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The presence of a population of point sources in a dataset modifies the underlying neutrino-
count statistics from the Poisson distribution. This deviation can be exactly quantified using the
non-Poissonian template fitting technique, and in this work we present the first application this
approach to the IceCube high-energy neutrino dataset. Using this method, we search in 7 years
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of IceCube data for point-source populations correlated with the disk of the Milky Way, the Fermi
bubbles, the Schlegel, Finkbeiner, and Davis dust map, or with the isotropic extragalactic sky. No
evidence for such a population is found in the data using this technique, and in the absence of a
signal we establish constraints on population models with source count distribution functions that
can be described by a power-law with a single break. The derived limits can be interpreted in the
context of many possible source classes. In order to enhance the flexibility of the results, we publish
the full posterior from our analysis, which can be used to establish limits on specific population
models that would contribute to the observed IceCube neutrino flux.

I. INTRODUCTION

The conclusive discovery of an astrophysical neutrino
flux at IceCube [1–6] presents a new window through
which we can view the Universe. With energies in the
PeV range, these neutrinos free stream to Earth over
scales where extragalactic photons of the same energy
are attenuated. This makes the IceCube neutrino win-
dow novel not only in terms of messenger, but also as it
provides insight into extreme energy phenomena. While
recently evidence was found for a point source of neutri-
nos [7], at present the origin of a large fraction of astro-
physical flux remains unknown. For a review see [8].

With an observed flux close to the Waxman-Bahcall
bound [9], the leading hypothesis posits that the IceCube
neutrinos are produced through extragalactic hadronic
processes, where high-energy proton interactions produce
charged pions, which in turn decay to produce neutri-
nos.1 There are a number of viable models for the origin
of these hadronic collisions involving conventional astro-
physical sources, see [11] for a comprehensive discussion.
Nevertheless some of the promising source classes already
appear to be disfavored as the sole origin of the observed
cosmic neutrinos. The current limits on the presence of
point sources in the data, which we will soon discuss,
place under tension a pure blazar origin for the observed
flux, although they may still contribute [11–14] – espe-
cially in light of the recent discovery [7]. Further, there
are claims that a dominant starburst galaxy origin is
in tension with existing gamma-ray measurements [15–
17]. Viable source classes remain, however, such as radio
galaxies [11, 18, 19]. Regardless of their origin, due to
the hadronic origin of the neutrinos in these scenarios,
a definitive identification of neutrinos from a particular
source class would provide a deep insight into the wider

∗ Also at Università di Padova, I-35131 Padova, Italy
† Also at National Research Nuclear University, Moscow Engineer-

ing Physics Institute (MEPhI), Moscow 115409, Russia
‡ Earthquake Research Institute, University of Tokyo, Bunkyo,

Tokyo 113-0032, Japan
§ Now at Berkeley Center for Theoretical Physics, University of

California, Berkeley, CA 94720, USA and Theoretical Physics
Group, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, USA

¶ Now at Leinweber Center for Theoretical Physics, Department
of Physics, University of Michigan, Ann Arbor, MI 48109, USA

∗∗ Deceased.
1 The neutrino flavor ratio observed with IceCube is presently con-

sistent with a pionic origin [10].

problem of high-energy cosmic-ray acceleration [20–23].
As such the implications of the IceCube dataset for var-
ious source classes, even those coming from null results,
are leading to important insights into high-energy astro-
physics as a whole.

As long as the question of their origin remains unan-
swered, however, there will be room for speculation as to
a potentially more exotic origin for these neutrinos. A
possibility that has received significant attention in the
literature is that these neutrinos could be produced in the
decay of ∼PeV scale dark matter, see, for example [24–
31]. Whilst extragalactic dark matter decays would be
distributed isotropically, decays within the Milky Way
would imprint a directional anisotropy within the data
in such a scenario. Although the present data appears to
be isotropic [5], the measurements have not yet resulted
in enough significance to disfavor the dark matter scenar-
ios [32]. More stringent constraints arise as generically
such models produce photons or charged cosmic-rays in
addition to the neutrinos, and limits on dark matter from
such final states tend to disfavor many scenarios, see [33–
37]. Nevertheless the possibility remains that there could
be hints as to the origin of dark matter within the Ice-
Cube dataset, a possibility which highlights the impor-
tance of a definitive determination of the neutrino origins.

Due to their lack of electric charge, neutrinos remain
unattenuated as they travel through the magnetic fields
that permeate the universe. The neutrinos point back
to their source of origin, raising the possibility that if
the incident neutrino direction can be measured accu-
rately enough, the source class could be identified. A sin-
gle event is unlikely to be determinative, but statistical
analyses applied to larger datasets can search for cluster-
ing on the sky, which can indicate the presence of point
sources. A number of such searches for point sources
have already been performed within IceCube [38–47], but
have not yet found evidence of such clustering. The ab-
sence of any statistically significant clustering in these
analyses thus far suggests that whatever is the primary
contributor to the IceCube flux is not a small number of
bright sources, but rather a larger population of sources.
In the present work we extend this line of investigation
through the application of a novel technique for search-
ing for populations of sources, which should be viewed as
complementary to existing and ongoing individual source
searches. We accomplish this using a technique known
as the Non-Poissonian Template Fit (NPTF), which has
found widespread application to the Fermi LAT gamma-
ray data, but is applied here to the IceCube neutrino
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data for the first time.

The basic principle underpinning the NPTF is that in
the presence of unmodeled point sources, the neutrino
count statistics of a dataset is distinct with respect to
a Poisson distribution. The requirement that the point
sources are unmodeled is central to the method; indeed,
if a point source is resolved and has a known location, a
model for it can be constructed and the observed data
will represent a Poisson draw from that model. The
NPTF, however, remains agnostic as to the location of
the sources and simply accounts for the fact that a pop-
ulation of point sources will result in larger upward and
downward fluctuation than can be produced by the Pois-
son distribution. As we will review in this work, that
deviation can be rigorously quantified into a likelihood,
which can test the preference for non-Poissonian statis-
tics in the data, and thereby uncover evidence for point-
source population.

The NPTF has a number of advantages over traditional
point source search techniques. The method is naturally
couched in the language of populations of sources, as the
fundamental object constrained is the source-count dis-
tribution dN/dF , that is the distribution of sources with
a flux between F and F + dF . By way of contrast, the
standard techniques search for sources of a given flux
F ′ one at a time. These methods are often calibrated
against simulations where N point sources each of flux F ′

have been injected, which corresponds to the special case
dN/dF = Nδ(F − F ′). Studies using a similar method
to the NPTF applied to the public High Energy Starting
Events (HESE) data have shown that population based
approaches can, under certain assumptions, probe deeper
than traditional methods and search for sources too dim
to be resolved individually [48, 49]. Such techniques have
also be used to extend limits on the brightest possible
source within the data [50]. Furthermore, as the NPTF is
a method for template fitting, it can readily incorporate
a non-trivial spatial dependence for the sources. Tem-
plate fitting is a technique of fitting data with models
following a predetermined spatial distribution, or tem-
plates. We will exploit this to search for sources cor-
related with the disk of the Milky Way and the Fermi
bubbles, in addition to extragalactic sources which are
distributed isotropically. Even in the case of isotropi-
cally distributed extragalactic sources, due to the spatial
variation inherent in the IceCube effective area matrix,
the resulting neutrino count map will be non-isotropic.
This complication can be readily handled in the NPTF.
On the other hand, there are drawbacks to the method.
The NPTF is fundamentally a binned technique, which
precludes optimization through the use of event by event
reconstruction information. Moreover, in this work the
NPTF is restricted to be used in a single energy bin. This
is not a fundamental limitation of the method, but simply
a shortcoming in existing implementations of it. Yet, at
present this implies that we are unable to account for the
strong variation of the response to neutrinos in the Ice-
Cube detector as a function of energy, other than through

optimizing the choice of energy bin. Taken together these
highlight the complementary nature of the NPTF based
search presented in this work to alternative approaches
to the problem. We emphasize that the NPTF is distinct
from other novel searches for point sources that have been
applied to the IceCube dataset, in that it searches for the
specific modification to the neutrino-count statistics im-
printed by a point source population. An example of such
techniques is the multipole and two-point autocorrelation
approach [42, 46], which search for a statistical increase
in the number of events with small angular separation
that point sources would induce. Fundamentally, point
sources produce additional clustering within the data on
the scale of the instrument point spread function, which
is usually smaller than the scale on which the diffuse
backgrounds cluster. In that sense, the NPTF is also
looking to exploit similar information, but it approaches
the problem by instead considering how a population of
point sources modifies the statistics of the neutrino count
map. In addition to its different approach, the NPTF
also offers a number of advantages over these techniques.
Most importantly, being a template method, it can read-
ily account for the spatial variation expected for galactic
sources, or non-isotropic detector response, as discussed
above. Further, the NPTF can be formulated in terms
of an analytic likelihood, as we will review in this work,
and this allows for an efficient practical implementation
of the method. The NPTF is also distinct to the search
for steady point sources with specific flux-characteristics,
as considered in [47], where a test-statistic is estimated
for a given population model with parameterized source
density and luminosity. For the NPTF, a broader range
of population models are tested, allowing the shape of
the source distribution to be additionally parameterized.
Constraints on models with specified flux-characteristics
can, however, be derived from the NPTF results, and we
will demonstrate this explicitly by placing constraints on
the space of standard candle luminosity functions using
FIRESONG [51], similar to those considered in [47].

