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An siRNA Screen in Pancreatic Beta Cells Reveals a Role
for Gpr27 in Insulin Production
Gregory M. Ku1,2, Zachary Pappalardo1, Chun Chieh Luo1, Michael S. German1,2, Michael T. McManus1,3*

1 Diabetes Center, University of California San Francisco, San Francisco, California, United States of America, 2 Division of Endocrinology, Metabolism, and Diabetes,

Department of Medicine, University of California San Francisco, San Francisco, California, United States of America, 3 Department of Microbiology and Immunology,

University of California San Francisco, San Francisco, California, United States of America

Abstract

The prevalence of type 2 diabetes in the United States is projected to double or triple by 2050. We reasoned that the
genes that modulate insulin production might be new targets for diabetes therapeutics. Therefore, we developed an
siRNA screening system to identify genes important for the activity of the insulin promoter in beta cells. We created a
subclone of the MIN6 mouse pancreatic beta cell line that expresses destabilized GFP under the control of a 362 base pair
fragment of the human insulin promoter and the mCherry red fluorescent protein under the control of the constitutively
active rous sarcoma virus promoter. The ratio of the GFP to mCherry fluorescence of a cell indicates its insulin promoter
activity. As G protein coupled receptors (GPCRs) have emerged as novel targets for diabetes therapies, we used this cell
line to screen an siRNA library targeting all known mouse GPCRs. We identified several known GPCR regulators of insulin
secretion as regulators of the insulin promoter. One of the top positive regulators was Gpr27, an orphan GPCR with no
known role in beta cell function. We show that knockdown of Gpr27 reduces endogenous mouse insulin promoter activity
and glucose stimulated insulin secretion. Furthermore, we show that Pdx1 is important for Gpr27’s effect on the insulin
promoter and insulin secretion. Finally, the over-expression of Gpr27 in 293T cells increases inositol phosphate levels,
while knockdown of Gpr27 in MIN6 cells reduces inositol phosphate levels, suggesting this orphan GPCR might couple to
Gq/11. In summary, we demonstrate a MIN6-based siRNA screening system that allows rapid identification of novel
positive and negative regulators of the insulin promoter. Using this system, we identify Gpr27 as a positive regulator of
insulin production.
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Introduction

Nearly 13% of American adults have diabetes and these

numbers continue to rise, mostly from an increase in type 2

diabetes [1,2]. Although insulin resistance is a cardinal feature of

type 2 diabetes, most people with insulin resistance do not develop

diabetes because their pancreatic beta cells are able to compensate

by increasing insulin production. However, if insulin production

cannot match the increased demand imposed by insulin resistance,

hyperglycemia and frank diabetes ensues. Over time, beta cell

function further declines in most people with type 2 diabetes,

resulting in the eventual failure of oral medications and the

necessity of insulin therapy [3].

Improving insulin production and beta cell function is therefore

a universal goal of diabetes therapeutics. We reasoned that an

unbiased search for regulators of insulin production might reveal

new diabetes drug targets. Therefore, we constructed a novel

screening system to screen for genes important for insulin

promoter activity. By screening siRNAs targeting all GPCRs, we

identify several GPCRs that regulate insulin promoter activity and

specifically characterize Gpr27 as a novel regulator of insulin

production.

Results

Generation of an insulin promoter reporter beta cell line
To allow rapid evaluation of insulin promoter activity, the

MIN6 mouse beta cell line was infected with a lentivirus that stably

expresses destabilized GFP under the control of the proximal 362

base pairs of the human insulin promoter (Figure 1A) [4]. This

insulin promoter fragment maintains a substantial proportion of

promoter activity and tissue specificity while being compact

enough to allow lentiviral delivery [5].

To favor single copy integration, the construct was delivered at

a low multiplicity of infection (MOI) and a clonal line was selected.

To generate an internal control reporter, the GFP positive subline

was subsequently infected at a low MOI with a second lentivirus

containing mCherry under the control of the constitutive rous

sarcoma virus promoter (RSV) (Figure 1A). A stable clone

expressing both constructs was isolated. In these cells, the ratio

of GFP to mCherry fluorescence indicates human insulin

promoter activity.

When transfected into this reporter line, siRNAs targeting

activators of insulin gene transcription would be expected to

reduce insulin promoter activity and reduce the GFP/mCherry
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ratio, while siRNAs targeting negative regulators of the insulin

promoter should increase the GFP/mCherry ratio (Figure 1B).

