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Abstract

This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-

based modeling of skeletal muscles. This approach allows for construction of simulation model 

based on pixel data obtained from medical images. The material properties and muscle fiber 

direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The 

reproducing kernel (RK) approximation allows a representation of material heterogeneity with 

smooth transition. A multiphase multichannel level set based segmentation framework is adopted 

for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The 

application of the proposed methods for modeling the human lower leg is demonstrated.
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1. Introduction

In the conventional Finite Element (FE) approach, the meshes need to be conformed to 

muscle geometry, which increases the complexity of mesh construction. Generally muscles 

have a complex architecture and poorly built meshes can easily lead to significant errors in 

FE analysis due to mesh distortion. Abrupt changes of topology in the muscle cross sections 

could also result in failure in FE mesh generation. Additionally, muscle material is 

anisotropic in nature due to the presence of muscle fibers. In FE modeling, one way to 

introduce the anisotropy is to approximate the fiber directions by interpolating from some 

pre-defined templates as described in (Blemker & Delp, 2005). The fiber directions obtained 

in this way could generate noticeable discretization errors in the simulation models. In this 

work, we develop an image based meshfree modeling technique based on a Reproducing 

Kernel Particle Method (RKPM) (Liu, et al., 1995; Chen, et al., 1996). The fiber direction 

obtained from Diffusion Tensor Imaging (DTI) data (Bihan, et al., 2001; Sinha & Yao, 2002) 

and the material properties are defined at pixel points and are directly used as input into 

meshfree modeling. Since no mesh is required in meshfree methods, the complexity related 

to meshing in finite element method is avoided. The Reproducing Kernel (RK) 

approximation also allows for a smooth transition of material properties at the interfaces 

between different materials in the muscle, which is required in the context of biological 

materials where the material interfaces do not exhibit sharp discontinuities. The skeletal 

muscle is represented as a nearly incompressible hyperelastic material (Chi, et al., 2010). 

RKPM has been used to simulate extremely large deformation of rubber like hyperelastic 

material (Chen, et al., 1996; Chen, et al., 1997).

Additionally, in this paper we propose a method for the segmentation of individual muscles 

which have different fiber orientation. Automatically segmenting individual muscle 

components from Magnetic Resonance Images (MRI) poses a difficult problem as the 

boundaries between different muscles are not clearly distinguishable. The most popular 

method used for this segmentation is to introduce prior knowledge into the segmentation 

process through registration (Maintz & Viergever, 1998) of images or statistical learning 

techniques (Baudin, et al., 2012; Baudin, et al., 2012; Prescott, et al., 2011; Neji, et al., 

2008). The idea proposed in this work is to use the MRI intensities in combination with the 

muscle fiber direction obtained from DTI, to segment individual muscles. A combined 

multiphase multichannel method of segmentation is used to implement this idea (Vese & 

Chan, 2002; Chan, et al., 2000). The multichannel framework incorporates the MRI and 

fiber direction data in different channels, and a multiphase framework is required to segment 

multiple connected regions in an image.

The remaining sections of the paper are arranged as follows. Section 2 gives the review of 

the RK approximation and the smooth transition between heterogeneous materials using RK 

approximation is demonstrated. In Section 3, the variational formulation of hyperelasticity 

discretized by RKPM is introduced. The details of the proposed DTI enhanced multiphase-

multichannel level set segmentation of muscles and full RKPM model construction from 

images are given in Section 4. Section 5 demonstrates the application of the proposed 

meshfree pixel based method to modeling of skeletal muscles. Concluding remarks are given 

in Section 6.
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2. Reproducing Kernel (RK) Approximation

In meshfree modeling, the problem domain is discretized with a set of arbitrarily distributed 

points (nodes) as shown in Figure 1(a). Each point I is associated with an open cover ωI 

which defines the locality of the approximation defined on ωI. In the present modeling, the 

pixel coordinates of the geometry are obtained from the images and are used as nodes for 

discretizing the domain for the meshfree modeling. The RK shape functions are constructed 

based on a set of points and are used to approximate the displacement field governed by the 

equilibrium equation or equation of motion of a solid (Liu, et al., 1995; Chen, et al., 1996). 

