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Complete genome sequence of
Pseudomonas stutzeri strain RCH2 isolated
from a Hexavalent Chromium [Cr(VI)]
contaminated site

Romy Chakraborty1* , Hannah Woo2, Paramvir Dehal1, Robert Walker1, Marcin Zemla1, Manfred Auer1,
Lynne A. Goodwin3, Alexey Kazakov1, Pavel Novichkov1, Adam P. Arkin1 and Terry C. Hazen1,2
Abstract

Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water in several DOE
sites, including Hanford 100 H area. In order to stimulate microbially mediated reduction of Cr(VI) at this site, a poly-lactate
hydrogen release compound was injected into the chromium contaminated aquifer. Targeted enrichment of dominant
nitrate-reducing bacteria post injection resulted in the isolation of Pseudomonas stutzeri strain RCH2. P. stutzeri strain RCH2
was isolated using acetate as the electron donor and is a complete denitrifier. Experiments with anaerobic washed cell
suspension of strain RCH2 revealed it could reduce Cr(VI) and Fe(III). The genome of strain RCH2 was sequenced using a
combination of Illumina and 454 sequencing technologies and contained a circular chromosome of 4.6 Mb and three
plasmids. Global genome comparisons of strain RCH2 with six other fully sequenced P. stutzeri strains revealed most
genomic regions are conserved, however strain RCH2 has an additional 244 genes, some of which are involved in
chemotaxis, Flp pilus biogenesis and pyruvate/2-oxogluturate complex formation.

Keywords: Pseudomonas, Nitrate reduction, Chromium, Hanford 100H
Introduction
Hexavalent Cr(VI) is a highly toxic and mobile contamin-
ant in the environment. At the DOE site in Hanford, WA,
Cr(VI) concentrations reached as high as 50 ppm as a re-
sult of nuclear weapon production waste released into the
groundwater and soil. In order to reduce Cr(VI) to non-
toxic immobilized Cr(III), the bioremediative strategy at
the site has been to stimulate indigenous microorganisms
[1] by injecting environmentally safe, food quality polylac-
tate ester Hydrogen Release Compound. The slow release
electron donor induced biologically mediated reduction of
Cr(VI) to Cr(III) by indigenous microorganisms, and as a
result, Cr(IV) concentrations were reduced to below
50 ppb in all parts of the Hanford 100 H site [1]. Some
group of organisms including Pseudomonadaceae were
enriched concomitant to decrease in Cr(VI) concentra-
tions after HRC injection, and continued to remain high
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[1]. Pseudomonas stutzeri strain RCH2, was isolated from
a monitoring well post injection.
Pseudomonas spp. are well-characterized heterotrophs

known to degrade several hydrocarbons [2–5], and reduce
metals such as Cr(VI) [6–9]. They have commonly been de-
tected in several DOE contaminated sites [10–13] including
Uranium contaminated Oakridge Field Research Center
[14, 15]. Prolific cultivation of Pseudomonas spp. from such
unique contaminated environments is imperative in eluci-
dating the metabolic potential, biochemical and physio-
logical characteristics and the genetic determinants of key
pathways of this ubiquitous group of bacteria in the envir-
onment. The genome sequence of RCH2 allows for detailed
examination of this and closely related microbes in re-
sponse to environmental perturbations at the genetic level,
and provides a basis for investigating response, adaptation
and evolution in presence of metal contaminants [16].
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Organism features
Classification and features
Enrichments were initiated in Minimal Fresh Water
medium [17] with 10 mM acetate as the sole electron
donor and 10 mM nitrate as the electron acceptor. All
enrichments were incubated in the dark at 30 °C. Periodic
transfers of positive enrichments as identified by micros-
copy or visual turbidity, were made into fresh media. After
5 such transfers, a pure culture of strain RCH2 was ob-
tained by the agar shake tube method [18, 19]. For routine
culturing, strain RCH2 was grown in MFW medium
under anaerobic conditions, using either lactate or acetate
as electron donor and nitrate as electron acceptor. All cul-
turing was done in sealed serum vials with N2:CO2 gas
(80:20) in the headspace, as the medium contained
30 mM bicarbonate buffer.
For initial genotyping, gDNA was extracted using the

