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Abstract

Applications of High Throughput Sequencing for Immunology and Clinical

Diagnostics

by

Hyunsung John Kim

High throughput sequencing methods have fundamentally shifted the manner

in which biological experiments are performed. In this dissertation, conventional and

novel high throughput sequencing and bioinformatics methods are applied to immunol-

ogy and diagnostics.

In order to study rare subsets of cells, an RNA sequencing method was first

optimized for use with minimal levels of RNA and cellular input. The optimized RNA

sequencing method was then applied to study the transcriptional differences between

subpopulations of T follicular helper cells, which are integral to the adaptive immune

response to pathogenic invasion.

In some cases, pathogens have long lasting effects either by integration of viral

DNA into the host genome or by immune evasion. Paired-end and mate-pair sequencing

are applied to identify the integration of DNA from high risk strains of human papilloma

virus, an event that acts as a precursor to the cervical carcinogenesis. Some bacterial

pathogens are able to escape the adaptive immune response and antibiotics are necessary

to clear infections. However, evolved resistances can nullify the therapeutic benefit of

antibiotic treatment. Whole genome sequencing was able to identify the genetic causes

of antibiotic-resistance in both clinical isolates and directed evolution studies.

In most cases, the adaptive immune system is able to clear pathogenic invasions

without the help of antibiotics. A key player in both adaptive immunity and tissue

transplantation is the human leukocyte antigen (HLA). HLA molecules are responsible

for surface display of healthy and pathogenic peptides. Knowledge of an individual’s

HLA types is imperative for successful tissue transplantation and is useful for diagnosis

of autoimmune diseases such as type I diabetes, systemic lupus erythematosus and

ankylosing spondylitis. Because balancing selection has generated thousands of HLA

alleles in the population, identification of an individuals HLA alleles typically requires

xii



specialized molecular assays. A novel method is presented that can predict HLA types

directly from RNA-seq data without the need for specialized molecular assays.

HLA molecules that display abnormal peptides are recognized by T-cells via

their characteristic T-cell receptor. Unlike most protein coding genes, the peptide se-

quence of the T-cell receptor is not encoded directly in the genome. Instead, a somatic

recombination process generates receptors with the ability to bind a wide range of differ-

ent peptides displayed by HLA molecules. The UCSC Immunobrowser was developed to

explore, compare and analyze high throughput T-cell receptor sequencing experiments

using interactive visualizations. The public web-based tool can serve as a repository for

T-cell receptor sequencing experiments, track blood cancers, identify potential causes

of autoimmunity and search the expanse of published literature for studies that have

observed similar sequences.

Together, these applications highlight the utility of high throughput sequencing

and bioinformatics methods for the study of immunology and the translation of relevant

findings to clinical diagnostics.
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Chapter 1

Introduction

Science, technology and medicine are intertwined. Often, cutting edge technol-

ogy drives medicine, as in the development of the x-ray. Other times, medicine furthers

science, as in the discovery of the vaccine. And in many cases, science and medicine are

pursued simultaneously, as was the case with the sequencing of the human genome.

The human genome project was a breakthrough. Although the project was ex-

pensive with a price tag of $2.7 billion dollars, the initial draft genome held tremendous

promise. For the first time, humanity had unravelled its own blueprint. Within the

seemingly endless string of adenine, cytosine, guanine and thymines held not only the

instructions to make a man, but also the cure to genetic disease. However, the single

genome alone was not enough to identify, let alone, cure any genetic disease. After

all, treatments based on one’s genome would require treatments personalized to their

unique genetic code.

It is no wonder then, that Archon Genomics sponsored an XPRIZE of $10

million to sequence a genome for less than $10,000. Affordably sequencing genomes was

necessary in order to apply the human genome to medicine. High throughput sequencing

(HTS) or Next Generation sequencing (NGS) methods were created to meet this goal.

In 2008, James Watson was the first individual to have his genome sequenced using the

first generation of HTS, 454 [169]. The genome cost less than $1 million– a 3000-fold

cost reduction just five years after the release of the initial human genome.

The cost of sequencing has declined so dramatically that the $10 million

XPRIZE was cancelled. Today a human genome can be sequenced for less than $1,000

1



using HTS. Despite the incredible reduction in cost, we still have yet to make the leap

towards truly personalized medicine. This disjunction between affordability and appli-

cation is caused not only by the complexity of the underlying biology, but also by the

complexity of bioinformatic analysis. Many diseases are not completely genetic or have

complex genetic elements. When many genomes of diseased individuals are sequenced,

genetic variants are only capable of predicting small changes in risk of developing dis-

ease.

Other features such as faulty gene expression, epigenetics and abnormal rep-

resentation of immune cells may account for larger portions of disease risk and etiology.

As such, many alternative HTS assays have been created to study different features

of nucleic acids including exome sequencing, RNA-seq, Chip-Seq and adaptive immune

repertoire sequencing. With these assays, HTS can be used to study not only genetics,

but also epigenetics, transcriptomics and immunomics.

Although sequencing costs are low, bioinformatic analysis is still costly. Even

when a disease is known to be simply mendelian, the analytic cost of identifying

causative variants is high ($1000-$16,000) in comparison to sequencing cost [19]. Ana-

lytic expenses are associated not only with large computational requirements but also

with high development costs of specialized algorithms. For example, in order to perform

a genome-wide association study (GWAS) using HTS genome sequencing, algorithms

for short read mapping, SNP calling and GWAS enrichment methods must be devel-

oped. Each algorithm requires domain specific knowledge, long development times and

extensive testing and benchmarking. Likewise, specialized algorithms must be devel-

oped in order to study specialized HTS assays such as RNA-Seq or immune repertoire

sequencing. To make matters worse, different methods for similar sequencing assays

carry their own method-specific biases that need to be accounted for.

This dissertation covers many aspects of HTS relating to diagnostics and study

of the immune system. Chapters 2 and 3 utilize common bioinformatics methods for the

analysis of RNA and DNA sequencing, beginning with the technical characterization of

an RNA-seq method and following with the application of that method to study rare

subsets of T cells. I then utilize HTS to study pathogenic challenges to human health

including precancerous integration of viral DNA into the human genome and antibiotic
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resistance from both clinical isolates and directed evolution studies. Chapter 4 describes

a novel bioinformatic method for HLA typing from RNA-seq data useful for tissue

transplantation and disease diagnosis. Chapter 5 describes visual data exploration and

analytical methods for a specialized targeted HTS assay useful for studying the adaptive

immune response to immune challenge.

3



Chapter 2

Pushing the Boundaries of RNA-Seq

2.1 Minimizing Total RNA Input

2.1.1 Introduction

When HTS is applied to sequencing cDNA, it is a powerful tool for the study

of the transcriptome. Dubbed RNA-seq in 2008 by Mortazavi et al [104], it serves

as a successor to the microarray. In contrast to microarrays, RNA-seq can uncover

novel transcripts and provide a digital read out of expression levels with a vastly wider

dynamic range [163, 103]. Since its emergence, RNA-seq assays have become the gold

standard method for quantifying expression levels, detecting fusion genes and for general

study of the transcriptome. RNA-seq is currently being applied to increasingly chal-

lenging studies, such as the sequencing of RNA from a single cell or even subcellular

compartments [176, 147, 1, 174].

In 2010, however, RNA-seq assays typically required large quantities of input

material. Protocols for generating sequencing libraries recommended starting with mi-

crogram quantities of total RNA. Although such quantities of RNA can be acquired

from in vitro cultured cells or animal studies, the burdensome requirement greatly lim-

ited the types of studies to which RNA-seq could be applied. Any experiment for which

input material is rare or limited was not feasible [118]. Thus, RNA-seq studies of rare

cell populations such as stem cells, circulating tumor cells, samples from needle biopsies,

developmental biology, forensics and immunology were limited by a lack of characteri-

zation.
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Attempts to limit the quantities of input RNA were also hampered by ribo-

somal RNA and tRNAs that behave as contaminants by accounting for 60-90% of the

RNA within a cell [170]. Poly-A enrichment and ribosomal depletion are normally

recommended to prevent these highly abundant RNA sequences from dominating a

sequencing experiment [158, 94].

We characterized an alternative cDNA synthesis method, Nugen Ovation, that

does not require separate enrichment steps and is capable of generating cDNA from

small quantities of RNA. Nugen Ovation utilizes a single primer isothermal amplifica-

tion (SPIA) protocol [79]. SPIA is a highly sensitive RNA amplification method that

utilizes a combination of poly-T chimeric primers and not-so-random hexamers for dou-

ble stranded cDNA synthesis. Hexamers in not-so-random amplification methods are

depleted for sequences found in rRNA sequences [5]. cDNA is then amplified linearly us-

ing an RNase H mediated isothermal method. A strand-displacing polymerase extends

from a RNA primer. Primers are then degraded by RNase H only when an RNA-DNA

duplex is formed. Following degradation of a primer, another free RNA primer is al-

lowed to bind. The process creates a large number of single stranded DNA products.

These single stranded products are then converted to double stranded DNA through

the use of random nonamer priming.

Because Nugen Ovation potentially enabled transcriptomic studies where in-

put RNA was limited, we assessed the viability of using the cDNA synthesis method

for low input studies. We benchmarked the method against RiboMinus, an RNA deple-

tion method, and TruSeq, a polyA enrichment method developed by Illumina. I tested

sequencing libraries made from decreasing quantities of RNA for reproducibility, sensi-

tivity and other factors that affect transcriptomic sequencing experiments. In addition,

I compared two major sequencing platforms, Illumina and SOLiD, for their effect on

RNA-sequencing experiments.

2.1.2 Methods

Detailed methods for sequencing library preparation are available in Tariq et

al, 2011 [148].