The derivation of the RK shape function is given in the following paragraphs.

Let α = α1α2...αd represent the multi-dimensional index notation, where d is the spatial 

dimension and |α| = α1 + α2 +... +αd. The following notations are used:

(1)

Consider a domain Ω in d dimensional space Rd which is discretized by a set of NP nodes 

given by . The RK approximation of a function u is given by:

(2)

where ΨI(x) is the RK approximation function (also called the RK shape function) of node I, 
dI is the coefficient at node I and uh (x) is the approximated function. The RK shape function 

is expressed as:

(3)

where ϕa (x–xI) is a kernel function which determines the locality of the approximation by 

its compact support measured by ‘a’ and the smoothness of the approximation. Examples of 

kernel functions are given in Figure 1(b) and (c) where the tent function is C0 continuous 

and the cubic B-spline function is C2 continuous.

The term (x;x – xI) C is a correction function expressed as:

(4)

where n is the order of the basis functions,  is a vector 

containing all the monomial basis functions, and bα (x) is an unknown vector which is 

determined by the following nth order consistency conditions:
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(5)

The above equation is equivalent to  and the unknown coefficient 

vector is obtained as b(x) =M−1(x) H(0) where M is called the moment matrix, given by:

(6)

The correction function introduced in the reproducing kernel approximation enables it to 

exactly satisfy the reproducing conditions everywhere in the domain and on the boundary in 

the discrete form (Chen, et al., 1998). Finally, the RK shape function can be re-written as:

(7)

Examples of 1D and 2D RK shape functions are given in Figure 2. From the process of 

constructing the reproducing kernel shape function, it can be seen that the order of 

completeness of the approximation is determined by the order of consistency, that is, the 

order of basis functions ‘n’. The convergence behavior of the RK shape function in 

approximating a sinusoidal function u(x) = sin(x), x∈[0, 10] is illustrated in Figure 3. Here, 

the error is computed based on the following L2 error measure:

(8)

where uh is the approximated function, u is the exact function and the problem domain Ω is 

[0, 10] in this example. It can be seen in Figure 3 that the RK shape function using second 

order basis shows higher convergence rate, when compared to the case using first order 

basis. It is also shown that while the smoothness of the kernel function does not affect the 

convergence rate, the accuracy for RK shape function increases by using smoother kernel 

function.

It is noted that the RK approximation functions do not possess Kronecker Delta property, i.e 

ΨI (xJ) ≠ δIJ. Due to this condition, numerous methods have been proposed to impose the 

essential boundary conditions, including the Lagrange multiplier method (Belytschko, et al., 

1994; Chen, et al., 1997), transformation method (Chen & Wang, 2000; Chen, et al., 1996), 

Nitsche’s method and penalty method (Sonia & Huerta, 2004). In this work, the penalty 

method is used for imposing the essential boundary conditions.
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It has been shown in many studies (Tidball, 1984) that the change of material properties 

from skeletal muscle to tendon is a smooth transition. Heterogeneous material modeling 

using FE representation results in jumps in material properties at the material interfaces, and 

the computed stresses and strains are also discontinuous across the element boundaries. On 

the contrary, in the proposed meshfree RKPM analysis the material properties are assigned 

to the nodes and the material properties transition represented by the smooth RK 

approximation can be made with the desired smooth transition, which avoids the abrupt 

jumps of stresses and strains. This RK representation of the smooth transition in material 

properties is illustrated in the following example. Consider a region x∈[0, 10] with the 

interface at x = 5 between two materials, where the Young’s moduli (E) are given by: E = 30 

for x∈[0, 5) and E =5 for x∈[5, 10]. As can be seen in Figure 4, finite element 

approximation exhibits a sharp discontinuity at x = 5.0 while the RK approximation shows 

smooth transition in representing the material property transition across the material 

interface by choosing appropriate kernel function support size ‘a’ in the RK approximation.

