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Diffusion and swelling in a bio-elastic cylinder

Mehrzad Tartibib,*, Julius M. Guccioneb, David J. Steigmanna

aDepartment of Mechanical Engineering, University of California, Berkeley, CA 94720.

bDepartment of Surgery, University of California, San Francisco, CA 94143.

Abstract

An analysis is presented of the equilibrium response of a radially deformed cylinder of isotropic, 

incompressible bio-elastic material swollen by an infused liquid satisfying a static diffusive 

balance law.
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1. Introduction

The inspiration for this work draws from the need for a predictive model of the mechanical 

response of biological tissue infused with a liquid. Among the many potential applications to 

biomechanics, we mention the elucidation of the role of fluid and nutrient transport in the 

process of growth and remodelling, and the effect of blood perfusion on the mechanical 

response of heart tissue. Quantitative analysis of these phenomena requires a modeling 

framework in which the coupled interplay between deformation and swelling, and the 

diffusion of fluid within the tissue [1-4], can be understood. To this end, we base the present 

analysis on the model of diffusion and swelling in finitely deforming elastomers developed 

in [4], adapted to the bio-elastic strain-energy function proposed in [5].

Our view is that the solution of certain simple problems characterized by relatively simple 

geometries and a high degree of symmetry offers considerable insight into the behavior of 

such models while avoiding the complexities associated with the development of 

sophisticated numerical methods required for general applications. Indeed, this philosophy 

underlies most of the history of modern finite elasticity theory and has given rise to a large 

number of important solutions which, in turn, have guided empirical work required to 

support the theory. This philosophy carries over to recent efforts to quantify the effects of 

swelling in elastomers [6-8], which are closely related to the present work. Thus, toward this 

aim, in the present, preliminary, work we confine attention to the axisymmetric response of a 
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cylinder undergoing plane-strain radial deformation in the presence of a two-dimensional 

radial distribution of diffusant concentration. The deformation and concentration are 

controlled by differential equations expressing mechanical equilibrium and the balance of 

diffusive flux.

The basic theory for two-dimensional response is recalled in Section 2 and its specialization 

to isotropic bio-elastic materials is outlined in Section 3. In Section 4 we present the further 

specialization of the theory to axisymmetric radial deformations and we conclude, in Section 

5, with a discussion of associated numerical solutions.

2. Basic theory

We base our analysis on a simple model of diffusion in nonlinearly elastic materials 

developed in [4]. In view of our a priori restriction to plane-strain deformations, we confine 

attention to the purely two-dimensional formulation discussed in Section 3 of that work. The 

remainder of this section is devoted to a brief outline of the relevant theory. Interested 

readers are encouraged to consult [4] for a fuller exposition.

Let Ψ(F, c) be the strain energy of a uniform material, per unit area of a fixed reference 

configuration, where F is the gradient of the deformation y = χ(x) and c is the concentration 

of diffusant. The reference configuration is identified with the initial configuration of the dry 

elastomer and x is the position of a material point of the dry elastomer in this configuration. 

The deformation gradient and concentration satisfy the swelling constraint

J = 1 + c, (1)

appropriate for an incompressible elastomer infused with an incompressible liquid. Here J = 

det F and c is the area of diffusant present in the gel per unit area of dry elastomer.

The Piola stress, P, is given by

P = ΨF − qF∗, (2)

where ΨF is the derivative of Ψ with respect to F at fixed c, F* is the cofactor of F and q is 

a Lagrange multiplier associated with the swelling constraint. The latter also figures in the 

expression

μ = q + Ψc (3)

for the chemical potential μ, where Ψc is the derivative with respect to c at fixed F.

Here and henceforth we assume that sufficient liquid is available to support unlimited uptake 

by the gel. The alternative, corresponding to an unsaturated condition [9, 10], entails the 

constraint that the total dilation reduce to the sum of the elastomer and liquid areas. This 
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constraint is global in nature and carries a uniform Lagrange multiplier, in contrast to the 

local multiplier q of the present model.

Let m be the diffusive flux vector. This satisfies the dissipation inequality [4]

m . ∇μ ≤ 0 (4)

and figures in the diffusive balance

c. + divm = 0, (5)

where the dot refers to the time derivative at fixed reference position x. Here div is the 

referential two-dimensional divergence based on x.