5



Table 2.1: Samples Used for Sequencer Comparison

Radiation

Exposure (Gy)

Replicates Input (ng) cDNA Synthesis

Method

Sequencer

0 4 100 Nugen Ovation lllumina GAIIx

2 4 100 Nugen Ovation lllumina GAIIx

0 4 100 Nugen Ovation SOLiD

2 4 100 Nugen Ovation SOLiD

Table 2.2: Samples Used for Enrichment and cDNA Synthesis Comparison

Input cDNA synthesis

method

Enrichment Replicates Other

500 ng Nugen Ovation None 1

100 ng Nugen Ovation None 2

100 ng Nugen Ovation None 2 DNase Treated

50 ng Nugen Ovation None 1

50 ng Nugen Ovation None 1 Sheared cDNA

50 ng Nugen Ovation None 1 Mixed: Sheared +

Unsheared cDNA

10 ng Nugen Ovation None 1

500 pg Nugen Ovation None 1

50 pg Nugen Ovation None 1

4 µg TruSeq Poly-A

Enrichment

2 One replicate excluded due

to sample preparation

issues

4 µg TruSeq rRNA

Depletion

2

2.1.2.1 Samples

Eight Male Balb/C mice were acquired from Harlan Laboratories. Following

a two day rest, four mice were exposed to 2 Gy dose of charged particle radiation from

a proton source at a dose rate of 1 Gev/45s (2Gy). Four mice were kept unexposed as
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controls (0Gy). Following dosage, mice were sacrificed by cervical decapitation. Testis

tissue were removed by dissection and immediately flash frozen in liquid nitrogen. All

biological replicates of 0Gy and 2Gy mice were used for comparisons between SOLiD and

Illumina sequencing platforms. RNA from a single 0Gy mouse was used for comparisons

between Nugen, RiboMinus and TruSeq.

2.1.2.2 cDNA synthesis using RiboMinus and Poly-A enrichment

Two replicates of 4 µg of total RNA was enriched using either Invitrogen’s

RiboMinus Eukaryote kit or Illumina’s TruSeq Low-Throughput RNA sample protocol

according to manufacturer’s specifications. Enriched RNA was converted to cDNA

following Illumina’s TruSeq RNA sample preparation kit according to manufacturer’s

protocol.

2.1.2.3 cDNA Synthesis using Nugen Ovation

Total RNA without enrichment was used as the input sample for the Nugen

Ovation Kit. For 0Gy and 2Gy samples utilized in sequencing platform comparison,

100 ng of starting total RNA was used. Our study used 500 ng, 100 ng, 50 ng, 10

ng, 500 pg and 50 pg as input material. The 100 ng sample, two technical replicates

were generated using DNase treatment in the RecoverAll Total Nucleic Acid Isolation

Kit (Applied Biosystems/Ambion). cDNA was synthesized following manufacturer’s

specification using Nugen Ovation RNA-seq Preparation kit (Nugen).

2.1.2.4 Sequencing Library Preparation

Libraries were generated following manufacturer’s specifications in the Illu-

mina TruSeq RNA sample preparation kit for all samples. All cDNA generated from

enrichment-based methods were used as input for library preparation. 0.5-1 µg of cDNA

generated by Nugen Ovaction was used as input. In addition, three libraries were con-

structed to test the effects shearing cDNA on final RNA-seq libraries. Non-sheared

cDNA (fragment size-100-550 bp), sheared (100-360 bp) and equal mixtures by mass of

sheared and non-sheared cDNA were used to generate libraries from cDNA generated
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from 50 ng of starting total RNA. cDNA was sheared with a Covaris S2200 ultrasoni-

cator.

2.1.2.5 Sequencing

0Gy and 2Gy samples were pooled and sequenced in a single quadrant of a

SOLiD sequencer or two lanes of an Illumina GAIIx following manufacturer’s specifica-

tions. Nugen, Poly-A and RiboMinus samples were pooled and sequenced across four

lanes of an Illumina GAIIx following manufacturer’s specifications.

2.1.2.6 Short Read Mapping

All short reads were initially aligned to mouse ribosomal sequences acquired

from GenBank. Ribosomal subunits included 5s, 5.8s, 12s, 16s and 28s subunits [11].

Alignments were performed using Bowtie with default parameters [82]. Non-ribosomal

reads were then mapped to the genome using the spliced aligner, TopHat, using the mm9

mouse genomic reference sequence and RefSeq genes [152]. Both the mm9 reference

sequence and the RefSeq annotation were downloaded from the UCSC Table browser

[71]. 0Gy and 2Gy samples were mapped as single ends and SOLiD reads were mapped

using the colorspace option. Dilution and enrichment samples were mapped as paired-

ends, where insert size was determined from BioAnalyzer traces of sequencing libraries.

Only uniquely mappable reads were considered for downstream analysis.

2.1.2.7 Random Sampling

For serial dilution and enrichment samples, reads were randomly sampled to

remove confounding effects of sequencing depth. An equal number of reads were sampled

for all samples. The sample with the minimum number of uniquely mappable reads

was used to set the number of reads to sample. Random lines of a SAM alignment

were chosen from a uniform distribution until the requisite number of reads were met.

All subsequent data analysis utilized randomly sampled reads unless explicitly stated

otherwise.
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2.1.2.8 Gene Abundance Estimation

RefSeq isoforms belonging to the same gene were collapsed into a single gene

cluster by creating a single entry containing all known exons for the gene in bed12

format. Aligned reads were divided into six separate subclasses. Exonic or Intronic reads

mapped wholly within a single exon or intron, respectively. Exon-Exon junctional reads

spanned multiple exons. Exon-Intron junctional reads spanned the boundary of an exon

and an intron. Intergenic reads mapped outside of gene clusters. Ribosomal reads were

generated in the previously mapping-exclusion step described in the mapping methods

subsection. Read counts for gene clusters were determined by counting the number

of reads that landed within exonic or exon-exon junctional regions. Reproducibility of

gene cluster abundance estimation was assessed using Spearman’s correlation between

gene counts.

2.1.2.9 Differential Expression and GC content bias

Differential expression analysis was performed to identify sequencer specific

biases. Counts for gene clusters were used as input to DESeq [4]. Comparisons were

made between 0Gy samples sequenced on Illumina versus 0Gy samples sequenced on

SOLiD. 2Gy samples were similarly tested for differential expression. Gene clusters with

a false discovery rate ¡ 0.01 were considered to be differentially expressed. GC content

of all gene clusters were calculated within exonic regions only. Densities of up-regulated,

down-regulated genes and all genes based on GC content were plotted using R.

2.1.2.10 Sensitivity of Exon Detection

A set of non-overlapping exons was created by collapsing all exons represented

in the RefSeq annotation. In instances where exons overlapped, a single exon represent-

ing the union overlapping exons was reported. An exon was considered to be detected

if the exon had at least 1x coverage.

2.1.2.11 Evenness of Coverage

Coefficient of variation (cv) was used to assess the evenness of coverage across

transcripts. Low cv values correspond to even coverage. RefSeq transcripts were sorted
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by average coverage over the transcripts. For the top 50% of transcripts, the cv of

coverage at each position along the transcript was calculated. The average cv value was

reported for each sample.

2.1.2.12 Library Complexity

As another proxy to measure evenness of coverage across a transcript, we

examined the number of unique single-end and paired-end starting positions. Increased

rates of unique start positions indicates more even coverage across transcripts.

2.1.2.13 Extreme End Bias

Extreme end bias was measured multiple ways. All transcripts with at least

5x coverage were considered. For percentile biases, all transcripts were binned into

percentiles and the average coverage over each percentile was calculated. For nucleotide

level biases, all transcripts greater than 2000bp in length with 5x overall coverage were

considered. The percentage of transcripts with coverage at each position from the 5’ or

3’ end was reported.

2.1.3 Results

Of the different cDNA enrichment and synthesis methods, TruSeq with Poly-A

enrichment performed the best in terms of uniquely mapping rate, followed by Nugen

then by RiboMinus. Poly-A enriched TruSeq samples had 8.7x107 out of 1.3x108 reads

map (64.0%). Nugen samples had a total of 1.1x107 out of 1.7x107 reads map (60.6%).

RiboMinus had significantly fewer mappable reads with 4.7x107 out of 1.0x108 reads

(46.7%). Of reads that mapped, 69.9% mapped to exons for Poly-A enriched TruSeq

Libraries versus just 30.2% and 36.6% for Nugen and Ribominus respectively. Both

Nugen and RiboMinus methods had a large number of reads mapping to intergenic

regions. This result has been corroborated in RNA-seq, microarray and EST sequencing

studies involving whole transcriptome versus poly-A enriched samples [23, 93].

In terms of removal of contaminating ribosomal reads, Poly-A enrichment per-

formed the best, with Nugen and Ribominus following (Figure 2.1). Poly-A enriched
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Figure 2.1: Comparison of average mapping statistics between Ribominus, Poly-A se-
lection using Illumina TruSeq and Nugen Ovaction with or without DNase treatment.

samples had less than 1% of all mapped reads mapping to ribosomal sequences. Nu-

gen and RiboMinus had 3.5% and 5.8% respectively, indicating that Nugen is suitable

method for removing ribosomal contamination.

Sequence mapping rates were higher for 0Gy and 2Gy samples sequenced on the

Illumina GAIIx as compared to SOLiD. Of the 1.7x108 reads generated for all samples

on SOLiD, 9.3x107 (54.6%). For Illumina GAIIx, 6.15x107 reads were generated, of

which 3.9x107 mapped (62.6%).

Library complexity was measured by the number of unique start sites found

within a sample. When assayed as single ends, Nugen had the largest percentage of

reads with unique start sites at 79%. Ribominus and Poly-A enriched samples followed

with 59% and 37% respectively. However, when start and end positions of a fragment

were considered, the vast majority of all libraries had unique start and end sites (¿ 99%).

Although this could be caused by extreme end biases, it is likely that the increase in

unique single end start sites was a result of increased intergenic reads within Nugen and

Ribominus samples.

We found that Poly-A enriched and RiboMinus samples had similar evenness

of coverage across transcripts with cv values of 1.94 and 2.07, respectively (Figure 2.3).

However, Nugen samples had a drastically larger cv value of 3.54 indicating that coverage
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Figure 2.2: Complexity of libraries measured by percentage of reads with unique sin-
gle or paired-end sites. All samples had similar levels of unique paired-end positions
indicating low levels of PCR duplication overall. However, Poly-A selection and one
Ribominus sample had a much lower percentage of unique single end start sites that
may be consistent with 3’ or 5’ bias.

over transcripts was very spiky. This uneven coverage could be attributable to the use

of random N-mers during first and second strand synthesis and could pose a problem

for isoform quantification.

