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ABSTRACT OF THE DISSERTATION

Topics in Quantum-Hall Physics, Game-Optimization and Generalization in Neural
Networks

by
Amartya Mitra

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2021
Dr. Michael C. Mulligan, Chairperson

This thesis contains research conducted on various topics in quantum Hall physics
and deep learning theory. The first chapter studies a particular aspect of quantum Hall
systems, namely their behavior around the v = 1/2 Landau level (LL) state. This work is
motivated by the need to understand better this particular state in light of the two proposed
distinct theoretical descriptions existing for the same. Specifically, we analyze quantum
oscillations around the v = 1/2 LL state using one of the propositions to support the latter.
The second and third chapters study two distinct domains in deep learning, multi and
single-objective models. In particular, the second considers a specific type of multi-objective
model, zero-sum games, to demonstrate existing issues in training such setups and develop
an efficient optimization scheme. The final chapter involves studying a particular aspect of
the generalization behavior of deep neural networks (DNNs). Specifically, it attempts to
provide a theoretical framework to explain the recently observed phenomenon of ”epoch-wise

double descent” in such DNNs.

vi



Contents

[List of Figures| X
[List_of Tables xi
1__Introduction| 1
2 Fluctuations and magnetoresistance oscillations near the half-filled Lan- |
[_dau Tevel 4
[2.0.1  Weiss oscillations and the v =1/2( . . . . . ... ... ... ... .. 6

2,02 Outline . . ... .. . 8

2.1 Dirac composite fermions: review| . . . . . . . . . .. ..o 11
2.2  Dynamical mass generation in an effective magnetic field|. . . . . . . . . .. 14
[2.2.1 Dirac fermions in a magnetic field] . . . . ... ... ... ... 14

[2.2.2  Schwinger—Dyson equations: setup| . . . . . . . . . ... ... .. 17

[2.2.3  Gauge field selt-energy| . . . . . .. ..o 000000 20

[2.2.4  Fermion self-energy|. . . . . . . . . . oL 23

[2.3  Weiss oscillations of massive Dirac composite fermions| . . . . . . . . . . .. 25
................................... 26

[2.3.2  Dirac composite fermion Weiss oscillations|. . . . . . . ... ... .. 28

2.4  Comparison to HLR mean-field theory at finite temperature| . . . . . . . . . 31
2.4.1 Shubnikov—de Haas oscillations . . . . . . .. .. .. ... .. .... 31

242 Weiss oscillations . . . . . . . . .. ... oL 33

3 LEAD: Min-Max Optimization from a Physical Perspective| 35
3.1  Problem Setting] . . ... ... .. 37
[3.2  Optimization Mechanics| . . . . . . . ... ... o oo o 38
B.2.1 Discretization| . . . . . . .. .. oo 40

[3.3  Convergence Analysig| . . . . . .. . .. . L o 43
[3.3.1  Continuous Time Analysis|. . . . . . . .. ... ... .. .. ..... 43

[3.3.2  Discrete-Time Analysig) . . .. ... ... .. ... ... ....... 44

[3.4  Comparison of Convergence Rate| . . . . . . . . ... ... ... ... .... 47
3.5 Experiments|. . . . . ... . 48

vii



[3.5.2 Generative Adversarial Networksl . . . . ... ... ... ... . ... 50

3.6 Related Workl . . . . .. . .. ... 52

[4 Double Descent Phenomena: A Tale of Multi-scale Feature Learning Dy- |
[_namics] 57
M1 Theoretical Results . . . . . . . . . .. 59
411 Preludel . . .. ... 59

4.1.2 A Teacher-Student Setup| . . . . . . . ... ... L. 60

413 Main Resultl. . . . ... ... 63

[4.1.4  Sketch of derivations| . . . . . . .. ... oo oo 64

4.2 Experimental Results|. . . . . ... ... oo oo 68
4.2.1  Match between theory and simulations|. . . . . . .. ... ... ... 69

[4.2.2  The Phase diagram|. . . . . . ... ... 0000000 70

M3 Related Workl . . . . . . . . . 72
[b__Conclusions| 76
[A Chapter 2: Appendix| 80
A.l Integrals| . . . . . . . . . 80
IA.1.1 Gauge field selt-energy| . . . . . . . . ... ... oL 80

[A.1.2 Fermion self-energy|. . . . . . . . . .. oL 82

(B Chapter 3: Appendix| 87
[B.1 Derivation of Eq.[3.3] . . . . . . . . . 87
[B.2 Proof of Proposition [3.2.1] . . . . . . . .. .. ... ... 88
IB.3  Continuous-time Convergence Analysis: Quadratic Min-Max Game| . . . . . 88
B4 Proofof Theorem[2f. . . . . . . .. .. . 92
IB.5 Proof of Proposition|3.3.2[ . . . . . . ... .. ... L. 96
B.6_Proof of TheoremBl. . . . . . . . . . . . . 96
IB.7  Experiments and Implementation Details) . . . . .. ... ... ... .... 99
B.7.1 DLEAD-Adam Pseudocodel . . . . . .. .. ... oo 99

IB.7.2  Simple Experiment On Quadratics| . . . . . . .. .. .. ... .... 99

[B.7.3  Mixture of Eight Gaussians| . . . . . . . ... .. ... ... ..... 100

B.7.4 CIFAR 10 DCGAN 101

B.7.5 CIFAR 10 ResNet 103

[B.8 Comparison to other methods| . . . . . .. ... ... ... ... ....... 105

[C Chapter 4: Appendix] 110
|C.1  Self-averaging and the replica trick| . . . ... ... ... ... . ....... 110
[C.2 Theoretical Detailsl . . . . . . . .. ... . 110
[C21 Generalization Errorl . . . . . . .. ... ... 0oL 110

|C.3 Experimental Details| . . . . . ... ... ... ... ... ... .. ... 114

) - ) 100, . 114

|C.3.2  Decomposition of the Generalization Error{f . . . ... ... ... .. 114

viii



(C.3.3 Extra Experiments Varying n/d . . . . ... ... ... ... ....

|C.3.4  Computational Resources|

(Bibliography|

X



List of Figures

[2.1  Weiss oscillations of the Dirac composite fermion theory at fixed electron |
| density n. and varying magnetic field B about half-fillingl . . . . . . . ... 9
2.2 Weiss oscillations of the Dirac composite termion theory at fixed magnetic |
| field B and varying electron density ne about halt-filling . . . . . . . .. .. 32
[3.1 Diagram depicting positioning of the eigenvalues of GDA in blue (Eq. (3.18])) |
| and those of LEAD (Eqns.(3.23),(3.24)) inved .. ... ... ... .. ... 46
13.2  Average computational cost per iteration of several well-known methods for |
| (non-saturating) GAN optimization|. . . . . . .. ... ... ... ... .. 50
13.3  Pertormance of LEAD-Adam on the generation task of 8-Gaussians|. . . . . 51
[3.4  Plot showing the evolution of the FID over 400 epochs for our method |
| (LEAD-Adam) vs vanilla Adam on a DCGAN architecture|. . . . . . . . .. 52
[3.5  Generated sample of LEAD-Adam on CIFAR-10| . . ... .. ... ... .. 53
4.1 A visual depiction of the teacher-student setup of Sec.|4.1.2] . . . . . .. .. 61
4.2 Comparison between generalization performance predicted by theory and |
| ResNet-18 on CIFAR-10, as function of training time|. . . . . . . . . . ... 70
{4.3 Phase diagram of the generalization error as a function of R and @ (Eq. (4.8]))| 72
IB.1 Comparison of the performance of LEAD vs. several other first-order and |
| second-order methods on a variant of the quadratic min-max game| . . . . . 100
B.2  Performance of LEAD on CIFAR-10 image generation task on a DCGAN |
[ architecturel . . . . . . . . . 103
B.3  Generated sample of LEAD-Adam on CIFAR-10 after 50k iterations on a |
[ ResNet architecturel . . . . . . . . . . . . .. L 106
[B.4 Figure depicting the convergence/divergence of several algorithms on the |
| game of f(z,y) =y(x® —v?)| . . .. 108
|C.1 The plot shows the decomposition of the generalization error into fast and |
| slow components. The double descent curve results from overlapping of these |
[ two components.| . . . . ... 116
[C.2 The plot shows the dynamics of the generalization error as 5 is varied from |
| 0.1 to 3. The ratio § = 0.5, y1 = 1, and 72 = 0.1 are fixed|. . . . . .. ... 117




List of Tables

[3.1  Pertformance of several methods on CIFAR-10 image generation taskl . . . . 56
IB.1 Architecture used for the Mixture of Eight Gaussians.| . . . . . . . ... .. 101
B.2 Architecture used for CIFAR-10 DCGANJ . . . . .. .. ... ... ... .. 102
[B.3 ResNet blocks used for the ResNet architectures (see Table [B.4)).| . . . . .. 104
IB.4 ResNet architectures used for experiments on CIFAR10.| . . . . .. ... .. 105
IB.5  Comparison of several second-order methods in min-max optimization| . . . 107

xi



Chapter 1

Introduction

This thesis presents research across a variety of different topics. Here we discuss
each, in turn.
Fluctuations and magnetoresistance oscillations near the half-filled Landau level:
We study theoretically the magnetoresistance oscillations near a half-filled lowest Landau level
(v = 1/2) that result from the presence of a periodic one-dimensional electrostatic potential.
We use the Dirac composite fermion theory of Son [Phys. Rev. X 5 031027 (2015)], where the
v = 1/2 state is described by a (2 + 1)-dimensional theory of quantum electrodynamics. We
extend previous work that studied these oscillations in the mean-field limit by considering
the effects of gauge field fluctuations within a large flavor approximation. A self-consistent
analysis of the resulting Schwinger-Dyson equations suggests that fluctuations dynamically
generate a Chern-Simons term for the gauge field and a magnetic field-dependent mass for the
Dirac composite fermions away from v = 1/2. We show how this mass results in a shift of the

locations of the oscillation minima that improves the comparison with experiment [Kamburov


http://dx.doi.org/10.1103/PhysRevX.5.031027

et. al., Phys. Rev. Lett. 113, 196801 (2014)]. The temperature-dependent amplitude of these
oscillations may enable an alternative way to measure this mass. This amplitude may also
help distinguish the Dirac and Halperin, Lee, and Read composite fermion theories of the
half-filled Landau level. This research was conducted in collaboration with Michael Mulligan,
and it was published as [242].

LEAD: Min-Max Optimization from a Physical Perspective: Adversarial formula-
tions such as generative adversarial networks (GANs) have rekindled interest in two-player
min-max games. A central obstacle in the optimization of such games is the rotational
dynamics that hinder their convergence. Existing methods typically employ intuitive, care-
fully hand-designed mechanisms for controlling such rotations. This paper takes a novel
approach to address this issue by casting min-max optimization as a physical system to
motivate LEAD, an optimizer for min-max games. Next, using Lyapunov stability theory and
spectral analysis, we study LEAD’s convergence properties in continuous and discrete-time
settings for a class of quadratic min-max games to demonstrate linear convergence to the
Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and
CIFAR-10 image generation to demonstrate improvements in GAN training. This research
was conducted in collaboration with Reyhane Askari Hemmat, Guillaume Lajoie and Toannis
Mitliagkas, and it was preprinted as [146].

Double Descent Phenomena: A Tale of Multi-scale Feature Learning Dynamics:
A key challenge in building theoretical foundations for deep learning is the complex opti-
mization dynamics of large neural networks. Such dynamics result from high-dimensional

interactions between the large number of parameters of such networks, thus leading to


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.196801

non-trivial behaviors. In this regard, a particularly puzzling phenomenon is the “double

” of the generalization error, where it undergoes two non-monotonous transitions,

descen
or descents, with increasing model complexity (model-wise) or training time (epoch-wise).
While model-wise double descent has been a subject of extensive study of recent, the origins
of the latter are much less clear. To bridge this gap, in this work, we leverage tools from sta-
tistical physics to study a simple teacher-student setup exhibiting epoch-wise double descent
similar to deep neural networks. In this setting, we derive closed-form analytical expressions
for the evolution of generalization error as a function of the training time. Crucially, this
provides a new mechanistic explanation of epoch-wise double descent, suggesting that it
can be attributed to different features being learned at different time scales. Summarily,
while a fast-learning feature is over-fitted, a slower-learning feature starts to fit,
resulting in a non-monotonous generalization curve. Finally, we validate our find-
ings through simple numerical experiments where our theory accurately predicts empirical
findings and remains consistent with observations in deep neural networks. This research

was conducted in collaboration with Mohammad Pezeshki (Lead), Guillaume Lajoie and

Yoshua Bengio.



Chapter 2

Fluctuations and

magnetoresistance oscillations near

the half-filled Landau level

In recent years, there has been a renewed debate about how effective descriptions of
the non-Fermi liquid state at a half-filled lowest Landau level (v = 1/2) of the two-dimensional
electron gas might realize an emergent Landau level particle-hole (PH) symmetry [374] 117],
found in electrical Hall transport [327, B67, 277] and numerical [299, [IT1] experiments. The
seminal theory of the half-filled Landau level of Halperin, Lee, and Read [140], which has
received substantial experimental support [362], describes the v = 1/2 state in terms of
non-relativistic composite fermions in an effective magnetic field that vanishes at half-filling
(see [170, O7] for pedagogical introductions). However, the HLR theory appears to treat

electrons and holes asymmetrically [I85, 36]. For instance, it is naively unclear how composite



fermions in zero effective magnetic field might produce the Hall effect ng = —ﬁ that PH
symmetry requires [I85]. (We use the convention kg =c=h=e=1.)

Two lines of thought point towards a possible resolution. The first comes by way
of an a priori different composite fermion theory, introduced by Son [334]. In this Dirac
composite fermion theory, the half-filled Landau level is described by a (2 + 1)-dimensional
theory of quantum electrodynamics in which PH symmetry is a manifest invariance. This
theory is part of a larger web of (2 4 1)-dimensional quantum field theory dualities [324].
On the other hand, it has recently been shown that HLR mean-field theory can produce
PH symmetric electrical response, if quenched disorder is properly included in the form of a
precisely correlated random chemical potential and magnetic flux [351), 197, 195]. (Mean-field
theory means that fluctuations of an emergent gauge field coupling to the composite fermion
are ignored.) Furthermore, both composite fermion theories yield identical predictions for a
number of observables in mean-field theory [334) 1211, 351, (73, [196], e.g., thermopower at
half-filling and magnetoroton spectra away from half-filling. These results suggest that the
HLR and Dirac composite fermion theories may belong to the same universality class.

To what extent do these results extend beyond the mean-field approximation? How
do alternative experimental probes constrain the description of the v = 1/2 state? The aim
of this paper is to address both of these questions within the Dirac composite fermion theory.
Prior work has identified observables that may possibly differ in the two composite fermion
theories: Son and Levin [212] have derived a linear relation between the Hall conductivity
and susceptibility that any PH symmetric theory must satisfy; Wang and Senthil [353] have

determined how PH symmetry constrains the thermal Hall response of the HLR theory;



using the microscopic composite fermion wave function approach, Balram, Toke, and Jain
[33] found that Friedel oscillations in the pair-correlation function are symmetric about

v=1/2.

2.0.1 Weiss oscillations and the v = 1/2

Here, we study theoretically commensurability oscillations in the magnetoresistance
near v = 1/2, focusing on those oscillations that result from the presence of a periodic
one-dimensional static potential [362]. These commensurability oscillations are commonly
known as Weiss oscillations [360, 113} 365 B59]. For a free two-dimensional Fermi gas, the
locations of the Weiss oscillation minima, say, as a function of the transverse magnetic field

b, satisfy

d
277 pu—
by = T (p—i—(b), p=1,2,3,..., (2.1)

where ¢, =1/ \/m is the magnetic length; d is the period of the potential; kg is the Fermi
wave vector; ¢ = +1/4 for a periodic vector potential, while ¢ = —1/4 for a periodic scalar
potential [282] 37§]. (Expressions for the oscillation minima when both potentials are present
can be found in Refs. [283, [112].)

Early experiments [362] saw p = 1 Weiss oscillation minima about v = 1/2 due
to an electrostatic scalar potential, upon identifying, in Eq. , b = B — 4mn, with the
effective magnetic field experienced by composite fermions (B is the external magnetic field
and n, is the electron density) and krp = \/47n, with the composite fermion Fermi wave
vector, and choosing ¢ = +1/4. These results, along with other commensurability oscillation

experiments [362], provided strong support for the general picture of the v = 1/2 state



suggested by the HLR theory. In particular, the phenomenology near the v = 1/2 state
could be well described by an HLR mean-field theory in which composite fermions respond
to an electronic scalar potential as a vector potential.

Recent improvements in sample quality and experimental design have allowed
for an unprecedented refinement of these measurements. Through a careful study of the
oscillation minima corresponding to the first three harmonics (p = 1,2,3), Kamburov et
al. [I77] came to a remarkable conclusion that is in apparent disagreement with the above
hypothesis (see [329] for a review of these and related experiments): Weiss oscillation minima
are well described by Eq. upon taking kp = v/4mn, for v < 1/2, as before; but for
v > 1/2, the inferred Fermi wave vector, kp = y/4m(Z — n.), is determined by the density
of holes. In both cases, ¢ = +1/4. Might a theory of the v = 1/2 state require two different
composite fermion theories [I77, 36], a theory of composite electrons for v < 1/2 and a
theory of composite holes for v > 1/2? If kp = \/4mn, is instead taken for 1/2 < v < 1,
there is a roughly 2% mismatch between the locations of the p = 1 minimum obtained
from Eq. and the nearest observed minimum; this discrepancy between theory and
experiment decreases in magnitude as p increases [I77]. While the mismatch is small, it is
systematic: it persists in a variety of different samples of varying mobilities and densities,
as well as two-dimensional hole gases, which typically have larger effective masses (as well
as near half-filling of other Landau levels [329]). (This mismatch is the same magnitude as
the difference between the electrical Hall conductivities produced by an HLR theory with
agg = 0 and an HLR theory with agg = —1/4m, the composite fermion Hall conductivity

required by PH symmetry; an equal value of the dissipative resistance [362] is assumed in



both cases for this comparison. See Eq. (48) of [185].)

