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Abstract 

 
Short-Sequence Approach to Uncovering Regulatory Mechanisms in the  

Human Immune System 
 

by 
 

Shaked Afik 
 

Doctor of Philosophy in Computational Biology 
 

University of California, Berkeley 
 

Professor Nir Yosef, Chair 
 
Short DNA sequences play an important role in the immune response to pathogens. As part of                
the non-coding regions of the genome, short DNA sequence motifs regulate cell activation and              
maturation by binding chromatin modifiers and transcription factors. They also determine the            
ability of each cell in the adaptive immune system to respond to a specific pathogen by forming                 
the antigen-recognizing region of their receptors. This dissertation outlines computational tools I            
developed for utilizing and integrating high-throughput sequencing data to study the functions of             
short DNA sequences in the human immune system. I focus on two main aspects of short DNA                 
sequences: (1) As components of the regulatory landscape that control the activation of dendritic              
cells (DCs) in response to lipopolysaccharide (LPS), and (2) as the determinants of the              
specificity of T cells and B cells. 
 
The first part of my dissertation investigates the regulatory landscape of DC activation following              
LPS stimulation. In chapter two I present a model which predicts gene induction based on               
sequence motif occurrences in the regulatory regions of each gene and show that this regulatory               
logic is conserved between human and mouse. Chapter three describes a supervised learning             
pipeline I devised to study the contribution of short sequence motifs to temporal epigenetic              
changes in human DCs. The second part of my dissertation describes my work on determining               
the specificity of T and B cells from single-cell RNA-sequencing data. Chapter four presents              
software I developed to reconstruct the full sequence of T cell receptors from short read               
single-cell RNA-sequencing. An application of the software links the length of the            
antigen-recognizing region of the receptor to the state of the cell, demonstrating the importance              
of such combined analysis in studying the immune response to viral infections. Chapter five              
describes an extension of the software to reconstruct B cells receptor sequences. 
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Chapter 1 - Introduction 
 
The role of the immune system is to defend against harmful pathogens such as viruses and                
bacteria. It can be broadly divided into two lines of defense. The first line is the innate immune                  
system, which detects the pathogen and reacts with a rapid yet general response. Then, the               
adaptive immune system, namely T and B cells, provides a slower response which is tailored to                
the specific pathogen. Those processes include many cell types that undergo vast molecular             
changes as cells differentiate and mature in response to the pathogen. Profiling the molecular              
basis of the human immune response is of great importance, as it uncovers the mechanisms               
underlying the body’s response to vaccination, infections and other diseases, which in turn leads              
to developments of drugs and methods for cancer therapy ​(Jiang, 2017; Villani et al., 2018)​.               
Moreover, it allows us to gain a better understanding of basic principles in molecular biology               
(Pope and Medzhitov, 2018)​. In my dissertation, I was interested in the role that short DNA                
sequences play in various stages of the immune response to pathogens. I focused on two main                
functions of these sequences: As regulators of transcriptional changes in cells from the innate              
immune system, and as the major genomic component which determines the specificity of cells              
from the adaptive immune system. 
 
 
Transcriptional regulation 
 
Changes to cell state, e.g. in response to environmental stimuli, are controlled by changes in               
expression of thousands of genes. Those changes are mediated by a complex regulatory network              
consisting of non-coding DNA sequences, chromatin structure and a class of proteins called             
transcription factors (TFs) ​(Lelli et al., 2012)​. Each TF can bind a set of similar short DNA                 
sequences, collectively represented as a DNA binding “motif”. TFs promote or inhibit gene             
expression by binding either at promoter regions (directly upstream of the transcription start             
site), or at more distal genomic regions termed enhancers. However, even when the sequence              
motif of a TF is known, predicting the exact sequences in the genome that will be bound by that                   
TF is a challenging task since TFs can bind low affinity sequences and some TFs bind several                 
distinct motifs ​(Siggers and Gordân, 2014)​. In addition, for a given motif only a small portion of                 
the motif instances in the genome are bound in each cell type. This selective binding can occur                 
due to competition between TFs with overlapping motifs, a requirement for a TF to interact with                
another bound TF in order to bind a specific instance, or since many genomic regions are                
inaccessible because of their local chromatin conformation ​(Spitz and Furlong, 2012)​. DNA can             
be wrapped around proteins termed histones, making it less accessible to recognition by TFs and               
more inactive compared to “open” DNA which is not bound by histones. Chemical modifications              
to the histone proteins play a part in the opening of the chromatin and recruitment of regulatory                 
factors. For example, methylation of lysine 4 of histone H3 is associated with transcriptional              
regulation - Monomethylation (H3K4me1) is linked to enhancer regions and trimethylation           
(H3K4me3) is associated with promoters. Enhancers and promoters are susceptible to both            
transcriptional repression and activation, where a histone marked with acetylation of lysine 27             
(H3K27ac) is associated with an active regulatory region.  
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A valuable technology for studying transcriptional regulation in the immune system is            
high-throughput sequencing ​(Yosef and Regev, 2016)​. In addition to characterizing the           
transcriptome via RNA-sequencing, we can uncover histone modifications with chromatin          
immunoprecipitation coupled with high-throughput sequencing (ChIP-seq). Moreover, ChIP-seq        
can be applied to find specific TF-DNA interactions, however each such experiment is limited to               
one TF. Assays for genome-wide chromatin accessibility such as DNase-seq and Assay for             
Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq; ​Buenrostro et         
al., 2013) enable detection of potential regulatory regions by finding open regions in the genome.               
Another important feature of chromatin accessibility assays is that a DNA motif bound by a TF                
creates a footprint-like region with low number of aligned reads, surrounded by regions with a               
high number of alignments. This feature is used for computational estimation of TF binding              
within accessible regions for many TFs from a single experiment ​(Gusmao et al., 2016)​. Overall,               
with this range of assays we can characterize the state of immune cells under different               
conditions. However, computational methods are required in order to link the epigenetic            
landscape with the transcriptome and gain a comprehensive understanding of the regulatory            
mechanisms that are taking place in the cell.  
 
 
Uncovering the regulatory landscape of Dendritic cells following LPS stimulation 
 
Dendritic cells (DCs) are antigen-presenting cells that are part of the innate immune system and               
are essential for the initiation of the adaptive immune response in both mouse and human               
(Haniffa et al., 2013)​. DCs exist in an immature state and a mature state ​(Reis e Sousa, 2006)​.                  
The immature state is a steady state condition in which DCs sample the environment and take up                 
antigen. Immature DCs possess receptors that detect molecular features unique to microbes.            
Bacterial lipopolysaccharide (LPS), for example, activates innate immune signaling pathways in           
immature DCs via the TLR4 receptor complex. Activation of these receptors initiates a             
developmental switch that results in DC maturation. In contrast to immature DCs, mature DCs              
elicit potent T cell responses that target specific pathogens by turning antigen-specific naive T              
cells into effector T cells. The nature of the T cell response that ensues is determined by the                  
maturation status of the antigen-presenting DC and the array of signals that the DC provides to T                 
cells. The maturation status of DCs is determined by environmental cues transmitted by the              
receptors to the DC nucleus by signal transduction cascades. Given the role of DCs as the                
orchestrators of the adaptive immune response, the transition from immature DC to mature DC is               
an important developmental switch that occurs within the human immune system. 
 
Previous work had studied the activation of mouse DCs following stimulation with LPS ​(Amit et               
al., 2009; Garber et al., 2012)​. Those studies revealed a large and coordinated transcriptional              
response that occurs within the span of a few hours and is highly synchronized, involving               
thousands of genes expressed in various temporal patterns. The rapid response and large             
expression changes makes the DC response to LPS an ideal experimental system for modeling              
the genomics of gene regulation. 

 
Chapter 2 of my dissertation describes our work comparing the transcriptional response of DCs              
to LPS between human and mouse and investigating which short DNA sequences are important              
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regulatory features for gene induction. In chapter 3 we focus on the regulatory response to LPS                
in human Dendritic cells. I present a supervised-learning pipeline designed to detect short DNA              
motifs which are functional at various times up to 24 hours after LPS stimulation and provide a                 
comprehensive map of regulatory interactions during DC activation.  
 
 
Heterogeneity and specificity of the adaptive immune system  
 
The adaptive immune system produces a strong, targeted response against pathogens. To provide             
such effective immunity, the T cell and B cell compartments must contain diversity in both their                
cell state and their ability to recognize a wide range of antigens. T cells and B cells express a                   
surface receptor called T cell receptor (TCR) or B cell receptor (BCR), respectively. The              
sequence of the receptor determines to which antigen the cell can bind and consequently react to.                
The main antigen-recognizing part of the receptor is a short region named the complementarity              
determining region 3 (CDR3). During T and B cell development a unique CDR3 sequence is               
generated for each cell by random sequence mutations, insertions and deletions. This tightly             
regulated yet random process results in a different genomic sequence of the receptor for each               
cell, providing the needed diversity ​(Nikolich-Zugich et al., 2004)​.  
 
Utilizing high-throughput sequencing to perform a combined TCR/BCR-transcriptome analysis         
can allow us to gain more insights to the molecular basis of the response to viral infections,                 
autoimmune diseases and help in vaccine design ​(Venturi and Thomas, 2018)​. Because of the              
highly variable nature of the CDR3 sequence, standard population-level protocols for           
RNA-sequencing and subsequent analysis methods are unable to map the CDR3-originating           
sequences to the genome or separate the CDR3 sequences of different cells. While other              
protocols exist to sequence the receptors from populations of cells, they cannot be combined              
with transcriptome information from the same population. In recent years, many high-throughput            
sequencing methods have been adapted to extract information at the single-cell level ​(Papalexi             
and Satija, 2018; Stuart and Satija, 2019)​. Single-cell RNA-sequencing allows for simultaneous            
measurement of TCR/BCR sequences and global transcriptional profiles from single cells,           
enabling us to study how differences in TCR and BCR contribute to heterogeneity in cell state.                
However, similarly to population-level studies, standard transcriptome analysis methods cannot          
map CDR3-originating sequences, thus computational tools to perform receptor sequence          
reconstruction in individual cells are needed.  
 
To this end, the second part of my dissertation describes the computational software I developed               
for receptor sequence reconstruction in single cells. Chapter 4 presents TRAPeS, a method for              
TCR reconstruction. By combining TCR sequence with transcriptomic data, we discover a link             
between the length of the CDR3 and the transcriptional cell state of human Yellow Fever               
Virus-specific T cells. In Chapter 5 I extend TRAPeS to create BRAPeS, a reconstruction              
method suited for B cell receptor reconstruction. 
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Chapter 2 - Comparative analysis of immune cells reveals a conserved regulatory lexicon  
 
This chapter describes a comparative study of the transcriptional response of Dendritic cells to              
LPS in human and mouse. My co-authors and I show that while most enhancers are not                
conserved, genes with a conserved temporal activity are enriched in conserved enhancers. In             
addition, I built a random forest classifier to predict gene induction using a set of conserved short                 
sequence motifs as features. My model successfully predicts gene induction in both human and              
mouse, demonstrating that the regulatory logic of DC activation is conserved.  
 
This work was published in ​Cell Systems​ in 2018 (Donnard et al. 2018), and I am reporting it as 
it was published. The authors on the paper are: 
 
Elisa Donnard​1,7​, Pranitha Vangala​1,7​, Shaked Afik​2,7​, Sean McCauley​3​, Anetta Nowosielska​3​, 
Alper Kucukural​3,4​, Barbara Tabak​1​, Xiaopeng Zhu​1​, William Diehl​3​, Patrick McDonel​1,3​, Nir 
Yosef​2,5​, Jeremy Luban​3*​, Manuel Garber​1,3,4,6* 

 
1. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 
Worcester, MA-01605, USA 
2. Center for Computational Biology, University of California, Berkeley, Berkeley, CA-94720, USA 
3. Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA-01605, 
USA 
4. Bioinformatics Core, University of Massachusetts Medical School, Worcester, MA-01605, USA 
5. Department of Electrical Engineering and Computer Science, University of California, Berkeley, 
Berkeley, CA-94720, USA 
6. Lead Contact 
7. These authors contributed equally 
*Correspondence: Manuel.Garber@umassmed.edu (M.G.), Jeremy.Luban@umassmed.edu (J.L.)  
 
 
Summary 
 
Most well-characterized enhancers are deeply conserved. In contrast, genome-wide comparative          
studies of steady-state systems showed that only a small fraction of active enhancers are              
conserved. To better understand conservation of enhancer activity, we used a comparative            
genomics approach that integrates temporal expression and epigenetic profiles in an innate            
immune system. We found that gene expression programs diverge among mildly induced genes,             
while being highly conserved for strongly induced genes. The fraction of conserved enhancers             
varies greatly across gene expression programs, with induced genes and early-response genes, in             
particular, being regulated by a higher fraction of conserved enhancers. Clustering of conserved             
accessible DNA sequences within enhancers resulted in over 60 sequence motifs including            
motifs for known factors, as well as many with unknown function. We further show that the                
number of instances of these motifs is a strong predictor of the responsiveness of a gene to                 
pathogen detection. 
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Introduction 
 
Enhancers act over long chromosomal distances to control gene expression in a cell type-specific              
fashion (Ong and Corces, 2011)​. Recent advances in genomic methods have revealed hundreds             
of thousands of enhancers defined by biochemical signatures that include p300 binding,            
H3K27ac and H3K4me1 modifications (Heintzman et al., 2007; Rada-Iglesias et al., 2011; Visel             
et al., 2009)​. These studies have shown that the vast majority of regulatory elements are               
species-specific. Furthermore, gain or loss of species-specific enhancers across phylogeny is not            
concomitant with gain or loss of genomic sequence. Instead, the majority of species-specific             
enhancers are composed of ancestral sequences that gain enhancer activity in a species-specific             
manner (Ballester et al., 2014; Kunarso et al., 2010; Mikkelsen et al., 2010; Odom et al., 2007;                 
Schmidt et al., 2010; Villar et al., 2015)​. 
 
Rapid turnover of species-specific enhancers stands in stark contrast to the highly conserved             
nature of well-known enhancers that play essential roles in development (Chew et al., 2005;              
Crocker and Erives, 2008; Lettice et al., 2003)​, metabolism (Claussnitzer et al., 2015) and viral               
defense (Panne et al., 2007)​. Comparative sequence analysis revealed millions of conserved            
non-coding elements in the human genome that are likely to act as functional enhancers ​in-vivo               
(Pennacchio et al., 2006)​. Given the general expectation that most functional elements are under              
purifying selection, there is currently a disconnect between enhancers that are defined by             
biochemical activity and those defined by evolutionary conservation. 
 
Several arguments have been proposed to reconcile this apparent contradiction between the high             
turnover rate of biochemical signatures of enhancers observed in comparative studies and the             
high conservation of a handful of well-characterized examples. One proposed explanation is that             
typical enhancer elements are redundant, with shadow enhancers that can compensate for the loss              
of another enhancer (Dunipace et al., 2011; He et al., 2011; Perry et al., 2010)​. However,                
redundant enhancers show no relaxation of sequence constraint compared to non-redundant           
enhancers (Cannavò et al., 2016)​. Another proposal is that genetic drift may sometimes yield              
new transcription factor binding sites, eventually leading to novel regulatory elements that make             
old ones redundant (Ludwig et al., 2000)​. Accordingly, individual binding sites within enhancers             
may be shuffled over time and even be replaced by sites occurring on different enhancers.               
Although both arguments would explain the reduced selective pressure on typical enhancers,            
they do not explain the apparent strong purifying selection of functionally important enhancers. 
 
An alternative explanation is that most of the biochemically defined enhancers might not be              
critical in controlling conserved gene regulatory programs. Instead, conserved gene regulatory           
programs are controlled by a small subset of conserved enhancers. Here we revisited the question               
of enhancer conservation by studying the transcriptional regulation of genes that respond to             
Lipopolysaccharide (LPS). LPS is a cell wall component of gram negative bacteria, that is              
detected by the TLR4-MD-2 complex (Park et al., 2009). This is a well-defined inducible              
response in both human and mouse dendritic cells (Amit et al., 2009; Garber et al., 2012; Parnas                 
et al., 2015)​, which involves hundreds of genes and, in its early stages, offers a virtually                
synchronous response that is mostly transcriptionally controlled (Rabani et al., 2011)​. Focusing            
on LPS-responsive genes reduces many confounding factors such as the role of            
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post-transcriptional regulation that make steady state analysis more complex. We focused on the             
evolutionary profile of enhancers that are associated with both species-specific and shared            
LPS-responsive genes. Our results reconcile the biochemical and conservation-based definitions          
of enhancers and demonstrate the importance of evolutionary selection of enhancers in            
controlling conserved transcriptional programs. 
 
 
Results 
 
Transcriptional dynamics of human and mouse DCs in response to LPS 
We generated dendritic cells (DCs) from the bone marrow of two C57BL/6 mice and from               
human peripheral blood mononuclear cells (PBMCs) from two donors. We stimulated each set of              
DCs with LPS and collected cells at 0, 1, 2, 4, and 6 hours post-stimulation. We measured                 
genome-wide gene expression by RNA sequencing (RNA-Seq), chromatin accessibility by          
ATAC-Seq (Buenrostro et al., 2013) and enhancer activity by chromatin immunoprecipitation of            
H3K27ac followed by sequencing (ChIP-Seq). 
To compare human and mouse response to LPS we focused on genes that could be mapped                
unambiguously between human and mouse (one-to-one homologs). Immature mouse and human           
DCs have similar transcriptional profiles with 72% (6,370) of all one-to-one homologous genes             
detected in at least one species being expressed in both. Among the 3,642 genes that are                
LPS-responsive in at least one species only 740 have similar expression kinetics (Figure 1A,              
STAR Methods). However, induced genes with similar patterns showed greater induction levels            
(3.7-fold higher on average, Figure S1A), and were enriched in effectors (cytokines and             
chemokines p < 10​-5​, hypergeometric test) and transcription factors (TFs, p < 0.0001,             
hypergeometric test) compared to genes induced in only one species. Overall, the bulk of the               
differences between mouse and human DCs involve small fold changes and genes that are not               
critical to the LPS response. There are, however, interesting exceptions of highly induced genes              
that are species-specific. A well-known example, Nitric Oxide Synthase 2 (NOS2), has an             
important role in the mouse immune response to microbes but is not induced by LPS in human                 
innate immune cells (Bogdan, 2001; Mestas and Hughes, 2004)​. Conversely, we find that the              
T-Cell effector Indoleamine 2,3‑dioxygenase (IDO1) gene is highly induced in the human DCs             
(Mellor and Munn, 2004)​, but is not induced in mouse DCs. 
 
We next clustered the genes that were responsive in both human and mouse DCs (Figure 1B,                
STAR Methods). We observed three broad shared expression trends: genes that were            
downregulated in both species (clusters D1 and D2), genes that were induced within 1h after LPS                
stimulation (early-induced genes, clusters I1 and I2), and genes that were induced at least 2h               
after LPS stimulation (clusters I3, I4 and I5). These different clusters showed broad similar              
expression trends while also reflecting subtle differences in species-specific timing of peak            
expression. Shared early-induced genes were enriched for cytokines and TFs (adjusted p < 10​-5​,              
hypergeometric test). Cluster I1 specifically, was 5.4-fold enriched in TFs (p < 10​-7​,             
hypergeometric test), including immediate-early genes such as JUN and FOSB. Shared           
late-induced genes included the TFs STAT1 and IRF9 (Figure 1C), which are involved in              
autocrine signals from IFNβ and TNFα resulting from LPS detection​ (Toshchakov et al., 2002)​. 
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Although most species-specific genes were induced at relatively low levels, these differences            
may result from either changes in ​cis-​regulatory elements or from differences in TF expression.              
We first focused on differences in TF expression. Overall, 530 TFs were expressed in at least one                 
species, of which most (70%) were expressed in both species (Figure S1B), and most TFs               
detected only in one species had significant lower expression (Figure S1C, p < 10​-15 Wilcoxon               
rank-sum test). Further, most TFs that respond to LPS have well conserved kinetics (STAR              
Methods, Figure S1D) and although we find specific TFs having diverging expression patterns,             
in most cases other members of the same family (defined by TF Class, Wingender et al., 2013)                 
show similar kinetics. For only 15 TFs we found no evidence of compensatory changes, most of                
these cases involved TFs with a low peak expression or induction (Figure S1E). These results               
suggest that TF expression is conserved between mouse and human DCs. Two interesting             
exceptions are the AP1 factors ATF5 and ATF4, which are highly expressed and induced only in                
human DCs (Figure 1D). These two TFs respond to a variety of other stress stimuli, such as                 
amino acid starvation, heat shock and oxidative stress (Harding et al., 2003; Wang et al., 2007a;                
Watatani et al., 2007)​, suggesting a human-specific role for cellular stress response in DC              
response to LPS. We next turned to ​cis-​regulatory elements to further determine the source of               
changes in expression profiles. 
 
The epigenetic landscape of regulatory elements in human and mouse DC response to LPS 
To define the regulatory landscape of mouse and human DCs we followed a two-step process.               
First, we mapped candidate enhancer regions using ChIP of histone marks that are typical of               
transcriptionally active regions (Heintzman et al., 2007; Rada-Iglesias et al., 2011; Shlyueva et             
al., 2014)​. We then used ATAC-Seq signal to identify accessible regions within our             
H3K27ac-defined regions​ (Buenrostro et al., 2013)​ (STAR Methods, Figure 2A). 
 
As in previous studies (Cheng et al., 2014; Vierstra et al., 2014; Villar et al., 2015)​, we defined                  
Enhancers with Conserved Activity (ECAs) as enhancers whose sequence could be uniquely            
mapped across species and which also had H3K27ac signal in both species. We defined              
Enhancers with SPecies-specific Activity (ESPAs) to include both species-specific sequences          
with H3K27ac signal and homologous sequences with species-specific H3K27ac signal.          
Consistent with previous studies (Villar et al., 2015)​, for the majority of the enhancers and               
promoters found in one species it was possible to unambiguously identify homologous sequences             
in the other species (Figure 2A,B, S2A and STAR Methods). However, as observed in other               
systems (Mikkelsen et al., 2010; Schmidt et al., 2010)​, conservation of H3K27ac signal paints a               
different picture: While 77% of mouse DC promoters mapped to human sequence with H3K27ac              
signal, for mouse DC enhancers this fraction is only 25% (Figure 2B, S2A). Among              
transposase-accessible regions within mouse enhancers, only 19% of homologous regions are           
transposase-accessible in human (Figure S2B, S2C). However, among enhancer sequences with           
conserved H3K27ac signal, 59% also had conserved accessibility in both species. This shows             
that accessible regions within enhancers and hence TF binding is maintained across evolutionary             
time whenever the activity of the larger region is also conserved. Overall, the fraction of ECAs                
(25%) observed in DC enhancers was similar to the one observed between mouse and human               
liver enhancers (Villar et al., 2015)​. Thus, in spite of the strong positive selection acting on                
innate immune cells, the regulatory landscape has not diverged much further than in liver, likely               
owing to the critical nature of this response for the organism’s survival. Since TF expression is                
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well conserved while ​cis-​regulatory elements have drastically diverged, it appears that most            
differences in LPS-responsive expression between human and mouse are the result of            
cis-​regulatory changes rather than differences in ​trans-​regulators. 
 
We observed a stronger H3K27ac and ATAC signal in enhancers and promoters that are active               
in both species, compared to species-specific regions (Figure 2C, S2D). This observation could             
result from a threshold bias to define conserved active loci, with one species having a lower                
signal that fails to meet the enrichment threshold. However, the H3K27ac signal on the              
homologous regions of ESPAs was indistinguishable from background (black lines, Figure 2C,            
S2D). Thus, our classification of an active regulatory region as species-specific is not influenced              
by differing signal intensity. 
 
Enhancers that are active in progenitor cells are more conserved but are not involved in the                
response to LPS 
Mouse DCs are derived from bone marrow (mBM), whereas human DCs are derived from              
monocytes. We therefore hypothesized that observed differences in enhancer activity in these            
cells could be the result of prior activity in progenitor cells. To identify such enhancers we relied                 
on H3K27ac ChIP-Seq data from mBMs (Yue et al., 2014) and generated similar data for human                
monocytes. Although the fraction of pre-established active enhancers is different in mouse (23%             
in bone marrow) and human (55% in monocytes), enhancers that are pre-established are more              
conserved than those that are DC-specific (Figure 2D, S2E). Consequently, pre-established           
active enhancers are not likely to explain the differences we observed in the transcriptional              
response to LPS in human and mouse DCs. 
 
The higher degree of conservation among enhancers that are active in progenitors may indicate              
that they belong to a family of ubiquitous enhancers that have been shown to be more conserved                 
in evolution (Cheng et al., 2014)​. Consistent with this, nearly half (40%) of the enhancers that                
are pre-established in mouse bone marrow are also active in liver. Further, we found that               
pre-established enhancers constitute 39% of all enhancers for genes with rapid downregulation in             
both species (Cluster D2, Figure 1B), compared to 23% for all genes. This indicates that               
ubiquitous enhancers, albeit being more highly conserved than cell type specific enhancers, are             
not involved in response to stimulus, and are not likely to play an important role in the regulation                  
of LPS response. 
 
Regulation of early LPS-induced genes is both complex and conserved 
Previous comparative analyses have shown that conserved enhancers are associated with genes            
involved in specific biological processes (Ballester et al., 2014; Kunarso et al., 2010; Mikkelsen              
et al., 2010; Schmidt et al., 2010)​. While there is a slight increase in the fraction of ECAs among                   
shared induced genes compared to enhancers of non-induced or species-specific induced genes,            
the largest increase (40%, almost double than for non-induced genes) is found on enhancers              
associated with shared early-induced genes (p < 10​-12​, Fisher exact test) (Figure 3A, S3A). This               
shows that selection does not act uniformly across all enhancers but rather, that it depends on the                 
particular transcriptional program in which the enhancers function. 
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Visual inspection of highly induced genes after LPS stimulation such as NFKBIZ, IL6 and              
PRDM1 (Figure 2A), suggested that these genes were associated with a high number of              
enhancers and with super enhancers (Whyte et al., 2013)​. Such regulatory complexity was             
previously observed in genes that have a cell type specific regulation during lineage commitment              
(González et al., 2015)​. Interestingly, genes with high regulatory complexity (having four or             
more enhancers) were highly enriched in LPS-responsive genes and particularly, in           
early-induced genes (Figure 3B, S3B). Consistent with our initial observation, genes in the top              
regulatory complexity tier reached higher maximal expression after induction (Figure S3C).           
Enhancers that regulate highly induced early genes were also more likely to be conserved.              
Indeed, on average 2/5 of the enhancers are conserved for shared early response genes with               
complex regulatory loci, compared to only 1/5 for species-specific early response genes that also              
have complex regulatory loci (Figure 3C, S3D). In general, genes with shared temporal patterns              
constitute the core of LPS response, and accordingly, their regulation is under strong purifying              
selection. 
 
Conserved lexicon within accessible regions 
Chromatin accessibility is widely considered critical for transcription factor binding (John et al.,             
2011; Wang et al., 2012)​, and we confirmed the strong preference of TF binding on accessible                
regions using our previous transcription factor occupancy maps (Garber et al., 2012) (Figure             
S4A). As such, DNA accessible regions hold key information related to regulatory activity.             
Therefore, we next sought to establish the degree to which DNA accessible regions within ECAs               
are under purifying selection. To this end, we estimated the substitution rate of DNA accessible               
regions at 10-base resolution (Garber et al., 2009)​, using a multiple sequence alignment that              
included 41 mammalian genomes and 2 vertebrate genomes (STAR Methods). Comparison of            
the substitution rate between DNA accessible regions within ECAs and ESPAs showed a marked              
reduction in substitution rate (p-value < 10​-15​, KS-Test, Figure 4A, S4B). Therefore, ECAs are              
not only preserved in their activity but there are clear marks of purifying selection in the                
chromatin accessible sequence within, which is most amenable to TF binding. 
 
To identify sequence elements at the core of ECA function, we clustered conserved 10-mers              
within ECAs (STAR Methods). Clustering resulted in 66 distinct conserved sequence motifs            
which we represent by conserved position weight matrices (cPWMs). 31 cPWMs have a clear              
match to a known transcription factor motif and include all major regulators of TLR4 signaling               
(STAT, AP1, NFKB, ETV, Figure 4B, Table S2). In addition, we identified 35 cPWMs with no                
clear similarity to any reported motif in public databases (STAR Methods). 
 
Analysis of both known and unidentified cPWMs showed enrichment for genes with specific             
temporal expression patterns and, in particular, genes with shared response (Figure 4C, S4C).             
Importantly, the enrichment of motifs on induced genes was consistent with the expression             
kinetics of TFs that have affinity for these motifs and recapitulated previous reports (Garber et               
al., 2012; Medzhitov and Horng, 2009)​. 
 
To measure the contribution of this conserved lexicon to gene regulation we next trained a               
random forest classifier to predict if a gene would be strongly induced (> 4-fold) or maintain                
constant expression following LPS stimulation (STAR Methods). The classifier performed well,           
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achieving a mean area under the curve (AUC) value of 0.75 of the receiver operating               
characteristic curve (ROC) and a mean AUC value of 0.74 for the precision recall (PR) curve in                 
10-fold cross-validation (Figure 4D). This confirms the ability of cPWMs to predict gene             
induction, but also suggests that cPWM instances alone are not sufficient predictors. 
 
Importantly, when we applied the model we trained in mouse to predict expression induction in               
human, it performed with similar accuracy and precision, achieving an AUROC of 0.68 and an               
AUC value of 0.63 for the PR curve (Figure 4D). Motifs of the key regulators such as NFKB,                  
AP1, STAT and EGR along with several novel GC rich motifs are amongst the top classifying                
features (Figure 4E). 
 