Following standard practice, we view the dissipation inequality as a restriction on the 

constitutive equation for the diffusive flux. For example, if the flux depends on the list {F, c, 

∇μ}, then an important theorem due to Gurtin (see [11]; Chapter 9, Section b.2) implies that 

the dissipation inequality yields the existence of a tensor function M(F, c, ∇μ) - the mobility 
tensor- such that

m = M(F, c, ∇μ)∇μ, (6)

with ∇μ· M∇μ ≤ 0. In the important special case in which M is independent of ∇μ, this 

requires that M be negative semi-definite.

The balance laws consist of (5) and

divP = 0, (7)

corresponding to mechanical equilibrium without body force. Chemical equilibrium is 

associated with the restriction

μ = 0 (8)

which implies the vanishing of the diffusive flux and hence the cessation of evolution of the 

concentration. Of course a static concentration field is always achieved provided that

div(M∇μ) = 0 . (9)

The system of equations to be solved in this work consists of the swelling constraint (1), the 

force balance (7) and the static diffusive balance (9), augmented by suitable boundary 
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conditions. Typical boundary conditions entail the specification of μ or m · ν on 

complementary parts of the boundary, with exterior unit normal ν; and position y or traction

p = P𝒱 (10)

on (possibly different) complementary parts. In this work we impose pressure boundary 

conditions for which

p = − pF∗
𝒱, (11)

where p is the pressure intensity.

3. Swelling in isotropic materials

We assume the gel to be isotropic. Concerning its constitutive response, we adopt the 

widespread assumption that stress is generated by elastic deformation H = FG−1 measured 

from a stress-free swollen state, where

G = (1 + c)1 ∕ 2I, (12)

is the swelling deformation and I is the two-dimensional identity. From (1), we conclude that 

det H = 1, which comports with the assumed incompressibility of the solid component of the 

gel.

The strain energy W, per unit area of the swollen state, is defined by Ψ = (det G)W and we 

assume that it depends on the deformation via H; thus,

Ψ = (1 + c)W(H, c), (13)

in which the explicit dependence of W on c is intended to model chemical interaction 

between the solid component of the gel and the diffusant. In the polymer literature it is 

conventional to adopt Flory’s formulation of this interaction. However, this is known to be 

inappropriate for biological tissues [12]. In any case, we are concerned in the present work 

with the effects of a purely mechanical swelling interaction and thus assume that W is 

determined by H alone. Accordingly,

Ψ(F, c) = (1 + c)W((1 + c)−1 ∕ 2F) . (14)

We adopt the strain-energy function for incompressible isotropic materials due to Demiray 

[5] for the elastic response of biological tissues in the absence of swelling. For three-

dimensional deformations in the case of pure elasticity (c = 0), this is given by
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W(F) = (G ∕ 2γ){exp[γ(trC − 3)] − 1}, (15)

where C = FtF is the right Cauchy-Green deformation tensor, G is the ground-state shear 

modulus and γ is a dimensionless parameter. For isochoric plane-strain deformations it is 

easily demonstrated that

trC = I2 − 1, where I = trU (16)

and U is the two-dimensional right-stretch tensor. Accordingly, the plane-strain energy is

W = (G ∕ 2γ){exp[γ(I2 − 4)] − 1}, (17)

in which G now has dimensions of force/length.

To adapt this energy to two-dimensional swelling, we use (17) with W(H) = w(H), where

w(H) = (G ∕ 2γ){exp[γ(H2 − 4)] − 1}, (18)

and H is the trace of the right-stretch factor in the polar decomposition of H. From (12), this 

is given simply by

H = I ∕ 1 + c . (19)

Accordingly, Ψ(F, c) = ψ(I, c), where

ψ(I, c) = (G ∕ 2γ)(1 + c){exp[γ(I2 ∕ (1 + c) − 4)] − 1}, (20)

and the stress is [4]

P = Ψ IR − qF∗, (21)

where R is the rotation in the polar factorization of F.

