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Abstract 

The thermodynamics and critical exponents of nuclear matter near 

the critical point of a liquid-gas phase transition are studied. We 

then investigate fluctuations near the critical point. One effect of 

a finite number of nucleons, as in nuclear reactions, is to wash out 

the first-order phase transition for several MeV below the critical 

temperature. This is manifested in the fact that there is a finite 

probability for the system to exist in the metastable or unstable 

regions of infinite matter. The phenomenological droplet model is 

applied to a wide range of recent data on fragment yields in the 

range 6 < A < 52, and good fits are obtained. Heavy ion reactions 

are consistent with droplet formation in a supersaturated vapor, 

with supersaturation ratios up to 3.25. Proton-nucleus reactions 

are consistent with droplet formation in a saturated vapor. 

August 1983 __ -
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1. Introduction 

The primary goal for colliding nuclei at high energy is to study 

the hadronic matter equation of state. The most interesting aspect of 

such investigations would be to observe the consequences of a phase 

transition. Current theories of hadronic matter qualitatively predict 

the phase structure shown in Fig. 1. At high temperature 'or density 

there should be a first order phase transiton to quark-gluon matter. 

At low temperature but high density there may be a second order phase 

transition to a pion-condensed state of nuclear matter. At even lower 

temperatures and subnuclear densities there should be a first order 

liquid-gas type of phase transition, terminating in a second order 

phase trans~tion at the critical point. It is this last phase change 

to which we shall turn our attention in this paper. 

There are two fundamental obstacle~ to realizing the aforemen­

tioned goal. First, by their very nature .nuclear reactions are time­

dependent phenomena and it is not immediately apparent whether or 

not there is sufficient time to reach a state of thermal and chemi-

cal equilibrium. Even if there is, the system must expand and pass 

out of the state of equilibrium. How does the system break apart? 

Will there be any observable consequences if a phase transition 

occurred? Second, nuclei are not macroscopic objects in the sense 

of being composed.o~_lp23 __ p~rt_icJes .•.. To what extent-may~ene speak--·--­

of thermal and chemical equilibrium for a finite number of particles? 

Sharp phase transitions only occur for macroscopic systems. How much 

would a phase transition be washed out due to finite particle number 

effects? 
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These are serious and difficult questions which may not be answered 

with complete satisfaction for a long time~ In this paper we hope to 

make"some theoretical and phenomenological contributions to this con­

tinuing study. We begin. in Section'2 by reviewing some properties of 

the nuclear matter equation of state in the temperature and density 

domain of interest, namely T ·~ 20 MeV and p ~ p
0 

(normal density). 

Particular attention is paid to the thermodynamic behavior near the 

critical point including the relevant critical exponents. 

In Section 3 we study for the first time the importance of finite 

partic1e number for the sharpness of the liquid-gas phase transition. 

For a finite number of nucleons there is a finite probability that, at 

a given pressure and a given temperature, the system will actually be 

at any density. The probability that the system is at any density 

other than the thermodynamically favored one decreases exponentiallj 

with the total number of particles •. These density fluctuations are 

evaluated near the critical point with the aid of Landau's theory. 

The basic result is that the critical temperature can only be located 

to within one or two MeV given the fact that nuclear reactions are 

limited to 100-500 nucleons. Fluctuations in the total energy of the 

system are also investigated. This will give some ~stimate of the 

range in beam energy over which experimental observables will be 

smeared. 

In Section 4 the phenomenological droplet model used in homogen­

eous nucleation theory of saturated and supersaturated vapors is re­

viewed. The dropl~t model is then used in a phenomenological study 
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of mass yields in the range 6 ~ A ~ 52 for proton-nucleus and nu­

cleus-nucleus collisions over a wide energy range. Fits to the data 

are quite satisfactory. The values of the parameters are consistent 

within theoretically expected ranges. The proton-nucleus data is con­

sistent with no supersaturation, whereas the heavy ion data exhibit 

supersaturation ratios up to approximately 3.25. 

We must emphasiz~ that most of the recent interest in the liquid­

gas phase transition and the droplet model of fragment production was 

stimulated by the high energy proton-nucleus experiment of the Fermi­

lab-Purdue collaboration1 and their own interpretation2 of the data. 

Our applicatio~ of the droplet model is more extensive and differs in 

some respects, but not in basi~ philosophy, we believe. 
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2. Equation-of State 

2.1 General feiture~ 

The basic physics~we are i~terested·in dep~nd'only ori the gross 

features Of the nuclear- equation· of state) For defihitene~s the 

equation of state that will be~rima~ily u~~d'in out investigatibn of 

nuclear condensation is one whith is derived from a Skyrm~ typ~ inter-

action. Specifically this interactio'n is' 

v =: - t() ~a;.) T- "f: r~:~ r(.) + Jt{.J-~_i J . 
f- -t,_ ~~ Jft.~) t -f- ~3J(~~<r .. 

(2 .1} 

...... ...... -~ .... ~ ... ~ 
with r12 = r1-r2, k = (V1-v2)/2 and p is the density at (r1+r2)/2. 

The last term on the right hand side of eq. (2.1) is density dependent 

and iS- partially responsible for the saturating properties of nuclei. 

The value of a is usually taken as unity in the Skyrme interaction. 

Using finite temperature Hartree-Fock theory with the above interac­

tion an equation of state can be derived which is4 

(2.2) 
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The a
0 

= (3/8)t
0

, a3 = (3/48)t3 and the m* is the density de­

pendent effeGtive mass given by 

(2.3) 

The m is the nucleon mass. In eq (2.2) the P1d is the pressure of a 

non-interacting (ideal) gas. ·For a non-degenerate gas 

(2.4) 

When degeneracy corrections around the non-degenerate limit are in­

cluded, the ideal pressure can be written as 

( 2. 5) 



----~------ -------- . -

It is important to note that the riumerical 'Coefficients in the Bn's in 

eq (2.6) are small and rapidly decreasing with increasing n. This 

means that only a few terms have to be kept in eq. (2.5) even for 

T- 5 MeV_and p- p
0

, where p
0 

is nuclear matter density. Th~ 

g = 4 is the spin-jsopin degeneracy _fact<?r and the )~y(m*) is the 

thermal wavelength given by 

(2.7) 

At the other extreme one has the degenerate limit. ForT~ 0, the 

ideal pressure is just the Fermi-ga~ pressure of a degenerate system 

which is 

P,= 0 (2.8) 
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where the Fermi momentum is given by 

(2. 9) 

The N is the. nucleon number. In eq (2.8) we have assumed non-rel-

ativistic particles. Corrections to the T=O result can be obtained 

from the Sommerfeld expansion. 5 Specifically, the first order 

correction to the degenerate limit gives 

(2.10) 

where EF = P~/2m* is the Fermi energy. The first order correction to 

the degenerate limit has the characteristic T2 dependence in the pres­

sure and also in the kinetic energy Ek/V where 

EJ:. -v (2.11) 
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The coefficients that appear in eq (2.2), the a
0 

and a3, can be 

adjusted to give the correct saturation properties of nuclei, i.e., the 

correct b1nding energy at the correct equilibrium density. When a= 1 

and m*/m = 1, a
0 

= 293.33 MeV fm3 and a3 = 666.66 MeV fm6 for an equi­

librium density of p
0 

= .15 fm-3 and for a binding energy of 8 MeV. 

