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ABSTRACT OF THE DISSERTATION

Prediction of Thermal and Electrical Transport in Nanostructured Materials for Energy
Conversion Applications

by

Seyed Aria Hosseini

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, June 2021
Dr. Peter Alexander Greaney, Chairperson

Thermoelectrics (TE) are a class of materials that convert heat directly into elec-

tricity. If made sufficiently efficient and inexpensive, these materials could be used to

recapture low-grade waste heat from the industrial process as useful electrical energy. The

potential energy savings are vast. Recent studies by Lawrence Livermore National Labora-

tory have reported that more than 68% of U.S. energy consumption escapes as waste heat [1]

while recuperating only 10% of heat lost into electricity can improve fuel energy efficiency

by 20% [2]. This research presented here pursues strategies to make energy harvesting more

efficient by using nanoengineering to improve the energy performance of TEs. Three sig-

nificant theoretical insights are developed that together create a new design paradigm for

engineering both thermal and electrical properties of TEs. The first strategy is to enhance

the TE power factor through selectively filtering low-energy electrons. A publicly available

python design platform called thermoelectric.py with innovative mathematical approaches

to accurately and efficiently compute, from first principles, the strength, and energy depen-

dence of electron scattering from nanoscale pores and particles with different geometries

vi



is developed. The second strategy is the design of the nanoscale morphology of porous

TEs to detriment the lattice thermal conductivity through phonon coherent effects. An

analytical framework is laid out to model heat current anticorrelation (HCAC) in materials

containing specific porous topologies. The model predicts that HCAC leads to an extreme

reduction in thermal conductivity of up to 80% compared to structures in which the anti-

correlation effect is not observed. The third strategy is a large-scale screening of TE alloys

containing nanoscale porosity to find the minimum thermal conductivity. A general model

is developed to predict lattice thermal conductivity of dielectrics containing nanoscale to

macroscale porosity. The model is robust in providing a good approximation of the results

from full Boltzmann transport (BTE) simulations of lattice thermal conductivity for a wide

range of pores shapes, sizes, and spacings that span both the diffusive and ballistic regimes.

This provides a simple yet accurate estimation of thermal transport in nanostructures that

can be used to rapidly screen or design materials for a particular thermal task. As such

this work provides an important tool to facilitate the design and discovery of materials for

thermal-related applications, without explicitly solving the BTE.
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Chapter 1

Introduction

Thermoelectrics (TEs) are materials that convert temperature differences directly

into electrical power.1 These materials are currently used in fairly niche applications that

require reliability and small footprints, such as providing the power for deep space probes,

and the cooling for compact refrigerators. However, they have the potential to transform

the way that we use and recover heat if TEs can be created with sufficient efficiency,

using materials that are inexpensive, and environmentally benign. TE energy efficiency

is described by figure of merit, ZT = σs2/κ, where σ, S and κ are electrical conductivity,

Seebeck coefficient, and thermal conductivity, respectively. TE performance requires having

an optimal balance of several electrical properties in conjunction with very poor thermal

conductivity.

This research is motivated by making global energy use more efficient by improving

the performance of TEs so that their use to recapture waste heat from industrial processes

becomes cost effective. The scope for energy savings from recapturing low-grade waste heat
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is large. A recent study from Lawrence Livermore National Laboratory has reported that

more than 68% of U.S. energy consumption escaped as waste heat [1]. In some industries this

ratio is much higher, for example the 80% of the energy loss in the raw mill process of cement

production is lost as heat, a process that accounts for almost 2% of the electricity produced

worldwide [4]. Large energy savings are also available in the transportation sector. Use of

TEs saves up to 4.75% of fuel economy efficiency in modern vehicles where still up to two

third of combusted fuel energy waste [5]. Other studies have shown that recuperating only

10% of heat lost into electricity can improve fuel energy efficiency by 20% [2]. Recovering

heat in these applications requires compact power generation units that can conform the hot

components and exhaust streams of existing industrial infrastructure. This is where TEs

offer a particular advantage. TEs are compact and can be made to integrate with existing

technologies. They also have no moving parts, no working fluids, and so are considerably

more reliable [6]. The compactness also makes TEs attractive to provide the compact

power supplies for distributed wirelessly networked sensors that monitor industry 4.0 process

manufacturing [7]. Unfortunately, TEs have lower energy conversion efficiency (less than

10%) than mechanical heat engines such as Stirling and Rankine cycles with energy efficiency

near to 30% [8]. However, theoretical predictions suggested that engineering interfaces can

hugely enhance the efficiency of TEs [9, 10, 11].

The work presented here has generated theoretical insights in three aspects of TEs

that each reveals new strategies for the design TEs for energy harvesting applications. My

work has also developed new computational tools for the optimization of TEs’ performance

using these strategies.
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The first strategy is the design of nanoscale morphology of porous TEs to reduce

thermal conductivity through the ”Heat Current AntiCorrelation” (HCAC) mechanism.

The central strategy is to make use of the anticorrelation between an incident and reflected

paths of phonons that are scattered from pore surfaces so that the outgoing phonon undoes

the heat current from the incidence phonon. Consequently, the effective mean free path of

phonons is much smaller than the spacing between the scattering centers, a phenomenon

we refer to as ”supersuppression”. The model predicts an extra reduction in thermal con-

ductivity of up to 80% compared to structures in which HCAC is not observed. We showed

that to get the maximum reduction, large pore with short neck geometry is needed. In addi-

tion, the specular scattering demonstrates stronger HCAC effect and therefore low surface

roughness to increase specular scattering is favorable. The model was validated against a

set of molecular dynamics simulations for Si for which we were able to observe HCAC and

obtain extreme reduction in thermal conductivity of about one order of magnitude for only

3% porosity.

The second strategy is large-scale screening of TE alloys containing nanoscale

porosity to find the lowest thermal conductivity. High-frequency phonons are scattered

through alloying and low-frequency phonons by pores. A model is developed to predict

the thermal conductivity of dielectrics containing nanoscale to macroscale porosity. The

model is based on the characteristic length of pores and characteristic MFP of the bulk

materials. We have provided a relatively complete database for the characteristic length

of pores with different shapes and porosities and characteristic MFP of a wide sweep of

dielectrics that are commonly used as TE materials. The model is robust in providing an
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excellent approximation for a wide range of pores shapes, sizes, and spacings that span

both the diffusive and ballistic regimes. This provides a simple yet accurate estimation of

thermal transport in nanostructures that can be used to rapidly screen or design materials

for a particular thermal task. As such this work provides an important tool to facilitate

the design and discovery of materials for thermal-related applications, without explicitly

solving the BTE.

The third strategy is to mitigate the effect of porosity on electrical properties by

filtering low-energy electrons. This is complementary to the first two strategies since the

enhancement in ZT by suppressing the thermal conductivity is partially canceled by the

reduction in electrical conductivity. I have created a python design platform called ther-

moelectric.py to accurately and efficiently compute the strength, and energy dependence of

electron scattering from nanoscale pores with different shapes, sizes, and spacings is devel-

oped. Thermoelectric.py is now publicly available as an open-source tool to enable materials

engineers to find the shape and size of the optimal pores and the carrier concentrating win-

dow in which ZT is most favorable. This is an important step in designing TEs since the

optimal ZT in monolithic crystals and nanoporous structures do not take place at the same

carrier concentration.
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Chapter 2

Background and Mathematical

Derivations

2.1 Introduction

In this chapter, I present the mathematical models I have developed during my

studies. In section 2.2, energy-dependent electron filtering in materials containing additive

nanoparticles/ porosity is described. This model is validated against a set of experiments

done with Mangolini’s group at UC Riverside. In their experiments, a fine distribution

of SiC dispersoids is sintered in bulk Si TEs. The model is in good agreement with the

experiments. This method is used in next chapters to study the effect of nanopores on TE

power factor and ZT in Si and Si0.8Ge0.2 dielectrics. In section 2.3, an analytical model

of anticorrelation (AC) heat flux phenomenon in porous dielectrics is derived. In addition

to this generic model, a ray tracing Monte Carlo method to model this phenomenon and
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molecular dynamics (MD) algorithms to observe this behavior in materials with additive

pores are described. This model is used in next chapters to study AC heat flux in Si with

porosity. In section 2.5, a new reduced-order model that can be used to quickly assist in the

design of dispersoids tailored to semiconducting alloys is developed and validated against

a set of Boltzmann transport simulations. This model is used in next chapters to compute

thermal conductivity of dielectrics in group IV and group IIIV containing nanoscale pores

2.2 Model Energy Dependent Electron Filtering in Nano-

engineered Materials

The imperative for reducing global use of energy from fossil fuels is incontrovert-

ible, and humanity is faced with the afflictive task of reducing its consumption of hydro-

carbon deposits while the energy demand continues to increase as the world becomes more

industrialized. The societal and economic hurdles to reducing energy use are rendered less

painful by using energy more efficiently. Towards this end, realizing good thermoelectric

(TE) performance in bulk materials that are abundant, inexpensive, and environmentally

benign is a holy grail of renewable energy technologies and has the potential to transform

our use, and reuse, of energy.

The design of materials for efficient thermoelectric energy conversion is a far-from-

trivial task that requires careful optimization of several design parameters, such as doping

level, charge carrier concentration, and thermal conductivity. Thermal to electric power con-

version efficiency is described by the dimensionless figure of merit, ZT = (σS2)/(κe +κl)T ,

where κe is the electrical contribution to the thermal conductivity, κl is lattice thermal
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conductivity, σ is the electrical conductivity and S is the Seebeck coefficient (thermopower)

and T is the temperature. For a given material, it is challenging to decouple the transport

terms independently. For instance, doping can increase electrical conductivity, decrease

thermal conductivity via electron-impurity scattering, but decrease the Seebeck coefficient.

Much of the research on thermoelectrics has focused on (a) the search for materials with

inherently low thermal conductivity, such as skutterudites and chalcogenides [12], and/or

(b) the control of nanoscale features to hinder thermal transport by phonons without af-

fecting electronic transport properties [13]. While promising, these approaches rely either

on materials that can be rare and expensive, limiting their potential for large scale terres-

trial applications, or on the control of nanoscale features such as diameter and length of

nanowires, which also poses synthetic difficulties for large scale implementation. Here we

present a theoretical model to elucidate the use of nanoscale additives for the improvement

of thermoelectric performance in common semiconductor materials such as silicon. The

model strongly indicates that at least part of the improvement in thermoelectric perfor-

mance observed experimentally originates from the mechanism of electron energy filtering

– an approach to enhancing a material’s thermopower by selectively scattering low energy

electrons to recuperate the damage to the electrical properties – and provides a theoretical

framework for guiding the further experimental synthesis of these materials. Bulk silicon is

not an efficient thermoelectric material due to its high thermal conductivity [14]; however,

it provides an excellent platform for studying the role of design parameters on transport

properties, since its bulk properties are extremely well characterized. This study is partially

motivated by our recent findings suggesting that oxide inclusion, spontaneously nucleated
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during the sintering of silicon nanoparticles, can be effective at improving thermoelectric

power conversion [15]. While the mechanism is attractive, this synthesis route is problem-

atic since the thermodynamically-driven nucleation of oxide inclusions is difficult to control,

meaning that inclusions size and density are not easily and independently tunable. Here

we use silicon carbide nanoparticles as an additive that is mechanically mixed via ball

milling with silicon feedstock powder. The addition of even a minor quantity of silicon car-

bide nanoparticles (5% by volume) increases the overall performance significantly. Careful

transport measurements, coupled with detailed modeling of the electronic transport prop-

erties, unequivocally confirm that energy-selective electron scattering is responsible for the

performance enhancement. The energy-selective scattering increases the Seebeck coefficient

and the overall power factor (PF), defined as σS2. Our study suggests that carefully de-

signed nanoinclusions can enable one to increase doping concentration without the usual

decrease in the Seebeck coefficient. As such, the approach overcomes long-standing intrinsic

constraints that have limited the power conversion efficiency of thermoelectric materials.

Model Transport Coefficients in Bulk Thermoelectrics

The electrical conductivity and thermopower of a population of independent charge

carriers can be derived from the Boltzmann transport equation by integrating the contribu-

tion from all carrier states. In an isotropic system where the states can be enumerated by

their energy, and using the single relaxation time approximation for the collision operator,

these can be written as integrals over the carrier energy E, so that σ, S, and κe are given

by [16]
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σ =
−1

3
e2

∫
χ(E, T )τ(E, T )dE =

−1

3
e2∆0, (2.1)

S =
−1

eT

∫
γ(E, T )τ(E, T )dE∫
χ(E, T )τ(E, T )dE

=
−1

eT
(∆1 − Ef ), (2.2)

κe =
−1

3T
e2

(∫
ζ(E, T )τ(E, T )dE −

(
∫
γ(E, T )τ(E, T )dE)2∫
χ(E, T )τ(E, T )dE

)
=
−1

3T
∆0(∆2 −∆2

1). (2.3)

Here the function χ(E, T ) = ν2(E)D(E)
df(E,Ef , T )

dE
, lumps together the materials density

of carrier states, D(E), and group velocity, ν(E), with the energy derivative of the Fermi-

Dirac occupancy, f(E,Ef , T ), where Ef is the Fermi level. The functions γ(E, T ) = (E −

Ef )χ(E, T ) and ζ(E, T ) = (E − Ef )2χ(E, T ). Equations 2.1, 2.2 and 2.3 also express the

relationship between the transport properties and ∆n, the moments of the distribution of

conductivity over carriers with different energy, defined as

∆n =


∫
χτdE n = 0

1
∆0

∫
EnχτdE n 6= 0

(2.4)

The Seebeck coefficient from equation 2.2 obtains its largest magnitude by maximizing the

asymmetry of product Dτν2 about the Fermi level to move its center of current, ∆1, away

from the Fermi level. In bulk semiconductors, the relaxation time, τ , from impurities and

phonons is inversely proportional to the electronic density of states, D(E) [17], with a weak

dependency on carrier energy and a prefactor that appears in the numerator and denom-

inator of equation 2.2. This makes the Seebeck coefficient quite insensitive to the overall

magnitude of electron-phonon scattering and leaves ν(E) as the only property that impacts

Seebeck coefficient. As a result, most approaches to optimizing power factor, σS2, focus on

engineering the band structure and Fermi level to tune the charge carriers concentration
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Figure 2.1: (a) Schematic picture of the energy barrier ∆Ec for filtering conduction band
electrons in Si due to the conduction band offset of embedded SiC nanoparticles. Panel
(b) illustrates the electron energy filtering concept. The upper plot shows the energy de-
pendence of the electron scattering time, including an additional filtering scattering process
that is felt by all electrons with energy less than Uo. The lower plots show the kernels χ and
γ, normalized, and plotted at 500 K (middle) and 1200 K (bottom). The additional electron
filtering scattering in the shaded region causes a larger reduction of the τ weighted integral
of χ than γ. Panel (c) shows the temperature dependence of the experimentally measured
carrier concentration (circles) and its smoothed interpolation (solid lines) for the P-doped
silicon with 0% and 5% volume fraction of SiC dispersoids. The temperature dependence of
the Fermi level computed to be self-consistent with the experimental carrier concentration
is plotted in panel (d). The carrier concentration is lower in the material with 5% volume
fraction of SiC dispersoids.

and effective mass to align the Fermi energy to where the density of states is changing most

rapidly [18]. Unfortunately, these parameters produce countervailing responses in S and σ,

so the overall scope for enhancing the power factor is limited.

An alternative strategy for generating asymmetry in Dτν2 is to add extrinsic

scattering processes (a task that is easier than engineering intrinsic properties) to break the

reciprocity of D and τ . Introducing any new scattering mechanism shortens the electron
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relaxation time and hence reduces σ. For the Seebeck coefficient, however, τ appears in both

numerator and denominator of equation 2.2, consequently both numerator and denominator

are decreased by the additional scattering mechanism. The central concept in electron

energy filtering is to introduce a scattering mechanism that can reduce the denominator

of S faster than the numerator so that the overall magnitude of the Seebeck coefficient is

increased.

The electron energy filtering concept is illustrated graphically in figure 2.1b, which

plots normalized χ and γ functions for the conduction band of silicon on the same axes as τ ,

the electron lifetime. For n-doped semiconductors, χ is negative for any E in the conduction

band, and thus γ is positive for electrons with energy lower than Ef . The high energy tails

in χ and γ look functionally similar, and imposing electron scattering in the high energy

region has a similar scaling effect on the magnitude of the integrals in the numerator and

denominator of equation 2.2. At low energies around and below the Fermi energy, χ and

γ are functionally very different. In this region, γ contributes little or negatively to its

integrated magnitude, whereas χ contributes strongly to its integrated magnitude. Hence

introducing processes for selectively scattering electrons with energies in the blue shaded

region of figure 2.1b will decrease the denominator of equation 2.2 faster than the numerator,

yielding an increase in S – and can even increase the power factor.

The addition of SiC dispersoids to Si provides additional electron and phonon

scattering centers that could enable electron filtering; however, since phosphorous is not ex-

pected to dissolve in SiC, the presence of the nanoinclusions effectively reduces the overall

carrier concentration. To discriminate the effects of changes in carrier concentration from
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electron filtering we require a self-consistent and quantitatively accurate model of the elec-

trical transport properties. To this end we have developed a semiclassical transport model

that computed equations 2.1 and 2.2 using the ab initio computed band structure of pure

Si in combination with the experimentally measured carrier concentration.

Model Intrinsic Properties

The terms D(E), and ν(E), in functions χ and γ in equations 2.1–2.4 were derived

from the conduction band of Si computed with density functional theory (DFT) using

the Vienna Ab initio Simulation Package (VASP) [19, 20, 21, 22]. The calculations were

performed using the generalized gradient approximation (GGA) with the Perdew-Burke-

Ernzerhof exchange correlation functional (PBE) [23]. Ion cores were represented with

projector augmented wave (PAW) pseudopotentials [24, 25], the Kohn-Sham wave functions

constructed using a planewave basis set with a 700 eV energy cutoff, and a 12 × 12 × 12

Monkhorst-Pack k-point grid was used to sample the Brillouin zone [26]. The Si primitive

cell and atomic basis were relaxed to minimize forces on the atoms to better than 10-6

eV/Å. The electronic band structure used to compute D(E) and ν(E) were generated

from a 45 × 45 × 45 k-point grid. These intrinsic materials properties were treated as

temperature independent. The group velocity was obtained from the conduction band

curvature, ν = 1/h̄|∇kE| along the 〈100〉 directions on the Γ to X Brillouin zone path.

Model Fermi Level

The final term that appears in the distributions χ and γ is the Fermi energy.

This is not an intrinsic property, Ef is strongly dependent on the carrier concentration,
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Ni, and experimentally this is found to vary non-monotonically with temperature as the

solubility of the phosphorus dopant changes. Rather than model the physics of the tem-

perature dependence of carrier concentration (which is unrelated to electron transport),

we use the empirically measured carrier concentration as an input and then compute the

Fermi level that gives the same carrier population in the DFT computed conduction band.

This circumvents the problem that DFT underestimates the bandgap as the Fermi level is

computed self-consistently from the conduction band using the conduction band edge to set

the reference frame. In this method Joyce and Dixon approximation of Ef for degenerate

semiconductors,
Ef−Ec
kB

' ln(NiNc ) + 1/
√

(8)(NiNc ) − (3/16 −
√

3/9)(NiNc )2 [27], is used as the

initial guess. Here Nc is the effective density of states in the conduction band. For Si, the

effective density of states in the conduction band is defined as Nc = 5.3×1021×T 3/2 1/cm3

[28]. The Ef iterates to meet the relation between charge density and density of state

(n =
∫∞
Ec
D(E)f(E)dE). The experimental measurements of carrier concentration are plot-

ted in figure 2.1c. This shows that the reduction in carrier concentration from the parent

Si to the material with 5% SiC inclusions is larger than the 5% reduction dopant level due

to the presence of the undoped SiC nanoparticles. This is due to unavoidable variation in

doping level introduced during the mechanical mixing of the silicon feedstock powder and

the red phosphorous. The experimental measurements are noisy and so for the transport

model, the carrier concentration was represented with the continuous smoothing function fit

through the experimental data — the lines in figure 2.1(c). The Fermi levels computed for

these carrier concentrations are plotted in figure 2.1(d) where it can be seen that, although

the addition of SiC nanoinclusions lowers Ef , at all temperatures Ef is in the conduction
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band. This implies that there is a range of electron energies for which γ is positive. The

addition of a scattering mechanism for low energy electrons is thus expected to lead to an

increase in the magnitude of S.

Model Lifetime

Semiconductor TEs are generally doped to beyond their saturation level (super-

saturate solutions). In these materials, strongly screened Columbic force induced by ionized

impurities is the main source of scattering. The transition rate between initial (Ei) and

final (Ef ) energy states has SR(Ei, Ef ) =
2πNie

4L4
D

(4πεεo)2h̄Ω
δ(Ef − Ei), where Lc, Ω, ε, and εo are

Debye length, volume, relative and vacuum permittivity, respectively [29]. In this case, the

electron lifetime is defined as [29]

τim(E) =
h̄

πNi

(
e2L2

D
4πεεo

)2
D(E)

. (2.5)

We use ε = 11.7 to model permittivity in Si [28]. For the strongly screened Columbic

potential LD is small so that 1/(L4
D) in equation 2.5 is pivotal. The Debye length has

generalized form of [30]

LD =
e2Nc

4πεεokBT

[
F− 1

2
(η) +

15αkBT

4
F 1

2
(η)

]
, (2.6)

where Nc = 2
(
mckBT

2πh̄2

) 3
2

is the effective density of states in the conduction band and mc

is the conduction band effective mass. While the electron lifetime in equation 2.5 serves

reasonably well for many semiconductors, one should note two shortcomings of the Born

approximation failures for slow moving electrons in Coulomb potential and deficiency of
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simply computing scattering from a single impurity and then multiplying it by number

of impurities in capturing interference effects occur as electron wave propagate through

random distribution of impurities in deriving equation 2.5. We modeled the conduction

band effective mass variation with temperature using mc(T ) = m∗c(1 + 5αkBT ) [31]. The

term m∗c is equal to 0.23me, where me is free electron rest mass equal to 9.11 × 10−31 kg.

The reciprocal energy, α = 0.5 eV-1 describes the deviation of the conduction band from

parabolic due to the admixture of s-like conduction band states and p-like valence band

states [32]. This model assumes linear dependency on temperature and does not count for

degeneracy in high carrier population. A better model that captures dopant concentration

needs further study. We remark that for moderate and low carrier populations, the electron

charged impurities scattering rate is modeled using Brooks and Herring [29]

τion =
16π
√

2mc(4πεεo)
2

e4Ni

(
ln (1 + β)− β

1+β

)E 3
2 (2.7)

where β =
8mcEL2

D

h̄2 . The second important scattering mechanism specially at high tempera-

ture in nonpolar semiconductors like Si is due to the acoustic phonon deformation potential.

For electron phonon interaction, Ravich defined the lifetime as [33]

τp(E) =
ρν2h̄

πD2
AkBTD(E)

([
1− αE

1 + 2αE

(
1− Dv

DA

)]2

− 8

3

αE(1 + αE)

(1 + 2αE)2

Dv

DA

)−1

(2.8)

Here ρ and νs are the crystal’s mass density and speed of sound, respectively, and Dv and DA

are electron and hole deformation potentials and equal to 2.94 eV and 9.5 eV, respectively

[32]. We use ρ = 2329 kg/m3 and νs =
√

(B/ρ), where B is bulk module defined as B = 98

GPA [28].This equation accounts for both absorption and emission of phonons. Note that
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the electron lifetime is strongly dominated by ion scattering and has weak dependency on

phonon scattering. The other scattering terms of electron-electron and electron intervalley

scattering has negligible importance in determining the electron lifetime and are excluded

in calculations without loss of accuracy.

2.2.1 Model Transport in Nanocomposite Thermoelectrics

Electron transport in nanocomposites with non-ionized particles is distinguished

from bulk films through (a) changes in carrier populations and therefore the Fermi level

(b) extra extrinsic scattering term of electron-nanoparticle, τnp, (c) stronger electron grain

boundary scattering rate, τgb, because of the finer grain boundary length. The population

in nanocomposite Si using self-consistent method described in previous section. To compute

electron lifetime from the two extra scattering terms of nanoparticles and grains, we used

Fermi’s golden rule to relates the transmission probability from initial energy state to the

distribution of final energy states for a given time invariant potentials. The final form of

lifetime for energy conservative scattering in Born approximation is [34]

τ−1(s) =
N

(2π)2h̄

∫
E(k′)=0

Mkk′Mkk′

∇E(k′)
(1− cos θ)dS(k′) (2.9)

Here, Mkk′ is the matrix element operator shows the coupling strength between

initial and final wavefunctions and the number of ways the transmission may happen, N is

the number density of scattering source and θ is the angel between initial and final wave

vectors. For the Bloch waves, Mkk′ is defined as Mkk′ =
∫
ei(k

′−k).rU(r)dr [35].

In equation 2.9, S(k′) represents electron isoenergic surfaces. For semiconductors

with degenerate transverse modes, the isoenergic surfaces near the conduction valley often
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describe as E(k) = h̄2[( (kl−kol)2

2m∗l
+ (kt−kot)2

m∗t
], where E(k), ko = (kol, kot, kot), m

∗
l , m

∗
t are

energy level from conduction band edge, conduction band minimal wavevector, longitudinal

and transverse effective masses, respectively. For silicon, m∗l = 0.98mo, m
∗
t = 0.19mo where

mo is free electron rest mass, and ko = 2π/a(0, 0, 0.85), where a is Si lattice parameter equal

to 0.543 nm [28].

Model Electron Lifetime by Nanoparticles

The band alignment at the interface of nanoparticles presents a barrier to electron

transport equal to the band offset of conduction bands in bulk silicon and the inclusions (Uo).

For spherical nanoparticles, the scattering potential term, given as, U(r) = UoΠ(ro − r),

where ro is the nanoparticle’s radius and Π(r) is a dimensionless boxcar function equal to

unit inside and zero outside of the particles. For the spherical symmetric potential, Mkk′

only depends on q = ∆Kkk′ and is defined as [36]

Mkk′ =
4πUo
q2

(
1

q
sin(roq)− ro cos(roq)

)
(2.10)

At equilibrium, Fermi energy level of nanoparticles and parent material aligned

leaving the band offset between SiC nanoparticles and silicon, Uo, equal to the difference

between Fermi energy level and conduction band edge of the SiC. For intrinsic semicon-

ductors Fermi energy level is located at the middle of band gap so that Uo = 1
2Eg.

The SiC band gap varies from 2.36 eV at 300 K down to 2.036 eV at 1200 K following

(Eg = 2.39 − 6.0 × 10−4 × T 2

T+1200) [28]. Such a variation has negligible effect on scat-

tering rate so that we used temperature independent value of Eg=2.19 eV (and therefore

Uo = 1.095 eV) to model electron-nanoparticle scattering rate. Note that N is equation 2.9,
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is the number density of nanoparticles and is equal to N = 3φ
4πr3

o
, where φ is the volumetric

fraction of nanoparticle. Equations 2.9 and 2.10 are used to compute the electron lifetime

of nanoparticles.

