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Abstract

The thermodynamics and critical exponents of nuclear matter near
the critical point of a ligquid-gas phase transition are studied. We
then investigate fluctuations near.the critfca] point. One effect of
a finite number of nucleons, as in nuclear reactions, is to wash out
the first-order phase transition for several MeV below the critical
temperature. This is manifested in the fact that there is a finite
probability for the system to exist in the metastable or unstable
‘regions of infinite matter. The phenomenological droplet model is
applied to a wide range of recent data on fragment yields in the
range 6 < A < 52, and good fits are obtained. Heavy ion reactions
are consistent with droplet formation in a sdperﬁaturated vapor,
with supersaturation ratios up to 3.25. Proton-nucleus reactions

are consistent with droplet formation in a saturated vapor.

CAugust 1983 . . . - - omemoT T



1. Introduction

The primary goal for colliding nuclei at high energy is to study
the hadronic hatter equation of state. The most interesting aspect of
such investigations would be to observe the consequences of a phase
transition. Current theories of hadronic matter qua]itatjve]y predict
the phase structure shown fn Fig. 1. At high temperature‘or density
there should be a first order phase transiton to quark-gluon matter,
At low temperature but high density there may be a second order phase
transition to a pien—condensed state of nuclear mafter. At even lower
temperatures and subnuclear densities there should be a first order
1iquid—gae type of phase transition, terminating in a second order
phase transition at the critical point. It is this last phase change
to which we shall turn our attention in this paper.

There are two fundamental obstacles to realizing the aforemen;
tioned goal. First, by their very nature nuclear reactions are time-
dependent phenomena and it is not immediately apparent whether or
not thefe is sufficient time to reach a state of thermal and ehemi-
cal equilibrium, ‘Even if there is, the system must expand.and pass
out of the state of equilibrium. How does the system break apart?'
Will there be any observable consequences if a phase transition
occurred? Second, nuclei are not macroscopic ijects in the sense

23 particles. .To what extent-may-one speak -~ —

of being composed of 10
of thermal and chemical equilibrium for a finite number of.particles?
Sharp phase transitions only occur for macroscopic systems.v How much
would a phase transition be washed out due to finite particle number

effects?



These are serious and difficult questions which may not be answered
with complete satisfaction for a long time. In this paper we hope to
make some theoretical and phenomenological contributions to this con-
tinuing study. We begin in Section"2 by reviewing some properties of
the nuclear matter equation of state in the temperature and density

domain of interest, namely T’g 20 MeV and o < °0 (normal dénsity).
Particular attention is paid to the thermodynamic behavior near the
critical point inc]udiﬁg the relevant critical exponents.

In Section 3 we study for the first time the imbortance of finite
particle number for the sharpness of the liquid-gas phase trahsition.
For a finite number of nucleons there is a finite probability that, at
a given pressure and a given temperature, the system will actua]]y'be
at any density. The probability that the system is at any density
other than the thermodyngmically favored one decreases exponentially
with the total number of particles. These density fluctuations are
evaluated near the critical point with the aid of Landau;s theory.

The basic result is that the.critical temperature can only be located
to within one or two MeV given the fact thét nuclear reactions are
limited to 100-500 nucleons. Fluctuations in the total energy of the
éystem are also investigated. This will give some estimate of the
range in beam energy over which experimental observables will be
smeared.

In Section 4 the phenomenological droplet model used in homogen;
eous nucleation theory of saturated and supersaturated vapors is re-

viewed. The droplet model is then used in a phenomenological study



of mass yfelds in the range 6 < A < 52 for proton-nucleus and nu-
cleus-nucleus collisions over a wide energy range. Fits to the data
are quite satisfactory. The values of the parémeters,are consistent
within theoretically expected ranges. The proton-nucleus data is con-
sistent with no supérsaturation, whereas the heévy jon data exhibit
supersaturation ratios up to approximately 3.25. |

We must_émbhasize-that most of the recent interest in the liquid-

gas phase transition and the droplet model of fragment production was

. stimulated by the high energy proton-nucleus experiment of the Fermi-

1ab-Purdue cO11aboration1

~and their own interpretation2 of the data.
Our application of the droplet model is more extensive and differs in

some respects, but not in basic philosophy, we believe.



2. Equation of State

- 2.1 General features '

The basic physics-we are interested:in depend only on the grosé
features of the nuclear equation of state;s’ For definiteness the
equation of state that ‘will be primarily used in our investigation of
nuclear condensation is'bne'whiCh is derived from-a Skyrme type inter-

‘“action. ‘Specifically this interaction is

| ‘V, - - ta ;(44,%) *+ 31[7{5/4/3)*5/@:)%] 2:1)

| raEIIE R pshyT

with"r"12 =’FiiFé,'E.= (Eﬁiﬁé)/Z and p is the density at (?i¥F2)/2.

The last term on the right hand side of eq. (2.1) is density dependent
and is. partially responsible for the satufating properties of nuclei.
The value of o is usually taken as unity in the Skyrme interaction.
Using finite temperature Hartree-Fock theory with the above interac-

tion an equation of state can be derived which 154
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(2.2)

#(2-3 £ i)



The a, = (3/8)t0, ay = (3/48)t., and the m* is the density de-

3
pendent effective mass given by

%7* 7= %[5@+5@]r¢ -

The m is the nucleon mass. In eq (2.2) the PId is the pressure of a

non-interacting (ideal) gas. "For a non-degenerate gas
(2.4)

,’}4’/7'

When degeneracy corrections around the non-degenerate limit are in-

cluded, the ideal pressure can be written as
~o
— n
/;z(’ TZ;-/\ )f . (2.5)

with



Bi=1

N 2_55/.1 /\zg(fv)‘

'§4= 3ﬁ+5ﬁ—/4) c\.;_(.s.’lf_)
32/% F

It is.important to note that the ﬁume;i¢éf=coéfficients in the B,'s in
eq (2.6) are sma11 and rapidly decreasing with increasing n. This
means that only a few terms have to be kept in eq. (2.5) even for
T~5 MeVuand‘p T Py whererp0 is nuc]e;r matter density. ;Thg

g =14 is the,spin—jsopin qegeneracy-factgr and'theg)T(m*):is theu’

thermal wavelength given by

| —- .
% ) —
/\r(m ) mT (2.7)

At the other extreme one has the degenerate limit. For T = 0, the:
ideal pressure is just the Fermi-gas pressure of a degenerate system

which is

pz »
= 2 JF_ '
I% : 5/0 lmx (2.8)
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where the Fermi momentum is given by

3
A N _ -
IE)= v/ (2.9)

The N is the nucleon number. In eq (2.8) we have assumed non-rel-
ativistic particles. Corrections to the T=0 result can be obtained
from the Sommerfeld expansion.5 Specifically, the first order

correction to the degenerate 1imit gives

| — ﬁ,_z J .
N 'D"._ 1+: = (é}) ] . .10)

where € = PE/Zm* is the Fermi energy. The first order correction to
the degenerate 1imit has the characteristic T2 dependence in the pres-

sure and also in the kinetic energy Ek/V where

P
P’ Tol

NI

(2.11)



The coefficients.that appear in eq (2.2), the a, and ag, can be
adjusted to give the correct saturation properties of nuclei, i.e., the
correct binding energy at the correct equilibrium density. When o =1
and m*/m = 1, a, = 293.33 MeV fm3 and a3 = 666.66 MeV fm6 for an equi-

3

librium density of p_ = .15 fm ~ and for a binding energy of 8 MeV.
O .

