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Iterative energy minimization with the aim of achieving self-consistency is a common feature of
Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polariz-
able force fields. In the former, the electronic degrees of freedom are optimized, while the latter
often involves an iterative determination of induced point dipoles. The computational effort of the
self-consistency procedure can be reduced by re-using converged solutions from previous time steps.
However, this must be done carefully, as not to break time-reversal symmetry, which negatively
impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism,
where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom,
constitute one elegant solution. We report on the performance of two integration schemes with the
same underlying extended Lagrangian structure, which we both employ in two radically distinct
regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and
in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach.
Both integration schemes are found to offer significant improvements over the standard (unpropa-
gated) molecular dynamics formulation in both the classical and LS-DFT regimes. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4978684]

I. INTRODUCTION AND MOTIVATION

Since the first classical molecular dynamics (MD) cal-
culations in the late 1950s, a plethora of schemes employ-
ing a hierarchy of approximations for the description of
interatomic interactions have emerged, ranging from classi-
cal fixed charge models to fully ab initio treatments. While
molecular dynamics has proved to be an invaluable tool
for elucidating many chemical, biological, and physical pro-
cesses involving a large number of atomic degrees of free-
dom,1–3 challenges remain in finding models and methods
that are able to adequately describe complex environments and
show a favorable accuracy-efficiency trade-off. In this regard,
promising approaches include linear-scaling density func-
tional theory (LS-DFT),4,5 classical polarizable force fields,6,7

self-consistent field (SCF) tight-binding,8 and semi-empirical
quantum mechanical (SQM) approaches.9

The last two decades have witnessed significant devel-
opments in the sophistication of classical force fields,10,11

motivated by the need to overcome the deficiencies identi-
fied in earlier fixed point charge models. In the absence of
explicit treatment of polarization, the dynamic response of

a molecular system to a given environment, e.g., an organic
solvent, or metallic ions in solution becomes difficult to cap-
ture.7 Moreover, for conditions far from the ones used to
parametrize the potential and charges, such as at extreme
pressures or temperatures, for different physical phases, or
at interfaces, fixed point charge models can perform quite
poorly.11 Inclusion of polarization effects is hence crucial
for obtaining an adequate description of complex systems
and improving the transferability of classical models. As a
consequence, a gamut of polarization models has emerged,
employing Drude oscillators,12,13 fluctuating charges,14,15 and
induced point dipoles16–22 or higher multipoles.23 In most
cases, a physically coherent treatment of polarization involves
a relatively costly variational self-consistent determination
of the induction response, although alternate schemes have
recently been proposed.24,25 See Refs. 7, 11, and 6 for a
review.

Ab initio molecular dynamics (AIMD) techniques
approach the transferability problem from the opposite
direction, by directly (Born-Oppenheimer MD, BOMD) or
indirectly (Car-Parrinello MD, CPMD) modeling the elec-
tronic degrees of freedom on a quantum-mechanical (QM)
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footing, while treating atomic nuclei classically. The under-
lying quantum mechanical scheme is selected depending on
the desired trade-off between accuracy and computational
efficiency—starting from inexpensive, qualitative methods
like tight binding (TB), through density-functional-based tight
binding (DFTB),26,27 density functional theory (DFT) to corre-
lated wavefunction methods. The majority of these approaches
are self-consistent, requiring an iterative procedure to arrive at
the converged energy and associated electronic orbitals, at each
MD step.

The existence of a self-consistency loop is a common
feature of classical MD calculations with polarizable force
fields and BOMD calculations, leading to important conse-
quences for energy conservation in both approaches. Energy
conservation is known to be sensitive to how close to conver-
gence the self-consistency loop gets. In polarizable MD with
induced dipoles, this is a consequence of a non-Hellmann-
Feynman-like force term that is proportional to the energy
gradient residual ∂U

∂µ .25 This term vanishes in schemes where
induced dipoles are not determined self-consistently (e.g.,
iAMOEBA24), and in self-consistent schemes, it can only be
neglected when the iterative dipole equations are tightly con-
verged. In DFT BOMD, the error in the forces is first order
with respect to the error in the incompletely converged wave-
function, even though the error in the Kohn-Sham energy is
second order.2 This means that it is significantly more difficult
to calculate accurate DFT forces for driving the ions than it
is to calculate energies. Additionally, the numerical machin-
ery of DFT, which typically involves FFTs on grids with finite
spacing and finite extents, numerical integrations on a variety
of grid, the use of moment approximations, etc., results in an
increase in the inaccuracy of the forces compared to the classi-
cal case, where closed analytical expressions are often directly
implementable. Furthermore, many DFT approaches have to
contend with additional (beyond Hellmann-Feynman) contri-
butions to the forces, known as Pulay forces,28 that arise as
a result of the dependence of the basis set on ionic positions.
Although the magnitude of the Pulay forces is, in principle,
independent of how close the electronic configuration is to
the ground state,2 errors in approximate treatments of Pulay
forces can be larger when the system is insufficiently con-
verged.29 More precisely, this is relevant only for in situ opti-
mized localized orbitals, whereas for fixed localized orbitals,
the Pulay forces can be computed exactly. Finally, in LS-
DFT approaches, additional difficulties arise due to the use
of strictly localized orbitals,30 where further non-Hellmann-
Feynman contributions to the forces can be expected to arise
as a consequence of localization constraints31 or of the incom-
plete convergence of localized orbitals,29,31 or, to a lesser
extent, the density matrix.29

For polarizable classical MD and BOMD calculations
alike, tight SCF convergence is thus a necessary condition
for maintaining adequate energy conservation. The large num-
ber of SCF steps mandated by this requirement leads to an
undesired increase of calculation wall times. It is tempting
to try to speed up convergence by not starting the SCF pro-
cedure from the same fixed initial guess at each MD time
step, re-using instead the converged solutions obtained in
preceding time steps. Although the dangers of such intuitive

extrapolation schemes have been known since early 1990s,32,33

adequate solutions have been proposed only recently.34–36

Simply put, the self-consistent solution is only independent
of the initial guess under exact SCF optimization. In prac-
tice, the SCF optimization is always incomplete, leading to
memory effects and the breaking of time-reversal symmetry,36

and, in consequence, to systematic errors in energy gradi-
ents that manifest as a drift in microcanonical energy.35 Such
undesired memory effects can be elegantly dealt with through
extended Lagrangian BOMD (XL-BOMD, EL/SCF) formu-
lations, where the initial guesses are not extrapolated, but
rather propagated as extended degrees of freedom, allowing
time-reversibility to be recovered.

In this paper, we focus our attention on two integra-
tion schemes proposed recently—a dissipative formulation
by Niklasson et al.36 and an inertial formulation by Albaugh
et al.37 These improvements to the original scheme by Niklas-
son et al.38 use different strategies to mitigate the problem
of error accumulation that causes two extended potential
energy surfaces—that of the real degrees of freedom and
that of the initial guesses—to diverge for longer simula-
tion times. In this work, we study the properties and per-
formance of the two schemes in MD simulations of liquid
water, which we carry out in two notably different regimes—
using the polarizable, classical force field AMOEBA and using
the Onetep LS-DFT formulation. Our comparison employs
similar systems, but tests how the schemes operate under
distinct conditions (long simulation times with inherently
accurate forces and classical potential energy surfaces vs.
short simulation times with inherently more noisy forces and
quantum-mechanical potential energy surfaces). This allows
us to highlight the differences between the two schemes,
and their strengths and weaknesses in each of the two
regimes.

We begin with a short presentation of the classi-
cal and quantum-mechanical approaches used in our study
(Section II), followed by a presentation of the original
extended Lagrangian scheme (Section III), and the dissipative
(Section IV) and inertial (Section V) integration scheme vari-
ants, pausing briefly to comment on issues specific to linear-
scaling BOMD and its non-orthogonal orbital variants in
particular. Sections VI, VII A, and VII B describe our com-
putational setup and the results obtained in the simulations,
respectively. We finish with conclusions (Section VIII), where
we summarize our observations and lay out directions for
promising future research.

II. METHODS
A. Classical polarizable force-field
molecular dynamics

For our analysis of classical molecular dynamics, we have
adopted the polarizable force field AMOEBA,20,39 as imple-
mented in the tinker18 program. AMOEBA belongs to a newer
generation of force fields that go beyond the time-honored
model using pairwise-additive interactions of fixed point
charges. In AMOEBA, electrostatic interactions are computed
from interactions between point multipoles, where each atomic
site I is host to a set of permanent multipoles, MI = {qI , µI , QI },



124115-3 Vitale et al. J. Chem. Phys. 146, 124115 (2017)

representing a charge, dipole, and quadrupole, respectively.
Permanent multipoles are parametrized from ab initio calcu-
lations.40–42 Alongside permanent multipoles, each atomic site
is host to an induced dipole µind

I , allowing polarization effects
to be explicitly captured. Scaling of electrostatic interactions
based on interatomic connectivity19 and Thole damping43 is
used to ensure a smooth transition between the electrostatic
and bonded (valence) descriptions of interactions and to avoid
the polarization catastrophe.