The hypothesis that composite fermions respond to an electric scalar potential as
a purely magnetic one approximates HLR mean-field field theory. In fact, an electric scalar
potential generates both a scalar and vector potential in the HLR theory. (This observation
by Wang et al. [351] is crucial for obtaining PH symmetric electrical Hall transport within
HLR mean-field theory.) However, the magnitude of the scalar potential is suppressed
relative to the vector potential by a factor of {5/d ~ 1/50 [36]. Cheung et al. [73] found
that upon including the effects of the scalar potential in HLR mean-field theory, there is a
slight correction to the expected locations of the oscillation minima both above and below
v = 1/2. The nature of the corrections are such that HLR mean-field theories of composite
electrons or composite holes that take either kp = /4mn, or kg = \/47r(% — ne) produce
identical results. In addition, the shifted oscillation minima are in agreement with the
mean-field predictions of the Dirac composite fermion theory (at least within the regime
of electronic parameters probed by experiment). Unfortunately, the small disagreement
between composite fermion mean-field theory and experiment persists, in this case for all
values of 0 < v < 1: for a given p, the observed oscillation minima are shifted inwards relative

to the theoretical prediction by an amount that decreases as v = 1/2 is approached—see

Fig. 2.1}

2.0.2 Outline

In this paper, we consider the mismatch from the point of view of the Dirac
composite fermion theory. In perturbation theory about mean-field theory, we argue that

the comparison with experiment can be improved if the effects of gauge field fluctuations
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Figure 2.1: Weiss oscillations of the Dirac composite fermion theory at fixed electron
density n. and varying magnetic field B about half-filling By, ({5, P /d =0.03 and kT =
0.3,/2B; /2). The blue curve corresponds to Dirac composite fermion mean-field theory
[73]. The orange curve includes the effects of a Dirac composite fermion mass m o
|B — 47me|1/ 3B1/6 induced by gauge fluctuations. Vertical lines correspond to the observed

oscillation minima [I77].

are considered. Our strategy is to include their effects by determining the fluctuation
corrections to the mean-field Hamiltonian. We obtain this corrected Hamiltonian through
an approximate large N flavor analysis of the Schwinger-Dyson equations [164] for the Dirac
composite fermion theory. The resulting Dirac composite fermion propagator specifies the
input parameters, namely, the chemical potential and mass, of the corrected mean-field
Hamiltonian. We then follow the analysis by Cheung et al. [73] to determine the corrected
Weiss oscillation curves. Our results are summarized in Fig. [2.1

To understand our results, it is helpful to reinterpret Eq. as a measure of a

Dirac fermion density n by replacing kp — v/4mn (we set the Fermi velocity to unity). Any



decrease in the density induces an inward shift of the Weiss oscillation minima determined
by Eq. towards b = 0. Dirac fermions of mass m, placed at chemical potential u have
a density n = (u? — m?)/4m. Our leading order analysis of the Schwinger-Dyson equations
indicates that gauge fluctuations generate a mass m away from v = 1/2, while the chemical
potential is unchanged.

Such dynamical mass generation in a non-zero magnetic field is known to occur in
various (2+1)-dimensional theories of Dirac fermions (see [240)] for a review). For example,
in the theory of a free Dirac fermion at zero density, a uniform magnetic field sources a
vacuum expectation value for the mass operator. Short-ranged attractive interactions then
induce a non-zero mass term in its effective Lagrangian [I36]. We show how a similar
phenomenon occurs in the Dirac composite fermion theory. This effect is also expected from
the point of view of symmetry: PH symmetry forbids a Dirac composite fermion mass (see
. (Manifest PH symmetry is the essential advantage that the Dirac composite fermion
theory confers to our analysis.) Away from v = 1/2, PH symmetry is broken and so all
terms, consistent with the broken PH symmetry, are expected to be present in the effective
Lagrangian. Note there is no symmetry preventing corrections to the Dirac composite
fermion chemical potential; rather, it is found to be unaltered to leading order within our
analysis.

We also comment upon the finite-temperature behavior of quantum oscillations
near v = 1/2. This behavior is interesting to consider because at finite temperatures,
away from the long wavelength limit, differences in the HLR and Dirac composite fermion

theories should appear. We discuss how the temperature dependence of the Weiss oscillation

10



amplitude might exhibit subtle differences between the two theories.

The remaining sections are organized as follows. In §2.1] we review the Dirac
composite fermion theory. In §2.2| we obtain an approximate solution to the Schwinger—
Dyson equations. In we use the chemical potential and mass of the resulting Dirac
composite fermion propagator as input parameters for the “fluctuation-improved” mean-field
Hamiltonian and determine the resulting Weiss oscillations. We discuss a few consequences

of this analysis in §2.4] and we conclude in §§] Appendix [A-T] contains details of calculations

summarized in the main text.

2.1 Dirac composite fermions: review

Electrons in the lowest Landau level near half-filling can be described by a La-

grangian of a 2-component Dirac electron W, [334]:
— — 1
Lo=T A (100 + Aa)Ve —m U U, + ge@ﬂf’,ﬁlaaﬁ/xg +..., (2.2)

where A, with a € {0,1,2} is the background electromagnetic gauge field; ¥, = \I/l’yo; the
v matrices 70 = o3, 4! = io!, v2 = io? satisfy the Clifford algebra {7*,~7%} = 21 with

012 — 1. and we set the Fermi velocity

n®8 = diag(+1, —1, —1); the anti-symmetric symbol €
vp = 1 here and in the Dirac composite fermion dual. The benefit of the Dirac formulation
is that the limit of infinite cyclotron energy w. = B/m. can be smoothly achieved at fixed
external magnetic field B = 91 As — 9, A1 > 0 by taking the electron mass m., — 0. The ...
include additional interactions, e.g., the Coulomb interaction and coupling to disorder.
The electron density,
B

ne =Wiw, + e (2.3)

11



Consequently, when v = 2mn./B = 1/2, the Dirac electrons half-fill the zeroth Landau level.
For m. = 0 and v = 1/2, the Dirac Lagrangian is invariant under the anti-unitary (i — —1)

PH transformation that takes (¢,x,y) — (—t,z,y),
\Ile — _70\:[}:7
(A07A17A2) — (_A05A15A2)7 (24)

and shifts the Lagrangian by a filled Landau level L. — L. + aﬁ"Aaa@»Ag.

1
EE
Son [334] conjectured that L. is dual to the Dirac composite fermion Lagrangian,

L= @’ya(iﬁa + aq) — maprh — %eaﬁgaa(?g/lg + 81
T

TTeaﬁ”AaagAC, - 4;2]1%6 +..., (2.5)
where 1 is the electrically-neutral Dirac composite fermion; a, is a dynamical U(1) gauge
field with field strength f,g = Jnas — Jgan and coupling g; and m oc m. is the Dirac
composite fermion mass. A, remains a non-dynamical gauge field, whose primary role in
L is to determine how electromagnetism enters the Dirac composite fermion theory. As
before, the ... represent additional interactions, which can now involve the gauge field
aq- The duality between L. and L obtains in the low-energy limit when g — oo. See
[235] B52, [176), 111, 248, 251, 322, 178, B335] for additional details about this duality and
[324] for a recent review.

At weak coupling, the ag equation of motion implies the Dirac composite fermion

density,
B
fp = —. 2.6
vl == (2.0

At strong coupling, the right-hand side of Eq. (2.6) receives corrections from the ... in £

and should be replaced by —% + 9T4p. In the Dirac composite fermion theory, the electron

12



density,

ne = ﬁ(—b + B), (2.7)

where the effective magnetic field b = d1as — 02a1. In the Dirac composite fermion theory,

the PH transformation takes (¢,z,y) — (—t,z,y),

¥ = 72,
(a07a17a2) = (a()a —ar, _a2)a

(Ao, A1, A2) — (—Ao, A1, Aa), (2.8)

and shifts the Lagrangian by a filled Landau level. Intuitively, the PH transformation acts
on the dynamical fields of £ like a time-reversal transformation. As such, PH symmetry
requires m = 0 and forbids a Chern-Simons term for a,,.

Away from half-filling, PH symmetry is necessarily broken since Eq. implies
the effective magnetic field b = B — 47n, # 0. Consequently, we can no longer exclude
any PH breaking term allowed by symmetry. In particular, we generally expect a Dirac
mass to be induced by fluctuations. Scaling implies the mass m = v Bf(v), where f(v) is
a scaling function of the filling fraction v. Unbroken PH symmetry at half-filling requires
f(v=1/2) = 0; away from v = 1/2, it is possible that m can have a non-trivial dependence
on B and n., as determined by f(v). In the next section, we study the Schwinger—Dyson
equations to determine how fluctuations generate a mass m away from v = 1/2 within an

expansion where the number of Dirac composite fermion flavors N — oc.
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2.2 Dynamical mass generation in an effective magnetic field

Beginning with the works of Schwinger [318] and Ritus [301], there have been a
number of studies on the effects of a background magnetic field on quantum electrodynamics
in various dimensions. In this paper, we rely most heavily on Refs. [128| 358 [I81]; see
Ref. [240)] for an excellent introduction to this formalism and for additional references. We
first summarize the relevant aspects of this formalism. Then, we analyze the Schwinger—
Dyson equations for the Dirac composite fermion theory away from half-filling when the

fluctuations of the emergent gauge field a, about a uniform b # 0 are considered.

2.2.1 Dirac fermions in a magnetic field

At tree-level, i.e., in mean-field theory, the time-ordered real-space propagator
Go(z,y) for a massive Dirac fermion in a uniform magnetic field (ao, a1, a2) = (0,0, bz1) can

be written in the form,

_ L i®(zy) d’p ipa(z—y)™
Go(z,y) =e e Go(p), (2.9)

(27

~—
w

where the Schwinger phase,
b
P(z,y) = —5(962 —y2)(z1 + y1). (2.10)
The tree-level pseudo-momentum-space propagator,
2 2
e (p) _ i/oo dseis((p0+uo+i6p0)2—mg+ié—% tan(bs))
0
X [(pa + 11000,0)7" — z’b((po + o)l + mofyo) tan(bs) + p;y’ tan?(bs) |, (2.11)

where the pseudo-momenta p = (po, p1, p2) are analogous to the conserved momenta in a

translationally-invariant system, po is a chemical potential, mg is a mass, €, = sign(po)e
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with the infinitesimal € > 0 ensures the Feynman pole prescription is satisfied, § > 0 is an
infinitesimal included for convergence of the s integral, and I is the 2 x 2 identity matrix.
Expanding in b:

(po + po)I + mor°
((po + pio + i€py)? — P — m%)

+ oo “ + mpl
(Pa + 100a,0)Y L

—iG
olp) (po + po + i€py)? — p7 —mj

5 +O(b?).

(2.12)

We imagine applying this formalism to the vicinity of v = 1/2 when the effective magnetic
field b is small. As such, we drop all O(b?) and higher terms in the pseudo-momentum-space
propagator. For convenience, we use G(p) to denote the linear expansion in Eq. with
higher order in b terms excluded.

The tree-level inverse propagator G l(x, y) satisfies

[ % 65w Goly,2) = 89z - 2) (2.13)

It takes a particularly simple form:

Ny iP(x d3 7 x—y)% «
zGol(x,y) = ¢!®(@y) / ﬁep“( v) ((pa + £1000,0)7" — m0H>. (2.14)

In contrast to Go(z,y), the magnetic field dependence is entirely parameterized by the
Schwinger phase in Gal(m, Y).

Both the propagator and its inverse are obtained after performing an infinite sum
over all Landau levels. Thus, Go(z,y) and Gy (z,y) in Egs. and allow for a
straightforward expansion about their translationally-invariant forms at b = 0; see [358] for
further discussion. In the Dirac composite fermion theory, G|, l(x, y) defines the mean-field
Lagrangian, from which the Hamiltonian readily follows; the Schwinger phase ®(z,y) reminds

us to include a non-zero magnetic field by the Peierls substitution.
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We use the following ansatz for the exact real-space propagator:

3
e _ i®(z,y) d p ipa(x—y)aG 2.15
(z,y)=e (27r)36 (p)- (2.15)

For the exact pseudo-momentum propagator G(p), we write

—iG(p) = —iG O (p) — GV (p), (2.16)
where
G(O) B <pa + M05a,0 - Za(P))’YO‘ + Zm(p)ﬂ 917
E) = Gy ¥ 0 = S0(0) i) — (11— PP — S5 ()’ (2.17)
_ (po + po — Eo(p)>]1 + Zm(p)y°
—iGM (p) = b (2.18)

5
(0 + 0 = Zo(p) + iepo)? = (b1 = Zi(p))* — X2(p))

In contrast to the tree-level pseudo-momentum propagator, Go(p), both G0 (p) and G (p)
are expected to depend on b through the self-energies ¥,,(p) and ¥, (p), in addition to the

explicit linear dependence that appears in G(l)(p). We write the exact inverse propagator as

- N— i®(x d3 iPpa(x—y)* e}
iG (x,y) = ' ’y)/(%r])??’epa( D% ((pa + 1000,0 = Za (P) Y = Zm (D) T) . (2.19)

In G(p) and G~1(p), we set the tree-level mass mg = 0; this is consistent with the assumption
of unbroken PH symmetry at ¥ = 1/2. The ansatze for the exact propagator and its inverse
are simplifications of that which symmetry allows for a Dirac fermion in a magnetic field
[358]. Nevertheless, our ansatze are consistent to leading order in a 1/N analysis of the
Schwinger—Dyson equations described in the next section.

In general, the self-energies ¥,,(p) and X,(p) are non-trivial functions of the

pseudo-momenta p. We expect the low-energy dynamics of the fermions to be dominated by
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fluctuations about the Fermi surface. Thus, we replace the self-energies as follows:

Em(pps + 0p) = X (prs), (2.20)

Ya(prs + 0p) — d0aXo(prs) + 0paXn (prs), (2.21)

where prs = (0, p;) lies on the Fermi surface (in mean-field theory, this is defined by p? = u3
and pg = 0), [0pa| < po, Xl (prs) = Op,Xa(p = prs), and there is no sum over « in
Eq. .

G~ !(x,y) determines the “fuctuation-corrected” Dirac composite fermion mean-
field Hamiltonian. The tree-level chemical potential and mass are corrected by the fermion

self-energies Y, and Y,,. We define the physical mass,

Em(pFS) Xm

= = , 2.22
T Nyrs) 1% 222
and chemical potential,
Ho — 2o
= 2.23

The Schwinger phase ®(x,y) in G~1(z,y) reminds us to to include the effective magnetic

field b via the Peierls substitution.

2.2.2 Schwinger—Dyson equations: setup

The Schwinger—Dyson equations [164] are a set of coupled integral equations that
relate the exact fermion and gauge field propagators to one another by way of the exact
cubic interaction vertex I'* coupling the Dirac composite fermion current to a,. We will

not solve the equations exactly; rather, we seek an approximate solution that one obtains
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within a large flavor generalization of the Dirac composite fermion theory. We hope this
approximate solution reflects a qualitative behavior of the Dirac composite fermion theory.

Specifically, we consider the Lagrangian,

— . N N 1
Ly =P, 7" (i0a + aa)tn — EeaﬁaaaaﬁAa + 8?eaﬁfanaﬁAa v 125, (2.24)
where the different fermion flavors are labeled by n =1,..., N. When N = 1, we recover

the Dirac composite fermion theory. In Ly, ne = 0Ln /Ay = %(B — b); thus, in our large
N theory, half-filling means v = N/2. To make contact with the formalism of we
introduce a SU (N )-invariant chemical potential o = v/B and we factor out the uniform
effective magnetic field (ap, a1, a2) = (0,0, bx1) that is generated away from half-filling from
the dynamical fluctuations of the emergent gauge field a,. Setting A, = 0, Eq.

becomes

- . _ 1
Ly =P,y (i00 + o + aa)tbn + ot tPn — g f2s. (2.25)

This is the large IV theory that we analyze.
To leading order in IV, the Ward identity implies that there are no corrections
to the cubic interaction vertex at v = 1/2 [302][| Taking I'* = 4%, the Schwinger—Dyson

equations for £y become:

G (2,y) — Gy (2, y) = "G, )y T (2 — y), (2.26)
%P (z — y) — z'l'[gﬁ(x —y) = Ntr ['yaG(m, Y Gy, x)], (2.27)
’

where T1%# (z—y) is the gauge field self-energy, ITy"” (z—y) is the kinetic term for a,, contributed

by its Maxwell term, and we have taken the fermion propagator G,, ,/(z,y) = G(x,Yy)0p

!Furthermore, there are no corrections to this vertex if the Dirac composite fermion is given a non-zero
bare mass mg < ué at b= 0. We thank N. Rombes and S. Chakravarty for correspondence on this point.
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to be diagonal in flavor space. G(z,y) and Go(z,y) are defined in Egs. (2.16) and (2.12)).
The factor of N in Eq. (2.27)) arises from the N flavors in the fermion loop.

Upon substituting the Fourier transform II1%%(p), defined by

3
Haﬁ( —y) = dip ipa(x*y)"ﬂaﬁ( ) (2.28)
x—y (271)36 D), .

and Eqs (2.14)), (2.16), and (2.19) into the Schwinger-Dyson equations, (2.26) and ([2.27))

become [358]

d3p

iSala)y” +iE(@l = [ GG+ 0y ) (229)
3
M8 (6g) = N [ sy G Gl + 50, (230)

where ¢ = gps + d¢g. We aim to solve these equations.
Our ansatz for the fermion self-energies is motivated by similar studies of (2 4 1)-
dimensional quantum electrodynamics at zero density [287, [17, 260]. We consider the 1/N

expansion for the fermion self-energies,

S =30 4@ 4
S =20 5@ 4 (2.31)
All terms and all ratios of successive terms in Eq. (2.31]) vanish as N — oco. Ignoring terms

with i > 2, we set X, = E&l) =0and X, = Z,(n,ll), and find a self-consistent solution to the

Schwinger—Dyson equation in terms of E%) and I1*%. This choice is consistent with the Ward

identity, to leading order in 1/N. From Egs. (2.22)) and (2.23)), the resulting solution implies

m = Eg,ll) and p = po to leading order in 1/N. We then calculate the leading perturbative

correction 2&2) to Y, and verify that 2&2)/2%) —0as N — oo.
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2.2.3 Gauge field self-energy

The gauge field self-energy factorizes into PH symmetry even and odd parts:
1 (q) = e (@) + g (a). (2.32)

As the PH transformation acts like time-reversal, Hg‘\in(q) contains the Maxwell term for
G, While Hggd(q)—which can only be non-zero when PH symmetry is broken—can contain
a Chern-Simons term for a,.

To leading order in b, we substitute G(p) = G(©)(p) into Eq. and first compute

3

(0% - _opo - d o
11550 (00) = i darTloaa(0a) = —iN{ [ i ate 16O O+ d0)} 239

where {-},qq indicates the PH odd term is isolated. We find

N by by
oaa(0) = - (Ol — o) 5™ + Olut0 = |Zm) ). (2:34)

where ©(x) is the step function. See Appendix for details. Additional momentum
dependence in I1,qq(¢q) is subdominant at low energies. For ug > |X,,|, Eq. (2.34) implies an

effective Chern-Simons term for o, with level,

N X,
E—=

— D Em 2.35
> 1o (2.35)

is generated if 3,, # 0. (This non-quantized Chern-Simons level is reminiscent of the
anomalous Hall effect [139].)

