
UCSF
UC San Francisco Previously Published Works

Title
A genome-wide gene-based gene-environment interaction study of breast cancer in more 
than 90,000 women.

Permalink
https://escholarship.org/uc/item/10n9m09g

Journal
Cancer Research Communications, 2(4)

Authors
Wang, Xiaoliang
Chen, Hongjie
Middha Kapoor, Pooja
et al.

Publication Date
2022-04-01

DOI
10.1158/2767-9764.CRC-21-0119
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/10n9m09g
https://escholarship.org/uc/item/10n9m09g#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE https://doi.org/10.1158/2767-9764.CRC-21-0119 OPEN ACCESS

Check for
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ABSTRACT

Genome-wide association studies (GWAS) have identified more than 200
susceptibility loci for breast cancer, but these variants explain less than a
fifth of the disease risk. Although gene–environment interactions have been
proposed to account for some of the remaining heritability, few studies have
empirically assessed this.

We obtained genotype and risk factor data from 46,060 cases and 47,929
controls of European ancestry from population-based studies within the
Breast Cancer Association Consortium (BCAC). We built gene expression
prediction models for 4,864 genes with a significant (P < 0.01) heritable
component using the transcriptome and genotype data from theGenotype-
Tissue Expression (GTEx) project. We leveraged predicted gene expression
information to investigate the interactions between gene-centric genetic

variation and 14 established risk factors in association with breast cancer
risk, using a mixed-effects score test.

After adjusting for number of tests using Bonferroni correction, no inter-
action remained statistically significant. The strongest interaction observed
was between the predicted expression of the Corf gene and age at first
full-term pregnancy (PGXE = 4.44 × 10−6).

In this transcriptome-informed genome-wide gene–environment interac-
tion study of breast cancer, we found no strong support for the role of gene
expression in modifying the associations between established risk factors
and breast cancer risk.

Our study suggests a limited role of gene–environment interactions in
breast cancer risk.
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Introduction
Breast cancer is the most commonly diagnosedmalignancy in women. In 2020,
breast cancer was estimated to be newly diagnosed in 2.3 million women,
and meanwhile caused more than 680,000 deaths worldwide (1). Both genetic
and environmental factors have been found to contribute to the etiology of
breast cancer. Twin studies have estimated that approximately 30% of vari-
ance in breast cancer incidence can be explained by genetic variation (2, 3).
Genome-wide association studies (GWAS) have identified more than 200 in-
dependent loci that are associated with breast cancer risk (4). However, these
single-nucleotide polymorphisms (SNPs) only explain approximately 19% of
the familial relative risk. Meanwhile, observational studies have demonstrated
that several environmental and lifestyle risk factors, including age at menarche,
body mass index (BMI), alcohol consumption, parity, and use of menopausal
hormone therapy (MHT), also affect the risk of breast cancer (5–11). Explor-
ing the interplay of genetic and environmental risk factors (GxE interactions)
is thus crucial in understanding the development of breast cancer.

The Breast Cancer Association Consortium (BCAC) has published multiple
studies which reported various interactions between individual SNPs and es-
tablished risk factors. Nickels and colleagues reported potential interactions
between genetic variants and several environmental and lifestyle factors, in-
cluding number of full-term pregnancies, alcohol consumption, and ever being
parous (12). Schoeps and colleagues reported that two SNPs on locus q.
may interact with postmenopausal BMI to significantly affect the risk of breast
cancer (13). However, other previous genome-wide gene–environmental in-
teraction studies (GWEIS) reported no statistically significant interactions
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between SNPs and established breast cancer risk factors (4, 14–20). Statistical
power remains one of the primary issues inGWEIS, as they requiremuch larger
sample sizes for detecting interactions as compared with marginal associations
of similar magnitude (4, 21).