The polarization effect in AMOEBA is modeled by
induced dipoles, µind

I , placed on each atomic site, whose mag-
nitude is determined by the site-specific isotropic polarizability
αI and the total external electric field exerted,

µind
I = αI (EI + E′I ), (1)

where EI is the electric field owing to the permanent multipoles
on other fragments, and E′I is the field generated by the induced
dipoles on all the other atomic sites,

EI =
∑

J

TIJM(d)
J , (2)

E′I =
∑
J,I

T
′

IJµ
ind
J , (3)

where T
′

IJ now refers to appropriate powers of 1/rIJ accord-
ing to the dipole induction and the superscript (d) refers
to special scaling factors used for electrostatic interac-
tions in AMOEBA.18 Since the RHS of Eq. (1) relies
on the induced dipoles, a procedure for guaranteeing self-
consistency of induced dipoles is required. This is usually
achieved through iterative techniques, such as successive over-
relaxation (SOR)18,44 or the more recent use of a precondition
conjugate gradient self-consistent field (CG-SCF) approach.45

With converged {µind
I }, the polarization energy is determined

by

U ind
ele = −

1
2

∑
I

µind
I · EI . (4)

A detailed discussion of the AMOEBA electrostatics
model is beyond the scope of this paper, and the interested
reader is referred to Refs. 17 and 46 for a more in-depth
discussion, and a description of bonded and van der Waals
interactions used in the AMOEBA model.

B. Linear scaling ab initio molecular dynamics

In contrast to classical molecular dynamics, in AIMD cal-
culations, the electronic degrees of freedom are not integrated
out but treated explicitly by finding approximate solutions to
QM equations. Nuclei are treated as classical particles, and the
forces acting on them are obtained from electronic structure
calculations. In this work, we made use of Kohn-Sham (KS)
density functional theory47 to solve the electronic problem.
In particular, all AIMD calculations in this work have been
carried out in Onetep.48,49

In the Onetep framework, the electronic degrees of
freedom are described through the KS reduced (spinless)
single-particle density matrix operator ρ̂, which in position
representation reads

ρ(r, r′) = φα(r)Kαβφ∗β(r′), (5)

where K is the density kernel matrix, a (2,0)-tensor, which is
a generalization of the occupation number matrix in a non-
orthogonal basis: Kαβ =

∑
i M†αifiM i

α, where φ(r) are gen-
eralized non-orthogonal Wannier functions, hereafter termed
NGWFs, and they are related to the eigenstates of the KS
Hamiltonian via a non-unitary matrix M as

ψi(r) = φα(r)Mα
i, (6)

where we have made use of Einstein’s convention for repeated
indices. Greek indices are used to label non-orthogonal
objects, while Latin indices label orthogonal quantities.

The NGWFs are atom-centered real functions (reflecting
the Γ-point approximation) which are strictly localized, that
is to say, they are non-zero only within a localization region
(LR) centered around the atom they belong to. The use of non-
orthogonal functions allows us to impose a tighter LR than
for orthogonal functions.50–52 The disadvantage is having to
explicitly take tensorial correctness into account. As a con-
sequence, the (0, 2) metric tensor, also known as the overlap
matrix Sαβ = 〈φα |φβ〉, is not the identity matrix. The KS elec-
tron density function n(r) is simply given by the diagonal part
of the density matrix n(r) = 2ρ(r, r), where the factor of 2
accounts for spin degeneracy (which we assume throughout
this work).

Linear scaling is achieved by exploiting the principle of
“nearsightedness” of electronic matter.53,54 For systems with
a non-zero band gap, i.e., insulators and semiconductors, the
density matrix (5) decays exponentially as a function of dis-
tance between two points in space. In practical calculations, it
is therefore possible to truncate the density matrix by imposing
a radial cutoff,

ρ(r, r′) = 0 for |r − r′ | > Rcut, (7)

where Rcut is an assumed cutoff distance.
Within Onetep two minimization strategies are available

for solving the electronic problem in a self-consistent way:

1. The total energy can be minimized by optimizing both
the elements of the density kernel K and the expansion
coefficients of the NGWFs in terms of an underlying
periodic cardinal sinc (psinc) function basis49 (in situ
optimization).

2. Alternatively, only the elements of the density kernel
can be optimized, for a fixed set of NGWFs that have
been suitably initialized, e.g., to pseudoatomic orbitals
(PAOs), or to orbitals that have been pre-optimized in
advance.

When NGWFs are optimized in situ, a minimal set of NGWFs
is sufficient for obtaining high accuracy and systematic con-
vergence of total energies to those of a plane-wave approach
with KS orbitals. When total energy is minimized with respect
to the density kernel elements only, a non-minimal basis size
is typically necessary to achieve accurate energies and forces,
increasing the memory requirements of this strategy, even if it
is generally faster.

In both approaches, a modified Li-Nunes-Vanderbilt
(LNV) algorithm50,55 is employed to minimize the energy. The
density kernel K is expressed in terms of an auxiliary matrix
L as K = 3LSL � 2LSLSL. Energy is then minimized with
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respect to the elements Lαβ , which allows the idempotency
constraint to be satisfied to first order during the minimization.

In this paper, we have adopted the second strategy,
where the NGWFs are not optimized and we used a non-
minimal PAOs basis. Convergence is deemed achieved when
the RMS of the energy gradient gαβ falls below a specified
threshold, √

1
N

���〈g
αβ |gαβ〉

��� < εLNV. (8)

For a comprehensive description of the energy minimiza-
tion algorithm and linear-scaling calculations, the reader is
referred to Refs. 48, 49, 56, and 57.

III. EXTENDED LAGRANGIAN FORMALISM

Extended Lagrangian methods were originally introduced
to perform MD simulations of systems in statistical ensem-
bles other than the microcanonical.58–60 For example, the
action of a thermostat (barostat) can be described through
the interaction of the system with a heat bath (piston). By
postulating operational expressions for the kinetic and poten-
tial energy of the extra dynamical variables, one can write an
extended Lagrangian which intrinsically takes into account the
new variables. Similarly, CPMD defines the electronic states
as extended classical dynamical variables (classical fields),
with a fictitious kinetic energy and a fictitious mass, with
the idea of avoiding the expensive electronic self-consistency
procedure altogether. Recently, several authors have proposed
schemes based on the CP Lagrangian, using the density matrix
(DM) elements as the extra degrees of freedom,61,62 where the
orthonormality constraints are replaced with the idempotency
constraint of the DM.

Starting from the broken time-reversal symmetry prob-
lem in BOMD,34 Niklasson et al. introduced a time-reversible
extrapolation scheme for the electronic degrees of freedom.63

It is now recognized that the original scheme can be derived
from an extended Lagrangian,38,64 in which an additional set
of degrees of freedom is propagated alongside the nuclei with
the purpose of generating good quality time-reversal guesses
for the SCF calculations. Since the extra degrees of freedom
are only a computational device to reduce the number of itera-
tions in the SCF step, we will refer to them as auxiliary degrees
of freedom hereafter. In its most recent refinement, it has been
shown that it can be formulated to completely avoid the SCF
problem.64

Quite generally, a system of classical interacting nuclei
moving in an external potential field U, which contains a SCF-
derived component, has the following Lagrangian:

LSCF({RI }, {VI }) =
1
2

∑
I

MI V
2
I − U({RI }, { χSCF,a}), (9)

where {RI} and {VI} represent the sets of the nuclear posi-
tions and velocities, respectively, MI is the mass of atom I,
and { χSCF,a} is the set of converged degrees of freedom that
generate the SCF-derived part of the external field. The sub-
script “a” represents a generic collection of indices, which can
account for atomic-centered quantities, such as atomic dipoles
in classical polarizable force field, as well as global (atom-
independent) quantities, such as the density matrix elements

in DFT. The detailed form of the potential energy U depends
on the model employed, but in general can be cast as a sum
of an SCF-independent part, such as permanent electrostatics
or dispersion interactions, and a potential energy component
obtained through an SCF procedure, for example, the solution
of inducible dipoles in the case of a classical polarizable force
field.

Following the work of Niklasson,38 we can introduce gen-
eralized auxiliary degrees of freedom {ζa} into the Lagrangian
(9), provided we have a definition for their kinetic and poten-
tial energies. We want {ζa} to closely follow the dynamics of
{ χSCF,a}, so that they can serve as initial guesses for { χa} in
the SCF calculations. To keep the energy expression simple,
a harmonic potential centered around the converged solution
{ χSCF,a} can be employed, with a single parameter k = mω2 to
control the steepness of the well, yielding

Lext= LSCF +
1
2

m
∑

a

ζ̇2
a −

∑
a

k
2

(χSCF,a − ζa)2, (10)

where ζ̇a represent the generalized velocities of the auxil-
iary degrees of freedom and m represents their mass. The
extended Lagrangian (10) can now be used to derive a new
set of equations of motion (Euler-Lagrange equations),

MI R̈I = −
∂U
∂RI

+ k(χSCF,a − ζa)
∂ζa

∂RI
, (11a)

mζ̈a = k(χSCF,a − ζa). (11b)

In the limit m → 0 (k → 0, k/m → ω2), we obtain

MI R̈I = −
∂U
∂RI

, (12a)

ζ̈a = ω
2(χSCF,a − ζa). (12b)

It is worth pointing out that (12a) is exactly the same equation
we would have obtained where there are no auxiliary vari-
ables introduced, i.e., when using (9) instead of (10). This
is a consequence of taking the limit m → 0 only after hav-
ing derived the Euler-Lagrange equations. In so doing, we
recover the correct potential energy surface, provided the SCF
procedure is converged exactly. Integration of (12b) gives
{ζa(t)}, which in turn provide the initial guesses for the SCF
calculations.