Indeed, transfection of an siRNA targeting the insulin gene

transcription factor Pdx1 reduced the GFP/mCherry ratio by

80% as compared to a non-targeting siRNAs (Figure 1C and 1D)

[6].

siRNA screen for non-odorant GPCR regulators of the
insulin promoter

An RNAi library containing four independent siRNAs

targeting the mouse GPCR-ome and selected GPCR related

genes was transfected into the reporter cell line. The ratio of the

GFP to mCherry fluorescence five days after transfection was

calculated for each siRNA and the data were then analyzed using

the redundant siRNA analysis (RSA) software [7]. To avoid off-

target effects, each siRNA was transfected separately and only

genes with more than one siRNA hit were selected for further

analysis.

The top genes judged by RSA were then ranked by

unsupervised clustering of each gene’s RSA p value and its

expression level in primary mouse islets, since only those genes

expressed in primary cells are of biological interest (Figure 2A).

Two publically available mouse islet mRNA-Seq data sets were

used. One of these data sets has been previously published and

consists of approximately four million mapped reads from islets

isolated from female non-pregnant mice and approximately four

million mapped reads from islets isolated from pregnant mice [8].

The second, submitted to the NCBI Short Read Archive by

Merck, contains approximately 120 million reads from mouse

islets (see methods). Because of these modest read numbers, some

low abundance transcripts may be erroneously reported as being

not expressed using this analysis [9].

siRNAs to the top six genes (Ffar2, Gpr27, Grk5, p2ry6, Gpr109a,

Bdkrb2) that reduced insulin promoter activity and had detectable

expression in primary mouse islets were transfected into the

screening cell line for confirmation (Figure 2B). All six genes had at

least 2 siRNAs confirm. For the siRNAs that increased GFP/

mCherry, we retested the top three genes with high RSA scores

and detectable expression in mouse primary islets – Adra2a, Cckar,

and Aplnr. Of these three, only the known negative regulator of

insulin secretion, Adra2a, confirmed with two independent siRNAs

(Figure 2C).

Several of the positive regulators of the insulin promoter we

identified were already known to stimulate insulin release in beta

cells. Of particular interest was the orphan GPCR, Gpr27, which

had no known role in insulin production but was previously found

to be enriched in the mouse and human pancreatic islet [10,11].

We subsequently tested all four siRNAs targeting Gpr27 in the

Figure 1. siRNA screening system to identify regulators of
insulin promoter activity. A. Schema of reporter constructs
integrated into the screening MIN6 cell line. These are pSico lentiviruses
containing the proximal 362 bases of the human insulin promoter
driving destabilized GFP and the rous sarcoma virus (RSV) promoter
driving mCherry. B. After transfection with siRNAs, GFP and mCherry
mean fluorescence intensity (MFI) are measured by flow cytometry. If
the siRNA targets a positive regulator, GFP/mCherry MFI decreases. If
the siRNA targets a negative regulator, the GFP/mCherry MFI increases.
C. Control (green), Pdx1(red), or GFP(blue) siRNAs were transfected into
the MIN6 reporter cell line. After 5 days, GFP (left panel) and mCherry
(right panel) fluorescence were measured by flow cytometry. D. As in C.
The ratio of GFP geometric mean fluorescence intensity (MFI) to
mCherry MFI was calculated for each sample. The ratio was normalized
to that of control siRNA transfected cells. Data shown are averages and
standard error (n = 3). ** p,0.01 versus control siRNA.
doi:10.1371/journal.pgen.1002449.g001

Author Summary

Pancreatic beta cells are the only physiologic source of
insulin. When these cells are destroyed in type 1 diabetics,
there is uncontrolled hyperglycemia from complete insulin
deficiency. In type 2 diabetes, these same cells fail to
increase insulin secretion to compensate for peripheral
insulin resistance leading to relative insulin deficiency. We
constructed a novel screening system to find new
regulators of insulin production in this critical cell type.
Here, we describe a screen of the G protein coupled
receptors (GPCRs) and show a role for orphan GPCR, Gpr27,
in insulin promoter activity and insulin secretion. We
propose that Gpr27 is a novel target for diabetes
therapeutics.

Gpr27 Modulates Insulin Production in Beta Cells
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library set on an independently generated MIN6 reporter line

expressing stable GFP under the control of the insulin promoter

and mCherry under the control of the RSV promoter. All four

siRNAs reduced GFP/mCherry fluorescence (Figure S1A).

Furthermore, all 4 siRNAs efficiently reduced expression of the

Gpr27 mRNA (Figure S1B). We also confirmed that Gpr27 is

enriched in beta cell lines (beta TC and MIN6) compared to an

alpha cell line (alpha TC) (Figure S2A) and is expressed in primary

mouse beta cells (Figure S2B).

