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The ability to identify a specific cancer using minimally invasive
biopsy holds great promise for improving the diagnosis, treat-
ment selection, and prediction of prognosis in cancer. Using
whole-genome methylation data from The Cancer Genome Atlas
(TCGA) and machine learning methods, we evaluated the utility
of DNA methylation for differentiating tumor tissue and normal
tissue for four common cancers (breast, colon, liver, and lung). We
identified cancer markers in a training cohort of 1,619 tumor
samples and 173 matched adjacent normal tissue samples. We
replicated our findings in a separate TCGA cohort of 791 tumor
samples and 93 matched adjacent normal tissue samples, as well
as an independent Chinese cohort of 394 tumor samples and
324 matched adjacent normal tissue samples. The DNA methyl-
ation analysis could predict cancer versus normal tissue with more
than 95% accuracy in these three cohorts, demonstrating accuracy
comparable to typical diagnostic methods. This analysis also
correctly identified 29 of 30 colorectal cancer metastases to the
liver and 32 of 34 colorectal cancer metastases to the lung. We also
found that methylation patterns can predict prognosis and
survival. We correlated differential methylation of CpG sites
predictive of cancer with expression of associated genes known
to be important in cancer biology, showing decreased expression
with increased methylation, as expected. We verified gene
expression profiles in a mouse model of hepatocellular carcinoma.
Taken together, these findings demonstrate the utility of methyl-
ation biomarkers for the molecular characterization of cancer,
with implications for diagnosis and prognosis.

DNA methylation | cancer diagnosis | cancer prognosis | gene expression |
survival analysis

Accurate diagnosis of cancer based on histological subtype,
as well as other markers identified via histology and im-

munohistochemistry, is crucial for choosing the proper treat-
ment and for predicting survival (1). For some primary tumors,
complex anatomy may prevent accurate identification of the
tissue of origin or tumor type. Tissue must be obtained from
these tumors either from surgical resection or from a tissue
biopsy. Diagnosis in these cases may be limited by the patient’s
tolerance of surgery or by inaccessibility of the tumor, preventing
acquisition of a tissue sample of adequate size and quality that
preserves tissue architecture. Even when high-quality biopsy spec-
imens are obtained, diagnostic uncertainty may persist, hindering
treatment decisions and prognostication. Thus, there is a need for
strategies to improve diagnostic certainty. Molecular characteriza-
tion is increasingly used to predict tumor prognosis and response to
therapy and offers great potential for improving understanding of
an individual patient’s tumor (2–4). Importantly, these methods
may have specific utility in scenarios of limited tissue availability or
quality.

Methylation of CpG sites is an epigenetic regulator of gene
expression that usually results in gene silencing (5, 6). Extensive
perturbations of DNA methylation have been noted in cancer,
causing changes in gene regulation that promote oncogenesis (7–
9). Understanding both epigenetic changes and somatic DNA
mutations show promise for improving the characterization
of malignancy to predict treatment response and prognosis (3,
10–12). Some changes in methylation are reproducibly found in
nearly all cases of a specific type of cancer. In contrast, somatic
mutations are often neither specific nor sensitive for a particular
type of cancer. Even within commonly mutated genes, individual
mutations may be found across tens or hundreds of kilobases,
limiting the utility of targeted sequencing of molecular markers
(10, 13, 14).
Consequently, to explore the utility of DNA methylation

analysis for cancer diagnosis, we analyzed whole-genome meth-
ylation profiles of tumors and matched normal tissue from pa-
tients with four of the most common cancers to identify potential
cancer-specific DNA methylation markers. We then verified
these methylation markers in two other independent patient
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cohorts. We also used methylation patterns to predict survival
and analyzed the utility of combining methylation with muta-
tional status in several tumor types. Finally, we correlated spe-
cific methylation patterns with gene expression in genes known
to be important in cancer biology.

Results
Characteristics of Patients and Tissues. Clinical characteristics and
molecular profiling, including methylation data for a training
cohort of 1,619 tumor samples and 173 matched adjacent normal
tissue samples, as well as a validation cohort of 791 tumor and
93 matched normal samples, were obtained from The Cancer
Genome Atlas (TCGA). A separate validation cohort of 394 tu-
mor samples and 324 matched normal samples was obtained
from Chinese patients with cancer treated at the Sun Yat-sen
University Cancer Center, West China Hospital, and Xijing
Hospital. Matched adjacent normal tissue samples were col-
lected simultaneously with tumor tissue from the same patient
and were verified by histology to have no evidence of cancer.
Clinical characteristics of all patients are summarized in SI Ap-
pendix, Tables S1–S3.