Concerning the mobility tensor, the most general two-dimensional form compatible with 

isotropy is [4]

M = β0I + β1U (22)
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in which β0, 1 are functions of I and c. However, due to the paucity of empirical information 

about these functions, we adopt the classical form

M = DI (23)

in which D, the diffusivity, is a negative constant; then, (9) reduces to Laplace’s equation

div(∇μ) = 0, (24)

where

μ = q + ψc . (25)

4. Axisymmetric response of a cylinder

We consider a purely radial deformation

χ(x) = λ(R)x with λ(R) = r(R) ∕ R and R = ∣ x ∣, (26)

where r is the radius of the circle R = const. after deformation. The deformation gradient is

F = λI + R−1λ′(R)x ⊗ x, (27)

which may be recast as

F = r′(R)u ⊗ u + (r ∕ R)v ⊗ v, (28)

with u = x/R and v = k × u, where k is a unit normal to the plane of deformation. This yields

F∗ = (r ∕ R)u ⊗ u + r′(R)v ⊗ v (29)

and

J = (r ∕ R)r′, (30)

and hence the requirement that r′ > 0. Accordingly, R = I, U = F and

I = R−1(Rr)′ . (31)
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Invoking the Piola identity divF* = 0, the equilibrium equation (7) may be reduced to

∇(ψ I) = F∗∇q . (32)

The swelling constraint, combined with (30), implies that the concentration c is a function of 

R alone. Then, for uniform materials, ∇(ψI) = (ψI)′u. With (29), we conclude that q 
depends on R alone, and is such that

(ψ I)′ = (r ∕ R)q′ . (33)

Equation (25) implies that μ is also a function of R, so that (24) reduces to

R−1(Rμ′)′ = 0 . (34)

The formulation is completed by appending boundary conditions. Concerning these, we 

assign a value μA of the chemical potential at the inner radius R = A, and the diffusive flux 

at the outer radius R = B. With ν = u at the outer boundary, we thus assign a value m · u = 

M there; then, Dμ′ = M at R = B. An influx of diffusant corresponds to M < 0. Because D < 

0, the ratio M/D is then positive, and the function μ(R) is easily found to be

μ(R) = μA + (M ∕ D)B ln(R ∕ A), (35)

which couples the deformation to the Lagrange multiplier q via (25). Chemical equilibrium 

is recovered by setting μA and the flux M to zero.

Finally, we assign a pressure p at the inner radius and zero pressure at the outer radius. 

Using (11), (21) and (29), these are found to correspond to the boundary conditions

ψ I − q(a ∕ A) = − p(a ∕ A) at R = A (36)

ψ I − q(b ∕ B) = 0 at R = B (37)

where a = r(A) and b = r(B).

The swelling constraint (1) and the equilibrium equation (33) furnish a differential-algebraic 

system of two equations for the concentration field c(R) and the deformation r(R).
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5. Simulations

Numerical solutions to the foregoing system are obtained using a shooting method based on 

a Runge-Kutta integration scheme. Length is non-dimensionalized by the inner reference 

radius A and all simulations pertain to annular region defined by 1 ≤ R/A ≤ 1.25 with γ = 

0.03 in (20) [5].

In the solution procedure we combine (20), (25) and (35) to evaluate the Lagrange multiplier 

q in terms of the deformation and concentration fields. Fixing a value of b/B, where B/A = 

1.25, we solve (37) for the value of the concentration c at the outer radius. Equation (33) is 

then backward integrated from R/A = 1.25 to obtain the deformation r/A and hence the value 

of a/A at R/A = 1, and finally (36) is used to compute the corresponding inflation pressure at 

the inner boundary. In this way values of a/A may be correlated with values of the pressure.

The case of purely elastic response, corresponding to c = 0, is treated differently. The 

deformation is then given simply by

(r ∕ A)2 − (a ∕ A)2 = (R ∕ A)2 − 1, (38)

and (38) is used with a fixed value of b/B to compute the boundary value of the Lagrange 

multiplier for use in a backward integration scheme to determine the field q from (33). 