A. Adaptation to classical polarizable
force-field methods

In order to extend Niklasson’s extended Lagrangian meth-
ods to classical polarization, we introduce a set of auxiliary
atomic dipoles as extra variables.37 More specifically, the
real self-consistent induced dipoles {µSCF,I } take the role of
{ χSCF,a}, and the auxiliary dipoles {µI } replace {ζa} in (10). The
nuclear centers RI are propagated in the usual way, i.e., accord-
ing to (13a), while the real self-consistent induced dipoles are
solved for using an SCF solver initiated by an initial guess that
is propagated through the auxiliary dipoles according to (13b),

MI R̈I = −
∂U

(
{RI }, {µSCF,I }

)
∂RI

{µI }

, (13a)

µ̈I = ω
2
(
µSCF,I − µI

)
, (13b)
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where U
(
{RI }, {µSCF,I }

)
is the total potential energy from the

AMOEBA force field.

B. Adaptation to linear-scaling DFT

In the case of linear-scaling DFT, the density matrix ele-
ments Kαβ would take the role of the real degrees of freedom
χa in (10). Analogously to the classical case, we would pro-
ceed by introducing matrix elements of an auxiliary matrix
Xαβ as the auxiliary degrees of freedom ζa. However, sim-
ply substituting quantities in (12b) leads to equations that are
geometrically inconsistent due to the tensorial nature of K
and X and the fact that the underlying metric also changes
with time. It is worth stressing here that the metric tensor S is
not propagated (as the NGWFs are not treated as dynamical
variables), but rather it is generated at every MD step from
the current NGWFs. Arita et al. have proposed an alternative
scheme65 based on propagating the matrix elements (KS)αβ
as dynamical variables in (10), with associated Xα

β as auxil-
iary degrees of freedom. This approach has the advantage of
propagating a representation of the density matrix which main-
tains the correct metric. At a given MD step n, the initial guess
Kinit for the SCF procedure is computed from the auxiliary
matrix X as

Kinit = XS−1, (14)

where S�1 is the inverse overlap matrix at step n, approximated
through an iterative Hotelling algorithm66 (to maintain a linear
scaling behavior).

The disadvantage of the above approach is that it does
not preserve the symmetry of the density kernel matrix,
i.e., K† , K, since at a given step, X and S�1 do not
commute in general. One possible solution is to instead
employ the symmetrized version of (14). In our experience,
this quickly leads to instabilities for larger systems, partic-
ularly with a velocity-Verlet integrator (to be outlined in
Section V).

Here, we propose a different approach, based on a dif-
ferent, orthogonal representation of the density kernel matrix
K⊥ = S

1
2 KS

1
2 , where S

1
2 is computed through a modi-

fied Newton-Schulz linear-scaling algorithm.67 This proce-
dure can be performed to a desired level of accuracy and
can be made numerically exact, thus not introducing time-
irreversibility, or, strictly speaking, it does not introduce
any more time-irreversibility than other operations performed
with finite-precision floating-point arithmetic, such as matrix
multiplications or inversions. The initial guess for the SCF
procedure at a given step n is given by

Kinit = S−
1
2 XS−

1
2 , (15)

which ensures that K is symmetric at all times.
The Euler-Lagrange equations in our framework read

MI R̈I = −
∂E[KSCF, {φSCF}; {RI }]

∂RI
K,{φ }

, (16a)

Ẍ = ω2[K⊥SCF − X], (16b)

where E[KSCF, {φSCF}; {RI }] is the potential energy in
Onetep,

E[KSCF, {φSCF}; {RI }] = Eelec[KSCF, {φSCF}; {RI }]

EEwald({RI }) + Edisp({RI }), (17)

given by a sum of three terms: (1) the electronic potential
energy Eelec; (2) the Ewald-Coulombic interaction energy of
the atomic cores; (3) an empirical dispersion energy correction
for dealing with a well-known deficiency of generalized gradi-
ent approximation (GGA) functionals in describing dispersion
interactions.68

Within KS theory, the potential energy Eelec can be cast
as a functional of the single-particle density matrix, hence the
dependence on K and {φα(r)}, as

Eelec[KSCF, {φSCF}; {RI }] = −
1
2

∫
dr

[
∇2

r′ ρ(r, r′)
]

r′=r

+
1
2

∫ ∫
drdr′

n(r)n(r′)
|r − r′ |

+
∫

dr 3ext({RI })n(r)

+ EXC[n(r)], (18)

where the terms on the RHS represent, respectively, the kinetic
energy of the non-interacting KS states, the classical interac-
tion between charged densities, the potential interaction energy
of electrons and clamped nuclei, and the exchange-correlation
energy. Equations (16a) and (16b) are the AIMD counterparts
to the classical Equations (13a) and (13b).

IV. EXTENDED LAGRANGIAN WITH DISSIPATIVE
VERLET INTEGRATOR (dXL)

It is now recognized37,38 that the above simple formula-
tion suffers from numerical instabilities in the evolution of the
auxiliary degrees of freedom. In fact, the velocities of the aux-
iliary degrees of freedom increase in an unbounded fashion,
ultimately resulting in initial guesses that are unacceptably far
from the converged values, negating the efficiency gains of the
scheme.37 The origin of this phenomenon lies in the fact that
exact convergence is never achieved in practical calculations,
which couples (12a) and (12b) through a “memory effect”36 or

FIG. 1. Illustration of the runaway accumulation of kinetic energy in the
auxiliary degrees of freedom in the original XL scheme. See text in Sec. IV.
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kinetic resonances.37 Energy can therefore flow from the real
degrees of freedom to the (massless) auxiliary ones, producing
a runaway increase in the velocities of the latter. This is demon-
strated in Fig. 1, which displays the runaway in the velocities
for a 64 H2O-molecule AIMD simulation, with an LNV con-
vergence threshold of 10�5 Ha a−3/2

0 .The temperature of the

auxiliary degrees of freedom was computed as Tr[Ẋ
2
]/N and

the temperature associated with the real degrees of freedom

was calculated as Tr[K̇
2
]/N (cf. comment following (26)). The

arrow at 0.27 ps indicates the point where the initial guesses
obtained from propagation become worse than the default ini-
tialization, negating the efficiency gains of the scheme. The
arrow at 0.53 ps indicates the point where the guesses become
so far from the converged values as to make the QM calculation
unstable.

Recognizing this issue, Niklasson et al. proposed a mod-
ified Verlet integrator,36 which breaks the time-reversal sym-
metry of the equations of motion of the auxiliary variables
to a small degree through the addition of a dissipative-like
term in the integration. Since this effect is introduced through
the integration, rather than a physical term in the Lagrangian,
it does not yield new equations of motion for the auxiliary
degrees of freedom. Instead, the approach can be thought
as being similar to Langevin-like dynamics for the degrees
of freedom { χa} with internal numerical error fluctuations
and external, approximately energy conserving, dissipative
forces f diss.

In order to minimize the breaking of time-reversal sym-
metry, dissipative forces proportional to ζ̇diss are avoided so
that the time-reversal symmetry can be maintained to a chosen
higher order. Hence, the modified Verlet algorithm to integrate
(12b) for the dXL scheme is given by

ζn+1
a = 2ζn

a − ζ
n−1
a + κ(χSCF,a − ζa)n + γ

L∑
l=0

clζ
n−l
a , (19)

where we δt is the time step chosen to integrate the equations of
motion and κ = δt2ω2. The coefficients γ and cl are obtained
in such a way that for a given L, all the odd-order terms in δt
cancel out36 up to order δt2L−3. Fig. 2 illustrates the behavior
of the dXL scheme, for a 64 H2O-molecule AIMD simulation,

FIG. 2. Illustration of the stability of the dXL (L = 7) scheme. In the interest
of clarity, averages over 10 fs are shown.

with the same approach for the calculation of temperatures
as explained above for Fig. 1. The auxiliary degrees of free-
dom closely follow their real counterparts and the instability
is removed.

Equation (19) is readily adapted to the classical framework
with the usual substitution ζa → µI ,

µn+1
I = 2µn

I − µn−1
I + κ(µSCF,I − µI )

n + γ

L∑
l=0

clµ
n−l
I . (20)

Here the dissipative force is given as a linear combination
of previous values of the auxiliary dipoles up to some order
L, with the optimal expansion coefficients cl, and the overall
scaling parameter γ given in Ref. 36.

The dXL can be analogously introduced for the linear-
scaling DFT framework through a linear combination of
previous auxiliary degrees of freedom,

Xn+1 = 2Xn − Xn−1 + κ(K⊥SCF − X)n + γ

L∑
l=0

clXn−l, (21)

where the coefficients γ and cl are the same as the ones used
for the classical approach.36

V. EXTENDED LAGRANGIAN
WITH THERMOSTAT-CONTROL (iXL)

The success of the dissipative scheme for a number of
QM models has been reported in the literature.36,38 Since the
role of the dissipation is to counteract the numerical insta-
bilities generated by the propagation scheme, for short time
scales, a bona fide microcanonical dynamics can be gener-
ated. On the other hand, the main drawback of the scheme
lies in the fact that it breaks time-reversibility (though to a
high order) and therefore introduces a small, but measurable
drift in the total energy. This can be ameliorated by carefully
optimizing the coefficients of the expansion, but it cannot be
removed completely. For long time scales, the steady drift of
total energy is unavoidable, as first demonstrated in Ref. 37,
which is consistent with our results obtained with classical
polarizable force-field MD (Section VII A).