3. Meshfree RKPM Formulation for Hyperelasticity

In this section, a 3D RKPM formulation is introduced to solve the hyperelastic problem, in 

which the penalty method is used to impose the essential boundary conditions. The 

formulation is based on the total Lagrangian framework, where the implementation is 

carried out in the reference or undeformed configuration. Let the problem domain in the 

undeformed configuration be denoted by ΩX, with the corresponding essential boundary and 

natural boundary denoted by  and , respectively. The energy functional for this total 

Lagrangian formulation can be written as follows:

(9)

where W(u) is the strain energy density function, b is the body force per unit undeformed 

volume, h is the prescribed surface force per unit undeformed area on the natural boundary 

, β is the penalty number and g is the prescribed displacement on the essential boundary 

. The stationary condition is obtained by taking variation of equation (9), which yields:

(10)

where F is the deformation gradient and P is the first Piola-Kirchhoff stress. Due to the 

geometric and material nonlinearities, Newton’s method is used to solve the nonlinear 

equations and the linearization of equation (10) is required. Let n and ν denote the current 

load step counter and iteration step counter, respectively, the linearized equation is given by:
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(11)

where Cijkl is the first elasticity tensor. The displacement vector, its variation and the 

incremental displacement vector are approximated by the RK shape functions as follows:

(12)

where

(13)

Here ΨI is the Lagrangian RK shape function defined as:

(14)

and the kernel  is called the ‘material kernel’ given by:

(15)

As shown in the above equation, the material kernel is defined using the distance measured 

by the material coordinate in the reference configuration. The support of the material kernel 

function covers the same set of nodes throughout the history of deformation and hence the 

associated shape function is called the ‘Lagrangian’ shape function. An illustration of the 

material kernel function that deforms with material deformation is given in Figure 5.

The incremental deformation gradient in vector form is given by:
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(16)

where

(17)

Here, ΨI,j = ∂ΨI / ∂Xj. Taking the material derivative of the Lagrangian RK shape function 

is straightforward.

By introducing the RK approximation for displacements given in equation (12) and the 

deformation gradient given in equation (16) into the linearized equation (11), the following 

matrix equation is obtained:

(18)

where I, J = 1,…,NP. The dimension of stiffness KIJ is 3×3 and that of ΔdJ is 3×1 and

(19)

and

(20)

where C is a 9×9 matrix and each element is given by CAB = ∂2W/∂FA∂FB.

The method of Stabilized Conforming Nodal Integration (SCNI) (Chen, et al., 2001; Chen, 

et al., 2002; Puso, et al., 2008) is used for integrating the discrete equations in (18) where a 

smoothed derivative of the approximation function is used in conjunction with a nodal 

integration in equation (17) to achieve computational efficiency and accuracy. SCNI ensures 

a quadratic rate of convergence in Galerkin meshfree approximation of the equilibrium 
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equation, and it achieves greater computational efficiency and accuracy for the meshfree 

method compared to conventional Gauss quadrature rules.

4. Model Construction from Images

4.1 Segmentation of individual muscles

For individual muscle segmentation, the idea proposed in this work is to use the muscle fiber 

direction which is obtained from DTI data at each pixel point, along with the MRI as input 

for segmentation using a combined multiphase multichannel level set based segmentation 

method. This method works efficiently for segmenting adjacent muscles which have 

different fiber orientation. In DT imaging a 3×3 diffusion tensor is obtained at each voxel 

(volumetric pixel) which gives the diffusion in each direction in vivo by quantifying the 

random movement of water molecules in the muscle. The principal eigen vectors and eigen 

values of the diffusion tensor give the main directions of diffusion and the associated 

diffusivities, respectively (Bihan, et al., 2001). The eigen vector corresponding to the 

maximum eigenvalue is called the lead Eigen Vector (EV). This lead Eigen Vector of 

diffusion tensor at each pixel point is assumed to give the muscle fiber direction at that 

point. Here, the method is implemented to segment the muscles from the MRI and DTI data 

of the human lower leg. This EV data, which consists of a vector at each pixel point, is 

obtained in 3 images where each image gives one of the vector components. For the purpose 

of segmentation, the EV data is scaled to be at the similar level of the MRI intensities. Each 

of the images, that is, MRI, e1, e2 and e3 components of the EV data are taken as 4 channels 

for segmentation. As the final segmentation has 7 major muscles to be identified in the 

image, at least 3 level set functions (ϕ’s ) should be used for segmentation, since ‘K’ level 

set functions can segment up to 2K regions in an image (Vese & Chan, 2002). The functional 

for the 3 level sets, 4 channels segmentation is given by (Vese & Chan, 2002; Chan, et al., 