Of the three enrichment methods, Nugen displayed the least extreme 5’ and

3’ end bias overall. When assessed over percentiles of all transcripts, Poly-A enriched

samples had a noticeable 3’ bias, while RiboMinus had generally higher coverage on

5’ end of transcripts (Figure 2.4.A). Nugen samples had a much smaller bias at the 3’

end of transcripts. Similar observations were made when looking at nucleotide distance

from the extreme 3’ and 5’ ends of long transcripts (Figure 2.4.B). When we assessed

coverage bias of transcript length in addition to percentile, we observe good coverage

over short transcripts, less than 1,000bp long for all methods (Figure 2.4.C). Biases
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Figure 2.3: Average coefficient of variation (cv) of coverage across 50% of highest ex-
pressed transcripts. Poly-A and Ribominus samples are labeled. All other samples
were generated using Nugen Ovation. Higher cv values are associated with less even
coverage. Here Poly-A and Ribominus performed comparably. Samples prepared with
Nugen Ovation had significantly less even coverage. Coverage of samples with lowest
input material (500pg and 50pg) had least even coverage.

occur most prevalently for lengths greater than 1000bp long. Nugen samples exhibit a

3’ bias for transcripts between 1,000 and 2,000 bp in length, but lacks 3’ coverage for

transcripts greater than 2,000bp in length.

Using Nugen samples with decreasing amounts of input material, we assessed

the effect input material had on reproducibility of gene abundance estimation and sensi-

tivity of expressed exon detection (Figure 2.5). Overall, RiboMinus and Poly-A enriched

samples had highest correlations between each other. Technical replicates of RiboMinus

had a Spearman’s correlation of 0.982 versus 0.913 for technical replicates of Nugen

using 100ng of starting material. Spearman’s correlation of Poly-A replicates were low,

but these were most likely due to errors during library preparation. Correlation be-

tween RiboMinus and Poly-A exceed correlations between Nugen technical replicates.

Correlations between decreasing quantities of Nugen samples using 10ng or more input

material were all above 0.9. Correlations between samples of 50 or 500 pg fell below,

indicating a loss of reproducibility with minute quantities of RNA.
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Figure 2.4: Extreme end bias in assessed over top 50% of expressed transcripts. A.
Average coverage over percentiles shows extreme 3’ bias in Poly-A samples, slight 5’ bias
in Ribominus samples and slight 3’ bias in Nugen samples. B. Average coverage over
long genes ( >2,000 bp) from 5’ end (left) or 3’ end (right). C. Coverage bias displayed in
a heatmap for Poly-A (left), Ribominus (center) and Nugen (right) binned by transcript
length (y-axis) and percentile (x-axis). Colors indicate percentage of transcripts with
coverage within a transcript length and percentile bin. In Poly-A samples, Extreme end
biases are visible in longer transcripts ( >1000 bp) in Poly-A and Ribominus samples.
Nugen samples have 3’ bias in shorter transcripts along with reduced 3’ coverage in
longer transcripts.

When equal numbers of reads were sampled, the ability to detect expressed ex-

ons was similar for all samples above 500pg, with approximately 50% of non-overlapping

exons detected for all samples (Figure 2.6). However, 500pg and 50pg samples had re-

duced sensitivity with 44.7% and 28.9% of exons detected, respectively. Shearing of

input material and DNAse treatment had little effect on sensitivity.

Finally, when we compared the Illumina GAIIx against the SOLiD sequencer,
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Figure 2.5: Pairwise Spearman’s correlations between Nugen Ovation samples with
decreasing amounts of starting material, Poly-A, and Ribominus samples. Poly-A and
Ribominus samples show high correlations between each other; however, these samples
do not share high correlation to all Nugen samples. Nugen samples had relatively high
correlations to other Nugen samples, but correlations dropped for low input samples
with 500pg or less.

we observed a difference in sensitivity and GC bias. 59% of exons were detected by both

Illumina and SOLiD. However, 17% percent of exons were detected only by SOLiD,

whereas only 3% of exons were detected only by Illumina. We performed a differential

expression experiment between technical replicates sequenced on both SOLiD and Illu-

mina. We found that statistically upregulated genes in SOLiD had a higher GC content

than genes found to be upregulated in Illumina (Figure 2.7). Despite the observed GC
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Figure 2.6: Sensitivity of detection of gene expression in Nugen samples with decreasing
inputs. Bars in red represent the number of genes detected using all available reads.
Bars in blue represent the number of genes detected when an even number of reads
were randomly sampled from all samples. Sensitivity begins to decrease with the 500
pg sample and is greatly reduced in the 50 pg sample.

bias, we did not notice a substantial difference in the GC content of genes upregulated

by either platform. However, the GC bias found in SOLiD may contribute to the in-

creased exon detection sensitivity. Genic regions tend to be clustered within high GC

regions of the genome [80].

2.1.4 Discussion

The strengths and weakness of the Poly-A enrichment, ribosomal depletion

with RiboMinus and isothermal amplification with Nugen Ovation were assessed in this

study. Overall, we found the enrichment of Poly-A tailed transcripts to have the greatest

enrichment within exonic regions, but it had a significant 3’ bias. RiboMinus resulted

in a slight 5’ bias and we observed slightly greater enrichment within exonic regions

when compared to Nugen Ovation. Nugen Ovation generates reads with a slight 3’ bias,

but has significantly less even coverage. Spiky coverage may be an issue for isoform
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Figure 2.7: Density of GC content in genes found to be differentially expressed between
SOLiD and Illumina. Genes with higher expression in SOLiD were found to have higher
GC content, whereas genes with higher expression in Illumina were found to have lower
GC content.0Gy and 2Gy mice are shown in A and B, respectively.

quantification, where many methods assume uniform coverage across a transcript.

Both Nugen and RiboMinus were effective for removing ribosomal reads while

leaving the remainder of the transcriptome intact. Large numbers of intergenic reads

for both libraries are consistent with reports of non-polyadenylated nuclear RNAs (ncR-

NAs) [23, 69, 63]. Poly-A enrichment methods would exclude ncRNAs from the final

library. Thus, selection of enrichment and cDNA synthesis method should take into

account the necessity of preserving ncRNA transcripts.

Poly-A enrichment and RiboMinus techniques were both highly reproducible,

even with each other. Although Nugen Ovation samples were less reproducible, their

expression estimates were consistent for vary amounts of input total RNA. Shearing of

cDNA produced with Nugen generated no noticeable differences.

Based on our results, Poly-A enrichment appears most suitable when sufficient

material exists and mRNA expression level estimates are the most important factor for

RNA-seq experiments. RiboMinus is also preferable to Nugen Ovation when sufficient

input material is available, due to higher reproducibility. Despite these shortcomings,
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Nugen Ovation is a promising technique where whole transcriptome reads are desired

and quantity of input RNA is a limiting factor. Nugen Ovation was shown to be repro-

ducible and sensitive when as little as 10 ng of RNA was used as input. Additionally,

we found the assay to be relatively sensitive and reproducible even when using 500 pg

of RNA as input.

This experiment also demonstrates the feasibility of single cell RNA sequenc-

ing. A typical mammalian single cell contains 10-30pg of RNA. Although we saw reduced

sensitivity and reproducibility at these levels, it is still possible to produce usable HTS

data from extremely small quantities of RNA. The findings of this study have been

further followed up by studies which have also benchmarked Nugen Ovation and other

cDNA synthesis methods for degraded RNA samples (such as those from formalin-fixed

paraffin-embedded tissue samples) and single cell studies [2, 174].

2.2 Minimizing Cellular Input and Studying Rare Follic-

ular Helper T Cells

2.2.1 Introduction

In the previous section, we explored the extent to which we could reduce total

input RNA for reproducible RNA-sequencing experiments. The ultimate goal of the

experiments was the application of RNA-seq to study samples where input material is a

limiting factor. One such application is the study of rare subsets of immune cells, such

as follicular helper T-cells (TFH).

TFH cells are lymphocytes that play a large role in the regulation of B-cells.

TFH cells are a distinct T-cell subpopulation that specialize in providing help to B-

cells in germinal centers [157]. TFH cells are marked by their expression of CD4 and

CXCR5. CD4 is the characteristic receptor expressed by helper T-cells (TH). CXCR5 is

an important receptor for the initial migration of TFH cells into lymphoid follicles that

contain germinal centers [17, 135, 74, 126]. A small subset of helper T-cells expressing

CXCR5 circulate freely in blood, rather than being localized to germinal centers. It is

likely that these circulating cells are the memory compartment of TFH cells [102].

TFH cells show remarkable plasticity and can mimic the effector functions
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of TH1, TH2 and TH17 cells depending on the type of infectious agent the immune

encounters [130, 84, 91]. TFH cells are often subdivided into three separate partitions:

TFH1, TFH2, and TFH17 depending on the similarity of their expressed surface receptors

and effector functions to a TH subset. For example, following viral infection, TFH cells

excrete IFN-gamma, a cytokine typically produced by TH1 cells [96]. Infection of mice

with Helminth parasites results in TFH cells that produce IL-4, a cytokine typically

released by TH2 cells [77, 46].

In order to study these special characteristics of TFH cells, we devised a series

of experiments to enable transcriptomic studies. In our first experiment, we optimize

a method for cDNA synthesis directly from cell lysate using the Nugen Ovation kit.

Directly synthesizing cDNA from lysate prevents losses from total RNA isolate. We

identify an assay-specific minimum number of cells by sequencing technical replicates of

FACS-sorted CD4+CXCR5+ blood TFH cells with 100 cells up to 25,000 cells used as in-

put. We also study the effects of in vitro activation of TFH cells and report differentially

expressed genes and gene ontologies.

Minimizing cellular input and total RNA loss is necessary because TFH cells

are relatively rare. A typical 5 ml blood sample contains 5x106 PBMCs, 40% of which

are CD4+ and only 4% are CXCR5+. Furthermore, TFH cells are compartmentalized

by their surface receptors and effector functions. We utilize the results of our first

experiment to explore the subcompartments of TFH cells within two individuals before

and after vaccination with Fluzone. We observe large transcriptional differences between

TFH cells and other helper T-cell subsets, further supporting the idea that TFH cells

are a unique subclass of helper T-cells. Additionally, we observe expressional changes

in the TFH1 compartment consistent the viral adaptive immune response.

Although the sample size of our study is low, it demonstrates our ability to

study TFH cells through RNA-sequencing. Our study serves as a useful pilot for the

application of high throughput sequencing using small numbers of cells as input and

shows its applicability for the study of TFH cells.
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2.2.2 Methods

2.2.2.1 Isolation of Cells

For titration studies, 45 ml of blood was drawn from two healthy subjects.

Blood samples were centrifuged at 200xg for 10 minutes and the buffycoat was extracted.