Enhanceosomes in conserved innate immune responses 
Enhancers are thought to function in two broadly different mechanisms (Arnosti and Kulkarni,             
2005)​. In enhanceosomes, TFs act cooperatively and their binding results in an on/off signal,              
where loss of even one TF binding site profoundly disrupts the function of the enhanceosome.               
Billboards on the other hand, are modular enhancers where the binding of each TF is not                
necessary for enhancer activity but rather has an additive or synergistic effect. The prototypical              
enhanceosome is the IFNβ proximal enhancer, which requires the assembly of 6 TFs to induce               
IFNβ expression (Thanos and Maniatis, 1995)​. Mutations that disrupt a single binding site             
disrupt the enhancer and are highly deleterious. Consistent with this, the IFNβ enhanceosome             
sequence is more highly constrained than the protein coding sequence of IFNβ, the gene it               
regulates (Figure S5). Since the effect of mutations on enhanceosomes can be highly penetrant,              
we sought to identify and catalog enhancers that have characteristics typical of enhanceosomes             
and that may help prioritize non-coding mutations associated with immune disease. 
 
We scanned for candidate enhanceosome regions in chromatin accessible regions within ECAs            
that were 1) Bound by at least six TFs, based on our previous binding maps of 14 TFs and 2)                    
Had a large portion (> 30%) of their sequence conserved. Our scan identified 80 chromatin               
accessible regions (Figure 5 for example & Table S3) that resemble enhanceosomes, such as the               
IFNβ proximal enhancer (Figure S5). Consistent with their innate immune specific function,            
genes associated with these conserved, highly bound regions tend to have similar temporal             
induction in both human and mouse (p < 0.01 Fisher’s exact test) and are highly enriched in                 
IRF1, RELA (also known as p65) and RUNX1 binding (p < 10​-10​, Fisher’s exact test). The high                 
evolutionary sequence constraint that we required to define enhanceosome candidates translates           
to low variation across the human population. Indeed, human regulatory regions with similar             
evolutionary constraint are depleted of SNPs, having an average of only 25 SNPs compared to an                
average of 400 (and a minimum of 369) in similarly sized genomic regions. 
 
Regulatory regions with conserved activity and temporal patterns regulate highly induced genes            
with shared kinetics 
Response to LPS affects both the acetylation and chromatin accessibility of thousands of             
enhancers (Figure 6A, S6A-C). Although the chromatin state of most enhancers (72%) is             
unaffected by LPS, enhancers that show temporal kinetics tend to associate with genes having              
similar transcriptional kinetics. Indeed, regions whose DNA accessibility increases upon LPS           
stimulation are associated with induced genes (1.6-fold enrichment) while regions that close over             
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time are associated with downregulated genes (2-fold enrichment, Figure 6B). We further            
observed a clear enrichment of cPWMs, including NFKB, STAT and AP1 motifs, on DNA              
accessible regions that show increased ATAC signal after LPS stimulation. On the other hand,              
cPWMs associated with ETV and STAT transcription factor families are enriched in accessible             
DNA regions that become less accessible in response to LPS. Enrichment of ETV and STAT               
motifs on regions that lose availability is consistent with their reported repressive function             
(Icardi et al., 2012; Mavrothalassitis and Ghysdael, 2000) (Figure 6C). It is interesting that STAT               
motifs are enriched in both down and upregulated elements. These motifs may recruit different              
members of the STAT family or attract complexes involving different TFs that modulate the              
STAT TF function. Our previously generated mouse binding data for STAT1 and STAT2 shows              
that these proteins bind mostly to regions that become increasingly accessible upon LPS             
stimulation. This suggests that motifs in regions whose DNA availability decreases after LPS             
stimulation are likely bound by different STAT TFs or other factors that can bind this motif. 
 
To further determine the importance of cPWMs in regulating the LPS response, we proceeded to               
build a random forest classifier as above, but this time we associated each cPWM with three                
features per gene: the number of cPWMs in regulatory regions with increased, diminished or              
unchanged DNA accessibility upon LPS stimulation. This dramatically improved the model           
performance which now showed an average AUROC of 0.82 in mouse in a 10-fold              
cross-validation and an AUROC of 0.78 when applied to human (Figure 6D). This highlights the               
importance of the chromatin context and helps explain the weaker performance of a model that               
was trained on sequence alone. 
 
Given that regions with LPS-responsive chromatin dynamics were important when evaluating           
sequence features, we next investigated the conservation of DNA accessibility dynamics.           
Interestingly, although regions with LPS-induced DNA accessibility are present in both human            
and mouse (28% and 30%, respectively), very few are LPS-responsive in both. By             
simultaneously clustering ATAC-Seq peaks from ECAs that had significant LPS-induced signal           
changes in at least one species (Figure S6D), we found that only 500 such regions (13%) are                 
responsive in both mouse and human DCs (Figure 6E). 
 
These 500 regions are associated with 325 genes, of which 57% have similar expression kinetics               
in human and mouse, while only 21% of all the expressed genes have similar expression patterns                
in both species (p < 10​-20​, Fisher-exact test, Figure 6F). Genes associated with these regions have                
much higher induction levels and reached higher maximal expression than other genes with no              
difference in baseline expression (Figure 6G-I, 6G: p < 2.2e-16 Wilcox-rank test, 6H: p <               
2.2e-16 Wilcox-rank test, 6I: not significant Fisher-exact test). They include cytokines (e.g IL1B,             
IL6) and key transcription factors (e.g. REL, NFKB1, BCL2, NFKBIZ) (Figure 6J, p-adjusted <              
0.004). Regions with conserved dynamics are enriched near genes with similar temporal            
dynamics and have maintained enhancer activity since the rodent/primate divergence. This           
suggests that they are crucial elements regulating this set of genes. 
 
Transposable elements are enriched in cis-regulatory regions of LPS-induced genes 
Most ​cis-​regulatory elements are composed of ancestral sequence (Cheng et al., 2014; Villar et              
al., 2015) (Figure 2B). Therefore turnover of ancestral activity rather than sequence seems to be               
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the major force reshaping regulatory regions. Sequence changes can still be an important source              
of difference between the human and mouse response. Since lineage specific transposable            
elements (TEs) have been shown to significantly modify transcriptional networks (Lowe and            
Haussler, 2012; Wang et al., 2007b)​, we next sought to determine whether TEs have contributed               
to regulatory sequence involved in the LPS response. We identified 25 families of TEs in mouse                
and 15 in human that are enriched in regulatory regions (enhancers or promoters) of induced               
genes (Figure 7A). These enriched TE families fall into two categories: those that were actively               
mobile prior to the human-mouse divergence, and newer elements that have only been active in               
either the mouse or human lineage. The majority belong to one of the ancestral TE families of                 
Mammalian-wide interspersed repeats (MIRs), with MIR3 elements being the most enriched           
(Figure 7B) and having the largest number of elements within regulatory regions. MIR elements              
are some of the oldest (Smit and Riggs, 1995) and most conserved families of mobile elements                
(Jjingo et al., 2014)​, and have been reported to contribute to the regulation of cell type specific                 
expression (Jjingo et al., 2014)​. Our data further suggests that MIRs, and MIR3 in particular,               
have been co-opted into regulation of innate immune responses prior to the euarchontoglires             
ancestor. As one might expect for important regulatory sequences, we observed that MIRs have              
been under clear purifying selection (Figure S7A). 
 
Lineage specific TEs enriched in DC regulatory regions include mainly endogenous retroviral            
Long Terminal Repeat (LTR) elements. We found that elements from these families (ORR1E in              
mouse and THE1A and THE1C in human) tend to be positioned at the most accessible regions                
within enhancers, possibly indicating a role in creating or facilitating opening of chromatin that              
is more favorable to transcription factor binding and more likely to function as a regulatory               
element (Figure 7C). 
 
 
Discussion 
Massive parallel sequencing has revealed hundreds of thousands of active non-coding regions,            
most of which are classified by their chromatin signatures as enhancers or long noncoding RNAs               
(lncRNAs). Comparative analyses of enhancers and lncRNAs have shown that although the            
majority are encoded by ancestral sequence, their activity is generally species-specific (Chen et             
al., 2016; Cheng et al., 2014; Kutter et al., 2012; Necsulea et al., 2014; Ponjavic et al., 2007;                  
Ulitsky, 2016; Vierstra et al., 2014; Villar et al., 2015; Washietl et al., 2014)​. Here we showed                 
that a higher fraction of enhancers that regulate specific pathways tend to be conserved over               
longer evolutionary time. 
 
As opposed to previous studies, we used a dynamic system and focused on temporal expression               
patterns rather than steady state expression. In this system, changes in mRNA levels in early time                
points are mostly the result of transcription rather than post-transcriptional processes (Rabani et             
al., 2011)​; this helps isolating and measuring the contribution of ​cis-​regulatory elements to             
expression changes. Temporal analysis also allowed us to study different regulatory programs            
individually rather than analyzing all regulatory programs together or by broad functional classes             
(Figure 1B). As a result, we were able to find that regulatory element conservation is not                
homogeneous across all enhancers, but rather that it differs across programs. We find that              
regulatory elements associated with shared early-induced genes are conserved at twice the rate             
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than those associated with other expressed genes. Not only regulatory element activity is             
conserved, but also the underlying sequence is under purifying selection. This allowed us to use               
comparative sequence analysis to identify a large set of constrained sequence motifs within             
active enhancers. Functional validation of these enhancers as well as the novel motifs we found               
will be critical, but this study provides a clear path towards the goal of functionally               
characterizing a well-defined set of regulatory regions involved in well-understood cellular           
processes. 
 
It is interesting that, besides enhancers associated with shared induced genes, the other set of               
enhancers preserved since the euarchontoglires ancestor are ubiquitous or active in progenitor            
cells but are not associated with genes induced by TLR4 signaling. Instead, these enhancers tend               
to lose active marks following LPS stimulation. This is consistent with previous observations             
that basic cellular processes are passively downregulated upon induction of a large            
transcriptional program (Cheng et al., 2009; Garber et al., 2012)​, perhaps due to a shift of limited                 
resources towards the response to immune challenge. 
 
The greater conservation of enhancers associated with early-induced genes is surprising, with            
conserved enhancers accounting for 40% of all enhancers associated with these genes. This             
raises an interesting question: why are the regulatory elements of early-induced genes under             
stronger selection? It is reasonable to argue that this initial wave of transcription triggers a               
program that, although necessary for immune defense, is deleterious to the individual when             
misregulated. Tight control of the initiation of the program may be critical to avoid unwanted               
harm. It is also interesting that in our previous analysis of mouse DC enhancers we observed a                 
low degree of sequence constraint of most enhancers, and concluded that early-induced genes             
were regulated by a highly redundant regulatory architecture that functioned by recruiting many             
different TFs in a nonspecific fashion. Our comparison with human DCs paints a more nuanced               
picture. Early-induced genes are regulated by a mix of highly constrained enhancers that have              
been preserved over hundreds of millions of years and newly evolved species-specific enhancers.             
The ECAs have clear signatures of undergoing purifying selection and may be necessary for              
induction. Nonetheless, the majority of enhancers is species-specific and may play redundant,            
subtler roles or have no impact on gene expression. Further functional studies will be needed to                
determine how different enhancers function and how they interact to produce reproducible,            
precise patterns of expression. 
 
Our study sheds some light on the long-standing question of how selection acts on gene               
expression (Gilad et al., 2006)​. Although our study was not designed to answer this, we find two                 
very clear modes of selection. On one hand, highly induced genes tend to have shared induction                
and are regulated by conserved regulatory elements. These observations are consistent with            
strong stabilizing selection. On the other hand, there is great divergence among genes with mild               
induction, which is consistent with neutral selection (Gilad et al., 2006)​. We reason that, while               
mutations that disrupt the level and timing of highly induced genes may have strong deleterious               
effect, for genes that are mildly induced, changes are tolerated.  
 
Our comparative map provides a unique resource for future studies of ​in-vitro​-derived DCs. It              
provides a reference map of the genomic elements that can be mapped and translated from a                
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mouse model to human biology. Further, recent reports on underlying differences in the cell              
types obtained in mouse and human DC ​in vitro cultures (Helft et al., 2015) highlights the need                 
to compare these two systems at the molecular level. In this work, we focused on understanding                
both the similarities and differences between the two. Given the overall similarity in TF              
expression, this system offers a deep platform to understand the impact of ​cis​-regulatory changes              
on expression. 
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Figures 
 

 
 
Figure 1: Highly induced LPS-responsive genes have similar expression kinetics in human        
and mouse dendritic cells. A) Classification of 16,500 homolog genes in mouse and human as               
not expressed (dark grey), expressed without significant change after LPS stimulation (light            
grey), downregulated (blue) or induced (red) B) Heatmap showing normalized expression values            
for genes with shared response to LPS across five timepoints (Unstimulated, 1h, 2h, 4h and 6h                
post-LPS) in DCs derived from two different C57BL/6 mouse (left) and two human donors              
(right). Genes were grouped by spectral clustering into two clusters of shared downregulated             
genes (D1 and D2, top), and five clusters of shared induced genes (I1-I5, bottom). Induced gene                
clusters can be classified as early (I1 and I2) or late (I3, I4 and I5). C) Average normalized                  
expression (TPM) for two shared late-induced transcription factors (TFs), Stat1 and Irf9. D)             
Average normalized expression (TPM) for ATF family TFs with species-specific response. 
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Figure 2​: ​Rapid turnover of enhancer elements​. A) Integrative Genome Viewer diagram of             
the PRDM1 regulatory region in both mouse (top) and human (bottom) displaying the data used               
in this study. Tracks display from top to bottom: sequence conservation as estimated by SiPhy               
(Omega), RefSeq gene annotations, RNA-Seq coverage for unstimulated and one hour post-LPS,            
overlaid H3K4Me3, ATAC and H3K27ac coverage. Human data in reverse orientation, yellow            
boxes and curved lines indicate conserved H3K27ac peaks (regulatory regions with conserved            
activity: promoters or ECAs). Inlets show individual tracks for H3K27ac time course after LPS              
stimulation. Red boxes indicate H3K27ac peaks with species-specific activity. B) Proportion of            
regulatory regions with conserved activity: conserved promoters or ECAs, mouse-specific with           
clear human homologous sequence (mapped promoters or ESPA) and mouse-specific with no            
clear homologous sequence in human (unmapped promoters or ESPA) C) Average signal for             
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mouse H3K27ac (left) and ATAC-Seq (right) signal over regulatory elements. Enhancer (top)            
H3K27ac or ATAC-Seq signal is centered in open regions, defined by ATAC-Seq peaks.             
Promoter (bottom) H3K27ac or ATAC-Seq signal is centered in the TSS. Data is shown for               
conserved enhancers and promoters (yellow), mouse-specific enhancers and promoters (red) and           
all other mouse genome coordinates for mapped human-specific enhancers and promoters           
(black). RPM = reads per million mapped reads D) Fraction of mouse enhancers that are active                
(pre-established) in bone marrow (mBM) cells and enhancers that are mDC specific, and fraction              
of mBM pre-established or mDC specific enhancers that are conserved (ECA). 
 
 
 
 

 
 
Figure 3: Genes with shared transcriptional response to LPS have complex regulatory loci             
and a higher conservation of enhancer activity. ​A) Fraction of ECAs that are associated to               
genes that are early-induced, late-induced or downregulated upon stimulation with LPS in mouse             
DCs. The black horizontal line shows the average enhancer conservation for all genes B)              
Fraction of genes in temporal clusters that are associated to high-, medium- or low-complexity              
enhancer loci. C) Fraction of ECAs in high complexity genes that have shared or species-specific               
response. The response patterns are: early-induced, late-induced, downregulated or unchanged. 
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Figure 4: Enhancers with conserved activity contain a conserved lexicon​. A) Distribution of             
SiPhy omega log-odds scores for 200bp regions around the summits of ATAC-seq peaks that              
have conserved signal (yellow) and species-specific signal (red) in mouse DCs. B) Examples of              
sequence logos of the clusters of kmers obtained after clustering the sequences in ATAC regions               
with conserved signal that have a log-odds score greater than 30. C) Enrichment heatmap              
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showing the observed over expected values for each motif in ATAC-seq peaks with conserved              
signal associated to the gene groups defined in Figure 1. D) AUC of the PR and ROC curves of a                    
random forest model, predicting whether a gene will be induced or maintain constant expression              
following LPS stimulation. The features were the number of instances of each cPWM across all               
regulatory regions of a gene. E) Feature importance of the classifier, defined as the difference in                
mean accuracy across all trees between the model and the model after permuting the feature. The                
importance values were then scaled to span the range of 0 to 100. The 30 features with the                  
highest importance values are shown. 
 
 
 

 
Figure 5: Candidate enhanceosome regions are highly conserved and bound by multiple            
TFs​. A) Example of an enhanceosome-like regulatory element in the NFKBIZ locus in mouse              
(top panel) showing the multiple sequence alignment of the conserved DNA accessible region. 
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Figure 6: Regulatory regions with conserved activity and conserved kinetics regulate genes            
with shared induction kinetics. A) Heatmap showing k-means clustering of temporal patterns            
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of mean signal per bp for ATAC-Seq peaks (at enhancer or promoter regions) with dynamic               
response to LPS in mouse DCs (Unstimulated, 30 minutes, 1 hours, 2 hours, 4 hours and 6                 
hours). Regions were classified as repressed, early-induced or late-induced. B) Fraction of            
early-induced, late-induced, downregulated or non-changing genes that are associated to          
dynamic ATAC peaks. C) Enrichment of cPWMs in ATAC peaks that are under purifying              
selection (Fig 4A) clustered into temporal groups. D) AUC of the PR and ROC curves of a                 
random forest model, predicting whether a gene will be induced or maintain constant expression              
following LPS stimulation. The features for each model were the number of instances of each               
cPWM across all regulatory regions of a gene (black bars), or all instances separated by the                
temporal pattern of the regulatory element (grey bars) E) Heatmap showing the temporal patterns              
of ATAC-seq peaks with conserved signal that are dynamic in both mouse and human. F)               
Enrichment of ATAC-seq peaks with conserved signal associated to genes that are induced in              
both mouse and human DCs, induced only in mouse DCs, downregulated in both mouse and               
human DCs, downregulated only in mouse DCs and not responsive to LPS in mouse DCs. G-I)                
The maximum absolute fold change, maximum tpm and baseline tpm of genes that are associated               
with ATAC-seq peaks with conserved signal that have same temporal response in both mouse              
and human versus all other genes J) Gene ontology analysis of genes associated with regulatory               
regions with conserved LPS response kinetics. 
 

 
Figure 7: Mobile elements of ancestral and recent origin have reshaped response to             
environmental stimulus. A) Families of transposable elements (TEs) enriched in regulatory           
regions of induced genes in mouse and human. Observed over expected (obs/exp) values are              
shown for each TE only when the enrichment is significant in that species (p value < 0.004,                 
permutation test; adjusted p < 0.05). Panels show families of TEs that have instances in the                
mouse and human genomes (Ancestral, Left), only in mouse (Mouse specific, Center), or only in               
human (Human specific, Right). B) Conservation rate of the enhancer regions that overlap each              
ancestral TE. C) Average aggregation signal of H3K27ac and ATAC-Seq over TE instances that              
overlap regulatory elements. Region is centered in each TE instance, delimited by the vertical              
bars, and the 2kb surrounding region is shown. 
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Supplementary information 
Supplementary information, methods and figures are found below. Supplementary tables can be 
found in the following link: 
https://www.sciencedirect.com/science/article/pii/S2405471218300024?via%3Dihub#appsec2 
 
STAR Methods 
 
Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

List of 147 data-sets used in      
this study 

This paper Table S4 

Human 10-mers substitution   
rates 

This paper http://garberlab.umassmed.edu/data/
conservation/hg19/omega/ 

Mouse 10-mers substitution   
rates 

This paper http://garberlab.umassmed.edu/data/
conservation/mm10/mm10.omega 

Software or Algorithms 

gkm-SVM (Ghandi et al., 2016) v1.3 

Spectral clustering This paper https://github.com/nimezhu/ClsViz 

Trimmomatic (Bolger et al., 2014) V0.32  

Bowtie2 (Langmead and Salzberg,   
2012) 

v2.2.23 

Samtools (Li et al., 2009) v0.1.19 

DESeq2 (Love et al., 2014) v1.10.1 
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Bedtools (Quinlan and Hall, 2010) V2.25.0 

MACS2 (Zhang et al., 2008) V2 

IGVtools (Robinson et al., 2011) V2.3.31 

RSEM (Li and Dewey, 2011) v1.2.28 

SiPhy  (Garber et al., 2009) https://github.com/garber-lab/siphy 

Antibodies & Reagents 

H3K27ac Diagenode C15410196 

H3K4me3 EMD Millipore 05-745R 

Ovation Human FFPE   
RNA-Seq Library System 

NuGen 0340 

Ovation mouse RNA-Seq   
Library System  

NuGen 0348 

RNeasy mini plus kit Qiagen 74134 

Nextra TDE-1 transposase, Illumina FC-121-1030 

Covaris tru-ChIP Chromatin   
Shearing and Reagent Kit 

Covaris 520154 

Agencourt AMPure XP  Beckman Coulter A63880 

GMCSF Miltenyi 130-095-735 

 
 

32 

https://paperpile.com/c/FP9Gc6/xp3zh
https://paperpile.com/c/FP9Gc6/6pNVP
https://paperpile.com/c/FP9Gc6/M3Ljx
https://paperpile.com/c/FP9Gc6/Zex79
https://paperpile.com/c/FP9Gc6/z78Z1


Contact for Reagent and Resource Sharing 
Further information and requests for resources and reagents should be directed to and will be               
fulfilled by the lead contact, Manuel Garber (​Manuel.Garber@umassmed.edu​). 
 
Experimental Model and Subject Details 
Human Subjects​: 
Anonymous, healthy donor leukopaks (New York Biologics, Southampton, NY), were used in            
accordance with UMMS-IRB protocol ID #H00004971 
Mice: 
All mice were housed in specific pathogen-free condition in accordance with the Institutional             
Animal Care and Use Committee of the University of Massachusetts Medical School. C57BL6             
female mice were euthanized at 6-8 weeks of age to harvest bone marrow. 
 
 
Method Details 
Cell culture 
All cells were maintained at 37°C in 5% CO2 humidified incubators.  
 
Human monocyte derived dendritic cells 
Human dendritic cells were derived from peripheral blood mononuclear cells (PBMCs) isolated            
from de-identified, healthy donor leukopaks (New York Biologics, Southampton, NY), in           
accordance with UMMS-IRB protocol ID #H00004971. Mononuclear leukocytes were isolated          
by gradient centrifugation on Histopaque-1077 (Sigma-Aldrich, St. Louis, MO). CD14+          
mononuclear cells were enriched via positive selection using anti-CD14 antibody MicroBead           
conjugates (Miltenyi, San Diego, CA), according to the manufacturer’s protocol. CD14+ cells            
were then plated at a density of 1 to 2 x 10​6 cells/ml in RPMI-1640 supplemented with 5% heat                   
inactivated human AB+ serum (Omega Scientific, Tarzana, CA), 20 mM L-glutamine           
(ThermoFisher, Waltham, MA), 25 mM HEPES pH 7.2 (Sigma-Aldrich), 1 mM sodium            
pyruvate (ThermoFisher), and 1 x MEM non-essential amino acids (ThermoFisher).          
Differentiation of the CD14+ monocytes into dendritic cells (human DCs) was promoted by             
addition of recombinant human GM-CSF and human IL-4; cytokines were produced from            
HEK293 cells stably transduced with pAIP-hGMCSF-co or pAIP-hIL4-co, respectively, as          
previously described (Reinhard et al., 2014)​, with each cytokine supernatant added at a dilution              
of 1:100.  
 
Mouse bone marrow derived dendritic cells 
Mouse dendritic cells were derived from bone marrow harvested from 6-8 week old female              
C57BL6 mice. Bone marrow was then dissociated into single cells and filtered through 70um              
cell strainer. The cells were then incubated with red blood cell lysis buffer for 5 minutes. To                 
differentiate bone marrow to dendritic cells, bone marrow cells were plated at 200,000 cells/mL              
in non-tissue culture treated plates. These cells were supplemented with media on day 2 and day                
7. On day 5 cells were harvested and resuspended in fresh media. On day 8 all the floating cells                   
were collected as mouse bone marrow derived dendritic cells. The media used for culturing and               
differentiating contains RPMI (Gibco) supplemented with 10% heat inactivated FBS (Gibco),           
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β-mercaptoethanol (50uM, Gibco), MEM non-essential amino acids (1X, Gibco), sodium          
pyruvate (1mM, Gibco), and GM-CSF (20 ng/ml; Miltenyi). 
 
Library preparation and Sequencing 
 
RNA-seq 
Total RNA was isolated from frozen dendritic cell pellets using the RNeasy mini plus kit               
(QIAGEN). The RNAs were additionally treated with RNase-free DNase I for 15 minutes at              
room temperature to eliminate most genomic DNA. RNA-Seq libraries were prepared from 70             
ng of starting RNA using the Ovation Human FFPE RNA-Seq Library System (NuGEN) or              
Ovation mouse RNA-Seq Library System (NuGEN), according to the manufacturer’s protocol.           
Fragmentation of the cDNA was achieved by sonication using the M220 sonicator (Covaris) with              
the following conditions: sonication time = 350 seconds; temp = 20°C; peak power = 50; duty                
factor = 20; cycles/burst = 200. The quality of the isolated RNA, as well as of the final libraries,                   
was assessed using the 2100 Bioanalyzer (Agilent) and Qubit (Invitrogen). The libraries were             
pooled according to donor in equimolar ratios and denatured. Pooled libraries were sequenced             
for 2 x 100 cycles to obtain paired end reads, using a HiSeq 2000 (Illumina) for human DCs and                   
2 x 75 cycles using Nextseq 500 for mouse DCs.  
 
ATAC-Seq 
For each time point, 5 x 10​5 scraped DC’s were collected by centrifugation 500 x g for 5 min.                   
and lysed for ATAC-seq following the protocol described in (Buenrostro et al., 2015)​. Each              
sample was tagmented using 12.5 ul Nextera TDE-1 transposase (Illumina) for 30 minutes at 37,               
then quenched by addition of 5 volumes DNA Binding Buffer (Zymo Research) and cleaned              
using Zymo Research DNA Clean and Concentrator-5 columns according to the supplied            
protocol. Tagmented DNA was PCR-amplified using indexed primers as described in           
(Buenrostro et al., 2015)​, using total cycle numbers for enrichment as determined empirically by              
qPCR to minimize PCR duplicates. The resulting libraries were purified twice by Zymo             
Research DNA Clean and Concentrator-5 columns using a ratio of 5:1 DNA Binding             
Buffer:Sample, and quantified by Qubit HS-DNA Assay (Thermo Fisher Scientific) and           
Bioanalyzer High-Sensitivity DNA (Agilent Technologies). Final ATAC-seq libraries were         
pooled (equimolar) and sequenced on an Illumina Nextseq 500.  
 
ChIP-Seq 
Harvest and Formaldehyde crosslinking​. For each timepoint and donor, 5-7 x 10​6 unstimulated             
or LPS-stimulated hDCs were harvested by scraping in medium and centrifugation at 500 x g for                
5 minutes. Each cell pellet was washed once with 2 mL PBS and gentle flicking of the tube,                  
followed by centrifugation at 500 x g for 5 min. Cells were uniformly resuspended in 1 mL 1X                  
Fixing Buffer A from the Covaris tru-ChIP Chromatin Shearing and Reagent Kit and fixed by               
adding 1 mL 2% methanol-free formaldehyde (Thermo Fisher Scientific) diluted in 1X Fixing             
Buffer A (1% formaldehyde final, 2.5-3.5x10​6 cells/mL) and rotated end-over end for 5 min. at               
room temperature. Fixation was quenched by adding 240 mL Quenching Buffer E (Covaris             
tru-ChIP kit) and rotating for an additional 5 min. Purified BSA was then added to 0.5% w/v                 
final to prevent cell adherence to the tube, and crosslinked cells were harvested by              
centrifugation, 500 x g for 5 min. at 4°C. Crosslinked cells were washed twice in 2 mL ice-cold                  
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PBS + 0.5% BSA with centrifugation as above, and aliquoted evenly into 3 fresh 1.5 mL tubes                 
during the second wash. Cells were finally pelleted by centrifugation at 16,000 x g, flash-frozen               
as dry pellets in liquid nitrogen, and stored at -80°C. 
Lysis, Shearing, and Quantification. Individual crosslinked cell pellets (1.5-2 x 10​6 cells each)             
were lysed according to the Covaris tru-ChIP Chromatin Shearing and Reagent Kit instructions.             
Following lysis, nuclei were resuspended in 130 mL ice-cold Shearing Buffer D3 and transferred              
to 1.5 mL BioRupter Pico Microtubes (Diagenode) on ice. Chromatin was sheared to uniform              
fragment lengths (150-400 bp) by sonication at 4°C in a BioRupter Pico (Diagenode) set to 6                
cycles of 30s ON and 30s OFF. Sheared chromatin was diluted in 10 volumes of ChRIPA buffer                 
(1X PBS, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 0.5% sodium deoxycholate, 1% Igepal                 
CA-630, 0.1% SDS, 1X Roche cOmplete Protease Inhibitor Cocktail) and insoluble material was             
removed by centrifugation >15,000 x g for 10 minutes. Lysate was pre-cleared against 60 mL               
Dynabeads Protein A (Thermo Fisher Scientific) per 10​6 cells for 2h at 4°C with end-over-end               
rotation followed by two rounds of magnetic bead removal and transfer to fresh tubes. 2% of                
pre-cleared lysate was removed for DNA quantification and the remaining lysate was either             
flash-frozen in liquid nitrogen and stored at -80°C, or stored overnight at 4°C for use in                
immunoprecipitation. For quantification, 2% pre-cleared lysate was treated with 10 mg RNase A             
(Thermo Fisher Scientific) for 30 min. at 37°C, followed by addition of 100 mg Proteinase K                
(New England Biolabs) and crosslink reversal overnight at 65°C. DNA was purified using DNA              
Clean and Concentrator-5 columns (Zymo Research). Average sheared DNA fragment sizes           
were determined by agarose gel and chromatin yield was estimated by Qubit HS-DNA Assay.              
50-100 ng purified DNA was saved as Input. 
Chromatin Immunoprecipitation. Antibodies used for ChIP were rabbit anti-H3K27ac         
(Diagenode C15410196) and rabbit anti-H3K4me3 (EMD Millipore 05-745R). 1 mg antibody           
was added to 0.5 mg (anti-H3K27ac) or 1 mg (anti-H3K4me3) pre-cleared crosslinked lysate and              
incubated overnight with continuous mixing at 4°C. IgG/chromatin complexes were captured for            
1h at room temperature on 25 mL Dynabeads Protein A that were pre-blocked for at least 1h                 
with Blocking Buffer (1X PBS, 0.5% BSA, 0.5% Tween-20). Complexed beads were washed 5              
times with ice-cold ChRIPA Buffer, twice with room temperature RIPA-500 Buffer (10 mM Tris              
pH 8.0, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS),                
twice with ice-cold LiCl Wash Buffer (10 mM Tris pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5%                  
Igepal CA-630, 0.5% sodium deoxycholate), and twice with ice-cold TE buffer. Each chromatin             
sample was eluted from beads using 50 ul Direct Elution Buffer (10 mM Tris pH 8.0, 5 mM                  
EDTA, 300 mM NaCl, 0.5% SDS) and supplemented with 20 mg RNase A, incubating for 30                
min. at 37°C. 20 mg glycogen was added to each bead/eluate suspension, and crosslinks were               
reversed by addition of 50 mg Proteinase K and incubation at 37°C for an additional 2h,                
followed by overnight at 65°C. Dynabeads were removed by magnet capture, and the supernatant              
was mixed thoroughly with 2.3 volumes of Agencourt AMPure XP (Beckman Coulter) bead             
suspension and incubated for 10 minutes at room temperature prior to bead capture and washing.               
Purified DNA was eluted in 10 mM Tris pH 8.0. 
Library Preparation and Sequencing. Sequencing libraries were prepared from half of each ChIP             
sample and 50 ng Input DNA using the Ovation Ultralow System V2 kit (NuGEN) according to                
supplier’s instructions, with the total numbers of enrichment PCR cycles determined empirically            
for each sample by qPCR to minimize PCR duplication rates. Barcoded libraries were quantified              
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using Qubit HS-DNA Assay, qualified using Agilent Bioanalyzer High-Sensitivity DNA, and           
pooled for sequencing on Illumina Nextseq 500. 
 