With o = 1 the compressibility coefficient K = 224 MeV.

2.2 Critical Point Properties ,

In this subsectioﬁ the critical point prqperties of our equation of
stafe will be deve1oped.6 We proceed in this discussion by considering
the simplest case, the non—degenerateAlimit with ¢ = 1 and m*/m = 1. For
the temperatures and densities that are being éonsidered, this is a rea-

sonably good first approximation. The results of first order degeneracy

4 hiéher order correc-

corrections will then be given. As already noted
tions will not significantly change these results.

It is also possible to start with the degenerate limit and carry out
the correction due to finite temperature, as in éq. (2.10) and Ref. 3.
For definiteness we will follow the former approach.

Our equation of state is then

Pz - 40/01%- 2 4703"‘/0%7— (2.12)

which is illustratred in Fig. 2.

]
o

For this equation the critical point is determined by (aP/_ap)T

(BZP/SOZ)T = 0 which gives
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The coefficient 1/3 in the last equation multiplying o
the value 0.375 for a Van der Waals equation of state. Expanding the
equation of state eq (2.12) around the critical point t = T-Téo),

p = P—Péo), n = o—péo) the following result is derived

p _=/oc(o)-£—+ ‘é";(' + ,243713 (2.14)

For t<0, this cubié equation in n has three rea]_roots for fixed p.
metastable boundaries are determined by the conditio.n that aP/an
In fact for t<0 the p, n curve has the cﬁaracteristic S-shape of a
Van der Waals equation as shown in Fig. 2. The points D,E shown in
Fig. 2 are the limits of the metastable region. For densities be-
tween D and E the compressibility is negative and the system is
unstable. The endpoints A and B can be obtained from the Maxwell
construction of equal areas in a PV plot. Thfs is equivalent to

equating the.pressures and chemical potentials of the two phases.

Letting p, be the Maxwell pressure then

The

]
[en]
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(/(f-zg)d?’zo

Integrating by parts gives the condition

-1

/th}’:o

4

Near the critical point

Y_ 1 _ 1 _2z
A

so that

(2.15)

(2.16)

(2.17)

(2.18)
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The endpoints of the Maxwell construction are then given by

w)__ ) =& (2.19)
:?5 = Z - ’?43 v

when use is made of eq (2.14). The point C of Fig. 2 is at n. = 0.
The boundaries of the metastable region are given by P/an = 0.
They .are
(o) _ (9 s
7e =% Y o (2.20)
a3 |
so that

(0) | o |
2=V %3y’ (2.21)

- _ - (o)
Note that at n = A and n = ngs P =0, t
The changes in Maxwell pressure with changes in temperature can be

obtained from the Clausius~Clapeyron equation which for our case reads

£ (a)
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where v = V/v£°). The subscript 1,9 are the liquid and gas endpoints
on the Maxwell-construction line. The ? = T/Téo) and SX = P/PX. The

S] and Sg are the entropies of the system at these points with

é;*u%; = I @5//1)' (2.23)
_jz;__ (/ 6?‘) 2.23

The latent heat aQ is simply
T(§*§)= /Vfiw(%'/qfi) O (2.29)
Near the critical point pg = o0 _ (o) o ] o00) 4 1 (0) o4 tnat
Q 2 oar 2/)( / o (2.25)
since n{®) =_F/2_a3 we have
4@ = Nﬁ‘o)/j__g_; o< ﬁ— | (2.26)

Thus, the latent heat goes to zero as /-t on the Maxwell construction
line as does Sg - S].

It is instructive to rewrite eq (2.14) in the neighborhood of the
critical point in various forms which explicitly show various critical
exponents. Near a critica] point, the general eduation of state can

be written as7
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/*-ét-::,«_ /7/57(’[,_«./,2%) ; £ << /;1/7’”‘ (2.27)

where the + sign is for n > 0 and the - sign is for n < O. The result -

of eq (2.14) is of this formfsince'eq‘(2.14) can be rewritten as

oy _ 3/, 4+ Y .
PRE= 297 _(14-‘2_-_—-%,) (2.28)
so that

b=p |
Flt/ ﬁ)= 24, z+'--.-7'f'-—) C (2.29)
The critical eprnents s, B are § = 3, B8 = 1/2. For the crftical‘iso—

"therm t = 0 and p ?-n3. The critical exponent § gives the behavior of

the pressure as a function of o -fpc:

P.’@.[? = _/fﬁ‘“)/;-gj"-?]oe) (2.30)

It is not surprising that we find 6§ = 3 since all mean field theories

give § = 3. The cubic dependence in our theory follows easily from

the condition (aP/ap)T = 0 and (aZ_P/_apZ)T = Q used to obtain the

critical point. Experimehts show that & for real gases is between 4
8

and 5.° It is well known that mean field theories can give incor-

rect numerical values for the critical exponents. When p = pct then
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"
0 .

1+ E
,2q372" ; | | (2.3;)

and _
= _‘é —_____t e ;» 4 CO)"é ‘ o :
7= %) 24, Py (2.32)

which is just the result of eq (2.19). The critical exponent g is

defined by -
/ﬁ‘/} “ (-€) (2.33)
where -
-7 £
€= = T L
7 F (2.34)

The Py - pg are the Maxwé]]—cbnstruction endpoints so that Py - °g
goes to zero as € » 0 as y/-€ on the Maxwell line. In practice 8 turns

out to be closer to.1/3. On the critical iéobar p =0 and

o)
¢

.t=‘/z/.3 '_/3’;3.3_) 5 7’=»_C»’:' O (2.3)

Another way of wrﬁting the equation of state\Whi¢h makes-exp1icit an-

other critical exponent y is7b‘



3
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P —bt= t)‘(c, 1+G 9 ¢ ), f>}/7/é (2.36)

For the Skyrme equation of state near the critical point we have

exactly (only 2 terms present on the right hand side of eq (2.36))
Prt= ¢ ('2* s 7 (2.37)

With y = 1, B = 1/2. The critical exponent y gives the behavior of

the isothermal compressibility KT’ K;l ='—V(aP/aV)T

_ ' )
k= (€) (2.38)
as a function of ¢ = (T - T%ﬁ/Tg”above and. near the critical

point. The y is observed to be larger than 1, v ~ 1.2 to 1.3.

The specific heat at constant p varies as

P
7 et 64;9* | o (239)

which for states on the coexistence or Maxwell-contruction curve

 diverge as 1/(-t). The'specific heat at constant volume has associ-

ated with it the critical exponent a such that above and near the

critical point

~J ﬁ |
G = ("'é) (2.40)
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In our approach a = 0. In summary a = 0, 8=1/2, y=1, § =3 in our
mean field approach. By contrast, ‘the Wilson Theory gives a = 0.08,
= 0.33, v = 1.26 and & = 4.8.°

2.3 First order degeneracy correct1ons

We now investigate the effect of degeneracy corrections on the cri-

tical point. The first order correction to the equation of state is

/D" - 4/0 +-24/ 707'-;‘ -%72 AT(M)T/O (2'.41)

where the last term is the degeneracy correct1on and 1t corresponds to
an increase 1n pressure due to the Pau]i repulsion of Fermi-Dirac par-

ticles. The result of eq (2.41) can be recast as

) g e
P==4% Cr}o‘+ 29@"771 )

where we have defined &i{T) to be

. 3 . P
(1) 2z . .
a (7r)= 4q,- Pry fifﬁ%:12lz. (2.43)