Helper T-cells were enriched using anti CD4+ magnetic beads. Enriched helper T-cells

were then FACS-sorted and CD4+CXCR5+ TFH cells were isolated. TFH cells were

split evenly into two pools. One pool was stimulated in vitro using anti-CD3/CD28

beads. Stimulated and unstimulated cells were aliquoted into 100, 1,000, 5,000 and

25,000 cell aliquots in duplicate. 25,000 cell samples were generated only from one of

the two patients, due to the limited number of TFH cells available.

For TFH subcompartment studies, 45 ml of blood was drawn from two healthy

subjects seven days following vaccination with Fluzone. TH cells were enriched using

methods identical to those used in the titration studies. Enriched TH cells were FACS

sorted into seven distinct groups: blood TFH cells(CD4+CXCR5+), blood TFH1 cells

(CD4+CXCR5+CXCR3+), memory blood TFH cells (CD4+CXCR5+CCR6+), acti-

vated Th cells (CD4+CD154+), activated blood TFH cells (CD4+CD154+CXCR5+),

and activated blood TFH2 cells (CD4+CD154+CXCR5+ICOS+). Three replications of

5000 cells were used as input for blood TFH, blood TFH1 and memory blood cells. 1-2

replicates whose quantity varied between 1,000 and 25,000 cells were used as input for

activated Th cells, activated blood TFH cells and activated blood TFH2 cells depending

on rarity.

2.2.2.2 cDNA Synthesis and Sequencing

cDNA was synthesized robotically from cell lysate in a Nordiag M8000 liquid

handler using methods described in Tariq et al, 2011 with the exception that cellular

lysate rather than purified total RNA was used as input [148]. Sequencing libraries were

prepared using robotic methods described in Hesson et al [38]. Samples were barcoded,

pooled and sequenced across twelve lanes of an Illumina Hiseq2.
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2.2.2.3 Alignment

Reads were aligned to the transcriptome using tophat2 with the hg19 human

genome reference and UCSC knownGenes annotation [75, 57]. Parameters for the mean

and standard deviation of insert size were set individually for each sample. MLE es-

timates of the mean and standard deviation of insert size were generated empirically

from the insert sizes of one million randomly sampled reads aligned to the hg19 genome

using bowtie2 with maximum insert size set to 1000 bp and only unique concordant

alignments reported [81]. Only uniquely aligned concordant reads were utilized for

downstream analysis.

2.2.2.4 Exon and Gene Abundance Estimation

Abundance estimation was determined using methods described in the previous

section.

2.2.2.5 Sensitivity

Sensitivity of exon detection was determined through rarefaction analysis. For

each sample, 1x106, 2x106, 4x106, 8x106, 1.6x107 and 3.2x107 reads were randomly

sampled in triplicate. Exons were considered detected if at least one read was found to

map within the exonic region.

2.2.2.6 Differential Expression

Differential Expression analysis was performed using DESeq2 on gene clusters

[89]. For titration and in vitro activation studies, differentially expressed genes due to

activation with anti-CD3/CD28 beads was determined by comparing 5,000 cell samples

before and after activation. For TFH subset experiments, differential expression was

performed between technical and biological replicates of blood TFH cells vs blood TFH1

cells, blood TFH cells vs blood TFH memory cells, activated Th cells vs activated blood

TFH cells, and activated blood TFH cells vs activated blood TFH2 cells. Genes with an

FDR below 0.01 were considered to be differentially expressed.
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2.2.2.7 Geneset Enrichment Analysis

Geneset enrichment analysis of genes differentially expressed by in vitro acti-

vation of TFH cells was performed using GoSeq [178]. Geneset enrichment analysis of

TFH subsets were performed using enrichR [22].

2.2.3 Results

2.2.3.1 Optimal Number of Cells

Based on library functionality, reproducibility of gene expression estimates,

exon sensitivity, we determined 5000 cells was optimal for use with Nugen Ovation

cDNA synthesis directly from cell lysate.

Figure 2.8: Percentage of uniquely mapped reads for each sample. The percentage
of mapped reads is related to both library functionality and sequencing depth. IDs
represent the patient number, the stimulation status (stimulated or unstimulated), the
number of cells and the replicate.

The percentage of reads mapping uniquely to the genome was below 50% for all

but two samples (Figure 2.8). 25,000 cell samples exhibited the highest mapping rates

(mean 39%), followed by 1,000 cell samples (mean 30%). 5,000 and 100 cell samples

exhibited low mapping rates with 22% and 19%, respectively. The highest individual
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mapping rate belonged to a 5,000 cell sample, despite lower mapping rates across other

5,000 cell samples.

Figure 2.9: Distribution of uniquely mapped RNA-seq reads for each sample sorted by
the percentage of reads usable for expression analysis. Reads are divided into coding,
intronic, utrs and upstream and downstream flanking regions. IDs represent the patient
number, the stimulation status (stimulated or unstimulated), the number of cells and
the replicate. 1,000 and 5,000 cell samples show highest enrichment of reads mapped to
exons.

5,000 cell samples also had the highest percentage (26%) of reads mapping to

coding exons. Both 25,000 and 1,000 cell samples had 22% mapping to coding exons,

while 100 cells samples had 18%. The percentage of reads mapping towards coding

exons is reflective of reproducibility of gene expression estimation.

Reproducibility was assessed using pairwise correlation analysis of gene ex-

pression estimates between replicates with the same number of starting cells. 5,000 cell

samples had greater linearity than any other starting input amount. 1,000 cell starting

populations had a median correlation of 0.96 whereas 25,000 cell starting input had

median correlation of 0.83. 100 cells samples behaved erratically and a median cor-

relation was just 0.69. The distribution of pairwise correlation was also indicative of

high reproducibility among 5,000 cell samples which ranged by from 0.94 to 0.98. 1,000
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Figure 2.10: Representative scatter plots and Pearson’s Correlations of replicates of
increasing cell number. Here the samples with the median correlations are shown.

cell populations were also relatively reproducible and pairwise correlation values ranged

from 0.9 and 0.98. Counterintuitively, 25,000 cell samples had lower than either 1,000

and 5,000 cell populations despite the larger number of cells. 100 cell populations had

a very large spread and very low reproducibility.

Rarefaction studies also supported the choice of 5,000 cells as optimal (Figure

2.12). 5,000 cell samples were able to detect more exons at all sampling depths. 25,000

and 1,000 cell populations had similar levels of sensitivity with 4x106 reads or less.

With more reads, 25,000 cell samples were significantly more sensitive than 1,000 cell
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Figure 2.11: Pearson’s Correlation between replicates with different number of starting
cells. Samples with fewer starting cells have lower correlations between replicates and
have a wider variance. Overall, 5,000 cells had the greatest reproducibility in the samples
assayed here.

populations. 100 cell populations again performed poorly in this assay, and consistently

detected less than half of exons detected in samples with more starting cells.

Differential expression analysis was performed on 5,000 cell populations before

and after stimulation. Geneset enrichment analysis of differentially expressed genes

resulted in enriched Biological Gene Ontologies associated with activation of the immune

system (Table 2.3). This result further supports the legitimacy of using 5,000 cells as

input for the study of rare cell populations.

2.2.3.2 Expressional Differences between TFH Compartments

Pairwise Spearman’s correlations of gene expression was generated between

all samples. Hierarchical clustering using neighbor joining revealed distinct expression

profile of CD154 expressing activated T-cells 2.13. Incredibly, the expression activated

TFH cells (CD4+CD154+CXCR5+) were highly correlated across multiple patients.

Additionally, activated TFH cells formed a separate subcluster from activated helper T

cells.
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Figure 2.12: Number of exons detected as a function of sampling depth of uniquely
mapped reads. Each library was sampled three times at each depth. Error bars show
standard deviation. Here 5,000 cells showed the highest sensitivity.

Table 2.3: Selected enriched biological process gene ontologies from differentially ex-
pressed genes.

Selected Enriched Biological Process False Discovery Rate

Cellular macromolecule metabolic process 8.3 x 10−15

Regulation of cellular process 1.7 x 10−7

Immune system process 1.9 x 10−7

Immune response 5.8 x 10−7

Regulation of immune system process 6.4 x 10−6

Anti-apoptosis 0.001

Regulation of cell activation .0003

Regulation of lymphocyte activation .001

Regulation of leukocyte activation .001

TFH cells (CXCR5+) were significantly different from TH cells (CXCR5-).

41 genes were up-regulated, whereas 530 were down-regulated. Up-regulated genes

were highly enriched for both translational elongation and defense response to virus
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Figure 2.13: Pairwise Pearson’s correlation between all samples that were hierarchically
clustered using neighbor joining. Sample naming follows the convention of patient id,
number of input cells and the list of surface markers selected.

gene ontologies. An increase in translational elongation suggests active production of

proteins which may be associated with bursts in cellular activity. Defense response to

virus is expected due to the vaccination with Fluzone. Down-regulated genes were highly

enriched for endocytosis gene ontology, a biological process not typically associated with

TH cells. However, senescence and autophagy pathways were also found to be enriched
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in down-regulated cells, indicating that non-TFH cells were in an inactive state.

Pairwise differential expression between memory (CCR6+) and non-memory

(CCR6-) samples revealed statistically significant genes. The CCR6 gene itself was

identified as differentially expressed, serving as a litmus test to the effectiveness of the

test. Also up-regulated and nearly as statistically significant was the gene AUTS2, a

gene previously identified as being disrupted in a pair of autistic twins [146]. Studies

have also shown a link between altered activation profiles for T-cells in children with

autism spectrum disorders [6]. Studies have shown AUTS2 to be important for neu-

ral development and is not commonly associated with the memory subset of TH cells

[6]. AUTS2 was also implicated in GWAS studies associated with cytokine release in

response to smallpox vaccination [72]. Down-regulated genes were enriched for positive

regulation of NF-kappaB cascade, indicating that non-memory cells were participating

in active adaptive immune response.

CXCR3 expression is a marker for the TH1 cells. 19 genes were up-regulated

and 28 genes were down-regulated in CXCR3 expressing samples. Up-regulated genes

were associated with response to virus, which is the canonical function of TH1 cells. All

samples used in this comparison were CXCR5 expressing TFH cells, recapitulating known

plasticity of TFH cells. Down-regulated genesets include the IL9 signaling pathway,

exocytosis and DNA recombination.

Only three genes were found to be differentially expressed in ICOS expressing

TFH2 cells. Geneset enrichment analysis of these genes (CDCA7, CST3, ZNF512) found

no enrichment in any gene ontologies or pathways.

