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Abstract

The paper generalizes the familiar Solow one-sector model of

economic growth by allowing for any depreciation schedule, not
just exponential. Specifically, the asymptotic properties of
the Sclow model are preserved and there exists an average rate

of depreciaticon which replaces the exponential one in the
stationary state equation.
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Economic Growth and Generalized Depreciation1
Steven M. Goldman and Vai-Lam Mui
Introduction

As is widely recognized, the principal virtue of the assumption of
exponential decay lies in its ability to capture the deterioraton of the
capital stock without a detailed knowledge of the entire history of
investment. It has long been noted that this assumption generally does not
conform to observation. An early study by Winfrey (1935) reported that the
majority of physical assets have depreciation vpatterns other than
exponential. Coen (1975) found that, for his sample, linear or
one-hoss-shay depreciation were more common. Given these observations, it
is natural to ask whether a departure from the assumption of exponential
decay, will change the asymptotic behavior of the dynamic economy.
Recently, Hakkio and Petersen (1988) pose this queston with some examples
of the Harrod-Domar model using linear and one-hoss-shay depreciation.

This note is intended to demonstrate the robustness of the exponential
assumption in the neoclassical one sector model of economic growth - i.e.,
the Solow model. Specifically, we shall show that for virtually any pattern
of depreciation, there exists an average depreciation rate that replaces
the exponential one in the stationary state equation and, for the usual
neoclassical version of the production function, the capital-labor ratio

converges to a steady state.

Formal Structure

1The authors wish to acknowledge the most helpful comments of Professor

Kenneth Wachter of the University of California, Berkeley and Professor

Michael Rothschild of the University of California, San Diego.




The basic model follows Solow (1956): Y(t) = F(K(1),L()) is
homogeneous of the first degree, L(t) grows exponentially at the rate n,
We shall depart in the specification of depreciation and suppose that there
exists a function &(u) such that for every unit of capital formed u years
ago, the fraction &(u) is lost in the current period.

Suppose that at some time zero the economy inherits a capital stock
with a history {K(u)l ue (-e=,0]}. From that time onwards, new capital is
formed with a gross savings rate of s out of Y(t), ie. sFXK(®),L().

The current stock of capital may be written:
t

K@) = J‘SL(t-U)f{k(t'u)} US (x)dx] du + [ K(t-u) US (x)dle du
t u

u
where k(t) denotes K(t)/L.(t). and so

t oo

k@) = [Sﬂk(t-u]w(u)du + J tk(t-u)p(u)du (1)
1

for

L{t-u) = L{e ™

- O

T = J g M8 8(x)dx]du
0 Ju
e ™15 (x)dx}
o(u) = -
J e MY Jﬁ(x)dxldu
0 [Ju

Define g(x) = stf[x]. Then (1) may be rewritten:

t
k() = [Og[k(t-u)]¢(U)du + h(t) 2)

where g is a concave function in its argument and h(t) is the Iast

expression from (1) representing the fading direct effects of inherited _



capital. Note in passing that lim h{t) = 0.
tsoe

An equilibrium would require k = gk'] or k = Tsf(k') as
expected. Is the process stable?

The answer depends upon the shape of f(s). If f(¢) has the traditional
neoclassical shape and satisfies the Inada conditions,

lim f(k) = oo, lim f(k) = 0, f'(k) 2 0, (k) < 0
k>0 koo

then the system can be shown to converge to its unique equilibrium at k*.
In the Harrod-Domar case where f(e) is linear, then the system grows
asymptotically where the warranted rate exceeds 1/t or collapses should it
be less. Only in the separating case where the warranted rate exactly
equals 1/t can there be a non-degenerate steady state.

The model is essentially identical to a cohort model of population
growth where new births depend upon the relative size of each cohort and
cohort fertility may depend upon cohort size.

Recalling (2) above, define A(t) = k(t) - k. Now
t oo

AQ) = J [g[k*+ At-w)] - g[k*]} e(u)du + h() -g{k*]Ltp(u)du 3)
0

where A(t) has a long run solution at zero. We shall next argue that, under
*
the Inada conditions, A = 0 is stable and therefore k(t) converges to k .

The argument below follows from Swick (1981) for the cohort model.
Using standard perturbation anatysis if all of the roots of

1 (=]
—= J ¢ Mo(u)du )
*
g'(k)
have negative real parts, then A is asymptotically stable. (An elaboration
of a similar argument, examining the linear Taylor approximation for g(e)

using Laplace transforms, is given in the appendix.) Now (4) has a largest




real root which is negative since when r=0 the RHS is unity and less than
the LHS (¢ is normalized to integrate to one), and the RHS is decreasing in
r (¢ is non-negative). Then all of the complex roots must lie in the Left
Hand Plane and the system is therefore locally stable at A = 0 and k = k*.

Global stability may be seen from bounding f(e¢) by a linear function
tangent at f(k) and finally noting that k = O is locally unstable as an
equilibrium.

