constrained boundary condition was introduced, in which the martensitic transformation 

occurs in a crystal that is constrained by untransfonned matrix. The function of the matrix 

constraint was found to be remarkably important to the microstructural development and 

thermal resistance to the martensitic transformation, as well as to the reversible martensitic 

transformation. The transformations in the constrained crystal under external monotonic or 

cyclic stress were also simulated. Thirdly, the reversible martensitic transformation was 

simulated, and the phenomena of thermoelasticity, pseudoelasticity and the shape memory 

effect were studied Finally, the model was applied to partially-stabilized-zirconia systems 

to simulate the martensitic transformation from a cubic to monoclinic structure. 

There are nine chapters in this dissertation. Chapter 2 presents the analytical 

solutions for the preferred habit planes and composite structure of martensite particles using 

the linear elastic theory. A comprehensive description of the computer simulation model is 

included in Chapter 3. In Chapter 4, the computer model is tested by using it to simulate 

the cases which can be solved exactly by the linear elastic theory shown in Chapter 2. 

Chapter 5 presents the results of simulation of martensitic transformations under constraint 

and external stresses. The results of simulations and investigation of the reversible 

transformations and their related phenomena - thermoelasticity, pseudoelasticity and the 
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shape memory effects are described in Chapters 6 and 7. Chapter 8 presents the results of 

the simulation of the transformation in partially-stabilized-zirconia systems. The summary 

of the work and the discussion of the possibilities of further developments of the computer 

model are included in Chapter 9. 
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CHAPTER2 

THE SHAPE, HABIT AND COMPOSITE STRUCTURE OF AN ELASTIC 

INCLUSION 

In this chapter, the linear elastic theory developed by Eshelby and modified by 

Khachaturyan is used to predict the shapes, habits, and composite structures of coherent 

inclusions, such as small volumes that have undergone martensitic transformations. The 

predictions will be used to compare with the results from the computer simulation (Chapter 

4). 

2.1. The Elastic Energy of a Homogeneous, Coherent Inclusion 

The linear elastic theory predicts that the preferred shape of a martensitic particle is 

ordinarily a thin plate parallel to a particular habit plane. It then shows that the preferred in­

ternal state of the particle falls into one of three cases: (1) A thin, single-variant plate of 

martensite can fit into the parent matrix without strain. In this case the preferred state is a 

single-variant particle on the plane of perfect match (the habit plane). (2) A single-variant 

plate cannot fit into the matrix without strain, but a composite plate of two alternating vari­

ants can. If the two variants share a common crystallographic plane (usually a twin plane) 

then the preferred state is a thin, composite plate on the plane of perfect match. (3) Neither 

a single-variant nor a composite plate can fit into the matrix without distortion. In this case 

the preferred state is a thin plate with a definite habit, but the system is strained. The result 

is ordinarily a complex microstructure that includes several crystallographic variants with 

compensating strains. 

To show these results mathematically, let a homogeneous, coherent inclusion form 

within an elastic matrix. Neglecting the difference between the elastic constants of the in-

7 



elusion and the matrix, and assuming linear elasticity, the elastic energy of the inclusion can 

be written as the Fourier integral [13] 

(2.1) 

In this equation, 9(k) is the shape function of the inclusion, 

(2.2) 

where 9(r) has the value 1 if the position, r, is inside the inclusion and is zero otherwise, 

and B(e) is the elastic intensity in the direction, e = k/lkl, 

(2.3) 

In Eq. (2.3), A is the fourth-order tensor of elastic moduli, eo is the transformation strain 

tensor, the strain that would result if the matrix were transformed into the inclusion under 

stress-free conditions, aO is the transformation stress tensor, 

(2.4) 

the tensor, O(e) is defined by its inverse, the Green's tensor 

(2.5) 

and B'(e) is the relaxation function, a function of the direction, e. 

8 
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2.2. The Preferred Shape and Habit 

When the inclusion volume is large or the surface tension is relatively small, the 

elastic energy is large compared to the surface energy, and the preferred state of the inclu­

sion is that which minimizes the elastic energy. Several important conclusions about the 

behavior of such inclusions can be extracted from Eq. (2.1) without solving it. First, the 

preferred shape of an isolated inclusion is ordinarily a thin plate with a definite habit. 

When the inclusion is a thin plate with normal vector, n, the shape function reduces to a 

Dirac &. function in the direction of n, and the elastic energy is 

1 
Ee=2VpB(n) (2.6) 

where V p is the volume of the inclusion. If B (e) has a discrete minimum for a particular 

direction, e = no, as it ordinarily does, then the elastic energy is minimized if the inclusion 

is a thin plate perpendicular to the direction, no. which defines its habit plane. 

Secondly, the elastic energy vanishes entirely if the transformation has an invariant 

plane and the inclusion has the form of an arbitrarily thin plate that lies in that plane, since 

the inclusion and matrix fit together on that plane without distortion. In infinitesimal elas­

ticity the transformation strain, e,O, has an invariant plane if and only if it can be written in 

the dyadic form 

1 
eO =¥In +nl) (2.7) 

where I and n are vectors, and n can be taken to be a unit vector without loss of generality. 

Eq. (2.7) can be written in matrix form 

(2.8) 
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A dyadic strain, eO, has invariant planes perpendicular to the dyad vectors, 1 and n. As can 

be shown by substitution into Eqs. (2.3) and (2.4), when eO is dyadic, 

B(n) = B(l) = 0 (2.9) 

so that the elastic energy vanishes for thin plates in the habits n or 1. This relation provides 

the connection between the "elastic" and "crystallographic" theories of the habit plane; 

however, as Christian has emphasized, finite deformation ordinarily removes the de­

generacy between n and 1, so there is only one invariant plane in the crystallographic the-

ory. We shall let this be the plane n. 

2.3. Dyadic Transformation Strains 

It is relatively easy to determine whether a particular transformation strain, eO, has 

dyadic form. In a coordinate system chosen so that the coordinate direction e3 lies per­

pendicular to both of the dyad vectors, n and 1, the strain component, eZ = 0 whenever i or 

j = 3. Then from Eq. (2.8), eO becomes 

(2.10) 

· If the tensor is then referred to its principal axes in the (nxl) plane, its fonn is 

(2.11) 

10 
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where A1 and A2 are the principal strains. Comparing Eq. (2.10) with Eq. (2.11) and . 

using the relations n1l1 =A}. n2l2 = A2, n1l2 + l1n2 = 0, the vectors n and I have 

components along the principal axes: 

(2.12) 

The vector, n, is imaginary unless the principal strains, A1 and A2, have opposite signs. 

Hence eO is dyadic if and only if one of its principal strains vanishes and the other two are 

opposite in sign. 

In general, the transformation strain is not dyadic. However, it is still often possi­

ble to form a composite particle that has a dyadic net transformation strain by alternating 

thin strips of two different crystallographic variants of the transformation product, and 

joining them internally along a plane of perfect crystallographic match, such as a twin 

plane, to achieve a strain-free junction. If such a composite particle forms as a thin plate on 

an invariant plane of the net "transformation strain, its elastic energy is very small. The 

elastic energy is not quite zero since the individual elements of the composite strain the sur­

rounding matrix. However, since the strain fields of the different variants that make up the 

particle cancel one another at distances much greater than their domain size, the strain 

associated with such a particle is localized along its interface [13] and acts like a surface 

energy. 

The linear elastic theory of composite particles is particularly simple when the trans­

formation strain is orthorhombic or tetragonal, as, for example, is the tetragonal Bain strain 

that governs the martensitic transformation in steel. An orthorhombic strain referred to its 

principal axes has the form 

11 
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(2.13) 

where the Eii are the principal strains. eO is tetragonal if two of the principal strains are 

equal. If the parent matrix is cubic and the principal axes of the strain parallel the cubic 

axes, there are three distinct crystallographic variants. These are obtained by interchanging 

the three principal strains. Let a composite plate be made by alternating the variant 

described by (2.13) with"that whose transformation strain interchanges Ett and £33, and let 

the fraction of the second variant be f. Then the net transformation strain is 

(2.14) 

In order that eO have dyadic form we must have 

(2.15) 

in which case the net principal strains are 

(2.16) 

But, since 0 ~ f s; 1, a solution exists only if e11 and £33 have opposite signs, and Eq. 

(2.12) can oply be satisfied if the sign of (e11 + e33) is opposite to that of £22. Assuming 

Ell has a sign which is opposite to that of E22 and £33, an invariant plane exists if leu I> 

le33l. . Any symmetric strain tensor can be diagonalized to have an orthorhombic form. 

Therefore, Eq. (2.16) and the above condition can be used for any symmetric strain to 

determine whether or not it is a dyadic strain. In the case of a tetragonal strain (e22 = £33), 

an invariant plane exists if and only if e11 and e22 have opposite signs, and lEu I > le22l. 

The familiar Bain strain has this fonn. 
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It follows that the linear elastic theory distinguishes three cases. (1) The transfor­

mation strain is dyadic. In this case the preferred configuration is a single-variant particle 

on the invariant plane. (2) The transformation strain is not dyadic, but there exists a com­

posite particle whose net strain is dyadic. In this case the preferred configuration is a com­

posite particle on the invariant plane of the net dyadic strain. (3) The transformation strain 

is not dyadic and cannot be made so. In this case no invariant plane exists. The preferred 

configuration is a thin plate on the plane that minimizes the elastic energy. 

2.4. The Two-dimensional Case 

It is important to note that case (2) is lost in the two-dimensional case (plane strain). 

When a two-dimensional transformation strain is referred to its principal axes in the plane it 

always takes the form: 

0 OJ 
£22 0 

0 0 
(2.16) 

which is dyadic if the principal strains have_ opposite signs and is non-dyadic otherwise. 

Hence two-dimensional models of the martensitic transformation are inherently limited. 

They cannot reproduce the case in which a particle develops as a composite to create an 

invariant plane. The single-variant particle either has an invariant plane or it does not. 

Despite this limitation, two-dimensional simulations of the martensitic transforma­

tion can be interesting and informative, as it will be shown below. They are 

computationally simple, and do illustrate the development of multiviuiant microstructures to 

minimize the overall elastic energy. The development of microtwinned particles can be 

simulated by assuming that the elementary transformation step creates a microtwinned 

particle with a net transformation strain given by Eq.· (2.16). Then the normal to the 

invariant plane lies in the e1, e2 plane of the simulation, and there are two variants of the 
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microtwinned particle in the plane, whose strains are related by the interchange of en and 

£22· When a three-dimension strain is dyadic, it is reduced to a two-dimension or plane 

strain like that in Eq. (2.16). Therefore, the simulation using the dyadic strain in two­

dimension case does not loose its generality but represents the transformation with a branch 

of transformation strain in three-dimension space. 
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CHAPTER3 

COMPUTER SIMULATION MODEL OF THE MARTENSITE 
TRANSFORMATIONS 

In this Chapter, the computer simulation model of the martensitic transformation is 

constructed. It also includes the descriptions of several extensions of the model for 

simulating the martensitic transformation in a constrained, under external stress conditions · 

(Chapter 5), the reversible transformations during a thermal (cooling-heating) cycle 

(Chapter 6) and during a mechanical (loading-unloading) cycle (Chapter 7). 

3.1. The Computer Model 

The body that undergoes the transformation is represented by an (n x n x n) cubic 

grid in three-dimensional space, or an (n x n) square grid in two-dimensional space. The 

cubic or the square grid is repeated periodically across each of its boundaries to fill the three 

or two-dimensional space. Each small cube or square is a:n elementary cell that is the 

minimum element that can undergo the martensitic transformation. For the purposes of this 

paper the body is assumed to have a free boundary with no external stress. 

To describe the configuration of martensite in a partially transformed body, each 

cell is labeled by its position vector, R, and define the function ~p(R), which has the value 

1 if the cell at R is filled by martensite of variant, p, and is zero otherwise. Given periodic 

boundary conditions, ~p(R+RL) = ~p(R), where RL is any translation vector of there­

peated grid. H there are a. distinct variants of the martensite, the configuration is specified 

by the a. distribution functions, ~p(R), p = l, ... ,a.. 

To simulate the constraint imposed when the transformation occurs within are-
-

stricted region of a larger body, the transformation is confmed to an (m x m) subarea in the 

center of the (n x n) array. Mathematically, ~p(R) is constrained to the value, 0, unless R 
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is within the (m x m) subarea. The thick, untransformed border acts as a buffer that 

provides mechanical constraint during the transformation. This boundary condition 

provides a direct simulation for the transformation of isolated particles within a non­

transforming matrix. It also provides a rough model for the transformation of a restricted 

region within a larger body, for example, the transformation of a single grain within a 

poly granular body. If m = n, the situation is reduced to the unconstrained condition. 

3.2. The Transformation Strains 

For simplicity we assume that the parent phase is cubic and the three-dimensional 

transformation strain is tetragonal. The most general tetragonal strain can be written as the 

sum of a pure dilation, of magnitude £d, and a pure shear, of magnitude e8•· If the tetrago­

nal axis lies in the [ 1 00] direction, the transformation strain is 

e0(1)=£d[~ ~ ~]+es[~ ~1 ~]=es[R~
2 

:.1 ~] (3.1) 
0 0 1 0 0 -1 0 · 0 R-1 

where R = £d/Es is the ratio of dilation to shear, the dilation ratio. The transformation strain 

(16) admits two other crystallographic variants which differ in the orientation of the tetrag­

onal axis. If the tetragonal axis parallels [010] the transformation strain, e0(2), has en = 

£33 = R-1, £22 = R+2. A tetragonal axis parallel to [001] leads to e0(3), with en= £22 = 

R-1, e33 = R+2. 

If the principal axes of a: two-dimensional (plane) transformation strain parallel 

those of the parent cubic crystal the strain tensors of the two variants can be written 

o [R+1 0 ] e (1)=£s 0 R-1 o [R-1 0 ] e (2) = Es 0 R+ 1 (3.2) 
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where Es is the shear in the plane and the dilation ratio, R = eafe8, is the ratio of the areal 

expansion, Ea, to the shear. 

3.3. The Elastic Energy 

To compute the energy of an arbitrary distribution of transformed cells, specified by 

the a distribution functions, ~p(R), we must generalize Eq. (2.1) to the case in which many 

different inclusions are simultaneously present. This was done by Khachaturyan and 

Shatalov [12] (see also Khachaturyan [13]). In the special case in which the inclusions are 

transformed cells of volume, u, in an array of volume, V = Nu, with periodic boundary 

conditions, the Khachatuzyan-Shatalov equation can be written as the simple sum [13] 

+!2, I,wpq{R-R')~p(R)~q(R') (3.3) 
p.q R.R' 

where the summation is taken over all possible variants and over all cells, R, in V. In this 

expression eO(p) is the transformation strain of the pth variant and ~P is the volume fraction 

of the pth variani. The two-body potential, Wpq(R-R'), is given by the Fourier sum 

, 1""'[ o o Jh]o(k)l2 ik•(R-R') Wpq{R-R) =- V t eicrij(p)iljk(e)crld(q)el u e (3.4) 

where a0(p) is the transformation stress of the pth variant, e is the unit vector in the direc­

tion of k, T)o(k) is the shape function of the cell, 
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(k) _ J ik•r.d3 _ sin(ktL/2) sin(k2L/2) sin(k3L/2) 
110 - e r- kt/2 k:z/2 k3f2 (3.5) 

'\) 

where L is the edge length of the cubic elementary cell, and the summation is taken over the 

permissible values of k, ki = fm, where i = 1,2,3, j is any integer and n = Nl/3 is the 
n 

number of cells along the edge of the volume V. The prime on the summation indicates that 

the origin, k = 0, is eliminated from the sum. 

The same formulae hold in the two-dimensional case, with t> =a= L2, the area of a 

square cell of edge length, L, and 

(k) _ sin{ktL/2) sin(k2L/2) 
110 - kt/2 k2/2 (3.6) 

Figure 3.1 shows a quadrant of hlo(k)l2, plotted using Eq. (3.6), which extends into 5th 

Brillouin zone in two-dimensional space. 

To solve for the interparticle interaction, Eq. (3.4), it is necessary to calculate the 

Fourier sum on the right hand side. Since the bracketed term in Eq. (3.4) is independent of 

the magnitude of k, and Tto(k) decreases rapidly with lkl, it is only necessary to consider 

the terms that lie in the first few Brillouin zones about the origin. However, to evaluate the 

term in brackets we require the transformation strain tensor, a0(p), for each variant, and 

the matrix elastic tensor, O(e). For the three-dimensional case we ass~me the tetragonal 

transformation strain given in Eq. (3.1), which permits three variants that differ in the 

choice of the tetragonal axis. We further assume that the matrix is elastically isotropic with 
( 

shear modulus, J.l., and Poisson's ratio, v (which we approximate as 1/3). The trans­

formation stress of the variant with tetragonal axis along e1 is 
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The two-dimensional form ofEq. (3.7) is 

. { R [ 1 0 ] [ 1 0 ]} [ 3R + 1 
o-0(1) = 2J.L£s 1-2v 0 1 + 0 -1 = 2J,J.£s 0 (3.8) 

In both cases the matrix elastic tensor can be written 

(3.9) 

When Eqs. (3.7) or (3.8) and (3.9) are substituted into Eq. (3.4), the shear strain, 

£s, and shear modulus, ~.are gathered into the multiplicative factor, J.l.Es2, which has units 

of energy. If we take this term to define the unit of energy, then Wpq(R) depends only on 

the dilation ratio, R. The dilation ratio is the single material variable that determines the 

pattern of transformation under a given set of conditions. 

As an illustration of the results, Figure 3.2 shows a plot of the function W11(R­

R '), the interaction between like particles, for a two-dimensional case in which the 

transformation strain is a pure shear (R = 0). Figure 3.3 and Figure 3.4 show the plots of 

W11(R-R') for the dilation ratio R = 0.25 and R = 1.0 respectively. In the pure shear 

case, Wu(R-R') has a four-fold symmetry. The dilation disturbs the four-fold symmetry, 

and the interaction between near neighbor increases with the value of R. 

3.4. The Free Energy 

When the boundary of the solid is diathermal and deformable its equilibrium is 

governed by the Gibbs free energy. When there is no traction on the boundary the elastic 

contribution to the Gibbs free energy is the elastic energy given by Eq. (3.3). If a matrix 

cell at position R is transformed to a martensite particle of variant, p, the elastic part of the 

Gibbs free energy changes by the amount 
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The total change in the free energy when the cell at R transforms to variant p is the sum of 

chemical and elastic terms when the external stress is missing and the other resistance (e.g., 

surface energy) are neglected: 

L\G{T, p,R) = uL\Gu(T) + L\Ge(p,R) (3.11) 

-where .1.Gu(1) is the chemical free energy change per unit volume in a stress-free transfor­

mation. L\Gu(1) is approximately linear in temperature forT near To. the equilibrium trans­

formation temperature: 

(3.12) 

It follows that a plot of the fraction transformed against L\Gu(T) approximates the TT curve 

of the transformation, to within the scale factor, Ml0 (which is measured in units of Eo). 

3.5. External Stress 

An external stress, ae, changes the Gibbs free energy by the term 

e- L~ e 0 Gs =- Va .. £ii =- V pa .. £ .. (p) 
lj '.J lj lj 

p 
(3.13) 

where £is the macroscopic strain induced by the transformation, 

(3.14) 

20 



The formation of a martensite particle with variant, p, changes Gs by the amount 

aG8(p) =- ua~.e~(p) 
. IJ lJ 

(3.15) 

which ordinarily depends on the variant, p, but is independent of the position, R. If we 

measure the magnitude of the external stress in units of J.I.Es, and measure .!\08 in units of 

Eo= (u/2)J.LE82, then .!\G8(p) depends only on the dimensionless stress and the dilation ra-

tio, R. 

The total change in the free energy for the transformation of the element (p, R) 

under a stress, ae, at a fixed temperature, T, is: 

(3.16) 

when the other resistance are neglected. 

3.6. Frictional resistance and Plastic Relaxation 

In the ideal case the cell at R would transform spontaneously if the free energy 

change, .!\G(T, p,R), is negative. However, to approach the experimental situation more. 

closely we wish to include the possibility that the transformation is opposed by a frictional 

resistance that may be associated with nucleation barriers, restrictions on interface mobility, 

plastic deformation, or interactions with internal defects. To phrase the simplest possible 

model, the frictional resistance, aGr, is assumed a constant, independent of temperature, 

particle type, or particle configuration. 