Our equation of sfate ie ]ike the non—degenerete equation'with
a, > éizT). For this equation of state the critical denéfty
iy . _ , .
(2) )
1
Pt AW,
C §
égqg S 3 (2.44)
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and the new critical temperature Tﬁl) to first order in degeneracy is

given by

RN Y N vy
- ” alj

The Téo)'is the zero-order (non-degenerate) result of eq. (2.13). The

Cfitical presSure is
) (1) (1) ). )
Rl fe) 2l

Again we can expand our resu]ts around the new critical point p = P -

Pgl), n=p - él) t = T Tél). First, we note that

ﬂ( () = (1)( (1))4' Coéra)) | (2.47)

. where
) 3
el =z L T
A7) A AEM (2.48)

The xTu) = AT(J)(m) is the thermal wavelength of eq. (2.7) evaluated
at T = T(l). Then, using eq. (2.48) we obtain the following result

for the equation of state near the critical point
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F= (1 _ﬁ_’"’ ') # a4y’
+ B (2 -1-,1(«%_,35’ ) - (egﬁw 7't

The last term in-n t can be neglected compared to the other'

(2.49)

terms that appear 1in eq 2 49 near “the’ cr1t1ca1 po1nt Thus

(2 50)
A ( L) + 297
Comparing eq. (2.50) w1th eq (2 14) the effect of 1nc1ud1ng degeneracy
correct1ons to f1rst—order s a change 1n the coeff1c1ents in front of

the nt and pct terms. The new metastable boundary dens1t1es are now

given by

N
‘%=*Z:=7/6% (i- ﬁ (2.51) -

‘and the endpo1nts of the Maxwe]l construct1on 11ne are

a) cz) (1) : ,
ERA % = -7, (2.52)
The Maxwe]] pressure is now

: 3
) Z ,/l ’ C?)
(- m(G) e

Of course the critical indices‘are'unchanged when degeneracy effects

are included.
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The critica]ldensity and temperature for a_ = 293.33 MeV fm3 and

0
= 666.66 MeV fm6 given in section 2.1 are péo) = 0.0733 fm"3,

a
3
T£°) - 21.5 mev; o{1) = 0.0614 fm~3, Tél)

c = 15.1 Mev.
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3. Fluctuations

3.1 ‘General remarks and simplified discussion

In this.secfion we w11i conéfdéfifTuctuatioﬁé in thé 1iquid-§as
phase coexistence. The nuclear equation of state discussed in the
previous section describes the equilibrium states of the system and
ignores the statistical fluctuations around the equilibrium states.
For an infinite system these fluctuations are important only at the
critical point, where large density fluctuations create the phenomena
of critical opalescence. Fluctuations are not significant in an in-
finite system for states which differ from the critical point.

For é finite system statistical fluctuations can be important
for states which are far from the critical point. We will address
the following questions: Can these f]uctuétions wash out the first
order.liquid-gas phase transitiqn for.temperatures below TC? Can
these fluctuations provide a mechanism for entering the metastable
and unstéb]e regfons of the phase diagram?

In the liquid-gas phase transition the quantity which we will be
concerned with is the probability of being in a state of the system
which is not one of the equilibrium states on the Maxwell-construction
line. The points A, B, C of Fig. 2 are equilibrium states. The prob-
ability of a fluctuation is proportional to the exponential of the to-
tal entropy change of a closed system. The entropy is connected to

the volume in phase space AT by

S = 1In al (3.1)
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For a subsystem held at constant temperature and pressure, which are
the relevant quantities to keep fixed if we are interested only in
density fluctuations, the fluctuation probability reduces to an evalu-

ation of

R = o=BG/T o | | | R (3.2)
wheré AG is.thevchange.iﬁ thg Gibbs free energy G:
6=E - SR . | o (3.3)
Using the ffrst']aw of thermodynamics

dé = -SdT f»VdP_ | . ‘ | - (374)
For an isothermal proces;

(d6). = v . (3.5)

T

The change in G between two points 1 and 2 which have densities P and

Py but equal pressures P1 = P2 is then
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&/ ,) éyo) / V@D) / (ar),

The p's here are connected to the P and T by the equation of state.

From the result of eq. (2.12)

v g

6&0) @0) 247“__4/0 +7é7’/590] (3.7

Thus the relative probability of being in state 2 compared to state 1

is

(ﬁ v i[2E0p)-3 2077
) (3.8)

ez

h An interéstihéﬁgitUatioﬁhfd conéidéf’;s ﬁéfﬁt:ébin:Fig. 2 compared
to point A or B, A and B having the séme G%bbé'f;eé enefgiés. ”Thé
point C is in the unstable region-since aP/3p < 0. For a finite sys-
tem fluctuations can populate state C. When T is close to the criti-
cal temperature, the probability of being in state C compared to A or

B has a simple form



'e/fc) _ @4 7T (3;9)

Figure 3 shows how this relative probabi]iiy varies with tempera-
ture for N-= 100. Wheh the iemperature is 95 percent of Tc’ the rel-
ative probabi]ity is 0.82. The system has almost as much chance of
being in the "unstable" state C as in the stable state A, However,
R(pc) decreases rapidly as the temperature is reduced. When the tem-
perature is 80 percent of TC,,the relative probability {s only 0.024.
The system has 1ittle chance to be in state C. Figure 3 may be used
~for other values of N by noting that the relative probability of eq.
(3.9) is the N'th power of a number which is less than one and which
depends only on.T/Tc. |

An alternative way to present eq. (3.9) is-given in Fig. 4, which
shows the number of nucleons required at éach temperature such that
' R(pc)/R(oA) = 0.5. The number N becomes infinite at the critical tem-
perature and falls rapidly as the temperature is reduced. In a sharp
first-order phase transition, the unstable state C would never pe oc-
cupied. So Fig. 4vprovides a rough measure of the critical number of
nucleons required‘for a first-order phase transition.

The discussidn so far has been restricted to states A, B and C of
Fig. 2. These are the only densities permitted by the equation of state
at the vapor pressure Px‘ However, statistical density fluctuations |

are not restricted to these three densities. For a given temperature
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and pressure the probability that the sy§tem‘ha$ any arbitrary density

p is given by eq. (3.2), so that

(3.10)

R 8_[g/ﬁ)-699)]/7-

It is therefore useful to know G(p) for :densities not permitted by the-

10 in which

quation of . state. This is provided by the Landau theory,
p is treated:-as an independent variable not restricted by P'and T. We
now turn to this theory.

3.2. Landau Approach .

The discussion of the fluctuations to be presented here .is:based
on the Land“au1=0 expansion of the Gibbs free energy. The esséntial
. feature of the: Landau approach is the construction of the free energy
in terms of a power series in the order parameter. ' The order parame-
ter n in a liquid-gas phase transition is taken as the density differ-
ence p - p.:

n=p0-p : T o ) - (3.11)

The oc is the critical dgnsity-discuSSed in the previous section.
The Gibbs free energy is then a function of the pressure, temperature
‘and order parameter. For each value-of the pressure and temperature,

the free energy surface G{P,T,n) can be constructed. These energy
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surfaces have maxima and minima, which give the values of the order
parameter when the system is in thermal equilibrium. -

At the critical.point the order parameter n vanishes. For exambﬁe,
for ferrohagnetic materials the order parameter is the magnetization
while in ferroelectrics it is the polarization. Below the'critical
temperature there is a finite magnetization in the magnetic case since
the magnetic moments are partially ordered or aligned. When T is near
Tc the ordering of the spins by interactions is nearly balanced by the
tendency toWérd a random ;tate caused by the thermal motion. Fluctua-
tions in the magnétization are then large because of this near balance.
In the liquid-gas transition these 1arge'f1uctuation$ ine rise to the
phenomena of‘critiéél opa]estencé.'-Light inéident on‘a.TiqUid-gas’sys—
tem at the critical point is étrongly scattered by the 1arge.drops of
liquid present. R .