Knockdown of Gpr27 reduces the activity of the
endogenous mouse insulin promoter in cultured cells
and primary islets

Since the screen was based on a human insulin promoter

fragment, we measured the effect of Gpr27 knockdown on the

endogenous mouse Ins2 and Ins1 genes. Because mature insulin

mRNAs have a half-life of nearly 80 hours, we measured insulin

pre-mRNAs as previously described [6,12]. MIN6 cells infected

with a Gpr27 shRNA expressing adenovirus (Ad-shGpr27) had a

40–60% reduction in pre-ins2 and pre-ins1 levels compared to

control adenovirus (Ad-control) (Figure 3A). To confirm these

findings in primary beta cells, we infected intact primary mouse

islets with these same adenoviruses. At a high MOI, we were only

able to obtain 50% infection rates as measured by flow cytometry,

presumably reflecting poor adenovirus penetration into the core of

the mouse islet [13]. Therefore, intact islets were dissociated prior

to adenovirus infection. Three days after infection, cells were

isolated by flow cytometric sorting for GFP and RT-qPCR was

performed. Knockdown of Gpr27 produced a significant ,30%

reduction of pre-ins2 (p = 0.03). Concomitantly, there was a nearly

significant 30% reduction in the less abundant pre-ins1 message

(p = 0.055) (Figure 3B).

Figure 2. siRNA screen hit selection and initial confirmation. A. Heat map showing the top six putative positive regulators of the insulin
promoter clustered based on RSA determined p value, and the base 10 log of the fragments per kilobase of exon model per million mapped reads
(FPKM) value from three independent mRNA-seq data sets. B. As in B, but analyzed for negative regulators of insulin promoter activity. Islet-Merck
refers to SRA008619 submitted by Merck, Islet-non preg refers to islets from non-pregnant mice, and Islet-preg refers to islets from pregnant mice [8].
C. Confirmation of hits from A and B. The indicated siRNAs were transfected into the screening cell line. GFP and mCherry was measured by flow
cytometry. Error bars show standard error of three biological replicates performed (n = 3). * indicates p,0.05 versus .6 of the negative control
siRNAs.
doi:10.1371/journal.pgen.1002449.g002

Gpr27 Modulates Insulin Production in Beta Cells
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Knockdown of Gpr27 impairs glucose stimulated insulin
secretion

While insulin production requires insulin promoter activity,

minute-to-minute changes in plasma insulin levels are controlled

by insulin secretion. Therefore, we asked if Gpr27 knockdown

would affect glucose stimulated insulin secretion. Infection of

MIN6 cells with Ad-control at an MOI necessary to get .90%

infection inhibited glucose stimulated insulin secretion (data not

shown). Therefore, we infected MIN6 cells at a lower MOI to

achieve approximately 60% infection and measured glucose

stimulated insulin secretion from this mixed population by batch

incubation. Ad-shGpr27 infected MIN6 cells secreted ,40% less

insulin at 20 mM glucose compared to Ad-control infected cells

(Figure 3C). There was no statistically significant difference at

2 mM glucose. Notably, we did not detect a difference in total

insulin as normalized to total protein concentration (Ad-con-

trol = 27.9+/21.1 mg insulin per g of total protein; Ad-

shGpr27 = 29.4+/20.94 mg insulin per g of total protein, p

value = 0.13). This was not unexpected since the half-life of insulin

mRNA is ,80 hours and the knockdown of Gpr27 was limited to

72 hours due to adenovirus toxicity after that time point. We

conclude that Gpr27 plays a measurable role in insulin secretion in

addition to insulin promoter activity.

Gpr27’s effect on the insulin promoter and insulin
secretion requires Pdx1

To define the mechanism of Gpr27 action, we measured

transcript levels of selected regulators of the insulin promoter by

RT-QPCR in MIN6 cells after Ad-shGpr27 infection. Glis3, Pax6,

Nkx6.1, HNF4a, and Pdx1 were reduced after Gpr27 knockdown

while others including MafA, NeuroD1, and Pax4 were unchanged

(Figure 4A). Concordant with this expression data, Gpr27

knockdown reduced the transcriptional activity of mini-enhancers

that bind to Glis3 and Pdx1 (Z, E1/A1, E2/A3) while Gpr27

knockdown had no effect on mini-enhancers that bind to MafA

and NeuroD1 (C1/E1) (Figure 4B and 4C).

Since Pdx1 is required for insulin promoter activity and insulin

secretion [14,15], we asked if Pdx1 is required for the effect of

Gpr27’s on the insulin promoter. By luciferase assay, we found that

the single knockdown of Pdx1 reduced insulin promoter activity by

90% and Gpr27 knockdown alone reduced insulin promoter

activity by 40%. However, the knockdown of both Gpr27 and Pdx1

had no additional effect over the single knockdown of Pdx1,

showing that Pdx1 is important for the effect of Gpr27 on the

insulin promoter (Figure 4D). Importantly, double knockdown of

both Gpr27 and Pdx1 was as efficient as single knockdown (Figure

S3).