An alternative approach for overcoming the problem
of breaking time-reversal symmetry has been proposed by
Albaugh et al.37 The main idea is to apply a simple thermo-
stat to the velocities of the auxiliary variables, resulting in an
inertial extended Lagrangian SCF formulation (iXL) in lieu of
dissipation. Here the scheme will be illustrated using a general
thermostat, γ, applied to the time-reversible velocity-Verlet
integrator (12b),

ζ̇
n+ 1

2
a = ζ̇n

a +
1
2
δtω2 ζ̈n

a, (22)

ζn+1
a = ζn

a + δt ζ̇
n+ 1

2
a , (23)

{ζa}
n+1 → SCF→ { χSCF,a}

n+1 → ENERGY AND FORCES

˙̃
ζn+1

a = ζ̇
n+ 1

2
a +

1
2
δtω2 ζ̈n+1

a , (24)

ζ̇n+1
a = γn+1 ˙̃

ζn+1
a , (25)
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where γn+1 is the velocity scaling factor generated by a general
thermostatting procedure at full time step update. For example,
in the case of Berendsen velocity rescaling, γn+1 is given by

γn+1 =

√
1 +

δt
τ

(
T ∗

Tn+1
− 1

)
, (26)

where Tn+1 is the temperature of the auxiliary degrees of free-
dom at MD step n + 1, T ∗ is the target (desired) value of this
temperature, and τ is the characteristic time of the thermostat.
T ∗ and τ are parameters of the scheme.

Although strictly speaking in the limit m → 0, one can
no longer define a kinetic energy, and therefore a tempera-
ture, for the auxiliary degrees of freedom ζa. Albaugh et al.37

have suggested the ensemble average of the squared auxiliary
velocities, i.e., T = 〈ζ̇2

a 〉 as an operational definition for the
pseudo-temperature T. In this paper, we follow this convention,
referring to the quantity in question simply as “temperature.”
The characteristic time τ is chosen similarly as in typical appli-
cations of thermostats—on the one hand, we want the decay
rate of the temperature towards T ∗ to be much shorter than the
length of the simulation tsim: τ � tsim; on the other hand, we
want to avoid a strong damping of instantaneous jumps in the
temperature, and so τ � δt. Provided τ satisfies the above
constraints, the exact choice is expected to be inconsequential
to the dynamics.

The desired auxiliary temperature T ∗ is chosen to approxi-
mately conform to the equipartition of energy consistent with a
classical harmonic oscillator.37 One possible way of obtaining
T ∗ is by approximating the auxiliary velocity with the max-
imum displacement of the distribution of the real degrees of
freedom.37 One can also run a brief dXL calculation before-
hand and subsequently set T ∗ to the time average of Tn

obtained from that run. Another option is to simply compute
the temperature of the real degrees of freedom, i.e., 〈 χ̇SCF,a〉

over a brief initialization period, and use a value slightly larger
than that (since the real degrees of freedom are the minimum
around which auxiliary degrees of freedom are meant to har-
monically oscillate). A typical behavior of the iXL scheme is
illustrated in Fig. 3.

The equations for the iXL approach for a polarizable force
field are obtained from (22)–(25), with the substitutions µ → ζ
and µ̇ → ζ̇ . The coupling constant γn is given by

γn =

√√
1 +

δt
τ

*
,

T ∗

〈µ̇2
I 〉

n − 1+
-
. (27)

For the sake of clarity, a simple Berendsen thermostat has been
used to illustrate the iXL approach. However, any other (more
efficient) thermostat can be used in principle, since the scope of
a thermostat in this scheme is only to remove heat (numerical
noise) from the auxiliary degrees of freedom. In fact, in all
results reported later, we use 4th order Nosé-Hoover chains
for thermostatting the auxiliary velocities, which we found to
be marginally better than the Berendsen thermostat.

Analogously, for a linear-scaling DFT approach, we
apply the following substitutions in (22)–(25): K⊥αβ→ ζ and

FIG. 3. Illustration of the behavior of the iXL scheme—the temperature of the
auxiliary degrees of freedom quickly decays to the preset desired temperature
T∗ (shown as a dashed line). The two peaks correspond to instants where the
number of SCF steps briefly flipped from 7 to 6, causing a temporary increase
in the auxiliary temperature. Here T∗ = 10−7 and τ = 30 fs. Testcase and the
approach to calculation of temperatures: as in Fig. 1. In the interest of clarity,
averages over 10 fs are shown.

K̇⊥αβ → ζ̇ . The coupling constant is given by

γn =

√√
1 +

δt
τ

*
,

T ∗

Tr[Ẋ
2
]n
− 1+

-
. (28)

VI. COMPUTATIONAL DETAILS

We studied the three extended Lagrangian schemes
described in Secs. III–V the original extended Lagrangian
scheme (extended Lagrangian) and its dissipative (dXL) and
inertial (iXL) variants. Calculations not employing any prop-
agation (starting the SCF procedure from scratch at every MD
iteration) were used as baseline comparisons. We tested the
extended Lagrangian schemes in two regimes—in classical
MD calculations with the AMOEBA polarizable force field
and in AIMD calculations with linear-scaling DFT. The for-
mer calculations were carried out using the tinker18 program,
and the latter using Onetep.48,49

As test systems we chose pure water-box systems with
increasing numbers of water molecules: 16, 32, 64, 128
(and 512 with classical calculations), although all methods
described should be generalizable to any molecular system.
Liquid water is ubiquitous in biological systems and, as it is
well-known, is a prototypical system for hydrogen bonding
that influences its anomalous behavior throughout its phase
diagram. Standard DFT GGA models struggle to correctly
describe the structure and dynamics of water, with the non-
locality of dispersion interactions, deficiencies of local and
semi-local exchange, presence of self-interaction error, and the
neglect of quantum nuclear effects often cited as culprits.69–71

At the same time, many successes and failures of both classi-
cal and quantum approaches for bulk water systems have been
reported.18,24,69–74 Consequently, bulk water systems provide
an appropriate and stringent test for the extended Lagrangian
methods where many-body effects are paramount.

For all classical polarizable force-field simulations, we
used the water parameters of the AMOEBA14 water model.74
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The equations of motion for the nuclear degrees of freedom
were integrated using the velocity Verlet integrator75 with a
time step of δt = 1.0 fs. Each system started with the water
molecules arranged on a lattice in an equilibrium geometry
with a cubic cell, whose volume corresponded to the reported
density for the force field ρ = 1.0003 g cm�3. The Particle-
mesh Ewald method76,77 with a 9 Å real-space cutoff for
long-range electrostatics was employed. Equilibration simu-
lations were carried out in the NVT ensemble at 298 K for 0.5
ns, with temperature controlled using a Nosé-Hoover thermo-
stat78 with a fourth-order chain and a characteristic time of
τ = 0.1 ps.

Following equilibration, we ran NVE production calcula-
tions for 1 ns with each of the above extended Lagrangian
schemes, along with a baseline calculation where initial
guesses were not propagated using the default conjugate gradi-
ent (CG) SCF method in tinker, with a threshold of 10�6 D. For
production calculations, we integrated the equation of motion
(13b) using the time-reversible velocity Verlet integration for
the original extended Lagrangian scheme and iXL, whereas a
modified Verlet scheme was used for dXL, as described in
Section IV. For the original extended Lagrangian scheme
and for the iXL scheme, we set ω =

√
2/δt according to the

criterion in Ref. 38. The target temperature T ∗ for the aux-
iliary degrees of freedom in the iXL scheme was estimated
by approximating the square of the auxiliary dipole veloc-
ity 〈µ̇2

I 〉 with the maximum displacement of the distribution
of the real dipoles.37 For these systems, this gave a value
of T ∗ ≈ 105 e2Å2/ps2, which is the value used in this work.
The Nosé-Hoover thermostat78 with a fourth-order chain and
a characteristic time of τ = 0.1 ps was used for the aux-
iliary degrees of freedom. For all the extended Lagrangian
schemes and for all the system sizes N, we ran our sim-
ulations with three different thresholds for the SCF opti-
mization: 10�1 D (loose), 10�4 D (moderate), and 10�6 D
(tight).

For linear-scaling DFT calculations, we used the pre-
equilibrated systems obtained from the classical calculation
to avoid lengthy equilibration in AIMD. These were subse-
quently further equilibrated with onetep for 1 ps with conven-
tional BOMD (i.e., in the absence of a propagation scheme) in
order for the systems to adjust to the switch from a classical to
an ab initio Hamiltonian. The NVT ensemble was used, with
temperature controlled via a Nosé-Hoover chain thermostat.
No adjustments were made to the densities of the systems.
The LNV convergence threshold was set to an RMS gradient
of 10�6 Ha a−3/2

0 , which generally required 19-20 SCF steps
to converge.