Methylation Profiling Identifies Cancer-Specific Methylation Signatures.
To identify a cancer type-specific signature, we randomly split
the full TCGA dataset into training and test cohorts with a
2:1 ratio in each of the eight types of sample groups. We first
performed the prescreening procedure to remove excessive

noise on the training data using the moderated t statistic (15).
For multinomial classification, we used lasso (least absolute
shrinkage and selection operator) under a multinomial distri-
bution. A multiclass prediction system (16) was constructed to
predict the group membership of samples using a panel of
markers. Hierarchal clustering of these samples according to
differential methylation of CpG sites in this fashion could dis-
tinguish the cancer tissue of origin, as well as differentiate
cancer tissue from normal tissue in our TCGA training cohort
(Table 1). The overall correct diagnosis rate was 98.4%. We
then applied these markers to a TCGA validation cohort (Ta-
ble 2), and found a slightly decreased but statistically similar
correct rate of 97.1%. We also confirmed our results in an in-
dependent cohort of Chinese cancer patients (Table 3), which
also showed a decreased but similar correct rate of 95.0%. Of
note, the methylation analysis of the Chinese cohort was per-
formed using an alternative bisulfite sequencing technique in a
different ethnic and geographic background than the TCGA
cohorts. Overall, these results demonstrate the robust nature of
these methylation patterns in identifying the presence of ma-
lignancy as well as its site of origin (Fig. 1 and SI Appendix,
Table S4 and Fig. S1).

Methylation Block Structure for Improved Allele Calling Accuracy.We
used the well-established concept of genetic linkage disequi-
librium to study the degree of comethylation among different
DNA stands. We used paired-end Illumina sequencing reads to

Table 1. Confusion table of the TCGA training cohort

Orange indicates cancer sample, purple indicates normal sample, and gray indicates correctly diagnosed sample number of each training cohort.

Table 2. Confusion table of validation cohort 1

Orange indicates cancer sample, purple indicates normal sample, and gray indicates correctly diagnosed sample number of each validation cohort.
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identify each individual methylation block (mBlock). We ap-
plied a Pearson correlation method to quantify the comet-
hylation of mBlock. We compiled all common mBlocks of a
region by calculating different mBlock fractions (Methods). We
then partitioned the genome into blocks of tightly comethylated
CpG sites that we termed methylation-correlated blocks (MCBs),
using an R2 cutoff of 0.5. We surveyed MCBs in cancer and normal
tissues and found that MCBs were highly consistent among dif-
ferent cancer and normal tissues. Overall, we found ∼3,600 MCBs,
approximately one-half of which were incomplete/disrupted (SI
Appendix, Fig. S2) owing to short a span of sequenced reads (∼100
base pairs).
We next determined methylation values within MCBs. SI

Appendix, Fig. S3 shows an example of MCBs found on chro-
mosome 1 in both normal tissues (breast, colon, liver, and lung)
and corresponding tumor tissues: breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), liver hepatocellular
carcinoma (LIHC), and lung adenocarcinoma (LUAD). We
found similar β values across multiple CpG sites within a MCB,
and thus calculated a compound methylation value for one entire
MCB. We used them instead of single CpG sites in downstream

bioinformatics pipelines, which significantly enhanced the allele-
calling accuracy.

Methylation Profiles Can Identify Cancer Metastases to Liver. Be-
cause identifying the tissue of origin is crucial in selecting the
optimum treatment strategy for patients presenting with metas-
tases, we investigated the utility of DNA methylation analysis for
diagnosis of cancer metastases to liver and lung in our Chinese
cohort. In addition to the aforementioned primary tumors, we
analyzed 30 colorectal cancer metastases to liver and 34 co-
lorectal cancer metastases to lung. We found that unsupervised
hierarchical clustering could differentiate these metastases from
colon cancer or normal tissue (Fig. 2). The methylation signature
could correctly diagnose 29 of 30 colorectal cancer metastases to
liver and 32 of 34 colorectal cancer metastases to lung (Table 3);
one of the three misdiagnoses were identified as normal liver and
two of the three misdiagnoses were identified as normal colorectal
tissue, suggesting that the error was due to tissue contamination.
These findings support the potential for using the DNA methyl-
ation signature to improve the diagnosis of metastatic disease in
addition to primary cancers.