We then asked if Pdx1 was required for the effect of Gpr27 on

insulin secretion. The knockdown of Pdx1 reduced fractional

insulin secretion at 20 mM glucose and total insulin content

(Figure 4E and Figure S4). As with the adenoviral knockdown of

Gpr27, an siRNA to Gpr27 reduced glucose stimulated insulin

secretion. However, the knockdown of Gpr27 in addition to Pdx1

did not further reduce insulin secretion at 20 mM glucose. We

conclude that Gpr27 plays a measurable role in insulin secretion

and insulin promoter activity via a mechanism involving Pdx1.

Gpr27 increases IP1 levels
G protein coupling software analysis predicts that Gpr27 could

function via Gi or Gq/11 signaling pathways [16]. Since Gpr27 is

already expressed in MIN6 cells, we ectopically expressed mouse

Gpr27 in HEK293T cells. Robust expression of FLAG-tagged

Gpr27 was detected by 24 hours on the surface of the majority of

cells (Figure 5B). We then measured cAMP and IP1 – higher

cAMP would indicate Gs coupling, lower cAMP would indicate Gi

coupling and higher IP1 would indicate Gq/11 coupling

(Figure 5A). Gpr27 expression resulted in a 2-fold elevation of

IP1 levels while leaving cAMP levels unchanged (Figure 5C and

5D) showing that in this heterologous cell type, Gpr27 may activate

the Gq/11 pathway.

If Gpr27 activates Gq/11 in beta cells, then IP1 levels should be

reduced in MIN6 cells after knockdown of Gpr27. Therefore, we

measured IP1 levels and cAMP levels in MIN6 cells after Gpr27

Figure 3. Gpr27 is required for mouse insulin promoter activity
and glucose stimulated insulin secretion. A. MIN6 cells were
infected with either Ad-control or Ad-shGpr27. Three days after
infection, RT-qPCR was performed for the indicated genes. The data
are plotted as % expression compared to control adenovirus with
standard error (n = 3). B. As in A, but dispersed primary mouse islets
were infected with Ad-control or Ad-shGpr27. After 3 days, infected cells
were sorted by flow cytometry of GFP positive cells and RT-qPCR was
performed for the indicated genes (n = 3). C. MIN6 cells were infected
with either Ad-control or Ad-shGpr27. Three days after infection,
glucose stimulated insulin secretion was measured by ELISA after
1 hour of static incubation at either 2 mM or 20 mM glucose. Data are
represented as the average of fractional insulin secretion with standard
error (n = 9). *p,0.05, **p,0.005 versus Ad-control.
doi:10.1371/journal.pgen.1002449.g003

Gpr27 Modulates Insulin Production in Beta Cells
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knockdown. Indeed, knockdown of Gpr27 resulted in reduced IP1

levels while cAMP levels were not significantly changed (Figure 5E

and 5F). Taken together, these data show that Gpr27 positively

regulates inositol phosphate levels, supporting a role for Gpr27 in

activating the Gq/11 pathway.

Discussion

To identify new regulators of the insulin promoter, we developed

a novel siRNA screening system in MIN6 cells that allows rapid

measurement of insulin promoter activity. As an initial test of the

system, an siRNA screen of the GPCR-ome was performed. The

RSA algorithm was used to select hits in order to capitalize on the

four fold redundancy of the siRNA library [7]. To further increase

the specificity of the screen, at least 2 siRNAs must have been

identified for a gene to be a hit. The top RSA hits were then

prioritized by expression level in mouse primary islets. Besides

filtering out genes expressed in MIN6 but not in primary islets, this

step also eliminates off-target hits. On the other hand, hit genes with

low expression may have been erroneously eliminated because they

were below the limit of detection of the mRNA-seq data available at

this time [17]. Nonetheless, this filtering step allowed us to focus on

genes with reasonable expression in primary cells.

While the confirmation rate for siRNAs to positive regulators

was 100%, the confirmation rate for negative regulators was only

33%. This is likely due, in part, to the more modest effect of these

siRNAs (,20–30% increase in GFP/mCherry ratio) as compared

to the reconfirmed Adra2a(,50%), a known negative regulator of

insulin secretion.

We identified several other known regulators of insulin secretion

as regulators of the insulin promoter. The bradykinin receptor 2

mediates increases in insulin secretion in beta cells [18,19].