For both equilibration and production calculations, we
used the BLYP exchange-correlation functional79,80 with
Grimme D2 dispersion correction81 in order to improve the
DFT description of water.70 The kinetic energy cutoff was
set to 900 eV, and norm-conserving pseudopotentials were
employed. We used 8 a0 as the localization radii of the NGWFs
throughout, except for the 16 H2O system, where the small size
of the periodic box (14.78 a0) forced us to use a slightly smaller
localization radius of 7.35 a0. Since we used fixed (non-in
situ-optimized) localized orbitals, we chose a non-minimal
double-zeta with polarization (DZ + P) basis set to improve the

description. No density kernel truncation was applied, due to
the systems’ sizes being too small for the truncation to show
any benefit. A velocity Verlet scheme was employed, with
a time step of δt = 0.5 fs to integrate the nuclear degrees of
freedom.

Production calculations were carried out with all of the
extended Lagrangian schemes, and calculations with no prop-
agation as baseline, using a selection of LNV convergence
thresholds: 10�4 Ha a−3/2

0 (loose), 10�5 Ha a−3/2
0 (moderate),

and 10�6 Ha a−3/2
0 (tight). These sampled the NVE ensemble

and were carried out for 10 ps. While a longer sampling would
certainly be desired, the large computational cost of AIMD
simulations precluded that. Analogously to the classical calcu-
lations, we employed a velocity Verlet scheme for the auxiliary
degrees of freedom both for the original extended Lagrangian
scheme and the iXL scheme, with a time step of 0.5 fs. For the
dissipative dXL scheme, we used a modified Verlet scheme as
explained in Sec. IV. The target temperature T ∗ for the iXL was
set by running a brief dXL calculation, taking the time average
of the auxiliary temperature, and using a slightly larger (more
conservative) value for iXL, as otherwise the scheme’s ther-
mostat struggled to keep the desired temperature, leading to
excessive drift. This more heuristic approach has the advantage
of avoiding a long simulation to compute the distribution of
the displacements of real electronic degrees of freedom, which
can be quite computationally demanding for AIMD. The value
we settled for was T ∗ = 10−7 e2/fs2 for all thresholds, except
for the 128 H2O system at the loose threshold, where a larger
value of T ∗ = 10−6 e2/fs2 was necessary to maintain stabil-
ity. Due to the short time scale of our AIMD simulations, we
set τ = 0.03 ps for the thermostat characteristic time, forc-
ing the thermostat to work six times faster than its classical
counterpart.

VII. RESULTS
A. Polarizable force fields

We will use the largest (512 H2O) system as the main test-
case for classical calculations, and all results will refer to this
system, unless indicated otherwise. We begin by confirming
the problems of the original extended Lagrangian scheme due
to its quickly deteriorating quality of the propagated guesses.
We laid out the origin of this undesired behavior in Sec. III.
Fig. 4 shows how the number of SCF iterations increases
over time, regardless of the assumed convergence threshold.
Given sufficient time, the quality of the propagated guesses
becomes worse than in the absence of propagation, negat-
ing the efficiency gains of the scheme, even if, in principle,
this formulation is expected not to introduce a drift in the
energy.

The dissipative scheme addresses the deficiency of the
original formulation, at the price of weaker (finite-order) time-
reversibility as outlined in Sec. IV. We will now estimate the
typical energy drift that manifests as a consequence. Fig. 5
shows the change in energy per atom in an NVE simulation
with the dXL scheme, for several selected values of the order
parameter L (cf. (19)) and for calculations with a loose, mod-
erate, and tight SCF threshold. For all three SCF convergence
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FIG. 4. Decaying quality of the initial guesses propagated through the original
extended Lagrangian scheme, evidenced by the number of SCF steps needed
to converge the induced dipoles (solid lines).

thresholds, the drift is substantial, with the loose threshold
being the most severe case, corresponding to a drift rate of
∼2 × 10−1 K/ps. While the energy drift rate gets smaller as
the SCF tolerance increases, the drift is systematic and will
become non-negligible in calculations spanning hundreds of
nanoseconds.

The iXL scheme adopts yet another approach to over-
come the issues of the original extended Lagrangian scheme.
A thermostat is introduced to control the temperature of the
auxiliary dipoles in order to avoid the accumulation of noise
in the propagation, as described in Sec. V. Fig. 6 shows the
change in energy per atom in an NVE simulation for this case.
Energy conservation is maintained even at loose thresholds,
with a drift rate of∼3×10−3 K/ps and requiring only three SCF
iterations at the 10�1 D threshold (see inset in Fig. 6), making
this scheme very competitive and suitable for performing long
(µs-scale) NVE simulations. A modest price to pay for the iXL
method, apart from the need to choose suitable parameters T ∗

and τ (cf. Sec. V), is its dependence on a definition of “pseudo-
temperature” through the kinetic energy of the system, which
may become less valid as the number of degrees of freedom in
the system decreases. It is thus prudent to examine the behavior
of the method for smaller systems to assess its transferability
to other systems. Tables I and II summarize our findings for the
smaller systems. In particular, in Table I, we compare the drift
in the total energy for the unpropagated (conventional SCF-
MD) scheme, which serves as reference, the dXL scheme, and
the iXL scheme for four system sizes each with three SCF-CG
thresholds. The reasons for large uncertainties in the drifts,
even given a long simulation time, are as follows: for the loose
threshold, the drift is so severe that over 1000 ps the system
heats up (cools down) so much that the drift is no longer lin-
ear due to the massive increase (decrease) in kinetic energy.
For the moderate and tight thresholds, the large uncertainty
reflects the difficulty of accurately estimating extremely small
(sub-mK/ps) drifts. The drifts and their uncertainties were cal-
culated by assuming the drifts to be approximately linear. In
a simulation with a length of t (t = 1000 ps), we can use
a subset of data, viz., the interval [0, t0] to evaluate the lin-
ear coefficient in the drift, a (t0), over this interval. The final

FIG. 5. Total energy conservation of dXL for different dissipation orders: L
= 3 (panel (a)), L = 6 (panel (b)), and L = 9 (panel (c)). Different curves
within each panel correspond to different SCF thresholds: loose, moderate,
and tight. The dashed lines are meant as a guide to the eye and correspond to
energy drifts expressed as system cooling/heating rates in K/ps. In the interest
of clarity, only points 20 ps apart are shown.

drift estimate is a (t). The uncertainty is taken as the largest
difference between a (t0) and a (t) calculated over t0 ≥ t/2.
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FIG. 6. Total energy conservation of iXL for different convergence thresholds
(solid lines): loose, moderate, and tight. The dashed line is meant as a guide
to the eye and corresponds to energy drift expressed as system heating rates
in K/ps. In the interest of clarity, averages over 10 fs are shown.

Table II presents an analogous analysis to Table I, with
the number of CG-SCF iterations replacing the energy drift.
Table I and Fig. 7 demonstrate that for loose and moderate
CG-SCF thresholds, the iXL scheme outperforms all orders
of the dXL scheme in terms of energy conservation, even for
very small system sizes. In the tight threshold regime, the two
schemes are equivalent. However, as shown in Table II, the
trend is inverted when considering the average number of CG-
SCF iterations. In fact, NSCF for iXL is always larger than
the corresponding NSCF for dXL, regardless of the CG-SCF
threshold. Notably, at moderate convergence thresholds, the
dXL scheme shows energy drifts of the same order of magni-
tude (10�3 K/ps) as iXL with a loose threshold and also a com-
parable average number of CG-SCF iterations (NSCF = 3.7).
Therefore, dXL and iXL display similar performance but in
different SCF threshold windows: moderate for dXL and loose
for iXL.

To assess how these integration schemes affect the
actual dynamics, the oxygen-oxygen pair correlation func-
tion gOO (r) has been computed, see Fig. 8. Clearly, the
red curve and cyan curve in Fig. 8, corresponding to dXL

TABLE II. A comparison of the number of CG-SCF iterations between
calculations with no propagation and calculations using the dXL and iXL
schemes—for four different system sizes (16, 32, 64, and 128 H2O molecules)
and three different CG-SCF thresholds.

CG-SCF Propagation
System size

threshold (D) scheme 16 32 64 128

10�1 (loose) No prop. 1.00 1.00 1.00 1.00
dXL 1.00 1.00 1.00 1.00
iXL 3.00 3.00 3.00 3.00

10�4 (moderate) No prop. 5.42 5.51 5.65 5.77
dXL 3.62 3.65 3.83 3.79
iXL 6.89 6.72 6.84 6.99

10�6 (tight) No prop. 8.38 8.70 8.92 8.99
dXL 6.68 6.85 6.96 6.99
iXL 9.02 9.07 9.17 9.16

with a moderate threshold and iXL with a loose thresh-
old, respectively, lie on top of each other and they are
indistinguishable from the reference curve (solid gray). The
latter has been obtained with the conventional (unpropa-
gated) scheme and a tight threshold to provide a robust
baseline. No artifacts are hence introduced in the dynam-
ics by these two integration schemes, and they essentially
provide the “correct” result as obtained from the reference
calculation.