Model Electron Lifetime by Grain Boundaries

Along with the change in dopant concentration, the addition of 1% and 5% of

SiC nanoparticles results in a 22% and 40% reduction in the grain size, respectively. It

is known that grain boundaries can cause an electron filtering effect, particularly if the

boundaries include segregated species such as oxygen that provide centers for trapping

charge carriers [37]. However, this effect only becomes significant in much smaller grain

sizes. For our Si/SiC nanocomposites, even with a 40% size reduction, the grains are still

an order of magnitude larger than average electron mean free path in P-doped Si (which is

only a few nanometers only at room temperature for carrier concentrations in excess of 1020

1/cm3) [13]. Furthermore, we have computed the rate of electron scattering from grains

(this is of special importance in next section where we evaluate the scope of enhancement

in power factor in Si nanocomposites) using the approach by Minnich et al in Ref. [38] in

which they have modeled grain boundaries as decomposition of many local regions, each

interacts independently with charge carriers and coherently scatters electron waves. The

model potential for grain boundaries in their work described as

UGB =


Uge

−|z|
zo r < rGB

0 r > rGB

(2.11)
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In this equation, z is the direction normal to the grain with z = 0 at the center of the grain

boundary, rGB is a constant on the order of the screening length, and zo is a constant related

to the size of the depletion region. Ug in this model is proposed as, Ug =
e2N2

t
8εεoNc

, where ε

and εo are relative and vacuum permittivity, respectively, Nc is the doping concentration,

and Nt is the area density of traps. The matrix element of this potential is

Mkk′ = 4πUg

[
zo

1 + (qzzo)2

]
r2
o

[
J1(qrro)

qrro

]
(2.12)

where J1(qrro) is the first-order Bessel function of the first kind, q = k − k′, qr and qz are

the r and z component of q, respectively. Equations 2.9 and 4.16 are used to compute τgb.

Unfortunately, there is a limit information about the trap area density (Nt) and the exact

value of zo and ro. Nevertheless, we know that depletion regime and the screening length

are in the order of few nm. We used (high value of) Nt = 1013 1
cm2 for trap density of doped

silicon, zo = 1 nm and ro = 1 nm [39].

Modified Electron Density of State in Nanocomposites

The nanoparticles will not change the concentration of carrier concentration locally

in the remaining Si (nor the Fermi energy), but it will change the volume-averaged carrier

concentration due to the reduction in the volume-averaged density of states. This will

impact the conductivity, and thus the effective electrical conductivity of nanocomposite

materials is modeled as σeff = (1− φ)σ. This change does not affect the Seebeck coefficient

since the changes in the density of state cancels out for the denominator and numerator

of S equation. We assumed that nanoparticles do not change the band structure of the

Si. We remark that in Si with narrow nanoparticle spacing, confinement effect leads to
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flattening of the conduction band [40, 41] and increases the effective mass [40], making

transport coefficients different from the bulk Si; However, considering low volume fraction

of SiC particles (φ = 0.05) within which the inclusions are far apart, SiC nanoinclusions can

be considered as perturbations encountered by the electronic wave functions of bulk Si.

2.2.2 Maximum Theoretical Power Factor Enhancement

The approach of electron energy filtering is to shift the transport distribution’s

center of mass by tuning τ – in essence blocking or filtering low energy electrons so that

they do not contribute to transport. The concept has the practical advantage that it is

easier to add extrinsic sources of scattering to a material than it is to tune the material’s

band structure. However, typically one can only add sources of electrical scattering which

means that, as with tuning χ, enhancement of S, is obtained at the expense of σ. This can

still yield an improvement in ZT providing the power factor is increased. When tuning the

parameters in χ it is found that the trade-off between S and σ leads to a narrow window of

optimal conditions that maximize the power factor. However, as we demonstrate below, no

such trade-off exists when tuning τ . Electron energy filtering can always be made to increase

S2 more quickly than σ, enabling the power factor, in theory, to be increased indefinitely.

Cutoff Model – Ideal Filtering Effect

To better understand the enhancement in power factor that can be obtained with

the energy selective filtering we can consider the extreme case where all the electrons with

energy lower than U0 are completely blocked. For this perfect filtering case it is useful to

evaluate the fraction of the total transport integrals in χ and γ as a function of energy
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above the conduction band edge. We call these X(E) and Γ(E) and define them as

X(E) =

∫ E
0 dE′χ(E′)τp(E

′)∫∞
0 dE′χ(E′)τp(E′)

(2.13)

Γ(E) =

∫ E
0 dE′γ(E′)τp(E

′)∫∞
0 dE′γ(E′)τp(E′)

(2.14)

The function X(E) is always positive, while Γ(E) is negative for E < EA, where EA is

the energy level at which
∫ Ef

0 dEγ(E) = −
∫ EA
Ef

dEγ(E). The function Γ(E) is always less

than X(E) and converges to 1 more slowly than X(E). The integral fractions describe how

much an energy range in the conduction band contributes to transport. They can be used

to define, ασ(U0), the ratio of a materials’ electrical conductivity with and without energy

filtering. Similarly, we define αS(U0) and αPF (U0)

ασ(U0) = 1−X(U0) (2.15)

αS(U0) =
1− Γ(U0)

1−X(U0)
(2.16)

αPF (U0) =
(1− Γ(U0))2

1−X(U0)
(2.17)

The power factor enhancement, αPF (U0), always rises above unity for small values

of U0, but falls back below one when Γ(U0) = 1 −
√

(1 − X(U0). The optimum filtering

threshold for power factor enhancement, U∗PF , satisfies the condition

U∗PF = Ef −
eTS

2

(
1− Γ(U∗PF )

1−X(U∗PF )

)
= Ef −

eTS

2
αS(U∗PF ) (2.18)

where S is the Seebeck coefficient in bulk material. This implies that Ef < U∗PF < EA.

Figure 2.2(a) shows the variation of power factor with carrier concentration for ideal elec-

tron filtering in Si as a function of energy filtering cutoff, U0 at 500 K. This suggests that
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Figure 2.2: Plot (a) shows the change in power factor of P-doped Si as a function of the
electron filtering threshold, Uo, and filter scattering time τo at 300 K (Gold), 500 K (blue),
and 1300 K (green).There is no observed dependency between optimal values of Uo, and
τo. Plot (b) the optimal filtering threshold (solid red line) as a function of temperature for
the parent Si and (solid blue line) the corresponding theoretical maximum power factor if
filtering is perfect (i.e., τo = 0).

theoretically there is considerable room for further improvement to the power factor, partic-

ularly at low temperatures. More surprising is how the maximum obtainable power factor

changes with carrier concentration as plotted in figure 2.2(b) – it shows that if one can

tune the energy filtering threshold then one should adopt a new paradigm for the design

and optimization of thermoelectric materials. In the traditional picture of a n-type ther-

moelectric, the material’s power factor is maximized at carrier concentrations that place

the Fermi energy at the conduction band edge. However, if one applies perfect energy fil-

tering one can obtain greatly enhanced power factor by doping the material so as to push

the Fermi energy deeper into the conduction band — even to doping levels where thermal

conductivity is dominated by electron transport. This presents a new strategy for designing

thermoelectric which is freed from the constraint of optimizing the carrier concentration.
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Generalized Cutoff Model

While the perfect cutoff model suggests an extremely large enhancement in power

factor, it is not feasible to completely block low energy electrons, here, we instead take a

phenomenological approach. Regardless of the mechanism of scattering, we assume that

the scattering rate from inclusions is largest for low energy electrons and weaker for high

energy electrons (consistent with Fermi’s golden model of nanoparticles scattering rate).

The reverse trend is true for ion scattering and so we assume that scattering of low energy

electrons is dominated by scattering from inclusions but that there can exist a crossover en-

ergy Uo where the scattering of electrons with energy above this threshold is predominantly

from phonons. The filtering threshold Uo is related to the conduction band offset, ∆EC .

The simplest phenomenological model of inclusion scattering is to model the additional rate

of scattering as a step function so that electrons with energy E < Uo are subjected to an

additional scattering process with characteristic lifetime τo, represented mathematically as

τ−1
inc = τ−1

o ϑ(Uo − E) (2.19)

where ϑ is the Heaviside function. Matthiessen’s rule is used to sum the rate of this

extrinsic scattering term with electron-impurity and electron-phonon scattering giving the

total electron scattering rate

τ−1 = τ−1
im + τ−1

p + τ−1
inc (2.20)

Using this scattering function in the transport model we can examine the model’s prediction

for transport properties of Si containing 5% volume fraction of SiC nanoparticles. Figure

2.2c shows the predicted fractional increase in power factor for a material with the carrier
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concentration of n = 1020 1/cm3, if we could independently control Uo and τo. This provides

several important insights. The first is that the optimal filtering threshold, Uo, for enhancing

power factor is independent of τo and vice versa. This is a fortuitous result as it provides

post hoc justification for the phenomenological filtering model — although we have no

mechanistic rationale for our choice of the additional scattering time τo, we do not need

to know τo to think about Uo and how to optimize it. Figure 2.2(c) shows that at room

temperature electron energy filtering has the potential to produce a very large enhancement

of the power factor, but that the scope for enhancing the power factor diminishes at higher

temperatures. Figure 2.2(c) also shows that if the filtering threshold is not optimal electron

filtering can diminish the power factor rather than enhance it. Shorter τo is always more

beneficial for power factor enhancement, but the optimal Uo depends on temperature.

2.3 Model Anticorrelated Heat Current in Materials Con-

taining Nanoscale Porosity

The advancements in nanoengineering methods enabled extreme reduction in ther-

mal conductivity of Si-based nanostructures including nanowires [42, 42], thin films [43, 44],

nanomesh [45, 46], superlattices [47, 48, 49] and Si-based nanoporous alloys [50, 51, 52]. The

additional phonon scattering at the surfaces of these nano defects blocks phonons with long

mean free path and thereby detriments the lattice thermal conductivity. While phonon-gas

model suffices to capture the detail of particle-like behavior of phonons in nanostructures,

the phonon coherent transport is missed in this scheme. In a recent work, we have stud-

ied topological features of Si-based structures containing nanoscale porosity and identified
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geometry-dependent anticorrelated (AC) heat current phenomenon which causes an addi-

tional reduction in thermal conductivity, of up to 80% compare to similar porous structures

in which heat current anticorrelation is not observed. The origin of this behavior returns

back to multiple specular reflection of trapped phonons between the pores such that their

contribution to the thermal conductivity is partly undone.

The AC effect is not only remarkable due to its ability to significantly reduce

thermal conductivity, but because it allows unprecedented control over the thermal behavior

of the materials. We have identified the nature and impact of the AC effect in nanoporous Si

and observed it to be a function of pore size/neck and distribution. We have determined that

the AC can be controlled in terms of both the amount and duration of anticorrelated specular

phonon scattering. The pores provide two functions: the periodicity (along the transport

direction) controls the lifetime over which a phonons’ momentum is correlated, and the

packing, determined by pore sizes and necks (perpendicular to transport), controls the

strength of correlated phonon reflections. These functions can be engineered by tuning the

spacing/periodicity between pores along the transport direction, and the pore and neck sizes,

respectively. The AC effects are observed for necks of at least up to ∼ 6 nm suggesting that

the porous structures can be scaled to such technologically feasible pore/neck sizes, making

it easier to be used as a design tool to control thermal conductivity beyond traditional

boundary scattering.

Here, I present an analytical model for AC heat current in materials containing

nanoscale porosity. This model is used to show how different types of phonon scattering

manifest as signatures in the heat current autocorrelation function, we further investigate
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the extent to which other nanostructuring approaches (e.g., inclusions, straight surfaces) can

be designed to scatter phonons specularly, and the nature of scattering at the boundaries (at

low temperatures). Ray tracing Monte Carlo method is used to test how different scattering

behavior that could be occurring at the surfaces of the pores would be manifest in the heat

current autocorrelation (HCACF).

2.4 Analytic Model of Uncorrelated Scattering

To begin, we lay out the theoretical basis for the ray tracing model by establishing

that macroscopic thermal conductivity can be computed from the sum of the autocorrela-

tion functions of the individual phonon modes’ occupancy fluctuations. The Green-Kubo

equation gives the thermal conductivity tensor as the integral of the total heat current

autocorrelation function:

κ =
V

kBT 2

∫ ∞
0

dτ
〈
J(t)

⊗
J(t+ τ)

〉
, (2.21)

where J(t) is the total instantaneous heat flux at time t, in the volume of materials V that

is at thermal equilibrium at temperature T . The autocorrelation function 〈J(t)
⊗

J(t+ τ)〉

is the time-averaged dyadic of the heat fluxes an interval τ apart. The contribution to the

heat current from the mode with wave vector k and polarization p is

Jkp(t) =

(
1

2
+ nkp(t)

)
h̄ωkpνkp

V
, (2.22)

where nkp(t) is the mode’s occupancy at time t. This can be rewritten in terms of the

average flux and the instantaneous excursion from the average:

Jkp(t) = 〈Jkp〉+ (nkp(t)− 〈nkp〉)
h̄ωkpνkp

V
, (2.23)
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Figure 2.3: (a) Example of the random occupancy fluctuations in a phonon mode with
dimensionless frequency ω̃ = 1.0 and mean scattering lifetime θ. (b) Example of a single
occupancy fluctuation in time (top pane) and its autocorrelation (green) and integral (red)
in the bottom pane. (c) the cumulative conductivity distribution over the Green-Kubo
heat flux autocorrelation time (blue) and the cumulative conductivity distribution over the
fluctuation duration (red). The inset plot shows the cumulative conductivity distribution
κ(φ)/κ∞ over the fraction of fluctuations ranked in ascending order of longevity. (d) Cu-
mulative conductivity distribution over fluctuation magnitude. The blue, gold and green
lines are for ω̃ = 0.5, 1.0 and 1.5, respectively (or 〈n〉 = 0.15, 0.51 and 1.1. (e) Schematic
of a phonon wave packet’s trajectory in nanoporouse Si. The wave packet is spawned as
the result of anharmonoic phonon-phonon interactions at location p traveling initially along
direction Ω̂, and in this case is scattered elastically twice from pores before its annihilation
through another phonon-phonon interaction. (f) The top pane shows the contribution to
heat flux in the x direction from the wavepacket in (e) (blue). The bottom pane shows the
corresponding heat flux autocorrelation function and its integral plotted in green and red,
respectively.

where 〈nkp〉 is the Bose-Einstein occupancy

〈nkp〉 =
1

eω̃kp − 1
, (2.24)
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and ω̃kp is the dimensionless mode frequency ω̃kp =
h̄ωkp

kBT
. The total instantaneous heat flux

is then the sum of contributions from all modes,

J(t) =
∑
kp

Jkp(t) =
∑
kp

(nkp(t)− 〈nkp〉)
h̄ωkpνkp

V
. (2.25)

where the mean flux from pairs of modes with opposite k has canceled one another so that

the net flux only depends on the sum of occupancy excursions from the mean. If the occu-

pancy fluctuations in one mode are uncorrelated with the fluctuations in the other modes

then when expanding the product of the sum of modal fluxes, the cross-correlations between

modes will be zero simplifying the total correlation function to the sum of autocorrelation

functions for each mode individually:

〈
J(t)

⊗
J(t+ τ)

〉
=
∑
k′p

∑
kp

〈
Jk′p′(t)

⊗
Jkp(t)

〉
=
∑
kp

〈
Jkp(t)

⊗
Jkp(t+ τ)

〉
(2.26)

This, in turn, depends only on the autocorrelation of the occupancy fluctuations

〈
Jkp(t)

⊗
Jkp(t+ τ)

〉
=

(
h̄ωkp

V

)2

ννkp 〈(nkp(t)− 〈nkp〉) (nkp(t+ τ)− 〈nkp〉)〉 , (2.27)

where the shorthand notation ννkp = (νkp
⊗
νkp) has been used for the tensor product of

the group velocity.

The occupancy n(t) of a phonon mode will be a random stepped function in time

as shown in Fig. 2.3(a) with phonon mode holding a constant excitation for some duration

before anharmonic interactions with other phonon modes lead to scattering and a reset of

the mode’s excitation. This function can be expressed as a sum of boxcar functions that

represent the occupancy during the interval between successive scattering events

n(t) =

∞∑
i=1

niΠti,ti+θi(t), (2.28)
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where Πa,b(t) is the boxcar function (plotted in blue in the top pane of 2.3(b)

Πa,b(t) =


1 for a ≤ t < b

0 otherwise

(2.29)

and ni and θi are the size and duration of the ith occupancy fluctuation, and the

fluctuations abut one another so that θi = ti+1 − ti.

If the probability of the ith occupancy ni and its duration θi are independent

from the fluctuations that proceeded it (as in the figure above), then the occupancy is only

correlated during the intervals between scattering and so the occupancy correlation function

reduces to simply the average of the correlation functions for each excursion with itself

〈(n(t)− 〈n〉) (n(t+ τ)− 〈n〉)〉 =
∞∑
n=0

∫ ∞
0

dθ′Pθ(θ
′)Rn(n− 〈n〉)2A(τ, θ′), (2.30)

where the subscripts have been dropped temporarily for clarity. Here, Rn is the average rate

of scattering events that leave the mode with occupancy n, and Pθ(θ) is the probability that

a fluctuation of occupancy n survives for time θ before scattering given that the average

duration of fluctuations is θ. The term A(τ, θ) is the autocorrelation function of a single

boxcar function

A(τ, θ) =

∫ ∞
0

dt′Πa,a+θ(t
′)Πa,a+θ(t

′ + τ) = θ
(

1− τ

θ

)
H(θ − τ) (2.31)

with H(x) is the Heaviside theta function. The integral of the boxcar’s autocorrelation

function is

C(τ, θ) =

∫ ∞
0

dτ ′A(τ ′, θ) =

(
θτ − τ2

2

)
H(θ − τ) + θ2(1−H(θ − τ)). (2.32)

The upper pane of Fig. 2.3.b shows the boxcar function for a single fluctuation, with the

lower pane showing its autocorrelation function and integral. The integrated ACF converges

29



to

C(∞, θ) =
1

2
θ2. (2.33)

If the scattering processes that lead to the occupation fluctuations are random, then occu-

pation times θ are drawn from the Poisson distribution of waiting times

Pθ(θ) =
1

θ
e−θ/θ. (2.34)

The rate, Rn, of scattering into occupancy n is related to the thermodynamic probability

Pn of finding the mode in its nth state of occupancy by

Rn =
Pn

θ
, (2.35)

where Pn is the probability distribution for the canonical ensemble

Pn = e−nω̃
(

1− e−ω̃
)
. (2.36)

Using Eq. 2.34–2.36 in 2.30 and performing the integral over lifetimes and summing over n

gives:

Performing the averaging over all possible occupancies gives

〈(n(t)− 〈n〉) (n(t+ τ)− 〈n〉)〉 =
1

θ

eω̃

(eω̃ − 1)2

∫ ∞
0

dθ′A(τ, θ)e−θ
′/θ, (2.37)

and averaging over all possible fluctuation durations gives

〈(n(t)− 〈n〉) (n(t+ τ)− 〈n〉)〉 =
eω̃

(eω̃ − 1)2
e−θ

′/θ (2.38)

The cumulative thermal conductivity tensor is then

κ(τ) =
V

kBT 2

∑
kp

(
h̄ωkp

V

)2 eω̃

(eω̃ − 1)2
ννkp

∫ τ

0
dτ ′e−τ

′/θkp , (2.39)
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which after some mathematical manipulation simplifies to

κ(τ) =
∑
kp

(
h̄ωkp

V

d〈nkp〉
dT

)
ννkpθkp

(
1− e−τ/θkp

)
. (2.40)

The first term in parenthesis is the mode’s volumetric specific heat. If the phonon modes

all have the same scattering rate and group velocity and assuming cubic symmetry, the first

element of the thermal conductivity tensor reduces to the well-known result from kinetic

theory:

κxx(∞) =
1

3
Cvνgλ. (2.41)

where Cv, νg and λ are the systems volumetric specific heat, group velocity, and mean

free path. This result shows that in order to understand the HCACF and the reduction in

thermal conductivity we need only consider just the autocorrelation of individual occupancy

fluctuation or phonon wavepackets by themselves, and thus provides the formal theoretical

footing for the ray tracing model that follows. Before moving on to the ray tracing model,

however, we make note of several insights that can be obtained from the analysis above.

The correlation function in Eq. 2.38 decays (and the cumulative conductivity in

Eq. 2.39) exponentially over a correlation time equal to the mean phonon scattering time

θ, so is all modes have the same lifetime the cumulative thermal conductivity distribution

over correlation time τ is

κ(τ)

κ∞
= 1− e−τ/θ. (2.42)

This masks the importance for the transport of heat of long-lived occupancy fluctuations

in the tail of the Poisson distribution of lifetimes. As can be seen from Eq. 2.33, the

contribution that occupancy fluctuations make to the thermal conductivity is proportional
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to their lifetime squared, and so we can compute the cumulative thermal conductivity

distribution over phonon lifetimes as

κ(θ)

κ∞
=

∫ θ
0 dθ

′θ′2Pθ(θ
′)∫∞

0 dθ′θ′2Pθ(θ
′)

= 1− 1

2

(
2 +

θ

θ

(
2 +

θ

θ

))
e−θ/θ. (2.43)

Both Eq. 2.42 and 2.43 are plotted in Fig. 2.3(c) where it can be seen that the short-lived

fluctuations (small θ) contribute very little to the thermal conductivity while the cumulative

conductivity distribution in τ rises rapidly at small correlation times. This illustrates the

conceptual difference between fluctuation duration θ and correlation time τ ; the change

in κ(τ) at correlation time τ includes contributions from all fluctuations with θ > τ . It

is common in heat transport texts to see plots of the cumulative contribution to thermal

conductivity over the distribution of phonon modes’ mean free paths in a crystal κ(λ), and

so we take pains here to point out that the κ(θ) distribution in Fig. 2.3(c) is due to the shot

noise in a mode with average scattering rate θ, it is not from a distribution different θ over

different modes. However, the effect of this noise is significant, with a large contribution

to the total conductivity coming from a small number of phonons that travel ballistically

over distances many times longer than the mean free path before scattering. This point is

further emphasized by computing the cumulative conductivity distribution over the fraction

φ of occupancy fluctuations ranked in ascending order of their longevity,

κ(φ)

κ∞
= φ− (1− φ) ln (1− φ)

(
1− 1

2
ln (1− φ)

)
, (2.44)

as is plotted in Fig. 2.3(d). In fact, more than 50% of the heat transported is carried by just

7% of phonons that survive for more than 2.7 times the average phonon lifetime θ. It can

also be seen that 80% of the heat current comes from fewer than 20% of the phonon mode
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occupancy fluctuations. This matches Pareto’s 80-20 rule that is a signature of Lévy flights,

although in this case, the distribution of flight lengths is not fractal (power-law), and so

this behavior is not a true Lévy flight. The outsized importance of the long-lived phonons is

significant as it implied that ballistic effects for heat transport in nanoscale systems should

become significant at system sizes significantly larger than the phonons’ nominal mean free

path. This observation also has important ramifications for deterministic simulations of the

Boltzmann transport equation (BTE) for phonons, implying that to correctly predict the

heat conduction due to phonon transport in nanostructured material, one must smear the

intrinsic distribution of average phonon lifetimes by the Poisson distribution—a practice

that is often overlooked in frequency-dependent and multi-grey BTE simulations [Jackson,

Giuseppe].

In addition to computing the contribution from different occupancy durations, it is

also insightful to consider the cumulative distribution contribution from different occupancy

κ(n)

κ∞
=

n∑
n′=0

Pn′(n
′ − 〈n〉)2/

∞∑
n′=0

Pn′(n
′ − 〈n〉)2, (2.45)

as plotted in Fig. 2.3(e) with values for ω of 0.5, 1.0, and 1.5 (which corresponds to average

occupancies of 〈n〉 of 0.16, 0.58, and 1.1). It can be seen that because of the (n − 〈n〉)2

dependence on the ACF infrequency multiple phonon excitations of the modes account for a

large fraction of the heat carried, even at temperatures where 〈n〉 ∼ 0.5. This suggests that

scattering processes involving four or more phonons, although rare, will have a significant

impact on the overall thermal conductivity, even at low temperatures.
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2.4.1 RAY TRACING MODEL

It is difficult to infer the phonon scattering behavior that gives rise to the anti-

correlation in HCACF directly from the shape of the HCACF curve. To circumvent this

difficulty, we have developed a Monte Carlo phonon ray tracing model which allows us to

test how different scattering behavior that could be occurring at pores would be manifest

in the HCACF, allowing us to seek signatures of different scattering phenomena in the

HCACF obtained from the MD simulations. Phonon ray tracing models have been used

to great effect by several other researchers to identify signatures of ballistic transport in a

variety of nanoscale geometries. What sets our use of the ray tracing model apart is that

rather than using it to predict thermal transport, we use it to construct the heat current

autocorrelation function.

Monte Carlo Ray Tracing Model of Correlated Scattering

To isolate the effects that arise from correlated scattering we study a simpler

model system consisting of a grey population of phonons in which we assume that all

phonon modes have the same frequency ω, group velocity νg, and mean intrinsic scattering

lifetime ω. The derivation above shows that the HCACF can be constructed by considering

each correlated heat carrier event in isolation and then averaging their contribution to the

total HCACF. For a wavepacket scattered elastically from one mode (with wavevector k

and polarization p) into another mode (k′p′) by an interface, one must consider the flight

of both the incident wavepacket and the scattered wavepacket together as the occupancy

fluctuations in kp and k′p′ modes are now (anti)correlated. This is true even in the case of
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diffuse scattering, where the choice of the scattered k′ mode is independent of the incident

mode, as after scattering the sign of the velocity component perpendicular to the interface

is reversed, making heat flux in that direction after scattering anticorrelated with the flux

before scattering. As we now have to consider the sequential occupancy of two or more

modes, rather than compute the occupancy auto- and cross-correlations of the modes we

instead consider the heat current from individual wavepackets of lattice vibration, starting

from their birth, and following them as they are scattered elastically through a series of

different phonon modes, up until the uncorrelated phonon-phonon scattering event that

causes their annihilation. An example of such a trajectory is shown in Fig. 2.3(e) with the

resulting heat flux along x and its autocorrelation function shown in Fig. 2.3(f).

In using this conceptually subtly different approach of following wavepackets rather

than occupancy fluctuations, we can apply some of the insights from the derivation above to

write the autocorrelation function of the heat current fluctuations along the x direction as

the average of the heat flux autocorrelation functions of wavepackets with unit magnitude

〈Jx(t)Jx(t+ τ) =
D

V θ

eω̃

(eω̃ − 1)2
(h̄ωνg)

2〈Axx(τ, θ, r, Ω̂)〉, (2.46)

where D is the density of states (the number of phonon modes per unit volume), and

Axx(τ, θ, r, Ω̂) is the autocorrelation function of the heat flux along x created by a unit

wavepacket that was born at location r, traveled initially along direction θ, and lived for

duration θ, before being annihilation into the phonon bath. The total thermal conductivity

reduction can thus be computed as:

κ(τ)

κbulk
=

3

θ
2

∫ τ

0
dτ ′〈Axx(τ ′, θ, r, Ω̂)〉 =

3

θ
2 〈Cxx(τ, θ, r, Ω̂)〉. (2.47)

As this population phonons are in a volume that includes physical scattering centers such
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as pores and inclusions, in addition to averaging over the phonon lifetimes θ, the average

〈Axx(τ ′, θ, r, Ω̂)〉 is also taken over the spatial domain r, the phonon modes Ω̂, and the

various possibilities for the reflected wave packet at each correlated scattering events.

Rather than perform the average in Eq. 2.47 analytically, we average using Monte

Carlo sampling – tracing the trajectory of wavepackets as they collide with pores and

are scattered off into new directions. In this scheme we took the average HCACF from

20,000 randomly sampled wavepacket trajectories; each beginning from a randomly selected

starting point, with random initial direction, and with a lifetime drawn randomly from the

Poisson distribution. The single wavepacket HCACFs in the x, y, and z directions were

computed numerically out to a correlation time of 20 times the mean scattering time Ω̂

to prevent truncation of contributions from long-lived phonons in the tails of the Poisson

distribution. This averaging was sufficient to reduce the uncertainty in the computed values

of κbulk to < 3%. The details of how the correlated scattering from pores was modeled are

described in the next section.