Next, consider

3
e, 60) ~ 1 60) = =iv{ [ G760 @]} 230
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where {-}cven indicates the PH even term is isolated and we have again substituted G(p) =

GO (p). The Maxwell kinetic term is
115%(q) = ¢*n*? - ¢°¢". (2.37)
Ref. [239] finds:

I%0en (90, @) — T10°(q) = y(qo, @),

)

Hg\zlen(q(b C_h) - Hgl(q) = qO?Hl(qoa ql)a
(2

i ~ j_ 4¢ aq'¢
117, (90, ¢i) — 115 (q) = (67 — 2 )M¢(qo, @:) + (Oqg)Q 0;(qo, gi), (2.38)
p p
where
9
Hl q0, 4i :/’LON< 7_1>7
2 _ 2
(g0, ¢i) = poN — L0 2 Y11 (g0, 41). (2.39)
p

We have simplified the expressions for II; and II; by taking q(Q) — qi2 > 0 and by setting the
common proportionality constant to unity. The precise behaviors of II; and II; and their
effects on a, depend upon whether |go| < |¢;| or |¢| < |qo|- For instance, when |qo| < |gi]
(small frequency transfers, but potentially large ~ 2k momenta transfers) and in the absence
of Hg‘gd, II; gives rise to the usual Debye screening of the “electric” component of a, and
I1; results in the Landau damping of the “magnetic” component of a,, [239], familiar from
Fermi liquid theory [I54]. These corrections dominate the tree-level Maxwell term for a, at
low energies.

In our analysis of the fermion self-energy in the next section, we focus on the regime

lgi] < |go|- In this case, II; and II; provide non-singular corrections to the Maxwell term
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for a, and will be ignored. At low energies, g — oo, the effects of the Maxwell term are
suppressed compared with the Chern-Simons term [89]. Thus, to find the effective gauge
field propagator H;/Jl)(q) for use in Eq. (2.29), we drop H?ggn(q), add the covariant gauge

fixing term —%qo‘qﬁ to Hgg 4(q), and invert. Choosing Feynman gauge £ = 0, we obtain:

_ 27 €080q°
M, ;(q) = - “Z o, (2.40)

where k is given in Eq. . It is with this gauge field propagator that we find a self-
consistent solution to the Schwinger—-Dyson equation for the fermion self-energy X, in
£24

Instantaneous density-density interactions between electrons give rise to additional
gauge field kinetic terms in £. Such terms, which should therefore be included in the tree-level
Lagrangian Ly, generally contribute to HS‘B C H?fen. To understand their possible effects in
the kinematic regime |g;| < |qo|, we set ap = 0 and decompose the spatial components of the

gauge field in terms of its longitudinal and transverse modes:
ai(q) = —igiar(q) — i€jigjar(q), (2.41)

where the normalized spatial momenta ¢; = ¢;/|¢|. An un-screened Coulomb interaction

*“Yar(—q)ar(q) with z = 2; a short-ranged

dualizes to a term in £ proportional to |¢
interaction give z = 3 (see Sec. 3.4 of [I76]). (We are working in momentum space for
this analysis.) On the other hand, the effective Chern-Simons term is proportional to
igoar(—q)ar(q); there is no ar, —ay, or ap —ap Chern-Simons coupling. We consider z > 2 in
our analysis below. In this regime, the effects of any such screened interaction are expected

to be subdominant compared with those of the Chern-Simons term, as such interactions

correspond to higher-order terms in the derivative expansion.
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2.2.4 Fermion self-energy

We now study Eq. (2.29) for the ¥, and ¥y components of the Dirac composite

fermion self-energy using the effective gauge field propagator in Eq. (2.40)).

Ym
Taking the trace of both sides of Eq. and setting dq, = 0, we find:
iSm(grs) = iM (grs) +iM™ (grs), (242)
where
M) = 3 [ S La[1760p + v (22 222, (2.3
iMD(gps) = ;/ (;lil;gtr [fy“G(l)(p + qrs)y’ (ir%f;fﬂ, (2.44)

and G(p) and GM)(p) are given in Eqs. [2.17) and (2.18). Recall that we set ¥, = 0 and

only retain 3, when using G(©(p) and GM(p) to evaluate M and MD). The details of

our evaluation of M©® and M®) are given in Appendix Here, we quote the results:

Thus, 3, solves:

o 2MOSign(2m)

MO = TR (2.45)
2 bul
1) 0
MD = SN (2.46)
2uosign(Tm) | 2 bud
S = = SNELF (2.47)

When b = 0, the only solution is 3, = 0, consistent with our expectation that PH symmetry

is unbroken at v = 1/2. Dimensional analysis and 1/N scaling implies

Ym

— 1o (W) (2.48)

N\ g
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We find that X, has the following asymptotics: for fixed |b|/ud ~ 1071,

S = sosien®) (1) er 4 a (10 (2.49)

where ¢; = 0.9, co & —0.5, and the ... are suppressed as N — oo; while for fixed N,

Y = posign(b) (lzzl)l/g [03 + C4<‘bL](;)[3>1/3 +.. .], (2.50)

where c3 &~ 0.69, ¢4 =~ —0.08, and the ... vanish as |b|/u2 — 0.

2o

We now consider the leading perturbative correction to 3y. This allows us to
calculate the corrections to ¥, and the chemical potential yg.
To evaluate the leading correction to ¥ that one obtains when G(p) = G (p), we

multiply both sides of Eq. (2.29) by v° on the left and take the trace to find:

. 1 d3p o 27 €085D°
iXo(q) = 2/ (2ﬁ)3tr[vov G(O)(erq)vﬁ(? 22 )} (2.51)

where ¢ = qfq + g06°°. As detailed in Appendix we find the leading correction E(()Q)

to X (see Eq. ([2.31)) for |gol/po < 27,/ 14,

240

. 2 .
ZE(() )(QFS) = _ZW

(q0 + po)- (2.52)

At large N, we use Eq. for 3, to find Xy ox Xf) N—3/4, This vanishes by a factor of
N~Y2 faster than ¥,, and so it is relatively suppressed as N — oo. Next-order terms in
Y and X, are obtained by self-consistently solving the Schwinger—Dyson equations with
propagators corrected by the leading self-energy corrections. We have checked that the

other components of ¥, are likewise suppressed at large V; as such and because they do not
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enter our subsequent calculations, we will not discuss them further. Because ¥, vanishes at

half-filling, we may only ignore X, for sufficiently large |b|/u3 at large N.

Dynamically-generated mass and corrected chemical potential

We are now ready to evaluate Eq. (2.22)) for the dynamically-generated mass. We

extrapolate our large N solution for ¥, to N = 1 using Eq. (2.50)):

$(1)
m = 17;,(1) ~ .69sign(b)|b|'/3BY/°, (2.53)
A0

where we set g = v/B. The specific behavior of the mass m, away from v = 1/2, depends
on whether the electron density n. or external magnetic field B is fixed. At fixed B, the

magnitude of m is symmetric as function of n, about half-filling; on the other hand, |m]| is

asymmetric for fixed n. and varying B. Using Egs. (2.23)) and (2.31]), the chemical potential,

o — 5
gt g (2.54)
1— 2/(1)
0

These results imply that the Dirac composite fermion density and mass are corrected in
such a way that the chemical potential is unaffected.

In our analysis of the Weiss oscillations in the next section, we ignore all higher-
order in 1/N corrections and assume that a mass term is the dominant correction to the
Dirac composite fermion mean-field Hamiltonian away from v = 1/2. The chemical potential

for this fluctuation-improved mean-field Hamiltonian will be taken to be u = VB.

2.3 Weiss oscillations of massive Dirac composite fermions

Following earlier work [227, [342] [64, [73], we now study the effect of the field-

dependent mass of Eq. (2.53) on the Weiss oscillations near v = 1/2 using the fluctuation-
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improved Dirac composite fermion mean-field theory. We find that a non-zero mass results

in an inward shift of the locations of the oscillation minima toward half-filling.

2.3.1 Setup

We are interested in determining the quantum oscillations in the electrical resistivity
near v = 1/2 that result from a one-dimensional periodic scalar potential. In the Dirac

composite fermion theory, the dc electrical conductivity,

1 1 -
Oij = Ar (eij - §€ik(0w)kllelj)a (2.55)

where the (dimensionless) dc Dirac composite fermion conductivity. This equality is true at
weak coupling; at strong coupling, (¢y;¢)(—qo)¥vj%(qo)) should be replaced by the exact

gauge field a, self-energy, evaluated at ¢; = ¢o = 0.

qo—0 240
Thus, the longitudinal electrical resistivity,
g A
Pii X |61j|gjja (2'57)

where there is no sum over repeated indices. When a one-dimensional periodic scalar
potential, Ag = V cos(Kx1) with K = 27/d, is applied to the electronic system, the as
equation of motion following from the Dirac composite fermion Lagrangian implies
Yy = —% sin(Kx). (2.58)
We accommodate this current modulation within Dirac composite fermion mean-field theory

by turning on a modulated perturbation to the emergent vector potential,

da = <O,Wsin(Ka:1)>, (2.59)
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where W = W(V') vanishes when V = 0. (Fluctuations will also generate a modulation
in the Dirac composite fermion chemical potential; we ignore such effects here.) Putting
together Egs. (2.57)) and (2.59)), our goal in this section is to determine the correction to o?.

27

due to dd,
Apn‘ 0.6 |€Z]‘AO';© (260)

In Dirac composite fermion mean-field theory, corrected by Eq. (2.53)), the calcu-
lation of Aazﬁj simplifies to the determination of the conductivity of a free massive Dirac

fermion. We use the Kubo formula [69] to find the conductivity correction:

1

Yo
Aoy = LiLs

EM (aEMfD(EM)>T(EM)U£VIUJI~W, (2.61)

where L; (L) is the length of the system in the zi-direction (zg-direction), ~! = T is
the temperature, M denotes the quantum numbers of the single-particle states, f Bl(E) =
1+ exp(B(E — p)) is the Fermi-Dirac distribution function with chemical potential p = v/B,
7(E)) is the scattering time for states at energy Eyps, and v = 9, E) is the velocity
correction in the x;-direction of the state M due to the periodic vector potential. As before,
the Fermi velocity is set to unity. Assuming constant 7(E) = 7 # 0, we only need to calculate
how the energies E); are affected by da, which in turn will determine the velocities vZM . We
will show that the leading correction in W to E)j; only contributes to vé” . Calling z1 =«
and xo = y, this implies the dominant correction is to Ap,, Aagy. There are generally
oscillatory corrections to py, and p.y,, however, their amplitudes are typically less prominent

and so we concentrate on Ap,, here.
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2.3.2 Dirac composite fermion Weiss oscillations

The Dirac composite fermion mean-field Hamiltonian, corrected by Eq. (2.53),

0
S 2 , 2.62
H=9¢ (8a":’+a)+m03 ( )
where
i= (0, bat + Wsin(le)). (2.63)

To zeroth order in W, H has the particle spectrum,
(

V2n|b|+m2, n=1,2,...,

with the corresponding eigenfunctions,

| e
NeP272 forn=1,2,...,
2+2 bl—
m n|b|—m n(z1l42xb)
V/2n|b|
wnva (f) =
' 0
Nep222 for n = 0,
q)O(ZI;;xb)

where the normalization constant,

n|b|

\/lbLy(m2 + 2n|b] — m+y/m2 + 2n]b|)’

ko € %—ZZ is the momentum along the zo-direction (Lg — 00), Tp(p2) = xp = pal?, lb_1 = |b|,

N =

efz2/2

and (I)n(Z) = W

H,(z) for the n-th Hermite polynomial H,(z). Thus, the states are
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labeled by M = (n,p2). We are interested in how the periodic vector potential in Eq.
lifts the degeneracy of the flat Landau level spectrum and contributes to the velocity le .
(Finite dissipation has already been assumed in using a finite, non-zero scattering time 7 in
our calculation of the oscillatory component of p,.)

First order perturbation theory gives the energy level corrections,

V2n 2n|b|
EW = Kaxp)e 2| Ly_1(2) — Ln(2)], 2.64
n,p2 w Kl m? + 2n|b| cos(Kxp)e [ 1(2) (2) ( )

where L, (z) is the nth Laguerre polynomial, 2 = K22 /2, and terms suppressed as Ly, Ly —

oo have been dropped. Thus, to leading order, v""* = 0 and

1)
wpre = OBy [ 2L gy e [Loci() = La(2)] - (265)
2 Op2 m? + 2n/|b|

We substitute these v;""* into the Kubo formula (2.61) to find Aagy. To perform the integral

over po, we approximate the Fermi-Dirac distribution function by substituting in the zeroth

order energies ET(IO) (which are independent of ps). Thus, we obtain the periodic potential

correction to the Dirac composite fermion conductivity:

PR 2n|b| nexp(B(EY) — ) _, B 2
A=W <m2+2nb>[1+exp(5(E§l0)M))]Qe L@ = L] .00

where 7 o< 7 has absorbed non-universal O(1) constants.

Aa;fy in Eq. exhibits both Shubnikov—de Haas (for large |b|) and Weiss
oscillations (for smaller |b]). We are interested in extracting an analytic expression that
approximates Eq. at low temperatures near v = 1/2, following the earlier analysis in
[283]. In the weak field limit, |b|/u? < 1, a large number of Landau levels are filled (n — o).

Thus, we express the Laguerre polynomials L,, as

eZ/Qcos (2\/7T— 2) 1

Ln (Z) n—00 (7[.2”2)1/4 + O(n3/4)

(2.67)
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Next, we take the continuum approximation for the summation over n by substituting

l2
n — 5”( Z — I} / EdE,
into Eq. (2.66):

eﬁ(E 1)
(1 + ef(E-m)2

sin’ (ng E? —m? — E), (2.68)

Aol :c/ 4B 5 1

where C = W27I2K and we have approximated 2n|b|/(m?+2n|b|) by unity. (The substitution
for n is motivated by the zeroth order expression for the energy of the Dirac composite
fermion Landau levels.) Anticipating that at sufficiently low temperatures the integrand in

Eq. (2.68) is dominated by “energies” E near the Fermi energy u, we write:
E=p+sT (2.69)

so that Eq. (2.68) becomes for |s|T < p = +/B:

sTK
Acr;fy = C/ ds 7SIH <l§K B—m?+ 717”12 - %) (2.70)
- B
Performing the integral over s, we find the Weiss oscillations (see Eq. (2.60)):
T/T 2112/ B — m?
Appy 1 — — D To [1 — 25sin? (u - f)} (2.71)
sinh(T'/Tp) d 4
where
4?2 1
-1 _ b
Ip' =—1 N (2.72)

we have substituted K = 27/d, [? = |b|~!, and the proportionality constant is controlled by

the longitudinal resistivity at v = 1/2.
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Eq. (2.71)) constitutes the primary result of this section. The minima of Ap,, occur

when

1 d 1
m:m(}?+z>,p:1,2,3,..., (2.73)

where m is given in Eq. (2.53)). For either fixed electron density n. or fixed external field
B, the locations of the oscillation minima for a given p (either B(p) or n.(p)) are shifted
inwards towards v = 1/2. This is shown in Fig. for fixed n. and in Fig. for fixed B.

The magnitude of this shift is symmetric for fixed B, but asymmetric for fixed n., given
the form of the mass in Eq. (2.53). Mass dependence also appears in the temperature-

T/Tp

dependent prefactor Sh(T/T5)" In principle, this mass dependence could be extracted from

the finite-temperature scaling of Ap,, at the oscillation extrema.

2.4 Comparison to HLR mean-field theory at finite temper-
ature

2.4.1 Shubnikov—de Haas oscillations

In [225], Shayegan et al. found the Shubnikov-de Haas (SdH) oscillations near

half-filling to be well described over two orders of magnitude in temperature by the formula,

A
Paz o — ENR cos(2mv — ), (2.74)
Po sinh(§nr)
where Enp = %, we = |b]/m*, m* is an effective mass, v is the electron filling fraction,

and po is the longitudinal resistivity at half-filling (measured at the lowest accessible

temperature). (Note that these experiments were performed without any background
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Figure 2.2: Weiss oscillations of the Dirac composite fermion theory at fixed magnetic field
B and varying electron density n. about half-filling n/y = Bys/47 ({p, 12 /d = 0.03 and
kpT = 0.3,/2B;/3). The blue curve corresponds to Dirac composite fermion mean-field
theory [73]. The orange curve includes the effects of a Dirac composite fermion mass

m x |B — 47771@\1/ 3B1/6 induced by gauge fluctuations. Vertical lines correspond to the

observed oscillation minima [177].

32



periodic potential and so no Weiss oscillations were present.) Recall that we are using units
where kp = h = e = ¢ = 1. In particular, it was found that m* o v/B for sufficiently large
|b| = |B — 4mn.| and that m* appeared to diverge as half-filling was approached. Interpreted
within the HLR composite fermion framework, m* corresponds to the composite fermion
effective mass. The /B behavior of the composite fermion effective mass is consistent with
the theoretical expectation [140)], 297] that the composite fermion mass scale at v = 1/2 is
determined entirely by the characteristic energy of the Coulomb interaction. (Away from
v = 1/2, scaling implies the effective mass can be a scaling function of B and n..)
Applying previous treatments of SAH oscillations in graphene [I35] [129] to the
Dirac composite fermion theory, the temperature dependence of the SAH oscillations is

controlled by

A
Paz - D , (2.75)
po  Sinh(€p)
where £p = 2”2|:Fb“/§. Thus, éxr x &p if m* < v/ B. Consequently, the Dirac composite

fermion theory is consistent with the observed temperature scaling with v/B. We cannot

account for the divergence at small |b| attributed to m* in our treatment.

2.4.2 Weiss oscillations

In [73], it was shown that the locations of the Weiss oscillation minima obtained
from Dirac and HLR composite fermion mean-field theories coincide to 0.002%. This
result provides evidence that the two composite fermion theories may belong to the same
universality class. However, the (possible) equivalence of the two theories only occurs at long

distances and so the finite-temperature behavior of the two theories will generally differ.
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In HLR mean-field theory, the temperature dependence of the Weiss oscillations

enters in the factor [283],

T/TnNgr
A _ 2.76
where the characteristic temperature scale,
47212 m
Tl = b__— . 2.77
NR d /4mne ( )

Assuming the effective mass m* o« v/B, the characteristic temperatures Tp and Ty i generally
have very different behaviors as functions of B and n.. It would be interesting to study
the effects of fluctuations in HLR theory, along the lines of the study presented here, and

compare with our result in Eq. (2.71]).
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Chapter 3

LEAD: Min-Max Optimization

from a Physical Perspective

Much of the advances in traditional machine learning can be attributed to the success
of gradient-based methods. Modern machine learning formulations such as GANs [125],
multi-task learning, and multi-agent settings [323] in reinforcement learning [62] require joint
optimization of two or more objectives. In these game settings, best practices and methods
developed for single-objective optimization are observed to perform noticeably poorly [233]
32, [116]. Notably, they exhibit rotational dynamics about the Nash Equilibria [233], slowing
down convergence to the same. Recent work in game optimization [356] 228 233, 32] 2, 216]
demonstrates that intuitively introducing additional second-order terms in the optimization
algorithm, helps to suppress these rotations, thereby improving convergence. Despite their
relative success in many settings, several of these methods are computationally expensive to

implement, preventing successful deployment in setups of relevance such as in GANs.
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Taking inspiration from recent work in single-objective optimization that re-derives
existing accelerated methods from a variational perspective [361} [364], in this work, we adopt
a similar approach in the context of games. By likening the gradient-based optimization of
two-player (zero-sum) games to the dynamics of a particular physical system, we introduce
a relevant force that helps curb these rotations. We consequently utilize the dynamics of
this resultant system to propose our novel second-order optimizer for games, LEAD.