With a = 1 the compressibility coefficient K = 224 MeV. 

2.2 Critical Point Properties 

In this subsection the critical point prqperties of our equation of 
. 6 

state will be developed. We proceed in this discussion by considering 

the simplest case, the non-degenerate limit with a= 1 and.m*/m = 1. For 

the temperatures and densities that are being considered, this is a rea-

sonably good first approximation. The results of first order degeneracy 

corrections will then be given. As already noted4 higher order correc­

tions will not significantly change these results. 

It is also possible to start with the degenerate limit and carry out 

the correction due to finite temperature, as in eq. (2.10) and Ref. 3. 

For definiteness we will follow the former approach. 

Our equation of state is then 

(2.12) 

which is illustratred in Fig. 2. 

For this equation the critical point is determined by (aP/ap)T = 0, 

(a 2P/ap 2)T = 0 which gives 
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fi-(0):::. tlo -
btl$ 

T,.fo) = J tlo'l.. 
= Qt/D) (2.13) ~- 0 c . c qJ 

{o) -'-- q3 I {o)r_to) 

Pc = ..:!JL -sfl L: lo'd q?J 

The coefficient 1/3 in the last equation multiplying p~0 )T~o) is near 

the value 0.375 for a Van der Waals equation of state. Expanding the 

equation of state eq (2.12) around the critical point t = T-T~o), 

p = P-P~0 ), n = p-p~o) the following result is derived 

(2.14) 

For t<O, this cubic equation in n has three real roots for fixed p. The 

metastable boundaries are determined by the condition that #/an= 0. 

In fact for t<O the p, n curve has the characteristic S-shape of a 

Van der Waals equation as shown in Fig. 2. The points D,E shown in 

Fig. 2 are the limits of the metastable region. For densities be­

tween D and E the compressibility is negative and the system is 

unstable. The endpoints A and B can be obtained from the Maxwell 

construction of equal areas in a PV plot. This is equivalent to 

equating the pressures and chemical potentials of the two phases. 

Letting Px beth~ Maxwell pressure then 
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Integrating by parts gives the condition 

8 J v~ -=-o 
A 

Near the critical point 

so that 

(2.15) 

(2.16) 

(2 .17) 

(2.18) 
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The endpoints of the Maxwell construction are then given by 

(2.19) 

when use is made of eq (2.14). The point C of Fig. 2 is at nc = 0. 

The boundaries of the.metastable region are given by ~/an= 0. 

They are 

(2.20) 

so that 

(2.21) 

Note that at n = nA and n = n6, p = p~0 )t 
The changes in Maxwell pressure with changes in temperature can be 

obtained from the Clausius-Clapeyron equation which for our case reads 

d-t (2.22) 
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where v = V/V~0 ). The subscript l,g are the liquid and gas endpoints 
tJ (o) -on the Maxwell-construction line. The t = T/Tc and Px = P/Px. The 

s1 and Sg are the entropies of the system at these point~ with 

(2.23) 

The latent heat aQ is simply 

(2.24) 

(2.25) 

Since n~o) =-~-t/2a3 we have 

(2.26) 

Thus, the 1 a tent heat goes to zero as y:t on the Maxwe 11 construction 

line as does sg- sl. 

It is instructive to rewrite eq (2.14) in the neighborhood of the 

critical point in varipus forms which explicitly show various critical 

exponents. Near a critical point, the general equation of state can 

be written a/ 
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..J. 

;;-6t- = -t !z 1~ /tt:/;z~) j t- <:< hi~' ( 2. 27) 

where the + sign is for n > 0 and the - sign is for n < 0. The result 

of eq (2.14} is of this form since eq (2.14} can be rewritten as 

(2.28} 

so that 

I> =ft{(J) 

j(tf1"i )"' ,zt13 (u- -t ... ) (2.29) 

~qj~ 

The critical exponents 6, s are 6 = 3, s = 1}2. For·the critical iso­

. therm t = 0 and p ~ n3• The critical exponent 6 gives the behavior. of 

the pressure as a function of p -·pc: 

(2.30} 

It is not surprising that we find 6 = 3 since all mean field theories 

give 6 = 3. The cubic dependence in our theory follows easily from 

the condition (aP/ap)T = 0 and (a2P/ap2)T = 0 used to obtain the 

critical point. Experiments show that 6 for real gases is between 4 

and 5. 8 It is well known that mean field theories can give incor­

rect numerical values for the critical exponents. When p = pet then 
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1.+ -t =0 

:lq3 "l'J. (2.31) 

and 

-/. a {.0) -1:. ' 1= ) ·J>,fc 
c2 ti.J (2. 32) 

which is just the result of eq (2.19). The critical exponent a is 

defined by 

(2.33) 

where 

€= 
T- JCc.o;-

= t: -
(2.34) 

The pl - Pg are the Maxwell-construction endpoints so that pl - pg 

goes to zero as £ ~ 0 as yr.:£ on the Maxwell line. In practice a turns 

out to be closer to 1/3. On the critical isobar p = 0 and 

(2.35) 

Another way of writing the equation of state which makes explicit an­

other critical exponent y is 7 
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(2.36) 

For the Skyrme equation of state near the critical point we have 

exactly (only 2 terms present on the right hand side of eq (2.36)) 

(2.37) 

With y = 1, a = 1/2. The critical exponent y gives the behavior of 

the isothermal compressibility KT' K;:1 =-V(aP/aV)T 

{
L )-'f l<r -= C" (2.38) 

as a function of t = (T - T~~/T~0>above and. near the critical 

point. The y is observed to be larger than 1, y - 1.2 to 1.3. 

The specific heat at constant p varies as 

:1. 
(2.39) 

which for states on the coexistence or Maxwell-contruction curve 

diverge as 1/(-t). The specific heat at constant volume has associ-

ated with it the critical exponent a such that above and near the 

critical point 

(2.40) 
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In our approach a = 0. In summary a = 0, a = 1/2, y = 1, o =3 in our 
,. 

mean field approach. By contrast, the Wilson Theory gives a = 0.08, 

a = 0.33, y = 1.26 and o = 4.8. 9 

2.3 First order degeneracy corrections 

We now investigate the effect of degeneracy corrections on the cri­

tical point. The first order correction to the equation.of state is 
. ' 

(2.41) 

where the last term is the degeneracy correction and it corresponds to 

an increase in pressure d~e to the Pauli repulsion of Fermi-Dirac par-

ticles. The result of eq (2.41) can be recast as 

(2.42) 

where we have defined k~{T) to be 

(2.43) 

Our equation of state is like the non-degenerate equation with 

a
0 
~ £~~T). For this equation of state the critical density 

is 

{L) 

/c = 
(2.44) 



17 

and the new critical temperature T~l) to first order in degeneracy is 

given by 

(2.45) 

The T(o) is the zero-order (non7 degenerate) result of eq. (2.13). The c 
critical pres~ure is 

,.pt.~ j) {.Z) -r(ZJ_ I!) . 6_tz)) 2. .2_ (/ (f d:t) ) 3 
'C 1 c 'c o J c + ~ ; c / (2.46) 

Again we can expand our results around the new critical point p = P -

p~l), n = p- p~l), t = T- T~1 ). First, we note that 

a~~t r J :: . qf:t Tc{l1) + c,C:rf' J) i;zJ 
. c 

(2.47) 

where 

( c.~~ - _j_ ..,..tz.) 3 
C,, T:.c = 'c ' 

v '- .( s;,. /lr,/:J.J (2.48) 

The ).f.:tJ = ).Tc.t) (m) is the thermal wavelength of eq. (2.7) evaluated 
~ ' . 

at T = T~1 ). Then, using eq. (2~48) we obtain the following result 

for the equation of state near the critical point 
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ll (1 )) 
7 -: '1-e.( :t.- .;~fo. (/\tl) /C ) -+ r2 4J ~3 . 