2.2.4 Discussion

In this study we optimized a cDNA synthesis method that can be performed

directly on from cell lysate and applied the optimized protocol to rare subsets of cir-

culating TFH cells. We determined that 5,000 input cells were optimal for sensitive

detection of expressed exons and reproducible gene-level expression estimates. Coun-

terintuitively, using 25,000 cells as input material resulted in less reproducible results

and lower sensitivity. Because all samples utilized the same amount of reagents regard-

less of the number of cells, it is possible that cellular debris from the larger amount
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of lysate inhibited cDNA synthesis. To compensate for this effect, scaling the reagents

used for cDNA synthesis to match the amount of cellular input could result in higher

quality results for larger input amounts.

Smaller amounts of starting cells also resulted in poor sequencing results. 1,000

cell samples outperformed 25,000 cell samples for reproducibility of gene expression

estimates. However, 1,000 cell samples also had lower sensitivity and missed many lowly

expressed exons when compared to 25,000 cell samples. 100 cell samples performed

poorly overall. Although suboptimal reagent to sample ratios may have affected the

outcome, it is likely that limiting amount of input material and increased amplification

resulted in poorer quality overall. Thus, studies which utilize very small quantities of

input material, such as numerous single cell studies, should take extra care in accounting

not only for single cell heterogeneity but also increased variance of cDNA synthesis with

small quantities of RNA. This result mirrors results from the previous section indicating

that very small quantities of input material are associated with loss of reproducibility.

Leveraging the result from our optimization experiment, we studied the differ-

ence in transcriptomic profiles over a variety of rare TFH populations in two patients.

These patients were vaccinated with Fluzone seven days prior to blood sampling. Al-

though the sample size was small, we can make a few major conclusions. Although

cell surface markers clearly separated each subset, the expression profiles were highly

similar between all subsets. Activated T-cells clearly differentiated from non-activated

T-cells according to hierarchical clustering of expression-based correlations.

We determined that CXCR5 expressing blood TFH cells are a distinct subset

of TH cell. Differential expression analysis of CXCR5+ cells versus CXCR5- showed

the largest number of significantly differentially expressed genes of any comparison.

Up-regulation of the viral defense gene ontology confirms importance of TFH cells in

response to vaccination.

TFH plasticity was also evident from this study. Differentially expressed genes

between subsets verified expected behavior based on cell surface markers and vaccination

with Fluzone. TFH1 subsets of cells were enriched for response to viral infection and high

levels of translational activity implied active response to the vaccine. This demonstrates

that TFH1 cells were acting in a manner similar to TH1 cells, whose activity is associated
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with defending against intracellular bacteria and viral infection. On the other hand,

TFH2 cells showed very little activity overall. TFH2 cells emulate the effector functions

of TH2 cells, who typically respond to parasitic helminth infections. A TH2-like response

would not be expected following treatment with a vaccine designed to mimic a viral

infection and elicit an IgG response.

One intriguing finding is the up-regulation of the gene AUTS2 in memory

TFH cells following vaccination. The gene has been associated with autism, alcohol

consumption, attention deficit disorder and other neurological disorders [139, 68, 141].

Although studies have shown its importance for neurological development, AUTS2 is

expressed across many tissues according to the Illumina Body Map project. AUTS2

is a nuclear protein thought to play a role in transcriptional repression by activation

or deactivation of other transcription factors. [115, 114, 177]. The association of the

adaptive immune response to a gene linked to autism is a particularly inflammatory

subject.

Despite numerous studies disproving a causal link between vaccinations and

autism etiology, public fears of vaccination remain [149, 32, 21]. Such fears are worsened

by other studies demonstrating immune dysfunction in those with autism [116]. Some

studies highlight differences in T-cell response in children with autism [6]. However,

genetic studies support the hypothesis that a wide array of independent genetic factors

contribute to autism spectrum disorder [59]. The identification of AUTS2 expression in

memory TFH cells serves as a link between neurological disorder and immune function.

Indeed, AUTS2 has been associated as part of the SEMA5A regulatory network [24].

SEMA5A is an important gene both for guiding axons during development and as a

modulator of the adaptive immune response [51, 24, 48].

Due to the complex interplay of cellular machinery, dysfunction in an upstream

regulator may manifest in aberrant behavior in two seemingly unrelated systems. In this

case autism and altered adaptive immune response may be linked by aberrant AUTS2

function or expression. This finding highlights the importance of differentiating between

statistical correlations and causation.

Given the limited number of patients in this study, it is prudent to take caution

when interpreting these results. However, we have demonstrated that studying rare
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populations of circulating TFH cells is possible using cDNA synthesis of direct cell

lysate. This initial study was meant as pilot study and provides evidence that more

robust large scale studies are possible using RNA-sequencing.
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Chapter 3

Applications of HTS to Persistent

Pathogenic Threats

3.1 HPV Integration Detection

3.1.1 Introduction

Human Papilloma Virus (HPV) is so ubiquitous that some medical professional

consider to it be a part of the natural human flora [7, 64]. The DNA virus infects

only keratinocytes and commonly manifests as benign epithelial tumors, such as warts

[52, 29]. Although the vast majority of HPV infections do not progress to cancer, the

virus has been identified as the primary cause of cervical cancer and is highly associated

with other types of squamous carcinomas including cancers of the vulva, vagina, penis,

anus and oropharnyx. HPV has been detected in 99.7% of cervical carcinomas, with

high risk strains HPV16 and HPV18 detected in 50% and 20% of lesions, respectively

[160].

Although the omnipresence of HPV within cervical cancers is worrisome, 90%

of infections with high risk HPV types clear without medical intervention [55]. Of the

10% of infections that remain persistent, only a small fraction will develop into cancer

[105, 106]. The disparity of HPV infection rate and the development of cancer can be

partially explained by the integration of viral DNA into the host genome. Integration

can drive the progression towards cancer by either over-expression of viral oncogenes or

by insertional mutagenesis of host genes [65, 168].
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The HPV genome encodes two viral oncogenes E6 and E7, which inactivate

tumor suppressor genes p53 and pRB, respectively. The expression of E6 and E7 are

normally regulated by two other viral proteins, E1 and E2. However, the integration

event can often disrupt the coding sequence of E1 and E2, thus increasing transcription

rates of E6 and E7 [67]. Transcription rates of E6 and E7 may also be affected by the

proximity of insertion to transcriptionally active genes within the host genome[168].

Insertional location may also cause insertional mutagenesis, which can affect

transcription rates or function of host genes. Notable examples have been presented in

the literature with integrations occuring with the MYC proto-oncogene and the potential

tumor suppressor genes ZBTB7C and CASZ1 [123, 151, 27, 34, 136].

HPV preferentially integrate within fragile sites within the human genome,

however integrations have been detected over all chromosomes [151, 168]. Methods

for detecting integration sites have adapted with changing technologies. Initial studies

utilized bacterial cloning in conjunction with sequencing to identify junctions from DNA

or cDNA [140, 8, 138]. A wide array of PCR-based assays were also developed for

detection of integration from DNA, however these methods lack the sensitivity to detect

all integration sites of HPV [151, 39, 90, 121]. More recently, targeted HTS and whole

genome sequencing methods have identified many integration sites and elucidated the

potential integration mechanism of HPV [175, 3].

In collaboration with Samuel Vohr, we developed a method for identifying

HPV subtype(s), integration loci and oncogene conservation status from whole genome

sequencing of cancerous or precancerous lesions.

3.1.2 Methods

3.1.2.1 Samples

The genomic DNA (40ng/µl) of twenty cervical cancer lesions were obtained

from Stanford University. The samples were labeled cc1-cc20.

3.1.2.2 Sequencing Library Preparation

400 ng of genomic DNA was diluted with nuclease-free water to a total vol-

ume of 40 µl in thin wall PCR tubes. Genomic DNA was sheared using a Covaris
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S220 focused-ultrasonicator. Parameters for shearing was 5% intensity, duty cycle

3, 200 bursts/second for a total of 110 seconds. Sequencing libraries were prepared

from sheared DNA by first end-repairing sheared fragments, da-tailing, and sequencing

adapter ligation via a semi-automated robotic protocol described in depth in Hesson et al

2010. Libraries were barcoded by 10µl of robotically-prepared sequencing library, PCR

using 5µl of ABI 10x PCR buffer II, 5µl of MgCl2 (25mM), 5 µl of dNTPs (1.25mM),

5µl 10X PCR enhcancer with betaine (Epicentre), 0.5 µl inPE 1.0 forward primer, 0.5µl

inPE 2.0 reverse primer, 0.5µl barcode primer and 0.25µl of Taq Titanium Polymerase

in a total volume of 50µl for 8 cycles of PCR. Amplified and barcoded libraries were

purified using a Qiagen gDNA spin-column and were quantified using a Bioanalyzer.

Libraries were combined into two pools in equal concentrations.

3.1.2.3 Sequencing

Pooled libraries were sequenced with an Illumina GAIIx using a total of four

lanes over two separate sequencing runs. Libraries were sequenced as paired-ends with

50bp reads for run 1 and 85bp reads for run 2.

3.1.2.4 HPV Typing

Paired reads were aligned to to 77 HPV reference sequences obtained from

the PapillomiaVirus Episteme (PaVE) [153]. Reads that mapped to a unique reference

sequence were kept. HPV type was determined by selecting the strain with the greatest

coverage depth and breadth.

3.1.2.5 Identifying Chimeric Pairs

Forward and reverse reads were mapped to the UCSC human genome reference

sequence (hg19) and the determined HPV strain sequence from the HPV typing step.

Reads were first mapped to HPV sequences. Pairs with at least one read mapping to

an HPV reference sequence were also mapped to hg19. Pairs with one end mapping to

an HPV genome and the other mapping to the hg19 were considered to be “chimeric

pairs”. After it was discovered that many chimeric pairs were a result of reads mapping
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Figure 3.1: Summary of informative reads for the typing and integration detection of
HPV. From the paired-end reads sequenced from a genome with a viral integration, we
expect to see pairs that map only to the human reference (a), pairs that map only to the
viral (b), chimeric pairs that map to both (c), and spanning reads that map to neither
(d).

to low complexity regions of the HPV genomes, a low complexity filtered was added to

remove artifactual chimeric pairs.