The second effect we wish to include in the model is the possibility that some part 

of the elastic strain that is stored during the transformation is relaxed by plastic 
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defonnation. The relaxed part of the elastic energy does not oppose funher transformation 

(unless it changes its form and becomes a part of the frictional resistance), and the elastic 

interaction between the particles decreases because of the reduced elastic energy at each 

position. In this case, a particle of type p, at position R, stores only a fraction, ft(p,R,T), 

of the elastic energy, 6Ge(p,R), associated with the forward transformation. The simplest 

model is used and fr, plastic relaxation factor, is set at the constant value. In the limit, fr = 

1, there is no lost in the elastic energy by the plastic deformation. In the limit, fr = 0, the 

elastic energy is fully relaxed. 

With these assumptions, the free energy that must be supplied to transform a cell at 

R to the variant, p, is 

(3.17) 

3. 7. Reverse Transformation and Reversibility 

When the transformation is reversed, the part of the elastic energy relaxed by plastic 

deformation cannot be recovered. In this case, the reversion of a particle of type p, at 

position R, releases only a fraction, fr(p,R,T), of the elastic energy, 6Ge(p,R), associated 

with the forward transformation. Again, for the simplicity, fr<P,R,T) is set at the constant 

value fr, which is the reversibility of the elastic energy. In _the limit, fr = 1, all of the 

elastic energy is recovered; in the limit, fr = 0, no elastic energy can be recovered during 

the reverse transformation. 

The total free energy change for the reverse transformation, of the element (p,R) at 

tempera~e. T, is, then 

(3.18) 
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I 

where L\Gu(T) is the chemical free energy change per unit volume for the reverse 
I 

transformation of martensite to parent phase, and L\G (T) = -L\Gu(T) at the same 
u 

I 

temperature; L\Ge(p,R) is the part of the Gibbs free energy change when a martensite 
I 

particle of variant pat position R is reverse to a matrix cell, and L\Ge(p,R) = -L\Ge(p,R) if 

the configurations of martensite are the same when the forward and reverse transformations 
I 

of the element (p,R) take place; L\Gi(cre·p) is the free energy change due to the external 
I 

stress, ae, when a martensite particle pis reversed to a matrix cell; L\Gr is the frictional 

resistance of reverse transformation, a constant for all martensite particles. 

3.8. The Transformation Path 

The martensitic transformation modeled here is athermal. The athermal character of 

the transformation has the consequence that an elementary cell within the array can 

transform only if the free energy change is negative. 

3.8.1. Irreversible transformation 

To simulate a martensitic transformation of the two or three-dimensional bodies de-

fined above we introduce one or more martensite nuclei, which are taken to be cells that 

have previously transformed. Given Wpq(R), which can be tabulated once and for all in a 

computer, L\Ge(p.R) can be found for all untransformed cells that lie in the subarray in 

which transformation is permitted. The chemical driving force, L\Gu. is then set at the 

value that is just sufficient to make L\G(T,p,R) negative for at least one cell. This cell is 

transformed; mathematically, ~p(R) is set equal to one for the position R, and variant p, of 

the transformed particle. The transfomiation of the first cell usually causes several cells to 

have negative L\G(p,R). The cell that does transform (Rt) and its variant (p) are chosen to 

maximize the decrease in free energy. L\Ge(p,R) is then recomputed, and the remaining 
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untransformed cells are surveyed to identify the preferred site for the next element of the 

transformation. This process is iterated until either all cells have transformed or all 

remaining cells yield positive values of AG. Since AG\)(T) is the same for every cell, this 

procedure automatically chooses the transformation path that minimizes the increment to the 

elastic energy in each step. 

3.8.2. Reversible transformation 

Similar to the forward transformation, the. reverse transformation occurs only if the 

free energy change, AG'(T,p,R), is negative. In the simulation of reversible 

transformation, the reverse transformation is allowed during cooling or loading, if the 

internal elastic strain is sufficient to drive it, and the forward transformation is also allowed 

during heating or unloading. This means that the forward transformation and reverse 

transformation compete with one another at each step. However, for simplicity, the reverse 

transformation is confined to the transformation from martensite to parent phase. A direct 

transition between martensite variants is not permitted 

At each step of transformation, ~G'(T,p,R) can be computed for all transformed 

cells. Then the smallest AG(T,p,R) and AG'{T,p,R) are compared to see which is smaller 

when both are negative. If AG'{T,p,R) is more negative, the variant p martensite particle 

. at the location R is reversed to th~ matrix cell; ~p{R) is reset to zero. This process is 

iterated until neither can forward transformation nor reverse transformation continue and 

then the driving force (chemical free energy or stress) must be increased (for cooling or 

loading process) or decreased (for heating or unloading process). The transformation path 

that is simulated by this procedure is the minimum energy path, the path that provides the 

maximum decrease in free energy for each incremental step. The simulation results are 

generated by using the minimum energy path throughout, except otherwise indicated. 
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3.8.3. Temperature-Transformation (IT) curve 

To determine the form of the TT curve for the cooling process, ~Gu(T) is first 

given the value that is just sufficient to initiate the transformation from the pre-existing 

seed. This simulates a situation in which the sample is cooled ( A.Gu(T) is decreased) until 

the transformation initiates. The transformation is then continued until it either reaches 

completion, or arrives at a configuration in which any funher transformation would 

increase the free energy (~G{T, p,R) > 0 and A.G'(T, p,R) > 0 for every possible 

incremental step). If the transformation stops before completion, the value of ~Gu(T) is 

decreased to a value that is just sufficient to continue the transfonnation, and the simulation 

is continued. This procedure generates a plot of the fraction transformed vs. A.Gu(T) for 

the cooling process, which gives the TI curve to within the scale factor that relates ~Gu(T) 

and T. The TI curve for a heating process can be determined by the similar way. ~Gu{T) 

is increased to where. the reverse transformation starts. If the reverse transformation stops 

before the all martensite particles transform to the matrix or before a desired remaining 

volume percentage martensite is reached, the value of .6.G-u(f) is increased again to a value 

just sufficient to continue the reverse transfonnation. 
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CHAPTER4 

COMPUTER SIMULATION OF MARTENSffiC TRANSFORMATION IN 

STRESS-FREE SOLIDS 

In this chapter, the simulation results of irreversible martensitic transformation in 

stress-free solids are presented, and the shapes, habits and microstructures obtained from 

the simulation are compared with the analytical results predicted by the linear elastic theory 

in Chapter 2. The Gibbs free energy change includes only the chemical and elastic terms 

(Eq. (3. 11)) 

4.1. Simulated Transformations in Three Dimensions 

The three-dimensional simulations were done on an 21x21x21 array. Six different 

tetragonal transformation strains were used. All were of the form given in Eq. (3.1); the 

dilation ratio, R, was varied to change the preferred state of the martensite particle. The 

examples were chosen to include a dyadic transformation strain, two different non-dyadic 

~trains, and three intermediate cases leading to various types of composite particle. In all 

cases the transformation was initiated by transforming a single cell in the center of the ar-

ray. 

The results are shown in Figures 4.1 through 4.6. A tetragonal transformation 

strain leads to three distinct variants (Eq. (3.1)) which are labelled 1,2,3 according to the 

orientation of the tetragonal axis of the strain. In the figures, untransformed material is 

represented by an empty cell, variant (1) by a thin, horizontal bar, variant (2) by a shot4 

thick vertical bar, and variant (3) by a thin, vertical bar. The origin of the transformation, 

which is always a particle of variant (1), is represented by a dark square. The figures show 

both intermediate configurations and the fmal configuration of the transformed body on 

typical (100), (010) and (001) sections. 
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(1) R = 1: dyadic transformation strain. In this case the transformation strains have 

the simple dyadic form: 

[
1 00] 

e0(1) = 3£s 000 
000 

[
000] 

£0(2) = 3£s 0 1 0 
000 

[
000] 

£0(3) = 3£s 000 
001 

(4.1) 

The minimum energy configuration for an isolated particle is a single-variant plate with a 

{ 100} habit. As shown in Figure 4.1, ·this is the morphology produced by the simulation. 

A seed of variant (1) develops into a thin plate in the (100) plane, which gradually thickens 

until the whole body is transformed into a single-variant martensite. 

(2) R = - 0.5: composite dyadic strain. In this case the three transformation strains 

are: 

3 [1 00] e0(1) = 2Es o IQ 
001 

[roo] 
£0(2) =~ 01Q 

001 

· roo 
e0(3) =~s[oro] 

001 
(4.2) 

A composite particle with a dyadic transformation strain can be made by mixing two vari­

ants in equal proportions; for example, equal fractions of variants (1) and (2) give 

(4.3) 

The composite transformation strain is best accommodated by a thin plate with habit (001). 

The results of the computer simulation are shown in Figure 4.2. As expected, the 

simulated transformation generates a composite plate with an (001) habit in which two 

variants alternate. This plate gradually thickens to complete the transformation. 

(3) R = 2; non-dyadic strain. In this case the three transformation strains are: 

[
400] 

£0(1) = Es 010 
001 

[
1 00] 

£0(2) = £s 040 
001 

[
1 00] 

e0(3) = Es 0 1 0 
004 

(4.4) 
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Since all of the principal strains are positive, these variants cannot be averaged into a dyadic 

strain. We are left with three separate variants, each of which has minimal energy when it 

is in the form of a plate with a habit of type { 100}. The results of the computer simulation 

of this case are shown in Figure 4.3. The seed is a variant of type (1), which grows into a 

thin plate of variant (1) with a (100) habit. Mter that plate has extended through the array, 

a second plate of variant (2) nucleates and grows with a (010) habit After the original plate 

has thickened somewhat, a plate of variant (3) nucleates and grows. These plates then 

thicken and new plates nucleate and grow to produce a composite microstructure in which 

all three variants appear. The structure is a macrocomposite of single-variant plates; the 

plates themselves are not composite. 

(4) R = -2; non-dyadic strain giving rod-shaped particles. In this case the transfor-

mation strains are: 

[
000] e0(1) = -3e8 010 
001 [

1 00] e0(2) = -3e8 000 
001 [

1 00] 
e0(3) = -3£s 0 1 0 

000 
(4.5) 

Since the principal strains have the same sign, no dyadic composite strain can be con­

structed. The elastic theory predicts single-variant particles. However, it can be shown 

that in an isotropic solid the energy of a particle with a transformation strain like e0(1) is 

minimized when the particle has the shape of a rod with a [100] axis [13]. (The trans­

fanned particle fits the matrix perfectly in the [100] direction, and concentrates strain in the 

isotropic (100) perpendicular plane.) The computer simulation of this case is illustrated in 

Figure 4.4. A seed of variant (1) grows into a rod in the [100] direction, as predicted. 

Once the rod has extended across the array, rods of the other two variants form and grow, 

as shown in the figure. The fmal microstructure consists of a complex mixture of all three 

variants. 

Examples (3) and (4) illustrate the tendency for non-dyadic transformation strains to 

generate macrocomposite microstructures that mix discrete particles of several different 
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variants. The reason is the elastic strain that accumulates in the system as such particles 

grow. Particles of other variants nucleate and grow to relieve the strain. 

Examples (1)-(4) illustrate the different types of behavior predicted by the elastic 

theory, and show that the computer simulation can reproduce them. However, the simula­

tion is less successful in matching the theory when the minimum energy configuration is a 

composite particle with a preponderance of one variant, as illustrated by the following two 

examples. 

(S) R = 0; simple shear. In this case the transformation strains are pure shears of 

the form 

[
200] 

eO(l)=Es OIQ 
001 

(4.6) 

Two pure shears of this type, for example, variants (1) and (2), can be joined to produce a 

dyadic composite particle by adding them in the mixture: 

- 1 2 [000] 
£ = 3e0(1) + 3 e0(2) = Es 01 ~ 

001 
{4.7) 

This particle is a composite of 1/3 variant {1) and 2/3 variant (2) that fits the matrix per­

fectly when it is a thin plate on the habit' plane (Oll). A total of six symmetrically equiva­

lent composite particles can be made in this way, whose preferred habits are the six { 110} 

planes. The results of computer simulation of a transformation with this strain are shown 

in Figure 4.5. The transformation begins from a seed of type (1), and develops initially as 

a thick composite plate that generally follows (Off). However, the fractions of the two 

variants are not quite right; they are near 0.5. After some growth the transformed particle 

develops into a mixture of all three variants that develops a complex microstructure. 

( 6) R = 0.2; butterl1y martensite. When R = 0.2 the transformation strains have the 

form 
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[
2.2 0 OJ 

eO( I) = e8 0 .8 Q 
0 0.8 

(4.8) 

A composite particle with a dyadic strain can be made from two variants of this type in a 

nearly 3:1 proportion: 

. [1.400] £ = 0.73e0(1) + 0.27e0(2) = e8 0 0 Q_ 
0 0.8 

(4.9) 

This particle fits perfectly in the matrix if it has the fonn of a thin plate on the (403) plane. 

However, computer simulation of transformation from a single seed shows a different 

morphology (Figure 4.6). The initial particle grows as a mixture of two variants that join 

along a twin plane and diverge from one another to create a "butterfly" pattern. Eventually, 

the third variant also appears, creating a complex final microstructure. 

The failure of the simulation to reproduce the minimum energy configuration sug­

gested by the theory is a result of three factors whose contributions are difficult to separate. 

First, the simulated transformation proceeds one finite step at a time. Since each step is a 

single variant, the transformation cannot grow in increments that contain the proportions 

· that appear in the most favorable composite plate. This does not present a problem when 

the variant fraction is near 0.5, since variants can alternate. However, the preferred com­

posite structure is difficult to achieve when the fractions differ significantly from 0.5. 

Second, a dyadic transformation strain only produces a perfect match with the matrix when 

the transformed particle has the form of a thin plate. In the simulation the nucleus is cubic 

in cross-section, and necessarily remains a relatively thick particle in its early stages of 

growth. Third, the array is finite and relatively small. The growing particle is repeated pe­

riodically across the array boundaries, and begins to interact with its neighbors at a fairly 

early stage in the transformation. (The effect of array size was studied by doing simula- . 

tions in a smaller array, llxllxll, and in a larger array, 41x41x41. The results are 
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quantitatively different, but qualitatively the same; all particles grew with the same initial 

morphology and habit in the arrays of two different sizes.) 

While these three problems are exaggerated in the computer simulation, they also 

affect martensitic transformations in real systems. Elementary volumes transform into sin­

gle variant particles that, given surface tension, have fmite size._ The martensite particles 

initially have finite thickness and, hence, do not satisfy the assumptions of the crystallo-

graphic theory. Moreover, martensite particles tend to form from separate nuclei, often in 

separate grains, and interact with one another at an early stage. There may, therefore, be 

useful information in the details of single particle growth in the simulation. For example, 

"butterfly martensite", which is a common morphology in the computer simulation, is also 

observed in real systems [19], and has been difficult to interpret theoretically. 

4.2. Simulated Transformations in Two Dimensions 

The simulations of two-dimensional martensitic transformations used a 41x41 array 

of square cells with periodic boundary conditions. In the part of the work reported here, 

the matrix was assumed to be elastically isotropic and to have square symmetry in the 

plane. The principal axes of the transformation strain were taken to lie parallel to the cell 

edges. The transformation strain for these conditions was given in Eq. (3.2). The two 

variants are 

o (R+1 0 ] e (1) =es o R-1 
o [R-1 0 ] 

£ (2) = Es 0 R+1 (4.10) 

When -1 ~ R ~ 1 the transformation strain is dyadic, and the preferred state of a single 

martensite particle is a thin plate (line in two-dimensions) with the habit plane normal 

n(1)=[Hm n(2)=[ff.~ (4.11) 
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When R > 1 or R < -1 the transformation strain is not dyadic, and cannot be made so by 

making a composite of the two variants. The preferred state of a single particle is a thin 

plate (line) with the habit that maximizes the elastic relaxation energy. 

As in the three-dimensional case, when the transformation strain is dyadic and the 

transformed material forms as a thin plate along its preferred habit, the elastic energy is 

zero; after an unconstrained transformation the body should contain a single variant of 

martensite. When the transformation strain is not dyadic, or when the particle does not 

fomi in its preferred shape and habit, strain accumulates in the body as the transformation 

proceeds. In this case even an unconstrained transformation will ordinarily produce ami­

crostructure that is a complex mixture of martensite variants. 

This behavior is illustrated by the results of the computer simulation studies pre­

sented in Figures 4.7 and 4.8. Figure 4.7 shows the appe~ce of the initial martensite 

plate that grows from a s.eed of variant (1), as the dilatation ratio, R, is varied from 0 (pure 

shear) to 1. As p,redicted, the transformation product is a single-variant plate with a defmite 

habit. The predicted habit plane normal varies from [1,1] to [1,0] as R increases from 0 to 

1. Table 4.1 compares the predicted and observed habit planes. The prediction is obeyed 

reasonably well, although the observed habit plane rotates toward [1 ,0] as R increases 

somewhat more quickly than the theory predicts. As in the three-dimensional case, the 

discrepancy has two sources: the granular structure of the computer model, which restricts 

the transformation path, and the finite thickness of the initial particle, which changes the 

preferred habit plane. If ~e martensite transformation is continued beyond the point shown 

in Figure 4. 7, the plates thicken monotonically until the whole plane is transformed into a 

single variant of martensite. 

Figure 4.8 shows the results of a simulated transformation with R = 1.5. In this 

case the predicted particle morphology is a thin, single-variant plate (line) with the normal 

[1,0] (variant (1)), or [0,1] (variant (2)). Growth from a seed of variant (1) produces a 
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single-variant plate with normal [1,0]. When this plate has grown across the array, the 

accumulated elastic strain triggers the formation of a plate of variant (2) that grows normal 

to [0,1]. the final microstructure is a mixture of plates of the two variants. Figure 4.8(b) 

illustrates an intermediate stage in the transformation. Note that plates of the two variants 

do not simply thicken; new plates tend to nucleate and grow at some distance from those 

that are already present. 

Finally, we contrast the results obtained here with those presented in the earlier 

work of Wen, Khachaturyan and Morris [17], in which the two-dimensional transforma­

tion produced microtwinned plates (lines) along which the two transformation variants al­

ternated. The reason for the difference is that Wen, et al. [17] used an approximation ( 

point approximation) to the two-particle interaction function, Wpq(R-R') (Eq. (3.4). The 

approximation is made by replacing the shape function of the cell, llo(k) (Eq. 3.6), by a 

constant such that 11lo(k)l2 = L2 (the area of the cell) when k is in the frrst Brillouin zone 

and zero otherwise. Figure 4.9 compares the shape function 11lo(k)l2 and the approximation 

of it (step function) when k is a one dimensional variable (at (10) direction in Figure 3.1). 

This "point approximation" simplifies the calculation ofWpq(R-R'), but it exaggerates the 

interaction between unlike variants. Microtwinned particles appear to maximize the number 

of unlike neighbors. Figure 4.10 is the microstructure obtained from the simulation using 

the point approximation. 

4.3. Discussion and Conclusion 

The results presented above show that one can use the linear elastic theory to con­

struct a tractable computer simulation model of the martensitic transformation that produces 

transformation patterns like those observed in real systems. The simulation was tested by 

comparing the shape and constitution of the initial martensite particles formed to the analytic 

predictions of the elastic theory. The results are generally encouraging. 
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In the three-dimensional case the elastic theory distinguishes three cases, depending 

on the nature of the transformation strain: (1) If the transformation strain is dyadic, the pre­

ferred transformation product should be a single-variant, thin-plate particle with a definite 

habit. (2) If the strain is not dyadic, but can be made so by constructing a composite of 

two variants, the preferred product should be a composite plate with a definite habit. (3) If 

the strain is not dyadic and cannot be made.so by forming a composite particle, the initial 

product should be a thin plate (or rod) with the habit that minimizes the elastic energy. The 

computer simulation is in qualitative agreement with the theory for cases (1) and (3). In 

case (2), the three-dimensional computer simulation produces a properly twinned marten­

site when the predicted composite plate has equal fractions of two variants, but yields mix­

tures of thicker, single variant domains when the predicted fractions of the two variants dif­

fer significantly from 0.5. The difference between theory and simulation is not entirely due 

to shortcomings of the model. The theory assumes that the martensite particle forms as an 

arbitrarily thin plate with the correct internal constitution. The finite thickness of real 

martensite embryos changes both the habit and internal state. In fact, the simulation gener- . 

ates unusual patterns, such as "butterfly martensite", that are observed in real systems. 
. ' 

In the two-dimensional case the theory never predicts microcomposite particles. 

The two-dimensional transformation strain is either dyadic, leading to case (1), or inher­

ently non-dyadic, leading to case (3). In both cases the initial transformation particle 

should be a thin plate (line in two dimensions) with a predictable habit. In agreement, the 

two-dimensional computer simulation yields thin, single-variant particles with habit planes 

that are close to those predicted. Microtwinned particles are not observed. 