Pyrimidinergic receptor 6 (p2yr6) agonists augment insulin release

and this receptor participates in an autocrine feedback loop that

potentiates insulin secretion [20,21]. The free fatty acid receptor 2,

which has been hypothesized to play a role in beta cells, was also

identified as a positive regulator of the insulin promoter in our

screen [22]. Several other receptors were identified in the screen

that have no known role in beta cells and these may merit further

investigation. Of note, Glp1r was not identified in this screen for a

trivial reason; siRNAs targeting this gene were not included in the

commercial screening set. Given the nature of our screen, hits would

be predicted to either have basal activity or have ligand present in

the culture conditions as has been described for p2yr6 [21].

We were most intrigued by the orphan GPCR, Gpr27 [23].

Previous studies have shown that it is enriched in the pancreatic

islets of both human and mouse [10,11]. Detailed mouse tissue

profiling of Gpr27 expression by RT-QPCR shows high expression

in the mouse brain with lower expression in the islet and heart

[24]. Furthermore, Gpr27 mRNA is up-regulated in Neurogenin3

positive endocrine precursors in the developing mouse pancreas

[11]. Conversely, Gpr27 is 8-fold down regulated in the

Neurogenin3 knockout pancreas [25,26]. Taken together, these

data suggest Gpr27 is an endocrine pancreas specific gene.

We confirmed that knockdown of Gpr27 reduces the activity of

human insulin promoter reporters, levels of endogenous mouse

Figure 4. Gpr27 knockdown affects multiple transcription
factors and requires Pdx1 for its effect on the insulin promoter.
A. MIN6 cells were infected with Ad-control or Ad-shGpr27. Three days
after infection RT-qPCR was performed for the indicated genes.
Expression level normalized to that of Ad-control are plotted with
standard error (n = 6). B. Schematic of the human insulin promoter with
selected regulatory sequences and transcription factors that bind to
these elements. C. MIN6 cells were cotransfected with the indicated
siRNA, insulin promoter firely luciferase construct and thymidine kinase
renilla luciferase construct. Two days after transfection, firefly and renilla
luciferase activity were measured. The ratio of firefly to renilla luciferase
was normalized to the control siRNA. Average and standard error are

plotted (n = 6–9) D. As in C using human insulin promoter 2362 firefly
luciferase (n = 6–9). E. MIN6 cells were transfected with the indicated
siRNAs and glucose stimulated insulin secretion was measured after 5
days. Fractional insulin secretion is shown (n = 12). * p,0.05 ** p,0.005
*** p,0.0005 versus control siRNA or control adenovirus (at high
glucose part E).
doi:10.1371/journal.pgen.1002449.g004

Gpr27 Modulates Insulin Production in Beta Cells
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Ins2 pre-mRNA, and glucose stimulated insulin secretion.

Importantly, Gpr27 knockdown also reduces the levels of

endogenous Ins2 pre-mRNA in dissociated primary mouse islets.

We also found that the mRNAs for multiple transcription factors

that activate the insulin promoter (Glis3, Pdx1, HNF4a) were

reduced by Gpr27 knockdown. Other transcription factors critical

for beta cell development were also reduced including Nkx6.1 and

Pax6. In agreement with the reduction in their expression, only

Pdx1 and Glis3 binding mini-enhancers were affected by Gpr27

knockdown (Figure 4C). Finally, there was no further reduction in

insulin promoter activity when adding Gpr27 knockdown to Pdx1

knockdown. A limitation of this double knockdown experiment is

that given the very strong effect of Pdx1 knockdown alone on

insulin promoter activity, a further reduction with Gpr27/Pdx1

double knockdown may be either below our limit of detection or

simply reflect no remaining insulin promoter activity.

How might Gpr27 affect both insulin transcription and glucose

stimulated insulin secretion? The Gq/11 pathway was an obvious

candidate as the expression of Gpr27 in HEK 293T cells increased

IP1 levels while the knockdown of Gpr27 reduced IP1 levels in

MIN6 cells. Furthermore, triggering of an engineered Gq/11-

coupled GPCR in beta cells increases steady state insulin mRNA

levels and insulin secretion [27]. However, Pdx1 levels did not

change after triggering this Gq/11-coupled GPCR [27] and Gq/

11 knockout beta cells have normal levels of Ins1 and beta cell

transcription factor mRNAs [21]. Therefore, even if Gpr27 directly

couples to Gq/11, Gpr27 may affect insulin secretion and insulin

promoter activity independent of Gq/11 as has recently been

demonstrated for the M3 receptor [28].