3.1.2.6 Identifying Integration Loci

Chimeric pairs were used to identify integration loci. Integration loci were ex-

pected to have a 5’ and 3’ integration boundary. Due to background level of discordant

reads, an integration loci was not considered to be high confidence unless at least two

non-duplicate reads were found to span the integration boundary. Reads were consid-

ered to be duplicate if the first base of the forward read and the last base of the reverse

read were identical. Ideally, multiple reads would span both the 5’ and 3’ end of a viral

integration. Orientation of integrated viral sequence was determined using the orien-

tation of chimeric reads. Insert size range was also used to determine the approximate

size of deletions in host genome as a result of integration.

3.1.2.7 Identifying Spanning Reads

After integration loci were determined, exact integration locations were deter-

mined by searching for “spanning reads”. A spanning read is a single read which spans

the actual integration location. A portion of a spanning reads maps to both the HPV
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and human reference sequence. All reads that did not map to the hg19 human reference

or the HPV sequence were checked.

Spanning reads were identified using a seeded-extension methodology. An

index of 20mers was constructed for the detected HPV strain reference sequence and the

region spanning the 5’ and 3’ integration boundaries. 20-mers from the 5’ and 3’ end of

each read were matched against the index. Reads with a 20-mer matching against the

indexes were extended one base at a time until bases no longer matched the reference

sequence.

3.1.3 Results

Twenty cervical cancer samples were sequenced using an Illumina GA2x. Sam-

ples were sequenced with shallow depth with coverage ranging from 0.001x to 0.61x.

Median coverage was 0.28x.

HPV types were determined for 17 out of twenty samples (Table 3.1.1). The

three samples for which HPV strain could not be determined had coverage levels far

below the median (0.04x, 0.002x and 0.001x).

High confidence integration loci were determined for 6 out of 20 samples. Of

the detected integration loci, four of which belonged to HPV16, one to HPV18 and the

last to HPV18. The integration event with the largest amount of evidence was observed

in cc20.

The cc20 sample had multiple chimeric pairs and spanning reads on both the 5’

and 3’ integration boundaries (Figure 3.1.1). The integration resulted in a 20bp genomic

deletion. 3,363 basepairs of the HPV58 viral genome were integration assuming that

the detected ends cover the shortest possible integration of the linearized circular HPV

genome. However, the integrated region did not contain viral oncogenes E6 and E7.

Instead, 4 other coding proteins were preserved (E2, E4, E5 and L2). Despite the high

confidence of integration boundaries detected, sequencing results indicated the presence

of full length HPV genome. In addition to the high confidence integration detected in

cc20, 9 other chimeric pairs were identified. However, none of these chimeric pairs were

supported by more than one read.

We were also able to identify 5’ and 3’ integration boundaries in cc10. HPV16
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Table 3.1: Sequencing statistics and HPV type determined for twenty cervical cancer
samples.

Sample ID Total Reads Reads mapped to HPV Chimeric Pairs HPV Type

cc01 3,933,178 57 0 HPV45

cc02 4,779,660 210 0 HPV59

cc03 3,975,184 245 0 HPV18

cc04 5,135,128 339 0 HPV34

cc05 3,815,810 167 0 -

cc06 778,334 22 0 -

cc07 1,258,254 9 0 -

cc08 5,047,174 1,543 15 HPV16

cc09 19,920,888 1,085 8 HPV16

cc10 26,645,688 1,274 8 HPV16

cc11 19,355,944 967 6 HPV45

cc12 17,986,434 965 4 HPV45

cc13 19,625,450 3,088 17 HPV18

cc14 18,461,386 2,563 41 HPV16

cc15 23,974,886 1,877 3 HPV16

cc16 25,380,454 3,496 15 HPV16

cc17 26,634,494 1,885 8 HPV16

cc18 14,705,872 800 1 HPV16

cc19 16,026,746 1,318 4 HPV34

cc20 9,939,742 3,218 15 HPV58

was detected in opposite orientation to the reference. Chimeric pair analysis was able

to identify a single integration locus on chromosome 2. However, spanning read analysis

indicates the presence of multiple short integrations.

Integrations were often found near coding genes. For example, the HPV58

integration in cc20 was identified within the intronic region of ZFAT and the HPV16

integration of cc10 was found upstream of PREPL.
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Figure 3.2: Integration details for sample cc20. Four chimeric pairs were found to span
the integration of HPV58 into the host genome. The oncogenic genes E6 and E7 are
not present in this integration.

Figure 3.3: Integration of HPV16 into cc10. Chimeric pairs (top) suggest a single
integration site. However, spanning pairs (below) suggest multiple small integration
events.

3.1.4 Discussion

Identification of HPV subtype, preservation of oncogenes in DNA samples that

contain integrated DNA of viral origin and genomic location of the integration event
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may have a clinical impact for the progression of precancerous lesions. In this study, we

were able to characterize all these features from whole-genomic sequencing data.

In 17 out of 20 cervical cancer samples, we were able to identify the HPV strain

from which the integrated DNA originated. Most of the integrated DNA originated

from high risk strains (HPV16, HPV18, HPV45, HPV58, and HPV59) [107]. We also

identified HPV34 in two cervical cancer samples– a strain not typically considered to

be high risk.

We were also able to identify integration loci in 6 samples. Identified inte-

gration loci were found to be more complex than a simple linear insertion within the

host genome. For example, in cc20 the integration event was characterized with high

confidence. In the integration event, we observe the insertion of a 3 kb portion of the

viral genome. However, coverage over the viral genome indicates that the entire length

of the viral genome was present in the sample. The disagreement between the detected

integration and the HPV genomic coverage could be a result of an endogenous active

infection with HPV or multiple integration sites. In cc20, we also observed multiple

chimeric pairs, however none were supported by more than one read.

The integration event detected in cc10 was similarly complex. Although chimeric

pair analysis identified a single 5’ and 3’ integration boundary, spanning reads showed

the possibility that multiple short integrations occurred within the integration locus.

Recently, Akagi et al 2013, proposed a new model for HPV integration within the host

human genome [3]. In the proposed model, an integration event may insert multiple

copies of an HPV-Host hybrid sequence within the human genome. The model may ex-

plain the observed complex piece-wise integration observed in cc10. In addition, multiple

copies of an integration may contribute to our ability to detect integration boundaries

despite relatively low levels of coverage.

Integration events detected in this study usually occurred near or in genes.

The integration in cc20 occurs upstream of ZFAT, a zinc finger that likely binds DNA

and functions as a transcriptional regulator involved in apoptosis and cell survival. It is

possible that the integration altered the transcription of ZFAT and contributed towards

the progression towards cancer. In cc10, the integration event occurred within the an

intron of the PREPL gene. Although the gene, itself is not associated directly with
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apoptosis, it is possible that endogenous expression of the gene drives up the expression

of integrated viral genes.

Many features of integration may have a clinical impact for the analysis of

precancerous cervical lesions. We can identify these features using HTS from whole

genomic DNA. Recently, targeted methods for detection of integration events have been

described [175]. However, as the cost of sequencing continues to plunge, it is only a

matter of time before the cost of enrichment surpasses the cost of sequencing. When

this occurs, general bioinformatic methods for the detection of HPV or other viral

integrations can be applied to whole genome sequencing samples.

3.2 Identifying Drug-resistance in Clinical Isolates of N.

gonorrhoeae

3.2.1 Introduction

Infection with Neisseria gonorrhoeae causes gonorrhea, a sexually transmitted

disease estimated by the World Health Organization to have 106 million new cases

in 2008 alone [172]. Gonococcal infections have a long history of developing resis-

tance to antibiotics, first gaining resistance to penicillin in the 1970’s. In response

to penicillin-resistant strains, gonococcal infections were treated with fluoroquinolones,

such as ciprofloxacin, as a second line of defense. Emergence of fluoroquinolone-resistant

strains of N. gonorrhoeae caused the CDC to renege its use as a recommended treat-

ment of gonorrhea in 2007. [112]. A familiar story emerged with the third generation of

antibiotic used to treat gonorrhea. Cephalosporins such as ceftriaxone, were used as a

primary treatment for just five years before the CDC recommended use of a combination

of cephalosporins in addition to another antibiotic such as azithromycin [20].

It comes as no surprise that there exist strains of N. gonorrhoeae resistant

to every antibiotic currently used to treat gonorrhea [47]. Although a single strain

resistant to all antibiotics has yet to be discovered, the risk of such a strain emerging

is high due to horizontal gene transfer in N. gonorrhoeae. Co-infections of multiple

resistant strains may result in super resistant strains due to horizontal gene transfer.

It is vitally important that gonococcal infections are properly treated with the correct
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dosage of an antibiotic to which the infectious strain are susceptible.

Identification of drug-susceptibilities of isolated and cultured N. gonorrhoeae

cells is important to the treatment of gonorrhea. The standard for identification of drug-

susceptibilities within N. gonorrhoeae isolates are disk-diffusion and Etest susceptibility

tests based on culture. Although these can be effective measures, they typically require

20-24 hours of time to culture [20]. More immediate results may improve the quality of

treatment and prevent the unnecessary use of ineffective antibiotic treatments.

Sequencing assays have the potential to determine drug susceptibilities without

culture. As sequencing technologies improve, the turnaround time for sequencing as-

says has drastically decreased. Targeted real time sequencing assays have already been

developed that can predict fluoroquinolone resistance [44]. These assays are rapid and

inexpensive, but only assay short regions previously identified to confer drug-resistance.

Thus, new assays can be developed to test for resistances to all drugs.

Whole genome sequencing is becoming a viable alternative to culture or tar-

geted sequencing assays. Exponential decrease in sequencing cost may soon make se-

quencing cheaper that either culture or targeted sequencing. With reduced sequencing

costs come reduced sequencing time. Benchtop sequencers such as the Illumina MiSeq or

Ion Torrent PGM offer turn-around times under 6 hours. Third generation sequencers

based on nanopore sequencing can potentially reduce sequencing time to hours. High

throughput sequencing methods have been applied to detect antibiotic resistance to

cefixime resistant strains [50].