Fig. 1. Methylation signatures can differentiate different cancer types from corresponding normal tissues. (A) Unsupervised hierarchical clustering and heat
map presentation associated with the methylation profile (according to the color scale shown) in different cancer types. (B) ROC curve showing the high
sensitivity and specificity in predicting different cancer types. (C) Zoom-in view of the block diagram in B.
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Methylation Profiles Predict Prognosis and Survival.We next assessed
the prognostic utility of a methylation signature for each type of
cancer. Clinical and demographic characteristics, including age,
sex, race, and American Joint Committee on Cancer stage, were
included in the analysis as well, because the prognostic power
can be greatly improved by combining this information with in-
formative molecular data (17). For each cancer category, we used
two different statistical learning algorithms, lasso and boosting, to
reduce the dimensionality of markers and construct a predictive
model. We evaluated the prognostic utility on TCGA training and
validation cohorts at a 2:1 ratio. Our method performed well in
differentiating low-risk and high-risk groups in Kaplan–Meier
analyses and in associated log-rank tests with significant P values,
demonstrating significant prognostic utility of the methylation
signatures in BRCA and LUAD (Fig. 3 and SI Appendix, Tables
S5 and S6).

A Cancer Methylation Profile Correlated with Its Gene Expression
Pattern and Function. Given that DNA methylation is an essen-
tial epigenetic regulator of gene expression, we sought to investigate

how differential methylation of sites in genes in cancer versus
normal tissue correlated with gene expression. Specifically, we
were interested in those methylation sites that predicted the
presence of malignancy in our aforementioned signatures. As
described in Methods, we used both methylation and RNA se-
quencing data to select top CpG markers in LIHC for which
methylation was significantly correlated with gene expression.
As expected, we typically observed an inverse correlation be-
tween promoter methylation and gene expression and identified
several genes known to be important in carcinogenesis, as well
as genes with relatively unknown functional relevance in LIHC.
Among the genes hypermethylated with decreased expression,
we selected one gene for LIHC [fuzzy planar cell polarity protein
(Fuz); Fig. 4]. Overexpression of FUZ suppressed LIHC cell line
growth (Fig. 4).
We further attempted to validate a list of top genes whose

methylation patterns were closely correlated with gene expres-
sion in a mouse model of LIHC. We found a good correlation
between the gene expression profiles in human and mouse LIHC
(SI Appendix, Fig. S4 and Table S7). These results support a

Colon cancer Colon cancer mets to liver Liver cancer

Normal liverNormal colon Colon cancer mets to lung

Lung cancer

Normal lung0      0.2      0.4      0.6      0.8     1

Fig. 2. DNA methylation signatures can identify the cancer of origin in metastasis of colon cancer. Shown are unsupervised hierarchical clustering and heat
map associated with the methylation profile of 394 tumor samples and 324 normal samples of primary and metastatic colorectal cancer, liver cancer, and lung
cancer in a Chinese cohort with a panel of 46 CpG markers. Each column represents an individual patient, and each row represents an individual CpG marker.
The color scale shows relative methylation.

Table 3. Confusion table of validation cohort 2

Orange indicates cancer sample, purple indicates normal sample, and gray indicates correctly diagnosed sample number of each validation cohort.
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functional role of these methylation markers in promoting car-
cinogenesis and provide biological validation for their use in
methylation studies to characterize cancers.

Discussion
The present study demonstrates the potential for using methyl-
ation signatures to identify cancer tissue of origin and predict
prognosis. Although we focused on four common cancers here,
we expect that DNA methylation analysis can be readily ex-
panded to aid diagnosis of a much larger number of cancers. Our
results may be particularly helpful for identifying cancers in cases
with an inadequate tissue yield or quality for histological di-
agnosis, which requires preservation of the tissue architecture. In
contrast, DNAmethylation analysis requires only a small amount of

tissue to obtain adequate DNA, thus potentially allowing the use of
lower-quality biopsies. These studies also may have significant utility
in assigning diagnoses from analysis of metastatic lesions, especially
when the tumor is of an unknown primary cancer type.
Through sequencing of bisulfate-converted DNA (bis-DNA),