 
Quantification and Statistical Analysis 
 
Alignment and processing of reads 
 
RNA-Seq​: Trimmomatic-0.32 (Bolger et al., 2014) was used to remove 5’ or 3’ stretches of               
bases having an average quality of less than 20 in a window size of 10. Only reads longer than 36                    
bases were kept for further analysis. Reads were then aligned to human or mouse ribosomal               
RNA using Bowtie2 v2.2.3 (Langmead and Salzberg, 2012) with parameters -p 2 -N 1 --no-unal.               
All reads mapped to rRNA were discarded from further analysis. RSEM v1.2.28 (Li and Dewey,               
2011) was used to estimate gene expression in Transcripts per Million (TPM), with parameters              
-p 4 --bowtie-e 70 --bowtie-chunkmbs 100 --strand-specific. RSEM is configured to use Bowtie             
v0.12.9. Quantification was run against the transcriptome (RefSeq v69 downloaded from UCSC            
Table Browser (Pruitt et al., 2012)​. Genes with more than 10 TPM in any time point were                 
considered expressed, and genes that did not achieve this threshold were removed from further              
analysis. Moderate batch effects were observed between samples from different mice and            
between the two human donors. We used the log transformed TPM normalized expression values              
as input to ComBat (package sva version 3.18.0) (Johnson et al., 2007; Leek et al., 2012) with                 
default parameters and a model that specified different donors or mice as batches. Corrected              
TPM values were transformed back to read counts using the expected size of each transcript               
informed by RSEM. We only considered genes with at least 10 TPMs in at least one replicate at                  
any time point. 
 
ATAC-Seq​: Paired-end reads were trimmed to remove adapter sequence using Cutadapt version            
1.3, and then aligned with Bowtie2, version 2.1.0, parameter –X 2000. Reference genome hg19              
was used for human samples and mm10 for mouse samples. The alignments were then filtered               
using Samtools (Li et al., 2009)​, version 0.0.19, to remove (i) PCR duplicates, as identified by                
Picard’s MarkDuplicates, and (ii) aligned reads with mapping quality below 4. While the reads              
were aligned as paired-end to optimize the alignment accuracy, the alignments were then further              
processed as if they were aligned single-end sequence data, so that each aligned read              
corresponded to a Tn5 cut-site. 
Peak Calling​: Each aligned read was first trimmed to the 9-bases at the 5’-end, the region where                 
the Tn5 transposase cuts the DNA, and then extended 10-bases upstream and down, for              
smoothing. Peaks were called using these adjusted 29-base aligned reads with MACS2 (Zhang et              
al., 2008)​, parameters --bw 29 --tsize 29 and --qvalue 0.0001. For visualization, the adjusted              
aligned reads were converted to tdf files using IGVTools, version 2.3.31 (Robinson et al., 2011)               
(IGVtools count –w 5). 
Quality Control​: Following the standard practice (Buenrostro et al., 2015)​, for each sample, we              
examined the fragment length distribution, as well as a comparison of the aggregate nucleosome              
signal to the aggregate nucleosome-free signal over transcription start sites for those genes found              
to be expressed for at least one time point in our RNA-Seq time series. Signal-to-noise ratios                
were computed for the peaks as f/(1 –f) where f is the fraction of reads overlapping peaks. 
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ChIP-Seq​: Along with in house generated data we also analyzed publicly available data for              
mouse bone-marrow progenitors generated by the Encode consortium (Accession:         
GSM1000108). Paired-end reads were trimmed to remove sequencing adapters and leading and            
trailing bases with quality scores less than 5. Reads that were longer than 36 bases after trimming                 
were kept for further analysis. The reads were then aligned to human reference genome hg19 or                
mouse genome mm10 using Bowtie2 with options -k 1 --un-conc to filter out reads that map to                 
multiple locations in the genome and that align un-concordantly. Duplicated reads were filtered             
out using picard-tools-1.131 MarkDuplicates function. Peaks were then called using MACS2           
with --bw=230 --tsize=75 and --qvalue 0.0001. Alignment files were also converted to tdf format              
using IGVtools count function using -w 5 --pairs options for visualizing. H3K27ac ChIP-Seq             
peaks were filtered to retain only the peaks that are two-fold enriched over input.  
 
Gene classification and clustering 
 
Homologs​: All our analysis were restricted to genes that had homologous pairs between human              
and mouse defined in the Homologene release 68 (NCBI Resource Coordinators, 2016)​, resulting             
in a list of 16,500 one to one homologous gene pairs. 
 
Gene Classification​: The expressed gene list was filtered to include only genes with homologs as               
defined by the previous step. We used the batch corrected (see above) counts per gene to identify                 
differentially expressed genes by at least 2 fold between unstimulated cells (time 0) and any time                
point following LPS stimulation whose change in expression was significant (p-adjusted < 0.05)             
according to the package DESeq2 (v1.10.1) (Love et al., 2014) in R (v3.3.1). Due to the large                 
transcriptional changes observed in this system, we turned off the fold change shrinkage in              
DESeq2 with betaPrior=FALSE and we added a pseudocount of 32 to all timepoints to avoid               
spurious large fold change estimates from lowly abundant genes. Genes were then classified             
based on their response to LPS stimulation in each species (induced, downregulated or             
non-responsive).  
 
Clustering expression patterns​: For genes expressed in both species and presenting similar            
response following LPS stimulation (induced in both species or downregulated in both), we             
applied a spectral clustering approach (von Luxburg, 2007) to identify genes with conserved             
expression patterns in mouse and human. Briefly, let {g1,g2,g3,…,gn} represent the set of             
response genes, and let E​Mi and E​Hi​,1 < i < n, represent the expression time courses in TPM for                   
gene g​i in mouse and human respectively. Further, let ρ​M = [ρ​Mij​], 1< i,j< n represent the Pearson                  
correlation coefficient matrix, where ρ​Mij is the coefficient of correlation of E​Mi with E​Mj​. The               
human correlation coefficient matrix, ρ​H is defined similarly. We define similarity matrices [s​Mij​]             
and [s​Hij​], for mouse and human respectively, where s​Mij = exp(-(sin(cos​-1​(ρ​Mij​)/2)​2​), and s​Hij =              
exp(-(sin(cos​-1​(ρ​Hij​)/2)​2​). Then the matrix W = [ w​ij ] = [ s​Mij​s​Hij ] defines a similarity matrix for                  
{g1, g2, … , gn} and can be viewed as an adjacency matrix for a weighted graph, where each                   
gene represents a node in the graph. We associate to W its graph Laplacian L = D - W, where D                     
is the diagonal degree matrix with entries dii = 𝚺 ​n​j=1 w​ij​. L is positive, semi-definite and therefore                 
has n real non-negative eigenvalues, λ​i​, 1< i < n, which we list in descending order, λ​1 > λ​2​> … >                     
λ​n​. We select k, the number of clusters, to be the smallest positive integer such that (λ​1 + λ​2 + …                     
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+ λ​k​)/tr(L) > 0.95, where tr(L) is the trace of L. We then construct a matrix with columns set to                    
the first k eigenvalues of L and apply k-means clustering to the rows of this matrix to cluster the                   
genes into k distinct clusters. The python script used for spectral clustering is available on               
https://github.com/nimezhu/ClsViz​. 
We analyzed enrichments for specific Gene Ontology categories using ​clusterProfiler (Yu et al.,             
2012)​. 
 
Transcription Factor network 
 
We sought to first determine the extent to which the TF network in response to LPS is conserved                  
between human and mouse DCs. To systematically explore core changes in the regulatory             
network, we compared the overall trends of the 258 transcription factors that responded to              
LPS-stimulation in at least one of the two species (Figure S1D). We calculated the Pearson               
correlation between the expression patterns across all timepoints for TFs with response to LPS              
per species. The resulting distance matrix was hierarchically clustered and displayed as a heat              
map. We chose the number of groups in each clustering by visual inspection of the dendrogram                
and selection of a threshold. Membership in each cluster was then compared across species to               
identify the corresponding groups.  
 
Transcription Factor Network Overview​: There are 3 large co-regulated groups of           
transcription factors with no major changes between the species, and a fourth cluster in mouse               
composed of only 8 TFs (Table S1) with very small changes in expression in mouse (< 2 fold),                  
that are scattered across all three human clusters. The largest cluster in mouse contained 115               
genes that were downregulated following LPS treatment. Further, 73% of the factors that were              
also expressed in human remained in the same cluster and showed a similar transcriptional              
downregulation pattern in human (Figure S1D, top right). Similarly, the vast majority (77%) of              
induced transcription factors were induced in both species, with 17 factors (19%) having             
different induction timing in each species (Table S1). The largest of the induced clusters (pink               
cluster, Figure S1D), contained mostly TFs with conserved kinetics (66% in mouse and 57% in               
human, Figure S1D, bottom right). This group included members of the NFKB, IRF, and STAT               
families (Figure 1C). The smaller cluster of induced transcription factors also contained            
important rapidly upregulated TFs (blue cluster, Figure S1D, middle right), including members            
of the FOS and JUN families, as well as MAFF, PRDM1, and EGR3, all of which show a                  
conserved pattern in the human response. 17 mouse-specific and 12 human-specific TFs were             
induced by LPS. Interestingly, to the best of our knowledge, none of the species-specific factors               
have been studied in the context of innate immune signaling. Two mouse-specific TFs, ID1 and               
SIX1, are highly induced in mouse, although not detectable in human. Similarly, MSC is highly               
induced in human DCs but has no detectable expression in mouse DCs. Outliers such as these                
however, are rare, and most TFs with different responses in mouse and human DCs have               
moderate induction compared to genes with conserved response.  
 
Substitution rate scan 
We used SiPhy (Garber et al., 2009) to compute the substitution rate (⍵) for every 10-mer in the                  
mouse and human genomes. For human we used the vertebrate multiple sequence alignment             
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available from the UCSC genome browser for the hg19 assembly. We removed the vertebrates              
danRer6, petMar1, oryLat2, gasAcu1, fr2, tetNig2 which left us with the following phylogeny:  
(((((((((((((((((hg19:0.006653,panTro2:0.006688):0.002482,gorGor1:0.008783):0.009697,p

onAbe2:0.018183):0.040003,rheMac2:0.008812):0.002489,papHam1:0.008723):0.045139,calJac

1:0.066437):0.057049,tarSyr1:0.137822):0.010992,(micMur1:0.092888,otoGar1:0.1295):0.03

5423):0.015348,tupBel1:0.186424):0.004886,(((((mm9:0.084505,rn4:0.091627):0.197835,dip

Ord1:0.211666):0.022945,cavPor3:0.225634):0.010077,speTri1:0.148511):0.025643,(oryCun2

:0.114421,ochPri2:0.201003):0.101624):0.015291):0.020683,(((vicPac1:0.107267,(turTru1:

0.064676,bosTau4:0.123573):0.025145):0.040411,((equCab2:0.109311,(felCat3:0.098636,can

Fam2:0.102486):0.049838):0.006202,(myoLuc1:0.14262,pteVam1:0.113246):0.033792):0.00445

6):0.011576,(eriEur1:0.221758,sorAra1:0.269694):0.056557):0.021228):0.023628,(((loxAfr

3:0.082165,proCap1:0.155353):0.026774,echTel1:0.246266):0.049887,(dasNov2:0.116609,cho

Hof1:0.096318):0.053052):0.006229):0.399651,macEug1:0.133617):0.002474,monDom5:0.15092

1):0.199105,ornAna1:0.461732):0.116917,((galGal3:0.164668,taeGut1:0.172833):0.200238,a

noCar1:0.48763):0.10284):0.186338,xenTro2:0.834181):0.324842 

Spanning 8.44 substitutions per site. We excluded 10-mers that after removing species with no              
alignable sequence due to either alignment gaps or missing sequence had a total branch length of                
less than 0.75. Data is available from 
 
http://garberlab.umassmed.edu/data/conservation/hg19/omega/ 
 
For mouse we used the vertebrate multiple sequence alignment available from the UCSC             
genome browser for the mm10 assembly. We removed petMar1, gadMor1, oryLat2, gasAcu1,            
oreNil2, fr3, tetNig2, latCha1, xenTro3, chrPic1, anoCar2, melUnd1, taeGut1, melGal1,          
ornAna1, macEug2, sarHar1 vertebrate assemblies which left us with the following phylogeny: 
(((((((((((mm10:0.0861604,rn5:0.0923189):0.20235,dipOrd1:0.210872):0.0258938,(hetGla2:

0.0916296,cavPor3:0.136929):0.0994423):0.00913482,speTri2:0.145406):0.0275377,(oryCun2

:0.10975,ochPri2:0.200956):0.102105):0.0142197,(((((((((hg19:0.00672748,panTro4:0.0069

0586):0.00329132,gorGor3:0.00918574):0.00952813,ponAbe2:0.019182):0.00354391,nomLeu2:0

.0218123):0.0117068,(rheMac3:0.00815625,papHam1:0.00799922):0.0289552):0.0208613,(calJ

ac3:0.0342486,saiBol1:0.0333278):0.0358206):0.0593959,tarSyr1:0.137561):0.0111487,(mic

Mur1:0.0919295,otoGar3:0.127188):0.0351183):0.0153325,tupBel1:0.188903):0.0042042):0.0

215023,((susScr3:0.121671,(vicPac1:0.10979,(turTru2:0.0635601,(oviAri1:0.0392014,bosTa

u7:0.0315737):0.0939007):0.0204197):0.00365643):0.0444426,((((felCat5:0.0897916,(canFa

m3:0.0888559,ailMel1:0.0767967):0.0218058):0.050101,equCab2:0.109329):0.00604713,(myoL

uc2:0.137323,pteVam1:0.113957):0.0339856):0.00384687,(eriEur1:0.227177,sorAra1:0.27056

4):0.0629454):0.00322051):0.0291201):0.0231348,((((loxAfr3:0.0788116,proCap1:0.160315)

:0.00818092,echTel1:0.266806):0.00328658,triMan1:0.068537):0.0736006,(dasNov3:0.112113

,choHof1:0.0974595):0.0536232):0.00734155):0.246266,monDom5:0.35412299999999997):0.212

5305,galGal4:0.5622546999999999):0.6482475,danRer7:0.871611):0.49907 
Spanning 8.21 substitutions per site. We excluded 10-mers that after removing species with no              
alignable sequence due to either alignment gaps or missing sequence had a total branch length of                
less than 0.5. Data is available from  
 
http://garberlab.umassmed.edu/data/conservation/mm10/mm10.omega 
 
The models used were downloaded directly from UCSC and correspond to the alignments used. 
 
Enhancer and promoter definition and conservation analysis 
 
Enhancers and promoters were defined by H3K27ac peaks. We then merged all peaks from each               
time point located within 200bp from each other. Our maps consist of 28,142 and 29,273               
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H3K27ac regions (signal peaks) in mouse and human, respectively. We calculated the distance             
from each peak to the nearest transcription start site (TSS) of the highest expressed isoform for                
each gene using bedtools closest -D ref -t all (Quinlan and Hall, 2010)​. We classified all                
H3K27ac peaks that had a distance smaller than 500 bp to the nearest TSS as promoters, and the                  
remaining peaks were considered enhancers. Enhancers were assigned to the nearest gene based             
on the same TSS distances as above. Unlike promoters, which were associated to the gene with                
the overlapping TSS independent of expression, enhancers were only associated to the closest             
expressed gene within 300 kb (Garber et al., 2012; González et al., 2015)​. This assignment of                
enhancers to nearby genes will misassign enhancers that either interact with more than one gene               
or interact with no adjacent genes. However, the majority of enhancers have been reported to               
interact with the neighboring gene (González et al., 2015)​. Overall, 2/3 of the peaks were               
annotated as enhancers in each species, consistent with previous studies (Villar et al., 2015)​. We               
filtered ATAC peaks to include only peaks that overlapped with a H3K27ac region. We              
classified ATAC peaks as enhancers or promoters based on the H3K27ac peak definition, and              
maintained the association to genes defined for H3K27ac peaks. To determine the conservation             
of mouse enhancer and promoters in human, peaks were mapped to the human genome              
corresponding locations using liftOver -minMatch=0.1 -multiple (Hinrichs et al., 2006)​. We           
filtered out peaks that mapped to more than 3 locations and used the remaining peak locations to                 
intersect with the human enhancer and promoter coordinates to determine if that region was also               
active in the human dendritic cells. To generate aggregation plots of the H3K27ac and              
ATAC-Seq signal, we used the center position of ATAC peaks for enhancers and the TSS for the                 
genes associated to the peaks as coordinates for input to ngs.plot (Shen et al., 2014)​. The                
coverage was calculated for a 4kb region surrounding the center position (-L 2000). We selected               
the regions corresponding to each group of interest from the output matrix and calculated the               
mean signal per group. 
 
ATAC and H3K27ac dynamics 
 
The mean signal across each ATAC-seq or H3K27ac peak was calculated by averaging the              
number of reads per base pair. The average signal across the libraries are normalized to the depth                 
of each library using DESeq2 (v1.10.1) in R (v3.3.1). ATAC-seq or H3K27ac peaks were              
considered dynamic in response to LPS if they have greater than two fold-change in their mean                
signal compared to unstimulated state. The dynamic ATAC-seq or H3K27ac peaks identified are             
clustered using k-means algorithm to identify groups of ATAC-seq H3K27ac peaks that are             
induced or repressed following LPS stimulation.  
 
Motif analysis 
 
Motif analysis was done on 200 bp regions around the summits of the ATAC-seq peaks. The                
log-odds substitution rate for each 10 base-pair window across the summits of ECAs and ESPAs               
ATAC-seq peaks was calculated using SiPhy (Garber et al., 2009)​. The value of log-odd              
substitution score at the top ten percentile of a given peak was assigned as the conservation score                 
for each peak. The kmers that intersected the ATAC-seq summits and which had log-odds score               
greater than 30 were considered for building cPWMs. To get a background set, we shuffled these                
200bp ATAC-seq peaks within the enclosing H3K27ac peaks and considered all the kmers with              
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log-odds score greater than 30. To identify kmers that distinguish the conserved ATAC peaks              
from background, we used the string kernel built-in gkm-svm R package (Ghandi et al., 2016)               
with 5 fold cross validation which resulted in 4500 unique kmers as features for conserved               
ATAC peaks. These kmers were clustered into 66 PWMs using k-medoids clustering algorithm             
with Euclidean distance, within the clara function in the cluster package in R (Blashfield, 1991)​.               
The cPWMs were then matched to the known motifs from CIS-BP database (Weirauch et al.,               
2014) using Tomtom (Gupta et al., 2007)​. Multiple motifs matched to the same TF are identified                
by numbers. For example JUN-1 and JUN-2. To find the cPWMs enriched in temporal gene               
groups or temporal ATAC peaks we used the Fisher exact test and all cPWMs with p value <                  
0.05 were considered enriched.  
 
All cPWMs identified are available from 
 
http://garberlab.umassmed.edu/publications/conserved_lexicon_Dec_2017/cPWMs.motif​cPWM
s.motif  
 
Transposable element analysis 
 
We used the transposable element annotation by RepeatMasker (Smit et al., 2004) to identify TE               
instances in each genome that overlapped at least 10% with the regulatory regions (enhancers              
and promoters) associated to induced genes. As a background, we shuffled these cis-regulatory             
regions in the genome inside boundaries defined by the regulatory regions associated to             
expressed genes with no response to LPS, expanded by 10kb in each direction. We then               
identified the number of instances for each TE family that overlapped at least 10% with these                
shuffled peaks. We performed this shuffling process 1000 times and compared the initial counts              
obtained for each TE family to this null distribution. We computed a p-value for this permutation                
and corrected it using the Benjamini Hochberg method. All TE families with adjusted p-value              
under 0.05 were considered to be overrepresented in the regulatory regions of induced genes. For               
each instance of these elements in induced genes, we identified the corresponding region in the               
other species' genome through liftOver as described above. We then evaluated if the region that               
can be identified in the other genome also overlaps a H3K27ac peak, classifying it as an ECA.                 
H3K27ac and ATAC-Seq signal aggregation plots were generated as described above, with the             
TE start and end genomic coordinates as the target region, flanked by 1kb on each side. 
 
Predictive model of gene induction from cPWM instances 
 
Feature selection​: For the selected set of 66 cPWMs, all instances were detected across all               
ATAC peaks (promoters and enhancers) using fimo (Grant et al., 2011)​, with a q-value threshold               
of 1e-4. We tested the models using two representations of the cPWMs as features: 1. All cPWM                 
instances together - For each gene and each cPWM, we counted the number of instances across                
all regulatory elements of the gene. 2. All cPWM instances, separated by ATAC temporal pattern               
- each cPWM was separated to three features - the number of instances in LPS-induced regions                
(based on ATAC-seq data), number of instances in repressed regions and number of instances in               
unchanging regions. 
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Gene filtering​: To build an informative model and to reduce noise from lowly expressed genes,               
we focused on highly expressed genes by taking only genes that were in the top 30% of                 
expressed genes in at least one time point. Furthermore, to clearly distinguish induced from              
non-induced genes, we classified genes with a log2 fold change > 2 as induced, and genes with a                  
log2 fold change between -0.3 and 0.3 as not induced, and discarded all the rest. Next, to create a                   
balanced set of induced and non-induced genes, we downsampled the number of non-induced             
genes. This resulted in a total of 676 genes (338 induced and 338 non-induced) in mouse and 748                  
genes in human. 
 
Model evaluation​: All model training and evaluations was done in R, using the caret (v6.0.77)               
(Kuhn et al.) and randomForest (v4.6.12) (Liaw et al., 2002) packages. For each feature set, we                
evaluated the accuracy of the model on the mouse data with 10-fold cross validation. For each                
one of the training data in the cross validation, hyperparameters tuning was performed using              
10-fold inner cross validation with the “train” command, using the following parameters:            
tuneLength = 20, metric = “ROC”. To evaluate how well the model predicts induction on the                
human data, we trained a model on the full mouse data (again using 10-fold cross validation for                 
hyperparameters selection) and applied the selected model on the human data.  
 
Feature Importance​: Importance measurement for each feature was computed with the           
“varImp” command, defined as the difference in mean accuracy across all trees between the              
model and the model after permuting the feature. The importance values were then scaled to span                
the range of 0 to 100.  
 
Data and Software Availability 
 
All samples generated for this work were submitted to NCBI as part of the Genomics of Gene                 
Regulation Project, under accession number PRJNA356880. A list of samples used is specified             
on Table S4. 
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Supplementary Figures 
 

 
Figure S1 - Related to Figure 1 and STAR Methods ​A) Box plots displaying log2 maximum                
fold change per gene for shared and species-specific induced genes post-LPS stimulation. B)             
Venn diagram of TFs expressed in each species. C) Box plots displaying log2 maximum              
expression (TPM) for shared and species-specific expressed TFs D) Heatmap showing           
hierarchical clustering of the correlation of expression across time for all LPS-responsive TFs.             
Left: mouse factors (n=228); Center: human factors (n=224); Right: average expression of the             
factors in each cluster that show a shared pattern between species. E) Expression patterns of TFs                

43 



that belong to families with only species-specific response to LPS. Error bars show standard              
deviation from the mean 
 
 

 
Figure S2 - Related to Figure 2 ​A) Overall conservation of promoter and enhancer regions in                
human DCs. B) Overall conservation of ATAC peaks in promoter and enhancer regions in              
mouse DCs. C) Overall conservation of ATAC peaks in promoter and enhancer regions in              
human DCs. D) Average signal aggregation plots for human H3K27ac (left) and ATAC-Seq             
(right) signal over regulatory elements. Enhancer (top) H3K27ac signal is centered in open             
regions, defined by ATAC-Seq peaks. Promoter (bottom) H3K27ac is centered in the TSS.             
ATAC-Seq signal for both enhancers and promoters is centered in open regions. Data is shown               
for conserved regulatory regions (promoters or ECAs, yellow), human specific regulatory           
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regions (promoters and ESPA, red) and all other human genome coordinates for mapped             
mouse-specific promoters or ESPAs. E) Fraction of human enhancers that are already active             
(pre-established) in monocytes (MONO) and enhancers that are hDC specific, and fraction of             
MONO pre-established or hDC specific enhancers that are conserved (ECA). 
 
 

 
 
Figure S3 - Related to Figure 3 ​A) Fraction of enhancers that are ECAs associated to genes that                  
have shared or species-specific response: early-induced, late-induced or downregulated upon          
stimulation with LPS in human DCs. B) Fraction of genes in temporal gene clusters of human                
DCs that are associated to high-, medium- or low-complexity enhancer loci C) Maximum             
expression, measured in transcripts per million (TPM) for genes in each complexity tier D)              
Fraction of enhancers that are ECAs in high complexity shared or species-specific response             
genes which are early-induced, late-induced, downregulated or have no change in response to             
LPS in human DCs. 
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Figure S4 - Related to Figure 4 ​A) Table showing the number (column 1) and fraction (column                 
3) of TF ChIP peaks that are in ATAC-seq peaks B) Distribution of SiPhy omega log-odds                
scores in ATAC-seq peaks with conserved signal (yellow) and species-specific signal (red) for             
human DCs. C) Enrichment of cPWMs that are novel in the gene clusters. 
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Figure S5 - Related to Figure 5. IFNβ locus showing the multiple sequence alignment of the                
IFNβ enhanceosome and IFNβ gene. The top half of the figure shows the locus and conservation                
score, bottom half shows the multiple sequence alignment of the IFNβ enhanceosome. Dots are              
the nucleotides that haven’t changed from the mouse sequence. 
 

 
 
Figure S6 - Related to Figure 6. ​A) Heatmap showing the temporal patterns of H3K27ac peaks                
in response to LPS in human DCs (Unstimulated, 30 minutes, 1 hour, 2 hours, 4 hours and 6                  
hours) which are annotated as promoters or enhancers. B) Heatmap showing the temporal             
patterns of ATAC-seq signal associated with regions annotated as promoters or enhancers in             
human DCs (Unstimulated, 30 minutes, 2 hours, 4 hours and 6 hours) C) Heatmap showing the                
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temporal patterns of H3K27ac peaks in response to LPS in mouse DCs (Unstimulated, 30              
minutes, 1 hour and 2 hours) D) Temporal patterns of ATAC-seq peaks that are dynamic in at                 
least one of the species when stimulated with LPS. 
 