The microstructures that result when the simulated transformation is taken to com-

pletion are also in general agreement with theory. In cases (1) and (2) an arbitrarily thin 

martensite plate does not strain the matrix. Once the plate extends through the whole body, 

it can simply thicken until the body transforms completely. This is the behavior produced , 

by the computer simulation in case (1) and in case (2), wheri the simulation leads to ami-

34 

.. 



crotwinned particle. In case (3), on the other hand, a growing particle produces elastic 

strains in the matrix. These can ordinarily be compensated if particles of different variants 

appear, creating a microstructure that is a macrocomposite of two or more variants. The 

computer simulation always produces a microstructure of this type in case (3), and also 

does so in examples of case (2) that do not form the favored microtwinned particle. 

These results show that a martensitic microstructure is obtained only when the 

martensitic plate cannot adopt a strain-free form, or when its effort to do so is frustrated. 

In the simple model used here frustration happens when the plate has a composite 

microstructure that is difficult to achieve under the conditions imposed by the model. The 

growth of a strain-free dyadic particle can also be frustrated by physical constraints that 

appear naturally when the transformation occurs in a constrained or polygranular 

microstructure, when multiple nucleation sites are active and give rise to interacting 

particles, or when external stress modify the energetics of the transformation. These 

effects have been simulated, and will be discussed in the next chapter. 

Table 4.1. The predicted and observed (in computer simulation ) habit plane normals 
I 

R n = [nh n2] n1/n2 

predicted observed predicted observed 

0 [1, 1] [1,1] 1 1 

0.180 [6,5] [1,1] 1.2 1 

0.219 [5,4] [4,3] 1.25 1.33 

0.3 [4,3] [2,1] 1.36 2 

0.6 [2,1] [1,0] 2.0 00 

1.0 [1,0] [1,0] 00 00 
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CHAPTERS 

COMPUTER SIMULATION OF MARTENSITIC TRANSFORMATIONS IN 
CONSTRAINED, TWO-DIMENSIONAL CRYSTALS UNDER 

EXTERNAL STRESS 

S .1. Introduction 

In previous chapters the linear elastic theory is used to predict the preferred 

configuration of a martensite particle and constructed a computer simulation model to study 

the microstructures that develop in simple situations. While the linear theory is only 

approximate, it does lead to a tractable model that reveals some of the factors that govern 

microstructure. 

An analysis of the microstructures produced in computer simulated transformations 

of cases (2) and (3) (Chapter 4), where the transformation strain is not dyadic, suggests 

that external constraints play an important role. To explore this role, the transformations in 

crystals with constrained boundaries and in crystals that are subjected to external stress are 

simulated In these simulations it is assumed that the transformation strain is dyadic (Case 

(1), R < 1 in Eq. (3.2)) so that any microstructure that appears is a consequence of the 

constraint As it has been pointed ·out in Chapter 2, when a three-dimension strain is 

dyadic, it is reduced to a two-dimension or plane strain like those in Eq. (3.2), and the 

simulation in two-dimension case does not loose its generality but represents the 

transformation with a branch of transformation strain in three-dimension space. 

Simulations in two-dimension also minimizes computer time and simplify the visual 

presentation of the results. 

As shown in Chapter 4, a dyadic transformation in an unconstrained crystal is ac­

complished by the growth and thickening of a single-variant plate. There is, therefore, no 

microstructure. Multivariant microstructures appear when geometric constraints prevent 
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relaxation of the shear stresses produced by the transformation. These can be relaxed, at 

least in part, by forming other variants that have compensating strains. In a real crystal the 

transformation is constrained by stable matrix phases, grain boundaries or other internal 

defects that limit the growth of a single plate, by plastic deformation of the untransformed 

matrix, and by the growth of plates that nucleate separately and interfere with one another. 

In this paper we shall consider only the first of these, and study the development of the 

martensitic transformation in an element of material that is embedded in an untransformed 

matrix. 

A second qualitative feature of a dyadic transformation in a stress-free crystal is that 

the thermodynamic driving force (temperature or external stress) that is sufficient to nucle­

ate the ttansfonnation is almost sufficient to complete it. The martensite start (Ms) and fin­

ish (Me) temperatures are very close to one another. When the crystal is constrained, on the 

other hand, the accumulation of the transformation stress has the consequence that the 

transformation becomes more difficult as it proceeds. In this case the Ms and Me tempera­

tures are different It is interesting to see and understand how the TT curve (fractional 

transformation versus temperature) of an athermal martensitic transformation depends on 

the transformation strain and the imposed constraints. 

The external stress has an important effect on transformations that would ordinarily 

lead to multivariant microstructures. The deviatoric parts of the applied stress and the 

transformation strain ordinarily couple so that one martensite variant is preferred to the oth­

ers. The applied stress affects the transformation path, the microstructure and the TT 

curve. The coupling between the applied stress and the martensitic transformation signifi­

cantly affects the fracture and fatigue of metastable structural materials. The role of the 

stress is only partly understood. 

These issues are explored below in the context of the computer simulation model 

described in Chapter 3. The transformation is irreversible, and the Gibb's free energy 
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includes the chemical free energy, elastic terms caused by the martensitic transformation 

. and external stress (Eq.(3.16) ). 

5.2. Transformation in a Stress-Free Solid 

5.2.1. The Microstructure Produced by a Pure Shear Transfonnation 

First, let the transformation strain be a pure shear (R = 0), and let the transforma­

tion initiate from a single seed of type (1). When the transforming solid is unconstrained, 

the transformation proceeds through the growth of a single-variant plate along the (11) line, 

as described in Chapter 4. The plate extends until it touches the boundaries of the array. 

The plate then thickens until the whole array is transformed into a single-variant product 

However, when the transformation is constrained by its surrounding the microstructure 

changes to a multivariant microstructure like that illustrated in Figure 5.1, which shows the 

transformation of a 41x41 region of a 101x101 array. The two variants form alternating 

bands on (11) that have almost equal areal fractions. 

The source of this microstructure is straightforward. A plate of variant (1) grows 

across the array and thickens. However, since the growing plate is constrained by its sur­

roundings, its shear gradually accumulates into a net shear stress that opposes further trans­

formation. Eventually the internal stress becomes great enough to force the nucleation of 

plates of variant (2) along the sides of the original plate. As these grow, they first relax the 

shear due to the excess of variant (1), and then continue to grow until their accumulated 

strain forces there-nucleation of plates of variant (1). In this way the transformation grad­

ually builds up a microstructure of parallel plates of alternate variants. 

The single-variant plates in this microstructure thin as the constraint increases since 

the back-stress that opposes continued growth increases more rapidly as the constraint is 

made more severe. This behavior is illustrated in Figure 5.2, which shows the results of 
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simulations in which the transforming region is fixed in size (41x41) while the array is ex­

panded to provide a progressively larger untransformed buffer. As can be seen in the fig­

ure, the plate thickness decreases rapidly with array size, and asymptotes at a thickness of 

about 5 elementary cells when the array size is 80x80 or more. 

Note that the microtwinning observed in this case does not develop to achieve an 

invariant plane strain in the sense of the "crystallographic theory" of martensite [3,4]. Each 

variant already has an invariant plane strain (see Chapter 3). The twins form to reduce 

energy by eliminating long-range shear strains in the matrix. A particularly clear 

experimental example is found in the microstructure . of small, embedded particles of 

zirconia (Zr02) that have transformed from a tetragonal to a monoclinic structure [20]. 

5.22. The Influence of a Dilation on the Microstructure 

A dilation (R :1: 0) affects the transformation path in two ways. First, R affects the 

crystallographic habit. As described and illustrated in Chapter 4, the preferred habit of a 

growing plate rotates as R increases from a (11) habit for R = 0 toward the { 10} habit that 

is preferred when IRI is large. Moreover, when R:;tQ the preferred habits of the two vari­

ants differ; if the habit of variant {1) is (hk), that of variant (2) is (kh). Second, when R:I:O 

the transformation stress has a hydrostatic component that is the same for both variants. 

The hydrostatic component cannot be relaxed by forming multiple variants, and produces 

long-range stresses in the matrix that oppose the transformation. 

The microstructural consequences of these effects are illustrated in Figure 5.3, 

which shows partly completed transformations for two values of the dilation ratio. In all 

cases the transformation begins with the growth of a thin plate of variant (1), the variant of 

the pre-existing seed. However, if the dilation is moderate to large (IRI > 0.2) this plate 

grows only a short distance before particles of variant (2) nucleate. Afterward the two 

variants grow simultaneously. Two growth morphologies have been observed. The first, 
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and most common, is the "butterfly" morphology that is shown in Figure 5.3(a). It closely 

resembles the martensite morphology that has been characterized experimentally by 

Tamura, Ma.ki and coworkers (see, for example, Reference [19]). The transformation that 

creates this morphology begins as a twinned plate that grows along the (11) plane. 

However, the preferred habits of the two variants differ from one another and differ from 

(11) by angles that are mirror images of one another. As the twinned plate thickens, it 

splits into two single-variant "wings", each of which grows in a direction close to its pre­

ferred habit. As R increases the preferred habits differ farther from (11), and the "butterfly 

wings" spread. The second intermediate microstructure (Figure 5.3(b)) is the "cross" 

morphology in which the single variant plates grow _out from the seed in their preferred 

planes and thicken to form a x-shape. 

The simulations presented in Figures 5.1 through 5.3 assumed elastic isotropy. 

Simulations have also been done in anisotropic media. The results show that elastic 

anisotropy does not affect the qualitative results described above. Its major consequence is 

to change the preferred habit for given transformation strain. 

5.2.3. The IT Curve for Stress-Free Transformations 

If we assume a driving force (.!\G-u) that is just sufficient to start the transformation 

from a pre-existing seed, then an athermal transformation can continue only so long as 

there is an elementary transformation (p,R) such that 

.!\Gu + min[.!\Ge(p,R)] < 0 (5.1) 

If the configuration is such that the smallest value of aGe(p,R) > 1.!\GJ then the transfor­

mation stops, and will not begin again until aGu is lowered to achieve condition (5.1). 

Simulated transformations in constrained systems often pass through a sequence of 
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metastable configurations that violate condition (5.1). Each metastable state requires a fur­

ther decrease in .6.Gu to continue the transformation. The result is that the transformation 

develops in a series of bursts as .6.Gu is lowered. A plot of the fraction transformed against 

.6.Gu is roughly equivalent to a TT curve for the athennal transformation that extends from 

the martensite start (Ms) to the martensite finish (Mr) temperature. 

When the transforming solid is unconstrained and the transformation is dyadic there 

is very little thermal resistance to the transformation. Under some conditions a metastable 

state is achieved when the first martensitic plate completes its growth to the boundaries of 

the array, requiring a small increase in the driving force, but it is essentially true that the 

whole body bursts into a single variant martensite once the applied driving force reaches the 

critical initiation value. The M8 and Mr temperatures are nearly the same, and the 1T curve 

is.essentially a vertical step at Mr. 

The situation is very different for a transformation in a constrained solid, as is illus­

trated by the 1T curves shown in Figure 5.4. Even when the transformation strain is a 

pure shear (R = 0) it is difficult to eliminate the last few particles of the untransformed 

phase, and .6.Gu must be lowered significantly to accomplish that. The microstructure at 

.6.Gu = -1.42Eo, after the main burst of transformation, is shown in Figure 5.5(a); the 

residual phase is located at points of high stress where different variants impinge on one 

another and on the array boundary. The Tf curve spreads significantly as the dilational 

c~ntribution to the transformation (R) increases. This is partly because the dilation 

produces a hydrostatic stress that increases monotonically as the martensite fraction 

increases, and partly because transformation at high R creates a complex multivariant 

microstructure that contains many sites where internal stress fields interfere to create 

unfavorable conditions. The latter effect is apparent in the microstructures shown in Figure 

5.5, which show the transformation at .6.Gu= -1.42Eo for various values ofR. 

(It should be noted that the numerical values of .6.Gu at which transformation starts 

(Ms) for the various values ofR shown in Figure 5.4 are not strictly comparable because of 
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the way the simulation is done. In all cases the transformation initiates at a pre-existing 

seed of variant (1). This seed carries the transformation strain, which is different for the 

different values of R. This difference affects Ms. but has a negligible effect on the 'IT 

curve below Ms.) 

5.3. Transformation under External Stress 

It is always possible to divide an external stress into its hydrostatic and deviatoric 

components. These couple individually to the dilation and shear of the transformation 

strain. Since the martensite variants differ only in their shear, it is the deviatoric component 

of the stress that makes a qualitative change in the transformation. To illustrate and study 

this effect we have investigated three aspects of the influence of external stress: the effect of 

the load geometry on the martensite start temperature (Ms); the effectofuniaxial.Ioad on the 

microstructure and TI curve; and the influence of cyclic load on the martensite fraction and 

microstructure. 

5.3.1. The Influence of Load Geometry on M5 

Let the solid be subject to a two-dimensional stress whose principal axes are parallel 

to the axes of the array. We consider three conditions: a uniaxial tensile stress along they-
'· 

axis (cr~2 > 0, a~1 = 0), a uniaxial compressive stress along they-axis (cr~2 < 0, a~ 1 · = 0), 

and a two-dimensional hydrostatic stress (a~2 = a~ 1 < 0). The first two stress tensors have 

a large deviatoric component; the third does not 

If we measure the stress in units of f.1£s, 

e a = a*J..L£s 22 
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th~n, according to Eq. (3.15), the stress adds the factor 

~Gi(1) = - 2a* (R - 1) Eo 

~Gi(2) =- 2a* (R + 1) Eo 

(5.3) 

(5.4) 

to the free energy changes on forming variants (1) and (2}, where Eo=¥ J.1 e;. A two-di­

mensional hydrostatic stress 

(5.5) 

has the same effect on each variant 

(5.6) 

The influence of the external stress on the driving force necessary to start the trans-

formation (Ms) can be predicted from eqs. (5.3)-(5.6). A uniaxial load affects the two vari-

ants differently. Assuming nucleation sites for both variants, M8 is controlled by the vari­

ant that is favored by the external stress: variant (2) when a*> 0 (tension), variant (1) 

when a* < 0 (compression). Given uniaxial tension, M8 should rise with a* if R > -1, and 

fall if R < -1. Given uniaxial compression, M8 should increase with a* when R < 1, de­

crease when R > 1. Given hydrostatic stress, Ms increases with a* if R is positive, de-

creases if R is negative; that is, a hydrostatic tension promotes a transformation that in-

creases volume while a hydrostatic compression promotes a transformation that decreases 

it 

These relations are illustrated by the data shown in Figure 5.6, which plots the 

value of ~Gu needed to initiate the simulated transformation in a constrained solid as a 

function of the applied load. The simulations tested the three load geometries for two 

43 



differenttransfonnation strains: a pure shear, R = 0 (Figure 5.6(a)) and a positive volume 

change, R = 0.22 (Figure 5.6(b)). When the transformation is a pure shear, hydrostatic 

stress has no effect, while a uniaxial load raises LlGu by the same amount whether the load 

is tensile or compressive. The only difference is that uniaxial tension nucleates variant (2) 

while uniaxial compression nucleates variant (1). When R = 0.22 a hydrostatic pressure 

lowers M8 {LlGu) while a uniaxial load raises it. However, note the asymmetry between 

tensile and compressive loading. A uniaxial tension induces a hydrostatic tension that 

promotes the transformation while a uniaxial compression induces a hydrostatic 

compression that opposes it. Hence the uniaxial tension is more effective in raising M8• 

The behavior shown in Figure 5.6(b) is like that found ~xperimentally by Patel and Cohen 

[21]. 

Note also that a sufficiently large and favorable stress initiates the transfonnation at 

a positive value of LlGu. which corresponds to M8 > To, the equilibrium transformation 

temperature. This corresponds the situation where the applied stress is so large that it 

provides an amount of negative free energy change which not only overcomes the positive 

free energy change caused by the martensitic transformation but also balance out the 

positive chemical energy change. 

5.3.2. The Influence of External Stress on the Microstructure and the IT Curve 

Computer simulated transformations were done and studied for all the cases in­

cluded in Figure 5.6, that is, for a range of loads in uniaxial tension, compression and 

hydrostatic stress, using both pure shear (R = 0) and dilational (R = 0.22) transformation 

strains. 

Hydrostatic stress is relatively uninteresting. Since a hydrostatic stress affects both 

variants in the same way, it only affects the M8; it does not change the microstructure, and 

simply shifts the TT curve to higher temperature. In contrast, uniaxial stresses bias the 

44 



transformation towards a particular variant, and have profound qualitative effects. These 

are revealed in the sequence of simulations that modeled a transformation with R = 0.2 

under uniaxial tension. In these simulations the transformation was done within a 4lx41 

array embedded in a lOlxlOl array, which should be large enough to eliminate the depen­

dence of the constraint on the array size (Figure 5.2). 

Figure 5. 7 is a plot of the fraction transformed as a function of the driving force 

(~Gv) for loads that vary from a* = 0 to a* = 1.2. The data have three features that are 

particularly striking. First, the TI curve spreads monotonically as the load is increased 

from a* = 0 to a* = 0.8. The spread results primarily from an increase in M5; there is very 

little change in Mr. Second, the behavior near Ms is almost identical for a* ~ 0.4. Third, 

the shape of the TT curve becomes independent of the load when cr* ;::: 1.0. The ap­

pearance of the curves suggests that there is a characteristic "low-stress" behavior that is 

exemplified by the behavior at a* = 0.2 and a characteristic "high-stress" behavior that 

appears clearly at a* = 1.0. As the load is increased from 0.2 to 1.0, an increasing fraction 

of the transformation exhibits "high-stress" characteristics. 

To see why this is the case, and understand the microstructures that develop, it is 

useful to begin by examining the low- and high-stress limits. The stress-free transforma­

tion (a*= 0) for R = 0.2 was discussed earlier in the paper. The 1T curve contains anini­

tial step that is due to the growth of the initial, single-variant plate across the array (this ini­

tial step appears at all values of the stress). It goes to completion when the driving force is 

sufficient to nucleate the thickening of the initial plate. It contains equal fractions of the two 

variants, which appear in parallel bands along (11). The microstructure at almost complete 

transformation is shown in Figure 5.5(a). The alternation of the two variants largely 

cancels the shear developed during the transfonnation; only the dilation distorts the matrix. 

When R = 0.2 the shear is more important than the dilation, and its cancellation allows the 

transformation to proceed to completion relatively easily. 
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A high-stress uniaxial tension changes the behavior in two ways. First, a uniaxial 

stress in the y-direction significantly lowers the free energy required to form a particle of 

variant (2) (Eq. (16)), so the Ms temperature rises significantly. Second, the stress raises 

the free energy required to form variant (1). In the high-stress limit this variant does not 

form at all; the final microstructure contains only variant (2). However, the absence of 

variant (1) means that the shear component of the transformation strain is not compensated. 

It accumulates in the matrix, producing a back-stress that opposes the transfonnation and 

requires an increasing driving force to sustain it. The accumulation of the uncompensated 

shear strain is responsible for the large spread in the TI curve in the high-stress limit. 

Once the high-stress limit has been reached (at a*= 1.0 in this case), the transfonnation 

path becomes independent of the stress. The shape of the curve is fiXed; it is simply trans­

lated to higher temperatures as a* increases. 

While the fmal microstructure in the high-stress limit is uninteresting, there are 

many metastable intermediate microstructures. The pattern is illustrated in Figure 5.8. In 

the ftrSt stage of the transformation a plate of variant (2) nucleates, grows across the array, 

and thickens to create the metastable microstructure shown in Figure 5.8(a). The preferred 

habit of variant (2) is (34), so the plate is tilted slightly with respect to (11). In the next 

stage of growth the plate thickens further, but because of the increasing resistance of the 

matrix the driving force must be almost continuously increased. The thickening stage ends 

at point (b) on the transformation curve (Figure 5.8{d)). At this point a second plate of 

variant (2) nucleates and grows in a direction that is almost perpendicular to the original 

plate, creating the microstructure shown in Figure 5.8(b) at point (c) on the transformation 

curve. The crossing plate forms because its aggregate strain partly compensates the shear 

of the original plate. As the transformation continues the crossed plates thicken and the 

region between them is gradually filled with particles of variant (2). A late-stage metastable 

microstructure is shown in Figure 5.8(c). The transformation is opposed by the · 
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accumulating strain in the matrix, and the thermodynamic driving force must be 

continuously increased to sustain it. 

At intermediate values of the stress the transformation begins in the high-stress pat­

tern, but changes to one that more closely resembles the low-stress pattern. The reason is 

that the back-stress that develops with the accumulated strain eventually becomes sufficient 

to overcome the bias toward the favored martensite variant At this point the second variant 

appears, and the two variants alternate for the remainder of the transformation. The se~ 

quence is illustrated by the transformation at a* = 0.4 (Figure 5.9). The first stages of the 

transformation are just like those in the high-stress limit. A plate of variant (2) grows 

spontaneously on a plane near (34) and thickens until it reaches the metastable configura­

tion shown in Figure 5.9(a). If the driving force is steadily increased (Figure 5.9(h)) the 

plate thickens until it reaches the metastable configuration shown in Figure 5.9(b). At this 

point a plate of variant (1) nucleates along the side of the original plate (Figure 5.9(c)). 