The remainder of the discussion will be structured as
follows. In Sec. II we outline the event selection used
to distill the dataset analyzed in this work. Section III
is dedicated to a review of the NPTF method, and a
detailed description of the challenges in applying the
method at IceCube, and the associated solutions. Fol-
lowing from this, in Sec. IV we determine the expected
sensitivity of the method based on Monte Carlo simula-
tions. Then, in Sec. V we show the result of applying the
NPTF to the real IceCube data, and in the absence of
a signal derive constraints. The full posterior from our
analysis is made publicly available,2 with the details of
the file discussed in App. A. Finally our conclusions are
presented in Sec. VI.

2 https://icecube.wisc.edu/science/data/NPTF_7yr_

posterior

https://icecube.wisc.edu/science/data/NPTF_7yr_posterior
https://icecube.wisc.edu/science/data/NPTF_7yr_posterior
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II. EVENT SELECTION

A. The IceCube Neutrino Observatory

IceCube is a cubic-kilometer Cherenkov detector,
which is composed of 5160 digital optical modules
(DOMs) embedded in the Antarctic ice at the South
Pole [52]. These DOMs are attached to 86 strings of ca-
ble at depths between 1450-2450 m beneath the surface
of the ice. Most of the DOMs have a vertical spacing of
17 m along the strings and the average distance between
neighboring strings is ∼125 m. Each module consists of
a photomultiplier tube, onboard digitization board, and
a separate board with LEDs for calibration [53, 54].

Construction of IceCube started in 2004 and was com-
pleted in December 2010. Before the full detector was
completed, data was being taken in partial configurations
with fewer than 86 strings. In the present work we make
use of 7 years of IceCube data. The first three years
were taken during the 40-string (IC-40), 59-string (IC-
59), and 79-string (IC-79) configurations, as described
in Refs. [38, 39]. The subsequent four years of data ex-
ploited the full 86-string (IC-86) configuration, as out-
lined in Refs. [41, 45].

B. Neutrino Detection at IceCube

Neutrinos are notoriously difficult to detect, and just
because they point back to their origin does not mean
we can necessarily extract that direction. As we cannot
detect the neutrinos directly, the challenge is in inferring
the direction from visible products left behind from a
neutral or charged current interaction the neutrino un-
dergoes within or in the vicinity of IceCube. In order
to enhance our sensitivity, we choose to focus on events
where the flight direction of the neutrino can be accu-
rately reconstructed, as explained below.

In detail, there are three different event topolo-
gies within IceCube produced by neutrino interactions:
tracks, cascades, and double-bangs. Tracks result from
muons traversing the detector, while cascades result from
the charged-current interactions of electron or tau neutri-
nos or neutral-current interactions of any neutrino. The
interactions in cascade events produce an almost spheri-
cal light emission making directional reconstruction dif-
ficult. Tracks from muons of ∼TeV or greater energies
can travel several kilometers while constantly emitting
Cherenkov light, making them ideal candidates for an
accurate directional reconstruction. Double-bangs result
from charged current interactions of tau neutrinos at very
high energies where the tau lepton decays to hadrons far
enough from the initial interaction to create two distinct
cascades, and the first candidates for such events have
now been identified [55]. Since tracks are the optimal
topology for directional accuracy, in this paper we will
only use tracks.

The only neutrino interactions that can create tracks

at TeV energies are charged-current interactions of muon
neutrinos (and muon antineutrinos). Track events can be
further divided into two subclasses: starting tracks occur
when a muon neutrino has its charged-current interaction
inside of the detector volume, while through-going tracks
occur when that interaction occurs outside of the detec-
tor volume. Through-going tracks can result from any
high-energy muon, including muons produced by cosmic-
ray interactions in the atmosphere, but they also have a
much higher effective area for muon neutrinos than start-
ing tracks since the charged-current interaction can occur
in a much larger volume than the detector volume. In
this paper we will consider only events reconstructed as
through-going tracks, in order to take advantage of the
high number of events resulting from the much larger
effective area, however the lower purity of astrophysical
neutrinos in the sample creates a background we will need
to account for in the NPTF analysis.

C. Data and Simulations

With these motivations, the specific dataset used in
this analysis was the through-going tracks in IceCube’s 7
year point source sample [45], and we refer to Sec. 2.2 of
that reference for a detailed account of the dataset. The 7
year point source sample has been accrued through sev-
eral different event selections. Events from the year of
IC-40 data were selected using fixed selection criteria on
several parameters [38], while events from the remain-
ing years [39, 41, 45] were selected using multivariate
boosted decision trees (BDTs) to classify events as sig-
nal or background. The BDTs were trained with sepa-
rate background and signal datasets. In the background
case the BDT was trained on the data itself, a procedure
which is justified as the data is known to be strongly
dominated by the background. For the signal, the BDT
was instead trained on muon neutrino Monte Carlo sim-
ulations. These same Monte Carlo simulated muon neu-
trinos are also used to calculate the effective area of the
detector and the point spread function (PSF). More in-
formation on the Monte Carlo simulation can be found in
Ref. [56]. Through these selection processes the sample
is divided into two regions, up-going (with declination
δ > −5◦ ) and down-going (δ < −5◦). The down-going
region is dominated by atmospheric muons, while the up-
going region is shielded from these muons by the Earth.
The up-going region is dominated by atmospheric neutri-
nos. Despite this distinction, in our analysis we will not
distinguish between up and down-going events, instead
performing a full sky analysis. As in Ref. [45], the to-
tal livetime is 2,431 days, with 422,791 up-going events,
and 289,078 down going. The directions of the events in
this sample were reconstructed using a likelihood-based
method, which uses information on how the photons scat-
ter and get absorbed with the ice [57]. The reconstruc-
tions of events in the IC-86 data used a more advanced
description of the ice [58] and a better parameterization
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of how the photons interact with it [41]. The muon en-
ergy is estimated by approximating its energy loss along
its reconstructed track [59]. In order to fine tune this
sample for our analysis we make a cut on the recon-
structed muon energy. The expected energy spectrum for
an astrophysical neutrino flux is harder than the energy
spectrum for the atmospheric neutrino flux. It should
also be noted that the reconstructed muon energy is only
an estimate of the muon energy at a point where it en-
ters the detector and thus can only provide an estimated
lower-bound of the primary neutrino energy, as much of
the energy of the event can be deposited outside the de-
tector. Nevertheless, a cut on the reconstructed muon
energy can still effectively increase the sample’s purity
with respect to the harder-spectrum astrophysical flux.
We determine the optimal energy cut to be 100.5 TeV ≈ 3
TeV. This value is determined by maximizing the sensi-
tivity for the full sky analysis presented in this work. We
note that as the energy distribution of the background in
the Northern and Southern hemispheres is quite differ-
ent, if we performed an analysis restricting to either of
these the optimal energy cut would vary. We also make
a spatial cut around the poles of the detector (|δ| > 85◦),
as the scrambling procedure is less effective, and the re-
constructions can be poorly behaved, in these regions.
These cuts lead us to our final sample of 309,134 events.

Since the NPTF is a binned analysis we must spa-
tially bin the data. For this purpose we use HEALPix [60]
skymaps to bin the data into pixels of equal solid angle.
There is still a freedom in terms of how large to choose
these bins, controlled by the nside parameter, however
we find that a value of 64 maximizes our full sky sen-
sitivity, which corresponds to 49,152 bins, each of size
approximately 0.84 square degrees.

III. THE NON-POISSONIAN TEMPLATE FIT

The NPTF quantifies the following observation into a
rigorous analytic likelihood: compared to a count map
following a Poisson distribution, a map determined by a
distribution of sources will have more hot and cold pix-
els – the hot pixels associated with locations where there
are sources, and the cold pixels where there are none. In
slightly more detail, there are at least two steps involved
in going from an underlying point source distribution to
a neutrino count map. Firstly, we need to determine how
many point sources are expected and how they are dis-
tributed on the sky. Secondly, given a dN/dF , we must
determine the map of neutrino counts that is expected
from this distribution of sources. The NPTF likelihood
provides the rigorous answer to these questions, as well
as incorporating additional complications arising through
detector effects such as the finite PSF of the instrument.
This likelihood, when applied to the data, allows for a de-
termination as to whether such a population of sources
is preferred, and if not constraints on dN/dF can be set.