B. Linear-scaling DFT

As the main testcase for linear-scaling DFT calculations,
we will use the 64 H2O system, unless indicated otherwise. As
we have done for the classical calculations, we begin by con-
firming the impracticality of the original extended Lagrangian
scheme. Fig. 9 shows that for linear-scaling DFT calcula-
tions, the quality of the propagated guesses decays even more
rapidly than for the classical calculations. Indeed, for the loose
SCF convergence threshold, the original extended Lagrangian
scheme becomes less efficient than the unpropagated scheme

TABLE I. Comparison of the energy drift (K/ps) between calculations with no propagation, and calculations using the dXL (L = 6) and iXL schemes—for four
different system sizes (16, 32, 64, and 128 H2O molecules) and three different CG-SCF convergence thresholds. NSCF is the average number of SCF steps for a
combination of method and threshold (detailed breakdown in Table II).

System size

16 H2O 32 H2O 64 H2O 128 H2O

CG-SCF threshold (D) Propagation scheme Drift (K/ps (×10−4 )) NSCF

10�1 (loose) No prop. 48 752.2 ± 5969.3 49 642.4 ± 8490.7 40 048.8 ± 5110.5 38 739.4 ± 3827.8 1.0
dXL 2395.9 ± 685.2 �3371.2 ± 663.7 �6003.1 ± 3986.1 �5613.2 ± 4632.9 1.0
iXL �7.9 ± 154.9 158.4 ± 104.7 84.8 ± 93.8 74.9 ± 18.7 3.0

10�4 (moderate) No prop. 5.0 ± 7.4 �6.7 ± 9.4 �3.7 ± 1.7 1.6 ± 2.1 5.6
dXL �20.8 ± 9.2 �23.4 ± 4.6 �20.0 ± 1.7 �22.9 ± 3.2 3.7
iXL �0.9 ± 8.0 0.4 ± 2.6 �0.8 ± 1.0 �0.5 ± 29.6 6.9

10�6 (tight) No prop. 5.9 ± 7.9 �0.8 ± 2.7 �0.4 ± 1.5 �0.6 ± 1.7 8.7
dXL 1.4 ± 5.3 0.3 ± 4.0 0.0 ± 1.8 �0.6 ± 1.4 6.9
iXL 3.5 ± 6.8 2.3 ± 2.1 0.8 ± 5.0 �0.7 ± 1.5 9.1
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FIG. 7. Comparison of drifts in total energy between calculations with no
propagation, dXL and iXL. SCF convergence was set to 10�1 D (loose) for all
integration schemes. In the interest of clarity, averages over 10 fs are shown.

as early as after 0.04 ps (80 MD steps), probably reflecting the
good quality of Onetep’s (unpropagated) initial guesses for the
simpler scenario of fixed NGWFs.

A significant difference between classical MD calcula-
tions and their linear-scaling DFT counterparts is the much
higher “noise floor” of ab initio-derived forces. This is a con-
sequence of more intricate numerical machinery involved in
DFT calculations (commonplace use of grid-based operations,
such as Fast Fourier Transforms (FFTs), numerical integration
of quantities on a variety of grids with up- and downsampling
between grids, inexact translational and rotational invariance
(“egg-box effect”), and use of polynomial interpolations in
the handling of pseudopotentials), and the fact that the error in
Kohn-Sham DFT forces is first order with respect to the error
in the incompletely converged wavefunction, even though the

FIG. 8. Oxygen-oxygen pair correlation function gOO (r) obtained in the
absence of a propagation scheme, and with the dXL and iXL schemes with
different thresholds. Testcase: 512 H2O molecule system. The reference
unpropagated calculation uses a tight RMS threshold of 10�6 D. The SCF
convergence threshold was set to RMS 10�1 D (loose) for the iXL scheme
(solid cyan). The SCF convergence threshold was set to RMS 10�4 D (moder-
ate) for the dXL scheme (solid red). The differences between the predictions
obtained with dXL and iXL and in the absence of propagation are seen to be
minor, as also highlighted in the inset.

FIG. 9. Decaying quality of the initial guesses propagated through the orig-
inal extended Lagrangian scheme, evidenced by the number of SCF steps
needed to converge the induced dipoles (solid lines). Dashed lines denote the
corresponding number of SCF steps in the absence of propagation. Crosses
at 0.04 ps, 0.27 ps, and 1.33 ps denote points where the efficiency gain of
extended Lagrangian over the unpropagated scheme is lost.

error in the energy is second order.2 While tighter SCF con-
vergence can be imposed for dynamical calculations, this can
quickly become impractical, as to reach those stricter conver-
gence threshold grids must be made finer, and other approxi-
mations need to be well-controlled. In practice, the resultant
noise in DFT forces, even though perfectly acceptable, e.g., for
geometry optimization, leads to energy drifts in the order of
10�1 K/ps, while in classical MD, even when iterative schemes
are involved, drifts are not expected to exceed 10�3 K/ps (cf.
Table I).

Linear-scaling formulations of DFT necessarily add fur-
ther approximations to conventional DFT, even if in robust
approaches these approximations are controllable. For exam-
ple, the use of finite-box FFTs leads to a slight delocalization
of gradients beyond the localization regions of local orbitals,
exchange-correlation energy is typically evaluated on a finite

FIG. 10. Drift in the total energy for linear-scaling DFT for unpropagated
BOMD (testcase: 64 H2O molecules), for a selection of SCF convergence
thresholds. Excessively loose thresholds lead to extreme drift, but inherent
drift at ∼5 K/ps is apparent regardless of how tight SCF convergence is. The
dotted lines are meant as a guide to the eye and correspond to energy drifts
expressed as system cooling/heating rates in K/ps.
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FIG. 11. Comparison of drifts in total energy between calculations with no
propagation and dXL and iXL (testcase: 64 H2O molecules). SCF convergence
threshold was set to 10�4 (loose), as this is what would be used in practical
simulations. The dotted lines are meant as a guide to the eye and correspond
to energy drifts expressed as system cooling/heating rates in K/ps.

Cartesian grid, and Pulay-like corrections to forces are often
not numerically exact for reasons of efficiency. Some of these
approximations are common to all LS-DFT formulations,
whereas others are specific to the different implementations.
A consequence of these approximations is a further increase in
the inaccuracy of forces, with residual errors in Onetep typi-
cally in the order of 0.1%—this can be estimated from the mag-
nitude of the net force, which, in the absence of noise, should
be zero by Newton’s 3rd law of motion. While approaches for
correcting some of these approximations have recently been
proposed,29,31 the current state of the art necessitates using
mild thermostatting to control for energy drifts in LS-DFT, as
these typically result in temperature increase/decrease rates of
several K/ps.

To wit, in Fig. 10, we show drifts obtained for the 64 H2O
system in the absence of any propagation scheme. For con-
sistency, we adopt the same criterion to initialise the NGWFs
as outlined in Sec. VI. While the drift in excess of 100 K/ps
obtained for the LNV convergence threshold of 10�3 Ha a−3/2

0
is clearly due to an excessively loose threshold, there is
little improvement when the threshold is tightened from 10�4

Ha a−3/2
0 to 10�5 Ha a−3/2

0 , and no further gain whatsoever with

10�6 Ha a−3/2
0 , which indicates the presence of an inherent drift

that cannot be mitigated by improving the degree of SCF con-
vergence. The magnitude of this drift is in the order of 5 K/ps,
which leads us to expect that the drift due to time-reversal sym-
metry breaking in dXL (estimated between 10�3 and 10�4 K/ps
in the classical case, cf. Table I, for moderate and tight thresh-
olds) will be entirely obscured by the intrinsic drift due to
forces.

Fig. 11 compares the energy drift of the unpropagated
calculation and the two extended Lagrangian approaches for a
loose SCF threshold (10�4 Ha a−3/2

0 ). The drift in the absence
of propagation is 8.5±0.9 K/ps, with dXL and iXL performing
better: at −1.5±0.3 K/ps and 2.8±2.1 K/ps, respectively. The
fact that the drifts are comparable between dXL and iXL is
in line with our expectations—the drift that makes dXL less
desirable for long classical MD simulations does not play an
appreciable role in LS-DFT MD, since it is dwarfed by inherent
drift due to the noise in LS-DFT forces.

To add more weight to this argument, we examine the
drifts for the remaining systems and for tighter SCF thresh-
olds. The results are summarized in Table III. For all sys-
tem sizes, regardless of how and if the initial guesses are
propagated, we observe drifts of several K/ps. No corre-
lation is apparent between the magnitude of the drift and
the SCF convergence threshold, which indicates that the
threshold is not excessively loose, and that no accuracy

TABLE III. Comparison of the energy drift (K/ps) between calculations with no propagation, and calculations
using the dXL and iXL schemes—for four different system sizes (16, 32, 64, and 128 H2O molecules) and
three different SCF(LNV) convergence thresholds. Large uncertainties of computed drifts reflect necessarily short
simulation times.a NSCF is the average number of SCF steps for a combination of method and threshold (detailed
breakdown in Table IV).