Novel statistical methods, such as gene-based testing that incorporates
functional information, can substantially reduce the burden of multiple com-
parisons. As most GWAS hits fall outside of the coding region of genes and are
enriched in regulatory elements, it has been hypothesized that many GWAS-
identified genotype–phenotype associations are driven by the regulatory
function on the expression of nearby genes (22–24). Wu and colleagues con-
ducted a transcriptome-wide association study (TWAS) of breast cancer that
systematically investigated the association between predicted gene expression
and disease risk, and reported 48 statistically significant genes associations (25).
These results suggest that incorporating SNP-specific regulatory information
on gene expression could help discovering meaningful GxE interactions.

In this study, we utilized the genotype and environmental risk factor data col-
lected by the Breast Cancer Association Consortium (BCAC). Using breast
tissue–specific transcriptome and genotype data from the Genotype-Tissue Ex-
pression (GTEx) project, we built gene expression prediction models for 4,864
genes with a significant heritable component. We then systematically assessed
the interactions between these genes and 14 established risk factors in rela-
tion to the risk of breast cancer, using a mixed-effects score test called MiSTi
(mixed-effects score test for interactions; ref. 26). Our study is the first to incor-
porate genetically determined gene expression data in the investigation of GxE
interactions in breast cancer.
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Materials and Methods
Study Sample
For this study, we obtained breast cancer cases and controls from the co-
hort studies and population-based case–control studies participating in BCAC.
BCAC is a well-established, international collaborative consortium of 84
epidemiologic and clinical breast cancer studies, which is integrated by inves-
tigators interested in the inherited risk of breast cancer (4). Genotype data
were generated using either the iCOGs or OncoArray genotyping platforms.
Both SNP arrays were customized and manufactured by Illumina, and con-
sisted of 211,155 (iCOGs) and 533,000 (OncoArray) SNPs, respectively. In total,
our study included 93,989 women (73,441 genotyped by OncoArray, 20,548
genotyped by iCOGS) from 31 studies, including ABCFS (27), AHS (28),
BCEES (29), BCINIS (30, 31), CBCS (32–35), CECILE (36), CPSII (37), CTS
(38), EPIC (39), ESTHER (40), GENICA (41, 42), GESBC (43), KARMA (44),
KBCP (45, 46), MARIE (47), MCCS (48), MEC (49), MISS (50, 51), MMHS
(52), MTLGEBCS (53), NBHS (54), NCBCS (55, 56), NHS (57), NHS2 (58),
PBCS (59), PLCO (60), PROCAS (61), SASBAC (62), SISTER (63, 64), SMC
(65), and UKBGS (ref. 66; Supplementary Table S1). In total, our study in-
cluded 46,060 breast cancer cases (35,561 genotyped by OncoArray, 10,499
genotyped by iCOGs) and 47,929 controls (37,880 genotyped by OncoAr-
ray, 10,049 genotyped by iCOGs). All the women included were of European
ancestry.

Details of the genotype calling, imputation, and quality control processes have
been described elsewhere (67). Genotypes were imputed for all samples using
the October 2014 (version 3) release of the 1000 Genomes Project dataset as the
reference panel. The imputation was conducted using a two-stage approach,
using SHAPEIT2 for phasing and IMPUTEv2 for imputation. Approximately
11.8 million SNPs with minor allele frequency (MAF) > 0.5% and imputation
quality score (INFO) > 0.3 were included in our analysis.

Building the Prediction Model of Gene Expression
We used the RNA-sequencing and genotype data from 251 individuals pub-
lished by the GTEx project version 7 to construct prediction models of gene
expression inmammary tissue. Details of theGTEx project have been described
elsewhere (68).

We built gene expression prediction models for each gene using the “FUSION”
pipeline. Only the 1,217,312 SNPs included in the HapMap Phase 3 were in-
cluded in building the predictionmodels. To estimate the geneticallymodulated
expression of each gene, we included variants located within 500 kb on either
side of the gene boundary. SNP-heritability of each gene was estimated using
the REML algorithm implemented in the GCTA software (69). Gene expres-
sion models were constructed only if the SNP-heritability of gene expression
was statistically significant at P < 0.01. Three prediction schemes, single best
eQTL (Top1), LASSO regression, and elastic-net regression, were then utilized
to build expression models for each heritable gene. The prediction accuracy
of each derived model was then estimated using 5-fold cross-validation, and
the best performing model was selected as the final model for each gene. We
built gene expression prediction models for a total of 5,043 genes, of which we
had breast cancer genotype data for 4,864 genes. The gene expression predic-
tion models were then used as functional weights in the subsequent interaction
analyses.