Although the NPTF is a relatively recent method, core

aspects have long been employed in astronomy. The fun-
damental observation that point source distributions lead
to more hot and cold pixels is at the heart of the P (D)
method that has been applied to X-ray datasets [61–65].
The method was extended to gamma-rays in [66], where
the analytic likelihood was also first derived. The like-
lihood was extended to the NPTF, i.e. a full template
based method, in [67], and the NPTF or similar meth-
ods have found a number of additional applications in
gamma-ray astronomy [68–74]. As mentioned above, a
related method that is similarly population based has
been considered in the context of publicly available Ice-
Cube data [48, 49]. The NPTF has now been incorpo-
rated into a publicly available code NPTFit [75],3 which
we use for the present work.

The remainder of this section will begin with a more
quantitative review of the method, outlining the core
ideas leading to the NPTF likelihood. After this, we
focus on some of the challenges that had to be addressed
in order to apply this method to the IceCube dataset,
which in particular required a careful treatment of the
instrument effective area matrix and PSF. Thirdly, we
will describe how we can combine the NPTF likelihood
with additional Poissonian models that we will use in our
hypothesis testing, and finally, we outline our inference
procedure which we will use to search for point-source
populations in the data.

A. Overview of the Method

In this section we provide a brief, quantitative review of
the NPTF likelihood framework, particularly emphasiz-
ing aspects that will be relevant to an application at Ice-
Cube. A more comprehensive description of the method
and a derivation of all quoted expressions can be found
in Ref. [75].

Our ultimate goal is to write down a likelihood for a
set of model parameters θ, given the data d described in
Sec. II – i.e., we want a function L(d|θ). Let us start with
a description of the model parameters. In the case where
we only have neutrinos originating from a single point-
source population, then the model parameters specify the
source-count distribution dN/dF . In principle it is pos-
sible to keep the form of dN/dF very general, but a par-
ticularly simple analytic expression for the source-count
function that is likely a good approximation to many re-
alistic neutrino source classes is a broken power-law4

dNp
dF

(F ;θ) = ATp

{
(F/Fb)

−n1 F ≥ Fb ,
(F/Fb)

−n2 F < Fb .
(1)

The use of a common functional form to describe the flux
of both galactic and extragalactic sources, is motivated

3 https://github.com/bsafdi/NPTFit/
4 In passing we note that NPTFit can handle a broken power-law

source-count function with an arbitrary number of breaks.

https://github.com/bsafdi/NPTFit/
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by the fact that this ansatz appears to be a reasonable de-
scription of both populations in gamma-rays observed by
Fermi, see for example [67]. In Eq. 1 we have added the
term Tp to the source count function. Tp is a template,
or pixelated spatial map describing the spatial distribu-
tion of the sources on the sky. It is the only term with
an explicit pixel-by-pixel variation. As an example, for
an isotropic or extragalactic distribution of sources, we
have Tp = 1 for every value of p. This template could
be considered as a model parameter and fitted for, but in
our analysis we will take Tp to be fixed before performing
any likelihood analysis. With the template fixed, there
are four model parameters for a singly broken power-law:
the normalization A, location of the break Fb, and power-
law indices above and below the break n1 and n2. Thus
formally θ = {A,Fb, n1, n2}.

To provide some intuition for these parameters, note
that we can calculate the total expected number of point
sources and also the total expected flux from the popu-
lation in each pixel from direct integration of the source-
count function over all possible fluxes as follows

NPS
p =

∫ ∞
0

dF
dNp
dF

=
ATp Fb(n1 − n2)

(n1 − 1)(1− n2)
,

FPS
p =

∫ ∞
0

dF F
dNp
dF

=
ATp F

2
b (n1 − n2)

(n1 − 2)(2− n2)
.

(2)

In performing these integrals, we require n1 > 1 and
n2 < 1 to obtain a finite NPS

p , whereas for a finite FPS
p

we need n1 > 2 and n2 < 2. There is an important dis-
tinction between the number of sources and flux as given
in Eq. 2. The total expected flux per pixel, FPS

p , is related
to the expected number of neutrinos observed through
the IceCube effective area, and in this sense is tied to an
observable in the data. Yet the total expected number
of sources, NPS

p , is not tied to an observable derivable
from a map of neutrino counts. In this sense, a real map
could have a best fit value n2 ∈ [1, 2], which corresponds
to an infinite number of sources but a finite flux. While
in practice the total number of sources should be finite,
the effective number of sources, for realistic source pop-
ulations such as star-forming galaxies [15], can appear
infinite. This effect occurs because the cut-off in the
source-count distribution, dN/dS, that makes the num-
ber of sources finite, appears at flux values well below
the level where the sources contribute, on average, more
than one photon or neutrino [73].

When presenting results it will be helpful to use a dif-
ferent set of variables instead of {A,Fb, n1, n2}. Specifi-
cally we will replace A and Fb with the expected number
of point sources across the whole sky, NPS, and the ex-
pected flux per source, F̄PS. The change of variables can
be implemented as follows,

NPS =
∑
p

NPS
p =

AFb(n1 − n2)

(n1 − 1)(1− n2)

∑
p

Tp ,

F̄PS =

∑
p F

PS
p∑

pN
PS
p

= Fb
(n1 − 1)(1− n2)

(n1 − 2)(2− n2)
.

(3)

Given a template and value of n1 and n2, we can then
change variables to these more intuitive quantities, which
we will exploit when presenting our results.

At this point we comment on an important assump-
tion that will be used throughout our analysis. We have
repeatedly discussed the flux of sources, F , eschewing
the question of what energy this flux is being measured
at. To resolve this, we will assume that our point-source
population follows the canonical astrophysical expecta-
tion of E−2. In detail the flux from an individual source
is given by

dΦ(E)

dE
= F

(
E

1 TeV

)−2

, (4)

which serves to contextualize the quantity F discussed
throughout this section. It should be thought of as the
normalization constant for the energy dependent flux,
and we will assume an identical E−2 scaling for all
sources. If the actual spectrum is softer than this, the
events will be shifted to lower energies where the back-
grounds are higher, and generically we would expect a
reduction of the sensitivities shown here.

Returning to our derivation of the likelihood, the
source-count function parametrizes our model prediction
for the population of sources, but our goal is to embed
this into a likelihood that can be fit to neutrino count
data. As a first step towards this we need to address
the fact that the discussion so far has been couched in
the language of fluxes per neutrino source, Φ, commonly
quoted with units of [neutrinos/cm2/s], whereas what is
observed in the instrument is an integer number of neu-
trino events. The conversion between these two variables
is provided by the effective area matrix, which accounts
for the fact that two point sources with equal flux at
different locations on the sky will contribute a different
number of detected neutrinos within IceCube. The effec-
tive area is the amalgamation of the detection efficiency
for neutrinos incident on the IceCube detector from dif-
ferent directions, as well as an accounting for the fact the
detector has a fixed location at the South Pole.

The conversion from flux, F , in units of
[neutrinos/cm2/s] to counts, S, is achieved with
the combination of the effective area and collection time,
usually called an exposure map, which we denote by Ep –
a pixel dependent quantity due to the spatial dependence
in the effective area matrix. We defer the discussion of
how the appropriate Ep map for our analysis was derived
until the following subsection. Assuming for now the
map is known, then using this we can then convert to
a source-count function in terms of counts rather than
flux as follows,

dNp
dS

(S;θ) =
1

Ep
dNp
dF

(F = S/Ep;θ) . (5)

As Ep can take on a different value in every single pixel,
the conversion from flux to counts should in truth be
performed in every pixel. Nevertheless this is in prac-
tice often unnecessary. It is usually sufficient to divide
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the full map into a number of subregions, which each
have comparable Ep values, take the mean Ep in this re-
gion, and perform the conversion once per region. Within
the NPTFit framework, the number of subregions is con-
trolled by the keyword nexp, and results are commonly
convergent for small values of this parameter. As the
appropriate Ep for our dataset varied significantly, albeit
smoothly, as a function of declination, we chose to use 50
exposure regions in order to ensure the transformation
from flux to counts was accurately performed.

From dNp/dS, we can then move towards the NPTF
likelihood by deriving the following useful quantity: the
expected number of sources that will contribute m neu-
trinos in a pixel p, xp,m(θ). To do so, note that dNp/dS
evaluated at a particular S provides the expected number
of sources that contribute an expected number of counts
S, where of course S does not need to be an integer. The
probability that one such source provides m neutrinos is
then determined by the Poisson distribution, specifically
Sme−S/m!. From here, xp,m(θ) is given by weighting this
factor by the source-count distribution, and integrating
over all S, as each value could Poisson fluctuate to m. In
detail

xp,m(θ) =

∫ ∞
0

dS
dNp
dS

(S;θ)
Sme−S

m!
. (6)

This expression, whilst intuitive, has an inherent assump-
tion that will be invalidated in most real applications: if
a point source is located in pixel p, then it deposits all of
its observed neutrinos in that same pixel. This neglects
the finite PSF at IceCube, but we will hold off on a dis-
cussion of how to address this until the next subsection.