Next, by using Lyapunov and spectral analysis, we demonstrate linear convergence
of our optimizer (LEAD) in both continuous and discrete-time settings for a class of quadratic
min-max games. In terms of empirical performance, LEAD achieves an FID of 10.49 on
CIFAR-10 image generation, outperforming existing methods such as BigGAN [60] which is
approximately 30-times larger than our baseline ResNet architecture.

What distinguishes LEAD from other second-order optimization methods for min-
max games such as [233] 356, 228, B15] is its computational complexity. All these other
methods, involve Jacobian (or Jacobian-inverse) vector-product computz’;LtionEl7 thus making
a majority of them intractable in real-world problems such as GANs. On the other hand,
LEAD involves computing only one-block of the full Jacobian of the gradient vector-field
multiplied by a vector. This makes our method significantly cheaper and comparable to
several first-order methods, as we show in section [3.5.1]

We summarize our contributions below:

e In Section we model gradient descent-ascent as a physical system. Armed with the

physical model, we introduce counter-rotational forces to curb the existing rotations in

1 [356, [315] propose a conjugate-gradient approximation of the Jacobian-inverse to reduce computational
cost, though still performing poorly in neural network setting. Additionally, their provided proofs of
convergence rely on the expensive exact computation of the inverse.
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the system. Next, we employ the principle of least action to determine the (continuous-
time) dynamics. We then accordingly discretize these resultant dynamics to obtain

our optimization scheme, Least Action Dynamics (LEAD).

e In Section we use Lyapunov stability theory and spectral analysis to prove a linear
convergence of LEAD in continuous and discrete-time settings for bilinear min-max

games.

e Finally, in Section we empirically demonstrate that LEAD is computationally
efficient. Additionally, we demonstrate that LEAD improves the performance of GANs
on different tasks such as 8-Gaussians and CIFAR-10 while comparing the performance
of our method against other first and second-order methods. Furthermore, we achieve

a competitive FID of 10.49 for CIFAR-10 on a ResNet architecture.

e The source code for all the experiments is available at:

https://github.com/ReyhaneAskari/Least_action dynamics minmax.

3.1 Problem Setting

Notation: Continuous time scalar variables are in uppercase letters (X), discrete-time
scalar variables are in lower case (z) and vectors are in boldface (A). Matrices are in

blackboard bold (M) and derivatives w.r.t. time are denoted as an over-dot ().

Setting: In this work, we study the optimization problem of two-player zero-sum games,

m)}n m&xf (X,Y), (3.1)
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where f: R™ x R" — R, and is assumed to be a convex-concave function which is continuous
and twice differentiable w.r.t. X,Y € R. It is to be noted that though in developing our
framework below, X, Y are assumed to be scalars, it is nevertheless found to hold for the
more general case of vectorial X and Y, as we demonstrate both analytically (Appendix |B.3)

and empirically, our theoretical analysis are found to hold.

3.2 Optimization Mechanics

In our attempt to find an efficient update scheme or trajectory to optimize the
min-max objective f (X,Y’), we note from classical physics the following: under the influence
of a net force F', the trajectory of motion of a physical object of mass m, is determined by
Newton’s 2° Law,

mX = F, (3.2)

with the object’s coordinate expressed as Xy = X. According to the principle of least
actionﬂ [200], nature “selects” this particular trajectory over other possibilities, as a quantity
called the action is extremized along it.

Hence, the ability to model our game optimization task in terms of an object moving
under a relevant set of forces, can be perceived as determining an efficient optimization
path through the least action principle for the same. Regarding how such modeling may be
performed, we take inspiration from Polyak’s heavy-ball momentum [290] methodﬂ in single
objective minimization of an objective f (),

Tpy1 = Tk + B (2 — 2p—1) — Vo f (21) , (3.3)

2 Also referred to as the Principle of Stationary Action.
3 Arbitrary momentum coefficient results in incorporating friction in the equivalent physical system
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which in continuous-time translates to (see Appendix B.1]),
mX = -Vxf(X). (3.4)

Comparing Eqns.(3.4) and (3.2), we notice that in this case F = —Vx f (X), i.e. f(X) acts
as a potential function [200]. Thus, Polyak’s heavy-ball method Eq. can be interpreted
as an object (ball) of mass m rolling down under a potential f (X) to reach the minimum.

Armed with this observation, we perform a straightforward extension of Eq.
to our min-max setup,

mX = -Vxf(X,Y)

(3.5)
mY = Vyf(X,Y).
which represents the dynamics of an object moving under a curl force [48]:
Feyn = (_va) VYf) (36)

in the 2-dimensional X —Y plane. It is to be noted that discretization of Eq. corresponds
to Gradient Descent-Ascent (GDA) with momentum 1. [I16] found that this optimizer is
divergent in the prototypical min-max objective, f (X,Y) = XY itself, thus indicating the
need for further improvement.

To this end, we note that that the failure modes of the optimizer obtained from
the discretization of Eq., can be attributed to: (a) an outward rotatory motion by our
particle of mass m, accompanied by (b) an increase in its velocity with time. Following
these observations, we aim to introduce suitable counter-rotational and dissipative forces
to our system above, in order to tackle (a) and (b) in an attempt to achieve converging
dynamics. Specifically, as an initial consideration, we choose to add to our system, two

ubiquitous forces:
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e magnetic force,

Fmag = (_ qVXYf Y7qVXYf X) (37)

known to produce rotational motion (in charged particles), to counteract the rotations

introduced by Fi,;1. Here, ¢ is the charge imparted to our particle

e friction,
Fyic = (,UXa MY) (38)

to prevent the increase in velocity of our particle (u: coefficient of friction)

Assimilating all the above forces Fiyy, Finag and Fic, the equations of motion (EOMs) of

our crafted system then becomes,

mX = —puX — Vxf—qVxyfY,
(3.9)

mY = —puY +Vyf +qVxyfX.

Without loss of generality, from hereon we set the mass of our object to be unity.

3.2.1 Discretization

With the continuous-time trajectory of Eq.(3.9) in hand, we now proceed to

discretize it using a combination of Euler’s implicit and explicit discretization schemes,

Implicit : &1 — 2 = 6vi, 4
(3.10)
Explicit : 41 — xf = dvg.

to discretize X = Vyx (0: discretization step-size, k: iteration step).

Proposition: The continuous-time EOMs (3.9)) can be discretized in an implicit-explicit

40



way, to yield,

Tpy1 = T + B(@r — Th—1) — Vo f Tk yk) — OVay f (@, i) (Yk — Yr—1), (3.11)
3.11

Yk+1 = Yk + Bk — yr—1) + 0V f (@, yr) + 0V f (2r, yi) (21 — 2—1),
where we have defined o = 2¢d, 3 = 1 — ué and 1 = §2 (Proof in Appendix .

Taking inspiration from the fact that Eq. corresponds to the trajectory of a
charged particle under a curl, magnetic and frictional force, as governed by the principle of
least action, we refer to the discrete update rules of Eq. as Least Action Dynamics
(LEAD). (Algorithm [1] details the pseudo-code of LEAD)

Terms in LEAD: Analyzing our novel optimizer, we note that it consist of three types of

terms, namely,

1. Gradient Descent or Ascent: —V,f or V,f: Each player’s immediate direction of

improving their own objective.

2. Momentum: Standard Polyak momentum term; known to accelerate convergence in

optimization and recently in smooth games. [116, 26]

3. Coupling term: —Vy f (k, yr) (Yx — yk—1) and Vo, f (2g, yr) (2 — 2x—1): Main new
term in our method. It captures the first-order interaction between players. This
cross-derivative corresponds to the counter-rotational force in our physical model; it

allows our method to exert control on rotations.
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Algorithm 1 Least Action Dynamics (LEAD)

Input: learning rate 7, momentum /j, coupling coefficient «.
Initialize: zg < Zinit, Yo < Yinit, t < 0
while not converged do

t—t+1

9z Vaf(ze, 1)

Jay Ayt = Vy(92) (Yt — ye—1)

Tyy1 2+ B(T — 24-1) — NG — Gy Ays

gy < Vyf(ze,y1)

gzyAfUt — Vg (gy)(ﬂft —x1)

Yer1 < Yo+ B(ye — ye—1) + ngy + gy Azy
end while

return (Tgy1,Yg+1)
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3.3 Convergence Analysis
We now study the behavior of LEAD on the quadratic min-max game,

FOXY) = DIXIP - Dy - XTay (312
where X, Y € R", A € R" x R" is a (constant) coupling matrix and h is a scalar constant.
Additionally, the Nash equilibrium of the above game lies at X* = 0, Y* = 0. Let us further
define the vector field v of the above game, f, as,

Vxf(X,Y) hX +AY

v = = . (3.13)
Vv f(X,Y) Y —ATX

3.3.1 Continuous Time Analysis

A general way to prove the stability of a dynamical system is to use a Lyapunov
function [I38, 221]. The scalar function & : R” x R” — R, is a Lyapunov function of a

continuous-time dynamics if V ¢,

(1) &(X,Y) =0,

(i) &(X,Y) <0

The Lyapunov function & can be perceived as a generalization of the total energy of the
system and the requirement (7i) ensures that this generalized energy decreases along the
trajectory of evolution, leading the system to convergence as we will show next.

For the quadratic min-max game defined in Eq.(3.12), Eq.(3.9) generalizes to,
X =—puX —(h+AY —¢AY
(3.14)
Y =—pY — (h—AT)X +¢ATX,
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Theorem 1 For the dynamics of Eq. ,

& = % (X uX +uAY>T(5c 4 uX + pAY)
+% (Y‘I'MY—,LLATX)T (X—F,uY—uATX) (3.15)
+ % (XTX + YTY) + XT(h+ AAT)X + yT (h+ ATA)Y
is a Lyapunov function of the system. Furthermore, by setting ¢ = (2/u) + p, we find

20u(02;,+h)

min

—|—2h)(u2 +u)+202

min

& < —p& for p < min { } with omin being the smallest singular

_K
1+p2 (1+02

min

value of A. This consequently ensures linear convergence of the dynamics determined

B, @1,

&o
X[+ Y2 < =5 —exp (=pb) | (3.16)

min

(Proof in Appendix [B.3)).

3.3.2 Discrete-Time Analysis

In this Section, we next analyze the convergence behavior of LEAD, Eq.(3.11)) in

the case of the quadratic min-max game of Eq.(3.12)), using spectral analysis,

Tpy1 = Tk + fAxy — hay — nAyr — aAAyy
(3.17)
Ykt1 = Yk + BAYr — hyr + nATxy, + aAT Axy,
where Az, = € — Tp_1-

For brevity, consider the joint parameters w; := (x, y;). We start by studying the

update operator of simultaneous gradient descent-ascent.

F(wi) = wp — no(wi—1).

where, the vector-field is given by Eq. (3.13). Thus, the fixed point w* of F,,(w;) satisfies

44



F,)(w*) = w*. Furthermore, at w*, we have,
VF,(w*) =1, — nVv(w), (3.18)

with I, being the n x n identity matrix. Consequently the spectrum of VF,(w*) in the

quadratic game considered, is,
Sp(VE,(w*)) = {1 —nh —nX | X € Sp(off-diag[Vv(w*)])}. (3.19)
Proposition:[Prop. 4.4.1 [49]] For the spectral radius,
Pmax = p{VIy(w*)} <1 (3.20)

and for some wy in a neighborhood of w*, the update operator F', ensures linear convergence
to w* at a rate,

Ary1 <O(p+e€)Ay ¥V e> 0,

where Agpq = [|wip1 — w3 + ||wr — w*||3.
Next, we proceed to define the update operator of Eq.(3.11)) as FLgap (w¢, wi—1) =
(wir1,wy) . Now, for the quadratic min-max game of Eq.(3.12)), the Jacobian of F1pap takes

the form,

Ion + Blop — (n+ ) Vo —pla, + Vv
VELEAD = . (3.21)

HQn 0

Theorem 2 The eigenvalues of VFgap(w*) are,

Mi:1—(n+a),\4;3—nhi\/£ (3.22)
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where, A = (1 — (n+ &) A+ 8 —nh)> —4(8 — a)) and X € Sp(off-diag[Vv(w*)]). Further-

more, for h,n,|al,|B] << 1, we have,

u+%1—nh—7ﬂ;ﬂ+A(n;a(nh—6)—n> (3.23)
and
pompr M (";C“(nh—ﬂ)w) (3.24)

See Proof in Appendix [B.4]

Figure 3.1: Diagram depicting positioning of the eigenvalues of GDA in blue (Eq. )
and those of LEAD (Eqns.,) in red. Eigenvalues inside the black unit circle imply
convergence such that the closer to the origin, the faster the convergence rate (Prop. [3.3.2)).
Every point on solid blue and red lines corresponds to a specific choice of learning rate. No
choice of learning rate results in convergence for gradient ascent descent method as the blue
line is tangent to the unit circle. At the same time, for a fixed value of o, LEAD shifts the
eigenvalues (p4) into the unit circle which leads to a convergence rate proportional to the
radius of the red dashed circle. Note that LEAD also introduces an extra set of eigenvalues

(—) which are close to zero and do not affect convergence.
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In the following Proposition, we next show that locally, a choice of positive «
decreases the spectral radius of VE, (w*), p := max{|p+|?, [u—*} V \.

Proposition: For any A € Sp(off-diag| Vv (w*)]),

2
Vap ()\) ‘OAZO <0& ne <0, Inl()\max)> 5 (325)

where Im(Apax) is the imaginary component of the largest eigenvalue A\pax. See Proof in
Appendix

Having established that a small positive value of o improves the rate of convergence,
in the next theorem, we prove that for a specific choice of positive a and 7 in the quadratic
game Eq., a linear rate of convergence to its Nash equilibrium is attained. Before

proceeding, we would like to note that we can write A; = +io; where o; = sing. values(A).

2

Theorem 3 If we set n=a = then we have ¥V € > 0,

202+ h2 2 2\*
Ati1 6(’)((1—60““§1+—2h +5+5> Ao (3.26)
O max Omax 2
where Tmaz(Tmin) is the largest (smallest) singular value of A, A1 = |jwiy — w*|3 +

2
[lwi — @[3
Theorem [3| ensures a linear convergence of LEAD in the quadratic min-max game. (Proof in

Appendix .

3.4 Comparison of Convergence Rate

In this Section, we perform a Big-O comparison of rates of convergence of LEAD

(Eq. (3.26)), with Extragradient [I88] in the quadratic min-max game of Eq. (3.12)), with
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B = 0. Specifically, from [25] we find,

— (ZZ) +0 (UIQHLz(A)) +o(7) (3.27)
(

where, L := max{h, omax(A)}. Therefore, for h < oyax (A), we observe that ripap < rrG-

While for h > omax (A), we note that,

rec =0(1)+ 0 <Ur2m;;2m)>

Hence, for h 2 1.620,x, we find rLgap 2 rEG-

(3.28)

3.5 Experiments

In this Section, we empirically validate the performance of our proposed method
LEAD. Furthermore, we implement LEAD-Adam (pseudo-code in Appendix [B.7.1]) to be

used in our experiments.

3.5.1 Comparison of Computational Cost

The Jacobian of the gradient vector field v = (V. f(x,y), =V, f(x,y)) is given by,

Vif(®,y)  Vif(z,y)
J= . (3.29)
_vymf (m?y) —sz (xvy)
Considering player &, a LEAD update for the same requires the computation of the term

Vayf (@k, Yi) (Y — Yr—1), thereby involving only one block of the full Jacobian J. On the

other hand, the released implementation of Symplectic Gradient Adjustment (SGA) [31],
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requires the full computation of two Jacobian-vector products Jv, J T v. Similarly, Competitive
Gradient Descent (CGD) [315] involves the computation of (1 + nvgyf(mk, yk)Vgxf(azk, Yi)) -
along with the Jacobian-vector product Viy f(xk, ye)Vy f(Tr, yr). While the inverse term
is approximated using conjugate gradient method in their implementation, it still involves
the computation of approximately ten Jacobian-vector products for each update.

To explore these comparisons in greater detail and on models with many parameters,
we experimentally compare the computational cost of our method with several other second
as well as first-order methods on the 8-Gaussians problem in Figure (architecture reported
in Appendix . We calculate the average wall-clock time (in milliseconds) per iteration.
Results are reported on an average of 1000 iterations, computed on the same architecture
and the same machine with forced synchronous execution. All the methods are implemented
in PyTorch [279] and SGA is replicated based on the official implementation ﬂ

Furthermore, we observe that the computational cost per iteration of LEAD while
being much lower than SGA and CGD, is similar to WGAN-GP and Extra-Gradient. The
similarity to Extra-Gradient is due to the fact that for each player, Extra-Gradient requires
the computation of a half-step and a full-step, so in total each step requires the computation
of two gradients. LEAD also requires the computation of a gradient (V f,.) which is then used
to compute (V fz,) multiplied by (yr —yr—1). Using PyTorch, we do not require to compute
V fzy and then perform the multiplication. Given V f, the whole term V fu,(yr — yx—1), is
computed using PyTorch’s Autograd with the computational cost of a single gradient. Thus,

LEAD also requires the computation of two gradients for each step.

4SGA official DeepMind implementation (non-zero sum setting): https://github.com/deepmind/symplectic
rgradient-adjustment/blob/master/Symplectic_Gradient_Adjustment.ipynb
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Figure 3.2: Average computational cost per iteration of several well-known methods for (non-
saturating) GAN optimization. The numbers are reported on the 8-Gaussians generation
task and averaged over 1000 iterations. Note that the y-axis is log-scale. We compare
Competitive Gradient Descent (CGD) [315] (using official CGD optimizer code), Symplectic
Gradient Adjustment (SGA) [32], Consensus Optimization (CO) [233], Extra-gradient with
Adam (Extra-Adam) [I15], WGAN with Gradient Penalty (WGAN GP) [I30]. We observe
that per-iteration time complexity of our method is very similar to Extra-Adam and WGAN
GP and is much cheaper than other second order methods such as CGD. Furthermore, by
increasing the size of the hidden dimension of the generator and discriminator’s networks we

observe that the gap between different methods increases.

3.5.2 Generative Adversarial Networks

8-Gaussians: We first compare LEAD-Adam with vanilla-Adam [I83] on the
generation task of a mixture of 8-Gaussians. Standard optimization algorithms such as
vanilla-Adam suffer from mode collapse in this simple task, implying the generator cannot

produce samples from one or several of the distributions present in the real data. Through
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Fig.[3.3] we demonstrate that LEAD-Adam fully captures all the modes in the real data in

both saturating and non-saturating losses.

e f
5 o N 2
O - ]
o . -
héélTDéta; Adam Non-Sat
» .

k] - - e
= . ° s
. - ._ _
- -

LEAD-Adam Sat  LEAD-Adam Non-Sat

Figure 3.3: Performance of LEAD-Adam on the generation task of 8-Gaussians. All samples
are shown after 10k iterations. Samples generated using Adam exhibit mode collapse, while

LEAD-Adam does not suffer from this issue.