 

 
Figure S7 - Related to Figure 7. A) Distribution of the nucleotide substitution rates across 41                
mammals for TEs from the MIR element families that overlap with regulatory regions of induced               
genes. One value for the substitution rate per element instance is shown, which corresponds to               
the value at the 90th percentile. 
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Chapter 3 - Uncovering the DNA sequence motifs which control the epigenetic landscape of 
Dendritic cells maturation  

 
In this chapter, I devised a supervised learning pipeline to determine which short DNA sequence               
motifs may be functional within a given subset of regulatory regions. I apply this pipeline to                
study temporal activation patterns of regulatory regions in DCs up to 24 hours after LPS               
stimulation. This work resulted in a comprehensive map of TF binding motifs that are active at                
various times during DC maturation. This includes several factors that were previously unknown             
to be a part of the DC response, and our collaborators are currently in the process of validating                  
them experimentally. This chapter is a draft of the manuscript that will be completed after we                
conduct the validation experiments. The tentative list of authors includes: 
 
Shaked Afik​1,7​, Pranitha Vangala​1,7​, Elisa Donnard​2​, Sean McCauley​3​, Anetta Nowosielska​3​, 
Alper Kucukural​3,4​, Barbara Tabak​2​, Patrick McDonel​2,3​, Jeremy Luban​3​, Manuel Garber​2,3,4​, Nir 
Yosef​1,5,6 
 
1. Center for Computational Biology, University of California, Berkeley, Berkeley, CA-94720, USA 
2. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 
Worcester, MA-01605, USA 
3. Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA-01605, 
USA 
4. Bioinformatics Core, University of Massachusetts Medical School, Worcester, MA-01605, USA 
5. Department of Electrical Engineering and Computer Science, University of California, Berkeley, 
Berkeley, CA-94720, USA 
6. Chan Zuckerberg Biohub, San Francisco, CA-94158, USA 
7. These authors contributed equally 
 
 
 
Abstract 
 
Epigenetic changes are a crucial step in the cellular response to environmental stimuli, and              
involve interactions between chromatin, non-coding DNA regions, histone modifiers and          
transcription factors (TF). To date, most methods that link chromatin accessibility and TF             
binding only provide genome-wide TF binding prediction without functional context, or focus on             
gene expression prediction. Here, we present a generalized framework to detect which DNA             
motifs are associated with any given process in the cell, allowing a functional interpretation of               
TF binding that extends not only to transcriptional regulation. To test our method, we applied it                
to study epigenetic changes in human Dendritic cells stimulated with lipopolysaccharide (LPS).            
This resulted in a comprehensive map of TF binding motifs which are functional in several               
temporal activation patterns of regulatory regions up to 24 hours after LPS stimulation. Our              
results include known regulators of the LPS response, as well as TFs which interact with histone                
acetyltransferases and deacetylases that were previously unknown to be involved in Dendritic            
cells’ maturation. Moreover, our computational method is modular, generalizable and can be            
easily applied to study many other biological systems. 
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Introduction 
 
Changes to cell state involve activation and repression of many genes. These changes are often               
mediated by changes to chromatin accessibility and histone modifications at regulatory DNA            
regions that facilitate the binding of transcription factor proteins to short sequence motifs.             
Despite many advances in characterizing the epigenetic landscape of cells, uncovering the way             
all these factors interact to activate a specific cellular process remains a challenging task.  
 
A common way to detect binding of a given transcription factor (TF) in regulatory regions is by                 
ChIP-seq. However, this is a laborious process that is limited to one TF per experiment. Methods                
to evaluate genome-wide chromatin accessibility such as ATAC-seq ​(Buenrostro et al., 2013)            
provide a genome-wide view of the accessible regions, which in turn opens the way for               
computationally predicting where any given TF binds. To this end, computational analysis of             
ATAC-seq data can reveal accessible genomic regions by detecting regions that include many of              
the aligned ATAC-seq reads (also known as peak regions). Further analysis of minor changes to               
accessibility within peak regions can reveal short DNA motifs bound by a TF since the binding                
sites will be protected from enzymatic cleavage. Combining these read alignment patterns - also              
known as genomic footprints - with previous knowledge of the TF binding sites provides              
simultaneous predictions for many TFs bound across the genome.  
 
Recent computational pipelines attempt to infer genomic locations bound by specific TFs from             
genome-wide chromatin accessibility data ​(Gusmao et al., 2016; Xu et al., 2018)​. These methods              
vary in their algorithmic approach as well as the features used for prediction, but can be broadly                 
divided into two categories: (1) motif-centric algorithms, which for a given set of TF motif               
instances in the genome will output a per-site binding prediction ​(Pique-Regi et al., 2011; Quach               
and Furey, 2017)​, or (2) algorithms which provide a binding prediction for the complete genome               
either with no DNA motif information ​(Li et al., 2019) or with the motif information as one of                  
the features used for prediction ​(Keilwagen et al., 2019)​. The main focus of those methods has                
been in providing per-site prediction across the genome for a TF. Recently, several methods were               
developed to predict differential TF binding ​(Baek et al., 2017; Li et al., 2019; Tripodi et al.,                 
2018)​, however, they have been tested on different cell types or under different experimental              
conditions, which usually includes many changes to the genomic landscape. 
  
In this work, we present a computational pipeline that extends the scope of genomic footprint               
algorithms to go beyond genome-wide prediction of TF binding. Instead of trying to predict              
which sites are bound by a TF, our goal is to detect which motifs are functional within a set of                    
genomic regions associated with a specific process. Such an approach can be applied to study               
which DNA motifs are regulators of transcriptional changes to nearby genes ​(Natarajan et al.              
2012; González, Setty, and Leslie 2015; Schmidt et al. 2017; Donnard et al. 2018)​, but more                
generally be used to study any cellular process such as chemical modifications of histones.  
 
We define this functional prediction problem as a supervised learning problem which attempts to              
discern between the chromatin state of motif instances in genomic regions of the process of               
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interest and a negative set of open chromatin regions. This generalized approach provides             
functional context to changes in DNA motifs and detects which motifs are drivers for specific               
processes in the cell. Moreover, our pipeline does not assume prior knowledge about the              
structure of a functional chromatin state (i.e. no prior assumption of a reduction in cut sites in the                  
binding site compared to the flanking regions), which is important as some TF do not exhibit a                 
strong genomic footprint ​(Sung et al., 2014)​. Thus, our method can be easily extended to study                
motifs which do not necessarily act as a TF binding site.  
 
We applied our method to uncover the factors driving changes to putative active regulatory              
elements of human Dendritic cells in response to lipopolysaccharide (LPS). This response            
involves various temporal transcriptional and epigenetic changes to thousands of genes and            
regulatory regions in both humans and mice ​(Amit et al., 2009; Donnard et al., 2018; Garber et                 
al., 2012; Rabani et al., 2014; Vandenbon et al., 2018)​. Our method discovers various DNA               
sequences that are predictive of epigenetic changes in the hours following LPS stimulation,             
including many binding motifs of TFs that were known to interact with histone modifiers but               
were not previously described as part of the Dendritic cells’ response to LPS. 
 
 
Results 
 
Supervised learning approach to detect functional motifs 
We devised a motif-centric computational pipeline to detect which short sequence motifs are             
functional in a subset of genomic regions. For example, given a set of regulatory regions that are                 
involved in the cellular response to stimulation or state change, we wish to detect the short                
sequence motifs within those regions that function as binding sites for transcription factors. It is               
important to note that the strategy we built can be readily applied to any biological system where                 
there is a state change and it is possible to define a positive and negative set of regions based on                    
your question of interest. A summary of the pipeline is provided below and in Figure 1a, a full                  
detailed description of the pipeline can be found in the methods section.  
 
First, we start with a complete set of TF binding motifs for TFs of interest within the accessible                  
regions defined by ATAC-seq. Each ATAC-seq peak is assigned to a positive or negative class               
based on the underlying question. For example, the label can be positive if this peak is a putative                  
regulatory region in a specific cellular response. Next, for each TF binding motif, we extract the                
local chromatin features for each motif instance based on ATAC-seq cut sites 128bp upstream              
and downstream of the motif (Methods). To optimize performance we compute the cut sites only               
from nucleosome-free fragments ​(Li et al., 2019) and correct the cut sites count to account for                
enzymatic sequence bias ​(Martins et al., 2018)​. Instead of using the number of corrected cut sites                
in each base around the motif, our features are ratios between the sum cut sites of segments                 
around the motifs at various lengths, similar to the transformation performed by msCentipede             
(Raj et al., 2015) (Figure 1b, methods). With this transformation, we capture the spatial structure               
of the chromatin, without limiting the algorithm to a predefined shape. These features are then               
used as the input for a random forest classifier, where a motif instance is labeled as part of the                   
positive or negative set based on the label of the ATAC-seq peak in which it is found.  
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A high area under the precision-recall curve (AUC PR) value indicates that the genomic footprint               
in the positive set is distinguishable from the chromatin features around instances in the negative               
set. This provides an association between this motif and the specific set of active regions. We                
then run this pipeline for all motifs to get a complete evaluation of the regulatory motifs which                 
are predictive of the positive regions. A natural interpretation for a high AUC value is that                
changes in chromatin shape correspond to differential TF binding. However, we note that there              
could be other interpretations such as changes in co-binding which result in different chromatin              
features.  
 
Detecting functional motifs for TF binding 
Our pipeline is designed to detect (for each motif) which of its motif instances are associated                
with a property of interest, out of all motif instances that fall in open chromatin regions. To                 
validate the generality of our approach, we tested the ability of our computational framework to               
detect one of the more well studied properties. Namely, which motifs instances within open              
chromatin regions are bound by transcription factors? Of note, there is a large body of work                
dedicated to this problem. Comparing our method to these published methods provides us with a               
way to validate and benchmark our computational approach before moving to other, less well              
studied properties. 
  
To that end, we ran our method on the publicly available chromatin accessibility data              
(Buenrostro et al., 2013) from the GM12878 cell line. We took a set of 66 TF binding motifs, for                   
which there exists TF ChIP-seq from the ENCODE project ​(ENCODE Project Consortium,            
2012) (Supplementary Table 1). For each motif, our positive set was the set of motif instances                
within open regions that overlap a TF ChIP-seq peak, while our negative set was defined as the                 
motif instances within open regions which do not overlap a TF ChIP-seq peak. We then               
computed the mean AUC PR from 5-fold cross-validation runs. Limiting our analysis to only              
motif instances in open chromatin regions can be challenging, as motifs from the negative set are                
more prone to spurious binding compared to a randomly chosen negative set of motif instances               
across the genome. Despite this challenge, we are able to achieve overall high classification rates               
when applying a random forest classifier to the transformed cut sites (Figure 1c). We are also                
able to achieve high classification rate, albeit slightly lower on average, when taking into account               
all fragment lengths, when using the cut sites prior to transformation as features, or without               
correcting for enzymatic bias (Supplementary Figures S1a-c)  
 
To further benchmark our approach, we compared the accuracy of our method to previously              
published algorithms for detecting TF binding (Figure 1c). As each method requires different             
input and has different parameters, we made the runs of all methods as similar as possible to our                  
pipeline (Methods). We tested DeFCoM, an SVM based method for TF binding prediction, as              
well as a simple footprint depth score which describes the average cut sites in the motif                
compared to its surrounding region, adapted from ​(Baek et al., 2017)​. In addition, we tested               
Catchitt ​(Keilwagen et al., 2019)​, which outputs a prediction for TF binding in windows of 50bp                
across the complete genome and was one of the winners of the ENCODE-DREAM in vivo               
Transcription Factor Binding Site Prediction Challenge. Our approach, DeFCoM, and Catchitt all            
exhibit high classification rates, with no method significantly outperforming the other methods            
(ks test p-value > 0.84 for all pairwise comparison). All methods outperform the more simplistic               
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footprint depth score (ks test p-value < 2*10​-6​). We also evaluated the performance of another               
genome scanning method, HINT-ATAC ​(Li et al., 2019)​, however, it achieved lower            
classification rates (Supplementary Figure S1d). This is perhaps due to the fact that the default               
model provided by the software was designed to work on omni-ATAC, a different experimental              
protocol with a very high signal-to-noise ratio compared to the original ATAC-seq protocol. 
  
Uncovering the TFs that are associated with changes to histone acetylation during DC             
activation 
We applied our method to generate a comprehensive map of the TFs involved in temporal               
changes to the active regulatory landscape of human Monocyte-derived DC following LPS            
stimulation. To this end, we collected Monocyte-derived DCs from 5 human donors and             
stimulated the cells with LPS. To define the set of accessible regulatory regions, we generated               
ATAC-seq data before stimulation (0h) and at 30min, 2h, 4h, and 24h after stimulation              
(Methods). To catalog the changes in active regulatory elements post LPS we collected H3K27ac              
ChIP-seq data before stimulation (0h) and at 1h, 2h, 4h, 6h, 12h and 24h after stimulation. We                 
first defined the complete set of accessible regions by finding peaks of open chromatin and               
combining the set of peaks from each donor in each time point to a total of 193,922 regions.                  
Next, to generate the labels for the regulatory regions we computed the number of H3K27ac               
reads around each accessible region. Differential expression analysis (Methods) revealed 8,620           
regions that show a significant change in H3K27ac signal across time. We then clustered those               
regions into 5 temporal activation patterns based on time of peak activation (Figure 2a).  
 
We focused on the regulatory landscape of three of the temporal patterns - two early activated                
sets of regions, including regions which peak at 1 hour post-stimulation (“immediate-early            
regions”) and regions which peak at 2-4 hours post-stimulation (“early regions”), as well as the               
set of regions which are only activated 24 hours post-stimulation (“late-24”). We used these              
regions that showed a significant change in H3K27ac level post LPS as a positive set. For each                 
case, the negative set was a randomly chosen set of motif instances from regulatory regions that                
show no significant change in H3K27ac levels compared to pre-stimulation at any time point              
(Methods). For each set of regions, we ran our classification algorithm on all HOCOMOCO              
motifs ​(Kulakovskiy et al., 2018) for TFs that are expressed in at least one time point (a total of                   
279 motifs, Methods). For each set of regions and each motif, we ran our pipeline several times:                 
Using the ATAC cut sites from the time points of peak activation, and using the ATAC cut sites                  
from the closest previous time point.  
 
Our pipeline resulted in a mean AUC PR value from 5-fold cross-validation for each motif in                
each set of regions in each time point. In addition, we wanted to filter motifs that did not have a                    
better predictive value than expected by chance. To this end, we ran the pipeline on randomly                
assigned labels (i.e. each motif instance was randomly assigned to the positive or negative set)               
and computed the AUC PR (Methods). We pooled the results from 3,146 randomized runs to               
create a null distribution and generated empirical p-values for each AUC value of the original               
runs.  
 
We detected 162 motifs which showed significant (FDR-adjusted p-value < 0.05) changes in the              
chromatin in at least one of the “activation time points” (i.e. 30m or 2h for the immediate-early                 
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cluster, 2h or 4h for the early cluster and 24h for the late-24h cluster) (Figure 2b). We also                  
observe an increase in expression for many of the TFs associated with these significant motifs.               
For each set of regions, the change in expression from time point 0h to peak activation time is                  
greater for TFs associated with significant motifs compared to TFs which binds the motifs for               
which we do not see significant chromatin changes (one-sided ks-test p-value < 0.02 for all sets                
of regions, Supplementary Figure S2a-c).  
 
Upon inspecting the TFs that are predictive of the various H3K27ac temporal responses, we find               
that the majority (75, 47%) of the TFs are exclusively predictive for immediate-early regions.              
(Figure 2b, S2d). Many (42/75; 56%) of these TFs also change expression in response to LPS                
(fold change >=2 & pval <=0.01 by DESeq2 ​(Love et al., 2014)​). This set of predictive motifs                 
includes the chromatin remodeler BPTF ​(Frey et al., 2017)​, as well as TFs that are associated                
with early transcriptional response to LPS such as IRF7, FOS, JUN, PU.1 (SPI1), CEBPD and               
STAT5 ​(Donnard et al., 2018; Garber et al., 2012; Ko et al., 2015; Yamaoka et al., 1998) (Figure                  
2c-d). In addition, we see changes in chromatin in both the immediate-early and early regions for                
motifs of TFs previously associated with the transcriptional response to LPS such as REL,              
STAT1 and STAT2, IRF1 and IRF2 and NFKB complex (Figure 2c-d). Our results are also               
consistent with the recently published study which found PRDM1 and RARA as regulators of              
maturation of monocyte-derived DCs in response to HIV-1 infection ​(Johnson et al., 2020)​.  
 
Interestingly, 33% of the motifs that are predictive in the immediate-early and early regions are               
also predictive in late-24h regions. These include REL, STAT1, IRF1/2, NFKB, PRDM1 and             
RUNX1 which are known to interact with histone modifying enzymes and are LPS induced              
(Barutcu et al., 2016; Hoogenkamp et al., 2009; Minnich et al., 2016)​. These results suggest               
another role for the TFs involved in the early activation of the cells at a much later time point.                   
Along with these previously known TFs, our model predicts additional factors to be associated              
with an active chromatin state that, to our knowledge, have not been implicated as part of the                 
LPS response in Dendritic cells. The FOXO1 binding motif is predictive of immediate-early             
regions, consistent with the role of FOXO1 as a regulator of TLR4 signaling in macrophages               
(Fan et al., 2010)​. We find the motif of the Hypoxia-inducible factor 1-alpha (HIF-1A) predictive               
in the early and late-24h regions. HIF-1A have been previously described as having a crucial role                
in the inflammatory response of macrophages ​(Cramer et al., 2003)​. In the early regions we find                
p63 as a predictive motif, which was shown to interact with histone deacetylases ​(Ramsey et al.,                
2011)​. Finally, we also observe factors which are predictive only at the late-24h regions,              
including CREB1 and FOXQ1. CREB1 interacts with histone acetyltransferases and can induce            
an antiapoptotic survival signal in monocytes and macrophages ​(Wen et al., 2010; Yuan and              
Gambee, 2001)​. FOXQ1 was shown to increase pro-inflammatory potential in monocytes and            
involved in monocyte migration ​(Ovsiy et al., 2017)​. Of note, we also see predictive motifs who                
are repressors of the LPS response in macrophages such as the anti-inflammatory regulator             
NR3C1 (GR) ​(Chinenov et al., 2013, 2014) and NR1D1, which represses TLR4 expression and              
mediate temporal gating of proinflammatory cytokine responses ​(Fontaine et al., 2008; Gibbs et             
al., 2012)​. The association of these factors to chromatin-modifying enzymes or LPS stimulation             
and their role as activators or repressors in Dendritic cells needs to be experimentally              
determined. 
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To test the sensitivity of our method, we compared our results to previous methods that detect                
differential TF activity (Methods). First, we ran the software DAStk ​(Tripodi et al., 2018)​, which               
relies on changes in motif occurrences between two sets of regions (Figure S3). We also adapted                
the algorithm developed by Bagfoot ​(Baek et al., 2017)​, which detects TF occupancy changes              
based on differences in footprint depth and motif-flanking accessibility (Figure S4, Methods).            
While both methods are able to detect several of the main TFs involved in LPS stimulation,                
overall they show a lower sensitivity (Figures S3 and S4). This is possibly due to the low number                  
of regulatory regions and motif instances that are used as input which limit the sensitivity of                
other methods that were designed to explore genome-wide differences between different           
experimental conditions.  
 
Genetic variation reveals transcription factors associated with H3K27ac signal strength 
So far, our pipeline predicts TF motifs which are functional in temporally activated regions,              
based on a discrete classification of the H3K27ac signal. We next sought out to examine whether                
we can find TFs associated with the strength of the H3K27ac signal by taking advantage of the                 
genetic variation between our samples. To this end, we called SNPs and indels using the               
ATAC-seq and ChIP-seq data sets generated for the 5 donors (Methods) and found 584              
immediate-early regions and 438 early regions with a genetic variant in exactly one donor. For               
each one of those regions, we computed a z-score of the H3K27ac signal of the donor with the                  
variant based on the H3K27ac signal distribution from the other 4 donors (Methods). Since one               
of the H3K27ac ChIP-seq samples at 24h had a low signal-to-noise ratio we excluded it from                
further analysis and thus decided not to test for variation between donors at 24h using only the                 
remaining four donors. For each set of regions, we computed a motif enrichment score - a                
modification of the GSEA score ​(Subramanian et al., 2005) - to associate motifs with regions               
where a genetic variant resulted in a large change to the H3K27ac signal (Figure 3, Methods).  
 
We find that at immediate-early regions, many of the motifs associated with changes to the               
H3K27ac signal are also predictive of the immediate-early temporal pattern during activation            
times, with 40% of associated motifs predictive at 30min and 64% predictive at 2h (Figure 3a).                
Motifs associated with the H3K27ac signal include main regulators of the LPS response such as               
IRF1, IRF2, and RELB. Interestingly, we also observe an association between H3K27ac strength             
and the binding of FOXO1 as well as CXXC1, a member of the SET1 H3K4 methyltransferase                
complex and a regulator of macrophage phagocytosis ​(Hui et al., 2018; Lee and Skalnik, 2005)​.               
In addition we also find an association between H3K27ac signal and NR1D1 and MAFK which               
are able to interact with histone deacetylases and acetyltransferases, respectively ​(Hwang et al.,             
2013; Yin and Lazar, 2005)​. 
 
Surprisingly, we do not see any motifs associated with signal strength that are also predictive of                
the temporal H3K27ac pattern of the early regions up until 4h (Figure 3b). During 4h we see an                  
association for the known LPS-response regulators STAT1, STAT2, and IRF1. We also find             
NFIL3 associated with signal strength, which can interact with histone deacetylases ​(Keniry et             
al., 2013) as well as NFIC, which was shown to be recruited to the ​C-FOS promoter by                 
acetylated histones ​(O’Donnell et al., 2008)​. We also see a few motifs associated with H3K27ac               
strength with a low AUC PR value. Those motifs include many TFs such as SP1, SP2 and                 
NR2C2 (TR4) that can recruit histone deacetylases, and KLF16 which recruits both histone             
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acetyltransferases and deacetylases ​(Cui et al., 2011; Daftary et al., 2012; Doetzlhofer et al.,              
1999; Phan et al., 2004)​. Since our classifier predicts changes in chromatin state between              
induced and constant regions, it will not detect TFs that are bound genome-wide. Thus, we can                
hypothesise that while the LPS regulators are associated with H3K27ac signal changes only in              
early activated regions, we also find SP1, SP2, KLF16 as potential factors that control              
deacetylation at 4h post LPS-stimulation genome-wide. Another possible hypothesis is that those            
factors require co-binding for changes in acetylation, as it was previously shown that             
communication between the NFKB complex and SP1 effect histone acetylation in the promoter             
region of the ​MCP-1 gene ​(Boekhoudt et al., 2003)​. We highlight that due to the low number of                  
regions and donors we are limited in the statistical power for this analysis, and we only present                 
an association and not a causal effect. Nevertheless, our study suggests potential factors that              
control the strength of H3K27ac signal following LPS stimulation.  
 
 
Discussion 
 
Computational methods to detect TF binding from open chromatin regions have provided            
valuable insights and is a great improvement over TF ChIP-seq as it saves time, requires fewer                
cells and is under more flexible experimental conditions. In this work, we aimed to expand the                
scope of binding prediction methods and design a pipeline built for prediction of             
context-dependent chromatin changes, allowing us to detect changes only in a subset of genomic              
regions of interest. This is designed as a highly modular framework that can be applied to any                 
system with state change to understand the predictability of genomic footprints to either gene              
expression changes, chromatin state changes or any other label as long as it is possible to define                 
a positive set of activated regions. Our pipeline can be used in conjunction with several different                
software achieving high classification results, allowing for many researchers to adapt easily with             
their existing pipelines. In addition, our method has no prior assumption about the expected              
shape of the chromatin around motifs from the positive set, thus this framework is easily               
extendable to test the importance of short regulatory motifs which are not known TF binding               
motifs. It should be noted that according to the motif classification suggested by HOCOMOCO,              
certain motifs are low confidence and can be found only in a small number of regions. We need                  
to be cautious and not over interpret the results from these motifs as they can be due to technical                   
artifacts.  
  
Changes to the epigenome landscape are an important component of the cellular response of DCs               
to pathogens ​(Boukhaled et al., 2019)​. Here, we aim to gain a greater understanding of the                
factors involved in histone modifications during DC maturation in response to LPS up to 24               
hours post stimulation. Applying our framework, we identified many TFs that could potentially             
be involved with chromatin-modifying enzymes to establish signatures of active chromatin           
(H3K27ac). Of the TFs we predict to be important for activating regulatory regions, many were               
previously shown to interact with chromatin-modifying enzymes, some interact with          
acetyltransferases while some interact with deacetylases. We highlight that our current data does             
not allow us to claim any causal relations between the TFs and the active regions. Thus, we                 
cannot determine which of the TFs actively modify the chromatin and which bind to these               
regions because of their active state. Determining the exact interactions as well as which              
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chromatin-modifying enzyme the TFs interact with has to be done in future validations.             
Nevertheless, our work resulted in a valuable map of temporal TF-DNA interactions of the              
human response to pathogens, and provides an easily extendable framework to be used to answer               
many other biological questions.  
 
 
Methods 
 
Human Subjects 
Anonymous, healthy donor leukopaks (New York Biologics, Southampton, NY), were used in            
accordance with UMMS-IRB protocol ID #H00004971. 
 
Cell culture 
All cells were maintained at 37°C in 5% CO2 humidified incubators.  
 
Human monocyte-derived dendritic cells 
Human dendritic cells were derived from peripheral blood mononuclear cells (PBMCs) isolated            
from de-identified, healthy donor leukopaks (New York Biologics, Southampton, NY), in           
accordance with UMMS-IRB protocol ID #H00004971. Mononuclear leukocytes were isolated          
by gradient centrifugation on Histopaque-1077 (Sigma-Aldrich, St. Louis, MO). CD14+          
mononuclear cells were enriched via positive selection using anti-CD14 antibody MicroBead           
conjugates (Miltenyi, San Diego, CA), according to the manufacturer’s protocol. CD14+ cells            
were then plated at a density of 1 to 2 x 10​6 cells/ml in RPMI-1640 supplemented with 5%                  
heat-inactivated human AB+ serum (Omega Scientific, Tarzana, CA), 20 mM L-glutamine           
(ThermoFisher, Waltham, MA), 25 mM HEPES pH 7.2 (Sigma-Aldrich), 1 mM sodium            
pyruvate (ThermoFisher), and 1 x MEM non-essential amino acids (ThermoFisher).          
Differentiation of the CD14+ monocytes into dendritic cells (human DCs) was promoted by             
addition of recombinant human GM-CSF and human IL-4; cytokines were produced from            
HEK293 cells stably transduced with pAIP-hGMCSF-co or pAIP-hIL4-co, respectively, as          
previously described ​(Reinhard et al., 2014)​, with each cytokine supernatant added at a dilution              
of 1:100. The cells were then stimulated with 100ng/mL LPS for specified time. 
 
Library preparation and Sequencing 
 
ATAC-Seq 
For each time point, 5 x 10​5 scraped DC’s were collected by centrifugation 500 x g for 5 min.                   
and lysed for ATAC-seq following the protocol described in ​(Buenrostro et al., 2015)​. Each              
sample was tagmented using 12.5 ul Nextera TDE-1 transposase (Illumina) for 30 minutes at              
37°C, then quenched by the addition of 5 volumes DNA Binding Buffer (Zymo Research) and               
cleaned using Zymo Research DNA Clean and Concentrator-5 columns according to the supplied             
protocol. Tagmented DNA was PCR-amplified using indexed primers as described in           
(Buenrostro et al., 2015)​, using total cycle numbers for enrichment as determined empirically by              
qPCR to minimize PCR duplicates. The resulting libraries were purified twice by Zymo             
Research DNA Clean and Concentrator-5 columns using a ratio of 5:1 DNA Binding Buffer:              
Sample, and quantified by Qubit HS-DNA Assay (Thermo Fisher Scientific) and Bioanalyzer            
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High-Sensitivity DNA (Agilent Technologies). Final ATAC-seq libraries were pooled         
(equimolar) and sequenced on an Illumina Nextseq 500.  
 
ChIP-Seq 
Harvest and Formaldehyde crosslinking: For each timepoint and donor, 5-7 x 10​6 unstimulated             
or LPS-stimulated dendritic were harvested by scraping in medium and centrifugation at 500 x g               
for 5 minutes. Each cell pellet was washed once with 2 mL PBS and gentle flicking of the tube,                   
followed by centrifugation at 500 x g for 5 min. Cells were uniformly resuspended in 1 mL 1X                  
Fixing Buffer A from the Covaris tru-ChIP Chromatin Shearing and Reagent Kit and fixed by               
adding 1 mL 2% methanol-free formaldehyde (Thermo Fisher Scientific) diluted in 1X Fixing             
Buffer A (1% formaldehyde final, 2.5-3.5x10​6 cells/mL) and rotated end-over-end for 5 min. at              
room temperature. Fixation was quenched by adding 240 mL Quenching Buffer E (Covaris             
tru-ChIP kit) and rotating for an additional 5 min. Purified BSA was then added to 0.5% w/v                 
final to prevent cell adherence to the tube, and crosslinked cells were harvested by              
centrifugation, 500 x g for 5 min. at 4°C. Crosslinked cells were washed twice in 2 mL ice-cold                  
PBS + 0.5% BSA with centrifugation as above, and aliquoted evenly into 3 fresh 1.5 mL tubes                 
during the second wash. Cells were finally pelleted by centrifugation at 16,000 x g, flash-frozen               
as dry pellets in liquid nitrogen, and stored at -80°C. 
 
Lysis, Shearing, and Quantification: Individual crosslinked cell pellets (1.5-2 x 10​6 cells each)             
were lysed according to the Covaris tru-ChIP Chromatin Shearing and Reagent Kit instructions.             
Following lysis, nuclei were resuspended in 130 mL ice-cold Shearing Buffer D3 and transferred              
to 1.5 mL BioRupter Pico Microtubes (Diagenode) on ice. Chromatin was sheared to uniform              
fragment lengths (150-400 bp) by sonication at 4°C in a BioRupter Pico (Diagenode) set to 6                
cycles of 30s ON and 30s OFF. Sheared chromatin was diluted in 10 volumes of ChRIPA buffer                 
(1X PBS, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 0.5% sodium deoxycholate, 1% Igepal                 
CA-630, 0.1% SDS, 1X Roche cOmplete Protease Inhibitor Cocktail) and insoluble material was             
removed by centrifugation >15,000 x g for 10 minutes. Lysate was pre-cleared against 60 mL               
Dynabeads Protein A (Thermo Fisher Scientific) per 10​6 cells for 2h at 4℃ with end-over-end               
rotation followed by two rounds of magnetic bead removal and transfer to fresh tubes. 2% of                
pre-cleared lysate was removed for DNA quantification and the remaining lysate was either             
flash-frozen in liquid nitrogen and stored at -80°C, or stored overnight at 4℃ for use in                
immunoprecipitation. For quantification, 2% pre-cleared lysate was treated with 10 mg RNase A             
(Thermo Fisher Scientific) for 30 min. at 37°C, followed by addition of 100 mg Proteinase K                
(New England Biolabs) and crosslink reversal overnight at 65°C. DNA was purified using DNA              
Clean and Concentrator-5 columns (Zymo Research). Average sheared DNA fragment sizes           
were determined by agarose gel and chromatin yield was estimated by Qubit HS-DNA Assay.              
50-100 ng purified DNA was saved as Input. 
 