Pore Scattering Models

The HCACF from the MD simulations of material containing cylindrical pores

shows a single pronounced region of anticorrelation. The correlation time at which the

HCACF is most negative changes with the distance d between the ranks of pores but

is characterized by single effective velocity νdip which is found to be less than half of the

averaged acoustic phonon velocity. Finally, the anti-correlation effect can be very large, with

the final thermal conductivity of the material containing pores κ∞ being as little as 20% of
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Figure 2.4: Plots of the HCACF (top row), and corresponding cumulative thermal con-
ductivity (bottom row), for the four scattering models. The specular and diffuse palisade
models are plots in blue (a & e) and gold (b & f), respectively, while specular and diffuse
wall models are plotted in green (c & g) and red (d & h), respectively. All plots are for
simulations with Kn = 2.5, and the geometric scattering probability α is swept from 0 to 1.
In the top row, the HCACF is plotted normalized by Abulk(0) = 1/3(vgτo)

2, the initial value
of the HCACF in the bulk crystal. Similarly, on the bottom row the cumulative thermal
conductivity is normalized by the thermal conductivity of the bulk crystal containing no
extrinsic scattering centers.

the peak cumulative thermal conductivity, κpeak. This implies that the motion of phonons

after scattering, on average, undoes 80% of the heat conduction by the phonons before

they were scattered from the pores. With the ray tracing model, we aim to understand

what factors in the scattering of phonons from pores affect these three factors: single vs

multiple anticorrelation, νdip, and κpeak/κ∞. For this, we consider the effect on the HCACF

from four phenomenological models of phonon scattering from scattering centers separated

by distance Lp in the material. Two geometries of scattering centers are considered: an

array of parallel permeable planer walls, and a series of palisades of cylindrical pores. For

each geometry we examined the effect of both specular and diffuse phonon scattering by
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the obstacles, giving us four scattering models in total. The two geometries have a single

geometric degree of freedom α that is related to the probability that phonons are not

scattered when they encounter the wall/ palisade.

Diffuse and specular wall scattering models We represent the pores in MD simula-

tion as a series of parallel planer interfaces perpendicular to the x-axis. The spacing, Lp,

between planes is described in terms of the Knudsen number Kn =
νgθ
Lp

. When a phonon

encounters an interface there is a finite probability 1− α that it will pass through with its

trajectory unaltered, otherwise, the phonon is reflected. For the specular model, reflection

involves only flipping the direction of the x-component of the velocity. In the diffuse model,

a new random directory is chosen in the half-space perpendicular to the reflection plane, so

that the x-component of the velocity of the scattered phonon has the opposite sign from the

incident phonon. Simulations were performed sweeping α from 0 to 1 and log[Kn] from -1 to

1. Although we refer to this model as the interface model, it is a reasonable representation

of scattering from rectangular pores.

Diffuse and Specular Palisade Scattering Models With the palisade model we aim

to more closely mimic the pore geometry simulate in the MD simulations. We assume that

the material contains rows of cylindrical pores, each with radius r and aligned with their

axis parallel to the y-direction. The pores are arrayed in the z-direction with spacing L

to form a palisade fence. The geometry of the palisade is parameterized the parameter

α = 2r
L which is the scattering probability for phonons that meeting the palisade head-on.

In general, the probability that phonons are scattered by the pores rather than passing
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between them is a function of incidence angle, χ, of the phonon trajectory in the x-z plane

with the x-axis. The transmission probability depends on the gap between cylinders that

is visible to the phonons as they travel towards the palisade, given by

T (χ) = 1− α

| cosχ|
. (2.48)

Here tanχ = νz/νx. The probability of transmission drops to zero at grazing angles of

incidence where the shadow of the cylinder one another. Rather than models the location

of cylinders explicitly we consider the probability that an incident phonon strikes a cylinder

at a position with normal vector at an angle of β relative to the phonon direction. This

probability is given by P (β) = cosβ
sinβmax−sinβmin

, where βmin and βmax are the limits to the

possible incident angles that a phonon could strike the surface of a cylinder. If there is no

shadowing βmin = −π/2, and βmax = π/2. Shadowing occurs at angles when T (χ) < 0, and

in these cases:

βmin =


arcsin

(
1− 2 cosχ

α

)
for cosχ sinχ > 0

−π
2 otherwise

, (2.49)

βmax =


− arcsin

(
1− 2 cosχ

α

)
for cosχ sinχ < 0

π
2 otherwise

. (2.50)

For the specular scattering model, when a phonon’s x position lies on a palisade a

pseudorandom number generator is used to decide if the phonon passed through the barrier

unscattered or if it struck on of the pillars. If scattering occurs the incidence of a random

incidence angle is selected from P (β) and the phonon is set on a new trajectory with a new
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Figure 2.5: Plot (a) show the phase map in conditions of α and Kn under which a de-
tectable anticorrelation is observed in the HCACF for the four scattering models. The lines
mark the boundary between no observed anticorrelation in the bottom left and observed
anticorrelation in the top right. The phase boundaries for the specular and diffuse palisade
and specular and diffuse wall scattering models are plotted in blue, gold, green and red, re-
spectively. It can be seen that while the onset of anticorrelation in the two palisade models
is within the noise of one another, the two wall scattering models are quite distinct. Plot
(b) shows the time to the maximum anticorrelation for all the simulations performed, using
the same color coding as in (a). The anticorrelation time, τdip, is expressed in terms of the
effective velocity νdip, normalized by the group velocity. Each line corresponds to a sweep
of α for different Kn. If can be seen that νdip is independent of the obstacle spacing for
the two palisade models and the specular wall, but this is not the case for the diffuse wall.
Moreover, in all cases νdip increases with increasing scatter

angle

χ′ = χ+ π − 2β. (2.51)

Note that this mean-field model of scattering does not resolve the physical size of the pores

and the possibility of multiple scattering between neighboring cylinders within a palisade

is not considered.

The model for diffuse scattering from cylindrical pores uses the same procedure to

stochastically select the normal at the point on the surface of the cylinder that the phonon

strikes (this has an angle χ′ = χ+ π− β.). A new random direction is then selected for the
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Figure 2.6: The plots in the top row shows the location (time and depth) of the minimum
of the HCACF for all simulations with detectable anticorrelation. The anticorrelation time
τdip is scaled buy the Knudsen number and normalized by the mean phonon lifetime. The
specular and diffuse palisade and specular and diffuse wall scattering models are plotted in
blue, gold, green, and red respectively (a–d). The plots in the bottom row show the time
and depth of the HCACF minimum, along with the corresponding thermal conductivity
reduction 1−κ̃∞ with the same color coding as in the top row. For each scattering models all
the points lie on a single manifold meaning that the location and depth of the anticorrelation
is sufficient to predict the final thermal conductivity. The translucent surface in plots (e–h)
shows the fit through these points as described in the main text. The manifold is different for
each scattering model, providing a means of distinguishing the scattering behavior present
in the MD simulations. models

phonon in the half-space defined by this normal vector.

Discussion of Ray Tracing Model Results

The MC simulation results reveal 3 sets of key insights that help us interpret the

behavior in the MD simulations.

Qualitative differences in the HCACF anticorrelation Plots showing the change in

HCACF and corresponding cumulative conductivity as the geometric scattering probability
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Figure 2.7: The plots in the top row shows the location (time and depth) of the minimum
of the HCACF for all simulations with detectable anticorrelation. The anticorrelation time
τdip is scaled buy the Knudsen number and normalized by the mean phonon lifetime. The
specular and diffuse palisade and specular and diffuse wall scattering models are plotted in
blue, gold, green, and red respectively (a–d). The plots in the bottom row show the time
and depth of the HCACF minimum, along with the corresponding thermal conductivity
reduction 1−κ̃∞ with the same color coding as in the top row. For each scattering models all
the points lie on a single manifold meaning that the location and depth of the anticorrelation
is sufficient to predict the final thermal conductivity. The translucent surface in plots (e–h)
shows the fit through these points as described in the main text. The manifold is different for
each scattering model, providing a means of distinguishing the scattering behavior present
in the MD simulations. models

parameter α is swept from 0 to 1 are shown in figure 2.5.

Dependence of HCACF Anticorrelation on Scattering Geometry The different

modes of scattering at pores gives rise to different dependence of the observed heat current

anticorrelation on the geometric arrangement of scattering centers.

Quantitative Signatures of Scattering Behavior From the HCACF at each value

of α and Kn we determine if there is a detectable region of anticorrelation, and if so, we
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compute the location of its minimum (τdip, and Adip) and the corresponding peak and final

thermal conductivity (κpeak, and κ∞).

2.5 Simple Formula to Predict Thermal Conductivity of Ma-

terials with Nanoscale Porosity

Prevailing nanostructuring strategies have enabled unprecedented ability to ma-

nipulate the phononic behavior of dielectrics with widespread application in thermal meta-

materials ranging from microelectronic devices [53, 54] to optoelectronics [55, 56] and ther-

moelectrics [57, 58, 59, 60]. The extensive application of nanoengineered materials is largely

because of the ability to dissociate strongly interdependent electrical and thermal behav-

ior of dielectrics with countervailing dependence of intrinsic structural properties [61] and

because of the ability to meticulously manage the heat dissipation [62, 63, 64]. Studies on

nanoengineered materials including thin films [43, 44], superlattices [47, 48, 49], nanowires

[42, 42], nanomesh [45, 46],nanocomposites [65, 66], and nanoporous structures [50, 51, 52]

reported extremely low thermal conductivity by increasing number of surfaces that scatter

phonons.

Existing nanostructuring methods mostly focus on generating multiscale lattice

defects — from point defect impurities [67] to mesoscale pores [68] — to enhance the inco-

herent phonon scattering to limit phonons traveling distance. Recent studies on nanoporous

materials showed that the judicious design of nanoscale morphology of pores can bring down

the lattice thermal conductivity of dielectrics beyond their amorphous limit [69]. The con-

sensus is that when the characteristic length of materials is about to or less than the mean
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free path of the phonons (better known as the Knudsen regime), phonon boundary scat-

tering strongly detriments the lattice thermal conductivity. This behavior is known as the

phonon size effect and is generally described by the Knudsen number as Kn = Λ
Lc

. In this

equation, Λ is the phonon’s mean free path and Lc is the characteristic length. In ma-

terials with aligned pores, the characteristic length, Lc, is roughly the pore-pore distance

[70] – better descriptor for Lc is presented in the following sections. We note that in [71],

Knudsen number is defined as the ratio of phonon mean free path and pore radius which

differs from the expression we have used in this manuscript by a prefactor. The phonon

size effects of pore-pore spacing, pore’s misalignment, and phonon line-of-sight on lattice

thermal behavior of solids containing nanoscale pores in Knudsen regime, where, Kn ≥ 1,

are widely studied in [72, 73, 74, 70, 52]. In diffusive regime, where Kn � 1, various

analytical expressions, e.g., effective medium [75, 76], Hasselman-Johnson (better known

as Maxwell-Garnett) [77], Maxwell-Eucken [78, 79], Rayleigh [80], Benveniste [81] and Nan

[82], are articulated to study thermal conductivity of multiphase materials. These models

can be used to predict the thermal conductivity of solids containing pores assuming vacuum

(air) as the secondary phase. In more recent work, Minnich and Chen [83] refined Nan’s

mode to include phonons confinement effects (Kn ≈ 1). Recently, Prasher [84], Machrafi et

al [71] and Liu et al [85] extend models for phonons in ballistic regime (Kn ≥ 1).

Here, we seek a simple formula to compute the lattice thermal conductivity of ma-

terials containing microscale pores. The pores are infinitely long (system size) perpendicular

to the heat current and therefore the transport is planar with translational invariance ver-

tical to the simulation surface. The simulation domain is a square unit of Lx = Ly = Lp
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with periodic boundary condition assumed in all directions. The square comprising a single

circular pore with a radius r at the center of the unit so that the radius of the pores is

r = Lp
√

(φ/π), where φ is the porosity.

2.5.1 Descriptor

The effective thermal conductivity materials containing nanoscale pores is given

by

κeff(Lc) =

∫ ∞
0

K(Λ)S(Λ, Lc)dΛ, (2.52)

where S(Λ) is the phonon suppression function describing the scattering events at the

interface of the pores for the phonon with mean free path of Λ [86] and K(Λ) is the mean

free path dependent thermal conductivity of the bulk material. In diffusive regime, for gray

phonons, S(Λ → 0, Lc) ≈ 1−φ
1+φ , which is in agreement with Maxwell-Garnett prediction,

while in ballistic regime, S(Λ→∞, Lc) ∝ L−1
c [87]. We remark that for a given porosity of

φ, the specific heat and group velocity of the porous materials change as C(φ) = (1−φ)Cbulk

and ν(φ) = 1
1−φνbulk [88], and thereby the (1 − φ) term in C(φ) and 1

1−φ term in ν(φ) are

canceled out in kinetic theory expression of thermal conductivity (κ ≈ 1
3CνΛ), leaving Λ

the only parameter that S(Λ, Lc) relies on.

Let’s integrate equation 2.52 by parts

κeff(Lc) = κbulk

[
S(∞)−

∫ ∞
0

α(Λ)g(Λ)dΛ

]
, (2.53)

where the normalized cumulative thermal conductivity, α(Λ), is defined as

α(Λ) =
1

κbulk

∫ Λ

0
K(λ)dλ, (2.54)
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and

g(Λ) =
∂S(Λ, Lc)

∂Λ
. (2.55)

We note that

S(∞) = S(0) +

∫ ∞
0

g(Λ)dΛ, (2.56)

therefore, equation 2.53 turns into

κeff(Lc) = κbulk

[
S(0) +

∫ ∞
0

g(Λ) (1− α(Λ)) dΛ

]
. (2.57)

The cumulative thermal conductivity is often approximated by a logistic function in loga-

rithmic abscissa as

α(Λ) =
1

1 + Λo
Λ

. (2.58)

Here Λo is a uniparameter used to fit the logistic function to the cumulative thermal con-

ductivity [89]. We use following form for the suppression function

S(Λ) =
S(0)

1 + Λ
Lc

, (2.59)

where Lc is the mean distance phonons travel before being scattered by pores. In derivation

of this equation, it is assumed that phonon-pore scattering happens independent from the

phonon-phonon scattering and therefor Λ−1
p = Λ−1+L−1

c . Here, S(0) is normalized diffusive

thermal conductivity as S(0) = κfourier/κbulk. Using equations 6.11 and 6.12, equation 6.10

becomes

κeff(Lc) = κbulkS(0)

[
1− ΛoLc

∫ ∞
0

1

(Λ + Λo) (Λ + Lc)
2dΛ

]
, (2.60)

which leads to

κeff(Lc) = κbulkS(0)Ξ(Kn), (2.61)
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where Ξ(Kn) =
[

1+Kn(ln(Kn)−1)

(Kn−1)2

]
. In this equation, Kn = Λo

Lc
is the Knudsen number . This

equation relates the effective thermal conductivity of porous materials and Knudsen number

of Kn to bulk lattice thermal conductivity. Note that in diffusive regime where Kn � 1,

this equation simplify to the diffusive heat conduction equation through κbulkS(0) = κfourier.

In the remaining of this section, we describe the best descriptors for Lc and S(0).

Descriptor for Lc

The Lc shows the average interval for a free-flying phonon to collide with a bound-

ary. Minnich and Chen defined Lc as [83]

Lc =
1

Number density of collisions×Area of collision
. (2.62)

For cylindrical pores, equation 2.62 leads to

Lc =
1√
4φ
π

Lp, (2.63)

where Lp is the distance between the pores. In the limit of high porosity, the mean free

path of the phonons colliding with pores is expected to tend to zero, thereby Machrafi and

Lebon proposed [71]

Lc =
1− φ√

4φ
π

Lp, (2.64)

that differs from equation 2.63 by a factor of (1 − φ) in the numerator. Liu and Huang

proposed

Lc = (1− φ)λi + φλii, (2.65)

in which, λi is the geometric average of phonon’s flying distance per number of collisions with

the pores – proposed by Minnich in equation 2.62 – and the inter-pore distance, and λii is
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the hydraulic diameter of the pore. For the aligned cylindrical pores, the inter-pore distance

is Lp − 2r, where r is the radius of the pore, λi =
√

(L2
p/2r)(Lp − 2r) = Lp

√√√√( 1√
φ
π

− 1

)
,

and λii = 2r = 2Lp

√
φ
π . We refer to their original paper for the complete list of equations

for Lc in materials containing pores with different shapes [85].

Descriptor for S(0)

The term S(0) = S(Λ → 0, Lc) is a dimensionless figure shows the effect of pores

on thermal conductivity in the diffusive regime (note that in this definition we neglect

ballistic effects). In this manuscript, we briefly describe three models of S(0) and refer to

[85, 90, 91, 92, 93] for other available expressions.

The Maxwell-Garnett’s model is simply [77]

S(0) =
1− φ
1 + φ

. (2.66)

This is the value obtained by diffusive heat conduction using Fourier’s law. Similar equation

can be derived by performing angular average of the polar suppression for gray phonons

[87].

The Maxwell-Eucken’s model is [79]

S(0) =
2− 2φ

2 + φ
. (2.67)

We remark that, Nan’s equation [82] for multiphase structures reduced to the same equation

for the porous materials.

For cylindrical pore extended along k̂ direction in Cartesian coordinates, the

Rayleigh’s model gives [80]

Sk(0) = (1− φ), (2.68)
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Si(0) = Sj(0) ≈ 1− 2φ

1 + φ+ 0.3φ4 + ...
, (2.69)

and, thereby, the effective suppression function for cubic crystal structures, is S(0) =

1
3

∑
i Si(0) ≈ 3 − φ − 4φ

1+φ+0.3φ4 . Note that the Maxwell-Eucken’s and Rayleigh’s models

give quite similar value for S(0).

In this chapter, we use equations 2.63 and 2.66 to model Lc and S(0), respectively.

Substituting equation 2.66 in equation 2.61, we will have

κeff(Lc) =
1− φ
1 + φ

κbulkΞ(Kn). (2.70)

Similar equations can be used for structures with extended cubic and discrete spherical

pores but with different Lc terms of 1√
φ
Lp and 4

3Lp 3
√ 3

4πφ2 , respectively. Finally, we remark

that for prism pores with equilateral triangle base, a better approximation for S(0) and Lc

are −4.37φ3 + 3.47φ2 − 2.67φ+ 1 and
√
φ
√

3Lp, respectively [85].

2.5.2 Model Prediction

The cumulative thermal conductivity and suppression function for GaAs at 300 K

are plotted in figure 2.8(left) and 2.8(right), respectively. The blue line in figure 2.8(left)

is mean free path thermal conductivity computed from first principles in AlmaBTE. The

red line shows the logistic function with the form of equation 2.58 fitted to cumulative

thermal conductivity computed using DFT. Therefore, when the feature size in GaAs-based

porous materials is less than roughly 183 nm, the phonon-pore scattering dominates over the

anharmonic scattering. The logistic curve predicts Λo = 183 nm. At the same temperature,

the model prediction for Λo in AlAs, InP, Ge is Λo = 236 nm, Λo = 803 nm, and Λo =
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Figure 2.8: (Left) Model and first principles prediction for cumulative thermal conductivity
in GaAs at 300 K in red and blue, respectively. The model predicts Λo = 183 nm. (Right)
The mean free path dependent suppression function from Boltzmann transport simulation
in blue, logistic curve fitted to the BTE prediction in green, and model prediction in red.
The logistic curve and the model predict 1.25 and 0.89 µm line-of-sight, respectively.

296 nm, respectively. The blue curve in pane 2.8(right) shows the suppression function

computed from BTE simulation using OpenBTE. The green plot shows the logistic curve

with the form of equation 2.59 fitted to blue curve assuming that the suppression function

converges to Maxwell-Garnett’s diffusive model when Λ → 0. The curve predicts Lc =

1.25 µm. The red line shows the model prediction for the suppression function. This model

predicts Lc = 0.89 µm, slightly underestimating the feature size. We remark that, the model

predictions of Machrafi (equation 2.64) and Liu (equation 2.65) estimate Lc = 0.66 µm

and Lc = 0.67 µm, respectively. In overall, the model prediction for cumulative thermal

conductivity and the line-of-sight is in good agreement with first principles’ prediction.

Figure 2.9(top-left) and 2.9(top-right) show the model and BTE predictions of

lattice thermal conductivity for Si, GaAs, InAs, and Sn at 300 K for different pore-pore

spacing of Lp but fixed porosity of 0.25 and 0.55, respectively. The model prediction is

marked with open circle while BTE simulation is marked with open triangle. The model
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prediction is in excellent agreement with BTE prediction for pore-pore spacing as short

as 10 nm up up to macro-level spacing and for porosity up to ∼ 0.6. For highly porous

structures, the model slightly overestimates the thermal conductivity. Figure 2.9(bottom)

shows the variation of thermal conductivity normalized with the bulk thermal conductivity

with temperature for InP with 0.15 and 0.40 porosity plotted in blue and red, respectively.

The pore spacing is fixed at Lp = 500 nm. The model prediction is marked with open circle

and BTE prediction is marked with triangle. The figure suggests the accuracy of the model

for a wide range of temperature.
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Figure 2.9: (Top)The model and BTE predictions for thermal conductivity of Si, GaAs,
InAs, and Sn at 300 K for different pore-pore spacing at fix porosity of (left) φ = 0.25,
and (right) φ = 0.55. The model prediction is marked with open circle and BTE prediction
is marked with open triangle. (Bottom) The thermal conductivity of InP normalized with
bulk thermal conductivity versus temperature for 0.15 and 0.40 porosity in blue and red,
respectively. The pore spacing is fixed at Lp = 500 nm. The model and BTE predictions
are marked with circle and triangle, respectively.
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Chapter 3

Mitigating the Effect of Nanoscale

Porosity on Thermoelectric Power

Factor of Si

3.1 Abstract

The addition of porosity to thermoelectric materials can significantly increase the

figure of merit, ZT, by reducing the thermal conductivity. Unfortunately, porosity is also

detrimental to the thermoelectric power factor in the numerator of the figure of merit ZT.

In this manuscript we derive strategies to recoup electrical performance in nanoporous Si

by fine tuning the carrier concentration and through judicious design of the pore size and

shape so as to provide energy selective electron filtering. In this study, we considered phos-

phorus doped silicon containing discrete pores that are either spheres, cylinders, cubes, or
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triangular prisms. The effects from these pores are compared with those from extended

pores with circular, square and triangular cross sectional shape, and infinite length perpen-

dicular to the electrical current. A semiclassical Boltzmann transport equation is used to

model Si thermoelectric power factor. This model reveals three key results: The largest

enhancement in Seebeck coefficient occurs with cubic pores. The fractional improvement is

about 15% at low carrier concentration (< 1020 1/cm3) up to 60% at high carrier popula-

tion with characteristic length around ∼ 1 nm. To obtain the best energy filtering effect at

room temperature, nanoporous Si needs to be doped to higher carrier concentration than

is optimal for bulk Si. Finally, in n-type Si thermoelectrics the electron filtering effect that

can be generated with nanoscale porosity is significantly lower than the ideal filtering ef-

fect; nevertheless, the enhancement in the Seebeck coefficient that can be obtained is large

enough to offset the reduction in electrical conductivity caused by porosity.

3.2 Introduction

In the quest to create inexpensive thermoelectric (TE) materials that can be used

for harvesting low grade waste heat, researchers have identified the strategy for improving

thermoelectric performance in materials such as Si by engineering nanoscale porosity [68,

73]. Nanoscale pores with a spacing smaller than the typical phonon mean free path hinder

heat transfer by phonons and can produce a dramatic reduction in thermal conductivity

[94]. However, although the electron mean free path is much smaller than the phonon mean

free path, porosity damages the transport of low energy electrons. In this manuscript we

examine strategies for designing pores so that the damage that they cause to the electrical
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conductivity is offset in the thermoelectric power factor (PF) by an enhancement in Seebeck

coefficient. These materials are envisioned for conversion of waste heat, and so work in the

temperature range of 300–700 K. Theoretical predictions suggest that at these temperatures

there is significant scope for improving a materials’ thermoelectric power factor through

electron energy filtering, thus our approach to mitigate the effect of pores is to identify

conditions under which the reduction in electrical conductivity from additional scattering

of electrons by pores is offset by improvement of the Seebeck coefficient due to electron

energy filtering.

The performance of thermoelectric materials at a given temperature, T , is quan-

tified by the dimensionless figure of merit, ZT = (σS2)/(κe + κl)T , where σ is electrical

conductivity, S is Seebeck coefficient, κe and κl are electron and lattice thermal conduc-

tivity, respectively [34]. The TE figure of merit depends on a combination of strongly

interdependent electrical transport properties, that have countervailing dependence on the

carrier concentration so that the overall scope for enhancing the power factor is limited.

The tradeoff of these parameters is well studied, and it has become an accepted truth that

optimal performance of bulk TE can be obtained in semiconductors that are highly doped

to a narrow window of optimized charge carrier concentration [34].

The electrical transport properties that appear in ZT can be derived from the

semiclassical Boltzmann transport equation using the single relaxation time approximation

[16]. In this model, the electrical conductivity, σ, is written as

σ = −1

3
e2

∫
χ(E, T )τ(E, T )dE, (3.1)
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where e is electron charge, τ(E, T ) is momentum relaxation time of electrons with energy

E at temperature T in n-doped semiconductors. The kernel χ includes all the intrinsic

non-scattering terms and is given by

χ(E, T ) = ν2(E)D(E)
df(E,Ef , T )

dE
. (3.2)

Here Ef is the Fermi level, ν(E) the carrier group velocity, f(Ef , E, T ) the Fermi-Dirac

distribution, and D(E) is the density of states available for charge carriers. The Seebeck

coefficient, S, in ZT describes the diffusion of electrons due to temperature gradient and is

related to the difference between the average energy at which current flows and the Fermi

energy level [17]. In bulk material, with negative charge carrier, the Seebeck coefficient is

given by [17]

S =

(
−kB
e

)(
Ec − Ef
kBT

+ δ

)
, (3.3)

where kB, Ec are Boltzmann constant and conduction band edge, respectively. The dimen-

sionless parameter δ describes how far the average energy of the current carrying electrons

is from the conduction band edge. It is defined as δ = ∆1/kBT , where ∆1 = Eσ − Ec, and

Eσ is the average energy of the charge carrier weighted by their contribution to electrical

conductivity

∆n =

∫
χ(E, T )τ(E, T )EndE∫
χ(E, T )τ(E, T )dE

. (3.4)

The central concept of energy filtering is to provide sources of scattering that selec-

tively impede low energy electrons so as to increase ∆1 by reshaping product χ(E, T )τ(E, T )
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Figure 3.1: Ideal energy filtering effect in bulk P-doped silicon at 300 K. This model predicts
best power performance at the tail of the Fermi distribution.

so that it is more strongly asymmetric about the fermi energy. For ideal or perfect filtering

a high rate of additional scattering would be applied to all the electrons with energy lower

than a certain threshold, Uo so as to reduce their drift velocity to zero. The calculated

change in the room temperature power factor (σS2) of n-doped silicon that would be pro-

vided by with ideal filtering is plotted in figure 3.1 as a function of filtering threshold, Uo,

and carrier concentration (the details of this calculation are explained in the next section).

The key result of this calculation is that if one can control the filtering threshold, the best

power performance is to be found at high carrier concentration — ideal filtering breaks the

conventional wisdom that there is a carrier concentration that provides the best compro-

mise between conductivity and thermopower to optimize the power factor. It would provide

game changing scope for enhancing thermoelectric power factor by exploiting the carrier

population in the tail of the Fermi distribution. In this manuscript we examine the electron

energy filtering effect provided in Si by nanoscale pores of various sizes and shapes. Our
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study shows while filtering by nanoscale pores are far from the ideal model, they can pro-

vide sufficient enhancement in Seebeck to countervail the degraded electrical conductivity,

leaving power factor undiminished. In the sections that follow we describe electron scatter-

ing from discrete pores with different shapes, and the parameter-free semiclassical model

that we use to model n-type Si (and its validation). Then we elucidate the effect of pores

that are extended in one dimension through the entire system perpendicular to transport

direction. We conclude the manuscript with a brief discussion of Lorenz number and TE

performance at high temperature.