Since the preferred habit of variant (1) is (43) rather than (34), the variant (1) plate 

branches slightly away to leave a band of untransformed material along the interface. With 

a further increase in driving force parallel plates with alternating variants form to produce 

the microstructure in Figure 5.9(d). Additional driving force leads to the formation of a 

crossing plate that is a composite of the two variants, as shown in Figure 5.9(e). At this 

point almost 80% of the sample has transformed. The remaining transformation requires a 

continual increase in the driving force, and passes through metastable configurations like 

that shown in Figure 5.9(t). Note the untransformed material along the variant interfaces, 

which is due to the fact that the two variants prefer slightly different habits. The fmal 

microstructure, below Me, is shown in Figure 5.9(g). It contains parallel plates of the two 

variants along (11). The last material to transform removes all signs of the relative tilt 

between the two variants that appears in Figures 5.9(c} through 5.9(f}. The final 

microstructure contains a preponderance of the preferred variant (2), which is = 73% by 

area. Most of the excess is due to the thick plate of variant (2} which formed at the be-
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ginning of the transformation. By the time the second variant forms, the accumulated shear 

strain has overcome the preference for variant (2); the two variants are almost equally rep­

resented in the subsequent transformation. 

Figure 5.10 shows selected metastable configurations from the transformation at cr* 

= 0.6. Since the applied stress is higher than in the example shown in Figure 5.9, we 

expect the transformation to proceed further along the high-stress path before the second 

variant intrudes. This happens. While the second variant appears in the metastable 

configuration at point (c) on the transformation curve in Figure 5.9(h) (cr* = 0.4), only one 

variant is present at the equivalent point at cr* = 0.6 (Figure 5.10(b)). The transformation 

follows the high-stress path to point (c) by nucleating a crossing plate of the same variant 

However, the second variant does appear in the transition from points (b) to (c) on the 

transformation curve (Figure 5.10(c)). By point (c), which corresponds to about 80% 

transformation, the microstructure bears a strong qualitative resemblance to that found at 

the corresponding point of the transformation at a* = 0.4 (Figure 5.9(c)), and is very 

similar in its subsequent behavior. The final microstructure consists of parallel plates on 

(11). The microstructure contains about 78% variant (2), with most of the excess in the 

single-variant plates that formed first. 

An analysis of the microstructures of samples transformed at intermediate stresses 

between a* = 0.2 and a* = 0.8 shows that the unfavored variant appears at almost identical 

values of L\Gv. between -0.54 and -0.69Eo. The transformation behavior at values of L\Gu 

below this range, specifically including the value of Mr. is almost independent of the load. 

These phenomena reflect the fact that the unfavored variant forms only after accumulated 

strain has overcome the bias against it from the external stress. The subsequent behavior is 

similar because the two variants are equally favored for the remainder of the transforma­

tion. 
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5.3.3. Transformation under Cyclic Load 

To study the influence of a cyclic load on the extent of martensitic transformation 

and the resulting microstructure we again assumed a transformation strain of R = 0.2, set 

LlGv at -0.265Eo, and imposed a uniaxial stress that was cycled in one of tWo saw-tooth 

patterns: between a* = 0.5 and a* = -0.5, and between a* = 0.5 and a* = 0. The load 

was raised and lowered in equal increments that were varied from l/4 to 1/10 of the 

maximum. The results were insensitive to the value of the increment 

Raising the load from a*= 0 to a*= 0.5 causes a stress-induced transformation 

that creates the thick band of variant (2) martensite shown in Figure 5.11 (a), which is 

almost identical to Figure 5.8(a). The fraction transformed is = 30%. However, de­

creasing the load causes additional transformation; a decrease to a* = 0 produces the bands 

of variant (1) shown in Figure 5.ll(b), and these bands grow significantly when the load 

is further decreased to a*= -0.5 (Figure 5.11{c)). Still more martensite forms 'if the cycle 

is repeated. The microstructure asymptotes to that shown in Figure 5.11 (d) after several 

cycles. The final martensite fraction is 94%, more than three times the amount formed in 

the original excursion to a* = 0.5. 

A similar result is obtained when the cycle is confined to the range 0 s a* s 0.5. 

The asymptotic fraction of martensite is 64%, which is less than in the fully reversed cycle, 

but is still more than twice the fraction formed under a monotonic load of a* = 0.5. 

The reason that cyclic loads promote the transformation is apparent from the mi­

crostructures shown in Figure 5.11. Loading the body to a*= 0.5 creates a variant (2). 

plate that is compatible with the temperature and the external load. Since the martensite 

transformation cannot be reversed, the body is subjected to a residual stress when the 

tensile load is relaxed. The residual stress is sufficient to induce the formation of a 

significant amount of variant (1), which removes part of its shear component. 
' 

Subsequently loading the body to a*= -0.5 induces further transformation to variant (1), 
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which is favored by the compressive stress. When the load is removed, this creates an 

unbalanced internal stress that promotes the formation of variant (2). The transformation 

continues on further cycling until the only untransformed elements that are left are so highly 

loaded by the accumulated internal stress that neither maximum load is sufficient to trigger 

their transformation. Experimental observations of martensitic transformation at the tip of a 

growing fatigue crack [22] suggest that this mechanism is pertinent to many systems. 

5.4. Discussion and Conclusion 

The model assumes an athermal, irreversible martensite transformation that has a 

dyadic transformation strain and occurs in a crystal that is embedded in an untransfonned 

body. It neglects interfacial tension and the difference between the elastic constants of the 

martensite and the matrix. The results illustrate the influence of the constraint and the im­

posed stress on the microstructure and the thermal resistance to the transformation (dM = 
Ms- Mr). 

The matrix constraint causes complex, multi variant microstructures and separates 

Ms and Mr. The reason is that the constraint prevents relaxation of the transformation strain 

at the crystal boundary. The shear strain is relaxed by introducing multiple variants that 

compensate one another. However, the compensation is incomplete, so the thermal resis­

tance to the transformation increases. The dilational part of the transformation has two ef­

fects. It changes the habits of the martensite variants and produces interesting microstruc­

tures, such as "butterfly martensite" in partially transformed crystals. It also increases~ 

since it produces a hydrostatic stress that cannot be compensated by introducing other vari­

ants. 

The applied stress can be divided into its hydrostatic and deviatoric components. 

The hydrostatic component affects all variants the same. If the transformation strain is 

partly dilational, a hydrostatic stress changes Ms without altering the microstructure or the 
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thermal resistance (AM}. The deviatoric stress couples to the shear part of the transforma­

tion strain, and, hence, changes the relative energies of the variants. This increases Ms for 

transformation to the favored variant and produces a microstructure that is rich in the fa­

vored variant. It also increases M 5-Mc, since single-variant transformations must be sus­

tained against an accumulating, uncompensated shear. The transformation can be regarded 

as a mixture of a high-stress, single-variant mode and a low-stress, multivariant mode. 

The former dominates the early stages of the transformation. The latter becomes dominant 

in the late stages of the transformation, since the accumulating internal shear eventually 

eliminates the energy difference between the two variants. The thennal resistance (AM) 

increases with the magnitude of the deviatoric stress until the high-stress limit is reached 

and only one variant appears. The microstructure is most complex at intermediate stress 

where both variants develop in a complex internal stress field. 

When the applied stress is cyclic the crystal undergoes a progressive transformation 

during successive stress cycles; a high fraction is transformed even when the peak stress is 

relatively low. The reason i~ that the martensite that has already formed becomes a source 

of intense internal stress when the stress is reversed, promoting further transformation. 
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CHAPTER 6 

COMPUTER SIMULATION OF REVERSIBLE MARTENSITIC 

TRANSFORMATIONS 

-- PART I: THERMAL HYSTERESIS AND THERMOELASTICITY 

6.1. Introduction 

In Chapter 4 and Chapter 5, the linear elastic theory was used to construct a 

computer simulation model for martensitic transformations in simple solids. The model 

helps to show how the elastic energy that develops during the transformation controls the 

microstructure and determines the thermal resistance to the transformation, which is 

measured by the difference (~M) between the martensite start and fmish temperatures <Ms 

and Mr). For simplicity, the transformation was assumed irreversible; once an element of 

martensite formed, it could neither revert to the parent phase nor change its crystallographic 

variant. 

While it is often reasonable to assume irreversibility in the treatment of a martensitic 

transformation during continuous cooling, the transformation can always be reversed by 

heating, and, in many cases, it can also be reversed by an applied stress. The 

characteristics of the reverse martensite transformation are both scientifically interesting and 

technologically important. They govern the thermal hysteresis of the reverse 

transformation on heating, and are responsible for such phenomena as thennoelasticity, 

pseudoelasticity, and the shape memory effect They may also influence the microstructure 

· that results from the transformation. In this and the next chapter, therefore, the computer 

simulation model is extended to reversible transformations. The simulations presented in 

this chapter are done in the absence of external stress, and the discussion is concerned 

primarily with thermoelasticity. 
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6 .2. Background 

6.2.1. Thennal Resistance and Thennal Hysteresis 

The thermal resistance to an athermal martensitic transformation affects both the 

transformation and its reverse. Experimental observations show that on cooling, the 

transformation initiates at a martensite start temperature, Ms. and is only completed when 

the material is cooled to below the martensite finish temperature, Mr. When the 

transformation is reversed by heating, reversion begins at a temperature As ~ Mr, and is 

completed at the temperature Ar ~ Ms. In practice, As > Mr and Ar > Ms. so there is a 

thermal hysteresis associated with the reverse transformation. 

Two generic mechanisms contribute to thermal resistance: elastic strain due to the 

. misfit between the parent and product phases, and frictional resistance. The elastic strain 

that accumulates as the transformation proceeds opposes its continuation and promotes 

reversion, since the elastic energy stored into the system can be the part of driving force for 

reverse transformation if the reversion does happen. However, the elastic strain can be 

relaxed in either of two ways: by displacement at free surfaces, and by plastic deformation 

within the crystal. Relaxation of the elastic strain reduces the thermal resistance of the 

transformation. On the other hand, relaxation of the elastic strain may increase thermal 

resistance if it increases the value of frictional resistance, that is, if the elastic energy 

changes its form into irreversible energy. The frictional resistance opposes the 

transformation in either direction (though the frictional resistance to the forward and reverse 

transformations will, generally, differ). There are three possible sources of friction: 

activation barriers that restrict the mobility of the martensite-matrix interface, nucleation 

barriers that oppose the formation of new particles, and dissipative processes, such as a 

plastic deformation of the matrix. 
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The computer simulation results presented in Chapter 5 show that the thermal 

resistance is also affected by the boundary conditions under which the transformation takes 

place. When the transformation occurs under the unconstrained condition, the Ms and Mr 

temperature are essentially the same and the TT curve is a vertical line. When the 

transforming body is constrained by its surroundings, the transformation stops after a 

fraction of the body has transformed and continues only when temperature is further 

reduced. The thermal resistance of the reverse transformation and thermal hysteresis must 

also be influenced by the boundary conditions, since the unconstrained body and the 

constrained body have different elastic strain conditions after the transformations are 

complete. As will be discussed later, the final strain condition determines the 

characteristics of reverse transformation, and therefore, determines whether or not the 

transformation is thermoelastic. 

6.2.2. Thermoelasticity and Reversible Transformations 

Thermoelastic martensite was originally defined to describe "thermoelastic 

equilibrium" achieved during a martensitic transformation in which the chemical driving 

force is balanced by the elastic resistance. At the thermoelastic equilibrium, the 

transformation stops, leaving the material in a partially transformed condition. A decrease 

in temperature leads to the growth of the martensite, and an increase in temperature leads to 

the shrinkage of the martensite - a reverse transformation. The elastic energy stored into 

the system is the part of driving force for the reverse transformation when the 

transformation temperature is above the chemical equilibrium temperature, To, of two 
I' 

phases (_when martensite is low temperature phase), and is the only source of driving force 

for the reverse transformation when the transformation temperature is below the To. 

Thermoelastic martensite was frrst documented by Kurdjumov and Khandros [23] 

in 1949 shortly after Kurdjumov [24] predicted it. Since then, thermoelastic martensitic 
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transformations have been observed and studied in many alloys. Among them, noble­

metal based alloys such as Au-Cd, Ag-Cd, Cu-Zn, Cu-Zn-Al and Cu-Al-Ni have been 

studied most intensively. Thermoelasticity in the martensitic transformation of an iron­

based alloy was flrst reported by Dunne and Wayman [25] in 1973 for an ordered Fe-Pt 

alloy with a composition near Fe3Pt. Materials that are experimentally recognized as 

thermoelastic have relatively small temperature hysteresis; the Ms and Ar temperatures are 

close to one another. Moreover, the transformation path is approximately reversible; the 

last martensite particle to form tends to be the first to disappear. 

The reverse transformation in thermoelastic martensite is different from the 

traditional reverse transformation in which the high-temperature phase must be nucleated if 

the transformation is reversed by heating. Systems that exhibit this behavior are called 

non-thermoelastic. In this case there is no residual elastic strain to assist the reverse 

transformation since the transformation strain is fully relaxed by free surface or plastic 

deformation. Most Fe-based alloys are of this type; transformations in these materials tend 

to have relatively large temperature hysteresis (Ar >> M8) and transformation paths that do 

not reverse. 

6.2.3. The Problems to be Solved 

In the study of thermoelastic martensitic transformations, the experimental 

observations have left many problems which are still unsolved, and have generated 

considerable discussion in the literature. 

A. The origin of thermal hysteresis 

The thermal hysteresis (or temperature hysteresis) exists in thermoelastic 

transformations although it is relatively small compared with that in non-thermoelastic 
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transformations. Energy dissipation is observed during the thermal cycle of the 

transformation and reversion. The origin of the thermal hysteresis as well as its related 
~ 

dissipating effect has not been fully established. A number of investigators, including 

Deng and Ansell [26], believe that the primary cause of thermal hysteresis is the frictional 

resistance to the motion of martensite boundaries. The mechanisms of the frictional 

resistance are associated with the movements of intetphase, intetplate and twin boundaries, 

as reviewed by Krishnan, et a1.[27]. Further, Ortin and Planes pointed out [28] that the 

thermal hysteresis is due to not only the frictional resistance to the motion of martensite 

boundaries but also due to other kinds of irreversible energy changes, such as interfacial 

energy and the effect of plastic accommodation. However, Olson and Cohen [29] argued 

that there will be a small residual hysteresis even in the absence of frictional effects. They 

concluded that the martensitic nucleation and initial growth as well as the final reversion 

occur away from the thermoelastic equilibrium. In a recent symposium, Ortin and Planes 

[30] pointed out that the accommodation of elastic strain energy by forming different 

variants of martensite particles should be considered as a contribution to the thermal 

hysteresis and energy dissipation in thermally-induced transformations. But so far no 

theoretical analysis or experimental work has been done to clarify the issue. 

B. Relations between the characteristic temperatures 

This problem concerns the location of the Ms. Me, As and Ar temperatures with 

respect to the equilibrium temperature, To, the temperature at which ~G~->M = 0, where 

AG~->M is the chemical free energy change for the martensitic transformation. If the 

transformation is ideally non-thermoelastic and the nucleation barriers opposing the 

. forward and reverse transformations are approximately the same, then As> To > Ms. and 

To should be approximately bracketed by the two temperatures: 
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1 
To = 2 <Ms + As) (6.1) 

Kauffman and Cohen [31] have shown that this relation holds for many Fe-based alloys. 

On the other hand, thermoelastic effects tend to depress As and Ar with respect to To. 

Dunne and Wayman [25] noted that As may fall below Ms. and divided thermoelastic 

transformations into two classes: Class I (As> Ms), and Class IT {M8 >As). However, it 

is not clear whether this classification is mechanistically meaningful. In their effort to solve 

the contradiction between Eq. (6.1) and Class IT thermoelastic transformation in which Ms 

' > A8, Tong and Wayman [32] defmed another characteristic temperature, T0, at which 

dG~->P + aG~->P = 0 where dG~->P and dG~->P are the chemical free energy change 

and non-chemical free energy change for the reverse martensitic transformation 

respectively, and proposed the following relations: 

Ar>To>Ms (6.2) 

and 

' 
A8 >T0 >Mr (6.3) 

for both Class I and Class II transformations. In Tong and Wayman's analysis, the Eqs. 

(6.2) and (6.3) were obtained by neglecting the influence of elastic strain energy on the 

formation of a frrst isolated plate at M8 and its reversion at Ar. They concluded that, in any 

case, Ar >To. On the other hand, Olson and Cohen [29,33] argued that Ar lies below To in 

an ideal thermoelastic transformation; their argument is trivially correct if there is no thermal 

hysteresis since, in this case, Ar= Ms <To. 

57 



C. · Reversibility of the transformation path 

Dunne and Wayman [25] and Tong and Wayman [32] have published sequential 

metallographic analyses of the growth and shrinkage of martensite plates during 

thermoelastic transformations. Their photographs (see particularly Figure 2 of reference 

[25]) illustrate a transformation path that is very nearly reversed; nonetheless, there are 

noticeable differences between the paths taken on heating and on cooling. During cooling, 

the thickening of the frrst few martensite plates is favored more than the nucleation and 

growth of the other plates. While during heating, all plates thin and shrink at roughly the 

same speed and the thickness of these plates is more uniform. It is not clear whether these 

differences are natural features of thermoelastic martensite, or whether they necessarily 

reflect deviations from ideality. No attention has been paid to the path differences among 

the investigations of thermoelastic martensitic transformations, and it has been widely 

accepted that the reversible transformation path is a characteristic of the thermoelastic 

transformation. The reason is probably due to the small thennal hysteresis observed in the 

most thermoelastic transformations. Questions that arise from this issue are: (1) What is 

the thermodynamic criterion of the path differences? {2) What is the relationship between 

the thermal hysteresis and the reversibility of the transformation paths taken on heating and 

on cooling? For example, if the transformation and reverse paths are exactly reversed, will 

thermal hysteresis still exist? 

The above three problems are representative of the unanswered questions in the 

study of thermoelastic martensitic transformation. The bottom line of these questions is: 

what are the characteristics of thermoelasticity? The other features which are traditionally · 

considered as the characteristics of thermoelasticity are: a small chemical driving force, a 

small transformation shape deformation, a matrix with a high flow stress, and no burst or 

spontaneous transformations, etc. It is apparent that understanding of the mechanism of 
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thermal hysteresis is the key to the other features, and therefore it will be the one on which 

our discussion concentrates in this chapter. 

6.2.4. The Approach of Present Chapter 

In this chapter, the computer simulation model and the procedure developed for the 

reverse transformation (described in Chapter 3) are used to study the thermal hysteresis and 

the reversibility of the transformation path during martensitic transformations, as well as 

the effects of the relaxation of the elastic strain by plastic deformation, the reversibility of 

the elastic strain energy, and frictional resistance. The simulations are done in two­

dimensional space, and the transformation strains used are dyadic. The free energy 

changes for the martensitic transformation and reversion are shown in Eqs. (3.17) and 

(3.18), provided that the changes caused by external stresses are omitted: 

aG(T, p,R) = 'UaGu{T) + fr aGe(p,R) + aGr (6.4) 

(6.5) 

Martensitic transformations under both unconstrained and constrained conditions 

are simulated. To simulate the transformation under the constraint imposed by an 

untransformed matrix, the transformation is confmed to an array of 41 x 41 cells in a 101 x 

101 grid that is repeated periodically. To simulate the transformation under the 

unconstrained condition, the transformation occurs in an array of 41 x 41 cells which is the 

same size as the array of the grid The transformation is initiated from a single seed in the 

center of the array. The simulation is then specified by five variables: the dilation ratio, R, 

which has a value of 0.2- 0.25, the relaxation factor, fr (0 ~ fr ~ 1), the reversibility factor 
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• 
fr (0 ~ fr ~ 1}, the transformation and reverse frictional resistance, AGr and AGr, which 

can have any value. 

The model used here is simple and is idealized, but does permit a reasonably 

accurate treatment of the elastic energy developed during the transformation and a clean 

separation between the effects of elastic resistance, relaxation and reversibility of elastic 

strain, frictional resistance and geometric constraint on thermal hysteresis and on the 

reversibility of the transformation path. Therefore, the results of the computer simulation 

may provide some physical insights to the phenomena which are difficult to obtain from 

experimental observations. 