3 :J 3 . (2.49) 

+Jt't{t-};.(~(l)) - (-#·¥) ~ .. t 
The last ter~ in-n t can be neglected compared to the other· 

terms that a~pear in eq •. (l.49) nea~ ~he critical Point. Thus 

jO~~t{;~fP.~t.)) 
~ (2.50). 

· + p_l1J.e It- ..!:.., (>.£/}fie').\) + :<. q · ),.$ • · .· ·.·· 

/ c l.. .z¥\ ~ > '/ . ~ t . .. .. ·, 
Compartng eq. (2.50) with ~q. (2.14) the effect of i~cluding degeneracy 

corrections to first-order is a c~ange .in the ~oe~~icients in front of 
~- . . . . ,. ·~ -- -

the nt and pet terms. The new metastable boundary deti1sities are now 

given by 

- ~ u.; + »(J) = -/ ~ (:t.- :1.. r?t))l) 
/) lE ' 'lJ ~l. t. • ') 

. . . 

(2.51) 

and the endpoints of the Maxwell construction line are 

?IJ CZ) - • /';""" "YJ{Z) 
-(..,4 - ' 3 '(.,[) (2.52) 

The Maxwell pressure is now 

(2~53) 

Of course the critical indices are unchanged whe~ degen~~acy effects 

are included.' 

·• 
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The critical density and temperature for a
0 

= 293.33 MeV fm3 and 

a3 = 666.66 MeV fm6 given in section 2.1 are p~o) = 0.0733 fm-3, 

T(o) = 21.5 MeV; p( 1) = 0.0614 fm-3, T( 1) = 15.1 MeV. c c c . 
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3. Fluctuations 

3.i General remarks and·s·implified'discussion 
. ""·' 

In this section we ~ill consider fluctuatiori~ in the liquid-gas 

phase coexistence. The nuclear equation of state discussed in the 

previous section describes the equilibrium states of the system and 

ignores the statistical fluctuations around the equilibrium states. 

For an infinite system these fluctuations are important only at the 

critical point, where large density fluctuations create the phenomena 

of critical opalescence. Fluctuations are not significant in an in-

finite system for states which differ from the critical point. 

For a finite system statistical fluctuations can be important 

for states which are far from the critical point. We will address 

the following questions: Can these fluctuations wash out the first 

order liquid-gas phase transition for temperatures below Tc? Can 

these fluctuations provide a mechanism for entering the metastable 

and unstable regions of the phase diagram? 

In the liquid-gas phase transition the quantity which we will be 

concerned with is the probability of being in a state of the system 

which is not one of the equilibrium states on the Maxwell-construction 

line. The points A, B, C of Fig. 2 are equilibrium states. The prob-

ability of a fluctuation is proportional to the exponential of the to­

tal entropy change of a closed system. The entropy is connected to 

the volume in phase space ~r by 

s = ln ~r (3.1) 
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For a subsystem held at constant temperature and .pressure, which are 

the relevant quantities to keep fixed if we are interested only in 

density fluctuations, the fluctuation probability reduces to an evalu­

ation of 

(3.2) 

where AG is the change in the Gibbs free energy G: 

G = E ~ TS + PV . (3.3) 

Using the first law of thermodynamics 

dG = -SdT + VdP (3.4} 

For an isothermal process 

(dG)T = VdP (3.5) 

The change in G between two points 1 and 2 which have densities pl and 

p2 but equal pressures P1 = P2 is then 
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The p 1 S here are connected to the P and T by the equation of state. 

From the result of eq. (2.12) 

(3. 7) 

Thus the relative probability of being in state 2 compared to state 1 

is 

An interes.ting"~ituatio.n to consid~r i.s poi~t C in Fig. 2 compared 

to point A or B, A and B having the same Gibb~ f~ee energies. The 

point C is in the unstable region since aP/ap < 0. For a finite sys­

tem fluctuations can populate state C. When T is close to the criti-

cal temperature, the probability of being in state C compared to A or 

B has a simple form 
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(3.9) 

Figure 3 shows how this relative probability varies with tempera­

ture for N = 100. When the temperature is 95 percent of Tc, the rel­

ative probability is 0.82. The system has almost as much chance of 

being in the "unstable" state C as in the stable state A. However, 

R(pc) decreases rapidly as the temperature is reduced •. When the tem­

perature is 80 percent of Tc, the relative probability is only 0.024. 

The system has little chance to be in state C. Figure 3 may be used 

for other values of N by noting that the relative probability of eq. 

(3.9) is the N'th power of a number which is less than one and which 

depends only on T/Tc. 

An alternative way to present eq. (3.9) is given in Fig. 4, which 

shows the number of nucleons required at each temperature such that 

R(pc)/R(pA) = 0.5. The number N becomes infinite at the critical tem­

perature and falls rapidly as the temperature is reduced. In a sharp 

first-order phase transition, the unstable state C would never be oc-

cupied. So Fig. 4 provides a rough measure of the critical number of 

nucleons required for a first-order phase transition. 

The discussion so far has been restricted to states A, B and C of 

Fig. 2. These are the only densities permitted by the equation of state 

at the vapor pressure Px. However, statistical density fluctuations 

are not restricted to these three densities. For a given temperature 
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and pressure the probability that the sy~te~ has any arbitrary density 

p is given by eq. {3.2), so that 

Rfj.J = e -[t;fj.J-G!fJJ]jr 

RIJ) 
(3.10) 

It is therefrire useful to know G(p) for ·densities not permitted. by the­

quation of· state. This is provided by the Landau theory, 10 in which 

pis treated' as an independent variable not restricted by P and T. We 

·now turn to this theory. 

3.2; Landau Appioach. 

The discussion of the fluctuations to be presented here is based 

on the Landaul0 expansion of the Gibbs free energy. The ess~ntial 

feature of the. Landau approach i~ the con~tructi~n nf the f~ee energy 

in terms of a power series in the order parameter. ·The order parame-

ter n in a liqui~-gas phase transition is taken as the density differ-

ence ·r:; - pc: 

:·, 

{3.11) 

The PC is the critical density discussed in the previous section. 

The Gibbs free energy is then a function of the pressure, temperature 

·and order parameter. For each value of the pr.essure arid temperature, 

the free energy surface G(P,T,n) can be constructed. These energy 
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surfaces have maxima and minima, which give the values of the order 

parameter when the system is in thermal equilibrium. 

At the critical point the Drder parameter n vanishes. For example, 

for ferromagnetic materials the order parameter is the magnetization 

while in ferroelectrics it is the polarization. Below the critical 

temperature there is a finite magnetiiation in the magnetic case since 

the magnetic moments are partially ordered or aligned. When T is near 

Tc the ordering of the spins by interactions is nearly balanced by the 

tendency toward a random state caused by th~ the~mal motion. Fluctua­

tions in the magnetization are then large because of this near balance. 