In the neighborhood of the critical point, the Gibbs free energy

is expanded in powérs of the order parameter

6’(}37)‘2) = 60[,3 T) + o((BT);Z +’4('D/T)’22 .
b coT)) 4 BET Y

The equation of state can beiused to obtain the coefficients in eq.
(3.12) since the equilibrium value of the order parameter is obtained

by the condition that G be a minimum with respect to variations in n:
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Specifically, the Landau order paramétgr théi.appeans in .eq. (3.12)
is no longer connected to P,T byﬂan:equation bfLstate'but is now con-
Asidered,an;iqdependent variable. However, the equilibrium condition
that G be an extremum gives the.equation of state. -Applying-the con-

‘dition of eq. (3.13) to eq. (3.12).gives ..
, L . e ,,4 . ,

o = 0((/;7-) +02,4{/;7)21‘3C0;T)7 446[/57))7 e (3.14)
which apart from an overall normalization Eonsfanf'D is the equation
of state. The equatioﬁ-Of staté”near'the'érftiEél boint is however

p - bt = alnt + 2a3n3 ’ | o - {3.15)

where in the non-degenerate limit

b=0o®, o -1 . . (316

from eq..(2.l4). When first order degeneracy corrections are included
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Comparing eq. (3.14) with eg. (3.15) the following identification can

3 17)

be made

Apr)=~ (p-6t)D

A(PT) = @, ¢D= Q(7-7.)D
8(k7T) = 2D O Gas
cceT) = ©

The choice D = N/p g1ves the correct G for the equilibrium states,
the extfemum values of G. The N is the number of nucleons. At the
critica] point A(p,T) = 0. The equation for G, in an -order parameter

expansion near the cr1t1ca1 po1nt, is then
6(654)-- Go(BT) +
N . ‘ (3.19)
7‘[‘ (prsthyr e+ 2o |
[~

2

In the Landau expansion, when only n and'n4 terms are present,

the transition is described as second order in the Landau description.
A first order transition in the Landau scheme would have n2, n4 and n6

terms. The Tinear term in eq. (3.19) is an external field term with
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the external field h in a ]iquid-gds-bﬁése tkansitfqn given by
h=p-bt o (3.20)

Note that G is symmetric under interchange h » -h and n » -n. Thus,
our liquid-gas phase transition is second order in the Landau scheme
in an external field.

Identifying h as p - bf, ﬁhen» o L .

n=xn " O (3.21)
where X is the-"susceptibilityﬁ in this Hdentificat{bn. ‘The n of eq.
(3.21) can then be defined as the induced order parameter n = Mind
from an external field. In the ferromagnetic case h is the external
magnetic field and n the inducéd magnetic moment, while in the‘férro-
electric cése,»h is the external elec¢tric field -and n the induced
electric dipole moment. . -

The "susceptibility" in-eq; (3.21) is given by
A= (2%- . (3.22)

Using eq. (3.15) we have

e BT Y (3.23)
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The condition h > 0 gives 2a3n2 +_a1t = 0 so that
X = - 1 +<0 ‘ ©(3.24)

and

X = _Ji; 3 ¢€>0

(3.25)

Thé "susceptibility” becomes infinite at t = 0 and it hé% the same
'propertigs as the specific heat at constant pressure or the compress—
ibility at constant temperature.

The spontaneous order parameter, the order parameter in the
absence of an external field (h = 0), corresponds to p = bt. The
solution to the equation of state with p = bt are points on the
Maxwell-construction line. The spontaneous order parameter n

sp
can be taken as

’Zsf =7 = 2 ‘ (3.26)
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and’it goes to zero as the1/:?'as one approaches.the critical point.

This square root behavior is just eq. (2.33) with the critical exponent

8 = 1/2. The values of G at n = N and n = ng are minima while thé

other extremuh point of G for p = bt is n = 0, the C point in Fig. 2.
Let us now consider density fluctuations at the vapor pressure

p = bt. From eq. (3.19) it follows that
G(P=4%,57)= Golp-477)+
N Ta ¢y2p By |
# ety 2y

This function is shown in Fig. 5. At the vapor pressure G(n) is sym-

(3.27)

metric about n = 0. For T < TC there are.two degenerate minima at

ny and ng of Fig. 2 and a maximum at nc of Fig. 2. This shows that
the extrema in the Landau free energy occur at the densities given by
the equation of state. As the temperature ihcreases, the minima be-
come shallower and closer together. At the critical temperature the

three extrema merge and the surface is flat near n = 0, since

(3.28)

S(p67,7:,1) = G (p=6, 7 )+ X [1.g, 9
PULT0) = Gl ,)+/éz[,_éaz]
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The Landau free energy of Fig. 5 is used to calculate the proba-
bility distribution‘R(o) of eq. (3.2). The result is shown in Fig. 6
'for N = 100. #or temperatures fer below the critical temperature, R(p)
has two well-defined nerfow peeks centereq on the stable states at oA
and oge The prebability for the unstable-state is éma]]. It'is then
preper to refer to a first-order phase transition from the ges state
at bA to the liquid state at PR 'However, es the temperature increases
the two peaks begin to dverlap, and the probabi]ity for the unstable
state.at °c increeses. When the temperature is 95 percent of TC, then
R(p) is almost uniform over a Qide-rahge in o whieh extends through the
stable, metastable and unstable regions; It is then improper to refer
to a first-order phase transition from op to Pg* | _

The probabi]ity of having.d stattst%ca] fluctuation that'resu1ts
in being at the Maxwell preéeurevpx with the‘density of points D or E

in Fig. 2, is simply

Ly =

K/E,) : e’ 3" 712

(3.29)
k%)
Comparing this result with that ef eq. (3.9) we find
/9 |
RQD) - I/Zc) / '
R/A) ' R[ ) _ (3.30)
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Thds, whiie the probabi]ity cf"betng~in the”dnstable region at point C
might be small, the probabi]ity of being at the point p s op is not so
sma11 For example a 10 percent probab111ty of being at PysPc COrre-
sponds to a 36 percent prcbab1]1ty of be1ng at p ,pD wh11e a 5 percent
probab111ty of be1ng at pc is assoc1ated w1th a 26 percent probability of
being at pD Stat1st1ca1 f]uctuat1ons wh1ch are not SO deep into the me-
tastable region as °p are eren more 11ke1y. p | |

The d1scuss1on SO far has been restr1cted to the equ111br1um vapor
pressure, p, = bt or in zero externa] f1e1d h p - bt Then G has two
degenerate minima at the symmetr1c endpo1nts of the Maxwe\l-construc-
tion line and a maxima at n = 0. when the externa] f1e1d is non-zero,
or p # bt, m1n1ma are no 1onger degenerate. In fact when the external
field is such that the pressure is tangent to the curve in F1g 2, at
point D or E, the behav1or of G as a funct1on of the order parameter |
contains an inflection point and a minima. For a fixed t the pressure
at n = ng is

Pe = bt + anet + 2a3ng | (3.31)

with

6 4 S | o (3.32)
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The external field h is. then

e b yp= 2 /~q+ |
L= 2 -4t 59 -é_é_,—‘ | (3.33)

(3.34)

For example, in the non-degenerate approximation with T = 0.91 Tc’

3

PX = 0.379, P, = 0.409 and P_. = 0.349, all in MeV fm °. Equa-

D E
tion (3.19) is used to construct G(p) for these three pressures, as
shown in Fig. 7. _Compake'this.with Fig. 2.