3.2.1 Electron Transport in Nanoporous Silicon

We used semiclassical BTE models of electrical conductivity and Seebeck coeffi-

cient to predict the strength of the filtering effect in n-type Si based nanoporous materials.

This model is based on the intrinsic electronic band structure of undoped Silicon obtained

using density functional theory (DFT). Without porosity, the scattering lifetime, τ , is dom-

inated by electron-ion and electron-phonon scattering, and the scattering rate from these

two processes were modeled using equations in refs [29] and [33], respectively. The Fermi

level for a given carrier concentration was computed relative to the conduction band edge

and self-consistently with the DFT band structure. The electron-pore scattering term was

computed using Fermi’s golden rule and Matthiessen’s rule was used to add the scattering

rates. The detail of the calculations for bulk Si can be found in [95], here we briefly explain

the arc of the model.

The terms D(E), and ν(E), in function χ for Si were derived from the conduction

band of Si computed with DFT using the Vienna Ab initio Simulation Package (VASP)
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[19, 96, 97, 98] using generalized gradient approximation (GGA) with the Perdew-Burke-

Erzerhof exchange correlation functional (PBE) [23]. Projector augmented wave (PAW)

pseudopotentials is used represent the ion cores [24, 25]. The Kohm-Sham wave functions

constructed using a planewave basis set with 700 eV energy cutoff. The Brillouin zone was

sampled using 12 × 12 × 12 Monkhorst-Pack k-point grid [26]. The forces on the atoms

minimized to better than 10−6 eV/Å to relax the Si primitive cell. The electronic band

structure used to compute D(E) on a 45 × 45 × 45 k-point grid. The group velocity was

obtained from the conduction band curvature, ν = 1
h̄ |∇kE| along the 〈100〉 directions on

the Γ to X Brillouin zone path.

To complete the transport model, we need to define the electron lifetime, τ(E, T )

in bulk Si — that is the coherence time of electrons between scattering events in bulk Si

containing no pores. At moderate temperatures (room temperature), this scattering is pre-

dominated by a combination of electron-phonon and electron-ion interactions. Semiconduc-

tor TEs are generally doped to beyond the solid solubility limit (they are supersaturated) so

that the carrier population is high, and the Coulomb potential is strongly screened. There-

fore, we used the model developed for ions with strong screening for electron-ion lifetime

[29]. In this model the transition rate has δ-function form and the screening length plays a

significant role. For better prediction of screening length, we used the generalized model for

degenerate semiconductors [30]. We used phonon deformation potential of Ravich to model

electron-phonon lifetime [33].

The final material property that appears in function χ is the Fermi level. In

P-doped silicon this depends strongly on the carrier concentration, which varies non-
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Figure 3.2: Magnitude of electrical conductivity and Seebeck coefficient in phosphorus-
doped bulk silicon. The solid blue line shows the model prediction for electrical conductiv-
ity, and the red line shows the prediction for the Seebeck coefficient. The experimentally
measured σ and S are marked with open circles.

monotonically with temperature as the solubility of the dopant changes. For a given carrier

concentration, we used a self-consistent approach to compute Ef by setting the conduction

band edge as the reference frame and computing Ef that gives the same carrier population in

DFT computed band to circumvent the well documented problem of DFT’s underprediction

of electronic band gaps.

We have validated the transport model in bulk materials against a set of

phosphorus-doped Si based thermoelectrics produced through a novel plasma synthesis pro-

cess whose synthesis and characterization are described in ref. [95] . This reference also

provides a complete description of the calculations of the electron lifetimes. The electrical

conductivity and Seebeck coefficient of bulk P-doped Si is shown in figure 3.2. The ex-

perimentally measured values are marked with open circles. The minimum (maximum) in

conductivity (Seebeck coefficient) is due changes in the dissolved P with temperature. Our

semiclassical model has no tuning parameters and uses the experimentally measured carrier
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concentration at each temperature as its only input. Its predictions for conductivity and

thermopower are plotted in figure 3.2 using solid lines and are a good fit to the experimental

data across the full range of temperatures. The calculations were performed used a python

package, thermoelectric.py, that we have made available for download through GitHub [99].

The band bending in the Si at the interface to a pore presents a large potential

energy barrier to electron transport. The height of this barrier, Uo, is equal to the semicon-

ductor’s electron affinity [34]. The potential impedes transport of the low energy electrons

while presenting little extra resistance to electrons in high energy states. This scattering,

which occurs in addition to the intrinsic scattering from phonons and impurities, changes

the electron lifetime by introducing a perturbation potential that for a single pore can be de-

scribed as U = UoΠ(r), where Π(r) is a dimensionless boxcar function equal to unity inside

the pore and zero outside of it. For uniform distribution of pores, the electron momentum

relaxation time is defined as [34]

τ−1
np (s) =

N

8π3

∫
SRkk′(1− cos(θkk′))dk

′, (3.5)

where N , is the number density of pores. This is related to porosity through N = ϕ/Vpore,

where ϕ is the porosity and Vpore is the average pore volume. The term SRkk′ in equation

3.5 is the probability of transition from an initial state with wave vector k and energy E to

a state k′ with energy E′. The (1− cos θ) term accounts for the change in momentum that

accompanies this transition, with θ the angle between initial and scattered wavevectors. For

a time-invariant potential, the transition rate SRkk′ is given by Fermi’s golden rule [34, 39],

SRkk′ = 2π
h̄ |Mkk′ |2 δ(E − E′). In this expression Mkk′ is the matrix element operator that
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Figure 3.3: (Left) Electron lifetime in n-type Si at 300 K with a 1020 1/cm3 carrier concen-
tration due to: (red) scattering from phonon and ions, (blue) scattering from 0.05 porosity
due to spherical pores with an 8 nm diameter, and (green) the resulting total lifetime from
the combination of these processes. Electron-pore scattering is dominant for electron with
energy less than 140 meV. The average energy of charge flow is increased about 10 meV by
adding these pores. (Middle) The maximum Seebeck coefficients with different shapes of
pores. The cubic and spherical pores show the best performance, respectively. (Right) The
variation of average energy of electron vs effective length for pores with different shapes
but fixed porosity of ϕ = 0.05 at 1.2 × 1020 1/cm3 concentration. The inset figure shows
the four geometries examined in this work and their characteristic lengths in parenthe-
sis. Clockwise from the top left: sphere (lc = 1/3ro), cube (lc = 1/6lo), triangular prism
(lc = 1/(2 + 4

√
3)lo), and cylinder (lc = 1/3ro).

describes the strength of the coupling between initial and final states and the number of

ways that the transition between states can occur. For the Bloch waves, Mkk′ is defined as

Mkk′ =

∫
ei(k

′−k).rU(r)dr. (3.6)

For energy conservative (elastic) electron-pore scattering only transmission to

eigenstates with the same energy level is possible so the Brillouin zone integral in equa-

tion 3.5 can be written as a surface integral over the isoenergetic k space contour

τ−1
np (s) =

N

(2π)2h̄

∫
E(k′)=E(k)

Mkk′Mkk′

∇E(k′)
(1− cos θ)dS(k′), (3.7)
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where S(k′) is the electron isoenergy state for a given wavevector. In most semiconductors

isoenergy states close to the conduction valley have ellipsoid shape in momentum space that

can be approximated as

E(k) = h̄2/2
[
(kx − kox)2/(m∗x) + (ky − koy)2/(m∗y) + (kz − koz)2/(m∗z)

]
,

where E(k), ko = (kox, koy, koz), m
∗
x, m∗y, m

∗
z are energy level from conduction band edge,

conduction band minimum, effective masses along kx, ky and kz, respectively. For Silicon

the conduction band minimum is located at ko = 2π/a(0.85, 0, 0), where a is the lattice

parameter equal to 5.43 Å, and m∗x = 0.98 mo, m
∗
y = m∗z = 0.19 mo where mo is electron

rest mass equal to 9.11 × 10−31 kg [100]. We remark that in Si with narrow pore spacing

confinement effect leads to flattening of conduction band [40, 41] and increase the effect

mass [40], making transport coefficients different from the bulk Si. To avoid this regime, we

limited our model to only consider low porosity within which the pores are far apart so that

can be considered as perturbations encountered by the electronic wavefunctions of bulk Si.

In this study, we considered phosphorus doped silicon containing one of four dif-

ferent shaped pores: spheres, cylinders, cubes, and triangular prisms, which are shown in

the inset in the right-hand plot of figure 3.3. The spherical pore has radius ro, the edges

of the cube are length lo, the cylinder has radius ro and height 2ro and all the edges of the

triangular prism are lo. The characteristic length (volume to surface area ratio) of these

shapes are 1/3ro, 1/6lo, 1/3ro and 1/(2 + 4
√

3)lo, respectively. The analytic expression for

the scattering matrix element, Mkk′ for each pore shape is presented in the appendix. The

data for different pores’ geometries is plotted using the following markers: circles for spher-

ical pores, squares for cubic pores, triangles for triangular prism pores and × markers for
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cylindrical pores. In spite of the poor thermoelectric efficiency of bulk silicon due to its high

thermal conductivity, it provides an excellent platform for studying the role of design pa-

rameters on transport properties, since its bulk properties are extremely well characterized

[100, 14, 101].

Introducing pores into Si will not change the concentration of carrier concentration

locally in the remaining Si (nor the Fermi energy), but it will change the volume averaged

carrier concentration due to the reduction in the volume averaged density of states. This will

impact the conductivity, and thus the effective electrical conductivity of porous materials

is modeled as σeff = (1 − ϕ)σnp. This change does not affect the Seebeck coefficient

since the changes in density of states cancels out for the denominator and numerator of

S equation. We assumed that pores do not change the band structure of the Si — no

quantum confinement effect, e.g., band flattening is considered — so we limit our study

to the pores taking up 5% volume fraction — a level that is still sufficient to reduce the

thermal conductivity of Si by an order of magnitude [94].

We assume that electron-pore scattering is independent of the electron-phonon and

electron-ion scatterings thus Matthiessen rule can be used to sum the scattering rate from

the three processes giving total scattering rate, τ−1 = τ−1
b + τ−1

np , where τb is the electron

lifetime in bulk Si because of the ionic and phononic scattering terms (τ−1
b = τ−1

ion+τ−1
phonon).

3.3 Results and Discussion

In this section we show the model prediction for the mean time between electrons

being scattered by pores and demonstrate how this scattering changes the electrical behavior
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of nanoporous Si. The maximum power factor enhancement that can be obtained from

electron filtering from nanopores is compared with that from ideal filtering. The electron

scattering lifetimes due extended pores are also computed and it is shown that the electrical

coefficients are insensitive to this class of pores due to limited unoccupied energy states.

We conclude this section with a brief discussion of the effect of pores on electron thermal

conductivity and the TE behavior of porous Si at high temperatures.

The left-hand plot in figure 3.3 shows the lifetimes in bulk Si because of the intrinsic

electron-phonon and extrinsic electron-ion scattering (at 1020 1/cm3 carrier population) in

red and extrinsic electron-pore scattering computed in P-doped Si containing 5% porosity

due to 8 nm diameter spherical pores at 300 K in blue. The total lifetime is plotted in

green. The noise in the lifetime reflects the difference in scattering rate of wavevectors

around the conduction band valley minimum. Pores are the dominant scattering term for

electrons with energy less than 140 meV. The central panel shows the Seebeck coefficient at

different carrier concentrations for different shaped pores using the pore size that returns the

largest enhancement in thermopower for that carrier concentration. The cubic pores show

slightly better performance and enhanced the Seebeck coefficient up to 15% at low carrier

concentrations and ∼ 60% at high carrier concentrations while the enhancement is limited

to 12% and 30% at low and high carrier concentration regimes, respectively for spherical

pores. Note than the largest enhancement in Seebeck generally takes place at medium-

level concentrations (∼ 1020 1/cm3), e.g., the largest fractional enhancement in Seebeck

for cylindrical pore, occurs at ∼ 1.5 × 1020 1/cm3 concentration. At higher temperatures,

the scope for fractional improvement in Seebeck is not as dramatic but the magnitude of
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enhancement is still larger than 20 µV/K — see figure 3.8 in Appendix B. The right-hand

plot in figure 3.3 shows ∆1 — the average energy of the current carrying electrons — as a

function of pore size at 1.2× 1020 1/cm3. The green line shows ∆1 in bulk Si and is equal

to 126 meV. The cubic pores provide the largest ∆1 enhancement followed by spherical

pores (∆1 ≈ 138 meV). This corresponds to ∼ 9.5% enhancement in thermopower due to

energy electron filtering — with the optimal characteristic length of the pores being 0.75

nm and 1.00 nm, respectively. The key message from the plot of ∆1 in figure 3.3 is that,

at high carrier concentrations, there is only little additional return on the effort required to

make pores have particular geometry — most of the benefit comes from making the pores

small. This means that as a design strategy for thermopower enhancement one should seek

to create pores of any shape, but to make them as small as possible. We note that the

largest enhancement in S does not necessarily provide the maximum power factor. For the

best PF performance, the countervailing response of enhancement in S and reduction in σ

should be considered simultaneously.

Figure 3.4 shows the electrical conductivity (pentagons) and Seebeck coefficient

(circles) in bulk with open marker and in 5% of spherical porosity with characteristic length

of 1.67 nm with close marker. The Seebeck coefficient shows around 40% increase at 1.8×

1020 1/cm3 while the largest degradation in conductivity is about 55% and happened at

low carrier population of 3.2× 1019 1/cm3. The enhancement in Seebeck (S2 in PF) offsets

the reduction in conductivity for carrier populations beyond 1020 1/cm3. The maximum

enhancement of PF is about 35% and takes place at 3.2× 1020 1/cm3 concentration.

The left-hand panel in figure 3.5 shows the model prediction for the variation in
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Figure 3.4: Electrical conductivity (blue) and thermopower (red) vs carrier concentration
at 300 K. Open symbols are for bulk n-type Si. Solid symbols are for Si containing 0.05
spherical porosity with the characteristic length of 1.67 nm. The maximum enhancement
in PF happens at 3.2× 1020 1/cm3.

largest achievable TE power factor with carrier concentration in Si based porous materials

with optimal characteristic lengths at 300 K. The best power factor performance using the

ideal filtering model is plotted in green. The power factor in bulk Si is plotted in black.

In the narrow carrier concentration window with the highest power factor, bulk Si shows

slightly better performance. The large energy difference between the conduction band edge

in the Si and the vacuum level in the pore (about 4.15 eV electron affinity of bulk Si [102])

causes strong electron scattering with countervailing response of reduction in the electrical

conductivity and enhancement of Seebeck coefficient that cancel out each other, leading

to an overall unchanged PF value. The maximum PF in porous structures takes place at

carrier concentrations higher than the optimal carrier concentration in bulk Si. This is a

key insight for the design of thermoelectrics at room temperature: If one is planning to

engineer porous thermoelectrics to reduce phonon conduction, then one should also plan to

increase the carrier concentration above the optimal level for the bulk semiconductor. In
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Figure 3.5: (Left) Variation in PF with carrier concentrations for pores with different shapes.
The PF in bulk Si is marked with open circle in black. The largest enhancement with the
ideal filtering is plotted in green. The pores with different shapes demonstrate similar
behavior with reasonably good power performance. At room temperature, the maximum
PF in porous structure always happens in higher carrier concentration than the carrier
concentration that the bulk Si shows the best performance. (Middle) The variation in PF
with pore length and carrier concentration in spherical pores at 300 and 500 K. (Right)
Electron-pore lifetime for extended cylindrical pores at 300 K is plotted in blue. The
characteristic length is 3.3 nm. The electron lifetime due to combination of phonons and
ions is plotted in red. This is the dominant scattering term. For extended pores with low
porosity, the Seebeck is similar to the bulk and the electrical conductivity is (1− ϕ) of the
bulk counterpart.

the Si model the maximum power factor of porous materials takes place at 8× 1019 1/cm3

carrier concentration and is slightly less than the maximum power factor in bulk Si occurs

at 6.3 × 1019 1/cm3, i.e., ∼ 25% increase in doing concentration is needed for the best

performance in porous Si. The power factor in Si with spherical pores at 300 K and 500 K

for different characteristic length and concentration is shown in the central panel in figure

5.5. At higher temperature of 500 K a less extreme increase in carrier concentration is needed

to recuperate the power factor, and the recovery is larger. As an example, the maximum

power factor of spherical pores at this temperature takes place at 1.6× 1020 1/cm3 carrier

concentration and is slightly larger than the maximum power factor in bulk Si that takes

place at 1.26× 1020 1/cm3 carrier concentration (∼ 20% increase in doing concentration).
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To complete the model of electron-pore interaction, we considered extended cylin-

drical with infinite length (system size) oriented along the (001) crystal axis (the z-direction

is our reference system) in a P-doped silicon slab. The thermal and electrical properties of

such porous Si films have been studied in [94, 103, 104], usually with the assumption that

electron scattering is the same as that in bulk Si [73]. The electron lifetime of P-doped Si

with extended cylindrical pores with 10 nm radius (3.3 nm characteristic length) and 0.05

porosity at 300 K is depicted in the right-hand panel of figure 3.5. This plot shows that

electron-phonon and electron-ion scattering is dominant over the pore scattering by one to

two orders of magnitude. The dramatic reduction in the rate of electron scattering from

discrete to extended pores is due to the limited number of states that are available to accept

scattered electrons. The analytic expressions for the scattering matrix elements for these

extended pores are given in the Appendix A. In extended pores, scattering is only possible

into states with the same component of wave vector along the pore axis. This condition,

combined with the isoenergetic constraint, reduces the scattering integral to an elliptical

line, drastically reducing the number of states that can participate in scattering, and means

that the extended pores cause no change in the electron momentum along the axis of the

pores. This result strengthens the assumption made in prior works [73, 72] that extended

pores do not change the electron lifetime and thus the Seebeck coefficient of 2D nanoporous

Si is the same as the bulk Si and electrical conductivity and power factor in 2D porous Si

with translational invariance vertical to the simulation plane are (1 − ϕ) of their bulk Si

counterparts.

When advocating for increased carrier concentration in thermoelectrics, it is impor-
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T = 300K

Figure 3.6: Variation of Lorenz number by the carrier concentration and characteristic
length of cylindrical pores at 300 K.

tant to determine if this will cause a significant increase to the denominator of ZT. Hence, we

finish our examination of the effect of pores on the room temperature electrical transport co-

efficients by briefly discussing the electronic thermal conductivity (κe). The κe is related to

σ by Wiedemann Franz law as κe = LTσ. Here L is the Lorenz number that conventionally

varies from 2× (kB/e)
2 ≈ 1.48×10−8 (V2/K2) up to π2/3× (kB/e)

2 ≈ 2.44×10−8 (V2/K2)

for low carrier concentration and degenerate (free electron) limit, respectively [105]. Lorenz

number is related to the moments of the charge carriers, ∆n, through L = 1/(eT )2(∆2−∆2
1).

In bulk Si, the Lorenz number varies monotonically from 1.53×10−8 (V2/K2) at 1019 1/cm3

to 2.39 × 10−8 (V2/K2) at 1021 1/cm3. Figure 3.6 shows the variation of Lorenz number

with characteristic length and carrier population in porous Si with cylindrical pores at 300

K — see figure 3.8 in Appendix B for Lorenz number in nanoporous Si with different pore

shapes. While Lorenz number varies considerably with the carrier concentration it has

limited dependency on pores’ characteristic length especially in high carrier concentration
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regime. Figure 2.7 in appendix B shows the largest and the lowest changes in Lorenz num-

ber for the pores with different shapes and sizes in this study. The largest enhancements

are shown with solid markers and the lowest values of the Lorenz number are shown with

open markers. The Lorenz number in bulk silicon is plotted in solid black. Similar to

the Seebeck coefficient, cubic pores show the largest impact on Lorenz number followed by

spherical pores. Although this result is interesting, the overall impact of these changes in

Lorenz number for the optimization of thermoelectric ZT will be minimal. The objective

of adding porosity is to lower the lattice thermal conductivity, and prior works by Romano

[94] and others [74] have shown that the lattice thermal conductivity in nanoporous Si with

the geometries modeled here can be as low as ∼ 30 W/m/K at room temperature. In bulk

room temperature Si with the carrier concentration tuned to optimize ZT, the electronic

thermal conductivity is ∼ 0.3 W/m/K — still two orders of magnitude lower than the

lattice conductivity.

To complete the discussion on the effect of pores on Si based porous materials we

computed the transport coefficients at 1300 K (figure 3.7). The bulk properties are shown

with open markers and the properties for 5% spherical pores are plotted with solid markers.

Although the magnitude of power factor is larger at high temperatures the scope of PF

enhancement via electron filtering is limited. Therefore, the power factor in bulk is larger

than the porous Si in all ranges of carrier concentrations. The maximum PF in both bulk

and porous Si takes place at 3.2× 1020 1/cm3 and the enhancement in Seebeck because of

filtering effect mitigates up to 95% of the PF in bulk.
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Figure 3.7: Electrical conductivity (blue) and thermopower (red) vs carrier concentration
at 1300 K. Open symbols are for bulk n-type Si. Solid symbols are for Si containing 0.05
spherical porosity with the characteristic length of 1.67 nm. The scope of electron filtering
is limited at high temperatures.

3.4 Conclusion

To summarize, we have used a semiclassical model to elucidate the detrimental ef-

fect that porosity has on the electrical transport properties of thermoelectric, and to devise

design strategies to mitigate them. We have shown that while extended pores have little

effect on electron scattering, scattering from compact pores provides an electron filtering ef-

fect that increases the Seebeck coefficient. This effect becomes more pronounced for smaller

pores but is relatively insensitive to the pore geometry. We find that to take full advantage

of this effect to mitigate the degradation that pores cause to thermoelectric PF one should

increase the carrier concentration above the optimal level for monolithic semiconductor. In

this case one can recuperate as much as 95% of the lost thermoelectric PF because of the

pores. While we have focused in particular a semiclassical model of P-doped Si, as this is a

model that has been experimentally validated, the findings should be transferable to other
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Figure 3.8: Variation of Lorenz number with carrier concentrations for spherical, cubic, and
triangular prism pores with different characteristic lengths at 300 K.

semiconductors systems both n- and p- type and with either direct or indirect band gaps.

While there is much focus currently on designing porosity in thermoelectrics to dramatically

impede phonon transport, the results presented here form a complementary design principle

for optimizing the electrical transport properties in such devices. The electrical transport

properties in the numerator of ZT are less sensitive to pore shape than the phonon transport

properties in the denominator. This means that a good strategy for designing nanoporous

thermoelectrics that maximize ZT is to first focus on optimizing pore size and morphology

to maximize phonon scattering, and then to adjust the carrier concentration to mitigate

the damage to the electrical transport properties.

3.5 Appendix

3.5.1 Appendix A: Electron Matrix Elements of Pores with Different

Shapes

The electron matrix element shows the strength of the coupling between initial

and final wavefunctions and the number of ways the transmission may happen. For the
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Bloch waves, the matrix element relies on the shape of the scattering potential. Here we

present the full expression of matrix elements for pores with cubic, spherical, triangular and

cylindrical shapes followed by matrix elements for different shaped extended pores.

For cubic pores with finite lengths of lx, ly and lz along x, y and z direction,

respectively, electron matrix element describes as

Mkk′ = 8Uo

sin
(
lxqx

2

)
sin
(
lyqy

2

)
sin
(
lzqz

2

)
qxqyqz

 (3.8)

In this equation, q = k − k′, and qx = q.̂i, qy = q.ĵ, qz = q.k̂ are the projection of q on

Cartesian axes. In prism with isosceles triangle base, matrix element defines as

Mkk′ = −4Uoly

(
lxqx − 2lyqy − 2lxqxe

i( lxqx2
+lyqy) + lxqxe

i(lxqx) + 2lyqye
ilxqx

l2xq
3
x − 4l2yqxq

2
y

)sin
(
lzqz

2

)
qz


(3.9)

In this equation, lx and ly are the length and height of the triangle, respectively and lz is

the height of the prism. For cylindrical potential, we have

Mkk′ = 4πroUo

(
J1 (roqr)

qr

)sin
(
lzqz

2

)
qz

 (3.10)

In this equation, qr =
√

(q2
x + q2

y), ro is the radius of the base circle, lz is the height of the

cylinder and J1 is the first order Bessel function of the first kind. Electron coupling matrix

element for spherical potential is defined as

Mkk′ =
4πUo
q2

(
1

q
sin(roq)− ro cos(roq)

)
(3.11)

where, q is the magnitude of q and ro is the radius of pores. For cubic pores with infinite

length (system size) along z, the matrix element is defined as

Mkk′ = 4Uolz

sin
(
lxqx

2

)
sin
(
lyqy

2

)
qxqy

 δ(qz) (3.12)
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Figure 3.9: Variation of Lorenz number with carrier concentrations in bulk Si is plotted in
solid black. The highest and lowest values of the Lorenz number for the pores modeled in
this study are shown with solid and open markers, respectively.

For the cylindrical pore with infinite height, we have

Mkk′ = 2πroUolz

(
J1 (roqr)

qr

)
δ(qz) (3.13)

For the isosceles triangular prism with infinite height matrix element is described as

Mkk′ = −2Uolylz

(
lxqx − 2lyqy − 2lxqxe

i( lxqx2
+lyqy) + lxqxe

i(lxqx) + 2lyqye
ilxqx

l2xq
3
x − 4l2yqxq

2
y

)
δ(qz)

(3.14)

3.5.2 Appendix B: The Effect of Nanopores on Lorenz Number at Room

Temperature

Figure 3.8 shows changes in Lorenz number with carrier concentrations for pores

with different shapes and sizes at room temperature for 5% porosity. Similar to the cylin-

drical pore, the Lorenz number is larger for smaller pores and the pores size has stronger

effect at regimes with lower carrier populations. The maximum and minimum computed
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Figure 3.10: (Top) Maximum enhancement is thermopower for pores with different shapes
at 500 K (left) and 1300 K (right). (Bottom) Comparison of the largest achievable PF with
the filtering effect using pores with different shapes. The largest achievable PF with the
filtering effect using an ideal model is plotted in green. The PF in bulk Si is shown in black.
The left panel is at 500 K, and the right panel is at 1300 K.

Lorenz number and the bulk value of the Lorenz number are plotted in figure 3.9.

3.5.3 Appendix C: The Effect of Pores on Electrical Properties of Silicon-

Based Nanoporous at High Temperatures

Figure 3.10 shows the variation of highest Seebeck (thermopower) and power factor

modeled in this study with carrier concentration for pores with different shapes at 500 K

and 1300 K. The bulk properties are shown in solid black lines.
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Chapter 4

Enhanced Thermoelectric

Performance of Polycrystalline

Si0.8Ge0.2 Alloys through the

Addition of Nanoscale Porosity

4.1 Abstract

Engineering materials to include nanoscale porosity or other nanoscale structures

has become a well-established strategy for enhancing the thermoelectric performance of

dielectrics. However, the approach is only considered beneficial for materials where the in-

trinsic phonon mean free path is much longer than that of the charge carriers. As such, the

approach would not be expected to provide significant performance gains in polycrystalline
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semiconducting alloys such as SixGe1-x, where mass disorder and grains provide strong

phonon scattering. In this manuscript, we demonstrate that the addition of nanoscale poros-

ity to even ultrafine-grained Si0.8Ge0.2 may be worthwhile. The semiclassical Boltzmann

transport equation was used to model electrical and phonon transport in polycrystalline

Si0.8Ge0.2 containing prismatic pores perpendicular to the transport current. The models

are free of tuning parameters and were validated against experimental data. The models re-

veal that a combination of pores and grain boundaries suppresses phonon conductivity to a

magnitude comparable with the electronic thermal conductivity. In this regime, ZT can be

further enhanced by reducing carrier concentration to the electrical and electronic thermal

conductivity and simultaneously increasing thermopower. Although increases in ZT are

modest, the optimal carrier concentration is significantly lowered, meaning semiconductors

need not be so strongly supersaturated with dopants.