Another candidate for mediating the effects of Gpr27 on insulin

promoter and insulin secretion was Pdx1 since it is known to

positively regulate both insulin transcription and insulin secretion

[14,15]. We found that the double siRNA knockdown of Gpr27 and

Pdx1 produced no further reduction in insulin secretion over Pdx1

knockdown alone, suggesting that Pdx1 is important for Gpr27’s effect

on insulin secretion. In combination with the reduction in Pdx1

mRNA by Gpr27 knockdown, these data suggest Gpr27 functions

upstream of Pdx1. However, the double knockdown data do not

exclude the possibility that a Pdx1 lies in a parallel pathway to Gpr27

and these two pathways intersect upstream of insulin secretion.

Taken together, these data suggest that a linear pathway

connecting Gpr27 to a single G protein and a single regulatory

element in the insulin promoter is overly simplistic. Indeed, a single

GPCR can trigger multiple G proteins (reviewed by [29]), can trigger

a combination of G protein dependent and independent pathways

[30], and can function as heterodimers [31]. Likewise, the insulin

promoter contains multiple elements that are both redundant and

cooperative [32]. The complexity of these systems highlights the

advantage of using a broad, unbiased approach to finding new and

unexpected regulators of the insulin promoter. Here, we used such a

system to identify a novel GPCR regulator of both insulin secretion

and insulin promoter activity – Gpr27. Based on its islet expression

and its positive effects on the insulin promoter and insulin secretion,

we suggest that Gpr27 may be a novel target for diabetes therapies.

Materials and Methods

Cell culture
MIN6 cells were a gift from Dr. Miyazaki. Alpha TC and beta

TC were a gift from Dr. Hanahan. Cells were maintained in high

glucose DMEM with 10% fetal bovine serum, and 71.5 mM beta-

mercaptoethanol. Sublines were isolated by limiting dilution.

Original passage lines were used between passage 25–40. Sublines

were used at passages 5–10.

Promoter constructs
Human insulin promoter deletions have been previously

described [5]. Promoters were subcloned from pFoxCAT into

pFoxLuc [33]. For the lentiviral reporter, the human 2362

promoter region was cloned upstream of destabilized GFP or GFP

and this cassette was used to replace the U6/CMV-EGFP in

pSicoR. pSicoR-RSV-mCherry was created by replacing the U6/

CMV of pSicoR mCherry with the RSV promoter [5]. Mini-

enhancer reporter constructs have also been previously described

[5,34]. They were subcloned upstream of a minimal thymidine

kinase promoter-firefly luciferase reporter.

siRNA transfection
Approximately 5,000 MIN6 cells were transfected in 96 well

plates using HiPerfect (Qiagen) with a final siRNA concentration

of 25 nM. Cells were analyzed by flow cytometry (LSRII, BD) 5

days after transfection and the geometric mean fluorescence

intensity of GFP was normalized to that of mCherry. If the

knockdown of GFP by an anti-GFP siRNA was not .80%, the

transfection of that plate was considered to be a technical failure

and the plate was discarded. This occurred on 1 out of 20 plates

and for this reason some genes were only targeted by 3 siRNAs

(including Gpr27). Each well was normalized to the negative

control siRNA on that 96 well plate. For the confirmation assay for

Gpr27 siRNAs, a distinct MIN6 human insulin promoter-GFP/

RSV-mCherry reporter line was transfected with the indicated

siRNAs with Lipofectamine RNAiMax for 5 days and GFP and

mCherry were measured.

GPCR expression analysis and hierarchical clustering
Mouse islet mRNA-seq data was downloaded from the NCBI

Short Read Archive (SRP000752 and SRP002569) and FPKM

values were calculated using the TopHat and Cufflinks software

using the NCBI RefSeq as the reference. Log FPKM and negative

log RSA p values were clustered using Cluster 3.0 and heat maps

were plotted with JavaTreeView.

siRNA and qPCR probes
siRNAs were obtained from Qiagen. All custom Taqman

probes had a confirmed PCR efficiency of between 95–110%.

Samples without reverse transcriptase did not amplify. See Text S1

for sequences of custom probes. Taqman probes to mouse Glis3,

MafA, Pdx1, NeuroD1, Pax4, Nkx6.1, HNF4a were obtained from

Applied Biosystems. Negative control siRNAs for the reconfirma-

tion assay were All-Stars Negative Control (1027280), Negative

Control (1022076), Unspecific-Luciferase-1 (1022070), Unspecific-

Luciferase-2 (1022073), Hs_LMNA_11 (1022050), Mm_Lmna_5

(SI02655450), Hs_GAPD_5 (SI0253266), Hs_ACTB_1 (1022168).