In the liquid-gas transition these large fluctuations give rise to the 

phenomena of critical opalescence.·· Light incident on a liquid-gas sys­

tem at the critical point is strongly scattered by the large drops of 

1 i qu i:d present. 

In the neighborhood of the critical point, the Gibbs free energy 

is expanded in powers of the order parameter 

G,{~r;t) = {j0 {~ T) + o<f_~ T) 1., +A(~ T)yt 2 

-f C(~T) ~3 + 8("' T) ~ tt+,.. 
(3.12) 

The equation of state can be used to obtain the coefficients in eq. 

(3.12) since the equilibrium value of the order parameter is obtained 

by the condition that G be a minimum with respect to variations in n: 
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... 
.. ( 3 .13) 

Specifically, t;he Landau order paramet~r that appear:s in eq. (3.12) 

i~ no ,longer .connected t~ P,T by ... an:equation of state but is now con­

. sidered an ;~dependent varia~le~ However, the ~quilibrium:con~ition 

that G be an ~xtreTum gives the;equation of state. -Applying:the con-

dition of eq •. (3.13) to eq. (3.12)gjves .. .,, . 

.. :· 

·"•':'"; 

which apart from an overall normalization constant 0 is the equation 

of state. The equation of state near the critical point is however 

p - bt (3.15} 

where in the non-degenerate limit 

( 3.16) 

from eq •. (2.14). When first o~der degeneracy_ corrections are included 



(3.17) 

Co~paring eq. (3.14) with eq. (3~15) the following identification can 

be made 

ol{fjT)-= - (1-6t)]) 
A {~r) - Q, t JJ-= 0, {r- Tc )lJ 

B(~T) -

C{ljT) == 0 

(3.18) 

The choice 0 = N/p~ gives the correct G for the equilibrium states, 

the extremum values of G. The N is the number of nucleons. At the 

critical point A(p,T) = 0. The equation for G, in an order parameter 

expansion near the critical point, is then 

9 {~ r; 1)= $o(fj T) + 

Jzftr-uJ2-rftf+ ~~"] {3.19) 

In the Landau expansion, when only n2 and n4 terms are present, 

the transitfon is described as second order in the Landau description. 

A first order transition in the Landau scheme would have n2, n4 and n6 

terms. The linear term in eq. (3.19) is an external field term with 
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the external field h in a liquid-gas p~ase t~ansition given by 

h = p - bt (3.20) 

Note that G is symmetric under interchange .h ~ -h and n .~ -n. Thus, 

our liquid-gas phase transition is second order in the Landau ~cheme 

in an external field. 

Identifying h as p - bt, then 

n = Xh (3.21) 

where X is the 11 Susceptibility11 in this identification. Then of eq. 

(3.21) can then be defined as the induced order parameter n = nind 

from an external field. In the ferromagnetic case h is the external 

magnetic field and n the induced magnetic moment, while in the ferro­

electric case, h is the external electric field and n the-induced 

electric dipole moment •. 

The 11 Susceptibility11 in eq. (3.21) is given by 

(3.22) 

Using eq. (3.15) we have 

1 

(3.23) 
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2 The condition h ~ 0 gives 2a3n + a1t = 0 so that 

and 

I 
qt; 

I 

I 
> -t < 6 

) 

(3.24) 

(3.25) 

The 11 Susceptibil ity 11 becomes infinite at t = 0 and it has the same 

·properti~s as the specific heat at constant pressure or the compress-

ibility at constant temperature. 

The spontaneous order parameter, the order parameter in the 

absence of an external field (h = 0), corresponds top= bt. The 

solution to the equation of state with p = bt are points on the 

Maxwell-construction line. The spontaneous order parameter nsp 

can be taken as 

(3.26) 
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and it goes to zero as the,;:t:as one approaches the critical point. 

This square root behavior is just eq. (2.33) with the critical exponent 

a = 1/2. The values of G at n = nA and n = n8 are minima while the 

other extremum point of G·for p = bt is n = 0; the C point in Fig. 2. 

Let us now consider density fluctuations at the vapor pressure 

p = bt. From eq. (3.19) it follows that 

G; (f=h-1:;?; Z) = 9o(f=bT; T) +-

j ~~~?-(+ ~1¥] 
( 3. 27) 

This function is shown in Fig. 5. At the vapor pressure G(n) is sym­

metric about n = 0. For T < Tc there are two degenerate minima at 

nA and n8 of Fig. 2 and a maximum at nc of Fig. 2. This shows that 

the extrema in the Landau free energy occur at the densities gi~en by 

the equation of state. As the temperature increases, the minima be­

come shallower and closer together. At the critical temperature the 

three extrema merge and the surface is flat near n = 0, since 

(3.28) 
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The Landau free energy of Fig. 5 is used to calculate the proba­

bility distribution R(p) of eq. (3.2). The result is shown in Fig. 6 

for N = 100. For temperatures far below the critical temperature, R(p) 

has two well-defined narrow peaks centered on the stable states at PA 

and Ps· The probability for the unstable state is small. It is then 

proper to refer to a first-order phase transition from the gas state 

at PA to the liquid state at Ps· However, as the temperature increases 

the two peaks begin to overlap, and the probability for the unstable 

state at Pc increases. When the temperature is 95 p~rcent of Tc, then 

R(p) is almost uniform over a wide range in p which extends through the 

stable, metastable and unstable regions. It is then improper to refer 

to a first-order phase transition from PA to Ps· 

The probability of having a statistical fluctuation that results 

in being at the Maxwell pressure px with the density of points D or E 

in Fig. 2, is simply 

1. 
..Lt{ {r-Tc) 

-3 Tic e (3.29) 

Comparing this_ result with that of eq. (3.9) we find 

(3.30) 
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Thus 9 while the probability of being in the unstable region at point C 

might be small 9 the probability of being at the point px9 Po is not so 

small. For example 9 a 10 percent probability of being at px9Pc corre-
(, ~ '. ' 

sponds to a 36 percent prob~bility of being at px 9Po while a 5 percent 

probability of being at Pc is associated wit~ a 26 percent probability of 

being at Po· Statistical fluctuations which are not so deep into the me­

tastable region as Po are even more likely. 

The discussion so far has been restricted to the equilibrium vapor 

pressure, p = bt 9 or in zero external field h = p - bt. Then G has two X . 

degenerate minima at the symmetric endpoints of the Maxwell-construe-
. . 

tion line and a maxima at n = 0. When the external field is non-zero 9 

or p ~ bt, minima are no longer degenerate. In fact 9 wh~n the external 

field is such that the pressure is tangent to the curve in Fig. 2, at 

point 0 or E9 the behavior of G as a function of the order parameter 

contains an inflection point and a minima. For a fixed t the pressure 

at n = nE is 

(3.31) 

with 

(3.32) 
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The external field h i~ then 

-6-t-= {3.33) 

At n = n0 

(3.34) 

For example, in the non-degenerate approximation with T = 0.91 Tc, 

Px = 0.379, P0 = 0.409 and PE = 0.349, all in MeV fm-3• Equa-

tion (3.19} is used to construct G(p) for these ~hree pressures, as 

shown in Fig. 7. Compare this with Fig. 2. 