4.2 Introduction

The performance of thermoelectric (TE) materials depends on having both ad-

vantageous electrical transport properties, and low thermal conductivity, and is quantified

by the dimensionless figure of merit, ZT = (σS2)/(κe + κl)T . Here κe is the electrical

contribution to the thermal conductivity, κl is lattice thermal conductivity, σ is the elec-

trical conductivity and S is the Seebeck coefficient (thermopower) [59, 106, 107, 108]. In

materials for which the mean free path of charge carriers is much smaller than the mean

free path of heat carriers (phonons), a well-established approach to increasing ZT is to

introduce nanoscale porosity. When tuned to the right length scale, scattering of phonons
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by pores can significantly reduce the heat carriers’ mean free path with only minor impact

on electrical transport properties in the numerator of ZT [73, 72, 109]. This approach is

particularly appealing because it can yield dramatic increases in energy conversion efficiency

in materials such as silicon that have not traditionally been considered to be good ther-

moelectrics [68]. It thus opens the door for creation of energy harvesting devices that are

fabricated from inexpensive, abundant, and environmentally benign materials making them

intrinsically scalable. However, the approach is considered to offer little further benefit to

most established high-performance thermoelectrics, such as SixGe1-x alloys [34]. To achieve

high ZT , these materials already possess one or more mechanisms for strong scattering

phonons in their bulk form [110, 67, 111], and so the conventional wisdom is that there

is a diminishing return on the effort and cost required to add more phonon scattering. In

this manuscript, we present models of the phonon and electron transport in nanoporous

SixGe1-x alloys and use these to compute the full thermoelectric figure of merit as a func-

tion of the materials morphology and carrier concentration. These models show that there

can be benefits to adding porosity to even good thermoelectrics such as SixGe1-x, and that

these benefits lie not just in improved ZT but also the potential for reduced cost and better

tolerance to overheating and microstructural evolution.

The SixGe1-x alloy system is a well-established material for high-efficiency ther-

moelectrics that is used in many niche applications, such as the thermoelectric generators

that power deep space probes, where efficiency and reliability take precedence over cost

[67]. The alloy forms a fully miscible solid solution at all values of x. The mass disorder

of the randomly distributed heavy Ge atoms strongly scatters short-wavelength phonons.
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Furthermore, these alloys can be fabricated from hot pressed powder compacts to create

materials with ultrafine grain size. The grain boundaries provide strong scattering of long-

wavelength phonons, and together, the combination of grain structure and mass disorder

leading to a strong suppression of the lattice thermal conductivity and a large ZT . The

lowest thermal conductivities occur at compositions with x ∼ 0.5 [46]. The electronic prop-

erties in the numerator of ZT are tuned independent of the phonon scattering by controlling

the doping concentration, and to obtain the optimal power factor the doping typically must

be supersaturated, which means that the thermoelectric performance of these alloys can be

degraded if the material is accidentally heated to a temperature at which dopant becomes

mobile and precipitates out of solution. Although Si and Ge are both non toxic, unlike

the components of other widely used high efficiency thermoelectric materials (such as PbTe

[112, 113] and SnSe [114, 115]), a second drawback of SixGe1-x thermoelectrics is their cost.

The price per mol of germanium is roughly two orders of magnitude larger than silicon, and

so to reduce the expense (and expand the economic viability) of SixGe1-x thermoelectrics we

would like to improve the efficiency of compositions containing a relatively low Ge fraction.

For this reason, in this manuscript, we focus exclusively on the Si0.8Ge0.2 alloy composition.

In the sections that follow, we first describe calculations that solve the Boltzmann

transport equations for phonons in polycrystalline Si0.8Ge0.2 containing nanoscale extended

pores with different cross-sectional shapes. The section following that presents a semiclassi-

cal model of electrical transport in n-type SixGe1-x, along with models of electron scattering

by pores and grain boundaries, which were used to compute the electrical conductivity, See-

beck coefficient, and Lorenz number. The final section examines the combination of these in
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the ZT and discusses the options available for tuning morphology and dopant to optimize

it.

4.3 Thermal Transport in Nanoporous Si0.8Ge0.2

The effective lattice thermal conductivity, κl, of polycrystalline Si0.8Ge0.2 contain-

ing nanoscale pores was computed by solving the frequency dependent Boltzmann transport

equation [101] to find the steady state distribution of phonons moving between an array of

pores under an imposed temperature gradient. The effective thermal conductivity of the

material containing a given pore morphology is defined as the ratio of the heat flux carried

by the phonon distribution divided by the imposed temperature gradient. These simula-

tions were performed using the OpenBTE Boltzmann transport solver [116] making use of

materials properties for SixGe1-x computed from first principles. The model incorporated

the effects from four different phonon scattering processes: three-phonon scattering, elas-

tic mass impurity scattering, scattering from grain boundaries, and scattering from pores.

While the latter of these was modeled as physical obstacles in the simulation domain, the

first three scattering processes were modeled implicitly using the single relaxation time

approximation with the combined scattering rate from the three processes obtained using

Matthiessen’s rule.

The second and third order interatomic force constants for bulk Si0.8Ge0.2, com-

puted with density functional theory using the virtual crystal approximation, were obtained

from the AlmaBTE materials database [89]. The phonon dispersion was computed from the

second order force constants on a 40× 40× 40 point Brillouin zone mesh using AlmaBTE.
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Figure 4.1: Phonon lifetimes vs frequency. The lifetime τbulk due to phonon-phonon and
phonon-alloy scattering processes in single crystal Si0.8Ge0.2 at 500 K is plotted in red. The
lifetime τgrain due to grain boundary scattering in a microstructure with lg = 50 nm is
plotted in blue, and total lifetime in from the combination of τbulk and τgrain is plotted in
purple.

The scattering matrices for three phonon interactions was computed from the third order

force constants also using AlmaBTE [117], which computes full three-phonon scattering

matrix and uses it to solve linearized Boltzmann transport equation for phonons [89]. This

method does not account for correlations, local relaxations or changes in electronic structure

due to alloying and interatomic force constant disorder, yet gives reasonable prediction for

bulk Si0.8Ge0.2 thermal properties [118]. The rate of elastic phonon scattering by disordered

germanium atoms was modeled by treating the Ge as random mass perturbations with the

scattering rate given by Tamura’s formula for isotopic scattering [119]. The phonon-phonon

scattering rate is temperature dependent while phonon-alloy scattering rate is temperature

independent, and the phonon lifetime from their combined effect, which we refer to as τbulk,

is plotted in figure 4.1.
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Figure 4.2: The phonon group velocity used in the calculation of τgrain.

The rate of scattering of phonons by grain boundaries was approximated by as-

suming that the average interval for a free flying phonon to collide with a boundary is

τgrain = lg/νg, where νg is the phonon’s group velocity and lg is an effective grain size. This

model acknowledges that phonons with different wavevector and polarization have different

speeds, but assumes that all phonons behave the same when they encounter a grain bound-

ary scattering, scattering diffusely. The model is well known to slightly overestimate the

thermal resistance from grain boundaries [120, 121, 122]. Figure 4.1 shows the distribution

of τbulk in red, and τgrain in blue, computed at 500 K for polycrystalline Si0.8Ge0.2 with

an effective grain size of 50 nm. The total lifetime obtained using Matthiessen’s rule is

plotted in purple. It can be seen that grain boundaries only dominate the scattering of

acoustic phonons with frequencies lower than ∼ 2 THz, while Umklapp and alloy scattering

dominates phonons with frequencies higher than that. The phonon group velocities used in

the calculation of τgrain are shown in figure 4.2.

83



Figure 4.3: Thermal conductivity of polycrystalline Si0.8Ge0.2 relative to the conductivity
of single crystal material at the same temperature. The red, blue, green, gold and purple
plots are for effective grains sizes of 200 nm, 100 nm, 50 nm, 20 nm and 10 nm respectively.

The effect of grain size on the thermal conductivity of polycrystalline Si0.8Ge0.2 is

plotted in figure 4.3 normalized by the thermal conductivity of the single crystal. For an

effective grain size of lg = 200 nm, the largest grain size considered, the thermal conductivity

is ∼ 40% of the single crystal alloy at high temperature (> 1000 K) and close to ∼ 25% at

room temperature. Reducing the effective grain size to lg = 20 nm further decreases the

thermal conductivity to below ∼ 20% of the single crystal conductivity at high temperatures

and less than ∼ 10% at room temperature.

The effect of phonon scattering from an square array of nanoscale pores was mod-

eled in the transport simulations by explicitly resolving pore geometry in the simulation

domain, with the pore/semiconductor interface modeled as a diffusely-scattering adiabatic

boundary. This means that the total energy flux incident on an interface is re-emitted back

into the simulation domain in all directions distributed over all ordinates and phonon fre-

quencies in proportion to their equilibrium occupancy. The simulation domain was periodic
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Figure 4.4: Reduction in thermal conductivity of single crystal Si0.8Ge0.2 alloy due to the
addition of nanoscale porosity. The effects from pores with circular, square and triangular
cross-section are plotted using markers of the same shape. The porosity is φ = 0.25 and
the red, blue and green lines are for pore-pore distances of 0.1 µm, 1 µm and 20 µm,
respectively.

in all directions, and the pores were prisms that extend through the periodic boundaries

in one direction. Three pore geometries were considered: cylinders, square prisms, and

triangular prisms. The spacing between pores was adjusted to study the effect of pore

density on thermal conductivity, and the pore size was adjusted concomitantly to maintain

a constant pore fraction of φ = 0.25 — a pore fraction similar to that of the nanoporous

Si films reported in experimental works [46]. As this pore fraction is relatively large, the

smallest pore spacing considered was limited to 10 nm to ensure that the spacing between

pores remained large enough that the confinement effects were not significant and that the

electron and phonon dispersion of the material in the ligature between pores could still be

reasonable approximated by those of the bulk crystal.

Figure 4.4 shows the thermal conductivity of a single crystal Si0.8Ge0.2 film con-
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Figure 4.5: Thermal conductivity of polycrystalline Si0.8Ge0.2 containing cylindrical
nanopores compared to the same polycrystalline material without pores. The thermal
conductivity reduction is plotted vs pore spacing, l, for material with effective grain sizes
of 200 nm (red), 100 nm (blue), 50 nm (green), 20 nm (brown) and 10 nm (purple). For all
cases the pore fraction is φ = 25%.

taining an array of nanopores with different shape and spacing. The triangular pores yield

the lowest thermal conductivity of the different geometries considered here. This is pri-

marily due to the phonon view factor [84, 94] — a detailed discussion on the effect of

the pores’ shape is given in APPENDIX. The pore-pore distance is the governing factor

in thermal conductivity reduction. For a given porosity, shortening the pore-pore spacing

(and therefore increasing the number density of pores) lowers the thermal conductivity and

makes it become insensitive to temperature [123]. The increase in the thermal conductivity

ratio of the 0.1µm spaced pores in figure 4.4 is entirely due to the decrease of the thermal

conductivity of single crystal Si0.8Ge0.2 with increasing temperature. This is mainly due to

the suppression of long mean free path phonons near the Brillouin zone center — the main

contributors to thermal conductivity in Si0.8Ge0.2.
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While the plots in figures 4.3 and 4.4 show the separate effect on lattice thermal

conductivity from grain boundaries and nanopores independently, the synergy of cylindri-

cal pores and polycrystallinity is shown in figure 4.5 for a variety of difference grain and

pore sizes. Although nanopores and grain boundaries both present obstacles for phonon

scattering that reduce thermal conductivity relative to the monolithic single crystal, the

introduction of voids also creates regions in the material where the thermal conductivity

is locally zero — a composite of non-conducting fibers within a conductive matrix. In the

diffusive limit the thermal conductivity of this composite is described by effective medium

theory and, for cylindrical pores, depends on the pore fraction as κcomposite = 1−φ
1+φκmatrix

[79]. From figure 4.5 it can be seen that adding porosity to polycrystalline Si0.8Ge0.2 always

further reduces the thermal conductivity. If the pore spacing is significantly larger than the

effective grain size the reduction in thermal conductivity is simply that of effective medium

limit, however we start to see extra reduction in thermal conductivity even for pore spacings

that are several times larger than the effective grain size.

Returning our attention to the diffuse limit, we note that the effective medium

limit is also seen in the calculations for porous single crystal Si0.8Ge0.2 plotted in green in

figure 4.4. In this plot we see that while the shape of the pores makes minimal difference

to the thermal conductivity reduction in the ballistic limit, when the pore spacing is small,

the pore shape does impact the effective medium theory limit. While cylindrical pores

yield a 0.6 reduction in thermal conductivity, consistent with the equation above, the pores

with triangular cross-section reduce thermal conductivity by ∼ 0.48 consistent with the

κcomposite/κmatrix = 1− 4.37φ3 + 3.47φ2 − 2.67φ formula [85].
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Figure 4.6: The per mode thermal conductivity plotted vs mode frequency in Si0.8Ge0.2 at
300 K. Plot (top-left) is for monolithic single crystal, (top-right) is for bulk polycrystalline
material with effective grain size of 200 nm, (bottom-left) is for single crystal containing
cylindrical pores with 500 nm pore spacing, and (bottom-right) is for the same polycrys-
talline materials as in (top-right) with the addition of the cylindrical pores of (bottom-left).
For each point, the mode’s mean free path is indicated by marker’s color using a log color
scale.

Figure 4.6 shows the contribution to thermal conductivity from each phonon mode

across the frequency spectrum in single crystal Si0.8Ge0.2 (top-left), and how this changes

with a 200 nm grain structure (top-right), addition of 500 nm spaced cylindrical pores

(bottom-left), and the combination of both figure (bottom-right). This shows that the

longest mean free paths in the pristine material are suppressed in structures with defects.

Moreover, even though the pore spacing is more than double the distance between grain

boundaries there is a significant further reduction in the mean free path of the low frequency

modes when both pores and grain boundaries are present. One can also observed some mean
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free path suppression for high frequency modes with the addition of nanopores.

4.4 Charge Carriers Transport in Nanoporous Si0.8Ge0.2

In order to obtain good thermoelectric properties, in most cases, SixGe1-x ther-

moelectrics must be doped to high carrier concentrations. This can require the material to

be doped beyond its solubility limit, which makes that device properties easily degraded

irreversibly if the material is over heated to a point where the dopant becomes mobile and

can precipitate out of solution. For phosphorus-doped SixGe1-x, experiments have shown

that the carrier concentration varies with temperature as the solubility of the P dopant

changes [124]. The variation is more noticeable at temperatures above 1000 K. In the work

that follows, we restrict our attention to heavily n-type SixGe1-x, such as is obtained by

doping with phosphorus, and we study the interplay between electrical and heat transport

properties as the nanostructure and carrier concentration are varied.

The electrical properties in many semiconductors are described well by the semi-

classical Boltzmann transport equation using the single relaxation approximation, integrat-

ing the contribution to transport from the charge carriers over a single electronic band [16].

This method has been used successfully to predict the transport coefficients of SixGe1-x

[39, 34]. In this model, the electrical conductivity, σ, at temperature T is written as [16]

σ = −1

3
e2

∫
χ(E, T )τ(E, T )dE, (4.1)

with τ(E, T ) the momentum relaxation time of electrons with energy E. The kernel χ(E)
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includes all the intrinsic non-scattering terms and is given by

χ(E, T ) = ν2(E)D(E)
df(E,Ef , T )

dE
, (4.2)

were Ef is the Fermi energy level, ν(E) is the charge carrier group velocity, f(Ef , E, T ) is

the Fermi-Dirac distribution, and D(E) is density of electronic states.

The Seebeck coefficient, S, and charge carriers’ contribution to thermal conduc-

tivity, κe, depend on higher moments of χ with

S = − 1

eT

∫
γτdE∫
χτdE

, (4.3)

and

κe = − 1

3T

(∫
ζτdE −

(
∫
γτdE)2∫
χτdE

)
. (4.4)

Here the terms γ and ζ are energy weighted χ given by γ = χ (E − Ef ) and ζ = χ (E − Ef )2,

respectively, and the explicit functional dependence of the terms has been dropped from

the notation for compactness and clarity.

To evaluate the function χ in equations 4.1 to 4.4 requires knowing the density

of states, carrier group velocity, and Fermi energy. We modeled density of states of the

SixGe1-x conduction band, D(E), using the standard expression for non-parabolic electron

band

D(E) =
m

3
2
e

π2h̄
(1 + 2αE)

√
2E(1 + αE), (4.5)

where me is the electrons’ density of state effective mass (which is separate from the trans-

port effective mass used later). For SixGe1-x alloys the density of states is found to be well

represented across a wide range of compositions using

me = [1.08(1− x) + 1.41x− 0.183x(1− x)]mo,

90



where mo is free electron rest mass equal to 9.11×10−31 kg [28], and with the anharmonicity

term, α = 0.5 eV-1. This later term describes the deviation of the conduction band from

parabolic due to the admixture of s-like conduction band states and p-like valence band

states [32].

At compositions with less than 85% Ge, the band structure of SixGe1-x matches

that of Si [28], and so the electron group velocity was obtained from the slope of the

conduction band along the conduction band valley in Si obtained from density functional

theory (DFT). That is, ν = 1
h̄ |∇kE| along the 〈100〉 directions on the Γ to X Brillouin

zone path. The Si band structure was computed with the Vienna Ab initio Simulation

Package (VASP) [19, 125, 98, 97], and using the generalized gradient approximation (GGA)

with the Perdew-Burke-Ernzerhof exchange correlation functional (PBE) [23]. Projector

augmented wave (PAW) pseudopotentials were used to represent ion cores and their core

electrons [24, 25], and the Kohn-Sham wave functions were constructed using a planewave

basis set with a 700 eV energy cutoff. A Monkhorst-Pack 12 × 12 × 12 k-point grid was

used to sample the Brillouin zone [26]. The primitive cell and atomic basis were relaxed to

minimize forces on the atoms to better than 10-6 eV/Å. The electronic band structure used

to compute ν(E) were interpolation from a 45 × 45 × 45 k-point grid. Finally, the band

structure and therefore group velocity were treated as temperature independent.

The final term that appears in χ is the Fermi energy. This term is not an intrinsic

property and is strongly dependent on the carrier concentration and temperature. For a

given carrier concentration, nc, the Fermi energy, Ef , was computed self-consistently with
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the density of states in equation 4.5 by numerically solving the integral equation

nc =

∫ ∞
0

D(E)f(E,Ef , T )dE, (4.6)

using the conduction band edge to set the reference frame.

To complete the transport model, we need to compute the mean time between

electron scattering events. In bulk SixGe1-x the dominant electron scattering processes are

scattering by acoustic phonons (τp), ionized impurities (τi) and alloy disorder (τa). Ravich

has modeled the rate of electron-phonon scattering as [33]

τp(E)−1 =
πD2

AkBTD(E)

ρν2
s h̄

{[
1− αE

1 + 2αE

(
1− Dv

DA

)]2

−8

3

αE(1 + αE)

(1 + 2αE)2

Dv

DA

}
, (4.7)

where α describes the conduction band shape as in equation 4.5, and ρ and νs are the

crystal’s density and speed of sound. In SixGe1-x, these have values of ρ = 2329 + 3493x−

499x2 kg/m3 and νs =
√

(B/ρ), where B is bulk module which is given by B = 98 − 23x

GPA, with x is the atomic fraction of Ge [28]. The terms Dv and DA are the electron and

hole deformation potentials and are equal to 2.94 eV and 9.5 eV, respectively [32].

For strongly screened Coulomb scattering that occurs when the carrier concentra-

tion is high, the electron scattering due to ionized impurities is given by [29]

τi(E)−1 =
h̄

πNi

(
e2L2

D
4πεεo

)2
D(E)

, (4.8)

with Ni is the concentration of ionized impurities which we assume to be equal to the carrier

concentration, Ni = nc. The terms ε and εo are the relative and vacuum permittivity, with

the former represented well with ε = 11.7 + 4.5x in SixGe1-x alloys [28]. The term LD in

equation ?? is the Debye length, which in doped semiconductors has the generalized form
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of [30]

LD =
e2Nc

4πεεokBT

[
F− 1

2
(η) +

15αkBT

4
F 1

2
(η)

]
, (4.9)

where Nc = 2
(
m∗kBT

2πh̄2

) 3
2
. We modeled the temperature dependence of the conduction band

effective mass, m∗, as m∗(T ) = m∗o(1 + 5αkBT ) [31]. The term m∗o is equal to 0.28mo,

where mo is free electron rest mass as in equation 4.5. The effective mass is temperature

dependent because the different sampling of the conduction band curvature as the Fermi

window increases with temperature.

The rate of electron scattering due to the disordered arrangement of Ge atoms on

the Si lattice is modeled as [126]

τa(E)−1 = 0.75
x(1− x)3a3π3U2

Am
∗

3
2
√
E

8
√

2π2h̄4
, (4.10)

where x is the atomic fraction of Ge, a is the lattice parameter given as a = 5.431 + 0.2x +

0.027x2 [28] (5.47 Å for Si0.8Ge0.2). The term UA is the alloy scattering potential and is

equal to 0.7 eV for Si0.8Ge0.2 [32].

The three electron scattering terms above are sufficient to model single crystal

SixGe1-x with no porosity. We have validated this model against a set of phosphorous

doped Si0.7Ge0.3 experiments reported by Vining [3]. Figure 4.7 shows the comparison of

the model prediction of electrical conductivity and Seebeck coefficient with the experimental

data for Si0.7Ge0.3 with three different doping concentrations. We compared the results up

to 1000 K. The model is in good agreement with experimental data in the whole range of

temperature for the electrical conductivity. The prediction for S is less accurate, showing a

small systematic underestimate of the Seebeck coefficient due to its sensitivity to the band

shape and doping concentration. We remark that Vining only reported a single carrier
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Figure 4.7: Comparison of the model prediction (lines) of electrical conductivity and ther-
mopower in Si0.7Ge0.3 with experimentally reported results (markers). The measured and
predicted electrical conductivity are shown with crosses and solid lines, respectively, and
the measured and predicted Seebeck coefficients with circles and dashed lines. The data is
for three different doping levels that have carrier concentrations of 1.45× 1020 1/cm3 (red),
6.75×1019 1/cm3 (blue) and 2.2×1019 1/cm3 (green). The experimental data is taken from
reference [3]. The overall agreement is good, although the model gives a small systematic
underestimate of Seebeck coefficient.

concentration for each sample, so we had to assume that carrier concentration is constant

across the span of temperature; however, it is likely that carrier concentration changes with

temperature. The transport model was implemented as part of a python package called

Thermoelectric.py that has been made available for public use at the GitHub repository in

reference [99].

In the nanostructured Si0.8Ge0.2 of interest in this study, there are two additional

electron scattering processes that arise as a result of the morphology: electron scattering

at grain boundaries, and scattering from pores. The rate of electron momentum relaxation
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due to elastic scattering from a uniform dispersion of pores can be modeled as [34]

τnp(s)
−1 =

N

8π3

∫
SRkk′(1− cos(θkk′))dk

′. (4.11)

Here N is the number density of pores, and the term SRkk′ is the rate of transition of an

electron from an initial state with wave vector k and energy E to a state k′ with energy

E′ due to a single pore. The 1− cos(θkk′) term accounts for the change in momentum that

accompanies this transition, with θkk′ the angle between initial and scattered wavevectors.

For a time-invariant potential, the transition rate SRkk′ is given by Fermi’s golden rule,

SRkk′ = 2π
h̄ |Mkk′ |2 δ(E−E′), where the matrix element operatorMkk′ describes the strength

which the pore couples the initial and final states and the number of ways the transition

can occur, and δ is the Dirac delta function. For Bloch waves, Mkk′ is given by the integral

of the overlap of the initial and final state with the pore potential U(r) so that [35]

Mkk′ =

∫
ei(k

′−k).rU(r)dr. (4.12)

For energy conservative (elastic) scattering between eigenstates with the same energy equa-

tion 4.11 can be recast as a surface integral over the isoenergetic k-space contour Γ that

satisfies E(k′) = E(k)

τ−1
np (s) =

N

(2π)2h̄

∮
Γ

|Mkk′ |2

∇E(k′)
(1− cos θ)dS(k′), (4.13)

where dS is the incremental area of the isoenergetic k-space surface. In most indirect

bandgap semiconductors such as Si0.8Ge0.2 the contours of isoenergy states near to conduc-

tion band valley have ellipsoidal shape in momentum space that can be approximated as

E(k) = h̄2[( (kl−kol)2

2m∗l
+ (kt−kot)2

m∗t
], where E(k), ko = (kol, kot, kot), m

∗
l , m

∗
t are energy level

from conduction band edge, the location of the conduction band minimum, longitudinal
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and transverse effective masses, respectively. We used m∗l = 0.98mo, m
∗
t = 0.19mo where

mo is free electron rest mass, and ko = 2π/a(0, 0, 0.85), where a is the lattice parameter.

The pore potential, U(r), in equation 3.6 is assumed to be

U(r) =


Uo for r inside the pore

0 otherwise

, (4.14)

where Uo = 4.05 eV is the electron affinity of bulk Si0.8Ge0.2. For an infinitely long cylin-

drical pores with radius ro, and aligned with axis parallel to z, this gives the scattering

matrix element operator

M cylinder
kk′ = 2πroUolz

(
J1(roqr)

qr

)
δk(qz). (4.15)

In this equation, q = k − k′ is the scattering vector, and qz and qr are the components

of q parallel and perpendicular to the cylinder axis. The term δk is the Kronecker delta

function, and J1 is the first-order Bessel function of the first kind, and lz is the pore’s length

perpendicular to transport direction. We have previously computed the scattering matrix

operators for pores with rectangular and triangular cross-sections and these can be found

in reference [36]. The number density of pores is related to porosity, φ, and the pore size

through the relationship N = φ/Vp, where Vp is the volume of the pores.

A similar use of Fermi’s Golden rule can be used to model the rate of electron

scattering by grain boundaries. Minnich et al have suggested that grain boundaries provide

a scattering potential of magnitude UGB that decays away from the grain boundary over

distance zo [39]. From this, they derived the scattering operator matrix element for a small

disc of grain boundary with radius ro as
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Mkk′ = 4πUg

[
zo

1 + (qzzo)2

]
r2
o

[
J1(qrro)

qrro

]
, (4.16)

where qr and qz are the components of the scattering vector q that are parallel and perpen-

dicular to the boundary, respectively. The scattering potential, UGB, is defined as

UGB(r) =


Uge

−|z|
zo r < rGB

0 otherwise

. (4.17)

In this equation zo is a constant related to the thickness of the depletion region at the grain

boundary, and Ug was proposed to be Ug =
e2N2

t
8εεoNi

. Here, ε is the permittivity, and Nt is

the number density per area of electron traps in the depletion region. To compute the total

scattering rate from all boundaries the number density of grain boundary scattering centers

is defined as N = 4f/(lgr
2
0), where 0 < f < 1. Unfortunately, exact values of ro, zo, f ,

Nt are unknown. In this manuscript we use the values proposed by Minnich et al. in their

original paper on Si0.8Ge0.2 (ro = 1 nm, zo = 2 nm, f = 0.7, Nt = 1013 1/cm2, and we refer

the reader to their work for the full details of the approach [39].

Figure 4.8 shows the variation in the electron lifetimes versus energy for the dif-

ferent scattering processes described above in Si0.8Ge0.2 doped to a carrier concentration

of 1020 1/cm3 at 500 K. At this doping level and temperature impurity scattering is the

strongest scattering process for low energy electrons, while high energy electrons are pre-

dominantly scattered by phonons; however, alloy, impurity, and phonon scattering all make

a non negligible contribution to the total rate of scattering. The scattering time due to

grain boundaries in polycrystalline material with effective grain size 50 nm, and the scat-

tering time due to 20 nm spaced cylindrical pores (for φ = 25%) are also plotted in figure
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Figure 4.8: Electron lifetime for the different scattering mechanisms in Si0.8Ge0.2 at 500
K with a carrier population of 1020 1/cm3. In low energy states electron-impurity is the
strongest scattering term. For higher energy levels electron-phonon is the main source of
scattering. The electron-grain boundary (lg = 50 nm) and electron-pore (pore-pore spacing
of 20 nm) for 25% porosity are two additional scattering terms in polycrystalline porous
Si0.8Ge0.2 that are shown in green and light red, respectively.