6.3. Simulation Results and Discussion 

In most of the results presented below, the forward transformation (parent phase to 

martensite) and reverse transformation (martensite to parent phase) compete with one 

another at each step, that is, the forward and reverse transformations are reversible at each 

step of the thermal cycle. However, for the reference, we first consider how the relaxation 

factor, fr, and forward frictional resistance, AGr. influence a n:ansformation that cannot be 

reversed, that is, a transformation in which the reversion of the martensite is not allowed 

during cooling. Then the effect of fr is ignored in reversible transformations (i.e., fr is 

always equal to 1). 

6.3.1. The Inf1uence of Relaxation and Friction on an Irreversible Transformation 

In Chapter 5, we studied the microstructure and thermal resistance of an irreversible 

transformation in a constrained crystal. The change of Gibbs free energy includes the 

chemical free energy and elastic energy caused by the martensitic transformation only (Eq. 

(3.11}), and the effects of fr and LlGr were not considered (fr = 1, L\Gr = 0). When the 
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transformation strain is a pure shear (R = 0) , the microstructure is simple: the bands of two 

martensite variants alternate along (11) planes, which are the preferred habit planes for this 

value of R. When the dilation in the transformation strain is non-zero (R :1: 0), however, 

the p;referred habits of the two variants rotate in opposite directions from (11), with the 

consequence that the crystal develops complex two-variant patterns, described as 

"butterflies" and "crosses", in the early stages of the transformation. Since the 

transformation is irreversible, these patterns are retained. Subsequent martensite particles 

fill a matrix that is perturbed by these patterns, with the consequence that the final 

microstructure is a complex, two-variant rrii.xture (not well arranged twinned bands) with a 

relatively high elastic energy. Figure 6.1 is the sequence (or path) of the irreversible 

transformation with R = 0.25. The chemical driving force, IL\GJ must be raised 

significantly to complete the transfonnation, so the thermal resistance, L\M = Mr- Ms 

increase monotonically with the magnitude of R (Figure 5.4). 

When the relaxation factor, fr, and the frictional resistance, ~Gr. are included in the 

Gibb's free energy, the simulation results show that, for irreversible transformations, the 

sequence of transformation is fiXed by the value of R; it is not changed by fr or aGr. 

However, the difficulty of accomplishing each transformation step is affected. Increasing 

L\Gr simply translates the TT curve to lower temperatures; Ms and Mr are lowered by the 

same amount. Decreasing fr raises both Ms and Mr, but has a much stronger effect on Mr. 

and narrows the TT curve. The reason is that, as fr decreases, less elastic strain is 

accumulated to oppose the transformation. Figure 6.2 illustrates the effect of fr on TI 

curves. 

6.3.2. Reversible Transformation of a Constrained Crystal during Cooling 

The possibility of martensite reversion during cooling should simplify the 

microstructure (shown, for example, in Figure 6.1) and decrease the thermal resistance, 
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since it creates the additional freedom to reduce the elastic energy and to eliminate 

undesirable configurations that form during the forward transformation. 
• 

First, let us consider the reversible transformation with fr = fr = 1 and dGr = aGr 

= 0. Figure 6.3 illustrates the growth of the martensite on cooling when R = 0.25. A thin 

plate first grows out from the seed at the center. Note a particle of variant (2) seen in Figure 

6.3(a) and 6.3(b) disappears in the configuration shown in Figure 6.3(c), and the satellite 

plates that grow perpendicularly out in Figure 6.3 (e) and 6.3(t) revert to the parent phase 

and then transform to the particles of the opposite variant The final microstructure consists 

of alternating, parallel plates of the two martensite variants, in contrast to the complex 

microstructure that develops in the irreversible case (Figure 6.1). Figure 6.4 compares the 

TI curves for the two cases. The value of Ms is the same (the transformation cannot be 

reversed until it has begun), but the value of Me is much higher in the reversible case; the 

thennal resistance to the transfonnation is significantly lower. 

The influence of the reversible transformation during cooling decreases as R 

becomes smaller, and almost disappears for R ~ 0.2. In this case the rotation of the habits 

is not obvious (see Chapter 5), and the irreversible. transformation generates a simple 

microstructure of parallel plates, so there is little need for the reverse transfonnation. 

The reversible transformation during cooling becomes less important as the 
• 

reversibility factor, fr, decreases or the reverse frictional resistance, D.Gr' increases. When 

fr < 0.5, the reverse transformation becomes ineffective in relieving the accumulated elastic 
. . . 

strain. When D.Gr becomes large (D.Gr ~ 2.0 in the dimensionless form used here), the 

reverse transformation does not occur to any significant degree. 

It is interesting to note that the reverse transformation also becomes unimportant 

when there is a large frictional resistance, D.Gr. to the forward transformation. This effect 

is illustrated in Figure 6.5, which compares the TI curves during cooling for three values 
• 

of the forward frictional resistance, given fr = fr = 1 and aGr = 0. Increasing the frictional 

resistance to the forward transformation, D.Gr, not only decreases M8 , but also increases 
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the thermal resistance, AM = Ms - Mr, until it .approaches the value of the· irreversible 

transformation. The reason is that, as AGr is increased, the chemical driving force, IAGJ, 

for the martensitic transformation must also be increased to bring it about. The chemical 

driving force opposes the reverse transformation. As AGr increases the reverse 

transformation becomes more and more difficult until, eventually, the transformation 

becomes effectively irreversible. 

6.3.3. Reverse Transformation of a Constrained Crystal during Heating 

A. Reverse transformation with full reversibility of elastic energy 

Assume that a constrained crystal has been cooled to below Mr to complete the 

martensitic transformation. Let it then be heated to reverse the transformation. Let us first 

consider the reversion in the absence of the relaxation of elastic energy and frictional 
t 

_resistance (fr = fr = 1, ~Gr = ~Gr = 0). As an example, we use the case illustrated in 

Figure 6.3. The microstructure before reversion is shown in Figure 6.3(h). Figure 6.6(a) 

to Figure 6.6(h) show the development of the transformation as the sample is heated. 

Comparing with Figure 6.3(a) to Figure 6.3(g), one can easily see that the transformation 

path is not the reverse of that followed on cooling. 

Figure 6.6(a) is taken near the beginning of the reverse transformation, and has the 

same number of martensite particles as in Figure 6.3(g). The two configurations are not 

exactly the same, but they are very similar. The elementary cells that transformed last 

during cooling have very high elastic energy, and revert most easily when the sample is 

heated. As temperature is increased, however, the pattern of the reverse transformation 

diverges from that taken during cooling. Comparing Figure 6(b), 6(c) and 6(d) with 

Figure 6.3(f), 6.3(e) and 6.3(d) reveals the qualitative difference in the pattern. During 

cooling, the crystal transforms by the sequential growth of martensite plates, while during 

63 



heating many plates thin simultaneously. Figure 6.6(e) to 6.6(h) show the completion of 

the reverse transformation through the shrinkage of the last two plates. The plate that 

reverses last (Figure 6.6(h)) is the plate that transformed first on cooling (Figure 6.3(a)) 

although its shrinkage is not exactly the reverse of its growth. 

The reason for the path difference during cooling and heating in the simulation is 

straightforward, and is due to the fact that many distinct plates form during the forward 

transformation which takes place in a constrained crystal. The criterion of the 

transformation or reversion used in the simulation is the minimum energy path.. The 

minimum energy path selects the parent cell to transform which introduces the minimum 

elastic energy increase during cooling; it selects the martensite particle to reverse which 

causes maximum elastic energy reduction during heating. If we ignore the last stages of 

the transformation, which are nearly reversible, the forward transformation occurs through 

plate growth and thickening into the matrix. New plates nucleate and grow to compensate 

the matrix strain from the plates that have already formed (see Chapter 5). As a 

consequence, the plate interiors in the fully transformed microstructure have relatively low 

elastic energy; the high-energy sites are along the boundaries where plates impinge on one 

another. When the transformation is reversed during heating, these high-energy sites 

transform first, and all plates thin and shrink almost simultaneously, resulting in a very 

different path from the forward path. The two paths resemble one another only at the 

beginning and the end. The first few cells to reverse are the last to fonn, since these have 

very high elastic energy. The last cells to reverse are the frrst to form; when there is only 

one plate left to be transformed, the energetics of the forward and reverse transformations 

are nearly the same. If the seed is irreversible, the particle which reverses last is usually the 

one which transformed frrst and is adjacent to the seed. When the seed is allowed to 

reverse, the particle which reverses last is not necessarily the one that is adjacent to the 

seed But the plate which disappears last is still one which forms first because of its largest 

size. In reality, seeds of martensite are pre-existing defects and are normally irreversible. 
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Figure 6.7 is the TT curve of the reversible transformation for both cooling and 

heating processes. There are three important features of this curve: (1) the existence of a 

hysteresis, (2) the position of As. above Mr. and (3) the position of Ar, below To (where 

.dGu = 0). The essential coincidence of As and Mr is due to the fact that the last particle 

transforms when the temperature is just sufficiently low to make its total free energy 

negative. Since, in the absence of elastic relaxation, the reversion of this particle recovers 

the elastic energy needed to form it, the free energy for the reverse reaction becomes 

negative when the temperature is raised incrementally above Mr. The TT curve of heating 

cannot be the same as that of cooling, because the paths of the forward and reverse 

transformations are not exactly reversed, and the elastic energy changes of the 

transformation and reversion are different. The elastic relaxation must contribute to the 

hysteresis, as it does to the irreversible transformation path. More detailed discussions 

about fundamental reason of the hysteresis in the IT curve and the position of To relative to 

Ac will appear in the discussion section. 

B. The influence of reversibility and reverse frictional resistance 

When the reversibility factor, fr. is less than 1, As is raised above Mr and the 

thermal hysteresis is increased. The effect is illustrated in Figure 6.8, which compares the 

IT curves for four 'values of the reversibility factor. The reason for this behavior is 

straightforward. As fr decreases, less elastic energy is available to drive the reverse 

transformation. In the limit fr = 0, no elastic energy is recovered; the transformation is 

driven entirely by the chemical energy, and, in the absence of frictional resistance, occw::s at 

To. 

Figure 6.9(a) through Figure 6.9(h) show the sequence of the reverse 

transformation during heating when the reversibility, fr. is 0.2. The reversibility factor, fr, 

affects the reverse transformation during cooling, therefore, the microstructural evolution 
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and the final martensite configuration at the transformation completion temperature, Mr, are 

different from those obtained when fr =1. As a consequence, the microstructural evolution 

shown in Figure 6.9 is not the same as that shown in Figure 6.6. But one characteristic is 

preserved: all martensite plates thin and shrink almost simultaneously, starting from the 

boundaries of the martensite plates. 

' When the reverse frictional resistance, aGr, is not zero, the reverse transfonnation 

become more difficult. The effect is to raise As and Ar, so the hysteresis is increased. 

Figure 6.10(a) and 6.10(b) compare the TI curves with different values of the reverse 

frictional resistance during heating for two values of the reversibility (fr = 1 and fr = 0.5) 

assuming the forward frictional resistance .6.Gr is zero. 

The influence of the reversibility and reverse frictional resistance is illustrated in 

Figure 6.11, which includes plots of As and Ar (in chemical energy unit) as a function of 

' AGr for different values of the reversibility factor, fr. The Ms for the frictionless forward 

transformation (aGr = 0) is also shown in the figure for comparison. As and Ar change 

' almost linearly with L\Gr. The reversibility of the elastic energy has dramatic effects on As 

but very little influence on Ar. As shown in Figure 6.11 (a), As can be below or above Ms, 

and below or above To, depending on the reversibility and the value of reverse frictional 

resistance. As discussed above, frictional resistance to. the forward transformation 

decreases Ms and Mr. and, hence, also affects the relative positions of A8, Ms and To. 

Table 6.1. The effects of reversibility and transformation resistance on 
Ms, Me, As and Ar temperatures 

Variables M Me A Ar 

fr J. N J. i i 
aGr t ! ! I I 
.6.Gr' t N J. i t 

i -- increase, J. -- decrease, N -- no effect, I -- no direct effect 
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Table 6.1 summarizes the effects of the reversibility of elastic energy (fr). and 

forward and reverse 'frictional resistance on the characteristic temperatures, Ms. Mr, As and 

Ar. 

6.3.4. Interrupted Transfonnations of a Constrained Crystal 

To study the reverse transformation of a partially transformed microstructure, 

simulations were done in which the temperature was decreased to Tt. where Ms > T1 > Mr. 

and then increased until the martensite was completely reversed to the parent phase. To 

stuo.y the effect of partially reversed transformations, the temperature was decreased to Tt. 

then increased to Th, where Ar > Tb > TI. and then decreased again until the martensite 

transformation is complete. Let Ta denotes the temperature where the reverse 

transformation starts during heating from TI. and Tb denotes the temperature where the 

forward transformation starts during cooling from Tb. 

Figure 6.12 includes TT curves for partial transformed cycles for three 

combinations of the reversibility and the values of forward and reverse frictional resistance. 

Note that the reverse transformation of a sample cooled to T1 completes at Ar, whatever the 

value of Tt is. The reason is that the last plate to reverse is always the same, so the last 

stage of the reverse transformation is independent of T1. The temperature, Ta, where the 

reversion begins is always above As. These results reproduce experimental observations 

on thermoelastic alloys [39]. If As is below Ms (Figure 6.12(a)), when T1 is above the As, 

the reversion starts as soon as heating begins. After a small amount of reversion, the TT 

curve merges into the TT curve for the reversion of fully transformed materials, and 

overlaps with it at all higher temperatures. 

Figure 6.13 compares TT curves of samples that are partially transformed by 

cooling to T1. heating to Th (which must be greater that Ta to initiate reversion), and then 

cooled to complete the martensitic transformation. The effect depends on the extent of 
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reversion, that is, on the difference, Th - T a· When the extent of reversion is small ( <: 1% 

of the transformed particles), there is little or no effect on the transformation path when 

transformation resumes, and there is little or no hysteresis in the TT curve between Tt and 

Th (Figure 6.13(a)). As the extent of reversion increases (for example, the case shown in 

Figure 6.13(b) involves about 15% reversion), thermal hysteresis becomes apparent in the 

cycle Tt -> Tb -> Tt. and the shape of the TT curve between Tt and Mr is also changed 

The fmal configuration is also affected 

6.3.5. Transformation and Reverse of an Unconstrained Oystal during a Thermal Cycle 

The results presented above are obtained from simulation of the transformations of 

a constrained crystal. The results from the transformations of an unconstrained crystal are 

illustrated in Figure 6.14 through Figure 6.16. For the purpose of comparison, the 

configurations in Figure 6.14 and Figure 6.15 are plotted such that the number of cells of 

the parent phase (blank) in each configuration of Figure 6.15 is the same as the number of 

martensite particles in each corresponcling configuration of Figure 6.14. As shown in 
' 

Figure 6.14, the martensitic transformation occurs through the growth of a single plate 

from the pre-existing seed, which then thickens to transform the whole crystal. The 

reverse transformation, as illustrated in Figure 6.15, is exactly the same: a plate of austenite 

grows out from the seed, which is selected at random, and thickens until the parent phase is 

restored. The habit of the parent phase in the martensite phase is exactly the same as that of 

the martensite phase in the parent phase. (Note the sequences in Figure 6.14 and Figure 

6.15 are not identical, since a martensite particle of variant (2) appears in the beginning of 

transformation (Figure 6.14(a)) and then disappears later because the transformation is 

reversible.) The TT curves for the transformation and reversion are illustrated in Figure 

6.16. In these results, the growth from the initial seed leads to complete transformation; 

the Ms and Mr temperatures are essentially the same, so are the As and Ar temperatures. 
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The frictional resistance, aGr and aG~, which are positive make the transformation and 

reversion more difficult, and hence decrease Ms and increase As (broaden the hysteresis 

loop). If frictional resistance is the same for both transformation and reversion, the 

equilibrium temperature, To, lies midway between Ms and As (Eq.(6.1)) when the effects 

of fr and fr are not considered (fr = fr = 1). If .1Gr is different from L\G~, Ms and As are 

asymmetric about To to a degree that is linearly proportional to the difference between aGr 

' 
and aGr. 

Figure 6.17 plots the total energy versus the fraction of martensite during forward 

and reverse transfonnations. It shows that the total elastic energy in the transforming 

crystal initially increases, then decreases, and vanishes when the transformation is 
\ 

complete. The total elastic energy in the final transformed, single variant body is zero since 

the martensite is fully relaxed. The change of the total energy during the reverse 

transformation is the same as that of the forward transformation, because when a martensite 

particle reverses to the parent phase, it causes a elastic strain field which is exactly the same 

as that created by a martensite particle in a parent matrix. Since the reverse transformation 

starts from a strain-free crystal and the elastic energy is not the part of the driving force for 

the reverse transformation, the transformation is non-thermoelastic. 

This result has clarified the situations in which the Eq.(6.1) will be satisfied-­

when the transformed martensite phase is fully relaxed and no elastic energy is stored in the 

solid, or the elastic energy stored during forward transformation cannot be reversed, and 

· the values of frictional resistance for the transformation and reversion are the same. 
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6.4. Discussion and Conclusions 

6.4.1. Thermal Hysteresis and Dissipative Effect 

The most important result of the simulation is that the thermal hysteresis exists even 

when the elastic energy is fully reversible (no plastic deformation) and the frictional 

resistance is absent. Frictional resistance and plastic relaxation can add substantially to the 

magnitude of the hysteresis, but they are not the fundamental sources of it. To eliminate 

the contribution of the irreversible transformation path to the hysteresis, transformations in 

which the reversion of martensite during heating is forced to follow the exactly reversed 

path during cooling ("exactly reversed path" in short) were investigated. The following are 

the results of the investigation. 

Consider that the reversibility factor, fr. is 1 and the value of frictional resistance is 

zero, then from Eqs. (6.2) and (6.3), the criterion for the forward transformation is 

L\G(T, p,R) = uL\G'\)(T) + L\Ge(p,R) S 0 (6.6) 

and for the reverse transformation 

I I 

L\G'(T1
, p,R) = uL\Gu(T1)+ L\Ge(p,R) s 0 . (6.7) 

I 

Since L\G {T') = - L\Gu(T'), and because of the exactly reversed path, when the volume 
'\) 

fraction of martensite during the reversion is the same as that during the forward 

transformation, then 

(6.8) 

70 



therefore, for any given martensite volume fraction, we obtain 

(6.9) 

Eq. (6.9) clearly tells us that, at each step of the transformation, the elastic energy 

increment, ~Ge(p,R), generated during the cooling process must be bounded between the 

TT cUI'Ves of cooling and heating. The IT curves are the plots of fraction of martensite 

versus the negative of the chemical energy change during cooling and heating, -LlGu(T) and 

-LlGuff'Y- Figure 6.18 shows the results of the Tf curves and LlGe(p,R) curve from the 

simulation using the exactly reversed path. The reverse transformation was not allowed 

during cooling to avoid complications in the simulation. 

The physical meaning ofEq. (6.9) and Figure 6.18 is very clear. The driving force 

must be greater or equal to the transformation resistance for both forward and reverse 

transformations. During cooling, the driving force for the forward transformation of a 

martensite panicle of variant p at location R is -LlGu(1) = l.:!lGu(T)I, and the resistance is 

LlGe(p,R). During heating, the elastic energy aGe(p,R) becomes the driving force for the 

reverse transformation of the martensite particle, and the resistance comes from the 

chemical free energy increment -LlGu(f'). Therefore, in Figure 6.18 the driving forces are 

always on the right side of the resistance. 

As shown in Figure 6.18, the elastic energy increment does not monotonically 

increase with the fraction of martensite. Because of that, the transformation is not always 

in thermoelastic equilibrium where uaGu(f) + aGe(p,R) = 0. Only when near the 

completion of the transformation, does thermoelastic equilibrium hold and the two IT 

curves overlap. 

These results demonstrate that the thermal hysteresis generated when the 

transformation and reversion follow the exactly reversed path is due to non-equilibrium 

effects between the chemical driving force and the elastic energy resistance. The size of the 
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hysteresis loop, or Ar, is determined by the smallest elastic energy increment, (&Ge)min• 

during cooling. In other words, the size of the hysteresis is determined by the amount of 

the elastic relaxation. The greater the elastic relaxation, the larger the hysteresis. If 

(~Ge)min > 0, Ar <To; if (&Ge)min < 0, Ar >To. Figure 6.18 is an example of the later 

case. 

If we set T' =Tin Eq. (6.9), then the hysteresis disappears when the TT curves for 

cooling and heating overlap, and 

- u aG'\)(T) = &Ge(p,R) (6.10) 

holds for any given martensite fraction. If aGe(p,R) increases monotonically with 

martensite fraction, Eq. (6.10) remains equal with decreasing T. In the other word, if the 

thermoelastic equilibrium always holds during the forward transformation, no thermal 

hysteresis should exists. 