For P = P0 the inflection point in G(p) occurs at Po and the mini­

mum o~curs at pG. For P = PE the inflection point occurs at PE and the 

minimum occurs at pF. The corresponding curves are mirror images be­

cause of the symmetry h ~ -h, n ~ -n in G, as already noted. Observe 

that the minima at PG and PF are deeper than the minima at PA and Ps· 

This implies that the density fluctuations are smaller at states G and 

F than at A and B. 

3.3. Energy Fluctuations 

The fluctuations in energy for a system in contact with a heat res­

ervoir maintained at a temperature T is simply 

(3.35) 



34 

where C = (dE/dT) is the heat capacity'at constant volume and ~E = . v v 

E-f, f being the mean energy. This result follows from the canonical 

ensemble. In this ensemble states of different energies En are pres-

ent with a probability :: 

-E~jT 

~- e (3.36) 

where Z is the partition function. For a non-degenerate ideal gas 

Cv = 3N/2, and so the fluctuation in ~nergy per particle is 

(3.37) 

., 

The ratio of the fluctuation to the mean kinetic energy is 

(3.38) 
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For N = 100 this ratio is 8.2 percent 9 and far N = 500 this ratio is 

3.7 percent. This is also a good estimate for the fluctuation in .tem­

perature if the energy i$ held fixed 9 

(if._ 
-

T 
(3.39) 

Including the first order degeneracy corrections leads to 

(3.40) 

and so acts to reduce the fluctuations. On the other hand 9 starting 

from the degnerate limit 9 one arrives at 

I 
-{ii (3.41) 

as T ~ 0. Thus the relative energy fluctuation is a monotonically de­

creasing function of the degeneracy parameter X~p. As an example, 

forT= 3.5 MeV, p = p
0 

and N = 100 the ratio is 0.27 percent. 
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In concluding this section we may say that for a finite system 

statistical density fluctuations are important not only at the critical 

point, but in some neighborhood of the critical point. For N = 100 and 

the temperature range 0.90 < T/T < 1 there are large density flue-- c-
tuations which transport the system into the "unstable" region. It is 

then improper to speak of a first-order liquid-gas phase transition. 

At lower temperatures the density fluctuations diminish in amplitude, 

and the first-order phase transition gradually emerges. 



37 

4. Droplet Formation in a Supersaturated Vapor 

4.1. General Historical Discussion 

Fahrenheit initiated the study of phase equilibria and of super­

cooling while investigating the f~eezing of water. 12 Water may be 

supercooled and kept that way for hours. The addition of some ice, or 

a sudden jolt, will cause quick crystallization. Lowitz13 discovered 

the phenomenon of supersaturation in 1775, and it was subsequently 

shown by Gay Lussac to be a very general phenomenon~ 14 Again using 

water as an example, atmospheric cloud formation is due to condensa­

tion of water vapor on impurities or contaminants~ This normally oc­

curs when the ratio of actual vapor pressure to saturation vapor pres-

sure (Maxwell pressure) exceeds unity by 0.01 to 0.1 of 1 percent. 

(This ratio is called the supersaturation ratio.) For purified air 

this ratio rises to about 3 whereupon condensation nuclei cause cloud 

formation. If these nuclei are washed out the ratio rises to 4.2. 

This limit is caused by negative ions. Positive ions cause the next 

limit at a supersation ratio of 6. If all of the above nucleation 

sites are eliminated, it is observed that fog formation occurs at a 

ratio of 7.9. This is attributed to homogeneous nucleation, which is 

the mechanism one might expect to occur in nuclear reations. 15 

As a last example we mention the formation of bubbl~s in champagne. 

The nucleation sites for these bubbles are fissures in the surface of 

the glass bottle. (Private communication, J. Heitz, Napa Valley, Cali­

fornia). 
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4.2. Droplet ·Mode'i: of Homogeneous Nucleation 

Homogeneous nucleation occurs when chance colli~ions of particles 

in the gas phase lead to loc~l density (or structOral) i~homogeneities. 
: .. ' . 

These are essentially droplets of the new liquid phase. The probabil-

ity-of ~orm~ti~n of these droplets can be estimated by calculating the 

change in the free energy ~f the syste~. 15~18 At-constant pressure and 

femperaiute the Gibb~·free energy is the relevant one. Suppose that a 

spher~cal droplet' contain~ A particles· o+ the li~~id ~hase and is sur­

rounded ~Y ~ p~rtidles~o~ the gis phas~. Then 

6with drop (4.1) 

and 

(4.2) 

s i nee the total number of parti c 1 es A + B is fixed. ' Here R is the ra­

dius of the dtop and'a is the surface free energy. In general ·a may 

depend On R, but usually it is assumed that R 'is 1 arge compared to the 

range of ihe interparticle force so that a m~~-b~ identified with the 

surface ftee energy associated with an infinite ptane surface. The 

surface wili of course have a fi~ite thickness, with the matter on one 

side being in the liquid phase and on the othe·r in the gas phase. Fin­

ally a geometric term ln A has been added to take account of the fact 

that the surface closes on itself which reduces the total entropy assoc­

iated with th~ surface. 1 ~ 

- .. 
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The probability of formation of the droplet containing A particles 

is proportional to exp(-AG/T) from eq. (3.2) with. AG = Gwith drop -

Gno drop' so that the yield, or density, or total number of droplets 

is 

where Y
0 

is an undetermined constant. Here it has been assumed that the 

d~oplet is essentially of uniform density so that R = rA113 . The situa­

tion is illustrated in Fig. 8. A plot of P versus ~at fixed T shows 

the regions of stability, metastability and instability. At fixed~ 

the state with the .maximum P is the thermodynamically favored one, and 

at fixed P is the state with the minimum ~. The density is given by 

the slope of the curve, namely p = (aP/a~)T. One condition for ther­

modynamic stability is that (ap/a~)T > 0, which is violated by that 

portion of the curve with negative curvature. When the system is sit~ 

ting at the crossing point x of the pressure curve the two phases are 

in thermal and chemical equilibria with ~g = ~ 1 • In that case 

Y(A) = Y
0
exp(-bA213 - ~ln A) (4.4) 

where b = 4nr2(T)cr(T)/T and p-l = 4nr3/3. At the critical point b{T) 

vanishes like10 (T - T) 312 in the usual Van der Waals or mean field c 
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approximation, and a little more slowly in other theories of the crit­

ical point. Specifically, the Wilson theory w6uld give (Tc- T) 1•28 • 

At Tc then 

Y (A) = Y A- 1! 
0 

{4.5) 

which is a characteristic power-law fall-off first obtained by Fisher. 17 

The critical exponent Tis related to the critical exponent 6 of eq. 

(2.27) by~= 2 + 6-
1. Since, by definition of the critical point, 

2 < 6 <«>,it must be that 2 < 'Z"<·2.;i. It_is usually assumed that T 

has no T dependence or, if it does, that?' is evaluated at Tc. In the 

Van der Waals model or mean field approximation~= 7/3 since 6 = 3, as 

shown in section 2.2. 

The phase diagram in the _temperature-density plane for a typical 

nuclear equation of state is shown in Fig. 9~ The dashed line denotes 

a fixed T. Where it intersects the coexistence curve determines the 

densities of the gas and liquid phases. If the vapqr can somehow be 

prepared in the supersaturated state at point g then droplets of the 

1 iquid phase will appear at point l. Points g and 1 correspond to the 

same states as in the preceding figure. 