Collection of Breast Cancer Risk Factors
All demographic and breast cancer risk factor data were self-reported via inter-
view or questionnaire prior to or shortly after breast cancer diagnosis (for cases)
or the reference date (for controls, defined as the diagnosis date of matched
breast cancer case). A total of 14 risk factors were included in the present
analysis: age at first full-term pregnancy (per 5-year), average lifetime alco-
hol consumption (per 10 g/day), age at menarche (per 2-year), premenopausal
BMI (per 5 kg/m2), postmenopausal BMI (per 5 kg/m2), breastfeeding history
(yes/no), duration of breastfeeding (per 12-month), height (per 5 cm), history
of oral contraceptive (OC) use (yes/no), parous (yes/no), number of full-term
births (1/2/3/4+), current smoking status, current use of estrogen only (E-only)
MHT, and current use of estrogen plus progestogen (E+P) MHT. BMI was
analyzed separately for pre- and postmenopausal women, as the association
between BMI and breast cancer risk varies across life stages (70). Analyses of
reproductive factors were limited to parous women only and analyses of MHT
use were limited to postmenopausal women.

Investigating Interactions between Predicted Gene
Expression and Environmental Factors
We utilized a mixed-effects based analysis tool “MiSTi” (mixed-effects score
test for interactions) to assess potential GxE interactions (26). MiSTi is a hi-
erarchical model that assesses the joint interactions of a set of variants with
environmental factors, by leveraging functional information across the vari-
ants. The GxE interaction is modeled by two components, one fixed and one
random effects component. The fixed-effect component incorporates variant-
specific functional information as weights to calculate the weighted burden
of the variants, and then quantifies their interaction with the environmental
factor. The random effects component involves any residual GxE interaction
effect that cannot be addressed by the fixed effects. Here, the fixed effect com-
ponent represents the interaction between predicted gene expression and the
environmental factor, whereas the random effects component represents the
residual interaction effects of any SNPs that were not accounted for in pre-
dicted gene expression.MiSTi includes a novel testing procedure, which derives
two independent score statistics for the fixed effect and the random variance
component separately and combines these two statistics through an adaptive
weighted linear combination (aMiSTi) to assess the evidence of overall GxE in-
teractions. The statistical power for GxE interaction analysis using MiSTi may
be affected by multiple factors, including the LD structure of the gene, pro-
portion of the variation in gene expression explained by the genetic regulatory
variants, consistency of direction of effect between random and fixed effect, etc
(71). Simulation analysis suggested that under type I error rate of 0.05, a sample
size of 5,000 cases and 5,000 controls, for a gene harboring 100 genetic variants
of which 27 were functional, MiTIi had an 81.3% of power to detect a signifi-
cant GxE interaction using the aMiSTi approach when the fixed and random
component had the same direction of interaction effect (26).

In eachGxE interactionmodel, we adjusted for study, age (at diagnosis for cases;
at reference date for controls), and first five principal components for popu-
lation structure. For tests of current MHT use (E-only and E+P), we further
adjusted for former use of the corresponding MHT (yes/no) in the model, to
account for the association between former use ofMHT (which attenuates with
time since cessation) and breast cancer. To adjust for multiple comparisons,
we considered any interactions with aMiSTi p-value < 0.05/(4,864 × 14) =
7.34× 10−7 as statistically significant. Because Bonferroni correctionmakes the
strong assumption of independent tests and results in a stringent threshold for
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TABLE 1 Distribution of environmental variables in the study population.