MoBio UltraClean Microbial DNA Isolation Kit (MoBio
Inc, Carlsbad, CA). PCR amplification was carried out
using universal bacterial 16S ribosomal RNA gene (16S
rRNA) primers 1492R and 27 F in 50 μl reactions. The
small subunit ribosomal RNA gene was sequenced by
Sanger sequencing using universal primers 8 F and 1492R
[25] at University of California, Berkeley sequencing facil-
ity. 16S rRNA sequence analysis places strain RCH2 in the
family Pseudomonadaceae.
Cells in exponential phase of strain RCH2 are rod

shaped, approximately 2 μm long and 0.25-0.3 μm wide
(Figs. 1 and 2). Anaerobically, P. stutzeri strain RCH2
grew optimally in MFW medium at 37 °C. While best
growth was observed at pH 7.2, strain RCH2 could grow
at pH between 6.5–8.0. Growth was observed to
Fig. 1 A scanning electron micrograph of P. stutzeri strain RCH2 in
exponential phase. Scale bar, 1 μm
decrease with increasing salinity of the medium. Strain
RCH2 was tested with and can utilize 10 mM acetate,
lactate, fumarate, succinate, pyruvate, glucose and su-
crose as electron donors and carbon source while grown
under nitrate-reducing conditions. Strain RCH2 can also
grow under aerobic conditions as is typical of Pseudo-
monas spp. Strain RCH2 could also grow in complex
media such as LB and R2A broth under aerobic condi-
tions. Strain RCH2 reduced Cr(VI) when tested with
washed cell suspension. Briefly, strain RCH2 was grown
in MFW medium to mid-log phase (optical density of
0.2–0.3 at 600 nm), with lactate as electron donor and
nitrate as electron acceptor. Cells were collected by cen-
trifugation, and the cell pellet washed with 30 mM phos-
phate buffer. Centrifugation and washing were repeated
to minimize potential carryover of nitrate in the Cr(VI)
reduction experiments. The cell pellet was then resus-
pended in phosphate buffer and sealed in anaerobic
serum vials. To all the vials, 200 μM potassium dichro-
mate was added as electron acceptor, and 10 mM lactate
was added as the electron donor. Electron donor
addition was left out of the control treatments. The vials
were incubated in the dark at 32 °C. Samples were with-
drawn periodically for analysis of Cr(VI). Changes in
Cr(VI) concentration was determined colorimetrically at
540 nm using the diphenyl carbazide (DPC) assay [24].
The cell suspension experiment demonstrated that after
5 hours, almost 135 μM Cr(VI) was readily reduced by
the active cells of strain RCH2 (Fig. 3). In the absence of
lactate as the electron donor in the controls, almost no
Cr(VI) reduction occurred after 30 min. The reduction
of Cr(VI) in the initial period of time could be attributed
to abiotic Cr(VI) reduction or carry over lactate from
the growth culture despite the washing of the cell pellet.

Genome sequencing information
Genome project history
The genome was selected based on the isolate’s ability to
thrive in a chromium contaminated aquifer at Hanford
100 H and its ability to reduce toxic Cr(VI). The genome
sequence was submitted to NCBI and released on Sep-
tember 6, 2011. Finishing was completed at Los Alamos
National Laboratory. A summary of the project informa-
tion is shown in Tables 1 and 2, which also presents the
project information and its association with MIGS ver-
sion 2.0 compliance.

Growth conditions and genomic DNA preparation
P. stutzeri strain RCH2 was grown under anaerobic con-
ditions at 37 °C in basal medium containing 20 mM lac-
tate as the sole electron donor and carbon source and
10 mM nitrate as the terminal electron acceptor. Cells
were harvested for DNA extraction when they reached
mid-log phase of growth.
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Fig. 2 Sequence data were aligned using the Clustal W program [20] with Pseudomonas spp. downloaded with strain and accession numbers
from the RDP [21] database were sequence identity was 97–100% to P. stutzeri strain RCH2. SeaView v4.0 [22] was used to reconstruct the
phylogenetic position of P. stutzeri strain RCH2 within the genus Psuedomonas based on 16S rRNA gene sequence by maximum likelihood
following a Tamura-Nei, 93 model and the phylogeny was tested using Approximate Likelihood-Ratio Test (aLRT) (given as a percentage) [23],
only values greater than 60% are shown. Azotobacter species were included for comparison and Cellvibrio species were used for the out-group
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Genomic DNA was extracted from a 50 ml culture
using the CTAB extraction method recommended by
JGI, USA [35]. JGI DNA mass standards were used to
ascertain the quantity and quality of the extracted
gDNA. JGI protocol for running the gel electrophoresis
was followed.