System size

16 H2O 32 H2O 64 H2O 128 H2O

SCF threshold
(
Ha a−3/2

0

)
Propagation scheme Drift (K/ps [×100 ]) NSCF

10�4 (loose) No prop. 4.8 ± 0.4 4.2 ± 1.9 8.5 ± 0.9 3.3 ± 1.1 7.8
dXL 3.5 ± 1.8 6.6 ± 0.5 −1.5 ± 0.3 0.2 ± 0.2 3.3
iXL 1.5 ± 0.8 −3.9 ± 2.1 2.8 ± 2.1 −2.4 ± 0.4 4.0

10�5 (moderate) No prop. 3.8 ± 5.3 2.3 ± 2.1 5.6 ± 3.2 3.0 ± 0.5 13.5
dXL 2.9 ± 0.8 0.2 ± 3.0 1.9 ± 2.9 3.4 ± 0.2 5.7
iXL 4.8 ± 0.7 3.8 ± 1.5 0.9 ± 0.8 2.6 ± 0.3 7.7

10�6 (tight) No prop. 3.2 ± 2.7 5.7 ± 1.6 5.8 ± 2.2 2.5 ± 0.9 19.3
dXL 2.2 ± 1.4 4.6 ± 1.9 1.5 ± 0.4 3.1 ± 0.7 10.2
iXL 2.8 ± 2.5 7.1 ± 1.5 5.4 ± 0.7 2.8 ± 0.4 13.5

aThe drifts and their uncertainties were calculated as follows. We assume the drift to be approximately linear. In a simulation with
a length of t (t = 10 ps), we can use a subset of data, viz., the interval [0, t0] to evaluate the linear coefficient in the drift, a (t0), over
this interval. The final drift estimate is a (t). The uncertainty is taken as the largest difference between a (t0) and a (t) calculated
over t0 ≥ t/2.
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TABLE IV. A comparison of the number of SCF iterations between calcula-
tions with no propagation, and calculations using the dXL and iXL schemes—
for four different system sizes (16, 32, 64, and 128 H2O molecules) and three
different SCF thresholds.

SCF threshold Propagation
System size(

Ha a−3/2
0

)
scheme 16 32 64 128

10�4 (loose) No prop. 9.0 8.0 7.1 7.0
dXL 3.8 3.4 3.1 3.0
iXL 4.0 4.0 3.0 5.0

10�5 (moderate) No prop. 14.0 14.0 13.0 13.0
dXL 6.3 6.0 5.5 5.0
iXL 9.0 8.0 7.0 7.0

10�6 (tight) No prop. 20.0 20.0 19.1 18.0
dXL 11.0 10.8 10.0 9.0
iXL 14.4 13.9 13.7 12.0

gains can be achieved by using tighter thresholds. Neither
of the extended Lagrangian methods is seen to discernibly
outperform the other, and the drifts are comparable to the
case with no propagation. This confirms that the observed
drifts are a result of inherent noise in LS-DFT forces and are
hardly affected by the properties of an extended Lagrangian
scheme.

Of course, the use of an extended Lagrangian approach
is expected to yield a performance improvement by reducing
the number of SCF steps needed to converge to a given thresh-
old. We report that number in Table IV for all systems and
methods under study. Both dXL and iXL offer a performance
gain of 30%–60%, depending on the convergence thresholds,
with looser thresholds offering larger gains. Except for an
isolated case (64 H2O molecules, loose convergence thresh-
old), the use of the dissipative scheme leads to slightly faster
convergence compared to the inertial scheme. This is a conse-
quence of manually setting the auxiliary temperature for iXL

FIG. 12. Oxygen-oxygen pair correlation function gOO (r) obtained in the
absence of a propagation scheme and with the dXL and iXL schemes. Test-
case: 64 H2O molecule system. For calculations with propagation, the SCF
convergence threshold was set to 10�4 Ha a−3/2

0 (loose), as this is what would
be used in practical simulations. The reference (unpropagated) calculation
uses a tight threshold (10�6 Ha a−3/2

0 ). The differences between the predic-
tions obtained with dXL and iXL and in the absence of propagation are seen
to be minor.

to a slightly more conservative value than the exact average
auxiliary temperature of dXL (cf. Sec. VI). With more aggres-
sive settings, we would expect the performance of iXL to be
indistinguishable from that of dXL, but with the caveat that
iXL immediately starts to drift appreciably when T ∗ is set
to an excessively low value, necessitating care in the choice
of this parameter. The drift in this case is a consequence
of the thermostat’s persistent scaling of velocities, with the
time average of γn (Eq. (28)) being excessively lower than 1.

Apart from not impairing energy conservation and
improving performance, a natural requirement for a propaga-
tion scheme is for it not to visibly affect the calculated proper-
ties of the system. In this study, we examine the basic structural
characteristic of water, the oxygen-oxygen pair correlation
function gOO (r), shown in Fig. 12. The reference (unprop-
agated) calculation was run with a tight threshold, to provide
a robust baseline that we assume is the correct result. The
calculations with dXL and iXL were performed with a loose
threshold, as this is what would be used in practice. The differ-
ences between the predictions of the two integration schemes
are minuscule, and the differences between the propagated cal-
culations and the reference are also very modest—the first peak
is described practically identically, and for larger distances,
the introduction of propagation (in particular with the iXL
scheme) appears to introduce a very slight over-structuring,
which we find perfectly acceptable given the time scale of
the simulations. We do not include experimental results in
the comparison, knowing full well that the DFT model of
water significantly over-structures for reasons that we do not
expect the propagation schemes to compensate for. The same
over-structuring exacerbates the problem (the system takes
longer to fully equilibrate). We thus attribute the small
differences to the noise stemming from the limited time
scale.

VIII. CONCLUSIONS

In this work, we assessed the performance of two inte-
grators for the extended Lagrangian introduced by Niklasson
et al.36—a dissipative formulation (dXL)36 and an inertial
formulation (iXL),37 in two distinct regimes, by employ-
ing them in classical and in LS-DFT NVE MD calculations
on condensed water systems. We confirmed the previously
reported37,38,65 necessity of counteracting the unbounded
increase in the kinetic energy of the auxiliary degrees of free-
dom through some form of energy leaching, to which the two
schemes take different approaches.

In the classical polarizable force field regime, we repro-
duced the observations of Albaugh et al.,37 showing that
over long (∼ns) time scales, for maximally loose SCF thresh-
olds, where an unpropagated scheme drifts catastrophically,
iXL offers better energy conservation compared to dXL.
This advantage is a consequence of a different approach to
“energy leaching” taken by the iXL method, which strictly
preserves time reversibility. However, at this loose SCF thresh-
old, dXL has the advantage of needing substantially fewer
SCF steps (1 vs. 3) to converge and thus offers an effi-
ciency gain over iXL. As the SCF threshold is made progres-
sively tighter, the performance of the two schemes begins to
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converge, with the drift of dXL improving considerably, and
the almost constant absolute efficiency advantage of 2-3 SCF
steps that dXL maintains over iXL becoming relatively less
important.

In the LS-DFT MD regime, the picture is substantially dif-
ferent due to the high intrinsic noise of LS-DFT forces, which
leads to energy drifts that are much larger than the additional
drift due to energy leaching from the extended Lagrangian
approach. As such, the dXL and iXL propagation schemes
can be used with the loosest of LNV-SCF threshold inves-
tigated (10�4 Ha a−3/2

0 ) beyond which an additional drift of
an extended Lagrangian scheme starts to become apparent.
Although there is no discernible difference in practice between
the dXL and iXL schemes at the loose convergence threshold,
the dXL would currently be the mildly preferred choice for
LS-DFT MD calculations due to its parameter-free nature.

As it is now, we believe that in practical and sufficiently
long (many-ps) LS-DFT MD calculations, a gentle thermostat-
ting would currently be necessary to counteract the excessive
increase/decrease in temperature that is a consequence of
intrinsic drift, and which is as large as several K/ps. Further
work is desirable in the area of linear-scaling DFT to improve
the accuracy of forces in the presence of artifacts that result
from localization constraints and the approximate treatment
of Pulay-like terms in the forces. We feel obliged to point out
that the energy drifts in LS-DFT would likely change notice-
ably if the localized were to be optimized (not studied in this
work). This is because on the one hand the in situ optimization
significantly reduces the magnitude of Pulay-like terms, while
on the other hand it introduces a further approximation into
their calculation. It is possible that the change that the opti-
mization of localized orbitals would introduce to the “noise
background” of LS-DFT forces, and the ensuing change in
intrinsic energy drift, would uncover differences in the behav-
ior of the two extended Lagrangian integration schemes that
are currently obscured in ab initio MD. We intend to study this
behavior in the future.

We highlighted the non-triviality of correctly evolving
the auxiliary degrees of freedom over a curved manifold in
ab initio calculations, a fact that is not always appreciated in
the literature. We presented and tested a viable scheme for
propagating the density kernel in this scenario, using a fixed,
non-orthogonal generalized Wannier function basis. Further
work is necessary to develop a scheme where the localized
orbitals could be similarly propagated.