Figure 6.19 compares the TT curves from the exactly reversed path and the 

minimum energy path. The TI curve during heating from the minimum energy path is in 

between the TI curve during cooling and the 1T curve during heating from the exactly 

reversed path, resulting in a smaller hysteresis loop. This shows that the minimum energy 

. path requires a less superheating and is energetically favored. It also indicates that the 

thermoelastic equilibrium is only a sufficient condition, not a necessary condition for the 

disappearance of the thermal hysteresis. Since the thermal hysteresis from the minimum 

energy path is always smaller than that from the exactly reversed path, under the condition 

ofEq. (6.10), the minimum energy path is the same as the ~xactly reversed path, and the 

TT curves of both paths overlap. 

In general, aGe(p,R) does not always increase monotonically with martensite 

fraction, because of the microstructural relaxation of the elastic energy that develops during 

the transformation. The elastic relaxation comes from not only the elastic strain 
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accommodations of martensite plates of different variants, but also from the interaction of 

martensite particles of same variants. To understand this, we need to see how the elastic 

energy increment varies with the growth of martensite plates. 

In a constrained crystal, as the first thin layer of martensite of the single variant 

grows in its length direction the elastic energy increment decreases despite increasing total 

elastic energy. This is because when the transformation strain is invariant, the formation of 

a thin plate relaxes and minimizes the elastic energy of the system, as it has been shown in 

Chapter 4 and Chapter 5. Once the thin layer reaches the constrained boundary and is 

forced to thicken, the elastic energy increment increases abruptly, and then decreases again 

with the growth of the new layer of martensite. The formation of plates with the second 

variant is another source of elastic relaxation. As a consequence, the elastic energy 

increment alternates with the increase of martensite volume fraction. On the other hand, the 

chemical driving force is constant for every particle that transforms at a given temperature. 

The transformation starts at the initial driving force (M8), and no additional chemical 

driving force needs to be added until the point when the accumulated elastic energy in the 

system is so large that the elastic energy increment for an additional particle to transform 

· exceeds its chemical driving force, that is, a thermoelastic equilibrium is reached The 

transformation continues after the temperature is lowered. The elastic energy increment 

again varies with the development of the martensitic transformation, but soon reaches the 

thermoelastic equilibrium again because of the substantial amount of elastic energy 

accumulated in the system. Temperature must be lowered again in order to allow the 

transformation to continue, and the transformation is only completed when Mr is reached 

When the transformation takes place in an unconstrained crystal, it starts at Ms,and 

continues to its completion without reaching the thermoelastic equilibrium (exception 

occurs for some values of the dilation ratio, R, where a slight increase of chemical free 

energy is needed). As an example, in Figure 6.20, the TT curve is a vertical line (M8 = Mr 

or As= Ar), and the elastic energy increment alternates between negative and positive 
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values when the martensite plate grows and thickens. The peaks of the elastic energy 

increment curve which have negative values are where the transformation of a thin layer is 

completed; the peaks with positive values are where the thickening of the existing 

martensite plate starts by transforming a cell of a new layer adjacent to the plate. 

It is because of the lack of equilibrium between the chemical driving force and the 

elastic energy increment, that there is excess energy which then changes into heat and 

dissipates. 

The above discussion clarifies that: (1) The essence of the thermal hysteresis, 

which exists even when plastic relaxation and frictional resistance are absent, is the absence 

of equilibrium between the chemical driving force and elastic energy resistance; such non­

equilibrium transformation is due to the elastic relaxation caused by the elastic interaction 

between martensite particles of the same or different variants, and is the source of the 

energy dissipation. (2) The burst phenomenon in the martensitic transformation, which is 

reflected as a vertical segment in IT curves, is a consequence of the non-equilibrium 

transformation. It is not an indication that no elastic energy is involved in the 

transformation as claimed by Deng and Ansell [26]. 

Although thermal hysteresis is observed in the most thermoelastic transformations, · 

it is not a criterion for a thermoelastic transformation. On the contrary, the existence of 

thermal hysteresis indicates that thermoehistic equilibrium does not always exist For the 

convenience in the following discussion , we define an ideal thennoelastic transfonnation, 

in which the elastic energy is fully reversible (no effect of plastic deformation) and the 

frictional resistance is absent; thermoelastic equilibrium is achieved at every step of the 

martensitic transformation, so that As = Mr, Ar = M 8, and the thermal hysteresis does not 

exists. 
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6.4.2. The position of To relative toMs, Mt. As, and At 

From the simulation results and the discussion of thermal hysteresis, the answer to 

this question is straight forward When the martensitic transformation leads to a fully 

relaxed microstructure, as in the case of the unconstrained transformation of a single crystal 

or a transformation that is fully relaxed by plastic deformation, then the forward and 

reverse transformations should be approximately symmetric about the equilibrium 

temperature, To, which will lie half-way between Ms and As (Eq. (6.1)). In a constrained 

crystal, the accumulated elastic strain facilitates the reverse transformation. If the 

transformation is ideally thermoelastic, As = Mr and Ar = Ms; if the transformation is not 
) 

ideally thermoelastic, and no plastic relaxation or the frictional resistance exist, then As = 

Mr and Ar > Ms. and Ar can be below To or above To depending on the paths of reverse 

transformation and the amount of elastic relaxation, or the minimum elastic energy 

increment generated during cooling. When plastic relaxation and frictional resistance are 

important, As and Ar have no necessary relation to Ms. Mr and To beyond the 

thermodynamic requirement that As~ Me and Ar ~Ms. · 

6.4.3. The Irreversibility of Transformation Path 

The martensitic transformation path is only strictly reversible, that is, the 

transformation and reversion sequences are exactly reversed, when the reversion of an 

element of martensite releases precisely the mechanical energy that was needed to create it. 

The simulation suggests that this is rarely the case, even in the absence of friction and 

plastic relaxation. The reason is the elastic relaxation during the transformation, as 

discussed in Section 6.4.1. When the transformation takes place in a constrained crystal, 

thermoelastic equilibrium occurs in the very last stages of the transformation where the 

transforming elements are highly strained These elements are readily reversed when the 
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' 
temperature is increased above Mr, and the transformation path is reversible in the early 

stages of the reverse transfonnation. In this case, the constraint is essential. 

Using the minimum energy path as the transformation criterion, the computer 

simulation model generates the irreversible transformation path. The similarity of the 

characteristics of the martensite morphologies during cooling and heating produced by the 

computer simulation (see Figure 6.3 and Figure 6.6) to that of experimental observations 

[25] demonstrates that the minimum energy path criterion does have its physical basis. The 

· minimum energy path results in a smaller thermal hysteresis compared with the exactly 

reversed path, and requires less superheating and is thermodynamically favored. 

6.4.4. The Influence of Reversibility on the Martensitic Transformation 

\ 

One of very interesting results of this investigation is the significant influence of 

reversibility on the thermal resistance, aM = Ms - Mr, and on the microstructure produced 

by athermal martensitic transformations in constrained crystals. The growth and 

impingement of multiple martensite plates creates local regions of high elastic energy. If 

reversion is possible, these regions can be eliminated by reverse transformation, which 

allows the microstructure to rearrange itself into a simpler configuration in which the elastic 

. energy is significantly reduced. The result is a more regular microstructure and a smaller 

thermal resistance AM (a higher value of Mr). This microstructural relaxation is opposed 

by any factor that makes reversion more difficult. Hence the final microstructure is more 

complex, and AM is increased, if the reversibility factor, fr, is less than 1 or if the frictional 

resistance, dGr is relatively large. 

Since the elastic energy stored in the system acts as a driving force for the reverse 

transformation when it is released during heating, the reversibility factor of the elastic 

energy, fr, has a strong influence on the starting temperature of the reverse transformation, 

A 5• When fr is zero during heating, the reverse transformation from martensite to the 
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parent phase can happen only when the temperature is above or at To depending on whether 

there is elastic or frictional resistance for the reverse transformation, and the transformation 

is not thermoelastic. 

From the above discussion, it is reasonable to state that the reversibility of the 

elastic energy is a unique factor which determines the thermoelasticity of a material. 

6.4.5. Thermoelasticity 

Thermoelasticity is characterized by the transformation and growth of martensite 

plates upon cooling and reversion and shrinkage of the martensite plates upon heating. 

Non-thermoelastic transformation is distinguished from the thermoelastic transformation by 

the function of the elastic energy during the reverse transformation. The thermoelastic 

transformation is triggered by strain-induced reversion of martensite plates, and the elastic 

energy acts as a driving force for the reverse transformation. Non-thermoelastic 

transformation is triggered by the independent nucleation of the high-temperature phase, 

and no elastic energy assists the reverse transformation. Any effect which tends to reduce 

the loss of elastic energy, and therefore, the loss of the reversibility of the elastic energy, 

should be regarded as promoting thermoelasticity. The simulation suggests that plastic 

deformation and frictional resistance reduce the th~rmoelasticity and have their effect in 

different ways. Plastic deformation relaxes the elastic energy and changes it into an 

irreversible form, and therefore, decreases the reversibility of the elastic energy. Frictional 

resistance, which includes the effects from boundary friction, surface energy, and plastic 

deformation, is essentially irreversible energy. The transformation by indep~ndent 

nucleation can occur before strain-induced reversion of martensite does, if the value of 

frictional resistance is substantially large (since high As and Af temperatures). The 

characteristics observed in many thermoelastic transformations, such as, a small chemical 

driving force, a small transformation shape deformation, and a matrix with a high flow 
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stress (or the critical resolved shear stress) [5,25,34], are not defining features for 

thermoelastic behavior. They are, however, the conditions under which plastic 

deformation will not or at least less likely to occur during the transformation, hence the 

elastic energy loss is minimum and the thermoelastic transformation is more likely to be 

preserved. The reversibility of the elastic energy and frictional resistance vary with 

composition, transformation strains, transformation mechanism and material properties 

(e.g.,the critical resolved shear stress), etc., and can change with processing history. This 

is the reason that some alloys exhibit large thennoelasticity and others small, and why some 

alloys traditionally considered to be non-thermoelastic show thermoelastic features under 

certain conditions [35-44]. It is not surprising that some systems do not meets the strict 

conditions for either thermoelasticity or non-thermoelasticity and have mixed features. 

In most so called thermoelastic transformations, thermoelastic equilibrium is not 

always achieved, as it has been concluded in section 6.4.1. The constraint is essential for 

the transformation to reach the thermoelastic equilibrium. It is only in the ideal 

thermoelastic transformation that thermoelastic equilibrium is obtained at every step of the 

transformation and thermal hysteresis disappears. 
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CHAPTER 7 

COMPUTER SIMULATION OF REVERSffiLE MARTENSITIC 
TRANSFORMATIONS 

-- PART IT: PSEUDOELASTICITY AND THE SHAPE MEMORY 

EFFECT 

, In this chapter, the simulation of reversible martensitic transformation is extended to 

include external stresses, and the results of an investigation of pseudoelasticity and the 

shape memory effect are presented. 

7 .1. Introduction 

Pseudoelastic behavior is a mechanical analog to the thermoelastic transformation. 

The martensite transforms continuously with increasing applied stress, and reverses 

continuously when the stress is decreased. The "plastic" strain is caused by the shape 

strain accompanying the formation of martensite and recovers when the transformation is 

reversed. The total strain may or may not be completely recovered depending on whether 

irreversible deformation occurs or not, or whether there is a transformation resistance. 

Figure 7.1 is the schematic drawing of an experimental stress-strain curve first published 

by Burkart and Read [45] for indium-thallium alloys in 1953. The experimental 

temperature was fixed at a value greater than that of the reverse completion temperature Ar. 

A hysteresis exists in a stress-strain curve under such conditions. In Figure 7 .1, O'cl is the 

stress where the induced transformation from parent phase to martensite phase starts during 

loading, O'c2 is the stress where the transformation is completed. and O'c3 is the stress where 

the reverse transformation from martensite phase to parent phase starts during unloading. 

The stress-strain curve, and hence the hysteresis was found as a function of testing 

temperature and crystal orientation [ 46,47]. 
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Pseudoelasticity can be obtained not only by stress-induced martensitic 

transformation, but also by variant-reorientation [48-51] when external stress is applied on 

a crystal consisting of martensite. This type of pseudoelasticity can be compared to the 

elastic twinning and untwinning in crystals [52]. In this case, <Jet is the stress where the 

variant-reorientation starts during loading. Wasilewski [53] concluded that if the martensite 

is stressed between Mr and Ad (~ < Mr}, where~ is the lowest temperature at which the 

stress-assisted reorientation can occur, the reversion from martensite to austenite is only a 

transient intermediate step, which is followed by the immediate and also stress-assisted 

transformation of this austenite to another martensite 'variant with a different orientation 

from that of the original martensite. Although it is difficult to make Wasilewski's two-step 

mechanism visible experimentally, there are indications [27] that this two-step mechanism 

can occur on an atomic scale. 

Pseudoelasticity can also be caused by the combination of transformation and 

reorientation of martensite. For an example, the transformation is first induced by applying 

external stress, then the reorientation takes place when this stress-induced martensite is 

further stressed. The multiple plateaus observed in some stress-strain curves was 

considered as a consequence of such combined effect [50]. 

Similar to the thermal hysteresis, the origin of the stress-strain hysteresis as well as · 

its related dissipating effect is not well understood. In Chapter 6, it was concluded from 

our investigation that the fq.ndamental source of the thermal hysteresis is the absence of 

equilibrium between the chemical driving force and the elastic resistance. It is my belief 

that the explanation of the stress-strain hysteresis is similar to that of the thermal hysteresis, 

and the only difference is that, in this case, the driving force includes chemical energy 

and/or external stress. 

The shape memory effect often occurs if a macroscopic deformation is accompanied 

by a martensitic transformation under an applied stress, and is not reversed by removing 

the applied stress, but by heating after the removal of the applied. stress. There are very 
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close interrelations between thennoelasticity, pseudoelasticity and the shape memory effect. 

Wayman and Shimizu concluded [54] that the shape memory effect can be universally 

correlated with a martensitic transformation that is thermoelastic in nature. Delaey et al 

[55] pointed out that if the reverse transformation is incomplete when the applied stress is 

reduced to zero in the pseudoelastic case, the residual martensite can be reversed by 

heating, resulting in the shape memory effect. The experimental work by Guilemany and 

Gil [56] show that the recovered strain after releasing the applied stress also changes with 

loading cycle. The first cycle produces a higher residual strain or lower recovery of the 

shape change than the subsequent cycles, resulting in a training effect under stress. 

Guilemany and Gil believe that such a training effect is due to interactions between 

martensite plates which cause localized plastic strain and/or irreversible martensite pinned 

by defects. There is a lack of experimental and theoretical evidence which can prove this 

. explanation. 

In this chapter, the simulation results will be presented to show how the stress­

strain curve and the amount of strain which can recover vary with loading temperature and 

loading cycles, how the reversibility of the elastic energy and reverse frictional resistance 

affect the strain recovery after the applied stress is released, and how they affect the reverse 

transformation of the remaining martensite by heating after the stress is released, 

reproducing the shape memory effect. The evidence form the simulation will also be 

presented to show that the essence of stress-strain hysteresis is the exact analogy of the 

thermal hysteresis -- the free energy change due to the applied stress is not always in 

equilibrium with the elastic energy increment due to the martensitic transformation. 

7 .2. Computer Simulation Model 

The computer model for simulating the reversible transformation under external 

stress has been described in Chapter 3. The transformation in an constrained crystal is 
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simulated. The total Gibbs free energy changes for the transformation and reversion of an 

element (p,R) under an external stress, ae, at a fixed temperature, T, are shown in Eqs. 

(3.17) and (3.18). For simplicity, the effects of the relaxation factor, fr, and forward 

frictional resistance, aGr, are neglected (fr= 1, L\Gr = 0): 

AG{T, p,R) = uaGu(T) + L\Ge(p,R) + aGi(ae•p) (7.1) 

' ' t ' 

AG'(T, p,R) = uaGu(T)+ fr (aGe(p,R) + AGi(ae•p)) + AGr (7.2) 

To plot stress-strain curves which are generated from the simulation, the 

·macroscopic strain induced by the transformation must be calculated. From Eq. (3.14), 

when a uniaxial stress is imposed at the y-direction of a transforming body, the 

macroscopic strain induced by the transformation at the y-direction is 

(7.3) 

where e~2(p) is the transformation strain component of a martensite particle of variant p, 

and ~Pis the volume fraction of variant p martensite. Substituting £~2(1) = e8{R - 1), 

£~2(2) = e8{R + 1), ~~ = N1/N and ~2 = N2fN into Eq. (7.3), we have 

(7.4) 

where N1 and Nz are the .numbers of martensite particles of variant (1) and (2) respectively, 

and N is the total number of cells. If we measure the stress in units of J.1£s, ~2 = a*J.les, 

the relation of a* versus Ey/£8 qualitatively reflects features of a stress-strain curve 

produced by the martensitic transformation. If the second term at the right side ofEq. (7.4) 

is omitted, we obtain a simpler expression 
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(7.5) 

If Ey = 1, the completely transformed body consists of only martensite particles of variant 

(2); if Ey = 0, the body consists of either no martensite particles or has an equal number of 

martensite particles of both variants. 

The stress~strain curves can be qualitatively represented by a*-'Ey. or a*-ey. where 

a*= a~J,l£8, Ey and Ey are described in Eq. (7.4) and Eq. (7.5) respectively. 

The forward and reverse transformations are allowed during both loading and 

unloading processes, unless otherwise indicated. The transformation directly from one 

variant of martensite to the second variant of martensite is not considered 

7 .3. Results and Discussion 

7.3.1. Reversible Transfonnation under External Stress -- Pseudoelasticity 

A. The Influence of Loading Temperature and Loading Cycle on Stress-Strain Relation 

The simulations were conducted for different values of chemical driving force, 

~Gu. corresponding to different temperatures, and a uniaxial stress that was cycled 

between a* = 3.0 and 0. A dilation ratio of 0.2 (R = 0.2) is assumed in the transformation 

strain. From the temperature-transformation (TT) curve during a thermal cycle for R = 0.2, 

' fr = 1 and .1Gr = 0, the values of the chemical free energy corresponding to Ms. Mr, As. 

andAr can be found: -.1Gu(Ms) = 1.25, -.1Gu(Mr) = -.1Gu(A8) = 1.96, and -.1Gu(Ar) = 0 

Hence, the values of -.1Gu are chosen ranging from -0.5 (T > M8) to 3.5 (T < Mr). When 

T > M8, the initial body is the parent phase, and there is a single martensite particle of 

variant (2) as a seed. When Ms > T > Mr. the initial body contains a fraction of martensite 
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transformed thermally at that temperature. When T < Mr. the initial body contains only 

martensite particles with two variants transformed thermally. 

Since the second term in Eq. (7 .4) only adds a constant to ey and does not change 

the shape of stress-strain relations, in the following, all stress-strain curves are presented 

by cr*-ey. 

Figure 7.2(a) to (h) are cr*-ey curves from the simulation at eight different 

temperatures. Figure 7.2(a) and 7.2(b) show only the first cycle of cr*-ey curve, since the 

curves of the higher cycle are identical to that of the first one. Figure 7.2(c) through 7.2(h) 

plot the cr*-ey curves of the f'rrst and the second cycle. The cr*-ey curve during unloading 

of the second cycle overlaps the unloading section of the first one. The cr*-ey curves of the 

third and higher cycles are identical to that of the second cycle. 

The following are the observations from Figure 7.2. (1) When loading temperature 

T > M8, the stress, O'ct. where the martensite transformation starts, decreases with 

decreasing temperature ((a) through (d)). (2) When loading temperature T <Mr. the stress, 

O'ch is where the reorientation or change of the martensite variant occurs (Note: it is 

actually the stress where the reverse transformation of martensite to the parent phase during 

loading begins since the direct transformation from one variant to the other is not allowed). 

At this temperature range, O'cl increases with decreasing temperature ((f) through (h)). (3) 

The stress, O'c2· where the transformation or reorientation completes during loading, 

increases with decreasing temperature. (4) The stress where the reverse transformation 

starts during unloading decreases with decreasing temperature. (5) At the end of the fmt 

cycle, the remaining strain increases with decreasing temperature. In other words, the net 

recovered strain decreases after the stress is released with decreasing temperature. (6) At 

the end of the second, or higher cycle, the strain (refer to the starting point of the second 

cycle) is completely recovered. (7) The hysteresis widens with decreasing temperature 

because of increasing O'c2 and decreasing O'c3· 
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The above observations from Figure 7.2 have obvious physical reasons: When 

loading temperature T > Ms. the parent phase is thermodynamically favored. The higher 

the temperature, the more difficult the martensitic transformation is. Therefore, the stress at 

which the induced transformation starts increases with temperature. When loading 

temperature T < Mr, martensite is thermodynamically favored. The degree of difficulty of 

the reverse transformation from the martensite to the parent phase increases with decreasing 

temperature. Therefore, the stress at which the reorientation starts during loading increases 

with decreasing temperature, and the stress where the reverse transformation starts during 

unloading decreases with decreasirig temperature. 