Chromatin Immunoprecipitation: Antibodies used for ChIP were rabbit anti-H3K27ac         
(Diagenode C15410196). 1 mg antibody was added to 0.5 mg (anti-H3K27ac) pre-cleared            
crosslinked lysate and incubated overnight with continuous mixing at 4°C. IgG/chromatin           
complexes were captured for 1h at room temperature on 25 mL Dynabeads Protein A that were                
pre-blocked for at least 1h with Blocking Buffer (1X PBS, 0.5% BSA, 0.5% Tween-20).              
Complexed beads were washed 5 times with ice-cold ChRIPA Buffer, twice with room             
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temperature RIPA-500 Buffer (10 mM Tris pH 8.0, 500 mM NaCl, 1 mM EDTA, 1% Triton                
X-100, 0.1% sodium deoxycholate, 0.1% SDS), twice with ice-cold LiCl Wash Buffer (10 mM              
Tris pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5% Igepal CA-630, 0.5% sodium deoxycholate), and                
twice with ice-cold TE buffer. Each chromatin sample was eluted from beads using 50 ul Direct                
Elution Buffer (10 mM Tris pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.5% SDS) and supplemented                 
with 20 mg RNase A, incubating for 30 min. at 37°C. 20 mg glycogen was added to each                  
bead/eluate suspension, and crosslinks were reversed by the addition of 50 mg Proteinase K and               
incubation at 37°C for an additional 2h, followed by overnight at 65°C. Dynabeads were              
removed by magnet capture, and the supernatant was mixed thoroughly with 2.3 volumes of              
Agencourt AMPure XP (Beckman Coulter) bead suspension and incubated for 10 minutes at             
room temperature prior to bead capture and washing. Purified DNA was eluted in 10 mM Tris                
pH 8.0. 
 
Library Preparation and Sequencing: Sequencing libraries were prepared from half of each ChIP             
sample and 50 ng Input DNA using the Ovation Ultralow System V2 kit (NuGEN) according to                
supplier’s instructions, with the total numbers of enrichment PCR cycles determined empirically            
for each sample by qPCR to minimize PCR duplication rates. Barcoded libraries were quantified              
using Qubit HS-DNA Assay, qualified using Agilent Bioanalyzer High-Sensitivity DNA, and           
pooled for sequencing on Illumina Nextseq 500. 
 
 
Alignment and processing of reads 
 
Genome reference: All the data generated and used for this paper is aligned to human reference                
genome hg19 
 
ATAC-Seq  
Paired-end reads were trimmed to remove adapter sequence using Cutadapt version 1.3, and then              
aligned to the reference genome with Bowtie2, version 2.1.0, parameter –X 2000 ​(Langmead and              
Salzberg, 2012)​. The alignments were then filtered using Samtools (Li et al., 2009), version              
0.0.19, to remove (i) PCR duplicates, as identified by Picard’s MarkDuplicates, and (ii) aligned              
reads with mapping quality below 4. While the reads were aligned as paired-end to optimize the                
alignment accuracy, the alignments were then further processed as if they were single-end             
sequence data, so that each aligned read corresponded to a Tn5 cut-site. 
 
Peak Calling: Each aligned read was first trimmed to the 9-bases at the 5’-end, the region where                 
the Tn5 transposase cuts the DNA, and then extended 10-bases upstream and down, for              
smoothing. Peaks were called using these adjusted 29-base aligned reads with MACS2 (Zhang et              
al., 2008), parameters --bw 29 --tsize 29 and --qvalue 0.0001.  
 
Quality Control: Following the standard practice (Buenrostro et al., 2015), for each sample we              
examined the fragment length distribution, as well as a comparison of the aggregate nucleosome              
signal to the aggregate nucleosome-free signal over transcription start sites for those genes found              
to be expressed in at least one time point in our RNA-Seq time series. Signal-to-noise ratios were                 
computed for the peaks as f/(1 –f) where f is the fraction of reads overlapping peaks. 
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ChIP-Seq  
Paired-end reads were trimmed to remove sequencing adapters and leading and trailing bases             
with quality scores less than 5. Reads that were longer than 36 bases after trimming were kept for                  
further analysis. The reads were then aligned to the reference genome using Bowtie2 with              
options -k 1 --un-conc to filter out reads that map to multiple locations in the genome and that                  
align un-concordantly. Duplicated reads were filtered out using picard-tools-1.131         
MarkDuplicates function. Peaks were then called using MACS2 with --bw=230 --tsize=75 and            
--qvalue 0.0001.  
 
ATAC normalization 
To include only nucleosome-free fragments, we filtered out fragments longer than 180 bp with              
the alignmentSieve command from DeepTools ​(Ramírez et al., 2016)​. Next, to correct sequence             
bias due to enzymatic sequence preferences we ran seqOutBias ​(Martins et al., 2018) to get a                
per-base estimate of read counts. We ran the correction on the length-filtered reads, performing              
the correction on each strand separately with the parameters “--read-size=35 --shift-counts” and            
the k-mer mask as recommended by the seqOutBias tutorial: 
plus_mask=NXNXXXCXXNNXNNNXXN 
minus_mask=NXXNNNXNNXXCXXXNXN  
 
Classifying ATAC peaks based on H3K27 signal 
For each ATAC peak, we extracted the number of H3K27ac ChIP-seq reads that align within the                
peak in each sample, extended by 1000bp on both sides to include bordering histones and               
merging peaks that were overlapping due to that extension. We removed one sample (donor F33               
at 24h after LPS stimulation) due to very low read alignment across all peaks.  
To detect peaks with temporal changes, we performed pairwise differential expression using            
DEseq2 ​(Love et al., 2014)​, by comparing all the time points with time point 0h (prior to LPS                  
stimulation) and adding the batch as a covariate to the model. All peaks with an adjusted p-value                 
< 0.05 and an absolute log fold change > 2 were considered as temporal peaks. In addition, we                  
also searched for peaks which show a continuous temporal change with ImpulseDE2 ​(Fischer et              
al., 2018)​, and added to our set of temporal peaks regions with ImpulseDE2 adjusted p-value <=                
0.05. Then, we used k-means clustering with k = 5 to cluster the temporal regions into different                 
temporal clusters. The rest of the regions were classified as constant regions, excluding regions              
with a low number of aligned ChIP-seq reads (Total normalized count across all samples < 30).  
 
RNA-seq analysis 
Reads were aligned to the transcriptome with RSEM. To detect differentially expressed genes we              
ran DEseq2 for each time point. We took only genes with an average TPM of 10 in at least one                    
time point as our set of expressed genes. 
 
Motif scanning 
The full set of TF binding motifs was downloaded from HOCOMOCO v11 ​(Kulakovskiy et al.,               
2018)​. We focused only on motifs of TFs which are expressed in our system, leaving a total of                  
279 motifs for TFs with at least an average of 10 TPM at any of the time points. We used                    
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PWMscan ​(Ambrosini et al., 2018) to find motif instances across the genome with the              
“pwm_mscan_wrapper” command and parameter -e 0.00001  
 
 
Supervised learning algorithm for detecting H3K27ac patterns 
We repeated the following pipeline for each one of the 279 TF binding motifs: 
 
Labels​: 
For a given temporal cluster, we define our positive set by finding all the motif instances that fall                  
within that set of ATAC peaks with BedTools ​(Quinlan and Hall, 2010)​. The negative set is then                 
selected out of all motif instances that fall within the set of constant peaks, downsampled so that                 
the two sets are of equal size. We only ran our pipeline on motifs that had at least 10 motif                    
instances within the positive set.  
 
Features​: 
We use the ATAC-seq data as the features for our classifier. Every time point is separate, thus                 
for a given motif and a given positive set, we run several classifiers, one for each ATAC-seq                 
time point. We compute the normalized number of ATAC cut sites in each base at a region of                  
256 bp centered on the motif, where we combine the normalized cut site count from both strands                 
oriented around the motif (e.g. cut site count 5 bp downstream on the plus strand was combined                 
with the cut site count 5 bp upstream on the negative strand).  
We represented the cut site features as ratios between regions around the motif, at different               
levels. The first level is the sum of cut sites around the motif, corrected for library size with the                   
sample-specific DEseq scaling factor. The second level includes the sum of reads of the first half                
of the window (positions 1-128) divided by the total number of cut sites. The third level includes                 
the first quarter divided by the first half and third quarter divided by the second half. We                 
continue in a similar fashion until the last level in which each odd-numbered position is divided                
by the sum of cut sites of its position and the subsequent one. The total number of features is                   
identical to the number of cut sites. Each donor was considered separate, i.e. each motif instance                
translates into 5 samples for the classifier (one for each donor).  
 
Classification​: 
We ran a random forest classifier using 5-fold cross-validation with the R caret package ​(Kuhn,               
2008)​. We divide our samples into training and testing based on genomic position, thus for each                
motif instance data from all 5 donors is either all part of the train set or all part of the test set. In                       
each run, we use the inner 5-fold CV to tune hyper-parameters and apply the model on the test                  
set to compute the area under the curve of the PR curve with the PRROC package ​(Grau et al.,                   
2015)​. The final AUC value is determined as the average of the 5 runs.  
 
 
Testing the significance of AUC PR values 
For a given condition (i.e. a combination of ATAC time point and peak label) we collected the                 
set of motifs that achieve an AUC value of at least 0.5. To generate a random distribution of                  
AUC PR values, we randomly select a motif from that set and run the same pipeline as before,                  
except after downsampling we randomly re-assign each motif instance to the positive or negative              
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set, keeping all biological repeats as all positive or all negative. We repeated this process for 8                 
different conditions (same conditions as in the original, non-random runs) 200-400 times. As             
each condition showed a similar distribution of randomized AUC PR values (t-test p-value >              
0.4113 for all pairwise comparisons), we collected all results across all conditions to form the               
null distribution with a total of 3,146 AUC PR values. We then computed an empirical p-value                
for each AUC PR value from our non-random runs and performed FDR correction for all motifs                
in each condition separately.  
 
Data preprocessing for GM12878 data 
We downloaded previously published ATAC-seq data on GM12878 ​(Buenrostro et al., 2013)​.            
Reads were aligned to hg19 using bowtie2 ​(Langmead and Salzberg, 2012)​. We removed             
low-quality alignments (MAPQ < 10) and reads without a unique alignment, as well as              
discordant reads and reads mapping to chrM or the ENCODE “blacklist” regions.  
For peak calling, reads aligned to the positive strand were shifted +4bp, and reads aligning to the                 
negative strand were shifted -5bp. We called peaks using MACS2 on the cut sites, merging peaks                
that were less than 10bp apart, leaving a total of 203,977 peaks.  
For footprint method evaluation, we removed reads with fragment length > 180bp for all              
methods except HINT-ATAC, as HINT incorporates the fragment length as part of its model. To               
account for sequence bias we normalized the data with seqOutBias as described in their tutorial.               
TF ChIP-seq peak files for GM12878 were downloaded from the ENCODE portal ​(Davis et al.,               
2018)​. A full list of the TF bed files used is provided as supplementary table 1 
 
Our prediction pipeline for GM12878 data 
For each TF binding motif, our positive set was defined as the set of motif instances within an                  
ATAC peak that overlap the corresponding TF ChIP-seq peak, while the negative set is the motif                
instances within ATAC peak that do not overlap the TF ChIP-seq peaks. We downsampled the               
set to have equal sizes and removed motifs that had less than 100 total instances after                
downsampling. The rest of our pipeline was performed as described above.  
 
Footprint depth score for GM12878 data 
The footprint depth score was adapted from ​(Baek et al., 2017)​. In each motif instance, we define                 
the footprint depth score as the 10% trimmed mean normalized cut site within the motif               
(extended 2 bp from the motif boundary). From this value, we subtract the mean normalized cut                
site in the regions flanking the motif, up to a window of 256bp (same window used for the                  
random forest classifier). We multiplied the score in -1 so that a more positive score will be                 
associated with greater footprint depth. Using that score, AUC PR was computed to each one of                
the five testing sets used for the random forest classifier.  
 
Running DeFCoM 
DeFCoM requires a BAM file as input, thus we ran DeFCoM on the processed BAM file after                 
removing long fragments and read shifting, with the default parameters described in the example              
config file from the DeFCoM website. In each iteration of the 5-fold cross-validation we ran               
DeFCoM with the same test and train sets as the random forest classifier.  
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Running Catchitt 
Labels for each 50bp window across the genome were computed with Catchitt’s “labels”             
commend, taking the ENCODE ChIP-seq peak file as input. Chromatin accessibility was            
computed with the “access” command, providing the processed BAM file as input. The “motif”              
command provided motif scores for each window. Since training and testing are performed on              
entire chromosomes we implemented a greedy algorithm to ensure a balanced 5-fold training set.              
We ranked the chromosomes based on the number of ChIP-seq peaks found in it from highest to                 
lowest. We then sorted the chromosomes into five sets, each time adding the remaining              
chromosome with the highest number of ChIP-seq peaks into the bin with the lowest total               
number of ChIP-seq peaks. In each iteration, one of the sets was used for training while another                 
set was used for testing. For the testing chromosomes, we computed the AUC PR of windows                
that overlap motif instances that fall within an ATAC-seq peak, with the instance label              
determined by the ChIP-seq and downsampling the positive and negative set to be of equal sizes.                
In case a motif instance spanned the edges of two windows, the score of the instance was the                  
mean of the score for the two windows.  
  
Running HINT-ATAC 
We ran HINT-ATAC on the full set of peaks and on all aligned reads with the following                 
parameters: “--atac-seq --paired-end --organism=hg19”.  
To compute AUC values, for each set of test data used by the random forest classifier we                 
assigned each motif the HINT score that overlaps it, or zero if it didn’t overlap any HINT                 
footprints. We used those values to compute the AUC score for each test set. 
 
Running DAStk on DC data 
For each set of regions, we ran DAStk using default parameters, comparing the set of induced                
regions to the set of regions classified as constant. MD score was computed as the difference         Δ        
in the MD scores between the induced and the constant regions from the output of the                
“differential_md_score” command. 
 
Running BagFoot on DC data 
We adapted the Bagfoot algorithm as described by ​(Baek et al., 2017) to run on our normalized                 
data. For each motif instance, we computed the footprint depth score and the flanking              
accessibility score. The footprint depth score is calculated as above, except we take a window of                
200bp. The flanking accessibility score is the mean normalized cut site count of the 200bp               
centered around the motif. The footprint depth difference is taken as the difference between the               
mean footprint depth score of motif instances in the induced region and the mean footprint depth                
score of motif instances in the constant regions, and similarly for the normalized cut count               
difference. The Bagplot and p-value and adjusted p-value computation were done with the code              
of the gen_bagplot_chisq function, with minor modifications to work on our input data.  
 
SNP and variant calling 
We used GATK with the steps described in the best practices guide published by the GATK                
developers: https://software.broadinstitute.org/gatk/best-practices. We performed read grouping,      
base quality score recalibration (BQSR) on the BAM files for which we used the default               
parameters dbSNP-147 VCF file. Raw variants identified by the genotyping tool were            
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recalibrated using dbSNP-147 VCF file and default parameters. The variants are then refined             
using VariantFiltration, with parameters QualByDepth, FisherStrand, StrandOddsRatio,       
RMSMappingQuality, MQRankSum, and ReadPosRankSum were <2.0, <40.0, >60.0, >3.0,         
<12.5 and <−8.0 as recommended, respectively. 
 
Association between H3K27ac signal and motif abundance 
For this analysis, we only considered regions classified as immediate-early or early regions with              
a variant in only one donor. For each peak, we computed the z-score of the normalized H3K27ac                 
signal for the donor with the variant based on the mean and standard deviation of the signal from                  
the other 4 donors. For a given set of regions and a given time point, we performed an                  
enrichment test for whether a motif is enriched in peaks with high z-scores: for each motif, we                 
counted the number of motif instances in each region. We computed the enrichment score as               
described in ​(Subramanian et al., 2005)​, where the number of motif instances in the peak was                
used as the magnitude of increment in each step and the absolute value of the z-score was the                  
weight of each region, normalized to sum up to one. We used the absolute z-score since we                 
wanted to test the association between a TF motif and the magnitude of the effect of a variant on                   
the H3K27ac signal. However, we don’t observe a significant change in the results when taking               
the signed z-score (supplementary figure 5) or when the magnitude of increment was one if the                
region had a motif instance (instead of the number of motif instances, supplementary figure 6).               
For the significance of the enrichment score, we shuffled the z-scores between the peaks 10,000               
times and computed an empirical p-value. 
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Figures 
 
 

 
 
Figure 1: A supervised learning approach to detect functional motifs sequences​. A)            
Illustration of the pipeline. First, regulatory regions are divided into positive and negative sets              
based on some features of their activity (e.g. activation time). Then, for each sequence motif, we                
build a random forest classifier using the cut sites from the chromatin accessibility assay as our                
features. We then evaluate the success for each classifier. High scoring motifs indicate a              
difference in chromatin structure due to the functionality of the motif. B) Illustration of the cut                
site transformation used as features for the classifier. C) Evaluation and comparison of the              
random forest classifier. AUC PR values of the classifier when used to predict TF binding in 66                 
TF binding motifs. Results are compared to the AUC PR values of two previously published               
methods for TF binding prediction - DeFCoM and Catchitt, as well as a simple method of                
predicting binding with the footprint depth score. AUC PR values are mean across 5-fold              
cross-validation 
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Figure 2: Comprehensive map of predictive TF binding motifs in temporally-activated           
regulatory regions​. A) Mean normalized H3K27ac signal from 5 donors in all regulatory             
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regions which exhibit temporal changes in H3K27ac signal across time after LPS stimulation. B)              
Heatmap summarizing the AUC PR values of all motifs that were found to be significant (FDR <                 
0.05) in at least one set of regions in one peak activation time point. Column names are the                  
region’s temporal cluster and time after LPS stimulation. Rows are grouped by the set of regions                
in which the motif was significant, and each group is ordered by the max AUC PR value of each                   
row. C) Plots highlighting the AUC PR values from B for 3 motifs of TFs known to be involved                   
in the DC response to LPS. D) Mean normalized cut sites for each of the motifs from C in all sets                     
of regions before and during peak H3K27ac signal. Cut site counts from the constant regions               
(black lines) were computed at the earliest time point in each plot.  
 
 
 

 
 
Figure 3: Association between TF binding motifs and H3K27ac signal strength​. A)            
Enrichment of motifs in immediate-early regions that exhibit a strong change in their H3K27ac              
signal in donors with a genetic variant. The x-axis shows the p-value of the association test                
between each motif and the z-scores of the H3K27ac signal (Methods) at three different time               
points. Y-axis shows the FDR corrected p-value of our classifier at each time point. Motifs with                
an enrichment p-value < 0.05 and a classification FDR corrected p-value < 0.05 are named in the                 
plot. The size of each point represents the number of immediate-early regions with at least one                
motif instance. Each point is colored based on the number of regions in which the genetic                
variants overlap the motif instance. B) Same as A, except for early induced regions. For the 4h                 
plot, in addition to motifs named as in A, we also named a few motifs that only have an                   
enrichment p-value < 0.05 and are known to be associated with histone acetylation and              
deacetylation.  
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Supplementary Figures 
 

 
 
Supplementary figure 1​: A) Mean AUC PR values across 5-fold cross-validation of our             
selected method (x-axis), against the same pipeline but including all read fragment lengths             
instead of only short fragments (y-axis). B) Similar to A, except the y-axis depicts the same                
pipeline as our selected method but using the cut site counts in each position as features, instead                 
of the transformed cut sites. C) Similar to A, except the y-axis depicts the same pipeline as our                  
selected method without correcting for enzymatic bias. D) Evaluation and comparison of the             
random forest classifier. Same as figure 1c, but including also the results of HINT-ATAC.  
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Supplementary figure 2: ​(A-C) TFs of significant motifs in temporally-activated regulatory           
regions show increase in expression following LPS stimulation. Cumulative distribution function           
of the maximum TPM fold change from peak activation time points to time point 0 for the                 
immediate-early (A), early (B) and late (C) regions. TFs whose binding motifs were found to be                
significant (FDR adjusted p-value <= 0.05) in peak activation time points are in orange, while               
TFs with an FDR adjusted p-value > 0.05 are in green. For time points 30m and 2h, if a motif                    
was significant in one set of regions (e.g. immediate-early) but was not significant at the other set                 
(e.g. early), it was discarded from the analysis for the set of regions in which it was not                  
significant. D) Plot summarizing the number of significant motifs in each set of regions.  
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Supplementary figure 3: Comparison to DAStk. ​DAStk results for the set of immediate-early             
regions (A) and early regions (B). Y-axis shows the FDR adjusted p-value of DAStk, while the                
x-axis shows the minimum of FDR adjusted p-value of our classifier in the activation time points                
(30m and 2h for the immediate-early regions, 2h and 4h for the early regions). Motifs are colored                 
based on the MD score, where a positive value indicates that this motif is enriched in the   Δ               
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induced regions. Horizontal and vertical lines show an FDR value of 0.05. Motifs with an FDR <                 
0.05 by DAStk and a few other selected motifs are named in the plot. 
 
 

 
 
Supplementary figure 4​: ​Results of the Bagfoot algorithm​. Bag plot depicting the difference             
in footprint depth and flanking accessibility of each motif in the immediate early regions at 30m                
(A) and 2h (B), and bag plots for the early regions at 2h (C) and 4h (D). Motifs with a BH                     
corrected p-value <= 0.05 are named in red, while motifs with a BH corrected p-value > 0.05 but                  
a p-value <= 0.05 are named in black.  
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Supplementary Figure 5​: Association between TF binding motifs and H3K27ac signal           
strength using the signed z-score as region weights. Enrichment of motifs in immediate-early             
regions (A) and early regions (B) that exhibit a strong change in their H3K27ac signal in donors                 
with a genetic variant. This plot is similar to Figure 3, except when computing the enrichment                
score for each motif, the weight of each region was the signed z-score, instead of the absolute                 
value of the z-score.  
 
 
 

 
  
Supplementary Figure 6​: Association between TF binding motifs and H3K27ac signal           
strength without the number of motifs in each region as magnitude of increment.             
Enrichment of motifs in immediate-early regions (A) and early regions (B) that exhibit a strong               
change in their H3K27ac signal in donors with a genetic variant. This plot is similar to Figure 3,                  
except that the magnitude of increment is one for each region, instead of the number of motif                 
instances within the region.  
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Supplementary Tables 
 
Supplementary Table 1: ​List of TF ChIP files from ENCODE used for method evaluations  
 
 

Motif ID (HOCOMOCO) TF name TF ChIP Bed ENCODE ID 

ARNT_HUMAN.H11MO.0.B ARNT ENCFF794KET 

ATF2_HUMAN.H11MO.0.B ATF2 ENCFF133GHG 

ATF2_HUMAN.H11MO.1.B ATF2 ENCFF133GHG 

ATF2_HUMAN.H11MO.2.C ATF2 ENCFF133GHG 

BACH1_HUMAN.H11MO.0.A BACH1 ENCFF748WOQ 

BATF_HUMAN.H11MO.0.A BATF ENCFF482FJT 

BATF_HUMAN.H11MO.1.A BATF ENCFF482FJT 

CEBPB_HUMAN.H11MO.0.A CEBPB ENCFF701HMB 

CEBPZ_HUMAN.H11MO.0.D CEBPZ ENCFF235AEB 

COE1_HUMAN.H11MO.0.A EBF1 ENCFF382VEJ 

CREM_HUMAN.H11MO.0.C CREM ENCFF642JEY 

CTCF_HUMAN.H11MO.0.A CTCF ENCFF096AKZ 

E2F4_HUMAN.H11MO.0.A E2F4 ENCFF850MAC 

E2F4_HUMAN.H11MO.1.A E2F4 ENCFF850MAC 

EGR1_HUMAN.H11MO.0.A EGR1 ENCFF002CGW 

ELF1_HUMAN.H11MO.0.A ELF1 ENCFF880NTF 

ELK1_HUMAN.H11MO.0.B ELK1 ENCFF434DKI 

ERR1_HUMAN.H11MO.0.A ESRRA ENCFF077VXQ 

ETS1_HUMAN.H11MO.0.A ETS1 ENCFF565SXH 

GABPA_HUMAN.H11MO.0.A GABPA ENCFF627POZ 

HSF1_HUMAN.H11MO.0.A HSF1 ENCFF662JYS 

HTF4_HUMAN.H11MO.0.A TCF12 ENCFF237IPT 
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IRF3_HUMAN.H11MO.0.B IRF3 ENCFF880CYV 

IRF4_HUMAN.H11MO.0.A IRF4 ENCFF708VKT 

JUNB_HUMAN.H11MO.0.A JUNB ENCFF784PEF 

JUND_HUMAN.H11MO.0.A JUND ENCFF321KTX 

MAFK_HUMAN.H11MO.0.A MAFK ENCFF112CKJ 

MAFK_HUMAN.H11MO.1.A MAFK ENCFF112CKJ 

MAX_HUMAN.H11MO.0.A MAX ENCFF407JNK 

MAZ_HUMAN.H11MO.0.A MAZ ENCFF288RYL 

MAZ_HUMAN.H11MO.1.A MAZ ENCFF288RYL 

MEF2A_HUMAN.H11MO.0.A MEF2A ENCFF811FYS 

MEF2C_HUMAN.H11MO.0.A MEF2C ENCFF138CXP 

MXI1_HUMAN.H11MO.0.A MXI1 ENCFF861YUL 

MXI1_HUMAN.H11MO.1.A MXI1 ENCFF861YUL 

MYB_HUMAN.H11MO.0.A MYB ENCFF173YZN 

MYC_HUMAN.H11MO.0.A MYC ENCFF002DAI 

NFIC_HUMAN.H11MO.0.A NFIC ENCFF269LZJ 

NFIC_HUMAN.H11MO.1.A NFIC ENCFF269LZJ 

NFYA_HUMAN.H11MO.0.A NFYA ENCFF414JLN 

NFYB_HUMAN.H11MO.0.A NFYB ENCFF363BLT 

NR2C1_HUMAN.H11MO.0.C NR2C1 ENCFF538XDH 

NR2C2_HUMAN.H11MO.0.B NR2C2 ENCFF208TMB 

NRF1_HUMAN.H11MO.0.A NRF1 ENCFF931XAL 

PAX5_HUMAN.H11MO.0.A PAX5 ENCFF309VXL 

PBX3_HUMAN.H11MO.0.A PBX3 ENCFF511YXY 

PBX3_HUMAN.H11MO.1.A PBX3 ENCFF511YXY 

RELB_HUMAN.H11MO.0.C RELB ENCFF739VBA 
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REST_HUMAN.H11MO.0.A REST ENCFF936XYD 

RFX5_HUMAN.H11MO.0.A RFX5 ENCFF968KDX 

RFX5_HUMAN.H11MO.1.A RFX5 ENCFF968KDX 

RUNX3_HUMAN.H11MO.0.A RUNX3 ENCFF147DQK 

RXRA_HUMAN.H11MO.0.A RXRA ENCFF299YDM 

SP1_HUMAN.H11MO.1.A SP1 ENCFF002CHV 

SPI1_HUMAN.H11MO.0.A SPI1 ENCFF002CHQ 

SRF_HUMAN.H11MO.0.A SRF ENCFF703TFD 

STAT1_HUMAN.H11MO.0.A STAT1 ENCFF680DVR 

STAT1_HUMAN.H11MO.1.A STAT1 ENCFF680DVR 

TAF1_HUMAN.H11MO.0.A TAF1 ENCFF325FCK 

TBX21_HUMAN.H11MO.0.A TBX21 ENCFF515HWO 

TCF7_HUMAN.H11MO.0.A TCF7 ENCFF817AOQ 

TF65_HUMAN.H11MO.0.A RELA ENCFF002CPA 

USF1_HUMAN.H11MO.0.A USF1 ENCFF859GUL 

USF2_HUMAN.H11MO.0.A USF2 ENCFF372DRC 

ZEB1_HUMAN.H11MO.0.A ZEB1 ENCFF621OAS 

ZN143_HUMAN.H11MO.0.A ZNF143 ENCFF631JFD 
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Chapter 4 - Targeted reconstruction of T cell receptor sequence from single cell RNA-seq 
links CDR3 length to T cell differentiation state  

 
 
In this chapter I present TRAPeS, software I developed to reconstruct T cell receptor (TCR)               
sequences from short read single-cell RNA-sequencing. Specifically, the software outputs the           
CDR3 sequence of each TCR, which is a short DNA sequence that is the main determinant of T                  
cell specificity. In addition, my co-authors and I show a link between CDR3 length and the cell                 
state for Yellow Fever Virus-specific T cells, demonstrating the utility of TRAPeS and the              
advantages of a combined TCR-transcriptome analysis with single cell RNA-sequencing.  
 