Genome sequencing and assembly
The genome of P. stutzeri strain RCH2 was generated at
the DOE JGI using a combination of Illumina [36] and
454 technologies [37]. For this genome we constructed
Fig. 3 Chromium(VI) reduction by cell suspension of P. stutzeri
strain RCH2
and sequenced an Illumina GAii shotgun library which
generated 16,378,443 reads totaling 589.6 Mb, a 454 Ti-
tanium standard library which generated 255,080 reads
and 2 paired end 454 libraries with an average insert size
of 9 kb, and 19 kb which generated 582,773 reads total-
ing 216.3 Mb of 454 data. All general aspects of library
construction and sequencing performed at the JGI [35].
The initial draft assembly contained 32 contigs in 1 scaf-
fold. The 454 Titanium standard data and the 454 paired
end data were assembled together with Newbler, version
2.3. The Newbler consensus sequences were computa-
tionally shredded into 2 kb overlapping fake reads
(shreds). Illumina sequencing data were assembled with
VELVET, version 1.0.13 [38], and the consensus se-
quence were computationally shredded into 1.5 kb over-
lapping fake reads (shreds). We integrated the 454
Newbler consensus shreds, the Illumina VELVET con-
sensus shreds and the read pairs in the 454 paired end
library using parallel phrap, version SPS −4.24 (High
Performance Software, LLC). The software Consed
[39–41] was used in the following finishing process.
Illumina data were used to correct potential base errors
and increase consensus quality using the software Polisher
developed at Joint Genome Institute (JGI) (Alla Lapidus,
unpublished). Possible mis-assemblies were corrected
using gap Resolution (Cliff Han, unpublished), Dupfinisher
[42], or sequencing cloned bridging PCR fragments with
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Table 1 Classification and general features of Pseudomonas stutzeri
strain RCH2 according to the MIGS recommendations [25]

MIGS
ID

Property Term Evidence
codea

Current
classification

Domain Bacteria
Phylum Proteobacteria
Class Gammaproteobacteria
Order Pseudomonadales
Family Pseudomonadaceae
Genus Pseudomonas
Species stutzeri
Strain RCH2

TAS [26]
TAS [27]
TAS [28]
TAS [29, 30]
TAS [29, 31]
TAS [29, 32, 33]

Gram stain Negative NAS

Cell shape Rod-shaped IDA

Motility Motile IDA

Sporulation Non-sporulating IDA

Temperature
range

Mesophile IDA

Optimum
temperature

37 °C IDA

Carbon source
pH range
Optimum pH

Lactate, Pyruvate,
6.5–8.0
7.2

IDA

Terminal electron
receptor

Nitrate, Oxygen, IDA

MIGS-
6

Habitat Cr(VI) contaminated
aquifer

IDA

MIGS-
6.3

Salinity Optimal growth at
0.35% salinity

IDA

MIGS-
22

Oxygen Facultative anaerobe IDA

MIGS-
15

Biotic
relationship

Free-living IDA

MIGS-
14

Pathogenicity Unknown IDA

MIGS-
4

Geographic
location

Benton County,
Washington

IDA

MIGS-
5

Sample collection
time

2005 IDA

MIGS-
4.1

Latitude Centered on 46°38′51″N IDA

MIGS-
4.2

Longitude 119°35′55″W/46.6475°N
119.59861°W

IDA

MIGS-
4.3

Depth Not reported

MIGS-
4.4

Altitude 115.8 m IDA

aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [34]

Table 2 Genome sequencing project information for
Pseudomonas stutzeri strain RCH2

MIGS ID Property Term

MIGS 31 Finishing quality Finished

MIGS-28 Libraries used 454 titanium standard
library, 454 paired end library,
Illumina GAii shotgun library