4.8. For the extended pores considered here, scattering is only possible into states with the

same component of wave vector along the pore axis, i.e., qz = 0. This condition, combined

with the isoenergetic constraint, reduces the scattering integral to an elliptical line, drasti-

cally reducing the number of states that can participate in scattering, and means that the

extended pores cause next to no change in the electron momentum along the axis of the

pores.

There is one final adjustment that must be made to the electrical transport model

for the case of porous SixGe1-x. Although pores do not change the local material properties

such as carrier concentration, density of states, or Fermi energy, away from the pores, they

do change the volume-averaged carrier concentration due to the reduction in the volume-

averaged density of states. This will impact the conductivity, and thus the effective electrical
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conductivity of porous materials is modeled as σ = (1− φ)σnp. This change does not affect

the Seebeck coefficient since it describes the relationship between two intensive quantities

and so the changes in the density of state cancels out for the denominator and numerator

in equation 4.3. This means that the extended pores lower the power factor as PF =

(1− φ)PFnp.

4.5 Thermoelectric ZT of Nanoporous Polycrystalline

Si0.8Ge0.2

To compute the total ZT of SixGe1-x we combine the computed electrical and

phonon transport properties described in the sections above with the electronic contribu-

tion to thermal conductivity computed using equation 4.4. While phonons are the main

contributors to thermal conductivity in crystalline dielectrics, in nanoengineered semicon-

ductors where fine grain boundaries significantly suppressed lattice thermal conductance,

the electron contribution to heat conduction is considerable — this is of especial importance

for designing TEs for high temperature working condition where maximum PF takes place

at higher carrier concentration as can be seen in figure 4.11 in the APPENDIX.

Figure 4.9 shows the best ZT performance that could be obtained by tuning the

carrier concentration at each temperature, along with the corresponding optimal carrier

concentration. It can be seen that both the addition of grain boundaries and nanopores

produce a significant improvement in ZT with the grain boundaries having the stronger

effect. The enhancements are not additive, so that there is little additional benefit to adding

5% porosity to polycrystalline Si0.8Ge0.2, but there is a significant gain to be had by adding
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25% porosity. Most importantly, with addition of nanostructure, the carrier concentration

at which peak ZT occurs is reduced. Pores and grain boundaries have negligible effect

on electron scattering, but pores reduce the overall density of carriers reducing electrical

conductivity. With the combination of pores and grain boundaries phonon conductivity can

be sufficiently suppressed that the electric heat transport becomes significant. In this regime

ZT can be further enhanced by reducing the carrier concentration to reduce the electrical

conductivity and electronic thermal conductivity while increasing the thermopower.

The solubility of P in Si at 1000 K, is 1021 Atoms/cm3 [127], and the electrically

active fraction of that is significantly lower. The solubility of P in Si0.8Ge0.2 is around half

that of P in Si [128]. The carrier concentrations required to obtain peak ZT in single crystal

Si0.8Ge0.2 are likely to require a super saturated concentration of P. This not only requires

heating additional processing steps to achieve, it is easily destroyed during service if the

material in inadvertently heated to a point when the dopant becomes mobile. With the

addition of nanostructuring Si0.8Ge0.2 requires only half the carrier concentration to obtain

peak ZT making material easier to process and more thermally robust.

4.6 Conclusion

To summarize we have used quasiballistic semiclassical Boltzmann transport model

to elucidate the effect of extended nanopores with different shapes on thermoelectric perfor-

mance of Si0.8Ge0.2 based TE materials. We have shown that while the pristine Si0.8Ge0.2

alloys’ thermal conductivity varies from about 12.5 W/mK at 200 K down to 5.4 W/mK

at 1300 K, only 5% porosity of extended pore (100 nm spacing) can lower the conductivity

100



Figure 4.9: Plots of the maximum ZT that can be obtained by tuning the carrier concentra-
tion at each temperature. The data plotted with circles is the ZT and corresponds to the
left hand axis, while data plotted with squares is the carrier concentration that produces
the best ZT . The red line is for monolithic single crystal Si0.8Ge0.2, the same material
containing porosity φ in the form of cylindrical pores with a 20 nm spacing in blue, and
polycrystalline Si0.8Ge0.2, with 20 nm grain size in green, and polycrystalline material with
the 20 nm grain size and pores with a 20 nm spacing is plotted in purple. The top plot
(left) is for 25% porosity, while plot (right) is for 5% porosity.

to around 3 W/mK. Further increasing porosity to 25% lower thermal conductivity to less

than 1.7 W/mK. The porous alloys show very weak dependency on temperature as the rate

of scattering of heat carrying phonons by the phonon bath is superseded by scattering at

interfaces. We further evaluated the effect of porosity on polycrystalline Si0.8Ge0.2 with ef-

fective grain sizes from 10 nm up to 200 nm. Cylindrical pores with 100 nm spacing reduced

the thermal conductivity more than 40% compare to the polycrystalline material with 50

nm grains but no pores. We have also modeled electron-pore scattering rate. The model

demonstrated that electron has very weak coupling with extended pores and therefore the

changes in the power factor is only due to changes in the volume averaged density of state.

This model shows that introducing 20 nm spacing cylindrical nanopores in polycrystalline

Si0.8Ge0.2 with 20 nm nanograins thermoelectrics can further improve the ZT up to 20%.
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4.7 Appendix

4.7.1 Appendix A: Importance of Pore’s Shape on Thermal Conductivity

Figure 4.10 shows the fractional thermal conductivity of pores with different shapes

of cylindrical (marked with circle), cubic (marked with square), and triangular prism

(marked with triangle). The cylindrical pores show the highest thermal conductivity while

the triangular prism pores show the lowest thermal conductivity among the pores studied

here (∼ 80% of the cylindrical pores for the same spacing). This can be explain using

phonon view factor — the possibility of a phonon successfully traveling through the film

thickness without colliding with voids. For cylinder (Fc), square prism (Fs) and triangle

prism(Ft), the view factors are defined as [85]

Fc = 1−
√

4φ

π

(
π

2
−

[
sin−1

(√
4φ

π

)
+

√
π

4φ
− 1−

√
π

4φ

])
(4.18)

Fs = 1− 2
√
φ

1− 1

2

√1 +

(
1√
φ
− 1

)2

−
(

1√
φ
− 1

)2
 (4.19)

Ft =

√√√√4
φ√
3
− 2

√
φ√
3

+ 1− 2

√
φ√
3

(4.20)

For φ = 0.25, the view factors are Fc = 0.2776, Fs = 0.2071, Ft = 0.1443.

The cumulative lattice thermal conductivity of bulk materials is generally describe by a

uniparameter logistic function (in logarithmic abscissa) with form of K(Λ) = κl
1+ Λo

Λ

. In this

equation, K and Λ are the cumulative lattice thermal conductivity in bulk material and

phonon mean free paths, respectively. The Λo term is a uniparameter used to fit cumulative

thermal conductivity with the logistic function. We remark that Λo roughly estimates the
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Figure 4.10: Fractional thermal conductivity vs pore spacing for pores with different shapes
of cylindrical in red, cubic in blue and triangular prism in green at 300 K.

feature size at which nanostructuring dominates over anharmonic scattering [89].

We use the same model for the porous Si0.8Ge0.2 and fit the cumulative thermal

conductivity versus mean free path to the proposed kernel to find Λo for structures with

different shaped pores — we noticed that this model does not fit well for materials with

grain boundaries. In the bulk, Λo is equal to 620 nm. For 500 nm pore-pore spacing,

Λo is 165 nm, 150 nm, and 130 nm for circular, cubic and triangular pores, respectively.

These values are well bellow the Λo in bulk, emphasizes that the pores are the dominant

scattering term. We note that the structure containing triangular pores has the lowest Λo

and therefore to further tune thermal conductivity using secondary type of defects (e.g.

grain boundary), the feature size of the additional defects should be lower for structures

with triangular shaped pores.

Figure 4.11 shows the mode-resolved thermal conductivity across the frequency

spectrum in porous Si0.8Ge0.2 with 5 µm pore-pore spacing with cylindrical pore and trian-
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Figure 4.11: Mode-resolved thermal conductivity across the frequency spectrum in porous
Si0.8Ge0.2 with 5 µm pore-pore spacing with (left) cylindrical pore and (right) triangular
prism pore.

gular prism. The mean free path is indicated by color intensity. We observed some missing

long mean free path in materials with prism pore that exist in materials with cylindri-

cal pore. Overall, the mean free path and thereby modal thermal conductivity in porous

Si0.8Ge0.2 with cylindrical pores are higher across the spectrum.

4.7.2 Appendix B: Importance of Electrical Contribution to Thermal

conductivity

Figure 4.12 (left) shows the ratio of electron thermal conductivity to lattice thermal

conductivity for the best ZT performance in crystalline Si0.8Ge0.2 in red, Si0.8Ge0.2 with

cylindrical pores of pore-pore spacing of 20 nm in blue, the polycrystalline Si0.8Ge0.2 with

Lg = 20 nm in green and nanoporous polycrystalline Si0.8Ge0.2 with cylindrical pores of

20 nm spacing and Lg = 20 nm in purple. In nanostructured Si0.8Ge0.2, charges carry a

significant amount of heat especially at high temperatures. Figure 4.12 (right) shows the

variation of ZT with carrier concentration in crystalline Si0.8Ge0.2 in red, Si0.8Ge0.2 with
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Figure 4.12: (Left) The electron thermal conductivity to lattice thermal conductivity ratio
versus temperature and (right) variation of ZT with carrier concentration at 1100 K in bulk
pristine Si0.8Ge0.2 in red, porous Si0.8Ge0.2 in blue, polycrystalline Si0.8Ge0.2 in green and
polycrystalline porous Si0.8Ge0.2 in purple.

cylindrical pores with 20 nm spacing in blue, the polycrystalline Si0.8Ge0.2 with Lg = 20 nm

in green and nanoporous polycrystalline Si0.8Ge0.2 with cylindrical pores of 20 nm spacing

and Lg = 20 nm in purple at 1100 K. The maximum achievable ZT is shifted to lower

carrier concentration in nanoengineered structures.
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Chapter 5

Heat Current Anticorrelation

Effects Leading to Thermal

Conductivity Reduction in

Nanoporous Si

5.1 Abstract

Prevailing nanostructuring strategies focus on increasing phonon scattering and

reducing the mean-free-path of phonons across the spectrum. In nanoporous Si materials,

for example, boundary scattering reduces thermal conductivity drastically. In this work,

we identify an unusual anticorrelated specular phonon scattering effect which can result

in additional reductions in thermal conductivity of up to ∼ 80% for specific nanoporous
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geometries. We further find evidence that this effect has its origin in heat trapping be-

tween large pores with narrow necks. As the heat becomes trapped between the pores,

phonons undergo multiple specular reflections such that their contribution to the thermal

conductivity is partly undone. We find this effect to be wave-vector dependent at low tem-

peratures. We use large-scale molecular-dynamics simulations, wave- packet analysis, as

well as an analytical model to illustrate the anticorrelation effect, evaluate its impact on

thermal conductivity, and detail how it can be controlled to manipulate phonon transport

in nanoporous materials.

5.2 Introduction

Nanostructuring has enabled an unprecedented control of phonon transport with

widespread applications ranging from microelectronic devices [129] to data storage [130],

and microelectromechanical systems [131, 132]. Strong focus has been placed on reducing

thermal conductivity for thermoelectric and heat insulation applications [68, 69, 46, 133].

This is largely because nanostructuring can significantly reduce a material’s thermal con-

ductivity—particularly in semiconductors and dielectrics. Reductions of up to two orders

of magnitude have been observed over the last few years in several Si-based nanostructures,

including rough Si nanowires [134, 135], thin films [136, 137], and Si-based alloys and super-

lattices [138]. Recent works concerning Si-based nanoporous materials have also shown that

the room-temperature thermal conductivity can be reduced beyond the material’s amor-

phous limit [68, 69, 46]. The consensus is that porosity reduces the heat capacity of the

material and thus its thermal conductivity to some degree, but the additional scattering of
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phonons on the pore surfaces reduces the thermal conductivity even below the amorphous

limit.

Existing nanostructuring strategies largely focus on alloying and introducing de-

fects at different length scales to increase “incoherent” phonon scattering and thereby reduce

the relaxation times of phonons across the spectrum. Most often, the phonon-gas picture

suffices to describe thermal conductivity, even in nanoporous materials [103, 139, 140].

How- ever, the issue as to whether “coherent” wave effects alter the phonon dispersion

relations—changing group velocities, the density of states, and creating phononic band

gaps—or result in the localization of modes is still an open topic [69, 140, 141, 142, 143].

Herein, we report the emergence of anticorrelated (AC) specular phonon scattering (and

thus heat flux) as a result of heat trapping between the pores, which can provide up to

∼ 80% additional reduction in thermal conductivity for specific nanoporous geometries.

Anticorrelated heat flux has been observed in amorphous and fluid materials, but not in

crystalline materials [144, 145, 146, 147]. The AC effect can benefit thermoelectric appli-

cations, but also find wider application for the control and manipulation of heat-carrying

phonons in nanophononic metamaterials in general. In this work we use large-scale equilib-

rium molecular dynamics (EMD), wavepacket simulations, and develop an analytical model

to: (1) describe the anticorrelated heat-flux behavior and the conditions that preclude it

(heat trapping), (2) evaluate its impact on thermal conductivity, and (3) detail how this

effect can be controlled to manipulate phonon transport in nanoporous materials. We begin

by describing the approaches used (Sec. II), followed by the observations of anticorrelated

heat-flux behavior as a function of the nanoporous geometries (Sec. III), obtained with
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the Green-Kubo approach. In Sec. IV, we discuss the results of wave-packet simulations,

which provide an illustrative picture of the underlying physical mechanism for the heat-flux

anticorrelation. These results indicate that heat trapping and multiple reflections between

the pores is what manifests as anticorrelation effects in the heat flux and further suggest

the effect to be wave-vector dependent. Finally (in Sec. V), a simple ray-tracing model

is introduced, which connects the behavior observed in Secs. III and IV by showing, in a

simple manner, how specular phonon reflections between the pores with multiple reflections

can lead to heat-flux anti- correlation effects. Section VI offers a conclusion for the bulk of

the work presented.

5.3 Methods

Thermal transport in nanostructured geometries requires an understanding beyond

what is achievable at a continuum level, and yet simulation domains larger than can be

accommodated by first-principles approaches. Methodologies available to study nanoporous

morphologies are thus limited to classical molecular dynamics (MD) [148, 149, 150, 151],

or semiclassical approaches involving the numerical solution of the Boltzmann transport

equation (BTE) [152, 153, 123, 154, 101], and, to some extent, lattice dynamics [148, 155,

156]. In this work, we use a combination of both equilibrium molecular dynamics (EMD)

and wave-packet simulations to evaluate thermal transport in Si nanoporous structures.

We further develop a simple statistical model of a gray population of heat-carrying acoustic

phonons to illustrate how heat trapped between the pores can lead to anticorrelated behavior

in the heat-current autocorrelation function (HCACF). The model is described in Sec. V.
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The Green-Kubo is a well-established approach to deter- mine the thermal con-

ductivity of a system from its thermal fluctuations at equilibrium, such that the thermal

conductivity along x [i.e., the length of the simulation cell as shown in the inset in Fig.

5.1(a)], κx , is given by

κx =
V

kBT 2

∫ ∞
0
〈Jx(t)Jx(t+ τ)〉dτ. (5.1)

where V and T are the volume and temperature of the system respectively, kB is Boltz-

mann’s constant, and 〈Jx(t)Jx(t+τ)〉 = A(τ) is the averaged but non-normalized HCACF of

the x component of the instantaneous heat-flux, Jx(t), at simulation time t. The HCACF

measures the size and longevity of thermal fluctuations in the heat flux of a system in

equilibrium, and is central to revealing the anticorrelated behavior that we describe below.

Simulations were performed with the large-scale molecular-dynamics software

LAMMPS [157], using the Stillinger-Weber (SW) potential [158]. We have opted to use

the SW potential in this work in part because it is commonly used to model heat transfer

in silicon [148, 159], and for consistency with our previous work [103]. Although it overesti-

mates the thermal conductivity [160], the Stillinger-Weber potential provides a reasonable

match for the phonon dispersion relations, in particular for the acoustic phonons [161].

The results were averaged for sets of 15–20 simulations to mitigate the large uncertainty

in the Green-Kubo approach [103], and smaller simulation cell sizes were used where pos-

sible to reduce computational expense. Simulation cell sizes varied between 40× 10× 10

and 200× 10× 10 unit cells for the simulations associated with Figs. 5.1 and 5.3, and

100× 10× 10, and 100× 24× 10 unit cells for the simulations in Fig. 5.2. This corre-
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sponds to dimensions ∼ 21.72× 5.43× 5.43 to ∼ 108.6× 5.43× 5.43 nm3 for Figs. 5.1 and

5.3, and ∼ 108.6× 5.43× 5.43 to 108.6× 13.03× 5.43 nm3 for Fig. 5.2, respectively. Sys-

tem sizes are indicated in the figures, and following common practice we report the fractional

change in thermal conductivity compared to the pristine system, κporous/κ0. We considered

porous Si as illustrated in the inset of Fig. 5.1(a), where the pores are empty cylindrical

regions “etched” from the top all the way to the bottom of the material. The systems were

brought to and equilibrated at ∼ 300 K, such that each system has its own initial configura-

tion. Temperature equilibration is done in two parts: (1) the systems are brought to room

temperature and allowed to thermally expand in the isothermal, isobaric ensemble (NPT)

for 125 ps, and (2) equilibrated in the microcanonical ensemble (NVE) for an additional

125 ps, before any calculations are performed, also in NVE, for 10 ns. Equilibration is

performed using a 0.5-fs interval, whereas a 2-fs time step is used to record the heat flux

for the HCACF calculation. Transport properties reported in this work are computed along

the x axis, that is, along the long direction of each simulation cell [as shown in the inset

in Fig. 5.1(a)], which is aligned with the [1 0 0] crystal direction. Additional simulation

details can be found in our recent work [103].

For illustration of phonon propagation in the structures we simulate, we form

Gaussian phonon wave packets and let them propagate while we monitor their trajectory.

A Gaussian phonon wave packet is a propagating wave function formed by a linear super-

position of plane waves weighted by a Gaussian distribution around a localized wave vector,

and defined by
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Figure 5.1: (a) Normalized HCACFs, A(τ)/A(0), for the geometries in (c). (Inset) κx/κ0

(extracted at the 75-ps cutoff) as a function of porosity. (b) Evolution of κx/κ0 as a function
of the HCACF time, τ . The dashed/solid lines correspond to geometries without/with
anticorrelated heat flux (r = 1 nm/r = 1.5 nm). The cyan geometry has an elongated pore,
with a vertical (y direction) spacing of 3.43 nm such that the neck size is equivalent to
the geometries with r = 1 nm. It has the same porosity and number of scatterers as the
purple geometry. The error bars correspond to the standard error across the simulations
performed for each geometry. (c) Cross section of the xy plane (for a 108.6-nm width), for
the geometries plotted in (a) and (b). The actual simulation cell is indicated by the black
box.

uljµγ =
∑
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(
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σ
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2

)2

εjµe
−i(rlq+ωγt). (5.2)

Here, uljµγ is the displacement of the j th atom in the lth unit cell along a direction µ (in

x, y or z) for a given mode, γ. Ao is the amplitude of the wavepacket, which can be tuned

to a desired wavepacket energy.

The wavepacket is centered at a desired carrier wavevector, qo, with an uncertainty

in momentum space specified by σ. The term ωγ is the frequency of the mode γ at qo, and εjµ
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Figure 5.2: (a) A(τ)/A(0) for a range of geometries with the same number of pores, but
varying pore radius and neck size. Simulation cell sizes are indicated in the inset. Pore radii
vary between 1 and 2.5 nm for the geometries in blue, 1.5 and 3.59 nm for the geometries
in red, 2.44 and 4.83 nm for the geometries in green, and 3.6 and 5.92 for the geometries
in cyan. (b) Evolution of κx/κ0 as a function of τ for the same geometries. (c) Plot of the
percentage reduction in κx due to the AC effect as a function of the radius to neck ratio.
(Inset) Reduction in κx as a function of the neck.

is the eigenvector of the j th atom along µ at the selected mode, γ. rl is a vector that points to

the lth unit lattice, and t is the time. The sum over q is performed for all wavevectors in the

first Brillouin zone that are commensurate with the compute cell. The phonon wavepacket

simulations are centered at wavevectors qo ' 0.46, 0.93, 1.45, 1.74, 2.89, 4.05, and 5.21 nm−1

along the [1 0 0] crystal direction for both the longitudinal and transverse acoustic modes

(γ). Large simulation cells, consisting of 800 × 10 × 10 primitive cells for Si are used

to precisely model the wavepackets with very fine uncertainty in momentum space (σ =

0.05 nm−1). The initial position of the atoms in the MD simulation is computed using Eq.

5.2 and the initial velocity is computed from the derivative of uljµγ with respect to time

(vljµγ = d
dtuljµγ).

In our wavepacket simulations, the system is initially at 0 K and the wavepackets

are added with Ao for each wavepacket tuned so that it raises the temperature of the

system by around ∼ 5 K, rather than adding one phonon, h̄ω, of energy. The reason is

that in the system sizes modeled, h̄ω for wavepackets near the Brillouin zone center is too
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small to be resolved above the numerical noise, while a single h̄ω would raise the system

temperature by hundreds of Kelvin for wavepackets near the Brillouin zone edge. While the

Green–Kubo calculations were performed at 300 K, performing the wavepacket simulations

at lower energy (∼ 5 K) helps keeping phonon thermalization at bay, such that the acoustic

frequencies selected for the packets don’t easily decay into other modes/frequencies due

to anharmonicity. This allows us to observe the scattering behavior of specific wavevector

phonons at the nanopores, as they are less likely to be obfuscated by anharmonic effects.

The actual values of Ao are included in the Supplemental Material [52].

5.4 The Anticorrelation Effect

In this section, we clarify and demonstrate the emergence of anticorrelations in

the heat flux and quantify its effect on the thermal conductivity as a function of pore and

neck sizes, as well as pore periodicity. Three sets of geometries are considered in Fig. 5.1

(1) pores with a 1-nm radius (blue, green, orange), (2) pores with a 1.5-nm radius (red,

purple, and maroon), and (3) an elongated pore (cyan), such that the “neck,” i.e., the

distance between the edges of the pores perpendicular to the direction of transport (i.e., in

the y direction), is 1 nm, but its porosity is the same as that of the geometry in purple.

A cross section along the xy plane is shown in Fig. 5.1(c) for each of the geometries. The

length of the simulation cell varies between ∼ 27.2 and 108.6 nm, and the width along the

y direction is ∼ 5.43 nm for all of the geometries shown in Fig. 5.1. The moving average

of the HCACFs and the HCACF cumulative integrals for these geometries are plotted in

Figs. 5.1(a) and 5.1(b), respectively.
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Figure 5.3: (a) A(τ)/A(0) for the geometries in (e). All geometries have the same radius, r
= 1.5 nm, but different pore concentrations. (b) Evolution of κx/κ0 as a function of τ for
the same geometries. The percentage change in κx due to AC is also indicated. (c) Zoom in
of the higher-porosity geometries. (d) Plot of the HCACF time at which point each HCACF
dip minima (circles) occurs as a function of the horizontal (x-axis) distance between the
pores, and corresponding linear fit (green line); equivalent plot for the HCACF dip maxima
(corresponding to where the HCACF becomes negative) (stars/black line). The slope of
each line is also shown. The circles and stars match the color of the geometries. (e) Cross
section of the xy plane for the geometries plotted in (a), (b), and (c).

The HCACF can be decomposed into contributions from short- and long length-

scale interactions by fitting the HCACF to a sum of exponentials [144], from which the

relaxation times for different length-scale phonon processes can be extracted. The rate

of decay of the HCACF is thus a measure of the relaxation times of the heat-carrying

phonons in the system. The typical HCACF for Si decays exponentially and monotonically

to zero. In our simulations, the geometries with pore radius r = 1 nm [first triad of Fig.

5.1(c) structures], and the elongated pore geometry (cyan), all match this behavior; the

small oscillations around zero stem from statistical noise in the HCACF and are to be

expected [103, 162]. However, the HCACFs of geometries containing uniformly distributed

1.5-nm pores show anomalous behavior [second triad of Fig. 5.1(c)]. The HCACFs become

negative and decay to zero from below the x axis. The negative correlation or, equivalently,

the anticorrelation [shown in Fig. 5.1(a) as the region of the HCACF that is below zero]

in the narrow neck systems occurs when heat-flux fluctuations in one direction are followed
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by fluctuations in the opposite direction. This anticorrelation reduces the system’s thermal

conductivity, creating a peak in the cumulative HCACF integral at the point where the

HCACF crosses the x axis as shown in Fig. 5.1(b). We can observe in Fig. 5.1(a) that

there are variations in the width, the minimum, and the time after which each minimum

occurs for the geometries shown. How these characteristics are affected by the geometry is

discussed later in the text. We begin by quantifying the reduction in thermal conductivity

that is due to the anticorrelation of the heat flux.

As a metric of the reduction in the thermal conductivity, κ, due to the anticorre-

lation we consider the height of the peak in the cumulative HCACF integral above its final

converged value. This value is indicated in Fig. 5.1(b) for the geometry in purple, and cor-

responds to a 21.5±6.5% decrease in the accumulated κ. For a more realistic comparison of

the decrease in thermal conductivity due to this effect, we considered a reference geometry

(in cyan) without AC effects [its pores are elongated, such that the neck matches those

of the geometries in the first triad (top) of Fig. 5.1(c)], but with equivalent porosity and

number of scatterers as the geometry in purple [which belongs to the second triad (bottom)

of Fig. 5.1(c)]. Comparing the two geometries, the purple system yields a 37.4 ± 9.0%

decrease in thermal conductivity [see inset in Fig. 5.1(a)].

This estimated 37.4± 9.0% reduction in thermal conductivity suggests that using

the HCACF peak height to estimate the effect of AC, which yields an estimated 21.5±6.5%

change in thermal conductivity [see Fig. 5.1(b)] underestimates the total reduction in κ.

However, it would be too computationally expensive to compute similar elongated pore

geometries to match each of the other geometries investigated herein, and henceforth we
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use the peak height to compare the impact of each geometry on the thermal conductivity.

Overall, the AC effect provides an additional path to reduce the thermal conductivity,

and the scale of the reduction is comparable to that achieved by increasing the number

and surface area of the scattering features. For instance, the thermal conductivity of the

geometry in red (with AC effects) has a similar porosity to the geometry in green (without

AC effects), which has a higher number of scatterers and thus also surface area [see insets in

Fig. 5.1(a) and Fig. 5.1(c)]. The same equivalence can be observed between the geometry

in purple and the system in orange.

To further determine how the AC effect emerges with respect to the porous geom-

etry, in Fig. 5.2 we examine multiple geometries with different pore and neck sizes. To vary

the pore and neck sizes independently, we selected four equal- length sets of geometries, but

with varying width (i.e., the y direction in the simulation cell), as illustrated in the insets in

Figs. 5.2(a) and 5.2(b). This allows us to consider geometries with the same neck size, but

different pore size, and vice versa, and in general various neck and pore sizes. Multiple pore

sizes are considered for each set of the characteristic geometries of different widths [blue,

red, green, and cyan as shown in the insets of Fig. 5.2(a)]. Pore sizes are indicated in the

caption of Fig. 5.2. In all cases the distance between the pores’ center is kept constant. The

length of the simulation cell is also fixed at 54.3 nm. Figure 5.2 shows the HCACFs [Fig.

5.2(a)], and corresponding cumulative integrals [Fig. 5.2(b)] for the various geometries.