This work was published in ​Nucleic Acid Research​ in 2017 (Afik et al. 2017), and I am reporting 
it as it was published. The authors on the paper are: 
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Abstract 
The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell                
state to provide effective immunity against pathogens. However, it remains unclear how            
differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing              
(scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional           
profile from single cells. However, current methods for TCR inference from scRNA-seq are             
limited in their sensitivity and require long sequencing reads, thus increasing the cost and              
decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a               
publicly available tool that can efficiently extract TCR sequence information from short-read            
scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8​+ T cell response in               
humans and mice, and show that it is accurate and more sensitive than existing approaches.               
Coupling TRAPeS with transcriptome analysis of CD8​+ T cells specific for a single epitope from               
Yellow Fever Virus (YFV), we show that the recently described “naive-like” memory population             
have significantly longer CDR3 regions and greater divergence from germline sequence than do             
effector-memory phenotype cells. This suggests that TCR usage is associated with the            
differentiation state of the CD8​+​ T cell response to YFV.  
 
 
Introduction 
The population of antigen-specific CD8​+ T cells formed in response to infection or vaccination is               
highly heterogeneous in terms of function and phenotype ​(Appay et al., 2002; Newell et al.,               
2012)​. Efforts to deconvolve this cellular heterogeneity have used flow cytometry, mass            
spectrometry, and more recently, single-cell RNA-sequencing ​(Chattopadhyay and Roederer,         
2015)​. These approaches have identified a reliable set of phenotypic markers that can classify              
antigen-specific T cells into a large number of subsets, and distinguish them from antigen-naive              
T cells. However, recent work also suggests that some antigen-experienced CD8​+ T cells can              
have a naive-like phenotype, meaning that despite their potential to effectively respond to an              
antigen, they show transcriptomic and surface marker similarities to antigen-naïve T cells            
(Fuertes Marraco et al., 2015a; Pulko et al., 2016; Swadling et al., 2014)​. The cellular               
heterogeneity in the T cell compartment is thought to arise from different exposure to              
differentiation cues such as antigen dose, duration of contact, and cytokines. How the T cell               
receptor (TCR) sequence expressed by each T cell contributes to that cellular heterogeneity is not               
fully understood. 
 
The T cell receptor is a heterodimer of two chains - alpha and beta, each consisting of three types                   
of genomic segments - variable (V), joining (J) and constant (C) (the beta chain includes an                
additional short diversity (D​) ​segment; Methods) ​(Venturi et al., 2011)​. The V and J segments               
are selected out of a pool of several dozen loci encoded in the germline genome, through a                 
recombination process. The diversity of the TCR repertoire (estimated at ~10​7 in humans             
(Venturi et al., 2011)​) is further enhanced by random insertions and deletions into the              
complementarity determining region 3 (CDR3) – the junction between the V and J segments,              
which largely determines the ability of the cell to recognize specific antigens. However despite              
this diversity, some T cell responses can include TCRs that are identical between individuals -               
known as “public” clonotypes, while other T cell responses use TCRs that are unique to each                
individual (“private” clonotypes). Previous studies have shown that these public clonotypes tend            
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to appear at a higher frequency and have a shorter CDR3 region, possibly as a result of a more                   
efficient recombination process ​(Robins et al., 2010; Venturi et al., 2006, 2008, 2011)​.  
 
Unlike analysis of the cell state, the clonal diversity of the TCR repertoire has to date been                 
studied mostly in aggregated samples from pools of T cells rather than individual cells ​(Ji et al.,                 
2015; Li et al., 2016; Venturi et al., 2011)​. This approach has two significant limitations: (1)                
since each chain of the TCR (alpha, beta) is a separate transcript, it cannot determine which                
chains are co-expressed in the same cell, leading to a partial view of the TCR identity; (2) the                  
sequence of the TCR and the global transcriptional state of the cell that expresses it cannot be                 
simultaneously determined. Previous studies have profiled TCR use in single cells, but these             
studies were limited in the number of transcripts that were quantified ​(Han et al., 2014; Ji et al.,                  
2015)​.  
  
Single cell RNA-seq can generate full-length sequence information for many transcripts in            
individual cells including the alpha and beta chains of the TCR. However, standard methods to               
map sequence fragments to the genome ​(Li and Dewey, 2011) cannot be directly used for               
reconstructing and estimating the abundance of TCRs because of the highly variable nature of              
the CDR3 regions. One approach to address this challenge is to rely on scRNA-seq with long                
sequencing reads (>100 bp), which can cover the entire CDR3 region along with the flanking V                
and J sub-segments ​(Stubbington et al., 2016)​. The underlying TCR (along with the junctional              
diversification events) can then be reconstructed using methods similar to TCR-seq population            
repertoire analysis ​(Venturi et al., 2011; Yu et al., 2014)​. However, sequencing with long reads is                
costly and time consuming, thus a method to successfully reconstruct TCRs from shorter,             
paired-end reads is desirable. Another approach ​(Eltahla et al., 2016; Redmond et al., 2016;              
Stubbington et al., 2016) relies on previous methods for ​de-novo ​transcriptome or genome             
assembly to reconstruct the CDR3 region ​(Boetzer and Pirovano, 2012; Grabherr et al., 2011)​. In               
general, ​de-novo ​assemblers were designed with a very large input data set and long reads in                
mind, and use the concept of de-bruijn graphs to achieve high efficiency. Indeed the TCR               
reconstruction methods that use this approach have mainly been tested on long RNA-seq             
libraries (except scTCRseq which was also tested on simulated short reads ​(Redmond et al.,              
2016)​). However, more accurate yet possibly more computationally intensive algorithms are           
feasible and may be more appropriate for the smaller target of reconstructing only the TCR.  
 
To address this, we have developed “TCR Reconstruction Algorithm for Paired-End Single cell”             
(TRAPeS), a software capable of accurately reconstructing TCRs from paired-end sequencing           
libraries of single cells, even at short (25bp) read length. Unlike the previous methods, TRAPeS               
does not reduce the input sequences into ​k​-mers, but rather works on the original reads - leading                 
to increased sensitivity. We benchmarked TRAPeS on a diverse set of viral stimulations, and              
then demonstrate how simultaneous analysis of TCR properties and global expression profiling            
in individual cells helps relate specific TCR properties such as CDR3 length to heterogeneity of               
T cell state among CD8​+ T cells that respond to YFV. TRAPeS is publicly available, and can be                  
readily used to investigate the relationship between the TCR repertoire and cellular phenotype.  
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Materials and Methods 
  
TRAPeS 
The TRAPeS algorithm has 4 main steps, each applied separately to the alpha and beta chains: 
 
1. ​Identifying putative pairs of V and J ​segments​. In order to recognize the V and J segments                  
of the TCR, TRAPeS takes as input the alignment of the RNA-seq reads to the genome. TRAPeS                 
searches for a paired-end read where one mate maps to a V segment while the other mate is                  
mapped to a J segment, and takes those V-J ​pairs as putative candidates for the CDR3                
reconstruction. In a case where there are no such pairings, TRAPeS takes all possible V-J               
combinations of V and J segments that have V-C and J-C pairing (i.e. reads where one mate                 
maps to V or J and the other mate maps to the C segments). We note that reads are not                    
successfully aligned to D segments of the beta chain due to their short length. Thus, for the beta                  
chain, reconstruction of the CDR3 includes reconstruction of the D segment sequence. In             
addition, TRAPeS allows the user to specify the maximum number of reconstructions per chain.              
If the number of possible V-J pairs exceeds this number, TRAPeS ranks the pairs based on the                 
number of reads initially mapped to them, and only attempts to reconstruct the top pairs. 
  
2. ​Collecting putative CDR3-originating reads​. TRAPeS finds the putative CDR3-originating          
reads by taking all the unmapped reads whose mates map to the V/J/C segments. In addition,                
since the first step of the CDR3 reconstruction includes alignment to the genomic V/J sequences               
(see below), TRAPeS also collects the reads that map to the V and J segments.  
  
3. ​Reconstructing the CDR3​. Using an iterative dynamic programming algorithm, TRAPeS           
extends the V and J regions. TRAPeS takes only the bases at the ends of the V and J segments                    
closest to the CDR3 (3’ of the V segment and 5’ of the J segment). The number of initial bases is                     
a parameter that can be tuned, set by default to min(length(V), length(J)). If the specified length                
is longer than the J segment, TRAPeS concatenates the J sequence to the beginning of the C                 
sequence and uses this extended segment as the initial J segment. In each iteration, we align all                 
the reads to the V and J segments separately with the Needleman-Wunsch algorithm, using the               
following scoring scheme: +1 for a match, -1 for a mismatch, -20 for gap opening and -4 for gap                   
extension. In addition, we don’t penalize for having the read “flank” the V and J toward their 3’                  
and 5’, respectively. 
Next, we take all the reads that aligned to the V and J segments above a certain score threshold,                   
and build the “extended” V and J sequences based on the reads. For each position, we take the                  
base that appears in most reads as the chosen sequence for this position. This way, we extend the                  
V and J regions in each iteration and also correct for mutations or SNPs in the known genomic V                   
and J segments. TRAPeS repeats this step until the extended V and extended J overlap, or until                 
TRAPeS reaches a number of predefined iterations. If no overlap is found, TRAPeS also offers               
an optional “one-sided” mode, where it will attempt to determine the productivity (see below) of               
only the extended V segment. For this work, we used a threshold score of 21 for the alignment of                   
the reads. However, in some cases a lower threshold was required, thus if no sequence was                
reconstructed we ran TRAPeS with a scoring threshold of 15. 
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4. ​Separating similar TCRs and determining chain productivity​. Since some V and J             
segments have similar sequence, reads can be mapped to several segments, creating few similar              
putative V-J pairs. In addition, two alpha or beta chains can be created within a single cell.                 
TRAPeS takes all possible pairing and attempts to reconstruct the CDR3 region for all pairs.               
After reconstruction, full-length TCR sequences are created by extending the reconstructed           
region with the known reference sequences. Then, TRAPeS runs RSEM ​(Li and Dewey, 2011)              
on all reconstructed TCRs and the set of reads used as input (and their mates) in order to rank the                    
TCRs based on the relative abundance. Next, TRAPeS determines if the TCR is productive: V               
and J segments are in the same reading frame and the CDR3 does not contain a stop codon.                  
TRAPeS outputs a file with a summary of all possible reconstructions (see Table S1 for               
example) for all cells, as well as separate files for each cell with the full-length TCR sequences.                 
For this paper we used the productive chain with the highest expression as the TCR sequence for                 
each cell. 
 
TRAPeS is implemented in python. To increase performance, the CDR3 reconstruction using the             
dynamic programming algorithm is implemented in C++, and uses the seqan package ​(Döring et              
al., 2008)​. TRAPeS is freely available and can be downloaded in the following link:              
https://github.com/YosefLab/TRAPeS  

TRAPeS can be easily extended to work with single-end data. The reconstruction algorithm only              
requires the paired-end information for the recognition of V/J segments and CDR3-originating            
reads, which can be easily done in single-end reads by searching for partial alignment of the read                 
edges to the V/J segments. This feature will be available in the next TRAPeS version. 
 
Single cell sorting 

Mouse LCMV Experiments: ​Female C57BL/6 mice (The Jackson Laboratory), aged 7 weeks,            
were infected with 2x10​5 plaque forming units (PFU) LCMV Armstrong intraperitoneally i.p. or             
4x10​6 PFU LCMV Clone 13 i.v. LCMV viruses were a generous gift from Dr. E John Wherry                 
(University of Pennsylvania, Perelman School of Medicine). Peripheral blood was obtained from            
the mice at day 7 post infection (p.i.) and lymphocytes were enriched using LSM density               
centrifugation. Cells were prestained with a near-IR fixable live/dead marker (Life Technologies,            
cat# L34976) and an APC-conjugated dextramer reagent for gp33 (Immudex, cat# A2160-APC)            
according to manufacturer recommendations. The cells were then stained with the following            
antibodies: FITC 2B4 (BioLegend, cat# 133504), PerCP-Cy5.5 CD44 (BioLegend, cat# 103032),           
PE KLRG1 (BioLegend, cat# 138408), PE-Cy7 PD1 (BioLegend, cat# 135215), BV421 CD127            
(BioLegend, cat# 135024), BV510 CD8A (BioLegend, cat# 100752). 
 
Human CMV Experiments (Donor 1): ​Blood samples were obtained from a donor with             
detectable NLV-specific CD8​+ T cell response. Lymphocytes were enriched via Ficoll gradient            
and prestained with a near-IR fixable live/dead marker (Life Technologies, cat# L34976) and an              
APC-conjugated dextramer reagent (Immudex, cat# WB2132-APC). The cells were then stained           
with the following antibodies: FITC CD8A (BioLegend, cat# 300906), PerCP-Cy5.5 CCR7           
(BioLegend, cat# 353220), PE CD3 (BioLegend, cat# 317308), BV605 CD45RA (BioLegend,           
cat# 304133). 
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Human YFV Experiment (Donor 2)​: A healthy volunteer was vaccinated with a single dose (0.5               
ml containing at least 10​5 PFU) of 17D live-attenuated yellow fever vaccine strain administered              
subcutaneously. Seroconversion after vaccination was confirmed by assaying the neutralizing          
antibody titers for YF-17D (data not shown). A whole blood sample was obtained 9 months               
post-vaccination and lymphocytes were enriched from whole blood via Ficoll gradient           
centrifugation and a CD8 negative selection magnetic bead kit (Miltenyi Biotec). Cells were             
prestained with a live/dead marker (Life Technologies, cat# L34976) and an APC-labeled            
tetramer reagent (NS4B 214–222 LLWNGPMAV, kindly provided by Dr. Rafi Ahmed). The            
cells were then stained with the following antibodies: FITC CD8A (BioLegend, cat# 300906),             
PE CXCR3 (BioLegend, cat# 353705), PE-Cy7 CCR7 (BioLegend, cat# 353226), BV421 IL2Rb            
(BioLegend, cat# 339009), BV510 CD3 (BioLegend, cat# 317332), BV605 CD95 (BioLegend,           
cat# 305627), BV780 CD45RA (BioLegend, cat# 304140). 
 
Human Hepatitis C Experiment (Donor 3): Patient 355 (59yr old Male, infected with genotype              
1a HCV, baseline viral load 467,000 IU/ml) received a prime vaccination of ChAd3-NSmut             
(2.5x10​10 viral particles) and an MVA-NSmut (2x10​8 plaque forming units) boost vaccination 8             
weeks later. PBMC were collected 14 weeks post-boost vaccination for assessment of single cell              
gene expression ​(Swadling et al., 2016)​. PBMC were thawed and prestained with a live/dead              
marker (Life Technologies, cat# L34976) and a PE-conjugated pentamer reagent (PE-labeled           
HCV NS31406–1415 (KLSALGINAV; HLA-A*0201)). The cells were then stained with the           
following antibodies: FITC 2B4 (BioLegend, cat# 329505), PerCP-eFluor 710 LAG3          
(eBioscience, cat# 46-2239), PE-Cy7 CCR7 (BioLegend, cat# 329919), APC CD39 (BioLegend,           
cat# 328209), BV421 PD1 (BioLegend, cat# 329919), BV510 CD3 (BioLegend, cat# 317332),            
BV605 CD8A (BioLegend, cat# 301040), BV780 CD45RA (BioLegend, cat# 304140). 
 
The relevant institutional review boards approved all human subject protocols, and all subjects             
provided written consent before enrollment. 
 
Single cell sorts: ​All single cell sorts were performed on a BD Aria II with a 70um nozzle. Cells                   
were sorted into 5µL of Qiagen TCL Buffer plus 1% beta-mercaptoethanol v/v. Immediately             
following sorting, plates were sealed, vortexed on high for 30 seconds, and spun at 400g for 1                 
minute prior to flash freezing on dry ice. Samples were stored at -80°C until library preparation.  
 
RNA sequencing 
Single cell lysates were converted to cDNA following capture with Agencourt RNA Clean beads              
using the SmartSeq2 protocol as previously described ​(Trombetta et al., 2014)​. The cDNA was              
amplified using 22-24 PCR enrichment cycles prior to quantification and dual-index barcoding            
with the Illumina Nextera XT kit. The libraries were enriched with 12 cycles of PCR, then                
combined in equal volumes prior to final bead cleanup and sequencing. All libraries were              
sequenced on an Illumina HiSeq 2500 or NextSeq by either single-end 150bp reads or short               
paired-end reads using the following read lengths: Mouse samples - 30bp, Human donor 1 - 26bp                
for read 1 and 25bp for read 2, Human donor 2 - 30bp, human donor 3 - 26bp. Donor 1 and                     
Donor 2 were sequenced using two batches, where every batch had cells from all of the donor’s                 
population (i.e. Donor 1 batch 1 had both naive and CMV-specific cells, same for batch 2. Donor                 
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2 batch 1 had YFV-specific, naive and effector memory cells, same for batch 2). Donor 3’s entire                 
sample was sequenced on a single batch, and the LCMV samples from both mice were combined                
and sequenced on a single batch (Table S2). 
 
Preprocessing and Normalization of scRNA-seq data 
Low quality bases were trimmed with trimmomatic ​(Bolger et al., 2014) using the following              
parameters: LEADING:15, TRAILING:15, SLIDINGWINDOW:4:15, MINLEN:16. Trimmed      
reads were then aligned to the genome (hg38 or mm10 for human or mouse samples,               
respectively) with TopHat2 ​(Kim et al., 2013) for TCR reconstruction, and aligned to the              
transcriptome with RSEM ​(Li and Dewey, 2011)​ for transcriptome quantification. 
For transcriptome analysis of the human CMV and YFV donors (donors 1 and 2), low quality                
cells were filtered out prior to normalization. Cells were filtered out if their read depth was less                 
than 1 million pairs or if the cell expressed less than 20% of all expressed transcript, where a                  
transcript was considered expressed if it had a Transcripts Per Million (TPM) value of >10 in at                 
least 10% of cells, leaving 353 out of 378 cells for further analysis.  
Normalization of TPM values was done with our newly developed normalization framework            
SCONE (https://niryosef.wordpress.com/tools/scone/). SCONE considers a large number of        
unsupervised normalization pipelines (i.e. without using any prior biological information about           
samples’ origin), applying different ways to scale the data (e.g., full quantile, upper quantile) and               
perform factor analysis to eliminate unwanted variation. SCONE then uses a number of quality              
metrics to choose the best normalization, which reduces technical variation and maintains prior             
biological knowledge. In our study, the chosen normalization first scaled each sample with the              
DEseq ​(Anders and Huber, 2010) scaling factor to account for differences in sequencing depth.              
Then, we ran RUVg ​(Risso et al., 2014) with k=1. In order to run RUVg, a list of genes that are                     
constant across conditions should be provided. To find constant genes across the specific             
conditions that were tested in this paper, we also sequenced bulk populations of naive CD8​+ T                
cells from donor 1 and CMV-specific effector memory CD8​+ T cells, as well as populations of                
50 cells of naive CD8​+ T cells from donor 2 and YFV-specific effector memory CD8​+ T cells.                 
We ran DESeq2 ​(Love et al., 2014) on those samples and defined the set of constant genes as the                   
genes that showed no change (FDR-adjusted p-value > 0.98 and absolute log fold change < 0.2)                
across all pairwise comparisons (naive vs. all effector memory cells, naive vs. CMV-specific             
effector memory, naive vs. YFV-specific effector memory and CMV-specific effector memory           
vs. YFV-specific effector memory), resulting in a total of 373 genes. 
Dimensionality reduction with PCA on samples from each donor after normalization revealed            
that the normalization process maintain biological information, while reducing the correlation           
between the data and technical variables such as batch, number of expressed genes in each cell,                
and the values of the first PC of the quality matrix (where the quality matrix includes for each                  
cell technical information as previously described ​(Gaublomme et al., 2015)​ (Figure S10)).  
 
Reconstructing TCR sequence from long reads 
Detection of CDR3 sequence using long (150bp) reads was performed similar to Venturi et al               
(Venturi et al., 2011)​. In short, reads were aligned against the set of known V and J segments                  
using blastn ​(Altschul et al., 1990)​. Reads with V and J segments aligning to their edges were                 
selected, extracting the CDR3 sequence in each read. In case where more than one productive               
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CDR3 sequence was discovered in a cell, the sequence with the highest number of supporting               
reads was selected. 
 
Reconstructing TCR sequence from short paired-end reads using Trinity 
Trinity ​(Grabherr et al., 2011) was run on each cell with the following parameters:              
--max_memory 10G, --min_contig_length 50. In addition, using the --KMER_SIZE parameter          
Trinity was run with 4 different k-mer sizes - 13, 15, 17 and 19. For each k-mer size we ran                    
Trinity twice: once in single-end mode, using the set of reads used by TRAPeS for CDR3                
reconstruction, and once in paired-end mode, taking all the mapped and unmapped reads along              
with their pairs. Then, for each k-mer we combined the final Trinity output from both runs                
(paired-end and single-end) for each cell. To determine whether or not a transcript is productive               
and to annotate the CDR3 sequence, all possible reconstructed transcripts were run through             
IMGT/HighV-QUEST ​(Alamyar et al., 2012; Li et al., 2013)​. We considered each productive             
chain output by IMGT as a successful reconstruction.  
 
Comparing TRAPeS to TraCeR 
TraCeR was run using default parameters. To compare TRAPeS to TraCeR on the benchmark              
data used by TraCeR ​(Stubbington et al., 2016)​, raw single cell RNA-seq data was downloaded               
as fastq files from ArrayExpress (accession number E-MTAB-3857). While the original data            
consisted of 100bp paired-end reads, we converted it to that equivalent of short-read sequences              
by trimming each fragment to leave only the outer 25 or 30bp of each read. We also ran TRAPeS                   
on the original 100bp paired-end data with the following parameters: -score 80 -bases 150 -top               
15 -byExp -oneSide  
 
Comparing TRAPeS to scTCRseq and VDJPuzzle 
VDJPuzzle was run using the default parameters. For scTCRseq, since running the software with              
the default parameters resulted in no alignments for human TRBV segments, we ran the software               
using the parameters -e 1e-7 -c 2. In addition, since scTCRseq does not summarize the data, we                 
collected the fasta sequences of scTCRseq final results (*.gapfilled.final.vdj.fa files) and ran            
them through IMGT to annotate the junction sequence in each cell, taking only productive CDR3               
with a complete reconstruction (no missing amino acids) as successful reconstructions. To            
compare TRAPeS and scTCRseq on the benchmark data used by scTCRseq ​(Mahata et al.,              
2014)​, raw single cell RNA-seq data was downloaded as fastq files from ArrayExpress             
(accession number E-MTAB-2512) and trimmed from 75bp paired-end into 25 or 30bp            
paired-end. We also ran TRAPeS on the original 75bp paired-end data with the following              
parameters: -score 65 -top 10 -bases 100 
 
Gini coefficient calculation: 
For each population, cells were considered from the same clone if they had identical CDR3               
sequences of both alpha and beta chains. Cells with only one reconstructed chain were excluded               
from this analysis. The number of cells for each clone was counted and the Gini coefficient was                 
calculated by using the Gini command in R from the “ineq” package.  
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Inference of cell clusters, visualization and differential expression analysis  
For cluster inference in the YFV + CMV human data, we defined an expression matrix               
consisting of normalized TPM values of 353 cells by 10827 transcripts (expressed at a level of                
>= 5 TPM in at least 1% of cells; Table S11). We applied the SC3 software ​(Kiselev et al., 2017)                    
for clustering the cells in this matrix using default parameters. 
To visualize the data, we first used the jackStraw package ​(Chung and Storey, 2015) to reduce                
the dimensionality of the data and retain only principal components (PC) that are statistically              
significant (p-value<10​-4​) in terms of the respective percent of explained variance. This analysis             
retained the first three PCs. We then applied t-SNE ​(Maaten and Hinton, 2008) with default               
parameters and 2000 iterations to these significant PCs, further reducing the data for             
visualization in two dimensions.  
We used the DESeq2 package ​(Love et al., 2014) to identify genes that are differentially               
expressed (DE) between the different clusters. In this application, each cluster was compared to              
the other two clusters, looking for genes that are differentially expressed. Genes were called as               
differentially expressed using an FDR-adjusted p-value cutoff of 0.05. The heatmap in Figure 3B              
was populated with log​2​(TPM) values for genes identified as uniquely up- or down- regulated in               
each of three major phenotypic groups. We also see similar results of DE genes using the                
scRNA-seq analysis package Seurat ​(McDavid et al., 2013; Satija et al., 2015)​. Enrichment of              
DE genes with respect to immunological pathways was determined using a Fisher exact test              
(FDR-adjusted p-value<10​-3​) quantifying the significance of overlap between differential genes          
and signatures from the ImmuneSigDB database ​(Godec et al., 2016)​.  
 
Gene enrichment by signature analysis 
We used FastProject ​(DeTomaso and Yosef, 2016) together with large collection of            
transcriptional signatures from ImmuneSigDB ​(Godec et al., 2016) to characterize the phenotype            
of our single cells. In short, each transcriptional signature is comprised of genes that are either                
over-expressed or under-expressed between two cell states of interest (e.g. using published bulk             
RNA-seq data from naive vs. memory cells). For each single cell, the signature score is               
computed as: 

R​S​(j) = 𝚺sign​s​(i)·X​’​ij​·𝜔​ij​/𝚺 ​i∈S​𝜔 ​ij 
 

Where s is the signature, j is the cell, sign(i) = -1 for genes under-expressed in this signature and                   
+1 for over-expressed genes, X​ij​’ is the standardized (Z-normalized across all cells) log             
expression level of gene i in cell j, and 𝜔​ij is the estimated false-negative weight for gene i in cell                    
j. To identify transcriptional signatures that are associated with an scRNA-seq data set of              
interest, FastProject looks for consistency between signatures and low-dimensional projections          
of the data. To this end, FastProject first computes a wide range of 2-dimensional projections               
(e.g. PCA, ICA, spectral embedding, tSNE), each capturing (possibly different) key axes of             
variation in the data. For each transcriptional signature and each projection it then computes a               
consistency score, which reflects the extent to which cells that have a similar signature score               
reside close to each other in the projection (thus extending our previous work ​(Gaublomme et al.,                
2015) and facilitating the analysis of non-linear projections). The significance of the consistency             
score is evaluated by random shuffling.  
To include only relevant signatures, we analyzed only signatures with a significant consistency             
score (FDR-adjusted p-value<0.05) in at least one projection. In addition, only signatures that             
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include ‘CD8’ in their name were used for further analysis, leaving a total of 95 signatures for                 
the YFV + CMV human data and 154 signatures for the YFV-specific analysis.  
 
Characterization of TCR properties of YFV-specific cells  
TCR expression 
To compute the expression of each reconstructed TCR, we added the reconstructed sequences to              
the transcriptome and ran RSEM on the complete extended transcriptome, using the original             
sequencing results (the complete fasta files) as input. This was performed for each cell              
separately, i.e. for each cell only its TCR sequences were added to the transcriptome. In cases                
where a cell had more than one reconstructed alpha or beta chain (by having two productive                
chains or having one productive and one unproductive chain) they were both added to the               
transcriptome.  
 
Germline score 
Classification of each base in the CDR3 as germline (originating from the V, D, J regions) or                 
added nucleotide was done by running the reconstructed TCR sequences thorough           
IMGT/V-Quest ​(Brochet et al., 2008; Giudicelli et al., 2011)​. The germline score was calculated              
by dividing the number of nucleotides encoded by V, D, J segments by the length of the CDR3                  
(Yu et al., 2014)​. 
 
Comparing transcriptomic signatures with TCR length 
Identification of gene signatures associated with TCR length was done with the PARIS algorithm              
(Cowley et al., 2014)​, a module in GenePattern ​(Reich et al., 2006)​. PARIS describes the               
association between each signature score and TCR length by estimating their differential mutual             
information. For each signature, the mutual information is computed between the TCR length             
and the signature, and then normalized using the joint entropy. This score is rescaled with the                
mean of the score of the TCR length against itself and the score of the signature against itself,                  
resulting in a rescaled normalized mutual information (RNMI) matching score. The significance            
of the score is evaluated by a permutation test (performed on the TCR length) and then FDR                 
correction.  
 
Hydrophobicity 
The mean hydrophobicity of each CDR3 was computed using the Kyte-Doolittle ​(Kyte and             
Doolittle, 1982) numeric hydrophobicity scale. In order to account for CDR3 length, we also              
computed mean hydrophobicity for each CDR3 using a sliding window (of both size 3 and 5),                
taking the mean across all windows. However, the sliding window also didn’t result in              
significant differences between YFV-specific naive-like and YFV-specific effector memory-like         
cells (K-S test p-value > 0.1, data not shown). 
 
Normalized tetramer binding intensity 
Normalized tetramer binding intensity was defined based on flow cytometry data acquired at the              
time of sorting. The tetramer binding was measured with the APC-labeled tetramer reagent. To              
correct for baseline expression of CD3, we divided the APC-labeled tetramer measurement by             
the expression of CD3 surface molecules. 
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Results 
 
TRAPeS reconstructs TCR sequences using short (25-30bp) scRNA-seq 
TRAPeS starts by recognizing putative pairs of V and J ​segments that flank the CDR3 region,                
using genome alignment ​(Trapnell et al., 2009) (Figure 1, top; see Methods for a complete               
description of the algorithm). It then identifies the set of unaligned reads that may have               
originated from the CDR3 region, taking the unmapped mates of reads aligned to the putative               
V-J segments or to the constant (C) segment (Figure 1, middle). Next, it uses an iterative                
dynamic programming scheme to piece together the putative CDR3 reads, gradually extending            
the CDR3 reconstruction on both ends (V and J) until convergence (Figure 1, bottom). Finally,               
after the TCR chain has been reconstructed, TRAPeS determines whether it is productive (i.e.,              
has an in-frame CDR3 without a stop codon) and determines its exact CDR3 sequence, based on                
the criteria established by the international ImMunoGeneTics information system (IMGT)          
(Lefranc et al., 2005)​. For each cell, TRAPeS outputs a set of reconstructed TCR transcripts               
(from both chains), along with their complete sequence, an indication of whether or not they are                
productive, and the number of reads mapped to them. In some cases multiple reconstructions can               
be generated for the same cell. This may happen when more than one chain is produced in the                  
cell (a phenomenon that have been previously reported ​(Eltahla et al., 2016; Redmond et al.,               
2016; Stubbington et al., 2016)​), or when sequence similarity between some V or J segments               
results in several possible V-J pairs with an identical CDR3 reconstruction. In such cases, we               
report all V-J pairs, while ranking the putative TCR transcripts in accordance to their estimated               
expression levels (Table S1). The average running time of TRAPeS on a Human single cell               
library with an average two million reads per cell is less than two minutes per cell on a standard                   
machine (Figure S1). 
  