2000):

(21)

where ϕK denotes the Kth level set function,  denotes the pixel intensity in the ith 

channel at point x, p denotes the number of regions that can be segmented, μK denotes the 

weight for the length regularization term for the zeroth isocontour of the level set functions, 

and  denotes the unknown constants which represents the mean value of intensity in the 

region Ωp of the ith channel. A μ value of either 1 or 100 was used for all level set functions, 

to obtain the required segmentation for a particular image slice. The expressions for  can 

be obtained by minimizing equation (21) with respect to each  keeping all other variables 

constant. The 3 Euler-Lagrange equations for curve evolution can be obtained by 

minimizing the above functional with respect to ϕ1,ϕ2 and ϕ3, respectively, keeping 

constant. These are solved using a semi-implicit finite difference scheme. The pixels 

belonging to a particular region in the image can be obtained according to the sign of all the 

level set functions in that region. For this muscle segmentation, the important parameter to 
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consider in the formulation given in equation (21) is the λ terms which are the weights for 

the forcing term. If the value of λ is decreased, it allows for slightly more variance of 

intensities in the region to be segmented and vice versa. This parameter allows for taking 

into account the slight variation of muscle fiber directions in each individual muscle. Figure 

6 shows the segmentation result for one of the MRI slices by taking λ = 0.02 in all channels 

and regions, and μ =1 was taken for all level set functions. As can been seen in this 

segmentation result, the Medial Gastrocnemius (MG) muscle (green color) has been 

segmented very well. The MG muscle is segmented using the proposed method from 33 

images and compared with manual segmentation as shown in Figure 7. Muscles with 

different fiber orientations need to be segmented to separate groups so that different 

anisotropic material properties can be specified in the computational model.

4.2 Full model construction

The following methodology is developed for constructing the full model of the human lower 

leg from medical images. The geometry is extracted through segmentation of the anatomical 

MRI. Muscle, Intra-Muscular Connective Tissue (IMCT), fat (including both intra-muscular 

fat (IMAT) and subcutaneous fat) are the materials included in the construction of the model. 

The IMCT and IMAT are segmented independently using a separate specialized sequences 

of MR images. The Chan-Vese level set segmentation method (Chan & Vese, 2001) is used 

for extracting boundaries of the bones and the outer boundary of the lower leg from each 

MRI as shown in Figure 8(a)–(c). The interior points of boundary contours are obtained as 

shown in Figure 8(d). The segmented IMAT and IMCT points (shown in Figure 8(e)) are 

subtracted from these interior points to obtain an image (say image 1). The points which 

have EV data are chosen as the muscle points in image 1 and the remaining interior points 

are assigned as fat since they constitute the outer subcutaneous fat layer. The final image 

obtained with all the different material points labeled is shown in Figure 9(a). A coarse 

image was generated for computational efficiency, by creating a coarse set of points with 

larger spacing between the pixels. The nodal spacing in the fine model is 1 pixel, whereas in 

the coarse model it is taken as 2 pixels. The muscle, fat and IMCT of the coarse image can 

be obtained by sorting common points between the coarse and the fine images for each slice. 

The coarser image generated is shown in Figure 9(b). This procedure is repeated for every 

image (slice) and the 3D pixel based model is constructed by stacking the slices as shown in 

Figure 9(c).