For P = PD the inf]ectionvpoinf_in G(p) occurs at °p and the minif
mum octgrsAat Py For P”= PE the inflection point occurs at PE and the
minimum occurs at oF - The correspdnding curves are mirror images be-
cause of the symmetry h » -h, n> ?n in G, as-a1ready noted. Observe
that the minima at oG and op are deeper than the minima at op and Pg-
This implies that the density fluctuations are smaller at states G and

F than at A and B.

3.3. Energy F1u¢tuations

The fluctuations in energy for a system in contact with a heat res-

ervoir maintained at a temperature T is sihp]y

N ,TZCV , (3.35)
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where Cv = (dE/dT)V is the heat capacity 'at constant volume and AE =

E-E, E being the mean energy. This result follows from the canonical

ensemble. In this ensemble states of different energies En are pres-~

ent with a probability

6?- n/7
p = | . (336)
7 Z -

where Z is the partition function. For a non-degenerate idea]Agas

Cv_= 3N/2, and so.the fluctuation in'energy per particle is

f .

Ag? |
_ 2 o
A At B

The rétio of the fluctuatkon to the mean kinetic energy is

|

(3.38)

£ 3N
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For N = 100 this ratio is 8.2 percent, and far N = 500 this ratio is
3.7 percent. This is also a good estimate for the fluctuation in .tem-

perature if the energy is held fixed,

|

>N

~
P

(8}

i

(3.39)

N
W
e 3

Including the first order degeneracy corrections leads to

;/Af’ n (1 5,\3
3'V 9/2 (3.40)

and so acts to reduce the fluctuations. On the other hand, starting

from the degnerate limit, one arrives at

(53—) A;C; 1//7 (3.41)

as T » 0. Thus the relative energy fluctuation is a monotonically de-
creasing function of the degeneracy parameter X%o. As an example,

for T = 3.5 MeV, p = °0 and N = 100 the ratio is 0.27 percent.
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In concluding this section we may say that for a finite system
statistical density fluctuations are important notAonly at the critical
point, but in some neighborhood of the critical point.y For N = 100 and
the temperature range 0.90 < T/Tc < 1 there are large density fluc-
tuations which transport the system into the “unstable" region. It is
then improper to speak of a first-order 1iquid;gas phase transition.

At Tower temperatures the density f]uctuations‘diminish in amplitude,

and the first-order phase transition gradually emerges.
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" shown by Gay Lussac to be a very general phenomenon.
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4. Droplet Formation in a Supersaturated Vapor

4,1, General HistoricaT Discussion

Fahrenheit initiated the study'of phase equilibria and of super-

12 Water may be

cooling while investigating the fﬁeezing of water.
supercooled and kept that way for hours. The addition of some ice, or
a sudden jolt, will cause quick crystallization. Lowitz}3‘di$;overed
the phenpmenoh of ‘supersaturation in 1775, and it was subsequently

14 Again using

‘water as an examp]e; atmospheric cloud formation is due to condensa-

tion of water vapor on impufities or contaminants. This'normally oc-
curs‘whenvthe ratio of actual vapor pressure to saturationbvapor pres-
sure (Maxwell pressure) exceeds unity by 0.01 to 0.1 of 1 percent.
(This ratio is called the éupersaturation ratio.) For purified air
this ratio rises to about 3 whereupon condensation nuclei cause cloud
forméfion. If fhese nuclei are washed out the ratio rises to 4.2.
This 1imit is caused by negative jons. Positive ions cause the next
1imit at a supersation ratio of 6. If all of the above nucleation
sites are eliminated, it is observed that fog formation occurs at a
ratio of 7.9. This is attributed to homogeneous nucleation, which is
the mechanism one might expect to occur in nuclear r‘eations.15
As a last éxamp1e we mention the formation of bubbles in champagne.
The nucieation sites for these bubbles are fissures in the surface of

the glass bottle. (Private communication, J. Heitz, Napa Valley, Cali-

fornia).
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4.2. Droplet Model of Homogeneous Nucleation

Homogeneous nucleation occurs when chance collisions of particles
in the gas phase lead to local density'(orbétructUral)'inhomdgeneities.
These areiessentially drop]éts{of the new liquid phasé. The probabil-
ity of formation of these droplets can be estimated by calculating the
change fﬁ the freé energy of the systér*n.ls;l8 At” constant pressure and
iémperafure'the Gibbﬁvfreé energy'gs the relevant one. Suppose that a
spherical droplet contains A particles of the 1iguid phase and is sur-
rounded ByaB pértié]eéﬁofithe gés‘pha;e, Then

2, + TP A (4.1)

G

with drop = ¥ A_+ ugB * 4R

and

6o drop.=\ﬁg(A +8) , T (s2)

since the total number of particles A + B is fixed. ' Here R is the ra-
dius of'the‘drop and ¢ is the surface free energy. In general o may
depend on R, but usually it is assumed that R is large compared to the
range of the interparticle force so that o may be identified with the
surface free energy associated with an infinite plane surface. The
surface will of cdurée have a finite th{ckhess, with the matter'oﬁ one
side being in the liquid phase and on the other in the gas phase. Fin-
ally a geometric term 1n A has been added to take accourit of the fact
that the surface closes on itself which reduces the total entropy assoc-

iated with the surface.lz
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The probability of formation of the droplet containing A particles

is proportional to exp(-aG/T) from eq. (3.2) with aG = Gyith drop ~

G , S0 that the yield, or density, or total number of droplets

no drop
is

Y{A)=X€X,° AB:{"A— 4”;’_’10-/}%-2%0,4] (.3)

‘where Yo is an undetermined constant. Here it has been assumed that the

1/3. The situa--

droplet is essentially of uniform density so that R = rA
tion.iS illustrated in Fig. 8. A plot of P versus p at fixed T shows
the regions of stability, metastability and instability. At fixed u
the state with'the.méximum P is the thefmodynamically favored one, and
at fixed P is the state with the minimum u;' The density isbgiven by
the élope of the curve, namely o = (aP/au)T. One condition for ther-
modynamic stability is that (qp/au)+ > 0, which is violated by that
portion of the curve with negative turvafure. When the system is sit-
ting at the crossing point x of tﬂe pressure curve the two phases are

in thermal and chemical equilibria with Mg = uye In ﬁhat case

Y(A) = Yoexp(-bA2/3 C2maA) o (4.4)

1

where b = 4ﬂP2(T)o(T)/T and o = = 4ur3/3. At the critical point b(T)

10 ( 3/2

vanishes like TC -T) in the usual Van der Waals or mean field
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apbroxihhfion, and a 1ittle more slowly in other theories of the crit-

ical point. Specifically, the Wilson theory would give (Tc'- T)1‘28.
" At TC then
V(A) = Y A" T (4.5)

which is-a characteristic pdwer-léw fa11—dff first obtained by Fisher.l7

The critical exponent T is related to the critical exponent § of eq.

(2.27) by =2 + L.

Since, by definition of the critfca1 point,
2<s <9, it must be that 2 < Z'<'2.5. It is usually assumed thét T
has no T dependence or, if it does, that?fis eva]uatgd at Tc‘ In the
Van der Waals model or mean fieild approximatjdn Z’=17/3 sjnce § = 3, as
shown in section 2.2.