Strictly speaking, pseudoelasticity is realized when loading temperature is equal or 

above Ar. The a*-Ey curves of such type are shown in Figure 7.2 (a) and 7.2 {b), where 

the transformation-induced strain is completely recovered at the end of the first loading 

cycle. When some or all transformation-induced strain remains after the removal of the 

applied stress, as shown in Figure 7.2 (c) to 7.2 (h), the phenomenon is called 

pseudoplasticity since the remaining strain resembles that created by plastic defonnation. 

B. The Influence of Loading Temperature and Loading Cycle on Microstructure 

When loading temperature is above or close to Ar, (see the cr*-Ey curves in Figure 2 

(a) and (b)), the stress-induced martensite consists of entirely or almost entirely variant (2) 

particles. The martensite particles reverse to the parent phase completely when the applied 

stress is released to zero. Figure 7.3 shows an example of the configurations at eight 

different stresses in the first loading-unloading cycle when -~Gu = -0.5 (T > Ar). The 

whole body transforms into variant (2) martensite (Ey = 1) before reaching the maximum 

stress. The a*-ey curve shows a vertical segment after the completion of the 

transformation since the pure elastic strain caused by the Young's modulus is not shown in 

the relation. If the maximum applied stress is lower, e.g., a* = 1.0, the final transformed 
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configuration looks like that shown in Figure 7.3 (b) and the reversion starts from that 

point if the applied stress is reduced. As the loading and unloading cycles, the shape 

change induced by the martensitic transformation and reversion repeats just like a rubber 

band. 

When the loading temperature is relatively low but still above Ms (see cr*-£y curves 

in Figure 7.2 (c) and 7.2(d)), the martensite particles induced by the initial load contain 

both variants, but with higher fraction of variant (2). Subsequential increase of the load 

causes the reversion of variant (1) and the transformation of variant (2). When the load is 

decreased from its maximum, the amount of particles of variant (2) decreases, and at the 

same time the amount of particles of variant (1) increases. After the load is reduced to zero, 

the partial martensite particles of both variants remain and do not reverse to the parent 

phase. Since the number of particles of two variants are not the same, the net strain is not 

zero. Figure 7.4 shows the configurations at different stresses duririg the first loading­

unloading cycle when -~Gu = 1.0. At this temperature ( Ar > T > Ms), a thin plate with 

variant (2) particles fonns at a* = 0.15. At a* = 0.3, about 91% of the total cells have 

transformed into martensite of both variants (Figure 7.4 (a)). Figure 7.4(b) through 7.4(d) 

show the configurations at the other three different applied stresses (cr* = 0.6, 1.05 and 

1.5) during the loading of the rrrst cycle. When a* = 1.65 or higher, all variant (1) 

particles are reversed into the parent phase and then transformed into variant (2) particles. 

During the unloading of the fll'St cycle, the reversion does not start until the applied stress is 

reduced to a* = 0.9 at which some of variant (2) particles are reversed to the parent phase 

(Figure 7.4(e)). Figure 7.4(f) through 7.4(h) show the configurations at three different 

applied stresses (cr* = 0.6, 0.3 and 0) during the unloading of the frrst cycle. Since the 

martensite is not completely reversed at zero stress, the morphologies generated during 

loading of the second cycle are different from those in the first cycle and, therefore, the cr*­

ey curve during the loading of the second cycle is different from that of the first one. 

Figure 7 .S(a) through 7.5(d) show configurations at four different applied stresses (cr* = 
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0.45, 0.9, 1.35 and 1.65) during the loading of the second cycle. When a* is higher than 

1.65 only the particles of variant (2) exist. 

When the loading temperature is lower than Mr (see the a*-ey curves in Figure 7.2 

(e) through 7 .2(g)), a martensite particle of variant (1) is reversed to the parent phase and 

then immediately transformed to variant (2) particle. This reversion-transformation process 

starts and proceeds at the boundaries of martensite plates of two variants. The macroscopic 

effect is the movement of twin bound3ries. During unloading, the number of martensite 

particles of variant (2) which reverse to the parent phase and subsequently transform to 

variant (1) reduces with decreasing temperature. Figure 7.6 shows configurations during 

the loading ((a)-(d)) and unloading ((e)-(f)) in the first cycle when -~Gu = 2.0, a 

. temperature just below the Mr. The initial configuration at zero stress consists two variants 

with almost even volume fraction (Figure 7.6(a)). Before the applied stress, a*, reaches 

the maximum, all variant (1) particles have transformed back to the parent phase and then to 

variant (2) (at a* = 2.1). During unloading, the number of martensite particles of variant 

(2) which reverse to the parent phase and then transform into variant (1) increases with 

decreasing load. At the end of the first cycle, more than 70% of the strain is recovered and 

' the configuration at that point is shown in Figure 7.6(d). When the loading temperature is 

much lower that Mr (-~Go= 3.5), less than 10% of martensite particles are still variant (1) 

at the maximum load. Figure 7. 7 shows the configurations at four different stresses during 

loading. Unloading has almost no effect on the a*-ey curve and configuration, as shown 

in Figure 7.7 (d). There is no recovered strain at zero load. 

Figure 7.8 is the plot of the recovered strain after the applied stress is released at the 

end of the first cycle versus the loading temperature ( -~Gu). The recovery of the strain is 

complete when T ~ Ar, and decreases drastically with decreasing temperature when T <Mr. 
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C. The Influence of Maximum Stress 

Since the maximum stress used for generating the results shown in Figure 7.2 is 

high (a* = 3.0), all the particles are variant (2) at the maximum stress regardless of loading 

temperatures and of the number of cycles. Therefore, the morphologies and a*-ey curves 

produced in the higher cycles are exactly the same as those produced in the second cycle, 

since in our simulation the elastic energy change is determined by the configuration only. 

In reality, an energy fluctuation may occur and the morphologies and stress-strain curves of 

different cycles may not coincide. If the stress reaches the maximum and the transformed 

body consists both variants, the cr*-ey curves do not overlap even at higher cycles because 

the morphologies are not identical at the same load. Figure 7.9 shows the TI curve of such 

case when the maximum stress, cr*, is 2.0 and -LlGu = 2.0. The net fraction of variant (2) 

does not reaches 1.0 until the end of loading in the second cycle, and the remaining strain at 

the end of second cycle is negative (with respect to the strain at the starting point of the 

second cycle). The a*-ey curve of the third cycle does not coincide with that of the second 

cycle since the initial configurations at zero stress of the two cycles are different.. 

D. The Influence of Reversibility of Elastic Energy and Frictional Resistance 

Figure 7.10 shows the a*-£y curve when the reversibility, fr. is reduced to 0.5 and 
I 

the frictional resistance, L\Gr, is still zero for a maximum stress 3.0 and - L\Gu = 1.0 (At> 

T > Ms). Comparing this with Figure 7.2(d) which shows the cr*-ey curve for fr = 1, we 

can see that lowering the reversibility increases the stress, O'c2. under which all particles · 

transform or reorientate to variant (2), decreases the stress, <Jc3• where the reverse 

transformation starts during unloading, and decreases the strain recovered after the stress 
I 

is released to zero. Figure 7.11 shows the cr*-ey curves when fr = 1 andL\Gr= 1.0 (a) and 
I ' 

2.0(b) respectively. The effect of AGr on the a*-ey curve is the same as that of lowering 

88 



. I 

reversibility, and when .1Gr = 1.0, the a*-Ey curve is almost the same as that shown in 
I 

Figure 7.10 where fr = 0.5. When .10r = 2.0 (Figure 7.11 (b))., the recovered strain after 
I 

the stress is released is less than 0.2. While when ~Gr = 0 (Figure 7.2 (d)), the recovered 

strain is more than 0.8. 
I 

The smaller the reversibility, fr. or the larger the reverse frictional resistance, ~Or' 

the closer the microstructure produced by the reversible transformation is to that in the 

irreversible case. 

7.3.2. The Strain Recovery After Unloading-- Shape Memory Effect 

To simulate the shape memory effect, the stress-induced transformation must show 

pseudoplasticity at the end of a loading cycle. Then the temperature ( -AGu) is increased 

gradually until all martensite particles are reversed to the parent phase. Three cases are 
I 

selected: (1) T < Mr (-AGu = 3.0), fr = 1, AGr = 0; (2) Ms < T < Ar (-AGu = 1.0), fr = 0.5, 
I I 

&Or= 0; (3) Ms < T < Ar (-AGu = 1.0), fr = 1.0, AGr= 1.0. The a*-Ey curves of these 

cases have been shown in Figure 7.2 (g), Figure 7.10 and Figure 7.11 (a) respectively. 

The top portions in Figure 7.12(a) through 7.12(c) are the a*-ey curves of the f'lfSt loading 

cycle of these three cases; the bottom parts in Figure 7.12(a) through 7.12(c) are the 

temperature-transformation (TT) curves and temperature-strain relations obtained after 

unloading. 

Figure 7.12 (a) (case 1) shows that if the loading and unloading are done at the 

fixed temperature ( -AGu = 3.0) below Mr, about 20% of the strain is recovered after the 

unloading, while no martensite is reversed to the parent phase. The strain recovery is due 

to the variant-reorientation, that is, variant (2) particles transform to variant (1) particles 

through the reversion to the parent phase first. After unloading, then subsequent increases 

in temperature causes the recovery of the strain and reversion of martensite. Although both 

strain and volume fraction of martensite decrease with increasing temperature, the rates of 
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decreasing are different at different temperature ranges. As shown in Figure 7.12 {a), there 

are three temperature regions. In the first region, where T <Mr. the strain increases 

drastically but the change of the fraction of martensite is zero. In the second region, where 

Mr < T < Ms. the rate of the strain recovery is decreased to about a half of that of the fl.fSt 

region, and a little martensite is reversed to the parent phase. In the third region, the rate of 

the strain recovery is the same as that of the second region, but the fraction of martensite 

decreases dramatically with the increasing temperature until the reversion is complete near 

Ar. The microstructure shows that, in the frrst region, the recovered strain is due to the 

variant-reorientation. In th~ third region, the remaining strain is recovered mainly by the 

reverse transformation of the martensite to the parent phase. The reverse transformation 

completes at or a little below the Ar which is below To {see Chapter 6). 

Figure 7.12 {b) {case 2) and 7.12 {c) {case 3) compare the effects of the 

reversibility of the elastic energy and reverse frictional resistance on strain recovery. In 

both cases, the reversion and strain recovery are complete at their reverse transformation 

completion temperature, Ar. The completion of reverse transformation for the case 3 

requires much higher temperature since the existence of reverse transformation resistance 
I 

has shifted Ar up {see Chapter 6). At this loading temperature, the martensitic 

transformation is induced by the applied stress {since T > Ms) and the strain recovered 

during unloading is due to mainly the variant-reorientation. As shown in Figure 7.12 {b) 

and 7 .12{c), about 98~ of the particles are martensite _after the stress is released to zero. 

7 .4. Discussion and Conclusion 

7.4.1. The Source of Stress-Strain Hysteresis of Pseudoelasticity 

From Figure_ 7.2 it can be seen that a stress-strain hysteresis exists even when the 

temperature is higher than Ar and that the strain is completely recovered after the stress is 
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released. In Chapter 6 it has been shown the thermal hysteresis is due to the absence of 

thermoelastic equilibrium. To show this is also true for the stress-strain hysteresis, the 

reverse transformation during unloading that follows exactly the reverse sequence of the 

forward transformation during loading ("exactly reversed path" for short) was simulated. 

Using the same procedure employed in Chapter 6, the following relation can be 

' obtained from Eqs. (7 .1) and (7 .2) (when fr = 1 and L\Gr = 0) for the exactly reversed path 

\ 

The above relation shows that the elastic energy increment, L\Ge(p,R), of the loading 

process for any given martensite volume fraction must be bounded between the Stress­

Transformation (ST) curves of the loading and unloading. The ST curves are the plots of 

fraction of martensite particles versus the negative of the free energy change caused by the .. 
applied stress plus the chemical free energy change during loading and unloading, - ('U 

L\Gu{T) + ~Gi(<Je•p)) and- ('U L\Gu{T) + ~Gi(ae'.p)). Since temperature is fixed, the 

effect of chemical energy on both transformation and reversion is the same. Figure 7.13 

illustrates the ST curves and L\Ge(p,R) curve from the simulation of the exactly reversed 

path. Again as in the thermoelastic transformation (Chapter 6), the reverse transformation 

is not allowed d~ng loading to avoid complication of the simulation. Figure 7.13 shows 

that the elastic energy increment, L\Ge(p,R), does not monotonically increase with the 

fraction of martensite particles. However, since the free energy caused by the applied 

stress is proportional to the net fraction of martensite particles of variant (2), which is 

favored in the tension, the equilibrium condition, where 'UL\Gu{T) + ~Ge(p,R) + 

~Gi(ae•p) = 0, does not always exist. 

Figure 7.14 compares the ST curves from the exactly reversed path and minimum 

energy path. The ST curve generated from the minimum energy path produces a smaller 

hysteresis loop. 
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Setting ae' = ae in Eq. (7.8), then only the equation 

(7.7) 

holds for any volume fraction of martensite. This means, if the equilibrium always Holds 

during loading. no stress-strain hysteresis should exists and the minimum energy path is 

the same as the exactly reversed path. 

7.4.2. Training Effect under Stress 

At cenain temperatures and applied stresses, the strain produced in the second or 

higher loading cycles is completely recovered after the stress is released, while there is 

remaining strain in the first cycle. The conditions under which the Figure 7.2 is generated 

exclude any effects caused by dislocation structures since no plastic deformation or any 

frictional resistance is considered The reason for the training effect found in the simulation 

is that, after a complete loading cycle one martensite variant is favored. At a certain 

loading temperature and maximum applied stress, all particles transform into variant (2) 

when the maximum stress is reached. During unloading, the amount of particles of variant · 

(2) which can reverse to the parent phase and then transform to variant (1) is determined by 

loading temperature. The lower the loading temperature, the lower the stability of the 

parent phase and the possibility of the reversion from the martensite phase to the parent 

phase. At one extreme, as shown in Figure 2 (h), when the loading temperature is much 

lower that Mr, no particles can reverse after the stress is released, and the retained 

martensite is mostly variant (2). 
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7.4.3. The Shape Memory Effect 

The shape memory effect can be realized only when materials show 

pseudoplasticity and are thermoelastic in nature. It can be utilized most effectively when 

deformation (or loading) temperature is below the Mr, so that the strain induced by the 

martensitic transformation and reorientation is at its maximum when the applied stress is 

released. During the heating process which follows the removal of the applied stress, the 

strain recovery is mainly due to the martensite reorientation when temperature is below Mr. 
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CHAPTERS 

COMPUTER SIMULATION OF MARTENSITIC TRANSFORMATIONS 
OF 

CUBIC TO MONOCLINIC STRUCTURE 

8.1. Introduction 

The computer simulations in previous chapters were done in an ideal crystal, and 

the system was considered isotropic. In this chapter the computer simulation model is 

applied to partial-stabilized-zirconia systems to simulate the martensitic transformation from 

a cubic to a monoclinic structure as an approximation of the transformation from a · 

tetragonal to a monoclinic structure. 

Twinning occurs in small particles which are embedded in cubic zirconia matrix 

during the transformation from tetragnal to monoclinic structure. This phase 

transformation increases the fracture toughness of the material [8]. The twinning, 

however, cannot be explained by the crystallographic theory since no invariant plane is 

found in the twinned monoclinic structure [20]. ·one explanation for the twinning is the 

constraint imposed by untransformed cubic matrix, because the formation of twins reduces 

the total shape change under the constraint [20]. To my knowledge, however, so far there 

is no theoretical study or computer simulation that has been done to conclusively determine 

the source of such twinning. It has been shown in Chapter 4 through Chapter 7 that the 

constrained boundary imposed by untransformed matrix promotes the twining in a two­

dimensional space. In the folloWing sections, the simulation results of the martensitic 

transformation in three-dimensional space under the stress-free and constrained condition 

are presented, and the role of the constraint for the twinning is discussed. 
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8.2. Computer Simulation Model 

The simulation is done in a cubic system of three-dimensional space without 

external stresses. The driving force is provided by chemical free energy (undercooling). 

The model used here is essentially the same as that described in Chapter 3 except that the 

transformation strain is monoclinic, and the elastic system is cubic (non-isotropic). These 

differences are elaborated in the following. 
' ' 

For simplicity the parent phase is assumed to be a cubic structure, instead of 

tetragonal structure. Due to the crystallographic symmetry, there are total12 variants of 

monoclinic transformation strain. For the purpose of this work, it is adequate to choose 4 

variants in the simulation: 

[
£1 0 'Y] 

e(l) = 0 e2 0 
'Y 0 £3 

[
£2 0 0] 

e(3) = 0 tt 'Y 
0 'Y £3 

[
£2 0 0] 

e(4) = 0 e1 -"( 
0 -"( £3 

(8.1) 

Two sets of values of the transformation strain are used in the simulation. These values 

along with the references are listed in Table 8.1. The elastic constants obtained from a 

cubic yttria-stabilized zirconia system [57] are used in the elastic energy calculation (units = 

1012 dyn/cm2): c11 = 3.94, c12 = 0.91 and c44 = 0.56. 

Table 8.1. The values of the transformation strain 

set en £22 £33 'Y Reference 

1 -0.0054 0.0125 0.0387 0.0753 58 

2 0.00997 0.02594 0.02622 0.08133 59 
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8.3. Simulation Results 

When the transformation takes place in an unconstrained crystal, the simulations 

using the two sets of values of the transformation strain produce different microstructures. 

Figure 8.1 is a three-dimensional configuration generated by the first set of the values listed 

in Table 8.1. Initially, a seed of variant (1) is placed in the center of the cube. Although 

the four variants compete with each other in the simulation, the final configuration consists 

of two variants (variant (1) and variant (2)) of monoclinic martensite phase in a twinned 

structure. Figure 8.2 is a schematic drawing of the rmal configuration showing the shape 

change. For the second set of the values of the transformation strain, the final 

configuration consists of all four variants (Figure 8.3). If only two variants (variant (1) 

and variant (2)) are used in the simulation, the final configuration is a fine twinned structure 

(Figure 8.4). 

When the transforming crystal is constrained by untransformed matrix, the 

simulation using the first set of the transformation strain generates a fme twinned structure, 

as shown in Figure 8.5. Figure 8.6 shows the configura~ons of two different cuboids 

generated by applying different amount of the constraint in three directions, when only the 

two variants· are used. The twinned monoclinic structures have {001} twin planes. The 

constraint has little effect on the fmal configurations when the simulation is done by using 

the second set of the transformation strain, and the configurations are similar to those 

shown in Figure 8.3 and Figure 8.4. 

8.4. Dissensions and Conclusion 

As discussed in Chapter 2, a strain is dyadic if, and only if, one of its principal 

strains vanishes and the other two are opposite in sign. In order to use this criterion to 

determine a dyadic strain or a composite dyadic strain, the transformation strain presented 
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in Eq. (8.1) is diagonalized, and the values listed in Table 8.1 are used to find the principal 

strains. Table 8.2 lists the principal strains of the two sets of transformation strains for 

variant (l)s. The principal strains ofvariant(2)s can be obtained by exchanging the values 

of Et and E3 of variant (1)s. 

Table 8.2. The principal strains 

set EI £2 £3 Reference 

1 0.0951 0.0125 -0.0618 58 

2 0.0998 0.0259 -0.0636 59 

First, it is very· simple to determine that the transformation strain of each set is not 

dyadic, since none of its three principal strains is zero. Second, using the condition 

provided in Chapter 2, it is clear that a composite dyadic strain cannot be achieved by 

combining variant (1) and variant (2) in Eq. (8.1), since l£3l < l£1l (or IE II< l£3l for variant 

(2)s) and £1+ £3 has the same sign as e2. 

It can be concluded that the transformation strains in Eq. (8.1) with the values in 

Table 8.1 fall into the category of non-dyadic strain where a transformation strain is not 

dyadic and cannot be made so by c.reating a composite strain. The non-dyadic 

transformation strain produces a multivariant microstructure to minimize the net elastic 

strains. 

The experimental observations and the simulation results presented in Figures 8.1 

through 8.6 show that the volume fraction of each of the variants in the twinned structure is 
/ 

about 0.5. Taking a average strain of variant (1) and variant (2) in Eq. (8.1), we obtain 
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1 1 [£1 0 0] 
£ = ~(1) + ~(2) = 0 £2 0 

00£3 
(8.2) 

which cancels the shear components, "(, and becomes an orthorhombic strain. But since 

none of the strain components in Eq. (8.2) is zero, the net strain is not a dyadic, or an 

invariant strain. Therefore, the twinning in this case is not to achieve an invariant plane 

strain, as concluded by Kelly and Ball [20] after their applying the crystallographic theory, 

but to relieve the partial elastic strain energy by canceling the shear components. 