Our final goal of this subsection is to move from xp,m to
the probability of observing k neutrinos in a pixel p, pp,k.
Combining pp,k with the observed number of neutrinos in
the data, dp, and then taking the product over all pixels p,
exactly gives us the likelihood through which we can con-
strain dN/dF , or more specifically θ = {A,Fb, n1, n2}.
Being fully explicit, we have:

L (d|θ) =
∏
p

pp,k=dp(θ) , (7)

where the product is taken over all pixels in the dataset
analyzed. In order to derive an expression for pp,k, we
use the concept of probability generating functions.5 If
we have a discrete probability distribution described by
a set {pp,k} known for all k, then the generating function
in a given pixel is defined as

Pp(t) ≡
∞∑
k=0

pp,kt
k , (8)

5 For a review, see for example Section 3.6 of [76].

where t is an auxiliary variable. The probabilities can be
recovered from Pp(t) via

pp,k =
1

k!

dkPp(t)

dtk

∣∣∣∣
t=0

. (9)

In the case of models described by the Poisson distribu-
tion with expected counts µp, substituting the Poisson
distribution into Eq. 8, reveals the associated generating
function to be Pp(t) = exp[µp(t− 1)].

Next, the aim is to construct the associated non-
Poissonian generating function, starting with the ex-
pected number of m-neutrino sources, xp,m(θ), as given
in Eq. 6. Of course m can take on any integer value, but
for the moment let us take it to be fixed, and we will de-
termine the generating function for m-neutrino sources,

denoted P
(m)
p (t). From the definition in Eq. 8, we need

to know the probability of seeing k neutrinos in the pixel
p, given by pp,k, a value that will depend on how many
m-neutrino sources there are. Specifically, k must be
some integer nm multiple of m, where nm drawn from a
Poisson distribution with mean xp,m(θ),

pp,nm
=
xnm
p,me

−xp,m

nm!
, (10)

where we have left the dependence on the parameters
θ implicit. In terms of this, the probability for seeing
k neutrinos in pixel p is simply pp,nm

for the case that
k = nm ×m, or zero otherwise as we are still keeping m
fixed. Substituting this information into Eq. 8, we obtain

P (m)
p (t) =

∑
nm

tmnm
xnm
p,me

−xp,m

nm!

= exp [xp,m(tm − 1)] ,

(11)

where we only included the non-zero values in the sum.
Now this result was obtained for a fixed m, in order to
obtain the full non-Poissonian generating function, we
need to account for all possible m. As each source is in-
dependent, each value of m is independent also. We can
then make use of the fact that the generating function of
a sum of independent random variables is given by the
product of each variable’s generating function. Accord-
ingly, the full non-Poissonian generating function is given
by

Pp(t) = exp

[ ∞∑
m=1

xp,m (tm − 1)

]
. (12)

From here, using the inversion formula in Eq. 9, the prob-
ability of observing k neutrinos in a pixel p is

pp,k =
1

k!

dk

dtk
exp

[ ∞∑
m=1

xp,m (tm − 1)

]∣∣∣∣∣
t=0

, (13)
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or combining this with our earlier results

pp,k(θ) =
1

k!

dk

dtk
exp

[ ∞∑
m=1

(tm − 1) (14)∫ ∞
0

dS
1

Ep
dNp
dF

(
S

Ep
;θ

)
Sme−S

m!

]∣∣∣∣
t=0

.

This expression, combined with Eq. 7, gives us our full
NPTF likelihood as a function of the source-count func-
tion dNp/dF , which is exactly what we want to constrain.
Although this expression contains an unevaluated inte-
gral, in the case of a multiply broken power-law it can
be efficiently implemented as the integral can be calcu-
lated analytically, and furthermore the pp,k can be eval-
uated recursively in k. All these details are described in
Ref. [75].

Below we will outline how this likelihood can be ex-
tended to account for the presence of additional contri-
butions to the data beyond just point sources. But before
doing so we turn to the practicalities of implementing the
NPTF in the specific case of IceCube.

B. Implementation at IceCube

There are two immediate obstacles to implementing
the NPTF at IceCube, beyond the basic outline described
in the previous subsection. Firstly, we need to calculate
an appropriate effective area matrix in order to deter-
mine Ep, which appears in the conversion between the
dN/dF and dN/dS, as per Eq. 5. Secondly, we must
incorporate the real IceCube PSF and thereby remove
the assumption hidden in Eq. 6, that a source deposits
all of its neutrinos in the pixel it is located. For some of
the neutrinos recorded at IceCube, there is a small but
non-zero probability that their true incident direction is
separated from the reconstructed value by a significant
(angular) distance, so this effect must be accounted for
in essentially any binning of the data. We will address
each point in turn.

Consider first the effective area matrix, a quantity
which specifies the response of the detectors to an in-
cident neutrino of a given energy, right ascension, and
declination. This, of course, cannot be calculated analyt-
ically. Instead we take simulations of individual events
and use these to construct Ep. We do this by reweight-
ing simulated events within our energy range according
to an E−2 spectrum, as this is the spectrum that we as-
sume our point-source population follows, see Eq. 4 and
the surrounding discussion. This then provides the av-
erage detector response as a function of right ascension
and declination, which we can map to galactic coordi-
nates and provide Ep. As claimed above, this map can
vary significantly, by more than an order of magnitude
between locations with highest and lowest effective area.
Given IceCube’s location at the geographic South Pole,
this variation is exclusively in declination, which tracks

whether the event is arriving above from through the at-
mosphere, or below through the Earth. In light of this
we used a relatively large number of 50 exposure regions
to convert from flux to counts.

Turning next to the PSF, recall as discussed already
that the NPTF likelihood derived in the last subsection
assumed perfect angular reconstruction of every event.
This assumption was invoked in writing down the number
of sources contributing m neutrinos in a pixel p, denoted
xp,m, in Eq. 6. By moving directly from the expected
number of sources in the pixel to the expected number
of neutrino counts, implicit is the assumption that the
source deposits all of its flux into that pixel. Yet detec-
tor effects will smear the flux of a real source amongst a
number of pixels. As in the NPTF we do not keep track
of which pixels are adjacent, what we want is the distri-
bution for how a given source deposits its flux amongst
the pixels on the map, a quantity denoted ρ(f). Here
f ∈ [0, 1] is the fraction of the point source’s flux; the case
of near perfect angular reconstruction, as compared to
the pixel size, corresponds to a ρ(f) peaked near f = 1, as
most of the flux tends to be distributed in one pixel (the
pixel where the source is located). Indeed in the limit of
exact angular reconstruction, we have ρ(f) = 2δ(f − 1).6

More generically, however, imperfect angular reconstruc-
tion leads to a distribution peaked nearer f = 0 as most
often a pixel will only get a small fraction of the flux. As
a concrete example, consider a 3 × 3 grid with a point
source at the center. Imagine the source deposits 60%
of its flux in the central pixel that it inhabits, and then
5% in each of the 8 pixels surrounding it. In this case,
many more pixels experience a small amount of flux, and
so ρ(f) would still be peaked towards smaller values of f .
Further note that ρ(f) itself is not a probability density
function, instead as the point source must deposit all of
its flux somewhere, the distribution is normalized so that∫ 1

0

df f ρ(f) = 1 . (15)

Imagine we have the appropriate ρ(f) – we will de-
scribe how to derive this shortly – consider how this mod-
ifies xp,m. Previously, we used the fact that dNp/dS pro-
vides the number of sources that contribute an expected
number of counts S, to then reweight this quantity by
the probability of fluctuating from S to m, given by the
Poisson distribution Sme−S/m!. Now, however, a source
is only expected to deposit a fraction f of that flux in the
pixel under consideration, and so instead the reweight-
ing to obtain m neutrinos is (fS)me−fS/m!. Further the
probability that a given value of f is chosen is dictated

6 Note that in this idealized case, ρ(f) will also have a contribution
at f = 0 as for perfect angular reconstruction most of the sky will
receive no flux. Nevertheless, when f = 0 there is no contribution
to the neutrino flux, and so in practice we will always neglect the
zero flux case.
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by the distribution ρ(f), and integrating over all possible
flux fractions we arrive at the following modification for
xp,m:

xp,m(θ) =

∫ ∞
0

dS
dNp
dS

(S;θ)

×
∫ 1

0

df ρ(f)
(fS)me−fS

m!
.

(16)

Another way to understand the above modification is to
compare this result to Eq. 6. Doing so, the modification
induced by the finite PSF is seen to be equivalent to
substituting in a modified source-count function,

dNp
dS

(S)→ dÑp
dS

(S) =

∫ 1

0

df
ρ(f)

f

dNp
dS

(S/f) . (17)

Propagating the modification in Eq. 16 through to the
NPTF likelihood then gives a full accounting for the effect
of the finite PSF, once we have ρ(f). Note that taking
ρ(f) = 2δ(f − 1), i.e. perfect angular reconstruction, the
above expression reduces to Eq. 6, as it must, and this
can also be seen clearly in Eq. 17.