5. Pixel Based Meshfree Modeling of Skeletal Muscle

A transversely isotropic hyperelastic model is employed to represent the mechanical 

behavior of skeletal muscle. The strain energy density function for the muscle is decoupled 

into isotropic and anisotropic parts as defined below:

(22)

where Wmatrix is the strain energy stored within the isotropic muscle matrix, Wfiber is the 

strain energy stored within muscle fiber and this introduces anisotropy to the model. 
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, where I1, I2, and I3 are the three invariants of right Cauchy-Green 

strain tensor C,  is the stretch ratio along the fiber direction N̂, and C̄ = 

J−2/3C. A quadratic polynomial type strain energy density function for Wmatrix as employed 

in (Chi, et al., 2010) is used in this study:

(23)

The fiber stress is related to the energy density function Wfiber as follows:

(24)

where λ̂
0 is the stretch ratio at optimal length, σmax is the maximum isometric stress, α is 

the activation factor which represents the level of activation in the muscle fiber, factive and 

fpassive are the normalized active and passive fiber forces, respectively, given by (Chi, et al., 

2010):

(25)

(26)

where λ* = λ̂/λ̂0 is the normalized stretch ratio, and γ1 = 0.05 and γ2 = 6.6.

Connective tissue and fat are modeled by an isotropic cubic hyperelastic model with the 

strain energy density function defined as (Chi, et al., 2010):

(27)

The calibrated values of material constants for muscle and connective tissue are adopted 

from (Chi, et al., 2010). The material constants for the fat are 10 times softer than those of 

the connective tissue. The material constants used in this work are summarized in Table 1 for 

connective tissue and fat, and in Table 2 for muscle.
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Hodgson et al. (Hodgson, et al., 2012) demonstrated how anisotropy in the material model 

affects the deformation in a muscle with simplified geometry. The anisotropy in the 

proposed simulation model includes the transversely isotropic hyperelastic material model 

which accounts for the presence of muscle fibers, as well as the irregular distribution of 

tissues like connective tissue, which yield an overall anisotropic property in the simulation 

model. The complexity in microstructures (IMCT and IMAT) also accounts for the model 

anisotropy.

As can be seen in the full lower leg model given in Figure 9(c), the pixel resolution in the 

longitudinal z-direction is lower than the resolution in the transverse xy-direction. This is 

due to the fact that in the MRI acquisition, the scanning in the vertical direction is only taken 

at certain intervals. In the meshfree modeling, this is taken into account by using a suitable 

support size in the RK approximation function, which is adjusted according to the nodal 

spacing in different directions in the model. This discretization is also consistent with the 

deformation of muscle, where the spatial variations of stress and strain fields in the 

longitudinal direction are much less than those in the transverse direction. In this work, the 

RK support size in the longitudial direction is about 3 times of that in the transverse 

direction. In all the following examples, the reproducing kernel approximation functions are 

constructed using a cubic spline kernel function and linear basis. A normalized support size 

of a/h=1.65 is used, where a is the support size of the kernel function and h is the nodal 

spacing.

Example 1: Comparison of meshfree and finite element modeling of tendon

To show the accuracy of the RKPM method, a manually segmented tendon model whose 

structure is relatively regular (and thus FEM discretization is possible), is modeled using 

both RKPM and finite element method. The discretization of the model using finite element 

and meshfree nodes are shown in Figure 10(a) and Figure 10(b), respectively. The length of 

the tendon is about 19 cm. The bottom surface A of the tendon is fixed in all directions and 

the top surface B is stretched by 2 cm in the direction along the axial direction of the tendon, 

(see Figure 10(a)). The tendon is modeled with the cubic hyperelastic model described in 

equation (27) for which the material parameters are given in Table 1. The comparison of the 

reaction forces generated at the fixed end using meshfree and finite element methods are 

shown in Figure 10(c), which show very good agreement.

Example 2: Numerical analysis of isometric contraction of the lower leg using RKPM

In this example, isometric contraction of the 3D muscle model of the lower leg shown in 

Figure 9(c), which is constructed from slices of the coarse image (Figure 9(b)), is simulated 

using the RKPM formulation. Isometric contraction is achieved by fixing the top and bottom 

boundaries. For the points near the interior bone boundaries, the displacements in the cross-

sectional plane are fixed but are free to move along the longitudinal direction of the muscle. 