In collaborative work with Robert Shelansky, we demonstrate the utility of

whole genome sequencing for the discovery of resistance-imparting variants. Forty clin-

ical isolates, for which the minimum inhibitory concentration (MIC) of ciprofloxacin

are known, were subject to high throughput sequencing. By using variant detection,

phylogenetic clustering and enrichment within resistant populations, we are able to re-

capitulate known drug-resistance-imparting variants. Additionally, we report new loci

potentially associated with drug-resistance and identify some variants that may cause

hyper-resistance to ciprofloxacin.
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3.2.2 Methods

3.2.2.1 Samples

DNA extracted from 40 clinical isolates and their corresponding MIC values

were gratiously provided by Magnus Unemo, Department of Clinical Microbiology, rebro

University Hospital. Sample collection and MIC determination are described elsewhere

[44]. The 40 isolates were separated into three categories describing their resistance

based on their MIC values. Samples with a MIC less than 0.0064 mg/L were consid-

ered susceptible to ciprofloxacin. Samples between 0.0064 mg/L and 0.25 mg/L were

considered to have reduced susceptibility to ciprofloxacin. Finally, samples with a MIC

greater than 0.25 mg/L were considered to be resistant.

3.2.2.2 Sequencing and Alignment

Sequencing libraries were prepared robotically. Samples were pooled and se-

quenced in one lane of an Illumina GAIIx. Demultiplexed reads were mapped to N.

gonorrhoeae FA 1090 reference build obtained from UCSC. Alignments were performed

using Bowtie2 with default settings [81]. Only pairs mapping concordantly to a unique

genomic position were considered for downstream analysis.

3.2.2.3 Variant Calling

BAM alignments were used as input into FreeBayes with default parameters

with the exception of ploidy which was set to 1. Variant calls that passed filters were

annotated for function using VEP [99, 73]. A custom database was built using genomic

sequence and gene annotations for N. gonorrhoeae FA 1090 downloaded from the UCSC

microbial browser for use with VEP [137]. Variants were annotated by location relative

to the nearest gene as either upstream, downstream or within a gene. Amino acid

changes as a result of nonsynonymous variants were also annotated.

3.2.2.4 Phylogenetic Tree Building and Sample Clustering

A pairwise similarity score was measured between all samples. Similarity score

was determined by summing the number of nonshared variants between two strains.
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Pairwise similarity scores was used as input to a standard unweighted pair group method

with arithmetic mean (UPGMA) to produce a phylogenetic tree. The R package, Agnes,

was used to build the tree with default parameters [92, 60].

Samples were assigned clusters based on their proximity within the phyloge-

netic tree by setting a distance threshold. The distance threshold was set such that

the maximum number of resistant clones were within a cluster without including any

sensitive clones (Figure 3.4).

3.2.2.5 Collapsing Variants to Quinolone Resistance Determining Regions

(QDRD)

Individuals variants were collapsed to Quinolone Resistance Determining Re-

gions (QDRDs). For this study, a QDRD was considered to be the set of nonsynonymous

variants within a protein coding gene.

3.2.2.6 Enrichment Analysis

Here we test for the enrichment of a feature in the resistant population or the

susceptible population. Our enrichment method assigns a score between -1 and 1, with

positive values indicating an enrichment in resistant clusters and negative values indi-

cating enrichment in susceptible clusters. Here features were either nucleotide variants

or sets of variants collapsed into QDRDs. The final enrichment score is described by

the equation

E(x) = ER(x) − ES(x) (3.1)

where E(x) is the final enrichment score of feature x. ER(x) and ES(x) describe the

enrichment of a variant within resistant or sensitive sets of clustered isolates. Each

cluster of isolates contributes equal weight to the enrichment score of feature x.

ER(x) =

∑
CεREC(x)

nC(R)
(3.2)

Here the enrichment, ER(x),within resistant clusters, R, is equal to the sum of en-

richment values within a cluster, C, normalized by the number of clusters within the

resistant population, nC(R). A similar equation describes the enrichment within sensi-

tive clusters.
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Enrichment within a cluster, EC(x) is defined as the proportion of isolates

within a cluster harboring the feature x.

EC(x) =

∑
iεC I(x)

ni(C)
(3.3)

where ni(C) is the number of isolates within cluster C and I(x) is an indicator function

equal to 1 if feature x is present in isolate i and 0 if it is not.

Enrichment values were determined for the set of all features. A gaussian

distribution was fit to the resulting distribution of enrichment scores and Z-scores are

converted to P-values to determine significance.

3.2.3 Results

Whole genome sequencing of DNA extracts of cultured clinical isolates resulted

in sufficient coverage for variant calling. Mean coverage was 57x across all samples, with

a minimum coverage of 5x and a maximum coverage of 167x.

Phylogenetic trees built using a pairwise similarity metric based upon the

number of shared and unique variants between samples revealed that ciprofloxacin re-

sistance do not share a common ancestor (Figure 3.4). Resistance isolates are spread

out across the tree and can be highly related to susceptible clones. However, clusters of

highly related resistant isolates correspond with ancestral subpopulations of resistant

N. gonorrhoeae.

Enrichment analysis of variants resulted in 703 variants with a p-value less

than 0.01. Within these enriched variants, we identified known resistance-imparting

variants in gyrase A (gyrA), the known binding partner of ciprofloxacin. Variants at

amino acid positions 91 and 95 of gyrA were discovered with p-values of 1.5x10−5

and 3.1x10−5, respectively. Variants at position 91 included a serine to phenylalanine

mutation (S91F), whereas variants at positon 95 included an aspartic acid to glycine

(D95G) and an aspartic acid to alanine (D95A) mutation. A third mutation at the

95 position, which caused an aspartic acid to asparagine (D95N) mutation was not

correlated with ciprofloxacin resistance.

QRDR-level analysis identified mutations within parC as being enriched in

resistant populations with a p-value of 1x10-4. Point mutations compressed within the
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Figure 3.4: A phylogenetic tree built using UPGMA: Resistant isolates (Red), suscep-
tible isolates (Blue), and decreased susceptible isolates (purple). A clustering threshold
was set to group genetically similar resistant strains together while ensuring such that as
many resistant strains occupied the same cluster without inclusion of a sensitive strain.

parC QRDR included serine to asparagine and arginine mutations at position 87 of the

gene (S87N and S87R). In one isolate with moderate resistance (MIC = 0.75 mg/L), a

S88P mutation was observed. In a super-resistant isolate (MIC >= 32 mg/L) glutamic

acid was mutated to glycine at position 91 (E91G). The most enriched single nucleotide

variant within resistant isolates was a mutation from aspartic acid to asparagine at

position 86 (D86N)– a variant not reported in existing literature.

A study on quinolone resistance in Pseudomonas aeruginosa, a bacteria known

to cause pneumonia, sepsis and other infections, have identified ABC transporter pro-

teins to be associated with drug-resistance [181]. We also observed the enrichment of

variants within many integral membrane transport proteins, including a variant anno-

tated as a “putative drug-resistance protein” in the UCSC microbial genome browser.

A human gene, metnase, is also known the bind directly to ciprofloxacin. We

identified variants within the insertion element IS1016 transposase which is a homolog
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Figure 3.5: Top 25 most enriched SNVs using enrichment method. Each column repre-
sents a nonsense mutation in a gene. Each row represents an isolate. Rows are sorted
by increasing resistance. Blue cells indicate a wild type base, while red cells indicate a
nonsynonymous change.

of the human metnase [171]. Finally, we identified a point mutation in A-lyase 25 which

occurs only within two super-resistant isolates.

3.2.4 Discussion

Phylogenetic analysis revealed that drug-resistant isolates did not originate

from a single common ancestor. Drug-resistant strains can be found in almost all lin-

eages indicating that any susceptible strain has the potential to evolve drug-resistance

given favorable circumstances. Ciprofloxacin acts as a mechanical obstruction which

prohibits the function of gyrase A [33]. Small genetic modifications can result in con-

servation of enzymatic function while negating the effectiveness of ciprofloxacin. This

result coincides with results from the directed evolution studies presented in the previous

section.

In this study, we observe that resistance-imparting mutations convert amino

acids with relatively large and polar residues into amino acids with smaller functional
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Figure 3.6: Biologically relevant QDRDs selected by our enrichment method.

groups. For example, D95A and D95G mutations associated with drug-resistance both

replace a larger polar aspartic acid residue with smaller glycine and alanine residues.

Additionally, the D95G mutations were also enriched for much higher levels of resistance

to ciprofloxacin (MIC >1) and could be due to the smaller size of glycine compared to

alanine. However, a D95N mutation which replaces aspartic acid with similarly sized

arginine does not confer drug-resistance. Although the size of the residue is actually

increased in the S91F mutation, the conversion of a highly polar residue to a highly

non-polar residue could drastically alter the binding pocket of gyrase A, thus conferring

drug-resistance. Additionally, the S91F mutation was requisite for the development of

drug-resistance and was found in all drug-resistant samples.

When examining the results of our QRDR-level enrichment, we were also able

to recapitulate known resistance-imparting variants in the parC gene. Mutations in

parC has been previously identified as a marker for fluoroquinolone resistance [54].

parC is a subunit of topoisomeraise IV and shares significant homology with gyrA in

the ciprofloxacin binding region. Of the variants that comprise the parC QRDR, D86N

was the most enriched within the resistant population. However, isolates harboring this
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mutation cover a wide range of MIC values. Two variants, S87R and E91G, in parC

were found in only super-resistant strains. Like in gyrA, the E91G mutation replaces a

large acidic amino acid with a smaller glycine and may have similar functionality.

Because parC and gyrA are direct binding partners of ciprofloxacin, it is no

surprise that mutations in these genes confer drug-resistance. By identifying these two

genes alone, we are able to classify clinical isolates as drug-resistant or drug susceptible.

However, we are unable to regress the range of drug-resistance from these two genes

alone. Although measurement error of the MIC may account for some of the variability,

it is likely that regulatory alterations, transport modifications or competitive binding

of ciprofloxacin to other protein products explain the remainder of variability in the

observed MIC values.

We observed 703 values with a p-value of 0.01 or less that were highly enriched

in resistant strains. Of these, there are a few notable examples that could explain the

remainder of the variability of MIC values. ABC transporting proteins known for the

exportation of molecules from bacteria are also known to be related to drug-resistance.

We also observe an enrichment of variants within this class of genes in our experiment.

Mutations in these genes could enhance drug removal from the bacteria allowing them

to reduce the internal concentration of ciprofloxacin.

We also observe an enrichment of mutations in an insertional element, IS1016

transposase. The human homolog, metnase, is known to harbor ciprofloxacin sites. It

is also possible that mutations in this gene sequester ciprofloxacin, thus reducing the

efficacy of the drug. Finally, we observe a single variant in A-lyase 25 that is found

only in super-resistant strains. Although lyase mutations are not typically associated

with increased drug-resistance, it may be relevant to study the mutation in a follow up

study.