All that remains then in order to incorporate the Ice-
Cube PSF is an algorithm for determining ρ(f). Com-
monly, the instrument PSF is stated as a probability dis-
tribution for a given event to be located at some radius
from the center of a source. The median reconstruction
angle for νµ+ν̄µ events can be seen, for example, in Fig. 2
of [45], where the angular error can vary from half a de-
gree to several degrees depending on the energy and event
type. Nevertheless, this is just the median reconstruction
angle; the tails of this distribution are considerably non-
Gaussian, and can extend out to very wide angles in the
case of poorly reconstructed events. Modeling the tails
correctly is critical for an NPTF analysis. As an example
of why this is important, if there is a true population of
sources all with identical fluxes, a mismodeled PSF can
lead to the fit preferring an additional population of lower
flux sources associated with mis-reconstructed neutrinos.

The event-by-event determination of the angular re-
construction can be exploited in an unbinned analysis,
as done for example in [45], however as the NPTF is
fundamentally a binned method we will instead consider
quantities averaged within the dataset of interest. There
is no simple analytic expression for converting from the
known PSF to ρ(f), as, for example – unlike the PSF
– ρ(f) depends critically on the binning of the underly-
ing map.7 We can, however, determine this distribution
using the following algorithmic prescription:

1. Simulate N equal flux point sources on a blank map
with the same pixelization as the NPTF will be
applied to;

7 To highlight this note that in the limit where the map contains
only one pixel, we must have ρ(f) = 2δ(f − 1), independent of
the PSF.
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Figure 1. The distribution of the frequency of pixels that
contain a fraction f of the flux from a point source, ρ(f),
for the full sky template, appropriate for modeling isotropic
extragalactic source. This quantity is central to incorporat-
ing the PSF of IceCube into the NPTF likelihood, according
to Eq. 16. We have chosen to show f ρ(f), as following Eq. 15
this quantity integrates to one given conservation of flux. See
text for details.

2. Determine the fraction of the total flux in each
pixel, fp, defined such that

∑
p fp = 1;

3. Define a flux binning ∆f , and as a function of flux
f , define ∆n(f) the number of pixels that have a
flux between f and f + ∆f ; and

4. Combine these quantities to define ρ(f) as follows

ρ(f) ≈ ∆n(f)

N∆f
. (18)

The above relation is approximate, and only becomes
exact in the limit N →∞ and ∆f → 0.

In order to simulate this in practice we deposit a large
number of sources on the sky, and for each one model the
neutrino distribution according to the appropriate PSF
at each location. To account for the energy dependence
inherent in the PSF of IceCube, following Eq. 4, we as-
sume each source has an E−2 spectrum, and draw events
for the source according to this distribution. In this way
we can exactly build up ρ(f) as defined in Eq. 18, and the
result is shown in Fig. 1 for our default full-sky analysis.
In that figure we have zoomed in on the small f values
where the distribution is peaked. That the flux fraction
distribution is peaked at small values is indicative of the
fact that the IceCube PSF has tails that extend signifi-
cantly more broadly than the size of a pixel on the map,
but is also quite generic of ρ(f) unless the angular re-
construction is significantly better than the pixel size.
For comparison, note that the linear size of our pixels is
∼0.92◦, which is comparable to the median reconstruc-
tion angle of our events which is ∼1◦. As the PSF of
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IceCube varies across the sky, ρ(f) must be determined
for each of our spatial distributions separately.8

In light of these results the NPTF likelihood can now
be applied to the IceCube dataset. As an important vali-
dation of the method, we performed extensive tests based
upon Monte Carlo studies where we injected and then
recovered point-source populations. An example of this
is shown in Fig. 6, discussed in detail below. We em-
phasize again that in particular the details discussed in
this section were critical to the successful recovery of in-
jected populations. With the method validated, we can
now look to calculate the expected sensitivity at IceCube,
which we turn to in Sec. IV. Before doing so, however,
in the next two subsections we will discuss how we incor-
porate backgrounds that are not associated with point
sources into our model, and then how these various like-
lihoods will be combined into an inference framework we
can use to test for the presence of point sources.

C. Adding Poissonian models

At the very least due to the presence of irreducible
backgrounds, we know that point sources cannot be the
only contribution to the IceCube dataset, and in this
section we discuss how to augment the NPTF likelihood
to account for these. These additional contributions are
generally expected to be described by the Poisson dis-
tribution, following an underlying spatial map. To in-
corporate both the Poissonian statistics and the spatial
variation, we will use the language of Poissonian tem-
plates, following the language from a recent application
of this topic in Ref. [77].

To begin with, as in the NPTF case, we imagine our
model follows a spatial distribution that once pixelized
can be described by a map Tp. Unlike for an NPTF
model, where Tp specified the spatial distribution of point
sources, in the Poisson case we require Tp to be propor-
tional to the expected distribution of counts, not flux.
As a concrete example, in the case where our model is
for isotropic extragalactic neutrino emission, the appro-
priate Tp would still have a spatial variation inherited
from the effective area matrix described in the previous
subsection. As in the non-Poissonian case, we assume
for a given model the Poissonian template, Tp, is spec-
ified ahead of time. What we fit for in this case is the
overall normalization of this template, in terms of which
our Poissonian model prediction is given by

µp(θ) = ATp , (19)

so that θ = {A}, where we emphasize that A has no pixel
dependence. Given that the sum of two Poisson distribu-

8 In principle, due to the spatial variation of the PSF, ρ(f) also
varies spatially. The approximation made in this work is that
we will use the mean of ρ(f) across the sky, as weighted by our
various spatial templates.

tions with means µ1 and µ2 is again a Poisson distribu-
tion of mean µ1 + µ2, we can readily extend this formal-
ism to account for multiple Poisson models. For example
if we had n of these, described by template T 1

p , . . . , T
n
p ,

then our combined model prediction in each pixel would
be

µp(θ) =

n∑
`=1

A` T `p , (20)

where now θ = {A1, . . . , An}. To provide a concrete ex-
ample, we may want to model the observed flux using a
model that combines three sources: 1. terrestrial back-
grounds such atmospheric neutrinos; 2. diffuse extra-
galactic emission; and 3. diffuse emission from the Milky
Way. In such a scenario, we would have three Poissonian
templates, and for each of these T `p would describe the

pixel dependence of the flux, and A` the overall normal-
ization. For the case of extragalactic emission, as the
flux is expected to be isotropic, T `p would then be a map
of the IceCube detector’s response to a uniform incident
flux.

In terms of this, if all we had was a set of Poissonian
models then we could write down our likelihood according
to the Poisson distribution,

pp,k(θ) =
µp(θ)ke−µp(θ)

k!
. (21)

Nonetheless, we want to construct a likelihood incorpo-
rating both Poissonian and non-Poissonian models. For
this purpose, we can use the property of generating func-
tions we exploited earlier, specifically that the generating
function which describes the sum of two independent ran-
dom variables is given by the product of the generating
functions for the individual variables. For the Poisson
case, given in Eq. 21, the associated generating function
according to Eq. 8, is given by

Pp(t;θ) = exp [µp(θ)(t− 1)] . (22)

Combined with the generating function for the non-
Poissonian case given in Eq. 12, we arrive at

Pp(t;θ) = exp

[ ∞∑
m=1

xp,m(θ) (tm − 1)

+ µp(θ)(t− 1)

]
,

(23)

where now θ =
{
A,Fb, n1, n2, A

1, . . . , An
}

. Through the
use of Eq. 9, this generating function can be used to
derive a combined likelihood that includes both Poisso-
nian and non-Poissonian models, accomplishing one of
the main aims of this subsection.

The main application for the Poissonian template for-
malism in our work will be to model the known back-
grounds arising from atmospheric neutrinos and muons.
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Figure 2. Data driven background template for the spatial
distribution of atmospheric neutrinos and muons, derived us-
ing the procedure described in the text. This map is referred
to as T bkg

p . The map is a Mollweide projection of an un-
derlying distribution in galactic coordinates, and the overall
normalization is arbitrary.

For this purpose we need to derive an appropriate Tp de-
scribing the spatial distribution of these contributions.
Determining this from first principles is at present out
of reach. Fortunately, however, we can estimate the dis-
tribution from the data alone. The reason for this is if
we assume the data is made up of predominantly back-
ground events and a subset of point sources, then we can
remove the point sources in the following way. Given the
approximate azimuthal symmetry of the effective area of
detector, we can take the data collected by IceCube and
scramble the events by assigning them a random right
ascension value. This process removes any point source
hotspots, as they will be smeared out along bands of
constant declination. Furthermore, as the background
is only expected to vary with declination, this process
does not degrade the spatial information pertaining to
the background process. Applying this process once gives
a map that is still as noisy as the data. In order to extract
a map more appropriate for the mean of a Poisson distri-
bution, we repeated this scrambling process a large num-
ber of times and take the average of the resulting maps.
Finally, to remove the noise in declination, we convolve
this model with a von Mises–Fisher distribution that has
a concentration corresponding to 1.08◦, chosen as this is
the median angular resolution at ∼1 TeV. This last step
can be justified as the real data has been scrambled on
such a scale due to the PSF.