Evaluating (38) at R = B, the value of a/A is obtained and used in (36) to compute the 

inflation pressure. The response is depicted in Fig. 1 in terms of the relation between 

pressure and dimensionless wall thickness, h/H, where h = b − a and H = B − A, together 

with the pressure-enclosed area relation. Variations of the hoop and radial principal 

stretches, r/R and r′(R) respectively, and the Lagrange multiplier q, in the interior of the 

cylinder are also shown. We draw particular attention to the expected prediction of thinning 

of the cylinder under inflation.

The interplay between diffusion and deformation is illustrated in Fig. 2, for a particular 

value of the chemical potential at the inner boundary and diffusive flux M* = (MB)/(DG) at 

the outer boundary. This generates a concentration field in the interior that varies with 

inflation pressure, which in turn modifies the distributions of the principal stretches and the 

Lagrange multiplier accordingly. A significant departure of the relation between pressure 

and wall thickness relative to the case of pure elasticity is evident. This is due to swelling of 

the material, yielding a counter-intuitive thickening of the cylinder upon inflation. In this 

and subsequent figures the concentration and Lagrange multiplier fields are plotted against 

deformed radius to better highlight the effect of varying the inflation pressure.

Figure 3 depicts the effect of varying the assigned flux at zero inflation pressure with μA = 0. 

As expected, higher levels of flux promote increased levels of swelling in the material and 

correlate with higher levels of wall thickness. A significant effect on the interior stretch 

distributions is also predicted.

Finally, Fig. 4 illustrates the response under conditions of chemical equilibrium, 

corresponding to vanishing chemical potential throughout the cylinder (i.e., μA and M vanish 
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in (35)). This corresponds to contact of the cylinder with a liquid bath at zero chemical 

potential at its inner and outer radii. In this case the distributions of the stretches, the 

concentration and the Lagrange multiplier are predicted to be nearly uniform throughout the 

cylinder. Further, the value of concentration required to maintain chemical equilibrium 

increases with inflation pressure, giving rise once again to thickening of the cylinder upon 

inflation.

Our simple model predicts a dramatic effect of diffusion and swelling on the mechanical 

response of biological tissues under a variety of conditions. Accordingly, it is expected that 

coupling between deformation and diffusion will play a significant role in the development 

of more general predictive models for application to biomechanics.
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Highlights

• The interplay between deformation and liquid-induced swelling in biological 

tissues is modelled in the setting of a simple axisymmetric boundary-value 

problem. The model accounts for liquid diffusion in the tissueand 

accommodates general boundary conditions. The study demonstrates that 

diffusion and swelling have a dramatic effect on mechanical response.
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Figure 1: 
Purely mechanical response. (A) Inflation pressure versus deformed wall thickness, (B) 

Inflation pressure versus deformed cavity area, (C) Hoop stretch as a function of reference 

radius, (D) Radial stretch as a function of reference radius, (E) Lagrange multiplier as a 

function of reference radius. Note: the legends in panels (C) and (D) are shown in panel (E).
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Figure 2: 
Coupled mechano-diffusion. (A) Inflation pressure versus deformed wall thickness, (B) 

Inflation pressure versus deformed cavity area, (C) Hoop stretch as a function of reference 

radius, (D) Radial stretch as a function of reference radius, (E) Diffusant concentration as a 

function of deformed radius, (F) Lagrange multiplier as a function of reference radius. Note: 

the legends in panels (C), (D), and (E) are shown in panel (F).
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Figure 3: 
Coupled mechano-diffusion. (A) Assigned flux versus deformed wall thickness, (B) 

Assigned flux versus deformed cavity area, (C) Hoop stretch as a function of reference 

radius, (D) Radial stretch as a function of reference radius, (E) Diffusant concentration as a 

function of deformed radius, (F) Lagrange multiplier as a function of reference radius. Note: 

the legends in panels (C), (D), and (E) are shown in panel (F).
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Figure 4: 
Response at chemical equilibrium. (A) Inflation pressure versus deformed wall thickness, 

(B) Inflation pressure versus deformed cavity area,, (C) Hoop stretch as a function of 

reference radius, (D) Radial stretch as a function of reference radius, (E) Diffusant 

concentration as a function of deformed radius, (F) Lagrange multiplier as a function of 

reference radius. Note: the legends in panels (C), (D), and (E) are shown in panel (F).
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