The phase diagfam in the temperature-density plane for é typical
nuclear equation of state is shown in Fig. 9. The dashed line denotes
a fixed T; Where it intersects'the coexisteh;e curve determines the
densities of the gas and liquid phases. If the vapor can somehow be
prepared in the supersaturatea state at point g then droplets of the
liquid phase will appear at bbint 1. Points g and 1 correspond to the
same states as in the preceding figure. . |

Thé liquid phése is much less compressable than the gas phase, as
may be seen in Fig. 8. Therefore the approximation is often made of
replacing My withAuX(T)_in the yield formula of eq. (4.3). In molec-
ular physics problems it is also sometimes a good approximation to use

the ideal gas relationship between chemical potential and pressure at

fixed T,

3
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u = constant + T In P . . (4.6)

Then (u_ - ux)/T = ln(Pg/Px) where Pg/Px is the supersaturation ratio.

g
This generally will not be a very good approximation for a nearly de-

generate Fermi gas.

For any temperature less than or equal to TC the droplet model thus

predicts the generic form
Y = Y exp(aA - ba2/3 = 2 A) . ‘ (4.7) .

If a = 0, as on the coexistence curve, Y is a monotonically decreasing
function of A. If a > 0, as in a supersaturated vapor, Y has a mini-

mum value. The minimum is located at the critical size A, determined

by

: A
- ‘2=¢6 A -3 Zz_ =0
=345 Ay
(4.8)

This corresponds to a radius

R, = P—gz%sz {1 + %— (fo(x) + f_(X))g , (4.9)
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where

' 1/3 _
f.(x) = [1+xi 2x+x2J -1, (4.10)

Y
X = ;Z. 3 (4.11)
&
~ 3 T .
T = —t (4.12)
0 .=y Pg - PX
m = 29 (4.13)

% = Py - Px |
The term Zo/(Pg - PX) in eq. (4.9) is the classic expression relating
the radius, surface .tension and pressure difference for spherical sys—
tems. The f's give the correétions due to the T In A term in the
Gibbs free energy. |

Droplets of this critical size A, are in unstable equilibrium with

the surrounding supersaturated vapor. If A < A, they tend to evaporate

or breakup due to the large surface free energy, whereas if A > A, they

19 who first realized that if a

tend to grow indefinitely. It was Gibbs
droplet of larger than critical size is formed then it threatens the
existence of the gas phase since the droplet may grow indefinitely to
swallow the whole system. This may‘then provide some insight into the
kinetics of phase change, and in fact is the basis for the classical

theory of homogeneous nucleation.



43

4.3. Law of Mass Action

At this point it is perhaps worthwhile mentioning the connection
with the law-of-mass-action as it is usually applied to nuclear reac-

20-22

tions. Ignoring isospin, the density of ground state nuclei of

mass number A is

- y »
0gs(A) = g (ﬂ;f,‘—) e (WA *B)T (4.14)

where g is the spin-degeneracy and B is the total binding energy of

the nucleus measured with respect to protons and neutrons. The u is
the chemical potential pér nucleon associated with a partiéular (baryon)
density of nucleons and nuclei (not the same as the denSity of nucleons
in a nué]eus). The pre-exponential factor to the 3/2 power is associ-
ated with the free translation of the nucleus inlspate (kinetic energy).
Not only nuclei in their ground state but also nuclei in varidus ex-
cited states will be present. To count them as well we multiply by

the density of states c exp (S(E*)), where c is a constant and S(E*)

is the entropy of the nucleus of mass number A at total excitation

energy E*, and integrate.

00

o(A) = °gs°/; dE* ¢ exp [ S(E*) - EX/T 1. (415

The integration is usually done by saddle-point approximation. The

mean excitation energy £* is determined by the temperature.
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ds

1
8, -1 (4.16)

This leads to

3/2 1/2 -
o(A) = gc (g—}&) (T.."—[_:—;,T—) exp guA - [E* -8
+ TS (‘E‘*)jf T (4.17)

Apart from an internal nuclear pressure divided by the density of nu-
c¢leons in the nucleus, which {s usualily sha]l-and hence néglected,15
the quantity in brackets [...]'is none other than the Gibbs free énergy
of nuc]eoné within the excited nﬁc]eus.‘ if we associaté the nuclear
interior with the 1iqﬁid phase, and éséociate the surrouﬁdihg free nu-
cleons with the vapor phase, theh eq. (4.17) essenfially reduces to
o(A) ~ eip (-aG/T), or éq. (4.3). As before a liQde-drop ekpansion
of aG for large nuclei may be emp]oyed,. Howe?er, the surface proper-
ties correspond tb an interface between ndc]ear liquid and vapor, and
not between nuclear 1liquid and vacuqmvas'for isolated exéited nuclei.
Furthermore the pre-exponential factor in eq. (4.17) musf be absorbed

1

into the definition of T, which is still related to & via T=2 + & .

4.4. DOroplet Model Phenomenology of Nuclear Reactions

We will now perform a phenomenological study of nuclear reactions
using the droplet model. The application of the droplet model to nu-

clear mass distributions was initiated by the Purdue-Fermilab collab-

1,2 23

oration. Imagine the fo]]oWing scenario. A proton-nucleus or
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nuc1eus-nuc1eu$ collision may lead to an approximately thermalized
system of interacting nucleons. If as the system_expands it 1equ to
temperatures T < Tc at densities o < ®0 then it is conceiveab]e thét
the nucleonic system could be pushed into the metastable phase of super-
saturated vapor. There are at least two dynamical arguments‘why this
could occur. The system could expand hydrodynamically so quickly that
it passes the coexistence curve and goes into the metasfab]e or un;
stable regions of nuclear matter. Or the éystem could exist in those
regions sole]y_by virtue of the finite particle numbers invoTved as
diécussed_in section'3. There are two necessary but perhaps nbt suf-
 fj¢ient conditions for this scenario to be realized. First, the sys-
tem mqu be heated rather uniformly. Clearly this isirequired for the
applicability of the drgp]et model as formuiated above. Second, the
system'must expand quickly enough so that the competing processes of
-evaporation and fission do not dominate the ensemble of events. How-
- ever, it must not expand too quickly otherwise thermal contact among
nucleons will be lost. After some period of expansion the matter
should be dilute enoQgh and particle interactions infrequent enough
‘that the system breaks apart. Thus the final fragment distribution
should provide a rough snapshot of the state of the system at some 7
temperature and density.

We take the above scenario as a working hypothesis. The droplet
model can fit present ddta Eeasonably well, énd the parameters ob-
tained from the fit are nicely in line with theoretical expectations.
Of course one would like to have a more detailed dynamic model of the

time evolution of the syétem, but a lack of knowledge in this regard
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is not without'precedent. One exampie is that different models of the
dissipation mechanism in fission lead to similar fragment energy dis-‘
tributions even though the t1me evo]ut1on of the f1ss1on1ng system is