Continuous variables
Cases Controls

Variable name Sample size Mean (SD) Sample size Mean (SD)

Age at menarche, y 43,138 12.91 (1.55) 45,513 12.99 (1.56)
Age at first full-term pregnancya, y 35,419 24.98 (4.67) 39,038 24.68 (4.55)
Duration of breastfeedinga, mo 20,425 8.34 (10.96) 18,853 8,97 (11.35)
Adult BMI, Premenopausalb, kg/mb 11,420 25.57 (5.47) 11,940 25.41 (5.17)
Adult BMI, Postmenopausalc, kg/mb 31,036 26.78 (5.32) 33,213 26.39 (5.08)
Adult Height, cm 41,819 163.79 (6.45) 45,073 163.76 (6.45)
Lifetime alcohol consumption, g/day 22,653 6.53 (12.36) 21,337 5.72 (10.50)

Categorical variables
Cases Controls

Variable name Sample size % Sample size %

Parity 43,465 45,771
Parous 37,315 85.9 40,394 88.3
Nulliparous 6,150 14.1 5,377 11.7

Number of full-term birthsa 36,906 40,188
1 6,714 18.2 6,147 15.3
2 15,578 42.2 16,966 42.2
3 8,910 24.1 10,061 25.0
4+ 5,704 15.5 7,014 17.5

Ever breastfeda 25,135 23,561
Yes 19,491 77.5 18,532 78.7
No 5,644 22.5 5,029 21.3

Ever use of OCs 41,359 43,269
Yes 23,905 57.8 25,825 59.7
No 17,454 42.2 17,444 40.3

Smoking status 39,340 41,804
Current 5,674 14.4 5,746 13.8
Former 12,136 30.9 12,845 30.7
Never 21,530 54.7 23,213 55.5

MHT use, Estrogen + Progestogenc 17,128 16,904
Current 3,159 18.4 2,139 12.6
Former 1,557 9.1 1,554 9.2
Never 12,412 72.5 13,211 78.2

MHT Use, Estrogenc 17,163 16,911
Current 2,685 15.6 2,855 16.9
Former 2,221 12.9 2,124 12.6
Never 12,257 71.5 11,932 70.5

aAmong women with at least one full-term birth only.
bAmong premenopausal women only.
cAmong postmenopausal women only.

significance, we also report GxE interactions with a P value corresponding to a
false discovery rate (FDR)<0.2 using the Benjamini–Hochberg (BH) approach
as suggestive findings.

Data Availability Statement
The data generated in this study are available upon request from the
corresponding author.

Results
The distribution of environmental factors in the study sample is summarized
in Table 1. Compared with the control sample, breast cancer cases had a rel-
atively higher lifetime alcohol consumption (6.5 vs. 5.7 g/day), and were less
likely to be parous (85.9% vs. 88.3%). For the parous women, cases were less
likely to have ever breastfed (77.5% vs. 78.7%) and reported shorter duration of
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TABLE 2 Suggestive interactions between genes and environmental risk factors, with FDR-corrected adaptive weighted P < 0.20.

P values

Environmental risk factors Gene name CHR # of SNPs
Fixed
effect

Random
effect

Adaptive
weighted

FDR-corrected,
Adaptive weighteda

Age at first full-term pregnancy C13orf45 13q22.2 580 6.24E-01 1.03E-06 4.44E-06 0.02
Age at menarche RP11–219D15.3 3q23 424 5.51E-06 1.07E-01 1.60E-05 0.08
Use of OC EML4 2p21 522 4.44E-02 9.04E-05 2.91E-05 0.14
Ever breastfed AC114730.3 2q37.3 192 3.33E-04 1.21E-01 6.85E-05 0.17
Ever breastfed AKAP3 12p13.32 695 5.91E-04 2.51E-03 3.58E-05 0.17
Smoking status PMS2P3 7q11.23 217 1.06E-05 2.80E-01 4.00E-05 0.17
Smoking status RP11–7I15.4 11q14.1 350 5.94E-03 5.11E-04 6.94E-05 0.17

aFDR correction was conducted using the Benjamini–Hochberg (BH) approach, for each environmental factor.

breastfeeding (8.3 vs. 9.0 months). Among postmenopausal women, cases were
more likely than controls to be current users of E+P MHT (18.4% vs. 12.6%)
but less likely to be current users of E-only MHT (15.6% vs. 16.9%). No sub-
stantial difference was found between cases and controls for other risk factors,
including age atmenarche, age at first full-term birth, pre- and postmenopausal
BMI, adult height, number of full-term births, OC use, and smoking status. As-
sociations between environmental factors and breast cancer risk quantified by
logistic regression are shown in the Supplementary Table S2.