The liquid phase is much less compressable than the gas phase, as 

may be seen in Fig. 8. Therefore the approximation is often made of 

replacing ~l with ~x(T). in the yield formula of eq. {4.3). In molec­

ular physics problems it is also sometimes a good approximation.to use 

the ideal gas relati~nship between chemical potential and pressure at 

fixed T, 
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~ = constant + T ln P (4.6) 

Then (~g- ~x)/T = ln(Pg/Px) where Pg/Px is the supersaturation ratio. 

This generally will not be a very good approximation for a nearly de-

generate Fermi gas. 

For any temperature less than or equal to Tc the droplet model thus 

predicts the generic form 

Y = Y
0
exp(aA- bA213 - ~ln A) ( 4. 7) 

If a= o, as on the coexistence curve, Y is a monotonically decreasing 

function of A. If a > 0, as in a supersaturated vapor, Y has a mini-

mum value. The minimum is located at the critical size A* determined 

by 

This corresponds to a radius 

.:L -0 
A,. 

( 4.8) 
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where 

f=(x) = [1 +X :1: 2x + i ] 1/3 
- 1 (4.10) 

27 
'[ 

0 (4.11) X = 2 .J3 
a2 

(4.12) 

rJ 2a 
a2 = P - p 

g X 

(4.13) 

The term 2a/(Pg- Px) in eq. (4.9) is the class~c expression relating 

the radius, surface .tension and pressure difference for spherical sys-

terns. The f•s give the corrections due to the ~ ln A term in the 

Gibbs free energy. 

Droplets of this critical size A* are in unstable equilibrium with 

the surrounding supersaturated vapor. If A < A* they tend to evaporate 

or breakup due to the large surface free energy, whereas if A >A* they 

tend to grow indefinitely. It was Gibbs19 who first realized that if a 

droplet of larger than critical size is formed then it threatens the 

existence of the gas phase since the droplet may grow indefinitely to 

swallow the whole system. This may then provide some insight into the 

kinetics of phase change, and in fact is the basis for the classical 

theory of homogeneous nucleation. 

.~ 
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4.3. Law of Mass Action 

At this point it is perhaps worthwhile mentioning the connection 

with the law-of-mass-action as it is usually applied to nuclear reac­

tions.20-22 Ignoring isospin, the density of ground state nuclei of 

mass number A is 

(
mTA ) 

312 
Pgs(A) = g ~ 

.. ( llA + B) /T e {4.14) 

where g is the spin-degeneracy and B is the total binding energy of 

the nucleus measured with respect to protons and neutrons. The ll is 

the chemical potential per nucleon associated with a particular (baryon) 

density of nucleons and nuclei (not the same as the density of nucleons 

in a nucleus). The pre-exponential factor to the 3/2 power is associ­

ated with the free translation of the nucleus in space (kinetic energy). 

Not only nuclei in their ground state but also nuclei in various ex­

cited states will be present. To count them as well we multiply by 

the density of stat.es c exp (S(E*)), where c is a constant and S(E*) 

is the entropy of the nucleus of mass number A at total excitation 

energy E*, and integrate. 

p(A) 
00 

= p r dE* c exp [s(E*) - E*/T ] . • gsJ 0 . (4.15) 

The integration is usually done by saddle-point approximation. The 

mean excitation energy E* is determined by the temperature. 
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dE* 

This leads to 
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1 
= i . 

p(A) ( mTA) 
312 

(-= gc ~ -s .. (E*) 
+ TS (E*)]J IT 

(4.16) 

) 
1/2 5 r-exp {~A - E* - B 

(4.17) 

Apart from an internal nuclear pressure divided by the density of nu-
. 15 

cleons in the nucleus, which is usually small .and hence neglected, 

the quantity in brackets [ ••• ] is none other than the Gibbs free energy 

of nucleons within the excited nucleus. If we associate the nuclear 

interior with the liquid phase, and associate the surrounding free nu-

cleons with the vapor phase, then eq. (4.17) essentially reduces to 

p(A) - exp (-AG/T), or eq. (4.3). As before a liquid-drop expansion 

of AG for large nuclei may be employed. However, the surface proper-

ties correspond to an interface between nuclear liquid and vapor, and 

not between nuclear liquid and vacuum as for isolated excited nuclei. 

Furthermore the pre-exponential factor in eq. (4.17) must be absorbed 

into the definition ofT, which is still related too via 7:'= 2 + o-1• 

4.4. Droplet Model Phenomenology of Nuclear Reactions 

We will now perform a phenomenological study of nuclear reactions 

using the droplet model. The application of the droplet model to nu-

clear mass distributions was initiated by the Purdue-Fermilab collab­

oration.1'2 Imagine the following scenario. 23 A proton-nucleus or 
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nucleus-nucleus collision may lead to an approximately thermalized 

system of interacting nucleons. If as the system expands it leads to 

temperatures T < Tc at densities p < p
0 

then it is conceiveable that 

the nucleonic system could be pushed into the metastable phase of super­

saturated vapor. There are at least two dynamical arguments why this 

could occur~ The system could expand hydrodynamically so quickly that 

it passes the coexistence curve and goes into the metastable or un­

stable regions of nuclear matter. Or the system could exist in those 

regions solely.by virtue of the finite particle numbers invoTved as 

discussed in section 3. There are two necessary but perhaps not suf­

ficient conditions for this scenario to be realized. First, the sys­

tem must be heated rather uniformly. Clearly this is required for th~ 

applicability of the droplet model as formulated above. Second, the 

system must expand quickly enough so that the competing processes of 

evaporation and fiss1on do not dominate the ensemble of events. How­

ever, it must not expand too quickly otherwise thermal contact among 

nucleons will be lost. After some period of expansion the matter 

should be dilute enough and particle interactions infrequent enough 

that the system breaks apart. Thus the final fragment distribution 

should provide a rough snapshot of the state of the system at some 

temperature and densityw 

We take the above scenario as a workiDg hypothesis. The droplet. 

model can fit present data reasonably well, and the parameters ob­

tained-from the fit are nicely in line with theoretical expectations. 

Of course one would like to have a more detailed dynamic model of the 

time evolution of the sy~tem, but a l~ck of knowledge in this regard 
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is not without precedent. One example is that different models of the 
. . 

dissipation mechanism in fission lead to similar fragment energy dis-

tributions even though the time evolution of the fissioning system is 

quite different. 24 Another exa~ple is t~at ~ascade a~~ hydrod~namic 
~ ~ . . ' 

models of medium energy heavy ion collisions predict very similar in-
. ·' -~ 

elusive single partic1e spectra even though the assumptions about the 

dynami~s are quite.diffe~~~t. 25 

We will apply the droplet model as described in the previous sec-

tion to a variety of recent data on ffagment production in the range 

6 < A< 52. We will ignore the explicit effects of isospin and Coulomb 

energy since this is an exploratory study and since eq. (4.3) or (4.7) 

already has four adjustable _parameters 'in it. Furthermore the droplets 

discussed above are not nuclei in their ground state but excited drops 

of nuclear matter which will evaporate particles to reach the ground 

state. This will change the isospin composition of the final frag­

ments. A more complete calculation would involve the use of an evap­

~ration code. This is left to future work. In ~iew of the above, and 

in view of the fact that the reaction dynamics are not well understood, 

we will in each case qetermine as many of the parameters by other means 

as possible even though a better fit would be obtained by varying all 

four parameters simultaneously. 