24 Another examp]e is that cascade and hydrodynam1c

quite d1fferent
models of med1um energy heavy ion col]1s1ons pred1ct very s1m11ar in-
c]us1ve s1ngle part1c1e spectra even though the assumpt1ons about the
dynam1cs are qu1te d1fferent 25 | | L
We w111 apply the droplet model as descr1bed in the previous sec-
tion to a var1ety of recent data on fragment product1on in the range
6 < A< 52, We wm ignore the explicit effects of 'isospin and CouTomb
energy since th1s is an exp]oratory study and since eq. (4. 3) r (4.7) |
already has four adJustable,parameters in it. Furthermore the droplets
discussed above are not nuc1ei in their ground state but exc1ted drops.
of nuc1ear:matter'which wil]bevaporate'particies to reach the‘ground
state. Th1s w111 change the 1sosp1n compos1t1on of the final frag-‘
ments. A more comp]ete calcu]at1on wou]d 1nvo]ve the use of an evapQ
oration code. This is 1eft'to future work. In view of the above, and
in view of the fact thatvthe reaction dynamics are not well understood;
we will in each case determine as many of the parameters by.other:means
as possible even though a better fit wouid be'obtained by var&ing all
four parameters simultaneously. | | | o o
When'fitting the datalwith eq; (4.3), the absolute norma11zat1on
Y0 is‘a]waysstaken as a tree parameter. The cr1t1ca1 exponent is
taken to be 7/3 as in mean fie]d theories. As noted earlier real gases
typically hare'slightly smaller ualues,ﬂabout 2.2. This difference

would not be noticeable with the present data. The volume coefficient



47

"a" measures the amount>of supersaturation. Since the detailed dynam-
ics and time evolution of the system is unknown it must be taken as a
free'paramete}. However, for a given equation of state and for an in-.
finite system "a" has a maximum value. This value is determined by

the location of the cusp of the pfessure curve at each temperature as
seen in Fig. 8. The maximum value of "a" is plotted in Fig. 9 as a
function of T for one particular equation of state.3 This curve

gives the limit of metastability in the a-T plane which divides the

regions of metastability and instability. Both the exact result

max

max
g (u

(u 9

- u])/TAand the usual approximation - “x)/T are plotted

for comparison. As T » Tc’ (ugax - ux)/T goes to zero like (TC - T)2.
In fact near the critical point ugax = (Tc - T)2/3TC, from eq. (3.29).

In the 1imit that the radius of the drop is large compared to the
range of the inte;nuclear forcg the surface coefficient b(T) depends
oniy updn the temperature. In principle it may‘be calculated given a
paktiéU]ak nuclear Hamiltonian. Experimentally and tHeoretica]]y it

.is known that at T = 0O, 4nr20 = 18 MeV. At low temperature it deéreases
quadratically like 1 - constant (T/TC)Z, where the constant is on the

26-27 )3/2 in a mean

order of 1-2.5. As T > T_ it vanishes like (1 - T/T,
field approximation, and a little more slowly in other theories, as al-
ready noted. Probably the simplest parametrization consistent with the

above features is

o= & (13 )(1-5 )"

(4.18)

which we shall adopt. Numerically this gives results quite similar to
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the only self-consistent calculation which reaches up to T = Tc'we'know

26 More comprehensive future studies may allow for a precise ex-

28

of.
perimental determination of o(T).
The first data to look at is proton plus krypton reactions for beam
energies of 80 to 350 GeV since the Purdue-Fermilab collaboration was
the first to trigger such interest in this subject.1 The nucleonic
temperature so obtained is 14 MeV. (This is our ‘interpretation of the
‘data. The Purdue-Férmilab group has. interpreted the slope in a dif-
ferent manner. ‘See below.) (A xenon target was also used and leads
to similar rEsults;) The mass yield is shown in Fig. 11.  The eﬁergy
distribution ‘for eacﬁ‘fragméht was measured and fit to a Maxwell-
Boltzmann distribution modified;to take into dccount the Coulomb en-
ergy of separation. The nucleonic temperature sbfobtaﬁned is 14 MeV.
Using eq. (4.18) and assuming TC = 16 MeV leads to the curve shown
in the figure. The proton-nucleus data is consistent with a = 0, i.e.,
no supekﬁétﬁrétion. Originally the daté was fit with a pure power-law,
Y = YOA"Z‘, with ' = 2.65. The latter may be called a one-shape-pa-
rameter fit whereas the former is a zero-shape-parameter fit. In fact
the former provides a vi§ibly better fit. Also oﬁr previous discus=
sions pointed out that 2 < Z'< 2.5 so that a fit withz’' = 2.65 has
a questionable interpretation. It should be pointed out that the
isotopic distributions have also been measured and fit to a nuclear
liquid drop type maés formula with an internal temperature.of about
3.5 MeV. This need not be in‘disagfeehent with our interpretafion
.of the data as long as one allows the hot nuclear drops to cool

somewhat by gamma emission or'partic1e‘eVaporatidn.Zg
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Targets of silver and gold have been bombarded by carbon beams of

30 14 this

energy 15 and 30 MeV per nucleon at the MSU tyclotron.
case only the fragment charge and not mass have been measured. The
data are shown in Figs. 12 and 13. The temperature in each case has
been estimated theoretically by assuming that the nuclei fuse at nor-
mal density. This provides an estimate for the. surface coefficient
via eq; (4.18). This leaves the volume coefficient as the only shape

parameter. In line with our previous discussion on isospin we take

A

2Z. The best fits so obtained are also shown in the figures.
thice‘that the fits are Qufte acceptab]eIOVer a range of two orders
of magnitude despite the obvious simp]ificatidns inherent in the form-
u1é. For gold the critical nucleus has A, = 24 for both energies. For
silver A, = 34 at the lower energy and A, = 44 at the higher energy.
These numbers may be compared to a critical droplet of water which is
composed of about 40 molecules at a sdpersapuration ratio of 7.9. At
present it is not known experimenta]]y to what extent binary fission
contributes to these yields. If it is not dominant then thié data
provides dramatic evidence for the supersaturation of nuclear vapor.
Quantitatively similar data have been obtained in lower statistics

31

AgBr emulsion experiments, and it has been pointed out that the

minimum in the mass curve corresponds to the critical sized drop]et.32
Thé mass yield has been measured for neon on go]d at the much high-
er energie§ of 250, 400, 1050 and 2100 MeV per nucleon. The data at
250 and 2100 MeV per nucieon are shown in Fig. 14. The data at inter-
mediate enérgies have shapes midway between those two. For.this whole

7/3

data set the mass yield falls off more slowly than A~ so that, in
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the context of the dropTet modeT, some degree of supersaturat1on 1s
1nd1cated S1nce we have no 1ndependent determ1nat1on of the tempera—
ture we have assumed T ~ T and hence b ~ 0. Such a Tow temperature is
not at all 1ncons1stent w1th the h1gh beam energies, as a s1mpTe calcu-
Tat1on shows. For example, assume that the heavy target captures the
]Tght beam nucTeus, red1str1butes the ava11ab1e energy un1form1y among
all nucleons, and then expands hydrodynam1ca11y accord1ng to T/T

(olo; )2/3

visual fits Tead to the curves shownh1n the figure. The critical nu-

; . Th1s Teaves "a" as the on]y shape parameter The best
.cTeus Ts{predicted to.have Ay 5.61 tor'250 MeV per nucTeon and'A* ~ 233
for 2100 MeV per nucTeon. | _ | »

Th1s exper1ment is un1que 1n that it was capab]e of f1nd1ng binary
.f1ss1on events. For the 250 MeV per nucTeon coTT1s1ons, 1t was found
that for mass fragments w1th 80 < A < 89 and with k1net1c energles be-
tween 50 and 80 MeV approx1mateTy 50 percent of the s1ng]e part1c1e
Ccross sect1on was due to b1nary f1ss1on. Otherw1se the contr1but1on
of b1nary f1551on to the single part1cTe 1nc1us1ve cross sections was
very smaTT -

A summary of the 1nterest1ng var1abTes 3, b and.T 1s given 1n the
tabTe. For each react1on "a“ was the onTy var1ab1e shape parameter.