CIFAR-10: We additionally evaluate LEAD-Adam on the task of CIFAR-10 [189]
image generation with a non-zero-sum formulation (non-saturating) on a DCGAN archi-
tecture similar to [130]. As shown in Table. we compare with several first-order and
second order methods and observe that LEAD-Adam outperforms the rest in terms of
Fréchet Inception Distance (FID) [I5IJP} reaching a score of 19.27+0.10 which outperforms
OMD [232] and CGD [315]. See also Figure

Furthermore, we evaluate LEAD-Adam on more complex and deep architectures

such as the ResNet architecture in [243]. We compare with several state of the art results on

5The FID is a metric for evaluating the quality of generated samples of a generative model. Lower FID
corresponds to better sample quality.
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Figure 3.4: Plot showing the evolution of the FID over 400 epochs for our method (LEAD-
Adam) vs vanilla Adam on a DCGAN architecture. Note that the FID is computed over

50k iterations.

the task of image generation on CIFAR-10 using ResNets. See Table for a full comparison.
We report our results against a properly tuned version of SNGAN that achieves an
FID of 12.36 using the code base of SNGAN PyTorckﬁ Our method obtains a competitive
FID of 10.49.
We give a detailed description of these experiments and full detail on the architecture
and hyper-parameters in Appendix[B.7 See also Figure[3.5]for a sample of generated samples

on a ResNet using LEAD.

3.6 Related Work

Game Optimization: With increasing interest in games, significant effort is being
spent in understanding common issues affecting optimization in this domain. These issues

range from convergence to non-Nash equilibrium points, to exhibiting rotational dynamics

6ht'cps ://github.com/GongXinyuu/sngan.pytorch
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Figure 3.5: Generated sample of LEAD-Adam on CIFAR-10. LEAD-Adam achieves an FID

of 10.49

around the equilibrium which hampers convergence. [233] provides a discussion on how
the eigenvalues of the Jacobian govern the local convergence properties of GANs. They
argue that the presence of eigenvalues with zero real-part and large imaginary part results
in oscillatory behavior. To mitigate this issue, they propose Consensus Optimization (CO).
Along similar lines, [32] 108, 210, 216] use the Hamiltonian of the gradient vector-field,
to improve the convergence in games through disentangling the convergent parts of the
dynamics from the rotational. Another line of attack taken in [315] is to use second-order
information as a regularizer of the dynamics and motivate the use of Competitive Gradient
Descent (CGD). In [356], Follow the Ridge (FtR) is proposed. They motivate the use of a
second order term for one of the players (follower) as to avoid the rotational dynamics in a

sequential formulation of the zero-sum game. See appendix for full discussion on the
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comparison of LEAD versus other second-order methods.

Another approach taken by [116], demonstrate how applying negative momentum
over GDA can improve convergence in min-max games, while also proving a linear rate of
convergence in the case of bilinear games. [83] show that extrapolating the next value of
the gradient using previous history, aids convergence. In the same spirit, [70], proposes
LookAhead GAN (LA-GAN) and show that the LookAhead algorithm is a compelling
candidate in improving convergence in GANs. [I15] also explores this line of thought by
introducing averaging to develop a variant of the extra-gradient algorithm and proposes
Extra-Adam-Averaging. Similar to Extra-Adam-Averaging is SN-EMA [373] which uses the
SN-GAN and achieves great performance by applying an exponential moving average on the
parameters. Recently [344] proposes to train mixtures of BigGANSs [60] to achieve state of
the art performance on the task of image generation with GANs on CIFAR-10.

Lastly, in regard to convergence analysis in games, [122] provide last iterate
convergence rate for convex-concave saddle point problems. [270] propose a multi-step
variant of gradient descent-ascent, to show it can find a game’s efirst-order stationary point.
Additionally, [25] and [159] provide spectral lower bounds for the rate of convergence in the
bilinear setting for an accelerated algorithm developed in [26] for a specific families of bilinear
games. Furthermore, [95] use Lyapunov analysis to provide convergence guarantees for
gradient descent ascent using timescale separation and in [I55], authors show that commonly
used algorithms for min-max optimization converge to attractors that are not optimal.

Single-objective Optimization and Dynamical Systems: The authors of [339]

SFor FtR, we provide the update for the second player given the first player performs gradient descent.
Also note that in this table SGA is simplified for the two player zero-sum game. Non-zero sum formulation
of SGA such as the one used for GANs require the computation of Jv,J"v.
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started a new trend in single-objective optimization by studying the continuous-time dynam-
ics of Nesterov’s accelerated method [263]. Their analysis allowed for a better understanding
of the much-celebrated Nesterov’s method. In a similar spirit, [361} [364] study continuous-
time accelerated methods within a Lagrangian framework, while analyzing their stability
using Lyapunov analysis. These works show that a family of discrete-time methods can be
derived from their corresponding continuous-time formalism using various discretization
schemes. Additionally, several recent work [250] 28], 223] [307] cast game optimization al-
gorithms as dynamical systems so to leverage its rich theory, to study the stability and
convergence of various continuous-time methods. [253] also analyzes the local stability of

GANSs as an approximated continuous dynamical system.
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DCGAN FID IS

Adam 24.38 + 0.13
LEAD-Adam 19.27 £ 0.10
CGD-WGAN [315] 21.3 7.2
OMD [83] 29.6 £ 0.19 5.74 £ 0.1
ResNet
SNGAN 12.10 £ 0.31  8.58 £ 0.03
LEAD-Adam (ours) 10.49 + 0.11 8.82 + 0.05
ExtraAdam [IT5] 16.78 £ 0.21 8.47 £ 0.1
LA-GAN [70] 12.67 £ 0.57  8.55 £+ 0.04
ODE-GAN [291] 11.85 £ 0.21  8.61 £+ 0.06

Evaluated with 5k samples

SN-GAN (DCGAN) [243] 29.3 7.42 + 0.08

SN-GAN (ResNet) [243] 21.7 £ 021 8224 0.05

Table 3.1: Performance of several methods on CIFAR-10 image generation task. Methods
that are not cited are reported using our own implementation where we compute and report
the mean and standard-deviation over 5 random runs. The FID and IS is reported over 50k

samples unless mentioned otherwise.
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Chapter 4

Double Descent Phenomena: A
Tale of Multi-scale Feature

Learning Dynamics

Classical wisdom in statistical learning theory predicts a trade-off between the
generalization ability of a machine learning model and its complexity, with highly complex
models less likely to generalize well [98]. If the number of parameters measures complexity,
deep learning models sometimes go against this prediction [See for example [379]]: deep
neural networks trained by stochastic gradient descent exhibit a so-called double descent
behavior [42] as with increasing model parameters. Specifically, with increasing complexity,
the generalization error first obeys the traditional “U” shaped curve consistent with statistical
learning theory. However, a second regime emerges as the number of parameters is further

increased past a transition threshold where generalization error drops again, hence the
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“double descent” or more specifically, model-wise double descent [254].

[254] show that double descent is not limited to varying model size but is also
observed as the training time proceeds, specifically in the presence of label noise. Once
again, the so-called epoch-wise double descent is in apparent contradiction with the classical
understanding of overfitting [347], where one expects that longer training of a sufficiently
large model beyond a certain threshold should result in overfitting. This phenomenon has
important consequences for practitioners. It suggests the practice of early stopping, perhaps
the most widely used regularization method in deep learning [124], prevents models from
being trained at their fullest potential.

Although the term ‘double descent’ has been introduced recently to refer to such
non-trivial behaviors of deep neural networks (DNNs), a similar phenomenon had already
been studied in several decades-old works in the regression setting [190} 273] 274, [55] under
a statistical physics framework. More recently, these behaviors have been investigated in the
context of modern machine learning, both from an empirical [I5), 372] and theoretical [4,
230, 9T], 110}, 90] point of view, to determine various limiting behavior of the training and
generalization error.

In this work, we build upon early work on double descent, with roots in statistical

physics, to provide a theory explaining epoch-wise double descent. Particularly,

e In Section we introduce a novel linear data model in a teacher-student paradigm
that, despite its simplicity, exhibits some of the puzzling properties of generalization

dynamics in deep neural networks, namely epoch-wise double descent.

e In the limit of high dimensionality, we leverage the replica method of statistical physics
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to derive closed-form expressions for the generalization dynamics of our teacher-student

setup as a function of training time (Eq. (4.11))).

e Our theory provides an explanations for the existence of the epoch-wise double descent
through the lens of multi-scale feature learning. Simply put, features that are learned
on a faster time-scale are responsible for the conventional U-shaped generalization
curve, while the second descent can be attributed to the features that are learned at a

slower time-scale.

e Our analytical results closely match with simulations demonstrating epoch-wise double

descent. To ensure reproducibility, we provide the code at: GitHub repository.

4.1 Theoretical Results

4.1.1 Prelude

This Section provides a theoretical framework to study the generalization dynamics
of a high-dimensional regression model from a statistical physics perspective. Before diving
into the theory, we invite the reader to recall a simple equation from thermodynamics.
Consider an ideal gas in a container with its large number of molecules moving around,
colliding with each other, all while obeying Newton’s laws. While the exact dynamics of each
of such molecules are intractable, the system’s macroscopic behavior can be characterized
in terms of a handful of scalar quantities, namely, the pressure P, the volume V', and the
temperature T'. By averaging over suitable probability measures and applying the principle
of free-energy minimization, one consequently arrives at a remarkably simple relationship

between these three macroscopic variables, i.e., the well-known PV = nRT (n: number of
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moles of gas, R: gas constant) [298].

The same principle can be ported to neural networks. Stochastic Gradient Descent
(SGD) — the de facto optimization algorithm for neural networks — exhibits complex
dynamics arising from the interactions between a large number of parameters [198]. However,
the idea is to describe the high-dimensional microscopic dynamics of neural networks in
terms of low-dimensional macroscopic entities. In a series of seminal papers by Gardner [100]
101}, [102], the replica method of statistical physics was adopted to derive expressions describing
the generalization behavior of large linear models trained using SGD. In this paper, we
employ the so-called Gardner analysis to build upon an established line of work studying
linear and generalized linear models [325] [175] [193]. While most of these previous works study
the asymptotic generalization behavior in the limit of large training time, our contribution
is to adapt these methods to study transient learning dynamics of generalization. We apply
these tools to a simplified teacher-student model that exhibits key characteristics of modern

neural network use cases, which we now describe.

4.1.2 A Teacher-Student Setup

Teacher: We study a supervised linear regression problem on a dataset D{(x*,y**) =1
containing n training data-points generated by a linear teacher of width d (Fig. [4.1]).
Additionally, each input datapoint * € R?, is assumed to be sampled from an isotropic

Gaussian distribution,

zh ~ N(0,1y), (4.1)
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(b)

Figure 4.1: (a): A visual depiction of the teacher-student setup of Sec. [4.1.2] The linear teacher having

access to the whole input @, generates labels y* via a weight vector W*. However, the student’s access
to the input is regulated through a pre-factor diagonal matrix I'. (Only the diagonal of T" is depicted for
illustration) (b, ¢): An intuitive illustration of generalization behaviour using the macroscopic variables R
and Q at initialization. We assume Q = ||W||3 = 1. R represents the cosine similarity (cos(6;)) between the

teacher’s weight (taken to be along the z-axis) and the students weights W; (red dots).

with the corresponding true label y** € R being determined as,

Y \}g (@) W, (4.2)

where W* € R? represents the (fixed) weights of the teacher.

Student: Our student network is correspondingly chosen to be a similar shallow network,

governed by trainable weights W € R¢,

g o= \}g (@) (TW), (4.3)

with the important difference of an additional diagonal matri I € R4 (Ty; € [0, 1]) acting

on W. This matrix can be perceived to be a mask, regulating the student’s access to data

features :Ui‘ . With more features available, the student can learn a richer model.
!General matrix, SVD
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Learning algorithm and Loss function: To train our student network, we use stochastic

gradient descent (SGD) on the mean squared loss, defined on the n training examples as,
1 * [ 2
Lr:=—> (" —y" (4.4)
yielding the student weight update,
Wi1 = Wi —nVw Lr (Wk) + €, (4.5)

with k denoting the training step, n the learning rate while ¢ ~ N(0,02) models the
stochasticity of our optimization scheme as an uncorrelated Gaussian noise.
The quantity of interest in this work, is the generalization error of the student

model on the entire task, determined by averaging the network loss over all inputs @:
Lg = SEa[(y () — y(@))?]. (4.6)

Macroscopic variables: In the high-dimensional limit of n,d — oo with a finite ratio
« := 7, the generalization error of Eq. (4.6), is a function of scalar macroscopic variables

H, R and @ defined as,

H= 2 (W T W, (4.7)
R=SW)T (W), Q=W (TW), (45)

which as shown in [55] 190], lead to
£5(R.Q)= 3 (H ~2RH + Q). (19)
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4.1.3 Main Result
In this Section, we present our main analytical results, with Section containing

a sketch of their derivations. (Detailed proofs in Appendix |C.2)).

Closed-from expressions. By employing the replica method of statistical physics [100,

101], we derive expressions for the dynamics of R and @ for the particular case,

7, fori=1,p
Ly = (4.10)

v, fori=p+1,d

such that v1 > s, to yield,

R(a1,a2,01,02) := %fh + %HQ;
1 2
(4.11)

o1 2—a; (6%} 2 —as
Q(a1,a2,a1,a2) == — (H1 - a1H1> + = <H2 - 042H2> :
ay —oaq al a5 — 02 an

Here, Hy and Hy correspond to the parts of the teacher norm for the respective bi-partitions.
While a1 and a9 are related to the learning time-scales ¢1, 9 of the two student bi-partitions,

and are defined as (see Section 4.1.4),

o = Y- Q)
0)

0y — 2 — Qo)

1+ QY - Q)
Here,
P P
Q" =2 Y TV, Qi = o S TR
o o 1:1 ] (4.13)
Q - F?Z<W’L'2>7 Q =5 P'L22<WZ>2
d— p z:%l—l 1 d— p z:%—l

Substituting Eqgs. (4.11)) into Eq. (4.9) then provides a closed-from analytic expression for the

generalization error. These equations provide some qualitative insights: in high dimension,
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generalization error is fully characterized by two scalar macroscopic observables, determined

from the specific structure of the teacher and the student networks.

4.1.4 Sketch of derivations

In this Section, we sketch the key steps in the derivation of our main results.

Derivation of Eq. (4.9) The generalization error of Eq. (4.9) comprises an average over

the input distribution x. Since x’s are i.i.d. and drawn from Gaussian distributions, the

1 R
variables (y,y*) is a bi-variate Gaussian with zero mean and a variance of, ¥ = ,

R Q

which implies a correlation between y and y* obstructing the calculation of the average.

Following [55] [190], we define decoupled variables §* and 7 as follows,

y* =7, and y=Ry ++/Q — R% (4.14)
Simply replacing y* and y into Eq. and averaging over independent Gaussian variables

of 7* and 7, result in Eq.

Warm-up: Generalization at the initialization

It is instructive to start with studying the generalization at initialization. For the
sake of clarity, here we assume the pre-factor matrix in Eq. [£.3]is I' = I. For this warm-up
exercise we also assume that the teacher and the student are initialized with unit norm, i.e.,
[[W*||3 =1 and Q = ||[W]|3 = 1. That means that both the teacher and the student live on
a d-dimensional sphere with unit radius. Since y* and y in Eq. are Gaussian variables
with unit variances, Lg is expected to be close to 2.

Since @ is assumed to be 1, the generalization error in Eq. is only dependent

on R. It is also useful to think about it from a geometrical perspective as advocated in [91].
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Fig. (b, ¢) depict that the variable R simply represents the cosine similarity between the
teacher’s weight and the students’ weight. Since the teacher is only sampled once, we let
W* be aligned with the z-axis. Note that as R grows, the angle between the teacher and
the student becomes smaller. This leads to lower generalization error.

Therefore, the question becomes: What is the typical value for R if we randomly
initialize students? To answer it, we group students based on the angle they make with the
teacher and simply count how many students fall into each group. It is evident that the
majority of the students live near the equator and hence one may conclude that majority
of the students have an R = 0. Substituting R = 0 into Eq. shows that the typical
generalization error is Lg = 2.0, the value we expected.

More formally, let 2(R) denote the volume of the students with a cosine similarity of
R with the teacher. With students randomly initialized over the surface of an d-dimensional

sphere, it is straightforward to show the following,

Q(R) = /dW SIWIE = 1) 5($(W*)TW - R)

x exp(d[%(l +1n27) + %(1 — RY)]), (4.15)

in which d, the number of dimensions, appears in the exponent. This suggests that as
the number of dimensions grows, Q(R) becomes exponentially larger for the students that
maximize the term inside brackets. It is consistent with the general intuition that in
high-dimensions, every random student is perpendicular to the teacher with overwhelming

probability.
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Generalization during training

To track the generalization error during training, we first turn to the free energy
of the system, which is defined to be the logarithm of the partition function, i.e., f
—In(Z). The free energy is a self-averaging quantity where its mode coincides with its
mean. Consequently, it allows us to compute the values of our macroscopic quantities at
equilibrium. Next steps are: 1) Analytically derive the expression for the free-energy which
is typically done by using the replica method of disordered systems [237], and, 2) Solve for
values of R and @) which minimize the free energy and consequently provide us with the

typical generalization behavior.

The free-energy. The first step is to note that SGD as defined in Eq. in the long
run, follow a Boltzmann distribution over the student weight, P(W) o exp(—Lr/T), where
T denotes the temperature and L7 is the training loss. It signifies that for a large T', the
distribution of P(W) is almost uniform while as 7" — 0, P(W) becomes more concentrated
around the minimum (minima) of the training loss. While most of work in this literature
study the case of zero temperature, here we take the approach of [55] to provide more general
expressions dependent on the temperature.

The partition function is then defined as,
Z = / e "PETS (TW — dQ) dW, (4.16)

in which 0 is the Dirac delta function. The free-energy is the self-average of the logarithm of

the partition function w.r.t. n training examples,

fi=- <<125>>Ww (4.17)
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Since logarithm is inside the expectation, analytical computation of Eq. is intractable.
However, the replica method allows us to take the logarithm outside according to the

following identity also referred to as the replica trick,

E[lnZ] = lim % (4.18)

r—0 r

Accordingly, the analytical expression for the free-energy reads,

11 —RY |1 (0) o (0) af Hy —2R1Hy + Q1
_Bf =l o Q) - Y1+ Q| -¥ .