we identified many previously unknown CpG markers differen-
tially methylated in cancer tissues versus normal tissues. Lehmann-
Werman et al. (18) described multiple adjacent CpG sites that
share the same tissue-specific methylation pattern. We further
explored this concept of the mBlock and found that many nearby
methylation markers are highly correlated. This information
allowed us to identify additional markers and improve the accu-
racy of sequencing for determining significant methylation dif-
ferences. This method has substantial potential for improving the
accuracy and utility of DNA methylation analysis for the four
study cancer types and other cancers, as well as for expanding the
number of diagnostic markers available for interrogation. How-
ever, the length of an MCB, which is related to how long a DNA
methyl-transferase binds to and exerts its enzymatic effect on
modifying adjacent and surrounding CpG sites on a DNA strand,
is not clear, because its underlying biochemical basis is not fully
defined.
DNA methylation analysis has the potential to improve out-

comes, given that accurate diagnosis is often crucial to treatment
selection. Our application of methylation signatures to prognosis
revealed subsets of patients with positive and negative prognoses.
This finding raises the possibility that methylation may help
identify relatively indolent or aggressive tumors and may aid
decision making regarding the selection of more aggressive or
less aggressive treatment and monitoring. Further studies are
warranted to fully explore the clinical applications of methylation
sequencing to guide personalized care for patients with cancer.

Fig. 4. Linking differentially methylated markers to gene expression in
LIHC. (A) Relationship between methylation of CpG marker cg19763319 and
expression of FUZ in liver cancer. Red dots indicate normal tissue samples;
black dots, cancer samples. (B) Effect of FUZ expression on growth of liver
cancer cell line HEP1. (C) Effect of FUZ expression on growth of HEP1 cells in
a mouse xenograft model. (D) Effect of FUZ expression on colony formation
of HEP1 cells. (E) Quantified colony formation by FUZ-transduced HEP1 cells
compared with control. **P < 0.001.

Fig. 3. Methylation markers can predict overall survival of patients in dif-
ferent types of cancers. (A) Overall survival curves of BRCA and LUAD pa-
tients with a low or high risk of death, according to a combined prognosis
score from a lasso analysis. Shown are Kaplan–Meier curves (Upper) and Cox
proportional hazards regression prediction curves (Lower) of overall survival
in BRCA (Left) and LUAD (Right) patients with low or high risk of death.
(B) Overall survival curves of BRCA and LUAD patients with a low or high risk
of death, according to a combined prognosis score from a boosting analysis.
Shown are Kaplan–Meier curves (Upper) and Cox proportional hazards re-
gression prediction curves (Lower) of overall survival of BRCA (Left) and
LUAD (Right) patients with low or high risk of death, according to a com-
bined prognosis score from a boosting analysis.

7418 | www.pnas.org/cgi/doi/10.1073/pnas.1703577114 Hao et al.

www.pnas.org/cgi/doi/10.1073/pnas.1703577114


Methods
Training and first validation cohorts were performed on patient data
obtained from TCGA. Patient characteristics are summarized in SI Appendix,
Tables S1 and S2. Complete clinical, molecular, and histopathological data-
sets are available at the TCGA website (https://tcga-data.nci.nih.gov/docs/
publications/tcga/). Individual institutions that contributed samples co-
ordinated the consent process and obtained informed written consent from
each patient in accordance with their respective institutional review boards.
A second independent (Chinese) cohort consisted of patients of the Sun Yat-
sen University Cancer Center, the West China Hospital in Chengdu, China,
and Xijing Hospital. Those who presented with lung adenocarcinoma, liver
hepatocellular carcinoma, breast adenocarcinoma, and colorectal adeno-
carcinoma, including metastatic disease, were selected and enrolled in this

study. Patient characteristics are also summarized in SI Appendix, Tables S1
and S3. This project was approved by the IRB of the Sun Yat-sen University
Cancer Center, West China Hospital, and Xijing Hospital. Informed consent
was obtained from all patients. Tumor and normal tissues were obtained as
clinically indicated for patient care and were retained for this study with
patients’ informed consent.

Information on data sources, statistical analyses, probe design, bis-DNA
capture, sequencing and data analysis, DNA extraction, cell culture, colony
formation assays, and tumor xenografts is provided in SI Appendix.
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