If the Inada conditions fail and the production function, though
concave, exhibits f'(k) > st for all positive %k, then the only solution to
k =gk is for k =0 and the system is globally unstable and explodes. If
f'(k) < st for all k > 0 then, again, the only solution to k = gk) is at

k = 0 which is now a stable equilibrium.

Examples and Special Cases:
Supposing n = O for simplicity:

Common examples of & functions along with their corresponding T’s are:

(a) T year linear depreciation: 8(t)y = (1 /1) fort e [0,T]
0 fort > T
T = (/)T
(b) T year one-hoss shay: 8(t) =0 forallt=T
T=T
{¢) Exponential Deprecation: o(t) = Se'at
T = (1/9)

When n #0, and depreciation is exponential , T is simply 1/(n+6).
The somewhat more complicated expressions for the other cases are

straightforward.




Summary:

In conclusion, the extension of the Solow model to allow for a

generalized pattern of depreciation does not
fundamental stability or asymptotic properties

course, the trajectory for the economy is modified.

appear to alter
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analysis,
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Appendix
In order to explore the stability of k*, let us take the linear terms
of the Taylor expansion of g(e) about k*:
gk +4) = gl + stk A

and substitute into (3) to obtain

O

t
A(t) = Josﬁ’(k*)A(t~u)¢(u)du + h(t) -k*J o(w)du )
t
Then the Laplace Transform of A(t) is defined by
L(A®) = J e MAdr
0

Denote { (k*) by O and, by applying the convolution theorem, the

transform of (4) yields:

t

LAY = (BsTILAMIL(P()) + L(h(D)) - k*[L 1-J};p(u)du

1
= @SLAMLQD) + LB) - kK [—i} [1 - [LECP(t)]]

o1
L{h(t))-k [i] [1 - [L[<P(t)]]

LIA®)] = ®)
[1-8sTL[g(1)]

Define p to be the largest zero of m(A) =1 - Gstu_[(p(t)}.2 For notational

Solving for L[A] yields:

convenience, denote p.[h(t)] as H() and L[o®)] as d(A).Observe d(A) < 1
for A > 0 and d(0) = 1.

To show that p exists, just observe that since o(t) is non-negative,

2Note that m(A) = 0 may be rewritten L{Q(t)] = 1/(8sT) which is identical

to equation (4).




then d(A) is a decreasing function in A so m’'(A) = 0. Since lim dA) =0

and 1lim d(A) = e, and d is continuous, for some value of A, d exactly

- 00

equals one. Finally, m(0) = 1-Ost, and it is straightforward to show:

Lemma I:

@ 1<l = p<0

@ 67T >1 = mA) = 1 - 8std(A) has unique, positive solution.

The critical relationship for stability, the sign of (1-0st) is
quite readily interpretable: If the average duration of capital is 1, then
each unit will result in the production of (t8) additional units of output

over its lifetime. Of this, the fraction s is saved resulting in

replacement capital in the amount of (st8). If this will more than replace

the original unit of capital then the system expands.

We may now present the main results in the following propositions:

Proposition 1: For Ost <1, A(t) approaches a limit of zero.
Proof:
Since p £ 0 for Ost < 1 , L(A(t) is defined for all A > Q. Applying the

final value theorem of Laplace transforms, we have:

AHO) -k [1 ] d(?\.)]

lim A@®) = lim AL[A(®)] = lim
300 A>0 A0, 1-8s1d())

Since the numerator goes to zero and the denominator to a positive

number, A does to zero.




Proposition 2: When 6t > 1, lim k(t) » o and the asymptotic growth rate of
{yeo

k(t) is p > 0.
Proof: Now we have p > 0. As 8st > 1, L(k(1)) is defined for A > p.

For p > 0, Lle Pk(t)] < o, and

1
H(Mp)-k*[m] [1 - d(k+p)]

[1-0std(A+p)]

e PIA@m)] =

«f A
AH(A+p)-k |—|[1-d(A+p)
pt A+p
limePA®) = 1im
00 As0 [1-85td(A+p)]

By an application of L’Hospital’s rule this becomes:

1
H(p)+k H[l-d(p)]
P

-9std’(p)

which is finite under the conditions on the shape of m(A) and the

hypothesis. So we have lim A(t) = e and A(t) growing at p in the limit.
oo

Q.E.D.

Proposition 3: When Ost = 1, the capital stock converges to a steady state,

Proof: Once again, as in proposition 1,

AHO) -k {1 ] d(l)}

lim A(t) = lim AL[A(®)] = lim
tyoo 7\,->0+ ?\.—>0+ 1-8std(R)

Now, as A approaches zero and we apply L’Hospital’s rtule this limit

becomes




H(0)+k d’ (0)
>0

-8std’ (0)

Q.E.D.

Thus the critical level of savings is given by 6st = L.

E &
ie. s = 1/(0t) , and when s > s, the economy demonstrates sustained
growth at an asymptotic rate given by the solution of:

1 = Bstd(p)

*
and for s < s the capital-labor ratio collapses to zero.
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