The full list of GxE interaction results is reported in Supplementary Table
S3.1–S3.14. Quantile–quantile plots of aMiSTi P values for GxE interactions are
shown in Supplementary Fig. S1. We observed an inflation of interaction test
statistics for current use of E-only and E+P MHT and thus, any results for
MHTuse should be interpretedwith caution.Overall, no interactions remained
statistically significant after adjusting for number of tests performed using Bon-
ferroni correction. The strongest evidence of interaction was observed for the
Corf gene on chromosome 13 and age at the first full-term pregnancy (Table
2, PGXE = 4.44 × 10−6). The heritability of Corf expression was estimated
to 0.21, based on 580 SNPs. However, the interaction was mainly driven by the
random effects component (P = 1.03 × 10−6) rather than fixed effects compo-
nent (P= 0.62), which indicates theremay be some SNP interaction effects that
are beyond the predicted gene expression. Six additional GxE interactions were
identified with an FDR-corrected PGXE < 0.2 (Table 2). These included inter-
actions between RP–D. (3q23) and age at menarche (PGXE = 1.60 ×
10−5); EML (2p21) and use of OCs (PGXE = 2.91 × 10−5); history of breast-
feeding and AC. (2q37.3, PGXE = 6.85 × 10−5) and AKAP (12p13.32,
PGXE = 3.58 × 10−5) in parous women; smoking status and PMSP (7q11.23,
PGXE = 4.00 × 10−5), and RP–I. (11q14.1, PGXE = 6.94 × 10−5).

Discussion
In this large transcriptome-informed investigation ofGxE interactions in breast
cancer, we systematically studied the interactions between predicted gene
expression and fourteen behavioral and environmental risk factors. No inter-
action remained statistically significant after adjusting for number of tests.
However, we identified seven interactions between genes and environmen-
tal factors, including age at first full-term pregnancy, age at menarche, breast
feeding history, smoking status, and use of OCs, as suggestive findings with
FDR-corrected P < 0.20. Our findings did not support a significant role played

by gene expression in modifying the associations between established risk
factors and breast cancer risk.

The strongest interaction identified was between the Corf gene and age at
the first full-term pregnancy. Corf, or LMODN, is a long noncoding RNA
(lncRNA) located downstream of the LIM domain only protein 7 (LMO). Few
studies have directly focused on the function of Corf gene. The expression
of LMO has been found to play an important role in skeletal muscle transcrip-
tion and cardiac development (72–74). Irregular expression of the LMO gene
has been linked to multiple types of cancer, including breast, thyroid and lung
(75–78). Specifically, Hu and colleagues reported that the knockdown of LMO
gene in the breast cancer cell line MDA-MB-231 could impair cell migration
(76). In the same study, the upregulation of LMOwas also found in the stroma
of invasive breast carcinoma, which presumably correlated with the expression
of serum response factors that regulate muscle and actin cytoskeleton func-
tions. Epidemiologic studies have consistently shown the positive association
between later age at first birth and higher incidence of breast cancer (79–81),
which can at least be partially explained by pregnancy-induced changes in sex
hormones. Earlier differentiation of mammary epithelium induced by estro-
gen and progestogen at pregnancy can reduce the susceptibility of neoplastic
transformation and lower the subsequent disease risk (82). However, there is
no direct evidence that this mechanism might interplay with the expression
of Corf or LMO, and therefore, functional follow-up would be needed to
explore this potential finding further.