The activation factor α of the muscle material is linearly increased from 0 to 0.95. In our 

simulation, all muscle points are activated simultaneously. The generated force due to 

muscle contraction is calculated at the fixed end. The reaction force generated at different 

levels of muscle activation is shown in Figure 11. A convergence study is performed to 

ensure that the discretization resolution of muscle model (Figure 9(c)) is sufficient for 
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desired accuracy. A refined RKPM model is generated from finer cross-sectional image as 

shown in Figure 9(a). The spacing in the longitudinal direction (vertical z-direction) is not 

refined due to the limitation in the image acquisition. This is also justified due to the fact 

that the spatial variations in the stress and strain fields in the longitudinal direction are much 

smaller than those in the transverse direction. The force generation results obtained from the 

coarse and refined models are shown in Figure 11, which confirm convergence of the RKPM 

solution.

In Figure 12(a)–(f) the nodal displacement vectors are plotted on sample planes (transverse, 

coronal, sagittal) on the reference (undeformed) configuration. The muscle fiber directions 

in the undeformed configuration are also plotted for comparison. The results show that while 

in certain areas the nodal displacement vectors are approximately in the direction of the 

muscle fibers, no particular correlation between them is observed. As can be seen in the 

sagittal cross-section in Figure 12(e), the points near the posterior region displace 

downwards towards the distal end and the points near the anterior region move upwards 

toward the proximal end due to muscle contraction. Figure 13 shows the maximum principal 

Cauchy stress in the full model and on sample planes at the final configuration. It is 

important to note that the stress fields shown in Figure 13 are calculated using the RK 

approximation functions which are continuous in its first order derivatives. Thus, the 

computed stress field is continuous, in contrast to finite element method which yields 

discontinuous stress field across element boundaries.

Example 3: Comparison of force production in young and old muscles

Two MG models from young and old subjects were selected to investigate the effect of aging 

on force generation. Sample MRI slices of these young and old subjects are given in Figure 

14(a) and (b), respectively, which clearly show the increased amount of connective tissue in 

the older subject. The MG muscle is outlined in red in these figures. The segmented MG 

models of the young and old subjects with the same axial length are shown in Figure 15(a) 

and (b), respectively. The MG is surrounded by an outer layer of connective tissue which 

forms the aponeurosis. The volumes of the different material components in the young and 

the old models are given in Table 3. It should be noted that IMCT here does not include the 

aponeurosis.

In the numerical simulation, both ends of the muscle are fixed and the activation of the 

muscle is increased to simulate isometric contraction. The muscle force activation 

characteristics for both the young and the old muscles are taken to be the same. The force 

generation at maximum activation shows that the younger model generates much bigger 

force than the older model (Figure 15(c)). The effective force generated per unit total 

volume (including the outer layer of connective tissue) for the younger model is 0.430 

N/cm3 and for the old model is 0.294 N/cm3. This shows that the amount of non-contractile 

tissue strongly affects the force production. It is worth noting that the muscle volume of the 

older model is about 37% smaller than that of the younger model but the force generation in 

the older model drops by around 45% compared to the young model. There is a 

disproportionate decrease in force production due to the decrease in muscle volume. These 
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results from numerical modeling support the hypothesis that the amount of connective tissue 

in the muscle affects the force production considerably (Csapo, et al., 2014).

6. Conclusions

In this work, an image based meshfree RKPM computational framework is developed for 

skeletal muscle modeling. A method for RKPM simulation model construction with 

different material components is developed by extracting pixel data from medical images. 

The pixel points from these images can be directly used as nodes for domain discretization 

in the meshfree modeling, and the fiber direction obtained from the DTI data is input 

directly at each pixel point, without the need for additional processing or interpolation. The 

employed reproducing kernel approximation can represent the smooth transition of material 

properties in heterogeneous materials. The variation of material properties in the transition 

zone can be controlled by adjusting the support size of the kernel function in the RK 

approximation. These properties of image based meshfree methods render it suitable for 

subject specific modeling.