MIGS 29 Sequencing platforms 454-GS-FLX, Illumina GAii

MIGS
31.2

Fold coverage 454: 32.2x
Illumina GAii: 127.1x

MIGS 30 Assemblers Newbler, Velvet

MIGS 32 Gene calling method GenePrimp, Prodigal 1.4

Locus Tag PSEST

Genbank ID CP003071.1- CP003074.1

Genbank Date of
Release

September 6, 2011

GOLD ID Gp0005131

BIOPROJECT PRJNA60029

MIGS 13 Source Material
Identifier

Project relevance Chromium (VI) reduction, nitrate
reduction
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subcloning. Gaps between contigs were closed by editing
in Consed, by PCR and by Bubble PCR (J-F Cheng,
unpublished) primer walks. A total of 68 additional reac-
tions were necessary to close gaps and to raise the quality
of the finished sequence. The total size of the genome is
4,600,489 bp and the final assembly is based on 148 Mb of
454 draft data which provides an average 32.2x coverage
of the genome and 584.6 Mb of Illumina draft data which
provides an average 127.1x coverage of the genome.
Genome annotation
Genes were identified using Prodigal [43] as part of the
Oak Ridge National Laboratory genome annotation pipe-
line, followed by a round of manual curation using the JGI
GenePRIMP pipeline [44]. The predicted CDSs were
translated and used to search the National Center for Bio-
technology Information (NCBI) nonredundant database,
UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and
InterPro databases. These data sources were combined to
assert a product description for each predicted protein.
Non-coding genes and miscellaneous features were pre-
dicted using tRNAscan-SE [45], RNAMMer [46], Rfam
[47], TMHMM [48], and signalP [49].
Genome properties
The genome consists of one circular chromosome of
4,575,057 bp (62.49% GC content) and includes 3 circular
plasmids of 12,763 bp, 9,865 bp and 2,804 bp for a total
genome size of 4,600,489 bp. There are 4322 protein-
coding genes of which 3593 genes were assigned to a pu-
tative function and the 729 remaining genes were anno-
tated as hypothetical proteins. The properties and the
statistics of the genome are summarized in Tables 3, 4 and
5 and Fig. 4.

https://www.google.com/maps/place/Oak+Ridge,+Louisiana,+United+States


Table 3 Summary of genome: 1 chromosome and 3 plasmids

Label Size (Mb) Topology INSDC identifier RefSeq ID

Chromosome 4.575 circular CP003071.1 NC_019936.1

Plasmid pPSEST01 0.013 circular CP003072.1 NC_019937.1

Plasmid pPSEST02 0.010 circular CP003073.1 NC_019938.1

Plasmid pPSEST03 0.003 circular CP003074.1 NC_019939.1

Table 5 Number of genes associated with the general COG
functional categories

Code Value % of totala Description

J 227 6.27 Translation, ribosomal structure and
biogenesis

A 1 0.03 RNA processing and modification

K 237 6.55 Transcription

L 129 3.56 Replication, recombination and repair

B 1 0.03 Chromatin structure and dynamics

D 39 1.08 Cell cycle control, Cell division,
chromosome partitioning

V 83 2.29 Defense mechanisms

T 243 6.71 Signal transduction mechanisms

M 216 5.97 Cell wall/membrane biogenesis

N 158 4.37 Cell motility

U 78 2.16 Intracellular trafficking and secretion

O 155 4.28 Posttranslational modification, protein
turnover, chaperones

C 251 6.94 Energy production and conversion

G 169 4.67 Carbohydrate transport and metabolism

E 285 7.88 Amino acid transport and metabolism

F 85 2.35 Nucleotide transport and metabolism

H 171 4.73 Coenzyme transport and metabolism

I 172 4.75 Lipid transport and metabolism

P 241 6.66 Inorganic ion transport and metabolism

Q 91 2.51 Secondary metabolites biosynthesis,
transport and catabolism

R 302 8.34 General function prediction only
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Insights from the genome sequence
Global genomic comparison of six fully sequenced P.
stutzeri strains (RCH2, A1501, ATCC 17588, CCUG
29243, DSM 4166, DSM 10701) demonstrated that most
of the genomic regions are conserved but there are some
differences between genome of RCH2 and other ge-
nomes (Fig. 5). We identified genes that are differentially
present in RCH2 and other fully sequenced P. stutzeri
strains by using “Compare two proteomes” tool of DOE
Systems Biology Knowledgebase [www.kbase.us]. For
4231 proteins encoded by chromosomal genes of RCH2
strain, there are 3696, 3677, 3534, 3526 and 3199
orthologous genes in CCUG 29243, DSM 4166, A1501,
ATCC 17588 and DSM 10701 strains, respectively. No
orthologs for plasmid genes of RCH2 were found in five
other P. stutzeri strains. We identified 244 P. stutzeri
genes that are present in RCH2 chromosome but ab-
sent in all other fully sequenced strains. Approximately
48% of those genes encode hypothetical proteins. Par-
ticularly noticeable are RCH2-specific gene clusters en-
coding chemotaxis (Psest_0653-Psest_0662), pyruvate/
2-oxoglutarate complex (Psest_2217-Psest_2220) and
Table 4 Genome statistics for Pseudomonas stutzeri strain RCH2