TRAPeS is accurate and more sensitive than previous methods using short reads and             
comparable to previous methods using long reads  
We applied and tested TRAPeS to scRNA-seq data from a range of CD8​+ T cell responses                
(Methods, Figure 2A). These data sets were selected to include both mouse and human CD8​+ T                
cells as well as those expected to have a range of TCR complexities (Figure S2). In mice, we                  
used the lymphocytic choriomeningitis virus (LCMV) infection model, and profiled CD8​+ T cells             
responding to either acute or chronic infection (using the Armstrong and Clone 13 strains of               
LCMV, respectively). In healthy human subjects we profiled naive CD8​+ T cells, effector             
memory CD8​+ T cells, and antigen-specific CD8​+ T cells elicited by CMV infection; vaccination              
with the live attenuated yellow fever virus infection (YFV-17D) ​(Akondy et al., 2015)​; or by               
vaccination with adenoviral and modified vaccinia Ankara vectors encoding HCV proteins           
(Swadling et al., 2014, 2016)​. We sorted up to 128 single CD8​+ T cells from each dataset to a                   
total of 565 cells, and generated scRNA-seq libraries with short (25-30bp) paired-end reads as              
previously described ​(Picelli et al., 2014; Trombetta et al., 2014) and observed good quality              
metrics using previously used measures ​(Gaublomme et al., 2015) (Table S2, Methods). To test              
TRAPeS, we applied cell quality filtering scheme similar to the criteria used by others              
(Stubbington et al., 2016)​, removing samples with less than 2000 genes or with more than 10%                
of reads mapping to mitochondrial genes, resulting in a total of 513 high quality cells (Figure                
2A). Importantly, our results below remain consistent also when cell filtering is not applied              
(Figure S3).  
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To evaluate the accuracy of TRAPeS, we compared its output with that of directly sequencing               
the TCR sequence using long reads (in which reconstruction is not required, Methods). To that               
end, we sequenced libraries of epitope-specific cells for Clone 13, Armstrong and CMV, and              
naive T cells from the CMV donor with both short (25-30bp) paired-end and 150bp single-end               
sequence reads (Figure 2A). TCR sequences identified by TRAPeS were almost perfectly            
consistent with those produced based on the long read data (Methods; Figure 2B-C), indicating a               
high level of specificity.  
 
We compared TRAPeS to previously published methods for TCR reconstruction in single cells.             
First, we compared TRAPeS to TraCeR ​(Stubbington et al., 2016) - a TCR reconstruction              
software that is built upon Trinity ​(Grabherr et al., 2011)​, a ​de-novo transcriptome assembly tool.               
We found that the sensitivity of TRAPeS was markedly higher (Figure 2A-C). On average              
(across all data sets), TRAPeS successfully reconstructed productive alpha chains from 66% of             
the cells and productive beta chains from 80% of the cells, using the short (25-30bp) libraries. In                 
contrast, TraCeR resulted in no reconstruction for the 25bp paired-end libraries, and was able,              
for the 30bp libraries, to reconstruct CDR3 regions in an average of 43% and 15% of the cells for                   
alpha and beta chains respectively.  
 
Next, we considered two additional recently published methods - VDJPuzzle ​(Eltahla et al.,             
2016) and scTCRseq ​(Redmond et al., 2016)​, both based on ​de-novo assembly algorithms             
(Trinity and GapFiller ​(Boetzer and Pirovano, 2012)​, respectively). As above, we observe            
substantially higher sensitivity with TRAPeS (Figure 2A-C, Methods). VDJPuzzle was also           
unable to reconstruct any productive chains in the 25bp data and, for the 30bp libraries,               
reconstructed CDR3 regions in an average of 40% and 63% of the cells for alpha and beta                 
chains, respectively. scTCRseq, which is built upon GapFiller ​(Boetzer and Pirovano, 2012)​,            
managed to successfully reconstruct CDR3 regions in an average of 50% and 60% of the cells                
for alpha and beta chains, respectively. While scTCRseq achieves better results compared with             
Trinity-based methods, TRAPeS clearly outperforms all methods in terms of specificity and            
sensitivity (Figure 2A-C).  
 
The low success rate of Trinity-based methods TraCeR and VDJPuzzle is likely due to its               
requirement for seed ​k-mer length (25nt) that is unsuitable for short reads. Thus, we also directly                
ran Trinity on our set of CDR3-originating reads, using a ​k-mer length of 13 (Methods). This                
resulted in an increased sensitivity for the 30bp libraries compared to TraCeR and VDJPuzzle,              
but did not improve the reconstruction rates for 25bp libraries (Figure 2A-C). Running Trinity              
with several other ​k-mer lengths (15, 17 and 19) did not significantly change the results (Figure                
S4). 
 
Notably, the average rate of successful reconstruction of TRAPeS in our mouse libraries is              
93.7% (with 30bp reads), which is higher than that achieved by TraCeR with the mouse libraries                
used by Stubbington et al (86.3% with 100bp reads) ​(Stubbington et al., 2016)​. To further               
substantiate this result, we applied TRAPeS and TraCeR on a trimmed version of this published               
data. We found that discarding 70-75% of the information (i.e., taking only 25 or 30bp out of                 
each 100bp read) substantially hurts the performance of TraCeR, while TRAPeS is able to              
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maintain rates of successful TCR reconstructions that are similar to those achieved in the original               
paper ​(Stubbington et al., 2016) (Figure S5). Running TRAPeS on the original long read data is                
also comparable to the success rates obtained by TraCeR, demonstrating the ability of TRAPeS              
to be applied on long reads as well (Figure S5). In addition, running TRAPeS on short or long                  
reads is comparable to running scTCRseq using long reads, as evident by running TRAPeS on               
the original and a trimmed version of the data used to benchmark scTCRseq ​(Mahata et al., 2014;                 
Redmond et al., 2016)​ (Figure S6).   
 
TRAPeS captures various clonality levels 
We investigated the clonality of the TCR repertoire measured by TRAPeS among the human              
CD8​+ T cells (Figure 2D, Table S3), using the Gini Index, a clonality measure ​(Qi et al., 2014)                  
ranging from zero (i.e. no two cells share the same TCR) to one (i.e. all cells are from the same                    
clone; Methods). As expected, the naïve population had a Gini index of zero, indicating that each                
naive CD8​+ T cell expressed a unique TCR. The CMV-specific CD8​+ T cell population had a                
high Gini index (with 83% of CMV-specific CD8​+ T cells with reconstructed alpha and beta               
chains originated from a single clone), indicating a high degree of oligoclonality as previously              
described ​(Trautmann et al., 2005; Weekes et al., 1999)​. In contrast, CD8​+ T cells elicited by                
YFV or HCV vaccines showed much greater heterogeneity in TCR repertoire, consistent with a              
more limited, rather than persistent, exposure to antigen ​(Barnes et al., 2012; Bolinger et al.,               
2015; DeWitt et al., 2015; Miles et al., 2011; Swadling et al., 2014)​. This demonstrates the                
ability of TRAPeS to capture cells from the same clone even with relatively small number of                
antigen-specific cells, assuming a clonal response.  

Single-cell transcriptome analysis detects subpopulations of YFV cells  
In order to determine the relationship between TCR use and CD8​+ T cell state, we focused on                 
CD8​+ T cells from two healthy donors (YFV and CMV peptide-specific, as well as naive and                
effector memory cells without sorting for peptide specificity; Methods) to avoid introducing            
additional complexity from chronic infection. To identify groups of cells with similar expression             
profiles, we used SC3 ​(Kiselev et al., 2017)​, a robust clustering method for sparse datasets, to                
identify subpopulations of cells (Figure S7, Table S4, Methods) which we then visualized using              
t-SNE ​(Maaten and Hinton, 2008) (Figure 3A). We found three clusters of cells: one that               
contained all CMV-specific cells (Figure 3A, purple symbols); one that contained all effector             
memory cells (blue symbols); and one that contained all naive CD8​+ T cells (green symbols). In                
contrast to these discrete groupings, we observed that YFV-specific CD8​+ T cells were split              
between two clusters: one containing effector memory CD8​+ T cells and one containing naive              
CD8​+​ T cells.  
 
Differential gene expression analysis between cell clusters revealed transcripts consistent with           
the known patterns of gene expression in antigen-experienced or naive CD8​+ T cells (Tables              
S5-S7, Figure 3B, Methods). CMV-specific CD8​+ T cells expressed effector molecules and            
transcription factors characteristic of antigen experienced cells (e.g., Granzyme B, ​PRDM1​),           
which were not detected in naive cells. Naive CD8​+ T cells expressed canonical markers of the                
naive state (​CCR7​, ​SATB1​, ​LEF1​) that were absent in CMV-specific and effector memory CD8​+              
T cells. The expression of these genes in YFV-specific CD8​+ T cells was consistent with the                
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cluster in which they were associated, with those in the naive cluster expressing minimal              
Granzyme B or ​PRDM1​, but showing robust expression of ​CCR7​, ​SATB1​, and ​LEF1​ (Figure S8).  
 
To identify broader patterns of transcriptional signatures, we applied FastProject ​(DeTomaso and            
Yosef, 2016) - a software tool that enables the expression of gene sets of interest to be                 
quantified in transcriptional profiles of single cells (Methods). We surveyed the enrichment of a              
collection of gene sets, from the C7 (ImmuneSigDB) ​(Godec et al., 2016) collection of MSigDB               
(Liberzon et al., 2011) corresponding to cell states and perturbations of CD8​+ T cells. We found                
significant up-regulation of multiple gene sets corresponding to naive CD8​+ T cells (K-S test              
FDR-adjusted p-value<0.01) in the naive cluster (cluster 3) compared to the other two clusters.              
Consistent with this, we found significantly greater up-regulation of effector signatures in            
clusters 1 and 2 compared with the other clusters (FDR-adjusted p-value<0.01; Figure 3C and              
Table S8).  
 
To confirm these patterns of transcript abundance at the protein level, we compared flow              
cytometry data for a set of surface markers acquired at the time of sorting (Methods) with                
transcript abundance in the same cell (Figure 3D). Consistent with the gene expression profiles,              
we observed that YFV-specific CD8​+ T cells in the naive-like cluster (open symbols) showed              
higher protein levels of CCR7 and CD45RA than those in the effector memory cluster (purple               
symbols). Thus, single-cell analysis shows that CD8​+ T cells specific for the same peptide              
epitope from YFV are heterogeneous and includes both effector-memory and naive-like gene            
expression profiles, as has been reported previously for cells analyzed at the bulk level ​(Fuertes               
Marraco et al., 2015a, 2015b; Pulko et al., 2016)​. 
 
Combined TCR-transcriptome analysis reveals longer CDR3 regions for naive-like YFV-specific          
cells 
We reasoned that differences in TCR might contribute to the heterogeneous differentiation of             
CD8​+ T cells following YFV vaccination. To that end, we evaluated a number of properties to                
characterize each reconstructed TCR - CDR3 specific properties such as length, hydrophobicity            
and germline score as well as TCR expression. In addition, we measured the normalized tetramer               
staining intensity per cell (Table S9, Methods). We then asked whether any of those properties               
differed between naive-like and effector memory-like YFV-specific CD8​+ T cells. Naive-like and            
effector memory-like YFV-specific CD8​+ T cells were indistinguishable (p-value>0.05,         
FDR-adjusted p-value>0.1) in terms of TCR transcript expression, hydrophobicity of the CDR3            
region and normalized tetramer staining intensity (Methods). However, we found that the CDR3             
sequence was significantly longer in YFV-specific CD8​+ T cells with a naive-like state compared              
with those with an effector memory profile for both alpha and beta chains (Figure 4A, K-S test                 
p-value 0.038 and 0.027 for alpha and beta chains respectively, FDR-adjusted p-value 0.084 for              
both alpha and beta chains).  
 
We next evaluated the germline score of CDR3 regions in YFV-specific CD8​+ T cells, a measure                
of the contribution of germline nucleotides to the CDR3 region. The germline score is defined as                
the ratio between the number of nucleotides in the CDR3 that originate from the germline (V, D,                 
J segments) to the total number of nucleotides in the CDR3 ​(Yu et al., 2014) (Methods).                
Consistent with the differences in the CDR3 length, we found that naive-like YFV-specific CD8​+              
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T cells had a significantly lower germline score in both alpha and beta chains than did effector                 
memory-like cells (Figure 4B, K-S test p-value of 0.034 and 0.029 for alpha and beta chains                
respectively, FDR-adjusted p-value 0.084 for both alpha and beta chains), suggesting that            
generating the CDR3 region of these TCRs involved a greater degree of nucleotide             
addition/subtraction. 

To further characterize the relationship between CDR3 length and cellular state in YFV-specific             
CD8​+ T cells, we identified CD8​+ transcriptional signatures (extracted from ImmuneSigDB           
(Godec et al., 2016) and scored with FastProject ​(DeTomaso and Yosef, 2016)​, as above) that               
correlated with CDR3 length across all YFV-specific CD8​+ T cells (Table S10, Methods). Of all               
signatures evaluated, we found that only naive CD8​+ T cell signatures showed a significant              
positive correlation with CDR3 length (FDR-adjusted p-value<0.1; Figures 4C-D). Previous          
work has suggested that YFV-specific CD8​+ T cells with a naive-like phenotype include those              
with a stem-cell memory (Tstem-memory) differentiation state. We found that Tstem-memory           
signatures were more enriched in naive-like YFV-specific CD8​+ T cells than in effector memory              
YFV-specific CD8​+ T cells (Figure S9). However, the enrichment for these signatures was             
equivalent between naive-like YFV-specific and phenotypically naive CD8​+ T cells, making it            
difficult to discern whether these cells manifest a specific stem-cell-like state. Our results,             
however, show that heterogeneity in the differentiation state of CD8​+ T cells responding to a               
single epitope of YFV is strongly associated with the CDR3 length. 
 
 
Discussion 
 
TRAPeS enables the analysis of TCR clonality in scRNA-seq profiles using short sequence             
reads. Other methods of direct TCR sequencing ​(Venturi et al., 2011) or reconstruction ​(Eltahla              
et al., 2016; Redmond et al., 2016; Stubbington et al., 2016) have lower rate of successful TCR                 
reconstruction or requires long sequence reads, which substantially increase the per-cell cost of             
single cell profiling. As single-cell RNA-seq technologies move towards massively parallel           
scale, long-read sequencing is likely to become unfeasibly expensive, making approaches such as             
TRAPeS critical for studies of TCR use in single cells. 
 
We applied TRAPeS to short-read sequencing data from human CD8​+ T cells and were able to                
discover a new association between the differentiation state of CD8​+ T cells specific to a single                
YFV antigen and the CDR3 length of the TCRs that they express. Long CDR3 lengths have been                 
associated with private clonotypes, which in turn may reflect low precursor frequency within the              
naive T cell pool ​(Robins et al., 2010; Venturi et al., 2006, 2008, 2011)​. We therefore speculate                 
that within a population of naive T cells capable of recognizing a specific antigen, those that                
exist at low frequency may enter the T cell response later than more abundant precursors,               
resulting in an altered differentiation state compared to those that existed at a higher precursor               
frequency. Alternatively, a greater degree of cross-reactivity in T cells with short CDR3 regions              
may result in more repeated TCR stimulation, leading to the difference in T cell phenotype we                
observe. While in this case the phenotype could be validated with protein surface markers, this is                
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not true for many other phenotypes, highlighting the importance of transcriptome analysis using             
scRNA-seq.  

More generally, we anticipate that TRAPeS will facilitate broad efforts to determine the             
relationship between T cell state and TCR sequence in the immune response. TRAPeS can be               
applied to further basic biological understanding of the relationship between TCR avidity and T              
cell differentiation. Being able to identify alpha and beta chains allows cloning of TCRs into               
experimental systems to study their binding properties, which will help determine how TCR             
properties are related to TCR avidity and T cell biology. This is highly relevant for studying                
vaccine responses and for thymic development. Moreover, linking the CDR3 sequence to T cell              
transcriptome can help identify biological similarities in clonal populations of T cells. For             
instance, in tumors where the identities of T cells responding to the tumors are not known,                
identifying clonal expansion can be used to infer tumor-specificities both for analyzing gene             
expression profiles and cloning both alpha and beta chains of the same TCR for clinical use.                
Additionally, we recently applied TRAPeS to study the clonality of CD4​+ and HLA class              
II-restricted CD8​+ T cells in HIV-infected individuals ​(Ranasinghe et al., 2016)​, demonstrating            
the wide use for a combined analysis of transcriptome and TCR sequence at the same cell.  

 
Availability 
TRPAeS is publicly available and can be found in the following link: 
https://github.com/YosefLab/TRAPeS​. 
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Figures 
 
 

 
 
Figure 1: TRAPeS - An algorithm for TCR reconstruction in single cell RNA-seq 
Illustration of the TRAPeS algorithm. First, the V and J segment are identified by searching for                
paired reads with one read mapping to the V segment and its mate mapping to the J segment.                  
Then, a set of putative CDR3-originating reads is identified as the set of unmapped reads whose                
mates map to the V, J and C segments. Finally, an iterative dynamic programming algorithm is                
used to reconstruct the CDR3 region.  
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Figure 2: Validation of TRAPeS and comparison to other methods 
a) Success rates for reconstruction of productive CDR3 in various CD8​+ T cell data sets. Each                
line depicts the fraction of cells with a productive alpha or beta chain in a given data set with                   
each one of the following methods - 150bp sequencing (black line), short paired-end data              
reconstructed using TRAPeS (red), TraCeR (turquoise), scTCRseq (gray), VDJPuzzle (dark          
blue) or Trinity (light blue). ​b) Specificity of TRAPeS. Fraction of cells with identical CDR3               
sequence between 150bp data and the 25-30bp data reconstructed either by TRAPeS, TraCeR,             
scTCRseq, VDJPuzzle or Trinity. This was calculated as the fraction out of cells with a               
productive chain in both 150 and 25-30bp data. ​c) ​Sensitivity of TRAPeS. Same as b, except the                 
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fraction of cells is calculated out of the total number of cells that had a successful reconstruction                 
using 150bp sequencing only. ​d) Single cell RNA-sequencing captures a variety of clonal             
responses. Bars represent the Gini coefficient of each human CD8​+ T cell data set. The Gini                
coefficient can range from zero (a complete heterogeneous population) to one (a complete             
homogenous population). Pie charts represent the distribution of clones in each population, n             
represents the number of cells with a successful reconstruction of both alpha and beta chains.  
 
 
 

 
Figure 3: Transcriptome analysis reveals distinct subpopulation of YFV-specific cells          
exhibiting a naive-like profile  
a) t-SNE projection of 353 CMV-specific, Effector Memory, YFV-specific, and Naïve cells,            
using normalized Transcripts Per Million (TPM) values of 10827 transcripts. Ellipses indicate            
three distinct spatial clusters. A discrete subset of YFV-specific cells cluster with Naive. ​b)              
Genes differentially expressed between relevant phenotypic groups. YFV-specific cells were          
classified as effector memory-like or naive-like using SC3, a non-spatial consensus clustering            
approach (Figure S7). ​c) t-SNE projections, each cell colored by relative signature score. Shown              
are two signatures from the ImmuneSigDB distinguishing CMV-specific from YFV-specific          
cells, and two signatures distinguishing Naïve or YFV-specific naive-like cells from Effector            
memory, CMV-specific and YFV-specific effector memory-like populations. ​d) FACS protein          
expression of CCR7 and CD45RA surface molecules from index sort of Effector Memory,             
YFV-specific effector memory-like, YFV-specific naive-like, and Naïve cells.  
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Figure 4: YFV-specific subpopulations display different TCR structure 
a) YFV-specific naive-like cells tend to have longer CDR3. Distribution of the YFV-specific             
effector memory-like and naive-like CDR3 lengths in both alpha (left) and beta (right) chains.              
P-values were calculated with K-S test. ​b) ​Differences between naive-like and effector            
memory-like CDR3 lengths are due to added nucleotides. Distribution of the YFV-specific            
effector memory-like and naive-like CDR3 germline scores, defined as the number of            
nucleotides in the CDR3 encoded by the V, D or J segments divided by the total number of                  
nucleotides in the CDR3, for both alpha (left) and beta (right) chains. P-values were calculated               
with K-S test. ​c​) Signature analysis reveals significant correlation between CDR3 length and cell              
state. The plot depicts the rescaled normalized mutual information score between CDR3 length             
and transcriptional signatures of CD8​+ T cells from ImmuneSigDB. Signatures identified as            
statistically significant using a permutation test (FDR-adjusted p-value<0.1) are highlighted in           
red. ​d) YFV-specific cells with long CDR3 tend to have a higher transcriptomic naive signature               
than cells with short CDR3. Plot represents the score of each cell for a transcriptional signature                
of a naive vs. effector CD8​+ T cell state. A high signature score means that a cell has higher                   
expression of naive signature genes compared to effector signature genes.  
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Supplementary information 
Supplementary figures and table legend found below. Supplementary tables can be found in the 
following link: ​https://academic.oup.com/nar/article/45/16/e148/3976466#119462923 
 
 
Supplementary Figures 

  

 

  
1. TRAPeS run times - ​Average ​running time (in seconds) of TRAPeS per cell on all CD8​+ T                  
cell datasets analyzed in this study, using a single GHz processor and 8 threads. Error bars                
represent the standard deviation. For each dataset the average number of reads per cell is               
mentioned in parentheses. The increased running time in mouse samples is due to the larger               
sequencing depth but also due to the number of similar V and J segments which resulted in a                  
larger number of possible V-J pairs, increasing running time.  
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2. Gating strategy for CD8​+ T lymphocytes for scRNAseq ​a) Human lymphocytes were gated              
based on forward-scatter (FSC) and side-scatter (SSC) characteristics, then singlets were selected            
from SSC and FSC projections, and Live/Dead-negative CD3​+ cells, then CD8​+ HCV NS3             
(1406-1415; KLSALGINAV; HLA-A*0201)​+ cells were selected for HCV-specificity. CD8​+         
HCV NS3- cells were gated and then CCR7​+ and CD45RA​+ cells were selected to represent bulk                
naive CD8​+​. ​b) Lymphocytes were gated based on FSC and SSC characteristics, then singlets              
were selected from SSC and FSC projections, and Live/Dead-negative CD3​+ cells, then CD8​+             
YFV NS4 (LLWNGPMAV)​+ cells were selected for YFV-specificity. CD8​+ YFV NS4- cells            
were gated and then CCR7​+​CD45RA​+ and CCR7​-​CD45RA​- cells were selected to represent bulk             
naive and effector memory CD8​+​, respectively. ​c) Lymphocytes were gated based on FSC and              
SSC characteristics, then singlets were selected from SSC and FSC projections, and            
Live/Dead-negative CD3​+ cells, then CD8​+ CMV NLV​+ cells were selected for CMV-specificity.            
CD8​+ CMV NLV​- cells were gated and then CCR7​+​CD45RA​+ cells were selected to represent              
bulk naive CD8​+​. ​d) Mouse lymphocytes were gated based on FSC and SSC characteristics, then               
singlets were selected from SSC and FSC projections, from which CD8​+ cells, then CD44​+ gp33​+               
cells were selected for LCMV-specificity. 
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3. Success rates for reconstruction of productive CDR3 in the various CD8​+ T cell data sets                
described in figure 2a, without applying cell quality filtering. Results are based on the same               
dataset as in Figure 2a, with the exception of not applying any cell quality filtering before TCR                 
reconstruction. Each line depicts the fraction of cells with a productive alpha or beta chain in a                 
given data set with each one of the following methods - 150bp sequencing (black line), short                
paired-end data reconstructed using TRAPeS (red), TraCeR (turquoise), scTCRseq (gray),          
VDJPuzzle (dark blue) or Trinity (light blue). 
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4. Comparison of success rates for Trinity with various choices of ​k-mer​ length 
a) Success rates for reconstruction of productive CDR3 in various CD8​+ T cell data sets. Each                
line depicts the fraction of cells with a productive alpha or beta chain in a given data set with                   
each one of the following methods - 150bp sequencing (black line), short paired-end data              
reconstructed using TRAPeS (red), or Trinity with ​k-mer length of 13 (light blue), 15 (turquoise),               
17 (dark blue) or 19 (dark gray). ​b) Specificity of TRAPeS and Trinity. Fraction of cells with                 
identical CDR3 sequence between 150bp data and the 25-30bp data reconstructed either by             
TRAPeS or Trinity using various ​k-mer lengths. This was calculated as the fraction out of cells                
with a productive chain in both 150 and 25-30bp data. ​c) ​Sensitivity of TRAPeS and Trinity.                
Same as b, except the fraction of cells is calculated out of the total number of cells that had a                    
successful reconstruction using 150bp sequencing only. 
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5. Success rates for reconstruction of productive CDR3 in the benchmark data sets used by               
TraCeR - Data includes 272 CD4​+ T cells from an uninfected mouse, two mice with Salmonella                
typhimurium infection at day 14 and one mouse at day 49 post-infection. ​a) Each line depicts the                 
fraction of cells with a productive alpha or beta chain in the original data (100bp paired-end)                
with TRAPeS (dark blue) or TraCeR (black), and in the trimmed data (taking only the outer 25bp                 
of each read) with TRAPeS (red) or TraCeR (turquoise). Reconstruction rates for TraCeR on the               
original data were calculated based on supplementary table 2 from Stubbington et al., counting              
the number of cells with a reported CDR3 sequence that was annotated as productive. ​b) ​Similar                
to figure a, except data was trimmed to include only the outer 30bp (instead of 25bp). 
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6. Success rates for reconstruction of productive CDR3 in the benchmark data sets used by               
scTCRseq - Data includes 71 CD4​+ ​T cells from a single mouse. Naive cells were activated                
under conditions inducing Th2 differentiation, and single cell RNA-sequencing was performed           
on cells from two populations: IL-13-eGFP​+ and IL-13-eGFP​-​. ​a) Each line depicts the fraction              
of cells with a productive alpha or beta chain in the original data (75bp paired-end) with TRAPes                 
(dark blue) or scTCRseq (black), and in the trimmed data (taking only the outer 25bp of each                 
read) with TRAPeS (red) or scTCRseq (turquoise). Reconstruction rates for scTCRseq on the             
original data were calculated based on supplementary table 5 from Redmond et al., counting the               
number of cells with a complete productive CDR3 (no missing amino acids). ​b) Similar to figure                
a, except data was trimmed to include only the outer 30bp (instead of 25bp). 
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7. SC3 consensus clustering matrix - Heatmap of pairwise reclustering frequencies between            
353 single cells, indicating three unsupervised clusters. Color bars indicate cellular phenotypes.            
YFV-specific cells co-clustering with Effector Memory cells were subsequently annotated as           
Effector Memory-like, and YFV-specific cells co-clustering with true naive cells were annotated            
as Naive-like (Table S4). 

 

 
  
8. ​Gene expression changes across clusters - ​An Integrative Genome Viewer plot of selected              
cells from all clusters of genes highly expressed in naive cells (CCR7, right) and              
antigen-experienced cells​ (​Granzyme B, left). 
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9. Stem cell signatures - ​t-SNE projections, cells colored by relative signature score for a CD8                
Stem Cell Memory vs. Naive, CD8 Stem Cell Memory vs. Effector Memory, and CD8 Stem Cell                
Memory vs. Central Memory signature from ImmuneSigDB. 
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10. Normalization reduces technical effect - ​PCA projections of donor 2 (top) and donor 1               
(bottom) after normalization. Cells colored by (from left to right): Phenotype, sequencing batch,             
number of genes detected, value of the first PC of the quality matrix (see Methods). 
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Supplementary Table Legends 
  

1. ​TRAPeS output for all data sets ​- the output of the TRAPeS software for all the data sets                   
presented in this study. In addition to the standard output, to each entry the following               
information was added: The threshold score of the alignment used in the reconstruction and              
whether or not this was the TCR sequence used for further analysis.  

2. ​Sample information - ​For each data set, the table includes batch, total number of sequenced                
cells, number of cells after quality filtering that were used for TCR reconstruction and for               
transcriptome analysis (Methods), read lengths, average number of sequencing depth per cell,            
average percent of reads that were aligned to the genome as well as number of reads used for                  
transcriptome quantification and TCR reconstruction. In addition, the table mentions to which            
data sets exist long (150bp) RNA-sequencing, used for TCR reconstruction validation.   

3. ​Clones detected in each data set - ​CDR3 sequences of the alpha and beta chains of the clones                   
detected in all data sets. 

4. ​Clustering of CMV and YFV donors cells - ​Single cells annotated by phenotype.              
YFV-specific cells were determined to be Effector Memory-Like or Naive-Like based on SC3             
co-clustering with either Effector Memory or Naive cells. 

5. ​Differentially expressed genes among clusters - ​DESeq2 results of differential expression            
analysis among clusters. Figure 3B was populated with genes significantly up-regulated           
(FDR-adjusted P-value < 0.05) in cluster 1 vs. clusters 2 and 3, cluster 2 vs. clusters 1 and 3,                   
cluster 3 vs. clusters 1 and 2 and YFV Naive-Like vs. Naive. Genes are ordered by log​2​(Fold                 
Change) in the given comparison, and each comparison was allowed to contribute a maximum of               
100 genes to the heatmap. 