RT–qPCR
Total RNA was isolated by Trizol (Invitrogen). The RNA was

DNase I treated (Turbo DNase, Ambion) and reverse transcription

was performed (Superscript III, Invitrogen) using a combination of

random hexamers and oligo dT primers. For cell line experiments,

each qPCR reaction used between 10–30 ng of total RNA

equivalent. To convert to arbitrary linear units, the following

formula was used: (2 1̂5)*(2 (̂deltaCT to beta-glucuronidase).

Isolation of MIP-GFP positive cells
Islets from 12–30 week old MIP-GFP mice were isolated by the

UCSF Islet Production Core. Islets were digested with trypsin until

single cell suspensions were obtained. Cells were sorted by flow

cytometry (Aria II, BD or MoFlo, DakoCytomation) into GFP

Gpr27 Modulates Insulin Production in Beta Cells
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positive and negative fractions and total RNA was isolated. 20 ng

of total RNA equivalent was loaded per QRT-PCR reaction.

Luciferase assays
140,000 MIN6 cells were transiently transfected in 24 well

plates with the relevant siRNA (5 pmoles), the indicated insulin

reporter firefly luciferase plasmid (100 ng), and pRL-TK(Promega)

(25 ng) using Lipofectamine 2000 (Invitrogen). For double siRNA

knockdowns, 5 pmoles of each siRNA or 10 pmoles of control

(anti-GFP) were used. Two days after transient transfection, firely

and renilla luciferase were measured using the Dual Luciferase

Assay (Promega).

Gpr27 expression in HEK 293T
Gpr27 was cloned by PCR from mouse genomic DNA

downstream of a viral signal sequence and amino terminal FLAG

epitope tag [35]. This cassette was used to replace the EGFP in

pSicoR. HEK 293T cells were transiently transfected with either

pSicoR-EGFP or pSicoR-FLAG-Gpr27 using LT1 (Mirus).

FLAG flow cytometry
293T cells were dissociated with PBS without Ca or Mg, stained

with M1 anti-FLAG antibody and a Goat anti-mouse secondary

antibody coupled to Alexa-594 (Invitrogen).

IP1 and cAMP assays
For 293T, one day after transient transfection in 24 well plates,

cells were placed in stimulation buffer (HTRF) for 30 minutes at

37 degrees. The stimulation buffer was then removed and the cells

were lysed using the kit lysis buffer. IP1 and cAMP were then

measured as directed by the protocol in 384 well plates (HTRF).

IP1 and cAMP levels were normalized to live cells numbers

counted from duplicate wells. Viable cells counts from Gpr27

transfection were within 20% of control plasmid transfection. For

MIN6 cells, 125,000 cells were infected with Gpr27 shRNA or

control adenovirus at an MOI of 200 and grown in 24 well dishes

(resulting in nearly ,95% infection). Three days after infection,

the cells were placed in stimulation buffer (HTRF) for 30 minutes

at 37 degrees. The stimulation buffer was then removed and the

cells were lysed in 1% Triton-X100, 50 mM HEPES pH 7.0, NaF

15 mM. The lysate was pre-cleared by centrifugation at

14,000 rpm for 10 minutes. A fraction of the lysate was taken

for protein quantitation(micro-BCA, Pierce), IP1 or cAMP

measurement (HTRF). Data were normalized to total protein

content.

shRNA adenovirus construction
The Gpr27 shRNA was cloned into a modified version of

pSicoR with a BstXI site replacing the HpaI site. The mouse U6

promoter and Gpr27 shRNA were then subcloned from pSicoR

and placed upstream of the CMV-GFP marker in pAdTrack

[36,37]. Adenovirus was prepared and tittered as previously

described [38].

Knockdown in primary mouse islets
Islets were isolated by the UCSF Islet Production Core Facility

from 8–12 week old C57Bl/6 male mice. After 24 hours of culture

in RPMI and 10% FBS, islets were trypsinized until single cell

suspensions were obtained. The dissociated islet cells were

resuspended in RPMI+10% FBS and infected with adenovirus at

multiplicity of infection (MOI) of 25. Three days after infection, the

cells were sorted by flow cytometry (Aria II, BD) for GFP positive

cells (50–75% of the live population) and RT-qPCR was performed.

The knockdown of pre-ins2, pre-ins1 or Gpr27 from Gpr27 shRNA

adenovirus infected cells was calculated by the delta-delta CT

method compared to the control adenovirus infection.