These simulation results illustrate that the microstructures are determined by the 

transformation strains and boundary conditions. The constraint imposed by an 

untransformed matrix promotes the twinning. 

The two sets transformation strains produce different microstructures, as shown in 

Figure 8.1 and Figure 8.3, although both are non-dyadic strains. The second set has a 

larger volume expansion than the first one, but it is not clear whether this is the reason for 

the difference. Further investi~ation needs to be done to clarify this issue. 

98 



CHAPTER9 

SUMMARY 

9.1. The Computer Simulation Model 

This dissertation reports a computer simulation of martensitic transformations. To 

study the development of microstructure, a finite-element computer simulation model was 

constructed to mimic the transformation process. The transformation is athermal and 

simulated at each incremental step by transforming the cell which maximizes the decrease in 

the free energy. To determine the free energy change, the elastic energy developed during 

martensite growth is calculated from the theory of linear elasticity for elastically 

homogeneous media, and updated as the transformation proceeds. The model separates the 

effects of elastic resistance, relaxation and reversibility of elastic strain, frictional 

resistance, geometric constraint and external stress on the thermal resistance, microstructure 

and stress-strain relations during martensitic transformation and reversion. 

The model is simple but very fruitful in increasing our understanding of the 

martensitic transformation and its related phenomena. It successfully produces the 

preferred microstructures of martensite, which can be predicted analytically from the linear 

elastic theory. It also generates unusual microstructures, such as "butterfly martensite" 

which have been observed experimentally. It illustrates the increased accuracy obtained by 

using the finite volume of the elementary cell instead of a point approximation and clarifies 

the physics of studies that are conducted by simulation in two dimensions. It reveals the 

characteristics of thermal resistance of the transformation and produces complex, 

multi variant microstructures when the transformation is constrained by an untransformed 

matrix on which external stresses are or are not present. The model simulates the reversible 

martensitic transformation and has expanded our understanding of thermal and stress-strain 

hysteresis as well as the features of thennoelasticity, pseudoelasticity and the shape 
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memory effect. When plastic deformation and frictional resistance are absent, thermal 

hysteresis exists because of the absence of equilibrium between the chemical free energy 

and the elastic energy during transformation at any volume fraction of manensite. This 

non-equilibrium effect is due to the elastic relaxation caused by elastic interaction and 

accommodation between martensite particles of same and different variants, and which is 

also the source of energy dissipation. Applied to the partially-stabilized-zirconia systems, 

the model simulates the transformation from cubic to monoclinic structure and generates 

twinned microstructures that have { 100} habit planes. It has verified that, the twinning in 

small particles that are embedded in cubic zirconia matrix is not to achieve an invariant 

plane, but to reduce the transformation· shape change and minimize the elastic energy. 

The success and excitement of this model should not only to be judged by how 

close to experimental observations the martensite morphologies from the simulation are, but 

also by the amount of insight on martensitic transformations it provides to the broader 

understanding of unsolved problems. 

9 .2. Extensions of the Model 

The model is not limited to the study of martensitic transformations, but is useful 

for any transformations which are primarily controlled by elastic strain energy. The model 
I 

can be easily extended to study coherent precipitations and ordering-disordering reactions 

which are primarily dominated by elastic energy arising during the transformations. With 

necessary modification, the model can be used even to study plastic deformation. 

Traditional studies of plastic deformation are based on dislocation theories. The new 

approach proposed here views plastic deformation from a different perspective. When a 

part of a crystal is plastically deformed, it can be treated as if it undergoes a martensitic 

transformation with its transformation strain being equal to the plastic strain. The stress 

and strain distributions caused by the localized plastic strain are treated as those due to a 
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misfit inclusion in an elastic media. This idea was first suggested by Eshelby [9,10]. But 

to my knowledge, there has been no research work reported in the literature on applying 

this model. 

9.2. Possible Changes to the Model 

Several possible changes to the model might be useful in increasing understanding 

of elastic strain induced transformations. 

First, the effects of transformation criteria other than the minimum energy path can 

be easily obtained by changing the transformation criterion in the model. The examples of 

the criteria are (1) the negative energy criterion in which the transformation is permitted to 

all elements that give a negative free energy change once they are transformed, and (2) the 

X percentage criterion in which X percent (randomly picked) of all elements that give a 

negative free energy change is allowed to transformed at each step. Since the elastic energy 

change at each step depends on the number of existing transformed particles and the 

interactions between them and is a function of the morphology of the transformation 

product, the change of transformation criteria will alter the morphology at each 

transformation step. It is interesting to see how microstructures change with the change of 

the criteria and what additional information can be obtained from difference criteria. 

Secondly, in Chapter 6 and Chapter 7, the reverse transformation is confined to the 

transformation from martensite to parent phase only. The reverse transformation from one . 
variant to the other can be added into the model without too much difficulty. This will 

reveal an additional possible transformation path and give us an idea which path, the 

martensite-parent transformation or the variant-variant transformation, is more realistic or 

more energetically favored. 
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Thirdly, matrix plasticity can be incorporated into the model in the conjunction of 

the simulation of plastic deformation. The elastic energy controlled transformation and the 

plastic deformation will co-exist in simulation, which is closer to reality. 

Finally, the difference in elastic constants between the martensite and the matrix has 

been ignored in the model. The heterogeneity of elastic modulus changes both the two­

particle elastic interaction and the interaction with the external stress. Its ultimate effect is 

similar to that of the transfonnation strain [10] and will be reflected in microstructural 

changes (e.g., habit changes). It is, however, very difficult to incorporate such a modulus 

effect into the model because it depends on the shape of the transformed region. The 

features of the modulus effect may be revealed by using approximations of the elastic 

heterogeneity. 
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Fig. 3.1 

., 

A plot of a quadrant of shape function, 111o(k)l2, extended into 5th 
Brillouin zone in a two-dimensional space. 
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Fig. 3.2(a) The two-body interaction, Wn(R-R'), between like variants in a 
• two-dimensional transformation with a pure shear transformation 

strain( the plot with blanking). 
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Fig. 3.2(b) The two-body interaction, Wn(R:-R'), between like variants in a 
two-dimensional transformation with. a pure shear transformation 
strain (the plot without blanking). 
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Fig. 3.3(a) The two-body interaction, Wn(R-R'), between like variants in a 
two-dimensional transformation with a non-zero dilation (R = 0.25) 
transformation strain( the plot with blanking). 
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Fig. 3.3(b) The two-body interaction, Wn(R-R'), between like variants in a 
two-dimensional transformation with a non-zero dilation (R = 0.25) 
transformation strain( the plot without blanking). 
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Fig. 3.4(a) The two-body interaction, Wu(R-R'), between like variants in a 
two-dimensional transformation with a non-zero dilation (R = 1.0) 
transformation strain.(the plot with blanking). 
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Fig. 3.4(b) The two-body interaction, W 11 (R-R'), between like variants in a 
two-dimensional transformation with a non-zero dilation (R = 1.0) 
transformation strain( the plot without blanking). 
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Fig. 4.1 

• ---------· 

(a) (b) 

--·-- ----------·---------

(c) (d) 

A simulated martensitic transformation with R = 1. (00 1) and (0 1 0) 
cross-sections are shown after 50 transformation steps ((a) and (b)), 
and 200 steps ((c) and (d)). 
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Fig. 4.2 
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(d) 

A simulated martensitic transformation with R = -0.5. (001) and 
(010) cross-sections are shown after 50 transformation steps ((a) 
and (b)), and 200 steps ((c) and (d)). The final microstructure is 
shown in (e). 
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(e) 

Fig. 4.2(Cont.) A simulated martensitic transformation with R = -0.5. (001) and 
(010) cross-sections are shown after 50 transformation steps ((a) 
and (b)), and 200 steps ((c) and (d)). The final microstructure is 

shown in (e). 
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Fig. 4.3 
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·A simulated martensitic transformation with R = 2. The transformed 
region is shown: (a) after a variant (1) plate forms; (b) after a variant 
(2) plate forms; and (c) after a variant (3) plate forms. 

116 



Fig. 4.4 A simulated martensitic transformation with R = - 2. The 
transformed region is shown: (a) after a variant (1) rod forms; (b) 
after a variant (2) rod forms; and (c) after a variant (3) rod forms. 
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Fig. 4.5 A simulated martensitic transformation with R = 0 (pure shear). 
Cross-sections on the three { 100} planes are shown after 200 
transformation steps, 1000 steps, and completion. 
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A simulated martensitic transformation with R = 0.2. Cross­
sections on the three { 100} planes are shown after 1000 steps. 3000 
steps and completion . 
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Fig~ 4.7 

-
-I 

(a) (b) 

(c) (d) 

Simulated martensitic transformations in two dimensions showing 
the influence of the dilation ratio (R) on the constitution and habit of 
the initial martensite plate: (a) R = 0, (b) R = 0.22, (c) R = 0.3, 
and (d) R = 1. 
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Fig. 4.8 

(a) (b) 

Simulated martensitic transformation in two dimensions with R = 
1.5: (a) after 80 transformation steps, (b) after 300 steps. 
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approximation in (10) direction of a two-dimensional space. 
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Fig. 4.10 The microstructure obtained from the simulation in two dimensions 
using the point approximation (R = 0). 
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The microstructure generated by a pme shear transformation (R = 0) 
in a stress-free crystal embedded in an untransfonned matrix. 
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in Fig. 1 with the degree of constraint The transformed crystal is 
41 X 41; the array size is n X n. 
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Fig. 5.3 The two common morphologies found in partially transformed 
crystals with R * 0: (a) the "butterfly" morphology; (b) the crossed 
morphology. 

126 



.. 

0.8 
"'0 

C1) 

e 
cB 0.6 tiJ c: 
~ 
~ 
0 

0.4 c: 
0 ·-.w 
(,) 

£ 0.2 

0.0 

Fig. 5.4 

El R=O.O 
R=0.22 

0 R=0.25 
A R=0.36 

0 1 2 3 4 5 

-L1G 'l>(T) 

The temperature-transformation (TT) curves for stress-free 
transformation at various values of the dilation ratio (R). The 
abscissa is plotted as ~Gu. which is approximately linear in T. 
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Fig. 5.5 Microstructural patterns after the burst of transfonnation shown in 
Fig. 5.4 for (a) R = 0.2, (b) R = 0.22, (c) R = 0.25, (d) R = 0.36. 
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Fig. 5.6(a) The value of the driving force, LlGu. (or, equivalently, the 
temperature, M5) required to initiate transformation as a function of 
the dimensionless stress magnitude, a*, for hydrostatic stress and 
for uniaxial tension and compression with R = 0 .. 
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Fig. 5.6(b) 
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The value of the driving force, ~Gu. (or, equivalently, the 
temperature, M8) required to initiate transformation as a function of 
the dimensionless stress magnitude, cr*, for hydrostatic stress and 
for uniaxial tension and compression with R = 0.22. 
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Temperature-transformation (TT) curves for a transformation with R 
= 0.2 for various values of the applied stress. 
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The pattern of transformation in the high-stress limit (a* = 1.2) for 
R = 0.2. The Tf curve is plotted in (d); (a)- (c) show the 
microstructures that correspond to the corresponding points labeled 
in (d). 
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Fig. 5.9(Cont.) The pattern of transformation at intermediate stress (cr* = 0.4) for 
· R = 0.2. The TI curve is plotted in (h); (a) - (g) show the 

microstructures that correspond to the corresponding points labeled 
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The microstructural evolution generated by a simulated irreversible 
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Fig. 6.1(Cont.) The microstructural evolution generated by a simulated 
irreversible transformation (R = 0.25) during cooling process. 
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The microstructural evolution generated by a simulated reversible 
transformation (fr = 1, R = 0.25) during cooling process. 
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Fig. 6.3(Cont.) The microstructural evolution generated l;>Y a simulated reversible 
transformation (fr = 1, R = 0.25) during cooling process. 
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Fig. 6.6 The microstructural evolution generated by a simulated reversible 
transformation (fr = 1, R = 0.25) during heating process. 
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Fig. 6.9 The microstructural evolution generated by a simulated reversible · 
transformation (fr = 0.2, R = 0.25) during heating process. 
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Fig. 6.9(Cont.) The microstructural evolution generated by a simulated reversible 
transformation (fr = 0.2, R = 0.25) during heating process. 
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The microstructural evolution generated by a simulated reversible 
transformation (fr = 1, R = 0.25) of an unconstrained crystal during 
cooling process. 
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Fig. 6.15 The microstructural evolution generated by a simulated reversible 
transformation (fr = 1, R = 0.25) of an unconstrained crystal during 
heating process. 
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The schematic drawing of stress-strain curve showing 
pseudoelasticity caused by stress-induced martensitic 
transformation. 
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The cr* -Ey curve of a simulated reversible transformation (fr = 1, R 
= 0.2) at a loading temperature T > Ac (-~Gu = -0.5). 
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Fig. 7.2(b) 
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The cr* -ey curve of a simulated reversible transformation (fr = 1, R 
= 0.2) at a loading temperature T = Ar (-~Gu = 0.0). 
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Fig. 7.2(c) 
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The a* -Ey curve of a simulated reversible transformation (fr = 1, R 
= 0.2) at a loading temperature Ar> T > M8 (-.1Gu = 0.5). 

169 



3 

2 

2nd cycle 

1 

1st cycle 

o~~~~~--~--~~--~~--~--~~--~~ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

E y 

Fig. 7.2(d) The o* -ey curve of a simulated reversible transformation (fr = 1, R 
= 0.2) at a loading temperature Ar > T > M8 ( -.!\Gu = 1.0). 
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Fig. 7.2(e) 
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The cr* -Ey curve of a simulated reversible transformation (fr = 1, R 
= 0.2) at a loading temperature M8 > T >Me (-~Go= 1.5). 
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Fig. 7.2(f) The a* -ey curve of a simulated reversible transfonnation (fr = 1, R 
= 0.2) at a loading temperature T < Mr(-.6.Gu = 2.0). · 

172 



T < M f (-L\Gu = 3.0) 

3 

* 2 b 

Fig. 7.2(g) 

1 

0~~--~--._~--~--._~--~~._~--~~ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

The a* -ey curve of a simulated reversible transformation (fr = 1, R 
= 0.2) at a loading temperature T < Mr (-~Gu = 3.0). 
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The a* -ey curve of a simulated reversible transform3;tion (fr = 1, R 
= 0.2) at a loading temperature T < Mr ( -.1Gu = 3.5). 
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The microstructural evolution generated by a simulated reversible 
transformation during the first loading-unloading cycle when Ar < 
T (-~Gu =- 0.5): (a)-( d) loading, cr* = 0.75, 0.9, 1.2 and 1.5; (e)­
(h) unloading, cr* = 1.5, 0.9, 0.6, and 0.45. 
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Fig. 7.3(Cont.) The microstructural evolution generated by a simulated reversible 
transformation during the first loading-unloading cycle when Ar < 
T (-aGu =- 0.5): (a)-( d) loading, cr* = 0.75, 0.9, 1.2 and 1.5; (e)­
(h) unloading, cr* = 1.5, 0.9, 0.6, and 0.45. 
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Fig. 7.4 The microstructural evolution generated by a simulated reversible 
transfonnation during the first loading-unloading cycle when Ar > 
T > Ms (-LlGu = 1.0): (a)-( d) loading, a* = 0.3, 0.6, 1.05 and 1.5; 
(e)-(h) unloading, a* = 0.9, 0.6, 0.3 and 0.0 (min.). 
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Fig. 7.4(Cont.) The microstructural evolution generated by a simulated reversible 
transformation during the first loading-unloading cycle when Ar > 
T > Ms (-AGu = 1.0): (a)-{d) loading, a*= 0.3, 0.6, 1.05 and 1.5; 
(e)-(h) unloading, a*= 0.9, 0.6, 0.3 and 0.0 (min.). 
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Fig. 7.5 

(a) (b) 

(c) (d) 

The microstructural evolution generated by a simulated reversible 
transformation. during loading of the second cycle when Ar > T > 
Ms (-dGu = 1.0): (a)-( d) a*= OA5, 0.9, 1.35, and 1.65. 
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Fig. 7.6 The microstructural evolution generated by a simulated reversible 
transformation during the first loading-unloading cycle when T < 
Mr (-l1Gu = 2.0): (a)-( d) loading, a* = 0.0 (min.), 1.05, 1.5 and 
2.1; (e)-(h) unloading, a*= 0.45, 0.3, 0.15 and 0.0 (min.). 
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Fig. 7.6(Cont.) The microstructural evolution generated by a simulated reversible 
transformation during the first loading-unloading cycle when T < 
Mr (-AGu = 2.0): (a)-(d) loading, a*= 0.0 (min.), 1.05, 1.5 and 
2.1; (e)-(h) unloading, cr* = 0.45, 0.3, 0.15 and 0.0 (min.). 
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Fig. 7.7 The microstructural evolution generated by a simulated reversible 
transformation during loading of the second cycle when T < Mr 
(-~Gu = 3.5): (a)-( d) cr* = 0.0 (min.), 2.4, 2.7, and 3.0 (max.). 
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Fig. 7.8 
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The plot of the recovered strain, ey. versus -.6.Gu (loading 
temperature). 
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Fig. 7.9 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 

The a*-Ey curves of a simulated reversible transformation (fr = 1, 
R = 0.2) at a loading temperature T < Mr (-.!lGu = 2.0) and a 
maximum stress cr* = 2.0. 
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Fig. 7.10 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 

The cr*-Ey curves of a simulated reversible transformation (R =-0.2) 
at a loading temperature T > Ms (-~Gu = 1.0) with fr = 0.5 and ~Gr 
= 0. 
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0.0 0.2 0.4 0.6 . 0.8 1.0 1.2 

Fig. 7.1l(a) The cr*-ey curve of a simulated reversible transformation (R = O.f) 
at a loading temperature T > Ms ( -.L\Gu = 1.0) with fr = 1 and ~Gr = 
1.0. . 
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Fig. 7.11 (b) The 0'*-Ey curve of a simulated reversible transformation (R = O.f) 
at a loading temperature T > Ms (-~Gu = 1.0) with fr = 1 and ~Gr= 
2.0. 
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Fig. 7.12(a) The stress-strain (cr*-Ey). temperature-transformation (1T) and 
temperature-strain relation of a simulated reversible transformation 
(R = 0.2) showing the shape memory effect whe~ the loading 
temperature T < Mr (-aGu = 3.0), fr = 1, and !lGr= 0. 
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Fig. 7.12(b) The stress-strain (cr*-Ey). temperature-transformation (TI) and 
temperature-strain relation of a simulated reversible transformation 
(R = 0.2) showing the shape memory effect when the lo~ding 
temperature Ar > T > Ms (-.1Gu = 1.0), fr = 0.5, and .1Gr= 0. 
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Fig. 7.12(c) The stress-strain (cr*-Ey). temperature-transformation (IT) and 
temperature-strain relation of a simulated reversible transformation 
(R = 0.2) showing the shape memory effect when the l,oading 
temperature Ar > T > Ms (-LlGu = 1.0), fr= 1, and .1Gr= 1.0. 
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Fig. 7.13 . 
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The stress-transformation (ST) curve and the elastic energy 
increment curve for the exactly reversed path . 
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Fig. 7.14 
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A r > T > Ms (-L\Gu = 0.265) 

Minimum energy 
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The stress-transformation (ST) curves for the exactly reversed path 
and the minimum energy path. 
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Fig. 8.1 The microstructure generated by a simulated transfo;rmation using 
the transformation strain value of set 1 (see the text in Chapter 8) 
in a stress-free cubic system. 
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Fig. 8.2 
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The schematic drawing of the shape change of the transformation 
shown in Fig. 8.1. 
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Fig. 8.3 
.. 

The microstructure generated by a simulated transformation using 
the transformation strain value of set 2 (see the text in Chapter 8) 
in a stress-free cubic system. 
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Fig. 8.4 The microstructure generated by a simulated transformation using 
the transformation strain value of set 2 (two variants only, see the 
text in Chapter 8) in a stress-free cubic system. 
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Fig. 8.5 The microstructure generated by a simulated transformation using 
the transformation strain value of set 1 (see the text in Chapter 8) 
in a cube constrained by an untransformed matrix. 
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Fig. 8.6 The microstructures generated by simulated transformations using the 
transformation strain value of set l(two variants only, see the text in 
Chapter 8) in two cuboids constrained by an untransfonned matrix. 

198 

l 



---

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

.~ ~ 