The map resulting from this procedure is shown in
Fig. 2, which is the Mollweide projection of the map
in galactic coordinates. The most apparent feature in
this map are the strong variation away from the poles
towards the equator where the largest flux is observed.
Taking this map as template, we can readily incorporate
the largest expected background into our likelihood. In
subsequent discussions we will refer to this map as T bkg

p .

D. Inference Framework

So far in this section we have introduced the formal-
ism required to calculate the likelihood for a dataset in

Parameter Prior Range

log10

(
A [TeV cm2 s]

)
[2.41, 16.41]

log10

(
Fb [TeV−1 cm−2 s−1]

)
[−18,−7]

n1 [2, 10]

n2 [−6, 2]

Abkg [0.5, 1.5]

AP [−0.5, 1]

Table I. List of priors used in calculating the marginal likeli-
hood. All priors are taken to be flat in the given ranges.

the presence of a population of sources and additional
Poissonian contributions. Our goal now is to put this
machinery to work in the form of a test statistic that
we can use to test for the presence of point sources in
the data. Our test statistic will compare between two
hypotheses: that point sources, distributed according to
a spatial template TPS

p , are present in the data or they
are not. We will refer to these as the non-Poissonian and
Poissonian hypotheses respectively.

In detail, the Poissonian hypothesis is a model consis-
tent of two Poisson templates: one following the dom-
inant background contribution, given by T bkg

p , and the
other accounting for the possibility that for a given spa-
tial distribution TPS

p , the data may have a diffuse rather
than unresolved point source origin. For this second
source of emission, as the flux is diffuse it is better de-
scribed by Poisson statistics, and thus follows a template
EpTPS

p , where the extra factor of Ep is required to convert
to a counts map. In this case we can write down a likeli-
hood function as described above, and from the data we
can construct the marginal likelihood as follows,

L0(d) =

∫
dθLP(d|θ)p(θ) , (24)

where the subscript 0 indicates we are using this as our
null hypothesis, and the subscript P on the likelihood
identifies this as the appropriate form for the Poissonian
hypothesis. In detail, LP(d|θ) can be determined directly
from Eq. 21, as we are only considering Poissonian mod-
els. In addition we have introduced p(θ), which repre-
sents the priors on the parameters. These are given in
Table I, where Abkg and AP are the normalizations of
the templates T bkg

p and EpTPS
p respectively, and so we

see this is a two parameter model.
The non-Poissonian hypothesis is derived from the null

hypothesis, except that we append one further model: a
non-Poissonian template following the spatial template
TPS
p . As we will take a singly-broken power law to de-

scribe the source-count distribution, this hypothesis is
a six parameter model. Once more we can form the
marginal likelihood using

L1(d) =

∫
dθLNP(d|θ)p(θ) , (25)

where again the priors are given in Table I. Note that
all priors are uniform, except for A and Fb, which are
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Figure 3. Three forms of point source distribution considered in this work, in addition to a purely isotropic distribution. From
left to right these are a model for the Galactic disk, the Fermi bubbles [78], and the SFD dust map [79]. In effect these are maps
of TPS

p in galactic coordinates, and the normalizations are arbitrary. All maps are on a linear scale except for the SFD dust
map, where we use a log color axis to emphasize the more detailed structure within this map. See text for further description.

log uniform. Also the prior for AP is allowed to float
negative, in order to allow the fit to conserve the to-
tal amount of flux when evaluating the non-Poissonian
hypothesis. To justify this choice, recall that T bkg

p was
constructed by scrambling the real data. Accordingly,
if there is a detectable point source population within
the data, the flux from these sources would be picked
up by the non-Poissonian template, but also be present
in T bkg

p , and therefore double counted. A negative AP

can then be loosely thought of as subtracting that flux
off, but done in such a way that the combined Poisso-
nian template AbkgT bkg

p + APEpTPS
p ≥ 0 in every pixel.

We emphasize that the model used for non-Poissonian
hypothesis includes both Poissonian and non-Poissonian
templates, and thus the full generating function in Eq. 23
is required.

Model selection between these two hypotheses is con-
sidered through the use of the Bayes factor

BNP/P(d) =
L1(d)

L0(d)
=

∫
dθLNP(d|θ)p(θ)∫
dθLP(d|θ)p(θ)

. (26)

From this definition, it can be seen that the Bayes fac-
tor is a summary statistic: it integrates over all possible
forms of the source-count function through the integral
over parameters. As such it provides a gross evaluation
as to whether a point-source population is preferred by
the data, rather than singling out any particular dN/dF .
As a summary statistic, it can also serve a secondary role
as a test statistic. Our expectation for the value of the
Bayes factor can be calibrated through use of frequen-
tist methods such as calculating the p-value of the Bayes
factor.

To compare more specific model hypotheses, we intro-
duce the pointwise likelihood ratio, defined as

M (d;φ) =
L̃NP (d|φ)πNP

L0(d)πP + L1(d)πNP
. (27)

where πP and πNP are, respectively, the model priors
for the Poissonian and non-Poissonian hypotheses, which
have been chosen to be equal for this presentation of the
results. Here φ =

{
NPS, F̄PS

}
represents the expected

number of point sources across the whole sky and the
expected flux per source at this location in model space,

both of which were defined in Eq. 3. In this expression,
L̃NP (d|φ) is similar to LNP (d|θ), except that n1 and n2

have been marginalized over. Intuitively,M (d;φ) should
be thought of as the probability for the NPTF model at
this particular value of

{
NPS, F̄PS

}
, compared to the

probability for an equally weighted mixture of the Pois-
sonian and non-Poissonian models. This definition was
motivated by the need for a metric that handles both the
high and low signal strength regimes. When BNP/P � 1,
M is approximately the model posterior conditioned on
φ; while in the BNP/P � 1 regime, M is approximately
the ratio between the posterior and prior: p(φ|d)/p(φ).

Before concluding this section, we have said a num-
ber of times we will exploit the power of the NPTF
to test several forms for the spatial dependence of the
point-source population, specified by TPS

p . In addition

to isotropically distributed sources, where TPS
p ∝ 1, we

will consider three additional templates that consider the
possibility of point sources distributed within the Milky
Way, all of which are shown in Fig. 3. The galactic
disk template is used as a generic model for sources dis-
tributed according to the disk of the Milky Way. This
is the line-of-sight integrated emission from a disk with
a source density that scales exponentially in radius and
distance from the plane, with a scale height of 0.3 kpc
and a scale radius of 5 kpc. Next we consider sources
distributed following the Fermi bubbles [78], large struc-
tures observed in gamma-rays extending perpendicularly
from the galactic disk. Although the emission observed
from the bubbles so far appears diffuse, neutrino emis-
sion from the recently discovered small scale gas clouds
within the bubbles [80], could lead to point like sources.
Finally we consider the Schlegel, Finkbeiner, and Davis
(SFD) dust map [79], which provides a 2 dimensional
distribution of dust within the Milky Way, mapped out
using the reddening of starlight. This distribution is in-
teresting to consider as dust and gas tend to have sim-
ilar spatial distributions, so the map is a proxy for the
distribution of hydrogen in the Milky Way. The hydro-
gen is a target for cosmic-ray proton to collide with and
form pions. The neutral pions then decay to photons,
and indeed the SFD dust map can be seen clearly in the
Fermi gamma-ray data. If these same interactions pro-
duce higher energy pions, then the charged variants could
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Figure 4. The distribution of the test statistic, as given
in Eq. 26, under the background only hypothesis for four dif-
ferent signal states. These distributions, formed from 1000
trials, are used for establishing sensitivities and p-values. In
particular, the vertical lines represent a p-value of 0.5. Here,
each trial is formed by scrambling the data in right ascension.
See text for details.

produce neutrinos at IceCube, making this an interesting
spatial distribution to consider. As the target dust has a
diffuse distribution throughout the Milky Way, in order
for this template to describe a point-source population,
the sources of the cosmic-ray protons would need to be
point like, as this would then imprint a point-source-like
distribution into the neutrino data. Note that we have
chosen not to divide our templates between the northern
and southern sky, even though this is commonly done
for extragalactic point source searches, see for example
Aartsen et al. [45]. Usually, this distinction between the
northern and southern sky is imposed due to the different
backgrounds that dominate in each hemisphere; in the
northern sky, the main background is atmospheric neu-
trinos, whereas in the southern sky instead atmospheric
muons dominate. Nonetheless, for the isotropic case we
show both the sensitivity and results for the northern
sky in App. B. There we will see that the reach for the
restricted case is only slightly enhanced, justifying our
choice to focus on the full sky.