Some of the six additional genes with an FDR-corrected Pinteraction < 0.2 iden-
tified in our study have previously been linked to breast cancer development.
The translocation and fusion of echinoderm microtubule-associated protein-
like 4 (EML) and anaplastic lymphoma kinase (ALK) have been implicated in
various cancers. For example, the EML-ALK fusion has been observed in pa-
tients with non–small cell lung cancer (83–85), as well as in tumor samples from
patients with breast and colorectal cancer (86). ALK gene was observed to am-
plify in most inflammatory breast cancer (IBC; ref. 87), a rare form of disease
characterized by an early average age of diagnosis, aggressive histopathologic
features, and poor survival (88). There is evidence that IBC cases has a higher
prevalence of OC use than other breast cancer cases (89), which suggests that
EML may interact with the effect of OC use through inflammatory-related
pathways. AKAP is a member of A-kinase anchoring proteins, which has
been recognized as a cancer-testis antigen for multiple types of cancer, includ-
ing ovarian, hepatocellular, and colorectal (90–92). In an investigation of 162
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tumor and normal tissues of breast, lack of AKAP expression was observed
to be significantly associated with triple-negative breast cancer, breast tumor
size, tumor stage, and 5-year disease-free survival (93). The PMSP gene has
been suggested to interact through gene expression with PMS (94), a gene
linked to poor survival from breast cancer (95). Noticeably, PMSP gene be-
longs to the mismatch repair (MMR) system, which has been observed to have
a stronger effect among smokers in affecting colorectal cancer risk, relative to
the never smokers (96). Further studies are needed to confirm these sugges-
tive interactions and corresponding biological mechanisms with more direct
evidence.

None of the suggestive interaction identified in our study has been observed by
previous GxE studies of breast cancer. Otherwise, we were not able to repli-
cate any significant interactions reported by the other studies, including for
the genes harboring the variants with significant GxE interaction. This incon-
sistency could potentially be attributed to various reasons, such as different
study populations, analysis approaches and importantly, adjustment for mul-
tiple testing. Given the huge number of tests (4,864 genes × 14 environmental
risk factors) performed in our analysis, we performed a conservative Bonferroni
correction approach and defined a threshold of P < 7.34 × 10−7 as statistically
significant. As this stringent threshold may yield false negative results, we fur-
ther adopted a more liberal threshold and reported all GxE interactions with
FDR-corrected P < 0.20 for each environmental factor.

Our study has several strengths. First, to our knowledge this is the first study to
incorporate breast tissue specific gene expression models to inform our GxE
interaction analysis. Previous research has suggested that breast cancer sus-
ceptibility loci are enriched in regulatory regions identified in breast tissue or
cell lines (67, 97). Based on this tissue specificity, we utilized genotype and
gene expression data from mammary tissue to build gene expression predic-
tion models, and used these models as prior information when assessing GxE
interactions. By using amixed-effects score test which enables the consideration
of both fixed and random effects of the interaction, we were able to take into
account the effect of genetic variants not involved in gene expression regula-
tion. To avoid potential selection bias, we limited our study population to breast
cancer cases and controls from population-based studies. However, our study
was based on European ancestry women only, and thus our study conclusions
may not be applicable to women with other ancestry. For certain suggestive
GxE interactions detected, the results were mainly driven by the random effect
component rather than the fixed effect, which made it challenging to explain
the mechanisms or pathway underneath. A proportion of the studies included
in our analysis adopted the case–control study design, which collected risk fac-
tor data based on self-report approaches. Consequently, the risk factor data,
although centrally harmonized across all studies, might still be susceptible to
recall bias. Our study did not stratify the breast cancer cases by menopausal or
estrogen receptor (ER) status and investigate the subtype-specific GxE interac-
tion, which may be a missed opportunity as the disease etiology differs across
these subtypes. The results for current use of estrogen-only and estrogen plus
progestogen MHT showed evidence of inflated type I error rates, indicating
potential issues with distribution or modeling of those risk factors.

In conclusion, our study incorporated information on gene expression to inves-
tigate comprehensively the interactions between environmental risk factors and
genetic variants on breast cancer risk using a mixed-effects score test approach.
Our findings suggest a lack of evidence to demonstrate the role played by gene
expression in modifying the associations between established risk factors and
breast cancer risk.
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