Much larger dips in the HCACF can be engineered compared to Fig. 5.1, some affecting

the cumulative integrals and the thermal conductivity in a drastic way.

If we again consider the height of the peak created in the cumulative integral of
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the HCACF [Fig. 5.2(b)] to estimate the effect of the AC in the heat flux, as we have done

before, we find that for any given geometry type (blue, red, green, and cyan geometries),

the percentage change in κ plateaus as a function of the ratio between the pore radius and

the neck [Fig. 5.2(c)]. The neck [see inset illustration in Fig. 5.2(b)] plays a major role in

producing an anticorrelation in the heat flux. Figure 5.2(c) illustrates that (1) the AC effect

is better correlated to the ratio of the neck to pore radius than to either the pore radius, or

neck width alone [see inset in Fig. 5.2(c)]. In other words, a smaller pore system requires a

smaller neck to yield the same dip minima as a larger pore system, and the ratio between

the neck and pore diameter is a better metric of the total thermal conductivity than either

the neck or pore diameter alone (see Fig. S5 in the Supplemental Material [40]). This is

consistent with results from Monte Carlo simulations as well [163]. Similarly, we intuitively

expect a smaller neck and a larger radius to reflect (back) phonons more effectively and

create a stronger anticorrelation effect. The results in Fig. 5.2(c) further indicate that

beyond a certain point it makes no difference if the neck is further reduced for a given pore

size. One possibility for this plateau, which is reached at a 79.3± 12.6% reduction in κ for

a fixed pore periodicity of 54.3 nm [see Fig. 5.2(c)], is that a limit is reached at which point

the remaining phonons, with short mean-free paths (smaller than the pore periodicity), will

thermalize before anticorrelated behavior can take place.

It follows from Fig. 5.2 that the extent to which the heat flux is anticorrelated

can be controlled by carefully selecting the pore and neck sizes, that is, the lateral spacing

between pores. Next, we show that the spacing between the pores in the direction of

transport can also affect the location of the HCACF dip minima. We consider a set of
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geometries of periodically arranged pores, depicted in Fig. 5.3(e), with the same pore

radius (r = 1.5 nm) but varying pore density. All of the geometries in Fig. 5.3(e) exhibit

anticorrelated heat-flux behavior to some extent, with the exception of the higher pore

concentration geometry (in green). Each of the dips in the (moving average of the) HCACFs

shows up at a different instance of the HCACF time, as seen in Fig. 5.3(a). Similarly, the

HCACF cumulative integral [Fig. 5.3(b)] shows peaks (labeled with stars) moving to the

left. The percentage change in thermal conductivity due to the AC effect is indicated in Figs.

5.3(b) and 5.3(c). Notice that the peaks occur earlier than the dip minima (labeled with

dots), as they correspond to the instance where the HCACF becomes negative. Interestingly,

we find that there is a linear correlation between the distance between the pores, d [see

Fig. 5.3(e)], and when the anticorrelation dip minima and integral peak maxima occur

[Fig. 5.3(d)]. The slopes of the aforementioned relationships are also indicated, in units of

velocity.

The dip minima indicate the simulation time intervals at which the anticorrelation

effect is strongest. Using this measure, we find the slope of the correlation between when

the anticorrelation effect is strongest (i.e., the dip minima) and d to be νdips = 2845 m/s.

(If instead we use the peaks of the cumulative HCACF, we obtain νpeaks = 4395 m/s.)

As a reference to the reader, near the Γ point of the Si phonon spectrum obtained with

the Stillinger-Weber potential, the velocities for the (dominant) longitudinal acoustic and

transverse modes are ∼ 8100 and ∼ 5000 m/s, respectively, yielding an average speed of

∼ 6033 m/s for the three modes. There is clearly a linear relation between the appearance

of the anticorrelation effects and the pore distances.
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5.5 The Heat-Trapping Origin of the Anticorrelation Effect

To investigate the origin of the AC effect on the porous structures, wave packets

centered at a wave vector qo, as detailed in Sec. II, are propagated through two sets of

systems with pore radii of 1 nm [left-hand plots of Figs. 5.4(a)–5.4(h)] and 2 nm [right-

hand plots of Figs. 5.4(a)–5.4(h)] with corresponding 3.4- and 1.4-nm necks. When we

evaluate the thermal conductivity of the structures in the left and right columns with the

Green-Kubo approach, the structure in the left column does not show AC effects, whereas

the one in the right does. Both longitudinal and transverse modes are considered for several

values of qo, for which heat maps are obtained showing the evolution of the kinetic energy

of the wave packets in the geometries during simulation time. The values of qo are noted

in each subfigure, and they are also indicated by the vertical lines in Fig. 5.4(k) on the q

axis, where the frequencies and velocities of the modes are plotted as well. This is shown

in Figs. 5.4(a)–5.4(h) for the transverse mode with polarization perpendicular to the pore

height [labeled TA ⊥ in Fig. 5.4(i)]. The longitudinal (LA) and parallel transverse (TA ‖)

modes, as well as other qo-centered packets for the same (TA ⊥) mode are shown in the

Supplemental Material [40]. In the heatmaps [Figs. 5.4(a)–5.4(h), 5.4(j), and 5.4(l)] the

ordinate indicates the propagating time and the abscissa the length direction. The positions

of the pores are indicated by the white vertical lines and are located at 216 and 270 nm.

From Figs. 5.4(a)–5.4(h) it is evident that (1) the amount of heat reflected at

the first pore is consistently greater for the larger pore, narrower neck geometries (center

column in Fig. 5.4), and (2) the amount of heat that is transmitted after the second pore is

significantly reduced for the same narrow-neck geometries. As a consequence of hindering
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Figure 5.4: (a)–(h) Heatmap of the evolution of the wave-packet kinetic energies during
the simulation time along the width of the nanoporous geometries. (i) Transmissions (i.e.,
the amount of kinetic energy that goes through) on the left-hand side pore, for the 2-nm
(dashed lines with circle markers) and 1-nm (solid lines with star markers) pore geometries.
(j) Heatmap for a wave packet centered at qo = 1.75 nm-1 with a pore distance of 27 nm.
(k) Dispersion relation showing the acoustic transverse and longitudinal mode frequencies,
as well as velocity. (l) Heatmap for a wave packet centered at qo = 5.24 nm-1 with a pore
distance of 27 nm. (m) Example of geometry with a packet propagating through it.

heat propagation through the spacing between the pores, it can also be seen that for the

narrower neck geometry (center column of Fig. 5.4) phonons become trapped between the

pores, causing the packets to oscillate back and forth. This effect is also clearly shown to be

q dependent, in that it is more or less prevalent at different wave vectors; roughly, the heat

blocking and accumulation becomes stronger for phonons with larger wave vectors. This is

most noticeable by considering the trans- mission at the second pore (i.e., the amount of

kinetic energy that reaches past the second pore, located at 270 nm), which disappears for
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qo values of 4.07 and 5.24 nm-1, but is present at other values of qo.

We remark that, in the case of the wave packets, the pore neck/size controls the

amount of energy trapped between the pores not only by not allowing heat to escape once

through the first pore, but also by limiting the amount of heat that goes through the

first pore. For instance, for qo = 4.07nm−1 in the narrow-neck structure [Fig. 5.4(g)] the

intensity of the heat bouncing back and forth is somewhat less than that in the wider neck

case [Fig 5.4(c)]; however, this is most likely because most of the kinetic energy is reflected

at the first pore, and less energy is therefore available to be reflected between the pores. The

multiple reflections observed in the geometries with narrower neck/larger pores corroborate

the EMD simulation results discussed in the previous section, which exhibit HCACFs with

negative values evidencing an anticorrelation of the heat flux. In short, like the packets

which bounce back and forth between the pores for geometries with narrower neck, in the

equilibrium calculations, heat similarly fluctuates back and forth between the pores. As the

necks become smaller and the pores larger, more heat is trapped and scattering between the

pores is intensified. This agrees with the observations in Fig. 5.2, which show an increase

in the (proportional) amount of anticorrelated heat flux for narrower neck geometries (over

positively correlated heat flux). In Fig. 5.2(a), this is evident in how negative the HCACF

becomes as the pore sizes increase and necks decrease.

The transmission through the first pore as a function of qo is shown in Fig. 5.4(i)

(see the Supplemental Material [40] for calculation details) for all acoustic modes. Overall,

the trans- mission is lower for larger wave vectors (and thus also higher frequencies). This

could account for why νdips [Fig. 5.3(d)] is less than exactly half the speed of the average
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of the acoustic modes. In other words, if higher qo phonons are most noticeably trapped

between the pores, the overall velocity of these modes would be lower than their velocity

at Γ, because the velocity of the modes decreases a function of q [see Fig. 5.4(k)]. In fact,

higher-frequency modes are more likely to be scattered between the pores, while larger wave

vectors are less likely to “see” small-size features [43]. That said, the increased scattering

rate between pores for larger pores/smaller necks is nevertheless still present at low wave

vectors [see Fig. 5.4(a)]. Due to their weaker Umklapp scattering, phonons with small

wave vectors are known to contribute more to the overall thermal conductivity than large

wave-vector phonons. On the other hand, it is also known that the contribution of higher

q values becomes more noticeable once lower q values have been scattered, for instance due

to defect scattering [122, 164, 165, 166].

The trend observed in Fig. 5.3(a), whereby the HCACF dip moves left as the

periodicity between the pores becomes smaller (i.e., as the pores become closer together

in the direction of thermal transport) can be understood as a function of the maximum

possible correlation distance (and thus time) for heat scattering between the pores in each

case. Consider the heat trapped between the pores in the packet simulations: the distance

between the pores dictates the maximum distance heat may travel from the moment it first

crosses the left-hand side pore until it finally dissipates. For this reason, the maximum

correlation interval, τ , is smaller when the pores are closer together: see Figs. 5.4(f) and

5.4(h), where the pores are 54 nm apart, in contrast with Figs. 5.4(j) and 5.4(l), in which

the pore separation is 27 nm. In other words, this is why the HCACF correlation time,

τ , shifts to the left in Fig. 5.3(a), as the geometries become more densely packed [see
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corresponding geometries in Fig. 5.3(d)]. In short, Fig. 5.3(d) shows that the duration

of heat-flux fluctuations before the reversal process scales linearly with the distance, d,

between the ranks of pores—indicating that the fluctuation duration depends on the time

of flight to strike the pores and that pores must be causing the reversal. Finally, a reduction

in the x component of the wavepackets’ velocity after scattering at the pore surfaces, as

observed in Ref. [148], can also be observed in this work. In other words, the split velocity

observed in some of the packets in Fig. 5.4 is likely the wave packet being scattered laterally

by the curved pore, which allows for different x-directed velocities (i.e., in the direction of

propagation explicitly shown in the heat map). Given that the simulation cell has a finite

width w, there are only a set number of directions θ that a lattice wave of a wavelength can

travel, while remaining coherent with itself across the periodic boundaries of the computed

cell. Mathematically the periodic boundaries impose the condition nλ = w sin θ, where

n is an integer, λ the wavelength of the carrier wave, and θ the direction of the wave

vector relative to the long axis of the simulation cell. In Fig. 5.4 the wavepackets have

wavelengths of λ = 13.4, 3.6, 1.5, and 1.34 nm, and the cell width is w = 5.4 nm. For the

longest-wavelength wave packet there is no oblique path that is commensurate with the box

boundaries (the equation above is only satisfied for θ = 0). For the next-largest wavelength

of λ = 3.6 nm, there is one oblique direction possible at θ = 41.7. The wave packet traveling

along this direction would have an x component of velocity that is 0.75 of that of the incident

wave packet with θ = 0, and so would leave a trace on the heat map with a slope 1.34 times

steeper than the incident wave. This second possible ray is seen in Figs. 5.4(f) and 5.4(j).

The other waves in the wave packet would not be commensurate with the box boundaries
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and so the wave packet reflected along this oblique direction will be dispersed. For the wave

packets with q = 4.07 and 5.24 oblique reflections are permitted that would leave traces

on the heat map with slopes of [1.04, 1.22, 1.94] and [1.03, 1.12, 1.34, 2.18] times that of the

incident wave packet, and oblique reflections corresponding to these are seen in the heat

maps for these wave packets. (See Fig. S5 and the Supplemental Material [52] for more

details.) We note, however, that there are still some issues that are not yet clear and would

be revisited in future studies, for example why some transmissions show an increase and

then a decrease as a function of q.

5.6 Ray-Tracing Model

We develop a simple analytical model, as a gedanken experiment, to show how

different types of phonon scattering manifest as signatures in the HCACF. The purpose

of this is to ensure that we are correctly interpreting the anticorrelation features in the

HCACF seen in panel (b) of Figs. 5.1–5.3. This model is not intended to be predictive, but

to illustrate how heat trapped between the pores, as shown by the wave-packet simulations

(Fig. 5.4), can lead to the negative values in the HCACF. We consider a simple statistical

model of a gray population of heat-carrying acoustic phonons that pop in and out of exis-

tence completely uncorrelated (for example from scattering with a bath of optical phonons,

although the details of this are not required for this exercise) with a lifetime τo. Each

acoustic phonon contributes a stepwise heat current, Jp(τ), which has an autocorrelation

function Ap(τ) [dashed blue and green lines in Fig. 5.5(a), respectively], that is positive

and linearly decreases over time. The instantaneous heat current of the entire system is
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the superposition of Jp(τ) from all active phonons, but as the acoustic phonons are not

correlated with one another, the system’s HCACF is simply the phonon density times the

average of each phonon’s correlation with itself. The dashed red line in the lower panel

of Fig. 5.5(a) shows the integrated average of Ap(τ). To explore the effect of specular

(perfectly correlated) scattering on the HCACF, we assume that each acoustic phonon ex-

periences some scattering at a time ατo (where 0 < α < 1) during its flight, that reflects the

phonon, reversing its direction, and causing the flux and HCACF plotted with solid lines in

Fig. 5.5(a). This correlated scattering allows the autocorrelation to become negative. We

have further considered a Poisson distribution of lifetimes τo, and the distribution of scat-

tering times, Pα, such that the duration of the AC is controlled by the scattering time, ατo,

and the amount of the AC is controlled through the probability of reflection at α, Pα(α).

The Poisson distribution implies that the scattering event that annihilates the phonon is

completely uncorrelated with the event that created it, and is commonly used in kinetic

Monte Carlo simulations to describe the free path distribution of particles in an ideal gas

[167]. Averaging over a Poisson distribution of phonon lifetimes and directions, and also

the distribution of scattering times one can show that this correlated scattering reduces the

thermal conductivity by

κx
κo

=

∫ 1

0
Pα(1− 2α)2dα (5.3)

where Pα is the probability distribution that a phonon is reflected at fraction α of the way

through its flight. Additional details, and a derivation of the model are included in the

Supplemental Material [52].
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Figure 5.5: Stochastic model results. (a) (Solid blue) Contribution to the heat current from
a single phonon with lifetime τo that is reflected after time ατo, its ACF (solid green), and
the integral of its ACF (solid red). The dashed lines show the corresponding functions if
the phonon was not reflected. (b) The net HCACF averaged over all τo, and α for varying
scattering probability distributions (inset). The black line is for no scattering. The green
curve is for scattering with a uniform probability in α, and shows a 10.6% dip in the ACF due
to anticorrelation. In purple and brown, we show the case where the scattering probability
is strongly skewed to the middle of the phonon lifetime with much larger dips in the ACF.

During diffuse scattering the incident and scattered phonon trajectories are un-

correlated which in the stochastic phonon model has the same effect as reducing the mean

phonon lifetime τ o. This hastens the decay of the HCACF, reducing thermal conductiv-

ity, but it does not lead to the HCACF becoming negative. Specular scattering on the

other hand can be significantly more resistive for heat transport in geometries that allow

anticorrelation effects, particularly if phonons live long enough after they are reflected that
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they undo the heat current they generated before scattering. Enforcing specularity causes

anticorrelated heat-flux fluctuations similar to those observed in MD.

Figure 5.5(b) shows the collective effect on correlated scattering on the net HCACF

computed for a series of Pα distributions (plotted inset) for which the probability of scat-

tering is shifted systematically from near the ends of the phonon flight to its middle. If

the likelihood of reflection is evenly distributed throughout each phonon’s lifetime [Pα = 1,

green line in Fig. 5.5(b)] then the total thermal conductivity is reduced to one-third of its

intrinsic value, and a 10.6% dip emerges in the integrated HCACF. A larger reduction in

the thermal conductivity and a more prominently peaked integrated HCACF are obtained

when the probability of reflection is weighted towards the middle of the phonon flight, i.e.,

α = 0.5τo, to maximize the anticorrelation time (e.g., the purple and brown plots in Fig.

5.5(b) show 45 and 92% reduction, respectively, similar values to those observed in some of

the MD simulations). The key result from this model is that the anticorrelated heat flux

observed in MD can only be achieved if phonons live long enough after they are reflected

that they undo the heat current they generated before scattering. In the wave-packet sim-

ulations the phonon reflections are not limited to a single back and forth oscillation, and

instead multiple reflections are observed. When multiple reflections are included in the

ray-tracing model multiple oscillations show up in the computed ACFs. As only one dip

is observed in the ACF of the Green-Kubo molecular dynamics simulations (the first panel

of Figs. 5.1–5.3) this implies that, in contrast to the wave-packet simulations, at 300 K

phonons only remain (anti)correlated for about one reflection. One reason for this is that

the wave-packet simulations are performed at low temperatures and thus phonons have a
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much longer mean-free path than in the Green-Kubo simulations at 300 K. A second prob-

able reason is that, since the pores are cylindrical, the wave packets can reflect off the pores

in different directions, as can be seen, for instance, in Fig. 5.4(h). A phonon’s contribution

to the ACF along the x direction is proportional to its velocity along x squared. Thus elastic

scattering that bends a wave packet away from x- will quash the x-direction HCACF.

In light of the model, we can now explain the behavior observed in Figs. 5.2 and

5.3 regarding dip “height” and “location.” In Fig. 5.2, what causes the peaks to change

height is the density of inversely correlated phonons due to changes in pore size and neck

width, which control the strength of the reflections. In Fig. 5.3, the location of the peaks

shifts according to the duration for which the phonons are inversely correlated, which is in

turn a function of the distance between the pores. For the geometry in green, the distance

between the pores along the direction of transport, d, is small and, therefore, the AC effect

is not visible on the HCACF. In previous work, we concluded that merely reducing the

line of sight of phonons, i.e., narrowing the region available for phonon propagation, is

the most important mechanism in reducing thermal conductivity in nanoporous materials

[103]. The same mechanism is at play here, with the additional reduction effect due to the

anticorrelation of the backscattered phonons.

Finally, we note that the effect we observe is a negatively correlated heat current

which undoes its own work, which could happen in the case of coherent, or incoherent

phonon propagation. Phonons need to be anticorrelated (i.e., propagate in the exact inverse

direction), and in that way, they do “interfere” with each other in that they annihilate

each other in the heat-transfer accountancy. This coherence is coherence over time, not the
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spatial coherence and wave superposition that leads to constructive/destructive interference.

This is independent of wave-coherent or -incoherent transport conditions (superposition and

constructive/destructive interference), and it can show up in either case. In fact, the simple

model above demonstrates that an “incoherent” particle phonon picture can explain this.

However, as phonon transport involves a range of phonon mean-free paths and coherence

lengths, it could be possible that both effects are present. In our MD simulations it is quite

possible that phonons can scatter specularly on the pores, reflect, and travel backwards

to meet the previous array of pores before they undergo phonon-phonon scattering and

lose coherence (the mean-free path for scattering in Si is ∼ 130 nm, more than twice as

large as the pore separation). In that case they can interfere coherently with “themselves”

and undo their work. Physically this leads to heat trapping within the pore regions, as

suggested by our wave-packet simulations in Fig. 5.4. It is also possible that phonons with

short coherent lengths can undergo an incoherent diffusive reflection, but with a sizable

x-directed component and reflect backwards. Our results indicate that the magnitude of

the AC effect is tied to the neck to pore ratio, not merely the neck size. This suggests

that scattered phonons, possibly from across the spectrum, affect the negatively correlated

HCACF regions. These phonons do not need to be spatially coherent, but could lose

coherence after scattering and yet travel back and forth between the pore, thus giving rise

to the “AC” effect in time, essentially canceling their contributions to thermal conductivity.
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5.7 Conclusion

To conclude, we have shown that special arrangements of closely packed pores in

nanostructured Si can lead to anticorrelation effects in the heat flux, due to the specular

backscattering of phonons at the pores. This can result in additional thermal conductivity

reductions of up to ∼ 80% for certain porous geometries. We surmise that AC effects

could be present at experiments reporting remarkable thermal conductivity reductions in

Si nanomeshes [68, 168]. To investigate the origin of the anticorrelated behavior of the heat

flux, we propagated wave packets through two sets of geometries (with and without AC

effects). These indicate that heat can become trapped between the pores. We have observed

the AC effect in (wave-based) MD simulations and have been able to replicate it with a

simple (particle-based) model assuming specular reflection between the pores. References

[142, 169] indicate that coherent reflections are only possible when surface roughness is

on the order of 2–3 atomic layers, and that other-wise boundary scattering is incoherent.

This is consistent with the degree of roughness in our simulations. However, while specular

reflections are a necessary requirement for coherent interference [142], the mere presence of

specular reflections is not in itself sufficient evidence that phonon (waves) are interfering

with each other or that the AC effect is due to phonon coherence. It is possible that both

coherent wavelike phonons, and incoherent particle-like phonons are present, and both to

some degree undo their own work of heat propagation.

We have furthermore determined that the AC can be controlled in terms of both

the amount and duration of anticorrelated specular phonon scattering. The pores provide

two functions: the periodicity (along the transport direction) controls the lifetime over
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which a phonons’ momentum is correlated, and the packing, determined by pore sizes and

necks (perpendicular to transport), controls the strength of correlated phonon reflections.

These functions can be engineered by tuning the spacing/periodicity between pores along

the transport direction, and the pore and neck sizes, respectively. Our results suggest that

the AC effect is determined by the diameter/neck ratio, and AC effects are observed for

necks of at least up to ∼ 6 nm. This result suggests that the porous structures can be scaled

to such technologically feasible pore/neck sizes, making it easier to be used as a design tool

to control thermal conductivity beyond traditional boundary scattering.
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Chapter 6

Nondiffusive Correction Model to

Estimate the Effective Thermal

Conductivity in Nongray,

Nanostructured Materials

6.1 Abstract

Nanostructured materials enable high thermal transport tunability, holding

promises for thermal management and heat harvesting applications. Predicting the ef-

fect that nanostructuring has on thermal conductivity requires models, such as the Boltz-

mann transport equation (BTE), that capture the nondiffusive transport of phonons. Al-

though the BTE has been well validated against several key experiments, notably those
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on nanoporous materials, its applicability is computationally expensive. Several effective

model theories have been put forward to estimate the effective thermal conductivity; how-

ever, most of them are either based on simple geometries, e.g., thin films, or simplified

material descriptions such as the gray-model approximation. To fill this gap, we propose

a model that takes into account the whole mean-free-path (MFP) distribution as well as

the complexity of the material’s boundaries. We validate our approach, which is called

the “nondiffusive correction” (NDC) model, against full BTE simulations of a selection of

three base materials (GaAs, InAS and Si) containing nanoscale porosity, obtaining excel-

lent agreement in most cases. While the key parameters of our method, associated with

the geometry of the bulk material, are obtained from the BTE, they can be decoupled and

used in arbitrary combinations and scales. We tabulated these parameters for a few cases,

enabling the exploration of systems that are beyond those considered in this work. Provid-

ing a simple yet accurate estimation of thermal transport in nanostructures, our work sets

out to accelerate the discovery of materials for thermal-related applications.

6.2 Introduction

Engineering semiconducting nanostructures has enabled unprecedented control on

nanoscale heat flow for a wide range of applications, from microelectronic devices [53, 54]

to optoelectronics [55, 56] and thermoelectrics (TE) [57, 58, 59, 60]. Successful control

of thermal transport in TE nanomaterials has been shown in thin films, [43, 44] super-

lattices, [47, 48, 49] nanowires [42, 42], nanomeshes [45, 46], nanocomposites [65, 66], and

nanoporous structures [50, 51, 52], all of them featuring extremely low thermal conductivity.
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In multiphase materials that have macro- or micro- scale heterogeneity, heat transfer is of-

ten modeled by replacing the detailed microstructure with a homogeneous effective medium

that has thermal conductivity matching the macroscopic thermal conductivity of the real

material. For coarse microstructures, where heat conduction is diffuse and Fourier’s law

holds, analytical models exist to supply the thermal conductivity of this effective medium

based on the volume fraction and conductivity of the constitutive phases in the material it

replaces. For example, the effective medium thermal conductivity of materials containing

cylindrical pores is given by the Maxwell-Garnett theory [77], which predicts the thermal

conductivity suppression (1− φ)/(1 + φ), due to the presence of pores with a total volume

fraction φ.

While accurate models exist for the diffusive regime, conceiving their nanoscale

counterparts is more challenging. In fact, nondiffusive thermal transport, which is captured

by the Boltzmann transport equation (BTE) [101, 170], needs to include the whole distri-

bution of phonon mean-free-paths (MFP)—an aspect that has been difficult to capture in

analytical models. For this reason, early approaches are based on single-MFP approxima-

tions, e.g., gray material approximation [84] or simple geometries [171].

In this work, we fill this gap by providing a simple analytic model for the effective

thermal conductivity, κeff , that includes the full MFP distribution and is suitable from the

nano- to the macro- scales and for complex structures. Our approach, referred to as the

“NonDiffusive Correction” (NDC) model, is based on the logistic approximation of both the

bulk cumulative thermal conductivity and the phonon suppression function. In practice,

it is a simple formula that provides κeff given the relevant geometry’s feature size, the
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characteristic bulk MFP, and the macroscopic suppression factor. All these parameters are

computed for a few cases, using the BTE and Fourier’s law, and tabulated, enabling a wide

space of systems to be explored. We validate the NDC model against BTE calculations on

Si, GaAs and InAs, obtaining excellent agreement in most cases.

The paper is structured as follows. We first report on BTE calculations, applied to

Si, GaAs, and InAs membranes with different temperatures and porosities. Then, we detail

on the building blocks leading to the NDC model, provided in different sections: i) The

derivation of the formula for κNDC, validated against BTE simulations, ii) the calculation

of the material diffusive limit (MDL) for a given geometry, and iii) the integration of the

MDL and the nondiffusive correction to provide a material- and scale- free model for κNDC.

Finally, we outline the procedure to assess κeff . The proposed model may help identify

novel nanostructures with minimal computational efforts, thus accelerating the search of

materials for thermal-related applications.

6.3 BTE modeling

We employ the recently developed anisotropic-MFP-BTE, which solves the BTE

for uniformly space vectorial MFPs, Fml, i.e.

Fml · ∇∆T
(n)
ml + ∆T

(n)
ml =

∑
ml

αml∆T
(n−1)
ml . (6.1)

We compute space-dependent nondiffusive transport using the steady-state BTE

in its temperature formulation

τµvµ · ∇∆Tµ + ∆Tµ =
∑
ν

αν∆Tν , (6.2)
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where αν = [
∑

k Ck/τk]
−1Cντν , vµ is the phonon group velocity, τµ the scattering time

and ∆Tµ the deviational phonon pseudo-temperatures, which are a measure of the non-

equilibrium population of phonon mode µ .[172, 173] Eq. 6.2 is solved iteratively, the first

guess being given by diffusive equation.