IV. EXPECTED SENSITVITY

Using the techniques and statistical framework de-
scribed in the previous section, we now turn to estimating
the expected reach of this technique using Monte Carlo
simulations. We will consider both the case of setting
limits and quantifying thresholds for a discovery of a
point-source population. As we use techniques generally
motivated by Bayesian statistics, part of the aim of this
section is to help develop intuition for what discovery and
limit setting looks like in our framework. Nevertheless,
the primary output of a Bayesian analysis is the poste-

rior, and as mentioned we make this publicly available,9

describing the details in App. A.
To begin with, we consider the expected limit sensi-

tivity for the analysis. The sensitivity is determined by
comparing how our test statistic, the Bayes factor given
in Eq. 26, is distributed over many trials for each of the
signal plus background and background only hypothe-
sis. From these distributions, our sensitivity to a given
model is defined as when 90% of the signal distribution
is above 50% of the background case. For example, the
background only distribution of the natural log of our test
statistic, generated from 1000 trials, is shown in Fig. 4 for
each of our four signal templates. The trials are gener-
ated by taking the real data, but scrambling the right as-
cension of each event, with a different scrambling for each
trial. This background only distribution can also be used
to establish p-values, and indeed the definition of sensi-
tivity is equivalent to requiring the p-value for 90% of
the signal distribution to be less than 0.5.10 Note that as
sensitivity is defined in terms of the distributions, there
is no statistical variation in its value, as opposed to say a
frequentist 90% confidence limit. Where the sensitivity
threshold occurs will not be a unique point in the sig-
nal parameter space, established by {NPS, F̄PS, n1, n2}.
If, however, we fix three of the parameters, for example
NPS, n1, and n2, then we can define the sensitivity as a
function of F̄PS. With this in mind, in Fig. 5 we show the
sensitivity to F̄PS as a function of NPS, for three different
values of n1 = −n2, and for the four signal templates.

In addition to the sensitivity, we define a contour where
M(d;φ), given in Eq. 27, equals 0.1. This contour is
the dividing line, above which, the odds for a particu-
lar point in parameter space is no better than 1 in 10.
As M(d;φ) = 0.1 varies between different datasets, we
show the median, 10th, and 90th percentiles on the dis-
tribution also in Fig. 5. Recall that M(d;φ) is defined
by marginalizing over n1 and n2. As explained around
Eq. 3, we can describe an NPTF template in terms of
NPS, F̄PS, n1, and n2. With NPS fixed, and the indices
marginalized over, the only remaining degree of freedom
is the average flux per source, F̄PS, which for a fixed
number of sources is equivalent to the total flux associ-
ated with the non-Poissonian template. Accordingly the
limit set using this procedure effectively reduces to the
weaker constraint obtained by ensuring such a population
does not overproduce the observed neutrino flux, rather
than drawing on the full power of the NPTF likelihood.

9 https://icecube.wisc.edu/science/data/NPTF_7yr_

posterior
10 A similar procedure can be used to establish the expected dis-

covery sensitivity, which is defined as when 50% of the signal
distribution has a p-value less than 2.87 × 10−7, the threshold
usually referred to as a 5σ discovery. Determining the associated
test statistic that corresponds to such a small p-value requires
generating a large number of background only trials, and as we
find no significant evidence for a signal in the present analysis
we have not quantified the discovery threshold.

https://icecube.wisc.edu/science/data/NPTF_7yr_posterior
https://icecube.wisc.edu/science/data/NPTF_7yr_posterior
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Figure 5. The expected sensitivity and limit as a function for the four different spatial templates considered for the point source
distributions: isotropic extragalactic sources over the full sky (top left), Fermi bubbles (top right), SFD dust (bottom right),
and galactic disk (bottom left). In each case, the sensitivity is shown as the dashed curves for three different shapes of the
source-count function. The median expected limit derived usingM(d;φ) = 0.1 is shown in blue, as well as the associated 10th
and 90th percentiles from the distribution. See text for details.

This explains why for a large number of sources, the ex-
pected limit is weaker for the full sky as compared with
the other cases. For the spatially restricted templates,
such as the Fermi bubbles, the point sources and the
majority of their associated neutrinos are forced within
a smaller region on the sky compared with the full sky
case, leading to a stronger limit. As discussed earlier,
all templates are applied to the full dataset, although
for the isotropic case, we show the sensitivity and results
restricting to the northern hemisphere in App. B.

In addition to being useful for setting limits, we can
use M(d;φ) to map out the signal parameter space to
determine if there are regions that are particularly pre-
ferred by the data. In order to calibrate our analysis for
this case, we will consider three different scenarios where
we look for evidence of an actual point source signal. In
each of these scenarios we consider a background dataset
with an additional injected point-source population. The
population is distributed isotropically over the full sky,

where in all scenarios the expected number of sources is
104, but each have a source-count function following a
singly broken power-law, with n1 = −n2 = 2.5. The
cases are distinguished by the value of the flux break
of the source-count function, Fb; we consider a strong
signal with Fb = 10−12 neutrinos/cm2/s/TeV, a weak
signal of Fb = 10−14 neutrinos/cm2/s/TeV, and finally
a case almost equivalent to no signal with Fb = 10−15

neutrinos/cm2/s/TeV. Note the strong signal here cor-
responds to value that is a factor of ∼100 brighter than
the observed diffuse flux, and the sole purpose of such a
large value is to validate that the framework has been cal-
ibrated correctly. The distribution ofM(d;φ) for each of
these cases is shown in Fig. 6, and we see that only in the
strong signal case is the actual injected point clearly sin-
gled out. Nevertheless in the weak signal case, it is clear
that a non-zero point-source population is preferred, but
the exact location is not correctly identified. The fit is
not able to distinguish between a few bright or many
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Figure 6. The map of M(d;φ) for three different datasets including injected point-source populations. In each of the cases,
the parameters of the injected population are shown with the red lines. Only in the case of a strong signal is this method able
to identify the specific location in this reduced parameter space of the signal. See text for details.

dim sources. Finally, in the no signal case the dataset
is clearly consistent with no point-source population, as
the injected population falls below the sensitivity of our
analysis. For reference the lnBNP/P of the strong, weak

and no signal cases, is approximately 2.3×104, 10.7, and
−0.84 respectively.

It is worth emphasizing that all results shown above,
and indeed those we derive on the actual data in the next
section, represent slices through the full model space.
This is the cost of reducing a four dimensional parame-
ter space into a two dimensional limit plot. For a specific
model prediction, the full posterior is the more relevant
resource.

Finally, we emphasize that a direct comparison of this
method to limits set by previous IceCube analyses – such
as those in Aartsen et al. [45] – can not be made straight-
forwardly, as those limits are calculated by assuming a
population of equal-flux point sources. This kind of pop-
ulation can be emulated by requiring n1 and n2 to be
fixed to a large absolute value, thus creating an approx-
imate Dirac delta distribution differential source-count
function. In this limited region of parameter space a di-

rect comparison is possible, and sensitivities for the four
templates under consideration, using n1 = −n2 = 20, are
shown in Fig. 7 along side the northern and southern sky
sensitivities from Aartsen et al. [45].11

V. RESULTS

In this section we apply the techniques used to esti-
mate the sensitivity discussed in the last section to the
actual data. In particular, we plot the distribution of
values M(d;φ) for each of our signal templates. The re-
sults of this are shown in Fig. 8. These plots indicate
that for each of the investigated case there is no indica-
tion of a point-source population present in the data, and
accordingly the results are consistent with the expected

11 The northern sky sensitivity from Aartsen et al. [45] has been
recalculated to account for an incorrect treatment of signal ac-
ceptance in the original publication.
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Figure 7. The expected sensitivities for four templates when
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Aartsen et al. [45] are shown along-side. The hotspot analysis
represents a traditional approach to point source detection,
where a “hotspot” is defined as a source that is individually
detected at 3σ global significance. See text for details.

limits shown in Fig. 5. In each case the significance can
be quantified as follows:

• Full sky: lnBNP/P = −0.79, p-value = 0.66;

• Fermi Bubbles: lnBNP/P = −0.94, p-value =
0.45;

• SFD Dust: lnBNP/P = −0.92, p-value = 0.33;
and

• Galactic Disk: lnBNP/P = −0.97, p-value = 0.74.

The p-values quoted here were determined from the dis-
tribution of the background only hypotheses, which were
shown in Fig. 4. From the p-values each signal template
is consistent with the Poissonian hypothesis.

We can also consider the full posterior. In Fig. 9 we
show a triangle plot generated from the posterior for the
case of the SFD dust signal template. The signal pa-
rameters are clearly consistent with a background only
hypothesis, and we note that the triangle plots for other
templates are similar. The posterior for each template
is made publicly available, and we refer to App. A for
details.