A good v1suaT fit to the data was obta1ned for each react1on This
lends conf1dence to the 1nterpretat1on of the data in terms of the
.dropTet mode]. The var1at1on of "a" w1th the spec1f1c reaction under
.consideration is noteworthy. The proton—nucTeus data 1s cons1stent

with little or no supersaturat1on, a~ 0, For the heavy ion data C

(or Ne) plus Au, a decreases monotonically towards zero w1th increasing
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beam energy. In the a-T plane of Fig. 10 the fitted values of a fall
~ within the éupersaturation region, which also lends confidence to this
inferpretation of the data.
| If we make the crude approximation that a ='1n(PB/PX) and determine
the supersaturation ratio from the data, we find values in the range
1.01 to 3.25 for the heavy ion data. The maximum value is less than
- one-half that observed for'atmospherié fog formation.

It has béen argued that if a first order phase-transitipn occurs
in heavy ion collisions the temperature and pressure balances should .
occur first.34 The reason is that the kinetic rate constants are usu-
ally larger than the chemica] rate constants'(but alsq see Ref. 20.

Thus, if Pg=P =PandT =T =T, then3?

A+ A+ . (4.19)

where S is the total entropy of the system and N] is the total number

of nucleons in the 1iquid phase. The quantity a = (u_ - u])/T > 0 mea-

. g
sures the amount of excess entropy generated per nucleon due to the

nonequilibrium character of the phase change. The experimental indi-

cation that a is large at low beam energy may help to explain why the

3 4

entropy extracted from the light fragment (p, d, t, “He, 'He) yields

is so 1arge3 (~3.5 units of entropy).
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5. Summary and Conclusions

This paper investigated properties of a possible 1iquid-gas phase
transition in nuclei. The nuclear equation of state that we use has a
characteristic Van der Waals behavior. Below a critical temperature
the equation of state has a superheated and supercooled region and an
‘unstable region. A Maxwell construction is used to describe brdbérties
of the first order Tiquid-gas phase transition that results from our
equation of state. The éfifita] point behavior of the system is then
studied. o

Fluctuations near the critical point are inVéstigéted uéfﬁﬁ the
Landau approach. ‘Thé Gibbs free energy is expanded in terms of our
ofder parameter. which héfé”is taken as the density difference measured
from the critical point. The-equi]ibriuﬁ states of the system corre-
spond:to the extremum of this Gibbs free energy é$ a function of the
order paraheter. Propertiés o%”tﬁe Gibbs free energy are then dis-
cussed. For example, it-is shown thét the liquid-gas phase transition
is a second order phase transition in an external field in the Landau
description for our equation of state. Wheh the pressure of the sys-
tem i$ the vapor pressure the Gibbs free enérgy has two degenerate
minima and the order parameter is spontianéously broken. When pressure
" is not equal to the vapor pressure, an external field is present which
changes the behavior of the free eﬁérgy; ‘For a particular choice of
_ the pressure, the Gibbs ‘free energy”hés-ah inflection ﬁdint and a min-

imum.

.
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Qur Gibbs free energy exbansion iﬁ terms of the order parameter
is then used to answer the following questions: 1) For a finite sys-
tem do fluctuations Wash duf the first order phase transition? 2) Can
fluctuations take'shch_a system into the metastable regions? For tem-
: peratures within.a»few MeV of the critical temperature, fluctuations
into tﬁe unstab]é regioﬁ'aré Targe.. However at lower temperatures
fluctuations into the metaStéb]e region are 1mportaht, but states in
the unstable regidn are not likely to be found. The sharpness of a
first order liquid-gas phase transition dincreases as the temperature
difference below the critiéa] temperature increases in'abso1ute magni-
tude.v »' ‘ |

/vWe next turn our attehtion to the yields of composite nuclei seen
in high energy proton-nucleué collisions and in nucleus-nucleus col-
'1isions.. A phenomenological drop1ef.model is found to describe the
data on fkéghent-yie]ds of nﬁclei up to A = 50, OQr picture is that
such fragments correspond to droplet formatipn in a supersaturéted
vapor for nucleus-nucleus collisions and in a ﬁaturated vapor in
proton—ndc]éus collisions. In the supersaturated case a critical
size droplet exists which is determin;d by the surfaCe'tensjon and
supersaturation ratio. Droplets larger than the critical drop grow
by accumulating nucleons from the vapor. Droplets‘sma11er than the
critical size evaporate nucleons to the vapor. This behavior re-
flects itself in the yield distributions as an initial decrease to

the critical size and then an increase beyond the critical size.
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While we have considered'statistical laws in developing expressions
for droplet sizes, we have not considered the dynamical process that
led to dropiet formation.- When the droplets are presentiin small num-
bers, the reactions between clustres and single vapor nucleons provide
the mechanism for growth and evaporation of .clusters. - The rates for
formation from.the supersaturéted phase to the droplet phase will be
governed by "potential barriers" in the Gibbs free energy particle.
Near the critical point these barriers will be small, but away:from
the critical point they can be quite large. . We will leave the ques—
tion of the kinetics of the process of drop]et~formation to-a futuré

paper.
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Physical parameters associted with the phenomenological fits to the data
in Figures_11—14. :

Number of
variable
. . shape

Reaction - T b a parameters
C+ Au 15 MeV/nucleon 3.5 MeV 4.7 - 1.18 1
C+Au 30 MeV/nucleon = 5.0 Mev 3.0 0.79 1
Ne +Au 250 MeV/nucleon  ~T¢ - ~  0.038 1
Ne + Au 2100 MeV/nucleon- ~T¢  =~0 0.0l 1
C+Ag 15 MeV/nucleon 4.6 MeV 3.3 0.77 1
C+Ag 30 MeV/nucleon 6.5 MeV 2.0 0.43 1

p+Kr  80-350 Gev . 14 MeV - 0.13 -0 0
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Figure Captions

Theoretically expected phase diagram for the'strong inter-
actions. If the quark-gluon phase transition is first order

then there would also be a coexistence region (qpt_shown).

Equation of state for the liquid-gas phase transition illus-
trating the Méxwe]]-cbnstruétion (daéhedhline). fwo isotherms

of pressure versus density are p]ottéd.

R is the re]étive probability thét the system is in the un-
stable state C combaked to the thérmodynémica]]y favored state

A (or B). The nuc]éon'ﬁumber is 100.

N is the number of nucleons required to reduce R(pc)/R(pA) to

0.5.

The Gibbs free energy per nucleon versus the density. Each
curve has a constant temperature and a constant pressuré given

by the equilibrium vapor pressure.

R is the relative probability for the system to be at density
p compared to the thermodynamically favored values op and
Pge The pressure is the equilibrium vapor pressure. The

number of nucleons is 100.
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Fig. 7. The Gibbs free energy difference per nucleon versus the den-

sity. The pressure P is in units of MeV fm=3,

Fig. 8. Parametric pressure - chemical potential curve at fixed tem-

perature. The parameter is the density p, which is also

(aP/au)T.

Fig. 9. Regions of stability, metastability and instability for uni-

form nuclear mater.

Fig. 10. Regions of metastability and instability, in terms of the
volume coefficient a of eqs. (4.3) and (4.7), for a particu-
lar equation of state.’

Fig. 11. Droplet model fit to the data of Ref. 1.

Fig; 12. Droplet model fit to the data of Ref. 30.

Fig. 13. Droplet model fit to the data of Ref. 30.

Fig. 14. Droplet model fit to the data of Ref. 33.
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Fig. 2 : XBL 838-2908
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