Insulin secretion assays
For the adenovirus assays, approximately 500,000 MIN6 cells

were infected with the indicated adenoviruses at an MOI of 100 in

Figure 5. Gpr27 positively regulates inositol phosphate levels.
A. Schema of canonical GPCR signaling pathways and resulting
expected changes in second messengers cAMP and IP3. B. HEK293T
cells were transiently transfected with either GFP plasmid (control) or
FLAG-Gpr27 plasmid. 24 hours after transfection cells were analyzed by
flow cytometry for extracellular FLAG. C. As in B, but cells were lysed
and assayed for IP1. D. As in C, but lysates were analyzed for cAMP. E.
MIN6 cells were infected with control or Gpr27 knockdown adenovirus
and 3 days later, cells were lysed and IP1 was measured. F. As in E, but
cAMP was measured. For C–F, average and standard error is plotted
(n = 9); * p,0.005 versus control.
doi:10.1371/journal.pgen.1002449.g005
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6 cm dishes in complete media. Three days after infection, the

infection rate was ,60% by FACS for GFP. Cells were washed 5

times in KRBH buffer (10 mM HEPES pH 7.4, 130 mM NaCl,

5 mM KCl, 1.25 mM KH2PO4, 1.25 mM MgSO4, 2.68 mM

CaCl2, 5.26 mM NaHCO3) with 2 mM glucose and rested for

2 hours at 37 degrees. Cells were then washed an additional 3

times with 2 mM glucose KRBH and incubated in 3 mL of 2 mM

glucose KRBH for 1 hour at 37 degrees. This supernatant was

collected and replaced with 20 mM glucose KRBH for 1 hour at

37 degrees. Cells were washed with PBS before lysis in 50 mM

Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton X-100 with protease

inhibitors. Lysates were spun at 14,000 rpm for 10 minutes and

supernatants were spun at 5000 rpm for 5 minutes before analysis

by an Ultrasensitive Insulin ELISA (Mercodia). Total protein was

measured by Micro-BCA (Pierce). Total insulin was normalized to

total protein in the lysate. For the siRNA transfections, 20,000

MIN6 cells were transfected per well of a Corning CellBIND 96

well plate with 25 nM of each siRNA (or 50 nM of control siRNA)

using Lipofectamine RNAiMax. 5 days after transfection, cells

were washed in KRBH with 2 mM glucose twice, then incubated

for 2 hours at 37 degrees, then washed again with KRBH 2 mM

glucose twice, then incubated for one hour with KRBH 2 mM,

then KRBH with 20 mM glucose for 1 hour. Lysates were

prepared in 75 uL of lysis buffer as above. Due to the lower cell

numbers in the 96 well plate assay, total insulin was normalized to

total genomic DNA measured by Qubit High Sensitivity DNA kit

(Life Technologies).

Statistical analysis
For siRNA primary confirmation assay, an independent, two

sample, one tailed t-test was used. For the primary islet adenovirus

knockdown of Gpr27 an independent, one sample, two tailed t-test

was used. All other p values were calculated with an independent,

two sample, two tailed t-test.
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Animal Care and Use Committee (Protocol AN082433-02) with

care taken to avoid any unnecessary suffering. Animals were

maintained in accordance with the applicable portions of the

Animal Welfare act and the DHHS Guide for the Care and Use of

Laboratory Animals.

Supporting Information

Figure S1 Multiple Gpr27 siRNAs potently knockdown Gpr27

and reduce insulin promoter activity. A. The indicated siRNA was

transfected into MIN6 insulin promoter-GFP, RSV-mCherry cells

and five days after transfection, GFP and mCherry fluorescence

were measured by flow cytometry. Data are normalized to the

GFP/mCherry fluorescence of the control siRNA. Error bars

show standard error (n = 3). B. As in A but RT-QPCR was

performed for Gpr27 (n = 4). * p,0.01.

(PDF)

Figure S2 Gpr27 is enriched in beta cell lines and is expressed in

primary beta cells. A. RT-qPCR was performed on the indicated

cell types for Gpr27. B. RT-qPCR was performed on intact

primary mouse islets or on GFP high and low cells from islets of

insulin promoter GFP transgenic mice. Error bars show standard

error. Data shown are from two independent islet isolations,

dissocations and flow cytometric sortings performed on two

different days.

(PDF)

Figure S3 Double siRNA knockdowns in result in efficient target

knockdown. MIN6 cells were transfected with the indicated pairs

of siRNAs. 5 days after transfection, total RNA was extracted and

RT-QPCR for the indicated genes were performed. N = 3–6

biololgical replicates. * p,0.05. ** p,0.005.

(PDF)

Figure S4 Pdx1 knockdown reduces total insulin levels. MIN6

cells were transfected with the indicated siRNAs and glucose

stimulated insulin secretion was measured after 5 days. Here, total

insulin normalized to total genomic DNA content is presented.

These data correspond to the data shown in Figure 4E. N = 12

biological replicates, *p,0.01.

(PDF)

Text S1 Sequences of QPCR probes, siRNAs, and shRNA used

in this study.

(DOCX)
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