When fitting the data with eq. (4.3), the absolute normalization 

Y
0 

is always taken as a free p~rameter. The critical exponent is 

taken to be 7/3 as in mean field theories. As noted earlier real gases 
. ' ~.._ 

typically have slightly smaller values, about 2.2. This difference 

would not be noticeable with the present data. The volume coefficient 
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11 a11 measures the amount of supersaturation. Since the detailed dynam-

ics and time evolution of the system is unknown it must be taken as a 

free parameter. However, for a given equation of state and for an in-

finite system 11 a11 has a maximum value. This value is determined by 

the location of the cusp of the pressure curve at each temperature as 

seen in Fig. 8. The maximum value of 11 a11 is plotted in Fig. 9 as a 

function ofT for one particular equation of state. 3 This curve 

gives the limit of metastability in the a-T plane which divides the 

regions of metastability and instability. Both the exact result 

(~mgax- ~ 1 }/T and the usual approximation (~max-~ }/Tare plotted 
g X .. • 

for comparison. As T ~ Tc, (~;ax- ~x}/T goes to zero like (Tc- T) 2. 

. max ( }2 ( ) In fact near the critical po1nt ~g = Tc - T /3Tc' from eq. 3.29 • 

In the limit that the radius of the drop is large compared to the 

range of the internuclear force the surface coefficient b(T) depends 

only upon the temperature. In principle it may be calculated given a 

particular nuclear Hamiltonian. Experimentally and theoretically it 

is known that at T = 0, 4wr2a = 18 MeV. At low temperature it decreases 

quadratically like 1- constant (T/Tc}2, where the constant is on the 

order of 1-2.5. 26- 27 As T ~ Tc it vanishes like (1 ~ T/Tc} 312 in a mean 

field approximation, and a little more slowly in other theories, as al­

ready noted. Probably the simplest parametrization consistent with the 

above features is 

JJ(r} = J1_ (t+-~ I. ){1- L)=K 
T ~7i.. 7C 

(4.18) 

which we shall adopt. Numerically this gives results quite similar to 
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the onlj self-consistent caltulation which reaches up to T = Tc we know 

of. 26 More comprehensive future studies may allow for a precise ex­

perimental determination of cr(T). 28 

The first data to look at is proton plus krypton reactions for beam 

energies of 80 to 350 GeV since the ·Purdue-Fe~~il~b collaboration was 

the first to trigger such interest in this subject. 1 The nucleonic 

temperature so obtained is 14 MeV. (This is o~r ihterpretation· of the 

data. The Purdue~Fermilab group has. interpreted the slope in a''dif­

ferent nian'ner. ·see be 1 ow.) (A xenon target was also used and 1 eads 

to iimil~r results.) Thi mass yield is shown in ~ig: 11. The energy 

distributi'on 'for each fragment was measured and fit to a Maxwell­

Boltzmann distribution modified -to take into a'ccount the Coulomb en­

ergy of separation; The nucleonic temperatur-e soobtained is 14 MeV. 

Using eq. (4.18) and assuming Tc ,; 16 MeV leads to the curve shown 

in the figure~ The proton-nucleus data is consistent with ·a= 0, i.e., 

no supersaturation. Originally the data was fit with 'a pure power-law, 
-t• . Y = Y

0
A , with -r• = 2.65. The latter may be called a one-shape-pa-

rameter fit whereas the former is a zero-shape-parameter fit. In fact 

the former ~rovides a vi~ibly better fit. Also our previous ~is~us­

sions pointed out that 2 < z < 2.5 so that a fit with Z"i = 2.65 has 

a questionable interpretatio-n. It should be pointed out that the 

isotopic distributions have also been measured and fit to a nuclear 

liquid drop type mass formula with an internal temperature of about 

3.5 MeV. This need not be in disagreement w1th our interpretation 

of the data as long as one allows the hot nuclear drops to cool 

somewhat by gamma emission orparticle evaporation.29 



49 

Targets of silver and gold have been bombarded by carbon beams of 

energy 15 and 30 MeV per nuc 1 eon a.t the MSU eye 1 otron. 30 In this 

case only the fragment charge and not mass have been measured. The 

data are shown in Figs. 12 and 13. The temperature in each case has 

been estimated theoretically by assuming that the nuclei fuse at nor­

mal density. This provides an estimate for the surface coefficient 

via eq. (4.18). This leaves the volume coefficient as the only shape 

parameter. In line with our previous discussion on isospin we take 

A= 2Z. The best fits so obtained are also shown in the figures. 

~otice that the fits are quite acceptable over a range of two orders 

of magnitude despite the obvious simplifications inherent in the form­

ula. For gold the critical nucleus has A* = 24 for both energies. For 

silver A*= 34 at the lower energy and A*= 44 at the higher energy. 

These numbers may be compared to a critical droplet of water which is 

composed of about 40 molecules at a supersaturation ratio of 7.9. At 

present it is not known experimentally to what extent binary fission 

contributes to these yields. If it is not dominant then this data 

provides dramatic evidence for the supersaturation of nuclear vapor. 

Quantitatively similar data have been obtained in lower statistics 

AgBr emulsion experiments, 31 and it has been pointed out that the 

minimum in the mass curve corresponds to the critical sized droplet. 32 

The mass yield has been measured for neon on gold at the much high­

er energies of 250, 400, 1050 and 2100 MeV per nucleon. The data at 

250 and 2100 MeV per nucleon are shown in Fig. 14. The data at inter-

mediate energies have shapes midway between those two. For this whole 

data set the mass yield falls off more slowly than A-713 so that, in 
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the context of the droplet model, some degree of supersaturation is 
-' . ; 

indicated. Since we have no independent determinitio~ of the tempera-

ture we have assumed T - Tc and hence b - 0. Such a low temperature is 

not at all inconsistent with the high beam energies, as a simple calcu-

lation shows. For example, assume that the heavy target captures the 

light beam nucleus, redistributes the available energy uniformly among . . . 

all nucleons, and then expands hydrodynamically according to T/T. = 
1. 

2/3 
(pfp;) '. This leaves "a" as the only shape parameter. .. The best 

visual fits lead to the curves shown in the figure. The critical nu-
•' ,~ ' 

cleus is predicted to have A* - 61 for 250 MeV per nucleon and A* - 233 

for 2100 MeV per nucleon. 

This experiment is unique in that it was capable of finding binary 
~ 

fission events. For the 250 MeV per nucleon collisions, it was found 

that for mass fragments with 80 < A < 89 and with kinetic energies be-
• •< •. - - ' ' 

tween 50 and 80 MeV, approximately 50 percent of the single particle 

cross section was due to binary fission. Otherwise the contribution 

of binary fission to the single particle inclusive cross sections was 

very small. 

A summary of the interesting variables a, b and T is given in the 

table. For each reaction "a" was the only variable shape parameter. 