Finally, we showed that both dXL and iXL consistently
enable significant, and usually similar, increases in perfor-
mance over calculations not employing propagation, both for
classical MD and LS-DFT MD. Thus, both of these schemes
constitute important algorithmic improvements that markedly
extend the time scales accessible to classical and LS-DFT MD
simulations alike.
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APPENDIX: STABILITY OF VELOCITY VERLET
WITH WEAK COUPLING

In Section V, we have derived the equations of motion
for the auxiliary degrees of freedom {ζ }, starting from the
extended Lagrangian (10) and coupling {ζ } to an external
bath,

ζ̇n+ 1
2 = ζ̇n +

∆t
2
ζ̈n = ζ̇n +

ω2∆t
2

[χn
SCF − ζ

n], (A1)

ζn+1 = ζn + ζ̇n+ 1
2∆t, (A2)

SCF→ ENERGY AND FORCES

˙̃
ζn+1

a = ζ̇n+ 1
2 +

∆t
2
ζ̈n+1 = ζ̇n+ 1

2 +
ω2∆t

2
[χn+1

SCF − ζ
n+1], (A3)

ζ̇n+1 = αn+1 ˙̃
ζn+1, (A4)

where ζ , ζ̇ , and ζ̈ represent the auxiliary generalized coordi-
nates, velocities, and accelerations, respectively, whereas χSCF

is the converged SCF solution (real degrees of freedom). The
coupling strength with the external bath is given by α. In deriv-
ing (A1)–(A4), we have adopted the velocity Verlet integrator
with a time step ∆t. A possible choice for α is given by the
Berendsen thermostat,

αn =

√
1.0 +

∆t
τ

(
T ∗

Tn − 1.0

)
, (A5)

where τ represents the characteristic time scale of the ther-
mostat. T ∗ is the target temperature. The instantaneous tem-
perature Tn is generally a quadratic function of the auxiliary
generalized velocities,

T ∝ f (ζ̇2). (A6)

The discretized equations of motion (A1)–(A4) can be
cast in matrix form as



ζn+1

ζ̇n+1


= T(α, χSCF,∆t)



ζn

ζ̇n


. (A7)

Following a change of variable ζ̇∆t → ζ̇ , the propagation
matrix T takes the form
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FIG. 13. Stability measured by the largest eigenvalue
|λ |max of (A10) as a function of the degree of SCF con-
vergence measured by γ ∈ [−1, 1] for selected values of
α for the velocity Verlet scheme.

FIG. 14. Stability measured by the
largest eigenvalue |λ |max of (A11) as a
function of the degree of SCF conver-
gence when γn+1 , γn and they are
independently allowed to vary in the
range [�1, 1] for α = 0.9 panel (a), and
α = 0.5 panel (b) for the velocity Verlet
scheme.

T =


1 0
αω2∆t2

2 [χn+1
SCF

(
ζ−1

)n+1
− 1] α


×


1 + ω2∆t2

2 [χn
SCF

(
ζ−1

)n
− 1] 1

0 1



+


0 0
αω2∆t2

2 [χn
SCF

(
ζ−1

)n
− 1] 0



=


1 + ω2∆t2

2 Qn 1
αω2∆t2

2 Qn+1 + αω4∆t4

4 Qn+1Qn + αω2∆t2

2 Qn αω2∆t2

2 Qn+1 + α



=

[
1 + κQn 1

ακ{Qn+1 + Qn + κQn+1Qn} α(κQn+1 + 1)

]
, (A8)
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where in the last two steps we have set Q = χSCFζ
−1 − 1 and we have grouped together all scalar parameters, but α, into

κ = ω2∆t2/2. Following the analysis in Ref. 82, we can study the stability of the propagation by linearizing the SCF optimization
around an exact ground state χ

∗
,

χSCF = SCF[ζ] ≈ χ
∗

+ Γ(ζ − χ
∗
), (A9)

where the linearized SCF optimization kernel is represented by Γ. Now we look at the homogeneous equation, i.e., χ
∗
≡ 0, and

replace Γ with its largest eigenvalue γ, and insert this equation into the propagation matrix T, which reads

T =


1 + κ(γn − 1) 1

ακ{(γn+1 − 1) + (γn − 1) + κ(γn+1 − 1)(γn − 1)} α[κ(γn+1 − 1) + 1]


, (A10)

where we want to ensure the propagation to be stable for the
entire range of convergence, γ ∈ [−1, 1].

The stability of the integrator is determined by the largest
eigenvalue |λmax | of the propagation matrix in (A10), which is
a measure of the loss of energy conservation. To simplify the
discussion, we can look at

γn+1 ≈ γn = γ̃,

which is achieved when two subsequent SCF steps converge
with the same accuracy. In this case, the propagation matrix T
simplifies to

T =
[

1 + κ(γ̃ − 1) 1
ακ[2(γ̃ − 1) + κ(γ̃ − 1)2] α[κ(γ̃ − 1) + 1]

]
. (A11)

This simplification captures most of the results for the stabil-
ity as demonstrated by comparing Fig. 13 with Figs. 14(a) and
14(b), where we let both γn and γn+1 to independently vary in
the range [�1, 1], with no significant impact on the stability.
This implies that the stability of the integrator is mainly deter-
mined by the coupling parameter α. In fact, the propagation
matrix in (A11) shows the important symplectic property,

TTJT = αJ, (A12)

where J is the symplectic structure matrix

J =


0 1

−1 0


. (A13)

This is simply a re-statement of the fact that when α = 1,
we recover the canonical velocity Verlet scheme, which is of
course symplectic. Our analysis is in line, at least qualitatively,
with the results obtained by Albaugh et al. for the simpler
Verlet scheme.37 We also find that any κ , 1 results in a
suboptimal regime, cf. Table V, which means that the optimal
choice for ω ought to be

√
2/∆t.

TABLE V. Different values for the α parameter and the corresponding
optimal values for κ and maximal dissipation.

Method/coefficients α κopt |λ |max

1.0 1.0 1.0
0.99 1.0 0.995
0.95 1.0 0.975

Velocity verlet 0.9 1.0 0.949
1.01 1.0 1.005
1.05 1.0 1.025
1.1 1.0 1.049
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(2009).

4S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
5D. R. Bowler, T. Miyazaki, and M. J. Gillan, J. Phys.: Condens. Matter 14,
2781 (2002).

6S. W. Rick and S. J. Stuart, “Potentials and algorithms for incorporat-
ing polarizability in computer simulations,” in Reviews in Computational
Chemistry (John Wiley and Sons, Inc., 2003), pp. 89–146.

7P. Cieplak, F.-Y. Dupradeau, Y. Duan, and J. Wang, J. Phys.: Condens. Matter
21, 333102 (2009).

8M. Elstner and G. Seifert, Philos. Trans. R. Soc., A 372, 20120483 (2014).
9N. D. Yilmazer and M. Korth, Comput. Struct. Biotechnol. J. 13, 169 (2015).

10W. L. Jorgensen, J. Chem. Theory Comput. 3, 1877 (2007).
11O. Demerdash, E.-H. Yap, and T. Head-Gordon, Annu. Rev. Phys. Chem.

65, 149 (2014).
12G. Lamoureux, A. D. MacKerell, and B. Roux, J. Chem. Phys. 119, 5185

(2003).
13D. P. Geerke and W. F. van Gunsteren, J. Phys. Chem. B 111, 6425 (2007).
14A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys.

Chem. A 105, 9396 (2001).
15D.-X. Zhao, C. Liu, F.-F. Wang, C.-Y. Yu, L.-D. Gong, S.-B. Liu, and

Z.-Z. Yang, J. Chem. Theory Comput. 6, 795 (2010).
16G. A. Kaminski, H. A. Stern, B. J. Berne, R. A. Friesner, Y. X. Cao,

R. B. Murphy, R. Zhou, and T. A. Halgren, J. Comput. Chem. 23, 1515
(2002).

17P. Ren and J. W. Ponder, J. Comput. Chem. 23, 1497 (2002).
18P. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).
19P. Ren, C. Wu, and J. W. Ponder, J. Chem. Theory Comput. 7, 3143 (2011).
20J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders,

I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon,
G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114,
2549 (2010).

21P. Cieplak, J. Caldwell, and P. Kollman, J. Comput. Chem. 22, 1048 (2001).
22P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens, M. Krauss,

D. Garmer, H. Basch, and D. Cohen, J. Chem. Phys. 105, 1968 (1996).
23A. Holt, J. Boström, G. Karlström, and R. Lindh, J. Comput. Chem. 31,

1583 (2010).
24L.-P. Wang, T. Head-Gordon, J. W. Ponder, P. Ren, J. D. Chodera,

P. K. Eastman, T. J. Martinez, and V. S. Pande, J. Phys. Chem. B 117,
9956 (2013).

25A. C. Simmonett, F. C. Pickard, Y. Shao, T. E. Cheatham, and B. R. Brooks,
J. Chem. Phys. 143, 074115 (2015).
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59S. Nosé, Mol. Phys. 100, 191 (2002).
60M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
61H. B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, A. D. Daniels,

G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 114, 9758 (2001).
62J. M. Herbert and M. Head-Gordon, J. Chem. Phys. 121, 11542 (2004).
63A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, Phys. Rev. Lett.

97, 123001 (2006).
64A. M. N. Niklasson and M. J. Cawkwell, J. Chem. Phys. 141, 164123

(2014).
65M. Arita, D. R. Bowler, and T. Miyazaki, J. Chem. Theory Comput. 10,

5419 (2014).
66T. Ozaki, Phys. Rev. B 64, 195110 (2001).
67B. Jansı́k, S. Høst, P. Jørgensen, J. Olsen, and T. Helgaker, J. Chem. Phys.

126, 124104 (2007).
68Q. Hill and C.-K. Skylaris, Proc. R. Soc. A 465, 669 (2009).
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