A multiphase multichannel level set approach for segmenting individual muscles using both 

MRI and DTI data is also proposed. Using this method, adjacent muscles in the image which 

have different fiber orientations can be segmented. The multichannel method enables the 

incorporation of MRI and EV data in different channels for segmentation, and a multiphase 

framework is required to segment connected regions in an image. Numerical examples are 

given to demonstrate the effectiveness of the proposed image based meshfree method for 

modeling the mechanical behavior of skeletal muscles. A preliminary study of force 

production between young and old skeletal muscles having different amounts of non-

contractile tissue volumes is performed. A disproportionate decrease in force production is 

observed due to the decrease in muscle volume between the young and the old MG muscles.
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Figure 1. 
(a) Domain discretization in meshfree modeling. Here Ω represents the domain and ∂Ω 
represents the boundary of the domain. Sample kernel functions: (b) Tent function (c) Cubic 

B-Spline function
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Figure 2. 
(a) One dimensional reproducing kernel shape function centered at node x = 5.0, (b) Two 

dimensional reproducing kernel shape function centered at node (x, y) = (5.0, 5.0)
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Figure 3. 
Convergence behavior for approximating sinusoidal function with h the nodal spacing. (a) 

Basis order is n = 1, and (b) Basis order is n = 2. The respective rates of convergence are 

given on the plot.
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Figure 4. 
1D comparison of RK and FE approximations of the Young’s modulus. Cubic B-Spline 

kernel function and linear basis are used.
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Figure 5. 
Material kernel function (cubic B-spline)
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Figure 6. 
Multiphase multichannel segmentation of MRI and EV data (a) Initial contours of the 3 level 

set functions (b) Final contours obtained from segmentation (c) Final segmented regions
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Figure 7. 
Comparison of semi-automatic and manual segmentations of the medial gastrocnemius 

muscle of human lower leg. The units of x,y and z coordinates are in pixel coordinates 

where 1 pixel = 0.078125 cm.
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Figure 8. 
(a) Initial contour (b) Chan Vese segmentation result (c) Outer contours and bone contours 

obtained from segmentation (d) Interior points (e) Segmented intra-muscular fat and IMCT 

points overlapped on MRI
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Figure 9. 
(a) Fine model (b) Coarse model (c) 3D model constructed from 25 images of the coarse 

model, has 73,659 nodes. On the plot, the numbers 1, 2 and 3 indicate the transverse, 

coronal and sagittal planes, respectively. The units of x,y and z coordinates are in pixel 

coordinates where 1 pixel = 0.078125 cm.

Chen et al. Page 23

Comput Methods Biomech Biomed Eng Imaging Vis. Author manuscript; available in PMC 2017 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
3D model of tendon (a) Finite element discretization (b) Meshfree discretization (c) 

Comparison of the reaction forces generated at the fixed end, using Finite Element (FE) and 

meshfree (RK) methods
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Figure 11. 
Reaction force generated at different levels of muscle activation predicted by the coarse and 

refined models
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Figure 12. 
Displacement vectors (left) and corresponding fiber directions (right) plotted on reference 

configuration on (a)–(b) transverse plane at z = 5 cm; (c)–(d) coronal plane at y = 10.1 cm; 

(e)–(f) sagittal plane at x = 10 cm. (units of u magnitude: cm). Note: The fiber directions are 

plotted only at the muscle points, whereas displacements are shown at all material points.
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Figure 13. 
Distribution of the maximum principal Cauchy stress (N/cm2) at the final deformed 

configuration (a) full model (b) at transverse planes z = 5.0 cm (c) at coronal plane y = 10.1 

cm
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Figure 14. 
Connective tissue visualization from MRI of (a) young and (b) old models. The medial 

gastrocnemius muscle is outlined in red.
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Figure 15. 
(a) MG muscle of the young model (b) MG muscle of the old model. Here green points are 

the connective tissue, red points are muscle and blue points are fat (IMAT) (c) Comparison 

of force generation versus activation level between young and old models
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Table 1

Material constants for connective tissue and fat (N/cm2)

C10 C20 C30 K

Connective tissue 30 80 800 50,000

Fat 3 8 80 5000
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Table 3

Example 2: Young vs Old Model Results comparison

Young model Old model Old normalized by Young

Muscle(cm3) 98.93 61.89 62.5%

IMAT(cm3) 2.83 6.15 217.3%

IMCT(cm3) 20.86 29.15 139.7%

Fmax (N) 68.76 37.74 54.8%
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