A good visual fit to the data was obtained for each reaction. This 

lends confidence to the interpretation of the data in terms of the 

droplet model. The variation of "a" with the specific reaction under 

consideration is noteworthy. The proton-nucleus data is consistent 

with little or no supersaturation, a- 0. For the heavy ion data C 

(or Ne) plus Au, a decreases monotonically towards zero with increasing 

. •· 
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beam energy. In the a-T plane of Fig. 10 the fitted values of a fall 

within the supersaturation region, which also lends confidence to this 

interpretation of the data. 

If we make the crude approximation that a ~ ln(P 8/Px) and determine 

the supersaturation ratio from the data, we find values in the range 

1.01 to 3.25 for the heavy ion data. The maximum value is less than 

one-half that observed for atmospheric fog formation. 

It has been argued that if a first order phase transition occurs 

in heavy ion collisions the temperature and pressure balances should 

occur first. 34 The reason is that the kinetic rate constants are usu-

ally larger than the chemical rate constants (but also see Ref. 20. 
34 Thus, if Pg = P = P and Tg = T = T, then 

(4.19) 

where S is the total entropy of the system and N1 is the total number 

of nucleons in the liquid phase. The quantity a= (~g- ~ 1 )/T > 0 mea­

sures the amount of excess entropy generated per nucleon due to the 

nonequilibrium character of the phase change. The experimental indi-

cation that a is large at low beam energy may help to explain why the 
3 4 entropy extracted from the light fragment (p, d, t, He, He) yields 

is so large3 (-3.5 units of entropy). 
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5. Summary and Conclusions 

This paper investigated properties of a possible liquid-gas phase 

transition in nuclei. The nuclear equation of state that we use has a 

characteristic Van der Waals behavior. ·Below a critical temperature 

the equation of state has a superheated and supercooled region and an 

·unstable region. A Maxwell construction is used to 'describe properties 

of the first order :liquid-gas phase tr'ansition that'"r~sults from our 

equation of state~ The critical point beh·avior ofthe.sys'tem is then 

studied~ 

Fluctuations near the critical ·point are investigated usi'rtg the 

Land au approach. The Gibbs free energy is expande·d. i ri terms of our 

order parameter. which here· is taken as the density difference ·measured 

from the critical point. The equilibrium states of the s'ystem corre­

spond to the extremum of this Gibbs free energy as a function of the 

order parameter. Properties of the Gibbs free energy are then dis­

cussed. For example, it is shown that the liquid-gas phase transition 

is a second order phase transition in an external field in the Landau 

description for our equation bf state. Whe~ the pressure of t~e sys­

tem i~ the vapor pressure the Gibbs free energy has two degenerate 

minima and the order· parameter is· sponta'neous ly broken. When pressure 

is not equal to the vapor pressure, an externai field is present which 

changes the behavior of the free en'ergy. For a particular choice of 

the pressure, the Gibbs ·free energy has an inflection point and a min­

imum. 

! 
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Our Gibbs free energy expansion in terms of the order parameter 

is then used to answer the following questions: 1) For a finite sys­

tem do fluctuations wash out the first order phase transition? 2) Can 

fluctuations take such a system into the metastable regions? For tem­

peratures within a few MeV of the critical temperature, fluctuations 

into the unstable region are large. However at lower temperatures 

fluctuations into the metastable region are important, but states in 

the unstable region are not likely to be found. The sharpness of a 

first order liquid-gas phase transition ~ncreases as the temperature 

difference below the critical temperature increases in absolute magni­

tude. 

I 
We next turn our attention to the yields of composite nuclei seen 

in high energy proton-nucleus collisions arid in nucleus-nucleus cal­

li s ions.. A phenomena 1 ogica 1 drop 1 et mode 1 is found to describe t.he 

data on fr~gment yields of nuclei up to A ~50. Our picture is that. 

such fragments correspond to droplet formation in a supersaturated 

vapor for nucleus-nucleus collisions and in a saturated vapor in 

proton-nucleus collisions. In the supersaturated case a critical 

size droplet exists which is determined by the surface tension and 

supersaturation ratio. Droplets larger than the critical drop grow 

by accumulating nucleons from the vapor. Droplets smaller than the 

critical size evaporate nucleons to the vapor. This behavior re­

flects itself· in the yield distributions as an initial decrease to 

the critical size and then an increase beyond the critical size. 



While we have considered· statistical laws in developing expressions 

for droplet sizes, we have not considered the dynamical process that 

led to droplet formation.·. When the droplets are present in .small num­

bers, the reactions bet~een clustres and single vapor nucleons provide 

the mechanism for growth and evaporation of.clusters. The rates for 

format ion from. the supersaturated phase to the drop 1 et phase will be 

governed by "potential barriers" in the Gibbs free energy particle. 

Near the critical point t~ese barriers will be small, but away·from 

the critical point they can be quite large •. We will leave the ques­

tion of the kinetics of the ptoces~ of droplet formation to a future 

paper. 
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Table 

.~· Physical parameters associted with the phenomenological fits to the data 
in Figures 11-14. 

~ Number of 
variable 

shape 
Reaction T' b a parameters -

C + Au 15 MeV/nucleon 3.5 MeV 4.7 1.18 1 

C + Au 30 MeV/nucleon 5.0 MeV 3.0 0.79 1 

Ne + Au 250 MeV/nucleon -Tc -o 0.038 1 

Ne + Au 2100 MeV/nucleon . -Tc -o 0.01 1 

C + Ag 15 MeV/nucleon 4.6 MeV 3.3 0.77 1 

C + Ag 30 MeV/nucleon 6.5 MeV 2.0 0.43 1 

p + Kr 80-350 Gev 14 MeV 0.13 -o 0 
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Figure Captions 

i 

Fig. 1 Theoretically expected phase diagram for the strong inter­

actions. If the quark-gluon phase transition is first order 

then there would also be a coexistence region (not shown). 

Fig. 2 Equation of state for the liquid-gas phase transition illus­

trating the Maxwell-construction (dashed line). Two isotherms 

of pressure versus density are plotted. 

i. ;·, 

Fig. 3. R is the relative probability that the system is in the un­

stable state C compared to the thermodynamically favored state 

A (or B). The nucleon number is 100. 

Fig. -4. N is the number of nucleons required to reduce R(Pc)IR(pA) to 

D.S. 

Fig. 5. The Gibbs free energy per nucleon versus the density. Each 

curve has a constant temperature and a constant pressure given 

by the equilibrium vapor pressure. 

Fig. 6. R is the relative probability for the system to be at density 

p compared to the thermodynamically favored values PA and 

Ps· The pressure is the equilibrium vapor pressure. The 

number of nucleons is 100. 
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Fig. 7. The Gibbs free energy difference per nucleon versus the den-

! sity. The pressure Pis in units of MeV fm-3• 

j 

Fig. 8. Parametric pressure - chemical potential curve at fixed tem­

perature. The parameter is the density p, which is also 

Fig. 9. Regions of stability, metastability an~ instability for uni-

form nuclear mater. 

Fig. 10. Regions of metastability and instability, in terms of the 

volume coefficient a of eqs. (4.3} and (4.7}, for a particu­

lar equation of state. 3 

Fig. 11. Droplet model fit to the data of Ref. 1. 

Fig. 12. Droplet model fit to the data of Ref. 30. 

Fig. 13. Droplet model fit to the data of Ref. 30. 

Fig. 14. Droplet model fit to the data of Ref. 33. 
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