I Tagu g, T2 Ty [ A - o] =5 1+8@Q - Q)
1Q—-R 1 (0) o} (0) aff Hy — 2R Hy + Q2

+ 57@50) ~ o, + 3 In(Qy" — Q2) — 3 In [1 +B(Qy" — Q2)} Ty 1+ 5(@%0) ~ o)

(4.19)

Solutions for R and ). Given the analytical form of the free-energy, we can simply solve
for values of R and () that minimize the free-energy to obtain the expressions of Eq. .

Intuitively, one may see that as the temperature drops, variables R and () reach
their asymptotic values. Hence, the last piece of puzzle is to formalize the relationship

between the temperature, 7', and the training time, ¢.

Training time is inversely proportional to the temperature. For a linear model,
such as the one in Eq. t iterations of gradient descent is shown to be equivalent to
the same model trained with Ly regularization with a coefficient inversely proportional to
training time. Formally, Thm. 3 of [I0] provides an upper bound on the excess risk of
stochastic gradient flow at time ¢, over regularized regression A = 1/, for all ¢ > 0.
Accordingly, to incorporate training time in the free-energy, one may add an Lo

regularization to the training loss with a coefficient of A = 1/¢t. Hence the expressions for
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the loss and the free-energy are updated as,

1 ) ;)50) Q§0)
Lt — Lr+ —||W and f— f4+ — + 5. 4.20
T T 2t|| ||2 ) / 2’7%75 2’}/%t ( )

Now, we can minimize the free-energy w.r.t. Qg and derive an expression for the

temperature T' as a function of time, t.,

2
1 1 4
16”@*\/(10‘1%%) T

\V4 §o>f:0 = alzbi—i-l = b = R (4.21)
! it
1 1 2 4
1 1 —a sz’ti\/(l%“@t) t o
Vng)f =0 = ay = g +1 = by = % (4.22)
1

which coincides with the intuition that training longer implies lower temperature.

4.2 Experimental Results

In this Section, we provide numerical simulations to validate our analytical theory.
Furthermore, we demonstrate that our teacher-student setup exhibits generalization behavior
which is qualitatively similar to that of deep neural networks. The experiments are designed
to provide a better understanding of the epoch-wise double descent phenomenon.

In simulations and evaluation of the theory, we set the number of training examples
n = 150, the dimensionality of data d = 200. Also the cutting point of the diagonal elements
of I' matrix is set to p = 100. Numerical simulations are averaged over 100 random runs.
App. provides additional examples with different data and model settings. To ensure
reproducibility of the results, we provide further details in App. and include the complete

source code in a /GitHub repository.
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4.2.1 Match between theory and simulations

We conduct an experiment on the classification task of CIFAR-10 [189] and monitor
the generalization error (0-1 test error) during the course of training. We follow the setup
of [254] and add 15% random label noise to the training set, which leads to epoch-wise
double descent. Fig. (Left) depicts the generalization curve for two models of ResNet-18
[143] with different widths. It can be observed that the network with a smaller width
displays a typical overfitting behavior in which the generalization error decreases first and
then overfitting occurs, resulting in worse generalization. However, the network with a
larger width exhibits a double descent generalization curve, i.e., with more training, the
generalization error will eventually improve.

To compare with the teacher-student setup in Sec. we consider the following

two cases for the pre-factor diagonal matrix I,

A 1 for i<p 1 for i<p
r{d = ,and TP — . (4.23)

0 for i>p 0.1 for i>p

Fig. (Right) presents the analytical generalization dynamics of Eq. for
the two cases above and provides comparison between the theory and simulation results
of the same model. We observe that the theory and simulations accurately match. We
also note that Fig. (Right) and (Left) qualitatively match with each other, suggesting
that the proposed teacher-student model is a valid approximation of deep neural networks’

generalization dynamics.
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Figure 4.2: Comparison between generalization performance predicted by theory and ResNet-18 on CIFAR-10,
as function of training time. We observe that the qualitative dynamics match on the left and right plots.
Left: Generalization curves for a ResNet-18 model, following the setup in [254], we add 15% label noise.
The plots depict two networks with different width. The green curve corresponds to a network with width
20. It undergoes a typical over-fitting behavior. The blue curve corresponds to a network with width 60
which undergoes two descents and with more training the generalization error eventually improves. Right:
The teacher-student set-up in Sec. . We compare the analytical solutions in Eq. to simulations
performed on our teacher-student setup with d = 200, p = 100, n = 150 and we plot the error bars over
100 random seeds. The solutions and the simulations match closely and we observe double descent over the

generalization error in both cases of the blue curve.

4.2.2 The Phase diagram

To further understand the transition between the two phases of decent-ascent and
decent-ascent-descent, we explore the phase diagram.

Before discussing the structure of the phase diagram, let us highlight the fact
that given Eq. one can fully characterize the evolution of the generalization dynamics
in terms of two scalar variables instead of the d-dimensional parameter space. R and @
presented in Eq. are macroscopic variables that together represent the angle between

the student and the teacher. Hence, a better generalization performance is achieved with
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larger R and smaller Q.

Fig. [4.3]illustrates the generalization loss for all pairs of (R, Q) € [0.0,0.8] x [0.0, 1.6].
However, R and ) are not free parameters and both depend on the training dynamics
through Eq. . Specifically, at the time of initialization, (R, Q) = (0,0) as the students
are initialized at zero. As training time proceeds, values of R and @ follow the depicted
trajectories. In Fig. different trajectories correspond to different choices of the pre-factor

matrix I where,

1 for i<p
Ty = , for v € [0.0,0.1]. (4.24)

v for i >p
The yellow curve which corresponds to the case with v = 0 exhibits traditional over-fitting
due to over-training, i.e., the yellow trajectory starts at (0,0) and moves towards Point A
which has the lowest generalization error of this curve. Then as the training continues, @
increases and as t — oo the trajectory lands at Point B which has the worse generalization
error.

The curves in orange, green and blue correspond to trajectories of v > 0. They
follow the case of v = 0 up to the vicinity of Point B, but then the trajectories slowly incline
towards another fixed point, Point C signalling a better generalization performance.

The phase diagram along with the corresponding generalization curves in Fig.
suggest that features that are learned on a faster time-scale are responsible for the
conventional U-shaped generalization curve, while the second descent can be attributed to

the features that are learned at a slower time-scale.
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Figure 4.3: Left: Phase diagram of the generalization error as a function of R and @ (Eq. ) The
generalization loss for all pairs of (R, Q) € [0.0,0.8] x [0.0, 1.6] is contour-plotted in the background in shades
of beige, with the best generalization performance being attained on the lower right part of the plot. The
trajectories, starting from (0,0), on the other hand, correspond to the values of R and @ as training proceeds.
Each trajectory correspond to a different choice of v in Eq. , with v = 0 (bright yellow) exhibiting
traditional over-fitting, while for v > 0 the test error demonstrates epoch-wise double descent Right: The

corresponding generalization curves for different values of v € [0, 0.1].

4.3 Related Work

If we consider plots where the generalization error on the y-axis is plotted against
other quantities on the x-axis, we find earlier works that have identified double descent
behavior for quantities such as the number of parameters, the dimensionality of the data, the
number of training samples, or the training time on the z-axis. In this paper, we study epoch-
wise double descent phenomena, i.e. we plot the training time ¢, or the number of training
epochs, on the z-axis. Literature displaying double descent phenomena in generalization
behavior wrt other quantities do so in the limit of ¢ — co. Nevertheless, since our work
builds upon past studies, it is relevant to review different perspectives taken in the existing

literature towards studying other forms of non-monotonicity of the generalization error.
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Random matrix theory perspective. [205, [141], [5], and [44] are among works which
have analytically studied the spectral density of the Hessian matrix. According to their
analyses, at intermediate levels of complexity, the presence of small but non-zero eigenvalues
in the Hessian matrix results in high generalization error as the inverse of the Hessian is
calculated for the pseudo-inverse solution. In an influential work, [230] extend the same
analysis to a random feature model and theoretically derive the model-wise double descent
curve for a model with Tikhonov regularization. [16§] also study double descent in ridge

estimators and show an equivalence to kernel ridge regression.

Bias/variance trade-off. [107], and more recently, [261] empirically observe that while
bias is monotonically decreasing, variance could be decreasing too or unimodal as the
number of parameters increases, thus manifesting a double descent generalization curve.
[141] analytically study the variance. More recently, [372] provides a new bias/variance
decomposition of bias exhibiting double desc-nt in which the variance follows a bell-shaped
curve. However, the decrease in variance as the model size increases remains unexplained. For
high dimensional regression with random features, [90] provides an asymptotic expression for
the bias/variance decomposition and identifies three sources of variance with non-monotonous
behavior as the model size or dataset size varies. [82] also employs the analysis of random
feature models and identifies two forms of overfitting which leads to the so-called sample-wise
triple descent. More recently, [71] show that as a result of the interaction between the data

and the model, one may design generalization curves with multiple descents.

Statistical physics perspective. [273], 54, 55 274] are among the first studies which

theoretically observe sample-wise double-descent in a ridge regression setup where the
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solution is obtained by the pseudo-inverse method. Most of these studies employ the
“Gardner analysis” [100, 101} 102] for models where the number of parameters and the
dimensionality of data are coupled and hence the observed form of double descent is different
from that observed in deep neural networks. A beautiful extended review of this line of
work is provided in [91]. Among recent works, [I10] also apply the Gardner analysis but to
a novel generalized data generating process called the hidden manifold model and derive the
model-wise double-descent equations analytically. In this work, we also leverage the tools of
statistical physics, namely the replica method. We adopt the approach of [55] for introducing
training time into the equations through finite-temperature learning in our teacher-student

setup.

Other related work. On the empirical side, [254], study the different forms of double
descent in deep networks; this is the first work that identifies epoch-wise double descent and
shows that it manifests in the presence of noisy training labels. In our experiments on deep
networks, we follow [254] and explicitly add label noise to the training data to simulate the
noise that can naturally occur in wild datasets.

Towards providing an explanation for the epoch-wise double descent, we argue that
the epoch-wise double descent can be attributed to different features being learned at different
time-scales, resulting in a non-monotonous generalization curve.

A related result was obtained by [144] in the framework of the bias/variance
decomposition. The authors argue that epoch-wise double descent is observed due to the
overlapping of two or more U-shape generalization curves with different minimas. Several

other related works have identified that different model components are learned at different
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rates depending on the data and model structure. [313], 314 [4] 5], 114, 199] [66] study the
learning dynamics of linear or linearized networks and show that learning along each principal
component of the NTK [167] or input covariance matrix progresses at a different rate. [285]
show that different rates of learning at the presence of cross-entropy loss could result in

failure to capture slower-learning features.
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Chapter 5

Conclusions

In the following we provide concluding remarks on each of the three distinct topics
discussed in the thesis.
Fluctuations and magnetoresistance oscillations near the half-filled Landau level:
In this work, we studied theoretically commensurability oscillations about v = 1/2 that are
produced by a one-dimensional scalar potential using the Dirac composite fermion theory.
Through an approximate large NV analysis of the Schwinger-Dyson equations, we considered
how corrections to Dirac composite fermion mean-field theory affect the behavior of the
predicted oscillations. We focused on corrections arising from the exchange of an emergent
gauge field whose low-energy kinematics satisfy |¢'| < |go|. In addition, we only considered
screened electron-electron interactions. Remarkably within this restricted parameter regime,
we found a self-consistent solution to the Schwinger—Dyson equations in which a Chern-
Simons term for the gauge field and mass for the Dirac composite fermion are dynamically

generated. The Dirac mass resulted in a correction to the locations of the commensurability
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oscillation minima which improved comparison with experiment.

There are a variety of directions for future exploration. It would be interesting to
consider the effects of the exchange of emergent gauge fields with |gg| < |¢|. In this regime,
Landau damping of the “magnetic” component of the gauge field propagator is expected to
result in IR dominant Dirac composite fermion self-energy corrections [208], 234, 249]. In
particular, it would be interesting to understand this regime when a dynamically-generated
Chern-Simons term for the gauge field is present. These studies are expected to be highly
sensitive to the nature of the electron-electron interactions. At v = 1/2 when the effective
magnetic field vanishes, single-particle properties depend upon whether this interaction is
short or long ranged [182]. It is important to understand the interplay of this physics with
a non-zero effective magnetic field that is generated away from v = 1/2 and its potential
observable effects.

The corrections to the predicted commensurability oscillations relied on a solution
to the Schwinger—Dyson equations, obtained in a large N flavor approximation, that was
extrapolated to N = 1. The study of higher-order in 1/N effects may provide additional
insight into the validity of this extrapolation. Alternatively, study of the 't Hooft large IV
limit of the Dirac composite fermion theory dual conjectured in [I57] may complement our
analysis.

Recent works [351) 197, 195] have shown that PH symmetry at v = 1/2 and
reflection symmetry about v = 1/2 rely on precisely correlated electric and magnetic
perturbations. (This correlation is implemented by the Chern-Simons gauge field in the

HLR theory.) Specifically, a periodic scalar potential V' (x) generates a periodic magnetic
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flux b(x) via,

b(x) = —2m*V (x). (5.1)

How might fluctuations about HLR mean-field theory affect Eq. and potentially modify
its predicted commensurability oscillations and other observables?

LEAD: Min-Max Optimization from a Physical Perspective: In this work, we
leverage tools from physics to propose a novel second-order optimization scheme LEAD,
to address the issue of rotational dynamics in min-max games. By casting min-max game
optimization as a physical system, we use the principle of least action to discover an
effective optimization algorithm for this setting. Subsequently, with the use of Lyapunov
stability theory and spectral analysis, we prove LEAD to be convergent at a linear rate
in bilinear min-max games. We supplement our theoretical analysis with experiments on
GANSs, demonstrating improvements over baseline methods. Specifically for GAN training,
we observe that our method outperforms other second-order methods, both in terms of
sample quality and computational efficiency.

Our analysis underlines the advantages of physical approaches in designing novel
optimization algorithms for games as well as for traditional optimization tasks. It is
important to note in this regard that our crafted physical system is a way to model min-max
optimization physically. Alternate schemes to perform such modeling can involve other
choices of counter-rotational and dissipative forces which can be explored in future work.
Double Descent Phenomena: A Tale of Multi-scale Feature Learning Dynamics:
Leveraging tools from statistical physics such as Gardner analysis and Replica method, we

derive explicit equations for the generalization error as a function of model size and training
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time in a teacher-student setup. We believe our analysis introduces a convenient approach
to study the generalization dynamics of neural networks. We provide important insights
while characterizing some of the aspects of deep neural networks with simple analytical
equations. Particularly, we provide an explanation for the epoch-wise double descent by
characterizing the dynamics of a teacher-student setup with two microscopic variables. In
short, epoch-wise double descent can be explained by the interaction of different learning
speeds for subsets of features in the data.

Limitations. It should be noted that studying finer details of the dynamics would require
a more precise model of the neural networks. Clearly, our proposed model is not a universal
and unique way to model the dynamics of the complex, over-parameterized deep neural

networks.
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Appendix A

Chapter 2: Appendix

A.1 Integrals

In this appendix, we give details for the calculations of the gauge and fermion

self-energy integrals quoted in the main text.

A.1.1 Gauge field self-energy

We begin with the gauge field self-energy given in §2.2.3] We are interested in

computing the PH odd component of the gauge field self-energy Il,qq:

Haﬁ(q> = H?V%n(Q) + iEOCBTQTHOdd(q) (Al)
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To leading order in b, we substitute G(p) = G (p) from Eq. [2.17) with ¥, = 0 for

a €{0,1,2} into Eq. (2.30):

i g (o) = N{ [ (;lff;g [ GO G + ) }

o d*p e[ 107 (Po + 1006,0) + En) g
- 27)3 r 2 _p2 32 v
(2m) (po + po)? — pi — %3,

Z(VT(pT + qr + /"LOCST,O) + Em) :| } (A 2)
(po+qo+ po)? — (pi + ¢:)? — £2,1Jodd’ '

odd

We have suppressed the ie,, factor in Eq. that defines the Feynman contour for
the Minkowski-signature pg integration because we will will evaluate the above integral in
Euclidean signature. In subsequent sections of this appendix, we will likewise suppress the
i€p, factor for the same reason without further comment. Recall that the factor of IV arises
from the fermion loop over N flavors of Dirac composite fermions and that ug > 0.

To leading order in the derivative expansion, i.e., II,qq(¢ = 0), the expression for

I1,44(0) simplifies to

d3 1
Mouq(0) = —2iNE,, / ( 27593 . . (A.3)
((po + o) =1} = E%)
Here, we have used the trace identities,
tr[y297] = 207,
tr [70‘7571 = —2ie™PT, (A.4)

To compute this integral, we first Wick rotate, pg — i(pg)s and d®p — id®>pg, and then
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sequentially integrate over (pg)s and the spatial momenta (pg); (i = 1,2) to find:

_ d?’pE 1
Ma(0) = 2N%, @) (i(pp)s + 0)® — (p)? — 22,)°
i d3pE 1
=2vs, | @ (0p)s — 012 (0r)s — w_ )
o Ppp OS] — o) + Op0 — SO ()| — Vi~ 3
2 /| @n)? ((pp)ilP + 22,572
= = (BUZul = o) + Ol = [S)=) (A5)

where the step function O(|(pg)i| — /3 — X2,) in the third line ensures the double poles
wr = i(po £ 1/(pr)? + £2,) occur on opposite sides of the real (pg)s axis. Eq. (A.5)
implies that, for up > |%,,| > 0, the gauge field obtains a correction to its propagator that

corresponds to an effective Chern-Simons term with level,

NY
E=—"" A.6
3 1o (A.6)

A.1.2 Fermion self-energy

Next, we calculate the fermion self-energies ¥, and g quoted in §2.2.4]

We begin with ¥,,,. Taking the trace of both sides of Eq. (2.29) and setting dg, = 0,

we find:
i¥m(grs) = iM O (gps) + MM (grs), (A7)
where
1 a3 21 € 4
i A(0) _ - b o ~(0) g (2T €apol
1 d3p 21 € 7
iA(D) _ = a(1) B (4T €apal
iM(grs) 2/(%)3&"[7 G (p+ qrs)y (k o )] (A.9)

82



GO(p) and GM(p) are given in Eqs. and , k is given in Eq. , and gpg =
(0, pon) for the unit vector n (e.g., 1 = (cos(p),sin(y)) where ¢ parameterizes a point on the
Fermi surface) normal to the (assumed) spherical Fermi surface. As before, we set ¥, = 0
for o € {0,1,2} and only retain %, when using G(¥(p) and GV (p) to evaluate M©) and

MW as well as Xy below. Tt is convenient to define Q = (uo, pof) so that

wOws) = 5 [ Gl (R FEE) e
)= 5 [ e (MG g CEe )l

We first consider M) = M) (gpg). Using the trace identities in Eq. (A.4)), we

find

. mi [ dPp WP+ Q)s+ Em) €aprpP’
iMO = k/ <2w>3“[” ( (b + Q)7 -3, ) ( » )
CAr [ A (p+Q)ep”

k) (2m)3 ((p+ Q)% —X2,)p*

(A.12)

Next, we combine denominators using the Feynman parameter x and then shift the integration

by defining £, = po + Qux:

iy _ AT [ dp /ldx (p+Q)op”
kJ (2m)3Jo  (0*+2p- Qu+ Q% — X32)?
4 / d3¢ /1 2 4+0-Q(1 —2x) — (1 — 2)Q?
- dx 5
0

k) (2r)p (¢ + Q%x(1 —x) — ¥2,x)

47 d3¢ 1 Iz
_ " - A1l
c/ <27r>3/0 s (4.13)

where we evaluated Q?> = 0 and dropped the linear in ¢ term in the third line since it

vanishes upon integration over £. Next, we Wick rotate by taking (o — i({g)s, (2 — —(%,

and d3( — id*(g, integrate over ¢g via dimensional regularization, and finally integrate over
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: 3 2
Z'M(O):@ deE/d( kg

k (2m)3 02 + %2 x)?
B 12773/21|E \ d
N r x!
Bl
k
. QMOSign(Em)
= o A4
2stEn(E) (A1)

where we substituted in the Chern-Simons level given in Eq. (A.6) in the final line.