Attribute Value % of Total

Genome size (bp) 4,600,489 100.00

DNA coding (bp) 4,159,553 90.42

DNA G + C (bp) 2,874,963 62.49a

DNA scaffolds 4 100.00

Total genes 4,412 100.00

Protein coding genes 4,322 97.96

RNA genes 90 2.04

Pseudo genes 57 1.29b

Genes in internal clusters NA

Genes with function prediction 3,593 81.44

Genes assigned to COGs 3,195 72.42

Genes with Pfam domains 3,786 85.81

Genes with signal peptides 477 10.81

Genes with transmembrane helices 1,118 25.34

CRISPR repeats NA
aGC percentage shown as count of G's and C's divided by the total number of
bases. The total number of bases is not necessarily synonymous with a total
number of G's, C's, A's, and T's
bPseudogenes may also be counted as protein coding or RNA genes, so is not
additive under total gene count

S 230 6.36 Function unknown

- 1217 27.58 Not in COGs
aThe total is based on the total number of protein coding genes in the
annotated genome
Flp pilus biogenesis (Psest_2616-Psest_2630) proteins
(Fig. 5). We identified 18 strain-specific genes encoding
transcriptional regulators, thus the regulatory network
of P. stutzeri RCH2 may differ significantly from closely
related bacteria.

Extended insights
We searched for regulatory interactions in P. stutzeri
strain RCH2 using an automated conservative propa-
gation procedure described earlier [50]. By comparison
with the RegPrecise database, this procedure identified
27 regulons in P. stutzeri RCH2 genome. Of those
regulons, 11 contain genes for central carbon metabol-
ism and utilization of various carbon sources. Other
regulatory systems control metabolism of amino acids
(MetR, PhhR), nitrogen (NtrC) and phosphonate
(PhnF), biosynthesis of biotin (BirA), lipopolysacchar-
ide (GlmR) and nucleotides (NrdR, RutR), metal
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Fig. 4 Graphical map of the chromosome and plasmids of P. stuzeri strain RCH2. From outside to center of each map: Genes on forward strand
(color by COG categories as denoted by the JGI Integrated Microbial Genomes (IMG) platform), Genes on reverse strand (color by COG
categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC content, GC skew
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Fig. 5 Global comparison of six P. stutzeri strains with reference to the RCH2 strain chromosome sequence. We aligned each of the individual
genome sequences against the RCH2 chromosome sequence using Basic Local Alignment Search Tool BLASTN [51]. The innermost ring
indicates the genomic position. The next ring is a plot of G + C content. Next five rings indicate the presence or absence of BLAST hits in that
position, with each ring corresponding to one of P. stutzeri strains. The outermost ring indicates positions of RCH2-specific genes, with clusters of
chemotaxis, pyruvate dehydrogenase and Flp pili genes marked orange, purple and green, respectively. The graphical view of the alignments was
rendered using BLAST Ring Image Generator [52]
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homeostasis (CadR, CueR, Zur), DNA repair (LexA) and
biogenesis of iron-sulfur clusters (IscR). At the same time,
P. stutzeri strain RCH2 lacks several transcription factors
conserved in various Gammaproteobacteria, like PdxR
(regulator of pyridoxine biosynthesis), FabR (regulator of
fatty acid biosynthesis) and SoxR (regulator of superoxide
stress response).

Conclusion
Pseudomonas stutzeri strain RCH2 isolated from
chromium-contaminated aquifer, is a complete denitrifier
that can couple nitrate reduction to oxidation of several
organic carbon. When supplemented with lactate, robust
culture of strain RCH2 reduces Cr(VI) rapidly and this
feature contributes to the versatility of this organism to
survive in such chromium(VI) contaminated areas. The
genome of strain RCH2 reveals differences when
compared to closely related strains, and contains an
additional 244 genes, mostly of unknown function.
Clusters that are specific to strain RCH2 include
chemotaxis and Flp pilus biogenesis and these clusters
are absent from the five closely related strains exam-
ined. The genome sequence of strain RCH2 will assist
in further research into the underlying mechanisms of
adaption and persistence in metal and/or nitrate con-
taminated sites.
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