The purpose of the public posterior is that they can
be used to test any point source population model where
the associated dN/dF can be approximated by a broken
power law. There are a wide number of source classes
which have been considered as possible contributors to
the IceCube neutrino flux. For an overview, see, for ex-
ample [11]. A fundamental problem, however, is that
in many cases there remains considerable uncertainty in
the associated luminosity function. While we often have
measurements of the photon luminosity function in the

infrared, X-ray, or γ-ray energies, mapping from this to
the neutrino luminosity function involves a number of as-
sumptions. For an example in the case of blazars, see [81].
For these reasons, the model space associated with neu-
trino sources is significant.

One approach to simplifying this space is to consider
standard candles. Under this approach, the luminos-
ity function is chosen to be sharply peaked at a certain
value, denoted Leff , and then the problem is reduced to
scanning a two dimension space parameterized by the ef-
fective luminosity, and the density of sources, denoted
ρ0. More quantitatively, following [47], the luminosity
function of a standard candle is defined as a log-normal
distribution with median Leff and a width of 0.01 in
log10 Leff . This model is then converted to an associated
dN/dF using FIRESONG [51], adopting a density evolu-
tion for the source population according to the evolution
of the star formation rate in [82], and a flat universe with
ΩM,0 = 0.308, Ωλ,0 = 0.692, and h = 0.678 [83]. These
output source-count distributions were then interfaced
with the NPTF posterior, and the value of M(d;φ) cal-
culated for each point in parameter space. The A and Fb
parameters scale with ρ0 and Leff respectively, while n1

and n2 are set to 1.9 and −2 respectively. A lower limit
of Leff = 1052 erg yr−1 was chosen to match the prior on
Fb. The result is shown in Fig. 10, and – consistent with
our previous results – we see no evidence for any partic-
ular source class. These results, in addition to allowing
a comparison with searches for source populations with
fixed flux-characteristics [47], also are representative of
the power and generality of the NPTF technique.

VI. CONCLUSION

In this work we have performed the first application of
the non-Poissonian template fitting technique to search
within the IceCube dataset for neutrino point-source
populations. Although IceCube presents novel challenges
to the implementation of the NPTF, our work provides
an explicit verification that such difficulties can be ad-
dressed, and that this technique is a viable method to
search for such populations. In addition to being able
to search for populations with an, in principle, arbitrary
source-count function dN/dF , this method also allows
us to search for point sources with peculiar spatial distri-
butions, and here we have considered spatial templates
following maps of the isotropic sky, Fermi bubbles, SFD
dust map, and galactic disk. In all cases, no significant
evidence of a point-source population has been detected,
and so we have presented limits in their absence, as shown
in Fig. 8. Importantly, we have made the full posterior
from our analysis publicly available, allowing specific the-
ory predictions for contributions to the IceCube flux to
be tested directly. This is exemplified by the application
of our results to the space of standard candle luminosity
functions, shown in Fig 10.

There are a number of ways that the analysis presented



18

101 102 103 104 105

NPS

10−16

10−15

10−14

10−13

10−12

10−11

10−10

F̄
P

S
(c

m
−

2
s−

1
T

eV
−

1
)

Full sky

M(d;φ) > 10−2

M(d;φ) > 10−1

101 102 103 104 105

NPS

10−16

10−15

10−14

10−13

10−12

10−11

10−10

F̄
P

S
(c

m
−

2
s−

1
T

eV
−

1
)

Fermi bubble

M(d;φ) > 10−2

M(d;φ) > 10−1

101 102 103 104 105

NPS

10−16

10−15

10−14

10−13

10−12

10−11

10−10

F̄
P

S
(c

m
−

2
s−

1
T

eV
−

1
)

Galactic disk

M(d;φ) > 10−2

M(d;φ) > 10−1

101 102 103 104 105

NPS

10−16

10−15

10−14

10−13

10−12

10−11

10−10

F̄
P

S
(c

m
−

2
s−

1
T

eV
−

1
)

SFD dust

M(d;φ) > 10−2

M(d;φ) > 10−1

Figure 8. The pointwise likelihood ratio, M(d;φ), for the four different point source spatial distributions considered in this
work: isotropic sources over the full sky (top left), Fermi bubbles (top right), SFD dust (bottom right), and galactic disk
(bottom left). In each case the results are consistent with the background or Poissonian hypothesis, with the most significant
p-value of 0.33 occurring for the SFD dust map.

here can be improved upon. The IceCube dataset con-
tains a large amount of information on the reconstruc-
tion quality of incident candidate neutrinos on an event
by event basis. As the NPTF is a fundamentally binned
method, much of this information is lost, and is only
exploited through the optimization of various high level
cuts, such as on the energy range considered. Yet there
is significant scope to incorporate more of this informa-
tion into the NPTF. For example, there is the potential
to incorporate energy binning into the method, and with
this additional event information. Beyond expanding the
neutrino dataset, such extensions could play an impor-
tant role in uncovering evidence for a population of as-
trophysical point sources, and unravelling the mystery
surrounding the origin of the IceCube neutrinos.
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approach models the luminosity function as sharply peaked in
Leff , and then the space of possible models is spanned by this
parameter and the density of sources, ρ0. This figure also
allows us to contrast our results with the 90% upper limit
obtained using an analysis for steady point sources with a
specified flux-distribution, as derived in [47]. Both of these
results can be compared to a standard candle population of
sources that is compatible with the observed diffuse flux at
±1σ, as quoted in [84]. To aid interpretation, we have over-
laid the electromagnetic luminosities associated with several
possible source classes: flat-spectrum radio quasars (FSRQ),
BL Lacertae active galactic nuclei (BL LAC), galaxy clus-
ter, and Fanaroff–Riley Class II radio galaxies (FR-II), fol-
lowing [51, 85]. We emphasize that these are not predicted
neutrino luminosities, which are unknown, but highlight that
current measurements provide information about the relative
neutrino to photon luminosities of these sources. We note
that the results in this figure were derived using the NPTF
posterior, described in App. A, and show the power of our
result to test specific model hypotheses. See text for details.

Appendix A: Description of the Public Posterior

The posterior for each of the four templates can be
found at https://icecube.wisc.edu/science/data/
NPTF_7yr_posterior as an HDF5 file. Within the
file, five tables named Isotropic, Galactic_disk,
Fermi_bubble, SFD_dust, and Northern_sky contain
the posterior for their respective templates.

Each table describes equally-weighted samples using
five columns. Four columns, labelled ln_A, ln_Fb, n1,
and n2 contain the coordinates for the sample in natural
logarithmic parameter space for the differential source-
count function normalization A and break Fb, while the
power indices n1 and n2 are in linear space. The fifth col-
umn – labelled loglikelihood – gives the natural log-
arithm of the likelihood function at the location of the
corresponding sample. In addition, each table has two at-
tributes named P_log_evidence and NP_log_evidence
that contain the natural logarithm of the evidence inte-
gral for the Poissonian model (L0) and non-Poissonian

model (L1) respectively.
The root node of the HDF5 file also contains a series of

attributes named units_ln_A, units_ln_Fb, units_n1,
and units_n2 that specify the units that the posterior
sample coordinates are given in. Another series of root
attributes named prior_ln_A, prior_ln_Fb, prior_n1,
and prior_n2 give the probability density of the uniform
priors for each of the model parameters.

Finally, we emphasize that our analysis and hence
these posteriors are constructed with the assumption that
the astrophysical population produces neutrinos with an
E−2 spectrum, as given in (4).

Appendix B: Isotropic Sources in the Northern Sky

Traditional searches for extragalactic point sources at
IceCube are performed restricting to the northern or
southern hemispheres. The motivation for this is the
northern hemisphere, having a lower background, usu-
ally has an enhanced sensitivity. In Fig. 11 we show
the expected sensitivity and the pointwise likelihood ra-
tio determined from the data for the northern sky, which
should be contrasted to the full sky result for both hemi-
spheres shown in Figs. 5 and 8. Comparing the two re-
sults, it is clear that restricting the NPTF to the lower
background hemisphere only marginally improves the
sensitivity. This suggests that the NPTF results are not
being degraded by working with the full sky, and given
our inclusion of a number of galactic templates, justifies
the choice of both hemispheres used in the main text.

https://icecube.wisc.edu/science/data/NPTF_7yr_posterior
https://icecube.wisc.edu/science/data/NPTF_7yr_posterior
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Figure 11. The analogue of the full sky sensitivity shown in Fig. 5 (top) and the pointwise likelihood ratio as in Fig. 8
(bottom), but here restricted only to the northern hemisphere. Interestingly we see at most a factor of a few improvement in
reach, suggesting that the NPTF technique is not being hampered by the increased background in the southern hemisphere. For
the top figure we have explicitly reproduced the median of the full skyM(d;φ) = 0.1 distribution to allow a direct comparison.
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