Next, consider M = M®)(ggg). Using the trace identities in Eq. (A.4), we find

ZM(l) _ _47Tb2m / d3p Po
k (2m)3 ((p+ Q) — X2,)%p?
4wb3,,
— ”k I(22,Q). (A.15)

With the help of the formal identity,

d3p P
I(32,,Q) = =052 J(£2,,Q) = —0Os2. / i T Q)207 ST (A.16)
we rewrite
47b% a3
A ™9 p Po
MO =50 [ s (A7)

This integral has the same basic form as the one we encountered in calculating M(© and so
we will follow the same steps as before: combine denominators with the Feynman parameter

x, shift the integration o, = po + Qa, and substitute in Qp = o and Q% = 0:

. Ah3m 1o d3¢ 1 x
1

m
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Next, we Wick rotate by taking ¢y — i(fg)s, integrate over £g via dimensional regularization,

integrate over z, take the derivative with respect to ¥2,, and then evaluate k = % z

Tg’:
3 1
im0 = ATl / <le / o &
0

k (2m)3 02 + %2 1)?
X o 1 ! 1/2
= —i—p Os2. ALE /0 dr x
2 byf
3N (A.19)

Finally, we calculate ¥o(grs) and X{(grs), which we obtain from evaluating the

derivative with respect to gy of ¥o(P) at the Fermi surface:

. 1 d3p o 27 €a80D°
0(P) = 5 [ G606+ P (), (A.20)

where P = (qo + po, pont). First, we note that

tr[y° 77777 (p + P)op €asr = 2" 07" — 00" + 0% 0°)(p + P)opeaps

= (p+ P)’p"eosr + (0 + P)*p canr

=0. (A.21)
Therefore, only the term proportional to ¥, in the numerator of GO contributes. Using
the trace identities in Eq. (A.4)), we find

. 47, d3p pD
BoP) =7 | Gep (o P s

(A.22)

As above, we combine denominators, shift the integration variable ¢, = po + Pyx, and drop

any linear in ¢ terms in the numerator:

, 4780 e [t T
iSo(P) = — (Zo + 1o) / - /0 ey R ot (A.23)

m
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We assume %2, > |P?| ~ |2uqo|. Wick rotating £y — i(£g)3 and sequentially performing the

fr and x integrals, we find:

. .4772m(QO+N0)/d3£E /1 v
So(P) = — d
Zo(P) = —i——— @) Jo (6 = 2(1 = 2)now) + 3,0

Em (g0 + Ho) /1 o x
2k o (327 —2u0qx(1 — x))L/2

S 2
_ _;Zm(90 + po) <1+ Koo +O(q§)>

3k| X 5% [?
. 20 ( 211090 2
- 1 o ) A24

Taking the derivative of ¥ (P) with respect to qo, evaluating at ¢ = (0, uon), and retaining

only the first term (pogo < [Zim|?), we obtain

, . 240
b = - . A.25
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Appendix B

Chapter 3: Appendix

B.1 Derivation of Eq.

Proof. Polyak’s heavy ball method with unit momentum for the minimization of

a single objective f () is given by,

Th+l = Tk + (Svk —Tp-1) —NVaf (xk) ) (B-l)

where 7 is the learning rate. One can rewrite this equation as,

(Zh+s — 1) = (k= Tn-s) _ —%fo (zk) , (B2)

where ¢ is the discretization step-size. In the limit 6,7 — 0, Eq.(B.2)) then becomes
(xp — X (t) = X),

mX = —Vxf(X) (B.3)

This is equivalent to Newton’s 2°d Law of motion (Eq.(3.2)) of a particle of mass m = 62/,

if we identify F = —Vxf(X). m

87



B.2 Proof of Proposition |3.2.1

Proof. The EOMs of the quadratic game in continuous-time (Eq.(3.9))), can be

discretized in using a combination of implicit and explicit update steps as [331],

Tpy1 — Tp = OV 41, (B.4a)
Yrt1 — Yk = OV, (B.4b)
Uk — Vi = —q0Vay f (21, yr) 0} — povy, — 0V f (xk, yr) (B.4c)
vy — V) = @0V ay f (zh, yr) Vi — povy, + 0V f (2k, yr) (B.4d)

where § is the discretization step-size. Using Eqns.(B.4a) and (B.4b)), we can further

re-express Eqns. (B.4d), as,

Tpy1 = Tk + Az — Vo f (Xk, Yk) — Ve f (28, yi) Ayi

Ykt1 = Yk + BAYR + 0V f (Tr, Yr) + oV f (2k, yi) Azy,

where Az = 2 — x;_1, and,

B=1—pud, n=20% a=2q (B.6)

B.3 Continuous-time Convergence Analysis: Quadratic Min-
Max Game
Proof. For the class of quadratic min-max games,
h 2 h 2 T
fX.Y) = Z|IXP =S¥+ X Ay (B.7)

88



where X = (Xl, e ,X”) Y = (Yl, e ,Y”) € R™ and A,,«,, is a constant positive-definite

matrix, the continuous-time EOMs of Eq.(3.9)) become:

X = —uX —hX —AY — gAY

(B.8)

Y = —uY —hY + ATX +¢ATX

We next define our continuous-time Lyapunov function in this case to be,
1 /. T,
&= (X+uX+uAY) <X+MX+MAY>
1 /. T . -
+= <Y+;LY—MATX) <X+MY—,uA X)

2 (B.9)

+ % (XTX + YTY) + XT(h+ AAT)X + YT (h+ ATA)Y
>0Vt
The time-derivative of & is then given by,
£ = (X +puX +pay) (X +pX +pa¥) 4 (Y 4y - pa™X) (¥ 4 p¥ - pa”X)
+(XTX+YTY) +2(XT(h+ AAT)X + YT (h+ ATA)Y)
_ (XT +uXxT 4+ uYTAT) ((—q T ) AY — AY) ' <—qAY X - AY)
+ (YT YT - uXTA> (4= ma”x + ATX> 4+ yT <qATX ) ATX)
+2(XT(h+ AAT)X + YT (h+ ATA)Y)
— (u(qg—p) —2) <YTATX ~ XTAY) (g — ) —2) (XTAATX + YTATAY)
—pu (XT(h+AAT)X + YT (h+ ATA)Y) — 1 (XTX + YTY)

(B.10)
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where we have used the fact that X7 AY being a scalar thus implying XTAY = YTATX.

If we now set ¢ = (2/u) + p in the above, then that further leads to,

& =—n(XT(h+AAT)X + YT (h+ ATA)Y) — (XTX + YTY>
(B.11)
=~ (RIIXIP + RIYI? + [|ATX | + JAY]?) — g <HXH2 4 HyHQ) <oVt

exhibiting that the Lyapunov function, Eq.(3.15) is asymptotically stable at all times t.

Next, consider the following expression,
L2 112 . 2 112
—ot = |l - X|[ - Sy - [ - 5 [ - ax[ - 5 flanx v
2 2 2 2
. pH 2 2 T v Ty |2 2
=—p& — o (IXIF+IYI ) +pp (XX +YTY ) = pp | || X]| +]Y]]
T AY T PH T 2 2
—pp (XTAY - XTAY ) = T ([|AT X[+ [|AY ]
L2 112 p
o ([[5][+ [F]) = £ 6 ey (117 I E)
p 2
— 2w+ u+2) (|47 X[ +114Y17)
< —pé

(B.12)
where p is some positive definite constant. This implies that the above expression is negative
semi-definite by construction given p > 0. Now, for a general square matrix A, we can
perform a singular value decomposition (SVD) as A = VISU. Here, U and V are the right

and left unitaries of A, while S is a diagonal matrix of singular values (o;) of A. Using this
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decomposition in Eq., then allows us to write,
12 112
= o) ([|&]]+ [[¥]7) = § 6+ e 2) (112 + 1v712)
— LW +n+2) (A7 X" + llayl?)
_ - ||? |2 P2 2 2
ot ([ 03] - 20 (i v
=2 (u+ n+2) (IISVX|P + ISUY|)
12 .12 (B.13)
=) (] 4[] = § G2 e 20) (102 + 1912)
— 2 (w2 +u+2) (IsxIP +11s¥I”)
" )2 2
== ot ([l +[7[)
j=1
=2+ oF +2m) (2 + )+ 203) (1|27] 4 | 9))
j=1
where we have made use of the relations UTU = UUT =1, = VIV = VVT, and additionally
performed a basis change, as X = VX and Y = UY. Now, we know from Eq. that,
; 12 112
o=~ (1XIP + 1Y 1P + |7 4+ v 1) = (]|2]|+ [ [7])
2 2 T 2 T 2 . 112 .12
=~ (RIX|P +RIIY|P + | |[UTSVX| | + ||VTSUY || )—N<HVXH +H[UYH >

= = (RIIZX|P + I + IS + [SYIP) — g (H’“HQ * Hj’m

_ _éu(ggm (1911 + 1199 —Z:u (1 +[I°)

(B.14)
Comparing the above expression with Eq.(B.13]), we note that a choice of p as,
2u(o2,, +h
p<min{ . “(Ummj ) ¢ Vieln] (B.15)
1+M (1+amin+2h) (H +:u) +2Umin
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implies,
& < —p€
= & < &yexp (—pt)
= X" (h+AAT) X + YT (h+ ATA)Y < E exp (—pt)
= XT(h+ )X + YT (h +S*)Y < Eexp (—pt) (B.16)

=Y (h+02) (I|X7)* + [|37]]?) < Eoexp (—pt)
j=1

= > (h+07) (IIX7|* + [[Y7|]?) < Eoexp (—pt)
j=1

& .
Y exp (—pt) ¥ j

SAIXAP YR <
h+0min

B.4 Proof of Theorem [2

Theorem: The eigenvalues of VFigpap(w*) about the Nash equilibrium w* = (2*,y*) of

the quadratic min-max game are,

1—(n+a)A+B-—nh+ VA

5 (B.17)

pt (v, B,m) =

where, A = (1 — (4 a) A+ 8 —nh)* —4(8 — a)) and X € Sp(off-diag[Vv(w*)]). Further-

more, for h,n,|a|,|8] << 1, we have,

(n+ )’ A2+ n?h?® + B2 — 2nhf

uﬁ)(a,ﬁ,n) ~1-—nh+

4
+ A (n;a(nh—ﬂ)—n>
(B.18)
(04 ) A2 + 122 + 5% — 2nhp

Mg)(ohﬁvn)%ﬁ_ 4

+ A <17+2a(6—77h)—04)
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Proof. For the quadratic game (B.7), the Jacobian of the vector field v is given by,

V:vf(wtv yt) h]IQn A 9 9
Vo=V = € R*" x R™". (B.19)
=Vy f(@e, ye) —AT  hl,
Let us next define a matrix D, as,
V2 flz,y) 0 A 0
D= ' = € R¥" x R2" (B.20)
0 —Viyf(ilf7 y) 0 _AT
Consequently, the update rule for LEAD can be written as:
Tt+1 T Ty — L1 Vo f(@e, yt) Viyf(fﬂn ye) Ay
= +6 =1 -
Yi+1 Y Yt — Y1 —Vyf(xt, yt) _v%yf<a;t7 yi) Az,
- - - (B.21)
Ty Ty — Ty—1 Ay
= + B —nv — alqy
Yt Yt — Yt—1 Az,
where Ay, =y — yi—1 and Axy = & — T_q.
Next, by making use of the permutation matrix P,
0 I,
P:= € R*™ x R*
I, O
we can re-express Eq. (B.21)) as,
W1 ]IQn 0 Wi H2n —]Ign Wi v Dq 0 P P Wit
= +5 =1 —a
wy I, O] [wi—1 0 0 w1 0 0 0f (0 O w1
HQn 0 Wi Hgn —]Ign Wi v Dq]P) —DqP Wi
= +5 =1 -
Hgn 0 W1 0 0 W1 0 0 0 Wi—1
(B.22)
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where w; = (¢, y;). Hence, the Jacobian of F1pap is then given by,

I, O Iy, —lo, Vv 0 D,P —DyP
VFLEAD = +0 -1 -«
Iy, O 0 0 0 0 0 0
Z (B.23)
(14 8) Iz, — Vv — oD P —ply, + aDyP
Ion 0
It is to be noted that, for games of the form of Eq. (B.7)), we specifically have,
Vv = DyP + hly,
and,
off-diag[Vv] = D P
Therefore, Eq. (B.23]) becomes,
(1+B8=nh)lon — (n+a)DgP  —Blyy, + aDyP
VELEAD = (B.24)

Io, 0
We next proceed to study the eigenvalues of this matrix which will determine the convergence

properties of LEAD around the Nash equilibrium. Using Lemma 1 of [I16], we can then
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write the characteristic polynomial of VF1gap as,
det (XLM — VFLEAD) =0

(X — 1)1, — (B—nh) Lo + (n+ a) DgP  Blay, — aDyP
= det =0

_HQn X]IQTL

= det | (X = 1) (X = ) Ton + Xnhllon + (X1 + Xo — a) DqPD =0 (B.25)

= det

(
= det < :((X ~1)(X-B8)+Xnh)UU + (Xn+ Xa —a) UAU_1D =0
(

_((X—1)(X—5)+th)ﬂ2n+(Xn+Xa—a)AD =0
2n

= TTIC = 1) (X = 8) + Xnh+ (Xn+a (X — 1)) A] =0
=1

Where, in the above, we have performed an eigenvalue decomposition of DyIP = UAUL

Therefore,
X2 - X1 —-(n+a)+pB—nh)+B—ar=0, \; € Sp(D,P)
L x = — 1—(77+a))\i42rﬁ—nhi\/Z (5:20)
with,
A=(1~-(n+a)Xi+pB-nh)’—4(8—ak) (B.27)
Furthermore for h,n, |B|, |a| << 1, we can approximate the above roots to be,
(o, ) = 1= b + (77+a)2A12+771h2 Sk I (n;a (nh — B) —77>
(e ) m - RPN EIR 0 (080 (5 o)
(B.28)
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B.5 Proof of Proposition [3.3.2]
Proposition: For any A € Sp(off-diag[Vv(w*)]),

2
Vap ()\) ’04:0 <0& ne (0, Irn()\max)> s (B29)

where Im(Apax) is the imaginary component of the largest eigenvalue Apax.

We observe from Proposition above that for h,n, |al, 5] << 1,

pla,n, B) == max{[ul) 2, |2} v i

(B.30)
D]
:max{‘u+‘ } Vi
2>\i2_ 2h2—52 hj3 — h—ﬁz
.‘-Vap\a:()%max{n A 477 I+ (;7 )77|)\z‘\2
—(+ AP
(B.31)

3 3 2
%max{%|)\i|4— (1—|—5+§>77|)\¢|2}Vi

< max{ (T Xl — 1) nxil? } Vi
where we have retained only terms up to cubic-order in 7,|3| and h. Hence, choosing
RS (0, m), ensures:
Vap|,_g <0Vi, (B.32)
We thus posit, that a choice of a positive « causes the norm of the limiting eigenvalue p of

Firap to decrease.

B.6 Proof of Theorem [3

Theorem: If we set n =« = %, then we have V ¢ > 0,

Omax

202. 2 2 2\t
At+160<<1—6w—2h +B+ﬁ> A0> (B.33)

2
Umax Omax 2
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where 0ynaz(0min) is the largest (smallest) singular value of A, Ayyq == [lwi1 — w*[|3 +
|lwr — w*|[5-
Proof: From Eq. (B.26)), we recall that the eigenvalues of VFygap (w*) for the

quadratic game are,

(i) _ (=(a+n)Ai+B—nh) 4(8 —n\i)
p (. Bym) = 5 <1i\/1_(1—(a+n)&+ﬁ—nh)2> (B.34)

with \; € Sp(off-diag[Vv(w*)]). Now, since in the quadratic-game setting considered, we
have,

0 A
off-diag[Vu(w*)] = D4P = (B.35)

—AT 0

hence, \; = t+io; with o; being the singular values of A. This, then allows us to write,

(0) (1= (a+mn)(xio;) + ) B 4 (8 — a(Fio;))
(o, B,m) = 5 <1 + \/1 (o T (io7) £ ,6’)2) (B.36)

Now, according to Proposition the convergence behavior of LEAD is determined as,
Api1 < O(p+€)Ay Ve > 0, where (setting n = a),

pr=max{|pl) 2, |u? 2} v i

GARE

, (B.37)
~ 1 =300, — % - 2772712 + (24 B) nh
= 1—rLEAD

Here, rigap = 3n%02. — %2 — %thQ + (2 + B) nh, is defined to be the rate of convergence

min
of LEAD. Furthermore, using the largest learning rate n as prescribed by Proposition [3.3.2

in the above, we find,

202, —h? 2+ 2
TLEAD = 67“113 + 2h 5 — %
max Omax

(B.38)
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Therefore,

Ap+1 < O ((1—rLpap)’ Ag)

2 2 2\t
:@<(1_6w_2h2+6+ﬂ) AO)

r211ax Omax 2

(B.39)

*||2

where Aypq = [|wir1 — w*|[3 + ||wr — w*||3
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B.7 Experiments and Implementation Details

B.7.1 LEAD-Adam Pseudocode

See Page [109]

B.7.2 Simple Experiment On Quadratics

In this Section, we provide an experimental setting of the quadratic min-max game,

1 1
flx,y) = 593TH93 + wTAy — inGy. (B.40)

where we set, the matrices H, G and A as,

H = G := Rg—gpo AR} _gg0

(B.41)
A := Rp, AR} g0
where,
cosf) sinf A0
Ry = , A= (B.42)
—sinf cos6 0 X

We next vary 05 from 90° (A fully aligned with H, G) to 0° (A fully unaligned with H, G)
and compare different methods (Figure . For 64 = 90°, the matrices are simultaneously
diagonalizable, implying decoupled dynamics between the different parameters of players
x and y. As we decrease 6,4, the dynamics become more coupled. We observe that at 0°
(fully unaligned), LEAD outperforms Extra-Grad with momentum (the optimal 15t-order
method) and all the other 2"d-order methods. We conjecture that superiority of LEAD is

the result of the term V, f(x,y)(zr — xx—1) for player & and equivalently for player y. We
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Figure B.1: Comparison of the performance of LEAD vs. several other first-order and
second-order methods on a variant of the quadratic min-max game. We start with a game
where the matrices are all simultaneously diagonizable and slowly move to the case where
they are fully unaligned. We see that LEAD converges faster to the solution of quadratic

games whose Jacobian consists of blocks that are not simultaneously diagonizable.

would like to state that for every angle choice, all the methods are fully tuned (a budget of

1000 hyper-parameters was given to each method).