Upon convergence, the effective thermal conductivity is computed by using

Fourier’s law

κeff = − L

∆TA

∫
J · n̂dS. (6.3)

Here, A is the area of the hot contact and n̂ is its normal. The term J is the heat flux,

given by J =
∑

µCµvµ∆Tµ, where Cµ is the heat capacity. The group velocities, scattering

times as well heat capacities are computed from first principles using AlmaBTE. [117] The

phonon dispersions as well as the scattering times were computed on a 30× 30× 30 point

Brillouin zone mesh; the second and third-order interatomic force constants for pristine

materials, computed with density functional theory using the virtual crystal approximation,

are obtained from the AlmaBTE materials database. [117] To better understand the effect

of the geometry on κeff , we also compute the mode-resolved phonon suppression function,

given by

Sµ = − L

∆TAτµvα,x

∫
∆TµdS, (6.4)

so that κeff =
∑

µCµv
2
µ,xτµSµ. [173]

For computational efficiency, equation 6.2 is solved using the anisotropic MFP-

BTE (aMFP-BTE). [173] The aMFP-BTE is based on the interpolation of ∆Tµ onto the

space of the vectorial MFPs, given by vµτµ; in practice, equation 6.2 is for a uniform

spherical grid whose point locations are labeled by Fml, m and l labeling MFP and polar
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angle, respectively. Within this formalism, phonon temperatures (∆Tml), heat flux (Jml)

and suppression functions (Sml) are defined on a polar surface. In the rest of this work,

however, we are interested in angularly averaged quantities; notably, the MFP-dependent

suppression function is given by Sm =
∑

l Sml.

We have computed the effective thermal conductivity, κeff , of InAs, GaAs, and

Si membranes containing an array of cylindrical nanopores with different shapes, sizes,

and spacings which we parameterize in terms of the total pore fraction, φ, and the array

periodicity, L. The thickness of the membrane is considered infinite. Figure 6.1 shows the

distribution of thermal flux for one such case, GaAs with porosity 0.25 and L = 50 nm.

As we expect, most of the heat is concentrated in the space between the pores. Figures

6.1 and 6.3(bottom-right) show plots of κeff of GaAs with for a pore spacing of L = 100

nm with porosities of 0.05 and 0.25 over a wide range of temperatures. We note that the

conductivities obtained from BTE are significantly lower than those from Fourier’s law due

to the effect of ballistic scattering of long mean free path phonons which is not captured in

Fourier’s law. The thermal conductivity obtained using Fourier’s law only depends on the

pore fraction, not the pore spacing, and matches the macroscopic effective medium theory,

κeff/κbulk = (1− φ)/(1 + φ). We will use these simulations to validate our proposed model,

as detailed in the next sections.

6.4 Effective Medium Theory for Nongray Materials

In this section, we present a reduced-order model for approximating κeff in nanos-

tructures with aligned pores. Assuming an isotropic intrinsic MFP distribution, K(Λ), the
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Figure 6.1: Magnitude of the thermal flux in GaAs containing aligned cylindrical pores at
an average temperature of 300 K. The system has porosity φ = 0.25, the spacing between
pores is L = 50 nm and the white box shows the unit cell. The heat flux is higher in the
constriction between the pores, and in addition to creating the constriction, the pores also
exert a drag on the heat flux in this region.

effective thermal conductivity of materials after nanostructuring is written in terms of the

suppression of the material’s thermal conductivity distribution

κeff =

∫ ∞
0

K(Λ)S(Λ)dΛ. (6.5)

In Eq. 6.5, S(Λ) is the phonon suppression function, a tool describing the degree of reduction

of heat transport with respect to the bulk for a given intrinsic MFP Λ. [171] In the diffusive

regime, S(Λ→ 0) ≈ 1−φ
1+φ , which is in agreement with Maxwell-Garnett prediction, while in

the ballistic regime, S(Λ→∞) ∝ LcΛ
−1, [174] where Lc is the mean line-of-sight between

phonon scattering event with the nanostructure. Integrating Eq. 6.5 by parts, we obtain

κeff = κbulk

[
S(∞)−

∫ ∞
0

α(Λ)g(Λ)dΛ

]
, (6.6)
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where the normalized cumulative thermal conductivity, α(Λ), is defined as

α(Λ) =
1

κbulk

∫ Λ

0
K(λ)dλ, (6.7)

and

g(Λ) =
∂S(Λ)

∂Λ
. (6.8)

We note that

S(∞) = S(0) +

∫ ∞
0

g(Λ)dΛ, (6.9)

therefore, Eq. 6.6 turns into

κeff = κbulk

[
S(0) +

∫ ∞
0

g(Λ) (1− α(Λ)) dΛ

]
. (6.10)

We approximate the cumulative thermal conductivity by a logistic function with logarithmic

abscissa

α(Λ) =
1

1 + Λo
Λ

. (6.11)

Here Λo is the characteristic MFP used to fit the logistic function to the cumulative thermal

conductivity, [89] it is the median MFP of the thermal conductivity distribution K(Λ). The

suppression function can be derived by adding the resistances due to the diffusive and

ballistic transport, [84] which leads to

S(Λ) =
S(0)

1 + Λ
Lc

. (6.12)

The term S(0) in Eq. 6.12 accounts for the reduction in the density of phonon modes

due to the pores and the increased resistance due to the path that heat must take around

pores. These macroscopic effects are the same for all phonon modes and are equivalent to the
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Figure 6.2: Nondiffusive correction term, Ξ vs. Knudsen number. It can be seen that the
scale-dependent correction term becomes significant in the ballistic regime where Kn� 1.

fractional reduction in thermal conductivity predicted by Fourier’s law, S(0) = κfourier/κbulk.

Using Eqs. 6.11 and 6.12, Eq. 6.10 becomes

κeff(Lc) = κbulkS(0)

[
1− ΛoLc

∫ ∞
0

1

(Λ + Λo) (Λ + Lc)
2dΛ

]
, (6.13)

which leads to

κeff = κfourierΞ(Kn), (6.14)

where the nondiffusive correction term that accounts for truncation of long MFP phonons

by nanoscale pores is given by

Ξ(Kn) =

[
1 +Kn (ln(Kn)− 1)

(Kn− 1)2

]
, (6.15)

with the Knudsen number Kn = Λo
Lc

.

Equations 6.14–6.15 are the first main results of our work, and will be referred to

as the BTE-informed reduced-order model. Interestingly, Ξ depends only on Kn. Figure

6.2 shows the nondiffusive correction Ξ versus Knudsen number. For Kn = 1, Eq. 6.13

leads to κeff = 1
2 κfourier. For Kn → 0, Ξ → 1, recovering the diffusive regime. For large
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Figure 6.3: (Top-left) The green squares show the cumulative thermal conductivity of bulk
GaAs at 800 K computed using BTE, and the solid blue line shows its least-squares logistic
regression fit of Eq. 6.11. (Top-right) Plot of the suppression function S(Λ, Lc) for same
GaAs as in (atop-left) but containing an array of cylindrical pores with porosity φ = 25%
and pore spacing L = 100 nm. The plot in green squares shows the suppression function
computed from BTE along with its fit of Eq. 6.12 in solid green. The plot in red circles
shows the suppression function obtained from the diffusive material limit model described
in ”Multiscale Modeling Of Materials” section 6.6, along with its fit of Eq. 6.12 in solid
red – see APPENDIX 6.8.2 for mathematical details. Panels (bottom-left) and (bottom-
right) plot the thermal conductivity versus temperature for GaAs containing 5% and 25%
porosity with a 100 nm pore spacing. The black dot-dashed line with square markers shows
the prediction from Fourier’s law, and the BTE prediction is plotted with a green dot-dashed
line with open circles. The prediction from the reduced-order model, Eq 6.14, using diffusive
material suppression is shown in red dash line, and the BTE-informed reduced-order model
is plotted in solid blue.

Kn, i.e. in the ballistic regime, Ξ(Kn) ≈ ln (Kn)Kn−1.

The cumulative thermal conductivity in bulk GaAs at room temperature from first

principles and its least-squares logistic regression’s fit from Eq. 6.11 are plotted in figure

6.3(top-left). The logistic curve gives Λo = 183 nm. This is roughly the feature size in GaAs-
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based porous structures where the phonon-pore scattering takes precedence over the anhar-

monic scattering. The suppression function and its regression fit from Eq. 6.12 are plotted

in figure 6.3(top-right). These figures suggest that equations 6.11 and 6.12 are reasonable

approximations to α(Λ) and S(Λ), respectively. Figures 6.3(bottom-left) and 6.3(bottom-

right) illustrate the predictions from the BTE-informed reduced-order model applied to the

GaAs case for different porosities φ. For φ = 0.05, the model is in agreement with the BTE

prediction with less than 5% error, but the higher porosity of φ = 0.25, the model slightly

overestimates the thermal conductivity with about 25% error at low temperatures and less

than 10% error at high temperatures. The reason for this discrepancy is due to stronger

size effects for cases with large porosities, which causes S(Λ) to be non-monotonic. [86]

6.5 The Diffusive Material Limit

In the previous section, we provide a simple expression for predicting κeff for

different characteristic MFP, Λ0 and material’s feature size Lc. However, while Λ0 can

be easily obtained from α(Λ) and then used for different geometries, obtaining Lc is more

convoluted; in fact, as we have shown, it depends on the size of the pores relative to the

intrinsic length scale to phonon transport in the bulk material, and as we show later, it also

depends on the pore shape. The utility of the reduced order model for κeff is only achieved

if we have a scheme to estimate the value of Lc efficiently, and thus in this section we set

out such an approach.

We begin by considering the diffusive material limit, described concisely in Ap-

pendix 6.8.2 and in details in refs. [175, 86] In this limit, we assume that the suppression
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function is the same as that from the diffusive regime, Sdiff(ξ), where ξ = Λ/L; this func-

tion is scale- and material- independent and is valid only at the macroscales, where all

the phonon MFPs are larger than Lc. Note that even though in the diffusive regime all

phonons travel diffusively, we can still compute the suppression function for arbitrarily

MFPs, which, however, will be filtered out. On the other side, in the diffusive material

limit, we have S(Λ) = Sdiff(Λ/L), with L being the actual periodicity of the nanomaterial.

Under these conditions one finds that the suppression function Sdiff(Λ) has four key proper-

ties: [86] i) its small-MFP limit corresponds to the suppression predicted by Fourier’s law,

ii) it is material independent, iii) it is scale independent, e.g. it can be translated to consider

different dimensions, and vi) it always overestimates the suppression functions computed

more accurately from BTE (i.e., Sdiff(Λ) > S(Λ)). In practice, in our simulation we obtain

Sdiff(Λ) by making the simulation domain large enough, with periodicity being Llarge, so

that S(0) is the same as κfourier/κBTE, meaning that there are little ballistic effects on small-

MFP phonons. Then, we normalize Λ by Llarge, e.g. Sdiff(Λ) → S(ξ), where ξ = ΛL−1
large.

Once S(ξ) is computed for a given geometry, described in terms of relative distances, we

assume that the suppression function of a system described by the same geometry and peri-

odidicity L is simply given by S(Λ) = Sdiff(Λ/L). Essentially, we are neglecting the effect of

nondiffusive phonons on small-MFP phonons even at small scales, e.g. where the diffusive

material limit is not exactly satisfied. Figure 6.3(top-right) shows Sdiff(Λ/L) with L = 50

nm and porosity φ = 0.25. As expected, it deviates from the BTE around the small-MFP

region.
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6.6 The NonDiffusive Correction Model

In the previous two sections, we have provided an effective medium theory for

κeff , encoded by the nondiffusive correction term, and computed the diffusive material limit

of the suppression function. In this section, we combine the two concepts: we derive the

nondiffusive correction from the diffusive material limit. The resulting method is called

the “Nondiffusive Correction Model” (NDC). To do so, similarly to the case with the BTE-

informed suppression function, we fit Sdiff with a logistic function, as shown in 6.3(top-right).

The resulting Lc is 182 nm while that obtained from the BTE-informed model is 214 nm.

We note that for the former case, Lc/L is a constant since Sdiff is scale-independent. As

shown from Figs. 6.3(bottom), the effective thermal conductivities, denoted with κNDC,

are in good agreement with those computed directly with the BTE. For the low porosity

case, the model is accurately predicts thermal conductivity (less than 1% error) but for

the high porosity case, the model slightly overestimates the thermal conductivity (less than

10% error at low temperatures and less than 5% error at high temperatures). The reason

for this trend is that small-MFP phonons, i.e. in the region where Sdiff(Λ) deviates from

Sdiff(Λ) the most, carry little heat with respect the bulk thermal conductivity. However, for

high porosities, Lc are smaller thus larger suppression occur throughout the MFP spectrum.

Hence, the deviation of Sdiff(Λ) in the small-MFP region has a larger impact for the case φ

= 0.25.

We emphasize that the NDC model is material- and scale- independent, hence

once Lc/L and S(0) are identified for a given geometry, they can be used for any material

and scale, free from tedious Boltzmann transport simulations. The presented model thus
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Figure 6.4: Comparison of the thermal conductivity reduction predicted by the reduced or-
der model vs. the prediction from the full BTE simulation for a selection of three base ma-
terials (Si, GaAs and InAs) at a variety of different temperatures, and containing nanoscale
pores with a variety of different porosities and spacings. The periodicity varies from 25–100
nm and the temperature varies from 300–800 K.

provides an upper bound (unless the logistic fit behaves poorly) to κeff of a nanoporous

material knowing the corresponding Λo, L and tabulated values of S(0) and Lc/L. To this

end, we provide such data for several systems and materials in the Appendix 6.8.1. To

summarize, the procedure is as follows:

1. Select a material at a given temperature (from table 6.2). Record the associated Λo

and κbulk.

2. Select a geometry from table 6.1. Record associated S(0) and Lc/L.

3. Choose the periodicity of the material, L.

4. Compute the Knudsen number as Kn = Λo
Lc

5. Compute the effective thermal conductivity as κeff = κbulkS(0)Ξ(Kn)
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6.7 Conclusion

To summarize, we have developed a general model to predict lattice thermal con-

ductivity of dielectrics with nanoscale to macroscale porosity. In this model, the cumulative

lattice thermal conductivity is approximated by a logistic function regression with a single

tuning parameter single parameter, Λo the median phonon mean free path. The effect from

scattering at pore interfaces is described by the phonon suppression function. This suppres-

sion function can be approximated well with another logistic function curve with two fitting

parameters of S(0) and Lc. The former parameter describes phonon suppression in the

diffusive regime and the latter one describes the characteristic scattering distance imposed

on the phonons by porosity. These parameters are tabulated in table 6.1 for pores with

different shapes and porosities. The model is robust in providing a good approximating of

the results from Boltzmann transport simulations of lattice thermal conductivity for a wide

range of pores shapes, sizes and spacings that span both the diffusive and ballistic regimes.

This provides a simple yet accurate estimation of thermal transport in nanostructures that

can be used to rapidly screen or designing materials for a particular thermal task. As such

this work provides an important tool to facilitate design and discovery of materials for

thermal related applications, without explicitly solving the BTE.
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Figure 6.5: Magnitude of the thermal flux in diffusive (material-independent) structure
containing aligned pores with different shapes. The porosity is fixed to 0.25 and periodicity
is L = 50 nm. The unit cells is highlighted.

6.8 Appendix

6.8.1 Tabulated Data for the NDC

Table 6.1 shows the phonon characteristic length, Lc and diffusive suppression

function, S(0) for pores with different shapes and porosities. The shape of the pores are

shown in Fig. 6.5. In all cases temperature gradient is along abscissa. Tables 6.2 and 6.3

show the characteristic MFP and bulk thermal conductivity of wide sweep of IV and III-V

dielectrics at different temperatures.
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Table 6.1: The diffusive model prediction for phonon characteristic length and diffusive
suppression in pores with different shapes and porosity. In all cases temperature gradient
is along abscissa.

Porosity
Circle pore Square pore Triangle pore Rectangle pore Rhombus pore

Lc/L S(0) Lc/L S(0) Lc/L S(0) Lc/L S(0) Lc/L S(0)

0.05 3.92 0.90 3.22 0.90 2.74 0.90 3.26 0.92 3.48 0.90
0.10 2.64 0.83 2.38 0.80 2.04 0.77 2.34 0.84 2.54 0.80
0.15 2.24 0.74 1.86 0.73 1.56 0.69 1.80 0.80 2.22 0.70
0.20 2.02 0.66 1.54 0.66 1.66 0.54 1.62 0.72 1.74 0.64
0.25 1.82 0.59 1.58 0.56 1.14 0.51 1.48 0.67 1.60 0.56
0.30 1.54 0.54 1.36 0.51 1.04 0.42 1.34 0.63 1.36 0.49
0.35 1.46 0.48 1.18 0.46 0.90 0.33 1.16 0.59 1.22 0.42
0.40 1.40 0.42 1.08 0.41 0.76 0.24 0.98 0.57 1.04 0.36
0.45 1.26 0.37 1.02 0.36 – – 0.84 0.54 1.00 0.26
0.50 1.18 0.32 0.94 0.31 – – 0.78 0.50 – –

Table 6.2: The characteristic MFP of IV and III-V dielectrics.

Temperature(K)
Characteristic Mean Free Path (µm)

AlAs AlN GaAs GaN GaP Ge InAs InP Si Sn

200 0.41 0.43 0.31 0.46 0.35 0.53 0.47 1.35 1.33 0.26
300 0.24 0.16 0.18 0.25 0.21 0.30 0.29 0.80 0.49 0.18
400 0.17 0.10 0.13 0.18 0.16 0.21 0.21 0.58 0.29 0.13
500 0.13 0.07 0.10 0.15 0.13 0.16 0.17 0.45 0.21 0.11
600 0.11 0.05 0.08 0.13 0.10 0.13 0.14 0.37 0.17 0.09
700 0.09 0.04 0.07 0.11 0.09 0.11 0.12 0.32 0.14 0.08
800 0.08 0.04 0.06 0.10 0.08 0.10 0.10 0.28 0.12 0.07

6.8.2 The Diffusive Material Limit

Here we briefly describe the diffusive material limit, introduced in [86]. With no

loss of generality, let us assume we have an isotropic MFP distribution, then the BTE reads

Λs · ∇T (Λ,Ω) + T (Λ,Ω) =

∫
α(Λ′)〈T (Λ′)〉dΛ′, (6.16)
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Table 6.3: The bulk thermal conductivity of IV and III-V dielectrics.

Temperature(K)
Bulk Thermal Conductivity (W/mK)

AlAs AlN GaAs GaN GaP Ge InAs InP Si Sn

200 127 594 71 359 122 90 44 126 287 28
300 81 302 45 250 82 60 28 81 165 19
400 60 203 34 197 62 45 21 60 118 14
500 48 155 27 165 50 37 17 48 93 12
600 40 126 22 142 42 31 14 40 76 10
700 34 106 19 126 36 27 12 34 65 8
800 30 92 17 113 32 24 10 30 57 7

where 〈f〉 is an average over the solid angle and
∫
α(Λ′)dΛ′ = 1. The suppression function

is given by [87]

S(Λ) = 3〈s⊗ s∇T̃ (Λ,Ω) · n̂〉, (6.17)

where f̃ = −LA−1∆T
∫
A fdS. Let us now focus on the small-MFP limit of S. Combining

Eq. 6.16-6.17, we have

S(0) =

∫
α(Λ′)∇〈T̃ (Λ′)〉 · n̂dΛ′, (6.18)

where we used 〈s⊗s〉 = 1/3. For nanoscale materials 〈∇T̃ (Λ′)〉·n̂ < ∇T̃F ·n̂, [86] where TF is

computed from Fourier’s law; thus S(0) < κfourier/κbulk. For this reason, BTE simulations

on materials where size effects are significant show that S(0) is material dependent and

is always smaller than the Fourier’s limit. On the other hand, in macroscopic systems

the phonon distributions are isotropic and 〈T̃ (Λ′)〉 ≈ T̃F for the entire range of the bulk

MFP distribution, thus S(0) = ∇T̃f · n̂ = κfourier/κbulk, which is exactly the macroscopic

suppression. In this regime, the effective thermal conductivity is κeff =
∫
K(Λ)S(Λ)dΛ ≈

S(0)κbulk = κfourier. Similarly, the pseudo lattice temperature, i.e. the RHS of Eq. 6.16, can
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be approximated by
∫
α(Λ′)〈T (Λ)〉dΛ ≈ 〈T (0)〉 = TF . Note that as α(Λ) disappeared from

the definition of the pseudotemperature, Eq. 6.16 is now material- and scale- independent,

i.e.

ξs · ∇T (ξ,Ω) + T (ξ,Ω) = 〈T (0)〉, (6.19)

where ξ = Λ/L. In this regime, the suppression function is Sdiff(ξ). We stress that Eq. 6.19

is valid only when all the bulk MFP are well below Lc. The diffusive material limit, then,

amounts to using Eq. 6.19 in cases where such a condition is not necessarily satisfied, i.e.

S(λ) = Sdiff(Λ/L). In practice, this limit can be obtained, as we did in our work, by

making the material sufficiently large so that Eq. 6.19 holds, and solve it for a wide MFP

range so that the logistic-shape of the suppression function is recovered. Then by using the

scale-independence of Eq. 6.19, we scale the domain of the suppression function to adapt

it to cases with smaller L. Note that even though the solution of the BTE for MFPs that

are beyond the bulk distribution is not relevant, we can still solve Eq. 6.19 for arbitrarily

Λ and compute the relative suppression function; then, the portion of the spectrum not

belonging to the support of K(Λ) will be filtered by Eq. 6.3. We note that since in this case

S(0) = κfourier/κbulk, the suppression function of the diffusive material limit is an upper

bound to the actual one. [175] Lastly, the name of “diffusive material” arises from the need

to differentiate this regime from the mere diffusive limit, which is solved using Fourier’s law,

while also emphasizing that the solution of Eq. 6.19 should be carried out over the whole

range of bulk MFPs.
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and Marisol Martin-Gonzalez. Ultra-low thermal conductivities in large-area si-ge
nanomeshes for thermoelectric applications. Scientific reports, 6(1):1–10, 2016.

[47] Ming Hu and Dimos Poulikakos. Si/ge superlattice nanowires with ultralow thermal
conductivity. Nano letters, 12(11):5487–5494, 2012.

[48] Xin Mu, Lili Wang, Xueming Yang, Pu Zhang, Albert C To, and Tengfei Luo. Ultra-
low thermal conductivity in si/ge hierarchical superlattice nanowire. Scientific reports,
5(1):1–11, 2015.

[49] Jivtesh Garg and Gang Chen. Minimum thermal conductivity in superlattices: A
first-principles formalism. Physical Review B, 87(14):140302, 2013.

[50] Xiaolei Shi, Angyin Wu, Weidi Liu, Raza Moshwan, Yuan Wang, Zhi-Gang Chen,
and Jin Zou. Polycrystalline snse with extraordinary thermoelectric property via
nanoporous design. ACS nano, 12(11):11417–11425, 2018.

[51] Laura de Sousa Oliveira and Neophytos Neophytou. Large-scale molecular dynamics
investigation of geometrical features in nanoporous si. Phys. Rev. B, 100:035409, Jul
2019.

[52] Laura de Sousa Oliveira, S. Aria Hosseini, Alex Greaney, and Neophytos Neophy-
tou. Heat current anticorrelation effects leading to thermal conductivity reduction in
nanoporous si. Phys. Rev. B, 102:205405, Nov 2020.

155
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[93] Karol Pietrak and Tomasz S Wísniewski. A review of models for effective thermal
conductivity of composite materials. Journal of Power Technologies, 95(1):14–24,
2014.

158



[94] Giuseppe Romano and Jeffrey C Grossman. Toward phonon-boundary engineering in
nanoporous materials. Applied Physics Letters, 105(3):033116, 2014.

[95] S. Aria Hosseini, Devin Coleman, Sabah K. Bux, Lorenzo Mangolini, and P. Alex Gre-
aney. Enhanced power factor via electron energy filtering by nanoinclusions. Manuscr.
Submitt. Publ. 2020, 2021.

[96] Georg Kresse and Jürgen Hafner. Ab initio molecular-dynamics simulation of the
liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B,
49(20):14251, 1994.

[97] Georg Kresse and Jürgen Furthmüller. Efficiency of ab-initio total energy calculations
for metals and semiconductors using a plane-wave basis set. Computational materials
science, 6(1):15–50, 1996.

[98] Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Physical review B, 54(16):11169,
1996.

[99] S. Aria Hosseini. Thermoelectric.py. https://github.com/ariahosseini/

thermoelectric.py, 2019.

[100] SM Sze and KK Ng. pn junctions. In Physics of Semiconductor Devices, volume 2,
pages 80–89. Wiley New York, 2006.

[101] Jackson R Harter, S Aria Hosseini, Todd S Palmer, and P Alex Greaney. Prediction
of thermal conductivity in dielectrics using fast, spectrally-resolved phonon transport
simulations. International Journal of Heat and Mass Transfer, 144:118595, 2019.

[102] LC Burton. Temperature dependence of the silicon work function by means of a
retarding potential technique. Journal of Applied Physics, 47(3):1189–1191, 1976.

[103] Laura de Sousa Oliveira and Neophytos Neophytou. Large-scale molecular dy-
namics investigation of geometrical features in nanoporous si. Physical Review B,
100(3):035409, 2019.

[104] Laura de Sousa Oliveira, S Aria Hosseini, Alex Greaney, and Neophytos Neophy-
tou. Heat current anticorrelation effects leading to thermal conductivity reduction in
nanoporous si. Physical Review B, 102(20):205405, 2020.

[105] Hyun-Sik Kim, Zachary M Gibbs, Yinglu Tang, Heng Wang, and G Jeffrey Snyder.
Characterization of lorenz number with seebeck coefficient measurement. APL mate-
rials, 3(4):041506, 2015.

[106] George S Nolas, Jeffrey Sharp, and Julian Goldsmid. Thermoelectrics: basic principles
and new materials developments, volume 45. Springer Science & Business Media, 2013.

[107] Saffa B Riffat and Xiaoli Ma. Thermoelectrics: a review of present and potential
applications. Applied thermal engineering, 23(8):913–935, 2003.

159

https://github.com/ariahosseini/thermoelectric.py
https://github.com/ariahosseini/thermoelectric.py


[108] Christopher J Vineis, Ali Shakouri, Arun Majumdar, and Mercouri G Kanatzidis.
Nanostructured thermoelectrics: big efficiency gains from small features. Advanced
materials, 22(36):3970–3980, 2010.

[109] Giuseppe Romano and Jeffrey C Grossman. Phonon bottleneck identification in dis-
ordered nanoporous materials. Physical Review B, 96(11):115425, 2017.

[110] Avinash Vishwakarma, Sivaiah Bathula, Nagendra S Chauhan, Ruchi Bhardwaj,
Bhasker Gahtori, Avanish K Srivastava, and Ajay Dhar. Facile synthesis of nanos-
tructured n-type sige alloys with enhanced thermoelectric performance using rapid
solidification employing melt spinning followed by spark plasma sintering. Current
Applied Physics, 18(12):1540–1545, 2018.

[111] Sivaiah Bathula, M Jayasimhadri, Nidhi Singh, AK Srivastava, Jiji Pulikkotil, Ajay
Dhar, and RC Budhani. Enhanced thermoelectric figure-of-merit in spark plasma
sintered nanostructured n-type sige alloys. Applied Physics Letters, 101(21):213902,
2012.

[112] Yanzhong Pei, Aaron LaLonde, Shiho Iwanaga, and G Jeffrey Snyder. High ther-
moelectric figure of merit in heavy hole dominated pbte. Energy & Environmental
Science, 4(6):2085–2089, 2011.

[113] Y Gelbstein, Z Dashevsky, and MP Dariel. High performance n-type pbte-based
materials for thermoelectric applications. Physica B: Condensed Matter, 363(1-4):196–
205, 2005.

[114] Ananya Banik and Kanishka Biswas. A game-changing strategy in snse thermo-
electrics. Joule, 3(3):636–638, 2019.

[115] Jungdae Kim, Sunglae Cho, et al. A review of snse: growth and thermoelectric
properties. Journal of the Korean Physical Society, 72(8):841–857, 2018.

[116] Giuseppe Romano. Openbte: A multiscale solver for the phonon boltzmann transport
equation. In APS Meeting Abstracts, 2019.
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