6. ​Overlap of differentially expressed genes with ImmuneSigDB signatures - ​Top genes            
differentially up-regulated in one cluster relative to all other clusters (i.e. cluster 1 vs. clusters 2                
and 3, cluster 2 vs. clusters 1 and 3, and cluster 3 vs. clusters 1 and 2) or in YFV Naive-Like                     
cells relative to Naive, were tested for significance of overlap with ImmuneSigDB CD8​+             
signatures (up-regulated and down-regulated genes) using a Fisher Exact test. Top differentially            
expressed genes were defined as having an FDR-adjusted P-value < 0.05 and a log​2​(Fold              
Change) > 1.00, in a given DESeq2 comparison. 

7. ​Differentially expressed genes among clusters using Seurat - ​Results of differential            
expression analysis among clusters using a likelihood ratio test based on bi-modally distributed,             
zero-inflated data. FDR-adjustment was performed using the Benjamini and Hoschberg method.           
Reported are all genes differentially up-regulated in one cluster relative to all other clusters, or in                
YFV Naive-Like cells relative to Naive, at an FDR-adjusted P-value < 0.05. 

8. ​Gene Signature analysis of cell clusters - ​FastProject signatures scores for each cell and               
statistical analysis of the signatures across clusters. The statistical analysis was performed with a              
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K-S test of the signature scores between one cluster and the other two. The table includes the                 
K-S test p-value as well as FDR-adjusted p-value.  

9. ​TCR properties of YFV-specific cells - ​TCR properties of the YFV-specific cells, including              
CDR3 length, germline score, transcript expression and hydrophobicity for alpha and beta            
chains, as well as normalized tetramer staining intensity of each cell (Methods). The table also               
includes the results of the K-S test used to compare all properties above in the naive-like vs. the                  
effector memory-like cells. 

10. ​Association of YFV-specific gene signature and TCR length - ​FastProject signatures            
scores for each YFV-specific cell and statistical analysis of the association of the signatures with               
TCR length using mutual information (Methods).   

11. ​YFV and CMV donors’ expression matrix - ​Normalized TPM values of cells from YFV               
and CMV donors (Methods). The TPM matrix was collapsed from transcripts to genes by highest               
mean expression across all cells. We then applied a gene filter, which retained only genes               
expressed at a minimum of 5 TPM in at least 1% of cells, resulting in a matrix of 10827 genes by                     
353 cells.  
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 Chapter 5 - Reconstructing B cell receptor sequences from short-read single cell 
RNA-sequencing with BRAPeS 

 
 
In this chapter I describe BRAPeS, an extension of the TRAPeS software to reconstruct B cell                
receptor (BCR) sequences from short read single-cell RNA-sequencing. BRAPeS is modified           
from the TRAPeS algorithm to account for somatic hypermutations and isotype switching,            
biological processes that improve the specificity and function of the receptor and are unique to B                
cells. 
 
This work was published in ​Life Science Alliance ​in 2019 (Afik et al. 2019), and I am reporting it 
as it was published. The authors on the paper are: 
 
 
Shaked Afik​1,+​, Gabriel Raulet​2,+​ and Nir Yosef​1,3, 4, 5,* 
1. Center for Computational Biology, University of California, Berkeley, Berkeley, CA, 94720, USA 
2. Department of Computer Science, University of California, Davis, CA, 95616, USA 
3. Department of Electrical Engineering and Computer Science, University of California, Berkeley,            
Berkeley, CA, 94720, USA 
4. Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA 
5. Chan Zuckerberg Biohub, San Francisco, CA 94158, USA 
 
+​ both authors contributed equally 
* Corresponding author 
 
 
Abstract 
 
RNA-sequencing of single B cells provides simultaneous measurements of the cell state and its              
antigen specificity as determined by the B cell receptor (BCR). However, in order to uncover the                
latter further reconstruction of the BCR sequence is needed. We present BRAPeS, an algorithm              
for reconstructing BCRs from short-read paired-end single cell RNA-sequencing. BRAPeS is           
accurate and achieves a high success rate even at very short (25bp) read length, which can                
decrease the cost and increase the number of cells that can be analyzed compared to long reads.                 
BRAPeS is publicly available at the following link: ​https://github.com/YosefLab/BRAPeS​.  
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Introduction 
 
B cells play a significant role in the adaptive immune system, providing protection against a               
wide range of pathogens. This diversity is due to the B cell receptor (BCR), which enables                
different cells to bind different pathogens ​(Imkeller and Wardemann, 2018)​. Single cell            
RNA-sequencing (scRNA-seq) has emerged as one of the leading technologies to characterize            
and study heterogeneity in the immune system across cell types, development and dynamic             
processes ​(Papalexi and Satija, 2018; Villani et al., 2018)​. Combining transcriptome analysis            
with BCR reconstruction in single cells can provide valuable insights to the relation between              
BCR and cell state, as was demonstrated by similar studies in T cells ​(Afik et al., 2017; Eltahla et                   
al., 2016; Stubbington et al., 2016)​.  
 
The BCR is comprised of two chains, a heavy chain and a light chain (either a kappa or lambda                   
chain). Each chain is encoded in the germline by multiple segments of three types - variable (V),                 
joining (J) and constant (C) segments (the heavy chain also includes a diversity (D) segment, see                
Materials and Methods). The specificity of the BCRs comes from the V(D)J recombination             
process, in which for each chain one variable (V) and one joining (J) segment are recombined in                 
a process which introduces insertions and deletions into the junction region between the             
segments, called the complementarity determining region 3 (CDR3) ​(Tonegawa, 1983)​. The           
resulting sequence is the main determinant of the cell’s ability to recognize a specific antigen.               
Following B cell activation, somatic hypermutations are introduced to the BCR and the constant              
region may be replaced in a process termed isotype switching ​(Di Noia and Neuberger, 2007)​.               
The random mutations make BCR reconstruction a challenging task. While methods to            
reconstruct BCR sequences from full length scRNA-seq are available ​(Canzar et al., 2017;             
Lindeman et al., 2018; Rizzetto et al., 2018) (as well as single cell V(D)J enriched libraries from                 
10x Genomics: https://www.10xgenomics.com/solutions/vdj/), they were only tested on long         
reads (150bp and 50bp). The ability to reconstruct BCR sequences from short (25-30bp) reads is               
important, as it can decrease cost which can, in turn, increase the number of cells which could be                  
feasibly analyzed. 
 
We introduce BRAPeS (“BCR Reconstruction Algorithm for Paired-end Single cells”), an           
algorithm and software for BCR reconstruction. Conversely to other methods, BRAPeS was            
designed to work with short (25-30bp) reads, and indeed we demonstrate that under these              
settings it performs better than other methods. Furthermore, we show that the performance of              
BRAPeS when provided with short reads is similar to what can be achieved with much longer                
(50-150bp) reads from the same cells, suggesting that BCR reconstruction does not necessitate             
costly sequencing with many cycles.  
 
Results 
 
BRAPes is an extension of the TCR reconstruction software TRAPeS ​(Afik et al., 2017)​, with               
significant modifications added to address the processes of isotype switching and somatic            
hypermutations which are specific to B cells (Figure 1, see Materials and Methods for full               
description of the algorithm). Briefly, BRAPeS takes as input the alignment of the reads to the                
reference genome. BRAPeS first recognizes the possible V and J segments by finding reads with               
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one mate mapping to a V segment and the other mate mapping to a J segment. All unmapped                  
reads whose mates were mapped to the V/J/C segments are then collected, assuming that most               
CDR3-originating reads will be unmapped when aligning to the reference genome. Then, the             
CDR3 region is reconstructed with an iterative dynamic programming algorithm. At each step,             
BRAPeS aligns the unmapped reads to the edges of the V and J segments, using the sequence of                  
the aligned reads to extend the V and J sequences until convergence. Next, the BCR isotype is                 
determined by appending all possible constant segments to the reconstructed sequence and taking             
the most likely complete transcript based on transcriptomic alignment with RSEM ​(Li and             
Dewey, 2011)​. Finally, BRAPeS corrects for somatic hypermutations by collecting all reads            
aligning to the genomic regions of the CDR1, CDR2 and the framework regions (FRs) and               
aligning these reads against each other to obtain a reconstruction of the consensus sequence. The               
CDR3 sequences and their productivity are determined based on the criteria established by the              
international ImMunoGeneTic information system (IMGT) ​(Lefranc, 2014; Lefranc et al., 2015)           
(Methods).  
 
We evaluated BRAPeS’ performance on 374 cells from two previously published data sets - 174               
human B cells and 200 mouse B cells (Materials and Methods, Supplementary Table S1) ​(Canzar               
et al., 2017; Wu et al., 2016)​. To evaluate BRAPeS, we first trimmed the original reads (50bp for                  
the human data and 150bp for the mouse data) and kept only the outer 25 or 30 bases. We                   
compared BRAPeS’ performance on the trimmed data to two other previously published            
methods - BASIC ​(Canzar et al., 2017) and VDJPuzzle ​(Rizzetto et al., 2018) applied either on                
the trimmed data or the original long reads.  
 
When applied to 30bp reads, BRAPeS’ success rates are similar to other methods for the light                
chain, but are higher for heavy chain reconstruction (Figure 2a, Supplementary Table S2).             
BRAPeS reconstructs productive heavy chains in a total of 348 cells, 93% of the cells across                
both datasets, and reconstructs productive light chains in 370 cells (98.9% of the cells). These               
results are in line with the success rates of BASIC and VDJPuzzle on the original long reads:                 
BASIC reconstructs productive heavy and light chains in 353 (94.4%) and 364 (97.3%) cells,              
respectively, and VDJPuzzle reconstructs heavy chains in 346 (92.5%) cells and light chains in              
368 (98.4%) cells. On 30bp reads, BASIC and VDJPuzzle achieve similar reconstruction rates             
for the light chain (362 (96.8%) cells and 370 (98.9%) cells with a productive light chain in                 
BASIC and VDJPuzzle, respectively). However, BASIC and VDJPuzzle see a decline in success             
rates for the heavy chain, reconstructing a productive heavy chain in only 273 (73%) cells for                
BASIC and 242 (64.7%) cells for VDJPuzzle (Figure 2a, Supplementary Table S2).  
 
BRAPeS is also able to maintain a high success rate on 25bp reads, reconstructing heavy chains                
in 328 (87.7%) cells and light chains in 370 (98.9%) cells (Figure 2b and Supplementary Table                
S3). Yet, we observe a substantial decrease in the results of other methods. VDJPuzzle is unable                
to reconstruct any chains with 25bp reads. This is likely due to its use of the ​de-novo ​assembler                  
Trinity ​(Grabherr et al., 2011) which requires a seed k-mer length of 25bp that is unsuitable for                 
very short reads. Similarly to 30bp, BASIC is able to maintain a high reconstruction rate for light                 
chains, with productive reconstructions in 363 (97.1%) cells, but is only able to reconstruct              
productive heavy chains in 204 (54.5%) cells (Figure 2b, Supplementary Table S3). Moreover,             
BASIC only outputs fasta sequences, thus requiring further processing to annotate the BCR. 
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We next turn to evaluate the accuracy of the short-read based CDR3 reconstructions, by              
comparing the resulting sequences to those obtained with long reads (Figure 3, Materials and              
Methods). We use the long-read based reconstruction of BASIC as a reference (we achieve              
similar results with VDJPuzzle on the long-read data; see Supplementary Figure S1) and             
evaluate the accuracy in terms of sensitivity (how many of the CDR3 sequences in the full length                 
data have an identical reconstruction with the short reads) and specificity (how many of the               
CDR3 sequences in the short-read data have an identical long-read reconstruction). In general,             
all methods show a high level of specificity, having almost all CDR3 sequences identical to the                
sequences reconstructed on long reads, whenever both read lengths produce a productive            
reconstruction (Figure 3a-b). In accordance with the higher success rate, BRAPeS shows a high              
sensitivity, with a rate of 0.96 for 30bp data and 0.92 for 25bp data (Figure 3c-d). This is in line                    
with the agreement of different methods on the original data, as VDJPuzzle on long reads has a                 
sensitivity rate of 0.96. On the trimmed data, BASIC and VDJPuzzle show a lower sensitivity               
rate - BASIC achieves sensitivity rates of 0.87 and 0.78 for 30bp and 25bp respectively, and                
VDJPuzzle has a sensitivity rate of 0.83 for 30bp. These results also hold if we only take the top                   
reconstruction of BRAPeS, as more than 97.5% of the identical CDR3 sequences between             
BRPAeS and BASIC are the highest ranked CDR3 sequences for both 25bp and 30bp              
(Supplementary Figures S2 and S3). 
 
BRAPeS’ correction of somatic hypermutations is also accurate across the various regions of the              
transcript (Figure 3). Besides a slight decrease in specificity for CDR2 and FR1 reconstruction,              
BRAPeS maintains a very high level of specificity across all regions in line with the other                
methods. We note that BASIC achieves lower specificity rates for FR1 reconstructions for short              
reads mostly due to partial reconstructions. Overall, BRAPeS has a high sensitivity rate across all               
regions (0.92-0.97 for 30bp and 0.88-0.94 for 25bp), comparable to the sensitivity of VDJPuzzle              
on long reads (0.87-0.95). Similar to the CDR3 results, the high sensitivity and specificity results               
hold when comparing only the top-ranking reconstruction, as 96.8%-99.9% of identical regions            
are the top-ranking regions for 30bp, and 95.4%-100% of the top ranking regions for 25bp               
(supplementary figures S2 and S3).  
 
Discussion 
 
Coupling BCR reconstruction with transcriptome analysis in single cells can provide valuable            
information about the effect of antigen specificity and isotype to cellular heterogeneity. Despite             
an increase in technical noise in transcriptome analysis compared to longer reads ​(Chhangawala             
et al., 2015; Rizzetto et al., 2017)​, short-read sequencing is still widely used as it can reduce                 
sequencing costs by hundreds to thousands of dollars per run, depending on the sequencing              
platform and desired total number of reads. However, current methods do not provide a sufficient               
solution for reconstructing immune cell receptors from short reads ​(Rizzetto et al., 2017)​. To this               
end we provide BRAPeS, a software for BCR reconstruction tailored to work on short-read              
scRNA-seq. BRAPeS is accurate and has a success rate on short reads similar to other methods                
applied to long reads, demonstrating that BCR reconstruction can be achieved at a much lower               
cost. BRAPeS is publicly available at ​https://github.com/YosefLab/BRAPeS 
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Materials and Methods 
 
The BRAPeS algorithm 
 
The input given to BRAPeS is a directory where each subdirectory includes genomic alignments              
of a single cell.  
The BRAPeS algorithm has several steps, performed separately for each chain in each cell: 

1. Identifying possible pairs of V and J segments​: BRAPeS searches for reads where one              
mate of the pair is mapped to a V segment and the other mate is mapped to a J segment.                    
BRAPeS collects all possible V-J pairs and attempts to reconstruct complete BCRs from             
all possible pairs. Since the D segment is very short, reads do not align to it, thus as part                   
of the reconstruction step (step 3) the sequence of the D segment is also reconstructed. If                
no V-J pairs are found, BRAPeS will look for V-C and J-C pairs and will take all possible                  
V/J pairing of the found V and J segments.  
In case of many possible V-J pairs (which can occur due to the similarity among the                
segments), the user can limit the number of V-J pairs to attempt reconstruction on.              
BRAPeS will rank the V-J pairs based on the number of reads mapped to them and take                 
only the top few pairs (the exact number is a parameter controlled by the user). 

2. Collecting the set of putative CDR3-originating reads​: BRAPeS collects the set of            
reads that are likely to originate from the CDR3 region. Those are the reads that are                
unmapped to the reference genome, but their mates are mapped to the V/J/C segments. In               
addition, since the first step of CDR3 reconstruction includes alignment to the ends of the               
genomic V and J sequences, reads mapping to the V and J segments are also collected.  

3. Reconstructing the CDR3 region​: For each V-J pair, the edges of the V and J segments                
are extended with an iterative dynamic programming algorithm. In each iteration,           
BRAPeS tries to align all the unmapped reads to the V and J sequences separately with                
the Needleman-Wunsch algorithm with the following scoring scheme: +1 for match, -1            
for mismatch, -20 for gap opening and -4 for gap extension. In addition, BRAPeS does               
not penalize having a read “flank” the genomic segment. All reads that passed a user               
defined threshold are considered successful alignments. BRAPeS then builds the          
extended V and J segments by taking for each position the base which appears in most                
reads. This process repeats for a given number of iterations or until the V and J segments                 
overlap. Since the purpose of this step is to reconstruct only the CDR3 region, in order to                 
reduce running time the alignment is performed only on a predetermined number of bases              
leading to the ends of the V and J segment (3’ end of the V segment and 5’ end of the J                      
segment). The number of bases taken from the end of each segment is a parameter               
controlled by the user, set by default to the length of the J segment. BRAPeS can also run                  
a “one-sided” mode, where if an overlap was not found (e.g. due to assigning the wrong                
V segment), BRAPeS will attempt to determine the productivity of only the extended V              
and only of the extended J segment.  

4. Isotype determination​: To find the BCR isotype, for each V-J pair with a reconstructed              
CDR3 BRAPeS concatenates the full sequences of all possible constant segments. Then,            
BRAPeS runs RSEM ​(Li and Dewey, 2011) on all sequences using all paired-end reads              
with at least one mate mapped to the genomic V/J/C segments as input. For each V-J pair                 
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the constant region with the highest expected count is taken as the chosen constant              
segment. 

5. Somatic hypermutation correction​: All the reads from step 4 are aligned against the             
genomic CDR1, CDR2 and framework sequences obtained from IMGT using the SeqAn            
package ​(Döring et al., 2008)​. Reads are chosen as candidates for reconstruction if the              
percentage of mutations in the aligned sequence is below a given input threshold, set by               
default to 0.35 for CDRs and 0.2 for FRs. Separate thresholds are used for framework and                
complementary determining regions to account for higher rates of somatic          
hypermutations in the CDRs. When reads align across flanking CDR-framework regions,           
the rate of mutation is calculated separately for the aligned framework segment and the              
aligned CDR segment. If both score below their given thresholds, the read is saved for               
reconstruction. Once all putative reads have been collected, they are first aligned based             
on the coordinates obtained from the genomic alignments. Then, to correct for possible             
misalignments, the consensus alignment algorithm in the Seqan package is run using            
these approximate positions as guides. Finally, the reconstructed sequence is obtained by            
aligning the genomic sequences against the consensus sequence to find their start and end              
coordinates. 

6. Separating similar BCRs and determining chain productivity​: After selecting the top           
isotype for each V-J pair and correcting for somatic hypermutations, BRAPeS determines            
if the reconstructed sequence is productive (i.e. the V and J are in the same reading frame                 
with no stop codon in the CDR3) and annotates the CDR3 junction. If more than one V-J                 
pair produces a CDR3 sequence (either due to having more than one recombined chain in               
the cell or due to similar V-J segments resulting in the same CDR3 sequence              
reconstruction), the various productive reconstructions are ranked based on their          
expression values as determined by RSEM. 

 
The output for BRAPeS is the full ranked list of reconstructed chains, including the CDR3               
sequences, V/J/C annotations and the number of reads mapped to each segment, as well as a                
summary file of the success rates across all cells. In addition, for each cell the output is the full                   
sequence of each reconstructed BCR, as well as a file detailing the sequences of the CDR1,                
CDR2 and framework regions, a file with the read count for each isotype and a file with the read                   
count for each productive BCR. 
  
BRAPeS is implemented in python. To increase performance, the dynamic programming           
algorithm and the somatic hypermutation correction algorithm is implemented in C++ using the             
SeqAn package ​(Döring et al., 2008)​. Moreover, to decrease running time for deeply sequenced              
cells, BRAPeS has the option to randomly downsample the number of reads for CDR3              
reconstruction to 10,000 and the number of reads for somatic hypermutation correction to             
40,000. BRAPeS is publicly available and can be downloaded at the following link:             
https://github.com/YosefLab/BRAPeS  
 
 
Data availability and preprocessing 
Raw fastq files of mouse B cells were downloaded from Wu et al. (ArrayExpress              
E-MTAB-4825) ​(Wu et al., 2016)​. All analysis was performed on the 200 cells that were               
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available through ArrayExpress. Raw fastq files for the human data from Canzar et al. ​(Canzar et                
al., 2017) were provided by the author. We excluded single-end cells and cells filtered out in the                 
original study, leaving a total of 174 cells. Next, reads were trimmed to be 25 or 30bp paired-end                  
with trimmomatic ​(Bolger et al., 2014)​, keeping only the outer bases.  
For BRAPeS, low quality reads were trimmed using trimmomatic with the following parameters:             
LEADING:15, TRAILING:15, SLIDINGWINDOW:4:15, MINLEN:16. The remaining reads       
were aligned to the genome (hg38 or mm10) using Tophat2 ​(Kim et al., 2013)​. Running               
VDJPuzzle and BASIC on the trimmed reads resulted in no reconstructions for VDJPuzzle and a               
slight decrease in reconstruction rates for BASIC, thus the results presented in the paper for               
VDJPuzzle and BASIC are for the raw reads.  
 
Running BRAPeS 
For this study, BRAPeS was run using the following parameters for the human data: “-score 15                
-top 6 -byExp -iterations 6 -downsample -oneSide”. The “score” is the minimal alignment score              
for the CDR3 reconstruction step and “iterations” limits the number of times BRAPeS attempts              
to extend the V and J segments. The parameters “top” and “byExp” determine the maximal               
number of V-J pairs per chain on which reconstruction is attempted, by ranking the pairs based                
on their number of aligned reads and sampling from the pairs with the highest read count. The                 
“downsample” parameter reduces the number of reads used for CDR3 reconstruction and            
somatic hypermutation correction. 
For the mouse data BRAPeS was run with the following parameters: “-score 15 -oneSide -byExp               
-top 10”. In addition, as some cells required a higher alignment score threshold, we ran BRAPeS                
with a scoring threshold of 21 for chains without a productive reconstruction.  
 
Running VDJPuzzle and BASIC 
We ran VDJPuzzle using default parameters, providing VDJPuzzle with the hg38 genome and             
GRCh38.p2 annotation for human, and mm10 genome with the GRCm38.p4 annotation for            
mouse. We then considered only reconstructions with a complete CDR3 (no missing bases)             
which appeared in the “summary_corrected” folder as valid productive reconstructions.  
BASIC was ran with default parameters. After running BASIC we collected all the output fasta               
files and ran them through IMGT/HighV-Quest ​(Alamyar et al., 2012; Li et al., 2013)​. Only               
sequences that resulted in productive CDR3 according to IMGT were considered successful            
reconstructions.  
 
Comparison of sensitivity and specificity 
To determine the accuracy of the methods, we compared the reconstructed CDR3 nucleotide             
sequences to the reconstruction produced by running BASIC or VDJPuzzle on long reads. Only              
CDR3s with sequences identical to the sequences reconstructed on the long-read data were             
considered accurate. In case of more than one reconstructed CDR3 sequence, if both methods              
had at least one identical CDR3 sequence it was considered an accurate reconstruction, except              
for supplementary figures S2 and S3 for which we only compared the highest ranking              
reconstruction. We used the same criteria of a perfect match to estimate the reconstruction              
accuracy of CDR1, CDR2, FR1, FR2 and FR3 regions. The annotated FR4 VDJPuzzle output              
was much longer compared to BASIC, thus when comparing to BASIC we considered the FR4               
sequence accurate if the FR4 prefix was identical to the full BASIC FR4 reconstruction. 
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Figures 
 

 
 
Figure 1: The BRAPeS algorithm. ​First, the V and J segments are selected based on the initial                 
alignment to the reference genome by searching for paired reads with one read mapping to a V                 
segment and its mate mapping to a J segment. Next, putative CDR3-originating reads are              
identified as the unmapped reads whose mates map to the V/J/C segments. BRAPeS runs an               
iterative dynamic programming algorithm to align the CDR3-originating reads to the V and J              
segments and extend them until they overlap. BCR isotype is then determined by running RSEM               
on all possible full BCR transcripts (the reconstructed V-J segments combined with all possible              
constant segments). Finally, BRAPeS corrects for somatic hypermutations by building a           
consensus sequence of the reads aligning to the CDR1, CDR2 and framework regions. 
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Figure 2: BRAPeS success rates. A) ​Fraction of cells with a successful reconstruction of a               
productive CDR3 in human and mouse B cells using the following methods: VDJPuzzle applied              
to the original, long-read data (black line) and the trimmed version of the data, trimmed to 30bp                 
(light blue circle). BASIC applied to the long-read (grey line) and the trimmed data (dark blue                
circle), and BRAPeS applied to the trimmed data (red circle). ​B) ​Same as A, but the trimmed                 
version of the data was trimmed down to include only the outer 25bp, instead of 30bp. 
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Figure 3: Sensitivity and specificity of BRAPeS. A) ​Specificity of BRAPeS for 30bp for each               
CDR and framework region. The fraction of chains with a sequence identical to the sequence               
reconstructed by BASIC on the long-read data for each region, using the following methods:              
VDJPuzzle when applied to the long-read data (black), BRAPeS (red), BASIC (dark blue) and              
VDJPuzzle (light blue) applied to a version of the data trimmed to 30bp. The fraction is                
calculated only for chains that had a productive reconstruction in both the long-read BASIC              
results and the other method. ​B) ​Specificity of BRAPeS for 25bp. Same as A, except the                
short-read version of the data was trimmed to include only the outer 25bp, instead of 30bp. ​C)                 
Sensitivity of BRAPeS for 30bp for each CDR and framework region. Same as A, except the                
fraction is calculated out of all the chains that had a productive reconstruction when running               
BASIC on the long-read data. ​D) Sensitivity of BRAPeS for 25bp. Same as B, except the                
fraction is calculated out of all the chains that had a productive reconstruction when running               
BASIC on the long-read data. 
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Supplementary Information 
 
Supplementary figures are found below. Supplementary tables can be found in the following 
link: 
https://www.life-science-alliance.org/content/2/4/e201900371/tab-figures-data#fig-data-supplem
entary-materials 
 

Supplementary figures 
 

 
Figure S1: Sensitivity and specificity of BRAPeS compared to VDJPuzzle reconstructions           
on long-read data​. ​A​) Specificity of BRAPeS for 30bp for each CDR and framework region.               
The fraction of chains with a sequence identical to the sequence reconstructed by VDJPuzzle on               
the long-read data for each region, using the following methods: BASIC when applied to the               
long-read data (grey), BRAPeS (red), BASIC (dark blue) and VDJPuzzle (light blue) applied to a               
version of the data trimmed to 30bp. The fraction is calculated only for chains that had a                 
productive reconstruction in both the long-read VDJPuzzle results and the other method. ​B​)             
Specificity of BRAPeS for 25bp. Same as A, except the short-read version of the data was                
trimmed to include only the outer 25bp, instead of 30bp. ​C​) Sensitivity of BRAPeS for 30bp for                 
each CDR and framework region. Same as A, except the fraction is calculated out of all the                 
chains that had a productive reconstruction when running VDJPuzzle on the long-read data. ​D​)              
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Sensitivity of BRAPeS for 25bp. Same as B, except the fraction is calculated out of all the chains                  
that had a productive reconstruction when running VDJPuzzle on the long-read data. 
 
 

 
 
Figure S2: Sensitivity and specificity of the top-ranking reconstruction. ​A​) Specificity of the             
top-ranking BRAPeS reconstruction for 30bp for each CDR and framework region. The fraction             
of chains where the top-ranking sequence is identical to the sequence reconstructed by BASIC on               
the long-read data for each region, using the following methods: VDJPuzzle when applied to the               
long-read data (black), BRAPeS (red), BASIC (dark blue) and VDJPuzzle (light blue) applied to              
a version of the data trimmed to 30bp. The fraction is calculated only for chains that had a                  
productive reconstruction in both the long-read BASIC results and the other method. ​B​)             
Specificity of top-ranking BRAPeS for 25bp. Same as A, except the short-read version of the               
data was trimmed to include only the outer 25bp, instead of 30bp. ​C​) Sensitivity of the                
top-ranking BRAPeS reconstruction for 30bp for each CDR and framework region. Same as A,              
except the fraction is calculated out of all the chains that had a productive reconstruction when                
running BASIC on the long-read data. ​D​) Sensitivity of BRAPeS for 25bp. Same as B, except                
the fraction is calculated out of all the chains that had a productive reconstruction when running                
BASIC on the long-read data. 
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Figure S3: Sensitivity and specificity of the top-ranking reconstruction compared to the            
top-ranking VDJPuzzle reconstruction on long-read data​. ​A​) Specificity of the top-ranking           
BRAPeS reconstruction for 30bp for each CDR and framework region. The fraction of chains              
where the top-ranking sequence is identical to the top-ranking sequence reconstructed by            
VDJPuzzle on the long-read data for each region, using the following methods: BASIC when              
applied to the long read data (grey), BRAPeS (red), BASIC (dark blue) and VDJPuzzle (light               
blue) applied to a version of the data trimmed to 30bp. The fraction is calculated only for chains                  
that had a productive reconstruction in both the long-read VDJPuzzle results and the other              
method. ​B​) Specificity of the top-ranking BRAPeS reconstruction for 25bp. Same as A, except              
the short-read version of the data was trimmed to include only the outer 25bp, instead of 30bp.                 
C​) Sensitivity of the top-ranking BRAPeS reconstruction for 30bp for each CDR and framework              
region. Same as A, except the fraction is calculated out of all the chains that had a productive                  
reconstruction when running VDJPuzzle on the long-read data. ​D​) Sensitivity of BRAPeS for             
25bp. Same as B, except the fraction is calculated out of all the chains that had a productive                  
reconstruction when running VDJPuzzle on the long-read data. 
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