B.7.3 Mixture of Eight Gaussians

Dataset The real data is generated by 8-Gaussian distributions their mean are
uniformly distributed around the unit circle and their variance is 0.05. The code to generate
the data is included in the source code.

Architecture The architecture for Generator and Discriminator, each consists of

four layers of affine transformation, followed by ReLLU non-linearity. The weight initialization
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is default PyTorch’s initialization scheme. See a schematic of the architecture in Table

Generator Discriminator
Input: z € R% ~ N(0,1) Input: © € R?
Linear (64 — 2000) Linear (2 — 2000)
ReLU ReLU
Linear (2000 — 2000) Linear (2000 — 2000)
ReLU ReLU
Linear (2000 — 2000) Linear (2000 — 2000)
ReLU ReLU
Linear (2000 — 2) Linear (2000 — 1)

Table B.1: Architecture used for the Mixture of Eight Gaussians.

Other Details: We use the Adam [I83] optimizer on top of our algorithm in the reported

results. Furthermore, we use batchsize of 128.

B.7.4 CIFAR 10 DCGAN

Dataset The CIFAR10 dataset is available for download at the following link;
https://www.cs.toronto.edu/~kriz/cifar.html

Architecture The discriminator has four layers of convolution with LeakyReLU
and batch normalization. Also, the generator has four layers of deconvolution with ReLLU

and batch normalization. See a schematic of the architecture in Table [B.2l
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Generator

Discriminator

Input: z € R0 ~ N(0, 1)
conv. (ker: 4x4, 100 — 1024; stride: 1; pad: 0)
Batch Normalization
ReLU
conv. (ker: 4x4, 1024 — 512; stride: 2; pad: 1)
Batch Normalization
ReLU
conv. (ker: 4x4, 512 — 256; stride: 2; pad: 1)
Batch Normalization
ReLU
conv. (ker: 4x4, 256 — 3; stride: 2; pad: 1)

Tanh

Input: T € R3x32><32

conv. (ker: 4x4, 3 — 256; stride: 2; pad: 1)
LeakyReLU
conv. (ker: 4x4, 256 — 512; stride: 2; pad: 1)
Batch Normalization
LeakyReLU
conv. (ker: 4x4, 512 — 1024; stride: 2; pad: 1)
Batch Normalization
LeakyReLU

conv. (ker: 4x4, 1024 — 1; stride: 1; pad: 0)

Sigmoid

Table B.2: Architecture used for CIFAR-10 DCGAN.

Other Details For the baseline we use Adam with 51 set to 0.5 and [ set to
0.99. Generator’s learning rate is 0.0002 and discriminator’s learning rate is 0.0001. The
same learning rate and momentum were used to train LEAD model. We also add the mixed
derivative term with ag = 0.3 and a4 = 0.0.

The baseline is a DCGAN with the standard non-saturating loss (non-zero sum
formulation). In our experiments, we compute the FID based on 50,000 samples generated

from our model vs 50,000 real samples.
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Figure B.2: Performance of LEAD on CIFAR-10 image generation task on a DCGAN
architecture. Left: LEAD achieves FID 19.27. Right: Vanilla Adam achieves FID 24.38.
LEAD is able to generate better sample qualities from several classes such as ships, horses

and birds (red). Best performance is reported after 100 epochs.

B.7.5 CIFAR 10 ResNet

Dataset The CIFAR10 dataset is available for download at the following link;
https://www.cs.toronto.edu/~kriz/cifar.html
Architecture See Table [B.4 for a schematic of the architecture used for the

CIFARI10 experiments with ResNet.

Other Details: The baseline is a ResNet with non-saturating loss (non-zero sum formula-
tion). Similar to [243], for every time that the generator is updated, the discriminator is
updated 5 times. For both the Baseline SNGAN and LEAD-Adam we use a 81 of 0.0 and s

of 0.9 for Adam. Baseline SNGAN uses a learning rate of 0.0002 for both the generator and
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Dis—Block

Shortcut:
Gen—-Block
downsample
Shortcut:
conv. (ker: 1x1, 3p—1 /12821 — 128; stride: 1)
Upsample(x2)
Spectral Normalization

Residual:

[AvgPool (ker:2x2, stride:2)], if £ # 1
Batch Normalization
Residual:
ReLU
[ReLU |, if £ #1
Upsample(x2)
conv. (ker: 3x3, 3p—1/128,41 — 128; stride: 1; pad: 1)
conv. (ker: 3x3, 256 — 256; stride: 1; pad: 1)
Spectral Normalization
Batch Normalization
ReLU
ReLU
conv. (ker: 3x3, 128 — 128; stride: 1; pad: 1)
conv. (ker: 3x3, 256 — 256; stride: 1; pad: 1)

Spectral Normalization

AvgPool (ker:2x2 )

Table B.3: ResNet blocks used for the ResNet architectures (see Table .

the discriminator. LEAD-Adam also uses a learning rate of 0.0002 for the generator but
0.0001 for the discriminator. LEAD-Adam uses an « of 0.5 and 0.01 for the generator and
the discriminator respectively. Furthermore, we evaluate both the baseline and our method
on an exponential moving average of the generator’s parameters.

In our experiments, we compute the FID based on 50,000 samples generated from
our model vs 50,000 real samples and reported the mean and variance over 5 random runs.
We have provided pre-trained models as well as the source code for both LEAD-Adam and

Baseline SNGAN in our GitHub repository.
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Generator Discriminator

Input: z € R% ~ N(0,1) Input: x € R3*32%32
Linear(64 — 4096) D-ResBlock
G-ResBlock D-ResBlock
G-ResBlock D-ResBlock
G-ResBlock D-ResBlock

Batch Normalization ReLU
ReLU AvgPool (ker:8x8 )
conv. (ker: 3x3, 256 — 3; stride: 1; pad:1) Linear(128 — 1)
Tanh(-) Spectral Normalization

Table B.4: ResNet architectures used for experiments on CIFARI10.

B.8 Comparison to other methods

In this section we compare our method with several other second order methods in
the min-max setting.

The distinction of LEAD from SGA and LookAhead, can be understood by
considering the 1%5%-order approximation of zp 1 = zp — nVaf (Tk, Y + NAys), where

Ay, = nVy f (2 +nAz,yg).

'For FtR, we have provided the update for the second player given the first player performs gradient
descent on f.
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Figure B.3: Generated sample of LEAD-Adam on CIFAR-10 after 50k iterations on a ResNet
architecture. We achieve an FID score of 10.49 using learning rate 2e — 4 for the generator

and the discriminator, a for the generator is 0.01 and for the discriminator is 0.5.
This gives rise to:

Tpp1 = Tk — Vo f @k yk) — 77V f (Tr, yr) Ay, (B.43)

k1 = Yk + Vo f (T, yk) + 07V, f (2, i) Az, (B.44)

with Ax, Ay corresponding to each player accounting for its opponent’s potential next
step. However, SGA and LookAhead additonally model their opponent as naive learners i.e.
Az = =V f(zk, yk), Ay = Vy f(2k, yx). On the contrary, our method does away with such
specific assumptions, instead modeling the opponent based on its most recent move.
Furthermore, there is a resemblance between LEAD and OGDA that we would like

to address. The 15 order Taylor expansion of the difference in gradients term of OGDA
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Coefficient Momentum Gradient Interaction-xy Interaction-xx

GDA Az = 1 0 —nVaf —nVaf 0
LEAD Axyg41 = 1 BAX —nVxf —aViyfAyk 0
SGABZ  Agpy, = 1 0 —nVauf -2, fVyf 0

CGDBIE Agp, = c! 0 —nVaf —*V2, IV, f 0
CORHl Agyyy = 1 0 Vo f — Vi, [y f — Ve fVaf
FtRBSE Ay, = 1 0 Vol e (V2,0) T V2 fVaf 0

LOLABS Az, = 1 0 —nVaf —21aV 4y fVy f 0

Table B.5: Comparison of several second-order methods in min-max optimization. Each
update rule, corresponding to a particular row, can be constructed by adding cells in that
row from Columns 4 to 7 and then multiplying that by the value in Column 1. Furthermore,
Axpi1 = Tk, — T, while C = (I + n2V§yfV§If). We compare the update rules of the
first playerﬂ for the following methods: Gradient Descent-Ascent (GDA), Least Action
Dynamics (LEAD, ours), Symplectic Gradient Adjustment (SGA), Competitive Gradient

Descent (CGD), Consensus Optimization (CO), Follow-the-Ridge (FtR) and Learning with

Opponent Learning Awareness (LOLA), in a zero-sum game.

yields the update (for x):

Tep1 = Tk — Vo f — PV, [V f +1°VifVaf, (B.45)

which contains an extra 2°d

order term VZ_f compared to ours. As noted in [315], the
V2.f term does not systematically aid in curbing the min-max rotations, rather causing

convergence to non-Nash points in some settings. For e.g., let us consider the simple game

f(x,y) = v(2% — y?), where z,y, v are all scalars, with the Nash equilibrium of this game
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located at (z* = 0,y* = 0). For a choice of v > 6, OGDA fails to converge for any learning
rate while methods like LEAD, Gradient Descent Ascent (GDA) and CGD ([315]) that do

not contain the V. f(Vy, f) term do exhibit convergence. See Figure and [315] for more

discussion.

=
(=}
o

100 -

LEAD/GDA/CGD ) ' g
—&— OGDA 10! -

[on [on
v 104 (0]
o (o]
L +J
o 1078 o 107
o) 1)
T 10-12 < -9
© 1072 - & 10
K] K]
[a) 10716 () 10714 5
D D
S 1o-0 S g1 LEAD/GDA/CGD
—e— OGDA
0 10 20 30 40 0 10 20 30 40
Iterations Iterations

Figure B.4: Figure depicting the convergence/divergence of several algorithms on the game
of f(x,y) = v(x? — y?) (Nash equilibrium at 2* = 0,y* = 0). Left: For v = 1, OGDA and
LEAD/GDA/CGD (overlaying) are found to converge to the Nash eq. Right: For v = 6,
we find that OGDA fails to converge while LEAD/GDA/CGD (overlaying) converge. We
conjecture that the reason behind this observation is the existence of V2, f term in the

optimization algorithm of OGDA.

108



Algorithm 2 Least Action Dynamics Adam (LEAD-Adam)

1: Input: learning rate n, momentum (3, coupling coefficient .
2: Initialize: zo < Zinit, Yo < Yinit, t < 0, mf < 0, vf = 0 mg < 0, vy < 0
3: while not converged do
4: t—t+1
5 go < Vaf(we,ye)
6: Gy DAY < Vy(92) (Yt — Ye—1)
T gf 4 GayAY + G
8 mi < Prmi_ +(1—pB1).gf
9: vf < Povf_y + (1= B2).(g7)>
10: 1y < me /(1 — BD
1 By /(1 - Bh)
12: L1 < xp — 0 e/ (Vor + €)
13: Gy < Vyf (@11, yt)
14: oy AT < Vo (gy)(Te41 — x1)
15: G < GuyAz + gy
16: m{ < Brmi_ |+ (1—p1).g/
17 v+ Bawy + (1= B2).(g7)?
18: < m{/(1-pB])
19: 0f < vf/(1 =)
20: Yer1 < ye +n i /(O +e)
21: end while

22: return (z,y)
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Appendix C

Chapter 4: Appendix

C.1 Self-averaging and the replica trick

Before proceeding, we note that using the replica trick [237], one can recast Eq. (C.2))

as,

, TEZ (C.1)

g = Ly (e

r—0 r

C.2 Theoretical Details

C.2.1 Generalization Error

The self-averaged free energy (per network weight) is given by [91],

—Bf =5((In2))zw- (C.2)

1
d
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where 8 = 1/T is the inverse temperature, d the student (and teacher) width, and Z is the

partition function of the system defined to be,

Z = / dp (W) e "PET

d d (C.3)

with, du (W) = 1:[1 (32% 6 (ﬁ Z; (W;)* — on>

Here, the ~;’s correspond to the respective mask values acting on each student neuron while

n corresponds to the number of training examples. Additionally, ((-)) in Eq. (C.2)) refers to
self-averaging over the (normal Gaussian) input and (uniform) teacher weight distributions.

Next, by making use of the replica trick, one can rewrite Eq. (C.2)) as,

—Bf == hm (Z)ew = 1, rez (C4)

d r—0 T

To evaluate ((Z"))z,w+, we first introduce the teacher and the student outputs y** and y**

(Eq. (4.2)),(4.3)) as Gaussian variables (for d >> 1) in the partition function, as,

((Z")) x,W* _/Hd,u, (W%) deaquy*MHeXp nBET(y*H yor)

* 1 d * a 1 d a
g s e
(C.5)

with a being the replica index. We next express the above ¢ functions using their integral

representations, to get,

(2 D we :/Hdu (W) de“’“‘de*“Hexp nBET (Y7, W)H/ dy““

¢ TGy <<e—ﬁ((2i Wil )i+ (s Wil )g ““)>>

x,W*
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Now, as d — oo, one can write,

[ (el weat )i (Zonweatye) )

x,W*
au

2
1 * ok asa
i (o))
N a W
2
n _ 1 * Ok . afa,p
. << (-ag(voregrie) >>>

where we have made use of the fact that (x;) = 0 and (z;2;) = 6;;. Now, since In(1 +2) =~z

WH*

for x << 1, we can furthermore write the above as,

H <<67ﬁ((zi Wil )i+ (3 %Wfﬁ)?a’“)>>

a, i x,W*
2 (C.8)
<< ~51 Z(W;y*wrz %‘W;‘z}“’“) >>
~ e Ty a
W*
We can additionally expand the argument of the above exponential as,
1 2
DY <Wz‘*@*u + Z ’YiWia@a’“>
N a
1 * Ak ~ * Ak ~
= ~57 (VVZ G+ Z %Wiayaw) (Wz g+ Z%Wibyb,u)
e ¢ ’ (C.9)
1 U 1 | .
=75 Z gUrghr - P Z’Yz?WiaWib - Z gty 1 Z%’QWﬂWi
w,a,b A n,a i
1 . 1
3 Z(ya’”)Q "d Z%Q(Wl*)Q
o %
If next set,
1< 1<
2 WOE=Qo, - WIWE=QY, fora#b (C.10)
i=1 i=1
1< 1<
G WEWE =R o) (W) =1, (c.11)
i=1 i=1
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then we can consequently write,
T
<ZT>>X,W* = / H d,u (Wa) H dya,u H dy*” H exp_”ﬁET(y*“,y“’“)
a=1 a, ol
X H/ /dy o Z(y*uy*u_,’_ya p,ya H)

S R S #<@*#>2>>>wt
(C.12)

We can now additionally incorporate integrals over dQ® and dR® as,

(27 ))xwe :/Hd/‘ (W9) de ’”de “Hexp nBET (y* y* )
X H/dgw/ . ’“ (Y gy @) Hd<anb) Hd dR%)

a<b

{iv{s ),
(o)},

2 joH)? 3 Ggorg 2y 1 .
% 073 @) Q=g Xy oy YHHIHQY R0, L UG R —5 0, (57H)?

a d
:> XW* /H dW (Z 712 (Wia)Q . on) dea,dey*u
=1 a P
X Hexp nBET(y*H y% ;L)H/ / (e z(y*“ *p gy gas)
« [T a () [Ja ar <<H5 (Z%WW—M@)>> (C.14)
a i W

a<b

(s (gpmomtaa)))

X 6_% zu,a(ga#)QQO—% “, a;éby /"yb #Qab Zu,a ga,u@*uRa_% Z#(Q*M)Q
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where in the above we have re-expressed du (W*?) using Eq. (C.3). Now, integrating over

g** and W7, then yields,

T /H L /H

H anbanb H dRadRa H e@ Za ’;a"’idza RaRa+idZa<b Qaanb
27 /d 21 /d

H dy® 'udya o H dy™* H eXp—nﬁET(y*#,y“ )
ap

a<b
X e_iZz a2 ’Yz < ’La) —% 27, a<b Vi WaWanb_ZZ ’YlWaRa

—2 2 =3 D(Qo—(R)?) D) —3 by} g (QU—RRY)

X e s @ a0

i3yt — ZZy*“y“ MR
X e e

(C.15)

C.3 Experimental Details

C.3.1 ResNet-18 on CIFAR-10

We train a ResNet-18 on the CIFAR-10 [189], following the setup of [254] for two
different width of £ = 20 and k = 60 which according to [254], are considered moderately

and highly overparameterized, respectively. For the experiments a 15% label noise is added.

C.3.2 Decomposition of the Generalization Error

We would like to draw readers’ attention to Eq. 11, in which each of R and @ are
consisted of two terms which together results in the expression for the generalization error

as in Eq. 9. Let us denote these two terms as following,

1
E(gl) = §(H1 —2R1H1 + Ql),

1
E(QQ) = §(H2 — 2Ry H5 + QQ),
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where,

Ry == —H,;
aip
€5
Ry := ———H>,
? az(d — p) ?
« 2—a
Q1= — : <G1 - 1041H1> ;
a; —aiq aiq
a9 2 — a9
Q2 = — Gy — asHs |,
a3 — 2 a9

in which, the terms with a super or subscript 1 evolve at a faster time-scale compared to

those with 2 as we have assumed that v; > vs.

In Fig. [C.1] we separately plot E(gl) and E(g2) for a fixed v = 1 while varying -9

from 0.0 to 0.1.

C.3.3 Extra Experiments Varying n/d

In the framework of statistical mechanics, the derivations are valid in the limit of
high dimensions. Hence, it is reasonable to study the case where n,d,p — oo while their
ratio remains finite. In this section, we consider the case where £ = 0.5 remains fixed while

we vary 2 from 0.1 to 3. In all the experiments we fix v; = 1 and 9 = 0.1. Fig. [C.2| shows
N p ¥ ¥ g

a plot of this experiment.

C.3.4 Computational Resources

For the experiments, an approximate number of 100 GPU-hours has been used.
GPUs used for the experiments are NVIDIA-V100 mostly on internal cluster and partly on

public cloud clusters. Numerical simulations of the analytical expressions are performed on
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Figure C.1: The plot shows the decomposition of the generalization error into fast and slow components.

The double descent curve results from overlapping of these two components.

authors’ personal computer with CPU.
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Figure C.2: The plot shows the dynamics of the generalization error as
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