By sequencing whole genome isolates and searching for enriched variants and

QRDRs, we were able to recapitulate known drug-resistance-imparting mutations in ad-

dition to the discovery of many potentially significant variants. However, improvements

to the methodology can be made. First, the methods used to generate phylogenies

were crude and more precise methods utilizing de novo assembly of strains and more

advanced methods could be utilized to generate more accurate phylogenetic trees. Ad-
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ditionally, de novo assembly methods could potentially identify plasmid sequences that

also contribute to drug-resistance [50]. Clustering of isolates required previous knowl-

edge of MIC values for each isolate, but general methods could yield better results.

Finally, we did not implement a regression based method to predict MIC value based

on the variants we observed. A regression-based method would be necessary to translate

sequencing based diagnostics to the clinic. However, the prediction of drug-resistance

may not be completely amenable to logistic regression or naive bayes methods due to

the complex interplay of variants.

Recently, other studies have utilized similar methodologies to identify drug-

resistant variants across multiple drugs and species [173]. Their methods are similar to

ours, but theirs may be more powerful due to the increased sample size. Ultimately,

an increase in the number of samples will increase the specificity of drug-resistance

determinant identification. The initial step of developing methods to both predict

drug-resistance from whole genome sequencing samples and to predict drug-resistance-

imparting mutations will only improve with time.

3.3 Evolution of Drug-resistant E. coli in Connected Mi-

crohabitats

Pathogenic resistance to antibiotics is a worldwide problem [85]. This is high-

lighted in the previous section, where clinical isolates of N. gonorrhoeae were found with

varying levels of resistance to the antibiotic, ciprofloxacin. Strikingly, resistant isolates

did not share a common ancestor and were often closely related to drug-susceptible iso-

lates. This indicates that evolution of drug-resistance is not a rare event. In the study,

we were able to identify many potential variants that confer drug-resistance. However,

the study was limited in its ability to probe how such mutations occur and spread within

an individual bacterium.

Other studies address the issue by performing directed evolution studies by

growing bacteria in low concentrations of drug [117]. Although these studies are can be

successful for identifying genetic variants associated with drug-resistance, they poorly

model the conditions by which organisms encounter in the human body. Drug concen-
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trations are not constant through the human body. Rather, concentrations of drugs

are spatially heterogenous through different organs and tissues of the human body [35].

This spatial heterogeneity can accelerate evolution if subpopulations of pathogens are

free to migrate between microenvironments of differing drug concentration [10].

Evolution within spatially heterogeneous interconnected microenvironments

may be accelerated for two reasons. First, a mutation may be more likely to occur

in an environment where the drug concentration is high enough to exert a stress on

the organisms, but not high enough to kill the organism. Thus organisms will be

able to replicate and develop mutations conferring increased fitness in the presence of

stress. These newly adapted organisms can then migrate to microenvironments of higher

drug concentrations and continue to adapt to even higher levels of stress. Secondly,

competition for nutrients in a microenvironment with low stress may also drive the

evolution of organisms to develop drug-resistance, thus allowing it to utilize nutrients in

a high stress environment that were previously unavailable due to high concentrations

of drug.

To test this hypothesis, collaborators at Princeton University developed a mi-

crofabricated chip of interconnected microenvironments. A ciprofloxacin gradient was

spread across the chip allowing Escherichia coli to travel between compartments of

varying drug concentrations. The study was able to greatly accelerate the time required

to develop drug-resistance. With high throughput sequencing, we were able to identify

causal mutations that conferred resistance.

3.3.1 Methods

3.3.1.1 Directed Evolution

A microchip was fabricated on a silicon wafer. The chip contained 1,200 hexag-

onal wells, 10 µm deep with 200 µm long sides. Each well was connected to neighboring

wells via six microchannels 200 µm long, 10 µm deep and 10 µm wide. Wells at the edge

of the chip contained nanoslits 100nM deep to allow the flow of nutrients and antibiotic

into the chip into the interior of the array.

Two syringe pumps were used to create a drug gradient across the chip. The

first syringe pump flowed LB media through the top section of the chip. The second
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syringe flowed LB media with ciprofloxacin at a concentration of 10 mg/ml through

the bottom portion of the chip. Both pumps were flowed under 30 µl/hour to form a

gradient of ciprofloxacin across the chip.

An E. coli K12 strain was transformed to express GFP via a plasmid, but was

otherwise wild type. Approximately 106 bacteria was inoculated by drilling a hole in

the center of the chip, pipetting 2 µl of culture into the chip and sealing the chip with

a silicon elastomer. Bacteria were cultured for 48 hours. Cell growth was monitored

optically. A 470 nm LED was used for illumination and a Cannon 5d CCD camera was

used to obtain fluorescent intensities.

Multiple experiments were performed to ensure the emergence of drug-resistant

bacteria was not due to pre-existing mutants in the inoculated population. First, bac-

teria was cultured in a 96 well format with increasing concentrations of ciprofloxacin

in each well. Second, decreasing quantities of cells were used for inoculation into the

microfabricated chip.

3.3.1.2 Sequencing and Bioinformatic Analysis

Six samples were subjected to high throughput sequencing on the Illumina

GAIIx platform using 110x90bp reads. DNA was extracted from a population of wild

type cells (WT) and three populations of cells subjected to directed evolution within

the microfabricated chip (DG1, DG2 and DG3). For DG1 and DG2, two technical

replicates were sequenced from the same starting DNA (labeled DG1-a, DG1-b, DG2-a

and DG2-b). WT, DG1 and DG2 were also sequenced using a Roche 454 sequencer.

Resulting short reads were aligned to an E. coli K12 reference genome (NCBI

accession NC 000913.2). Illumina short reads were aligned using bowtie with default

parameters with the exception that only uniquely mappable reads were reported [cite

bowtie]. 454 short reads were aligned using Roche’s proprietary gsMapper algorithm

using default parameters.

Resulting BAM alignments were used as input to the samtools pileup com-

mand. Positions where greater than 98% of reads supported a non-reference base were

reported. Variants associated with drug-resistance were identified by looking for variants

present only in drug-resistant samples.
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Variants within in the gyrA gene resulting in nonsynonymous amino acid

changes were examined in solved crystal structures. The crystal structure of gyrA

which both originated from E. coli and bound to ciprofloxacin has not been resolved.

However, a crystal structure of gyrA originating from Staphylococcus aureus bound to

ciprofloxacin has been elucidated (PDB ID: 2XCT). To identify the proximity of mu-

tated amino acids to the binding site of ciprofloxacin, a structural alignment comparing

a crystal structure of gyrA from E. coli (PDB ID: 3ILW) to the ciprofoxacin-bound

structure from S. aureus. A jFATCAT rigid structural alignment with default param-

eters was used on the PDB website was performed [Shindyalov IN, Bourne PE (1998)

Protein structure alignment by incremental combinatorial extension (CE) of the optimal

path. Protein Engineering 11(9) 739-747.] Amino acid position in E. coli structure was

mapped to the nearest aligned amino acid in the S. aureus structure.

3.3.2 Results

Drug-resistant mutants emerged in under 5 hours from 106 inoculated wild

type E. coli. Following inoculation, competition for nutrients drove E. coli towards the

perimeter of the chip where nutrients entered via nanoslits. Bacteria eventually fixed

at a “goldilocks point”, a region of the chip where normal and drugged media converge

and stress gradients were maximal. Upon development of drug-resistant bacteria, motile

bacteria migrated to areas of higher drug-resistance and eventually invaded the entire

chip.

Inoculation of wild type E. coli within the chip led to a complex growth dy-

namic most likely due to competition between wild type and drug-resistant cells for

nutrients. Reinoculation of a chip with drug-resistant E. coli led to logarithmic growth,

thus indicating reduced overall fitness of wild type cells.

Two methods ensured that emerging resistant bacteria was not already present

in the inoculation population. First, decreasing numbers of cells in starting inoculations

were used to seed the chip. If small subpopulations of E. coli already contained drug-

resistance conferring mutations, experiments seeded with lower numbers of starting cells

should not result with growth of resistant bacteria. However, even with just 100 starting

cells, drug-resistance eventually emerged (figure 2). Secondly, bacteria were cultured in
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Figure 3.7: Growth and migration following inoculation with wild type E. coli (A-
C) or evolved drug-resistant E. coli (D-F). A. Drug-resistant mutants emerge after
5 hours. Goldilocks point is denoted by orange arrow. B. Drug-resistant mutants
spread to periphery of the chip. C. Mutants continue to spread across the entire chip.
(D-F) Growth of drug-resistant E. coli results in faster growth and spread across the
chip. G. Total GFP intensity is measured in wild type inoculate (DG-1) versus drug-
resistant inoculate (RE-INFECTION). Re-infection with drug-resistant E. coli results
in logarithmic growth whereas wild type inoculate grows slowly. Inoculating wild type
into a chip with ciprofloxacin flowing from both sides (2 SIDES CIPRO) results in no
growth.

96 well, each with increasing ciprofloxacin concentration. If drug-resistant E. coli were

already present in the inoculation population, growth would have occured in wells where

ciprofloxacin concentration was above the minimum inhibitory concentration (MIC).

Such a phenomenon was not observed.

The genetic events that conferred drug-resistance were identified through high

throughput sequencing with an Illumina GAIIx and Roche 454. Samples sequenced with

Illumina resulted in 50x coverage per sample whereas samples sequenced on with 454

resulted in approximately 6x coverage per sample. Thirteen single nucleotide variants

were discovered across all samples indicating this sample was slightly divergent from

the strain used to generate the reference sequence. Four mutations were observed only

in drug-resistant cells.

Gyrase subunit A (gyrA) is the protein targeted by ciprofloxacin. The SNP
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Figure 3.8: Growth and emergence of drug-resistant E. coli as a function of time and
number of cells in initial inoculation.

occurred at base 2,337,183 in the E. coli k12 reference. This mutation occurs in codon

87 resulting in a missense mutation from an Aspartic Acid to a Glycine. The crystal

structure was examined for clues to the function of the identified mutation. By struc-

turally aligning a crystal structure of gyrA from E. coli with a structure from S. aureus
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Figure 3.9: Structural alignment of E. coli K12 gyrase A (3ILW) and S. aureus gyrase
A (2XCT) shows high conservation between two crystal structures.

containing the binding site of ciprofloxacin, we were able to map the position of the

nonsynonymous amino acid change relative to the binding site of ciprofloxacin. We

found that the position of the mutated amino acid was directly adjacent to the bind-

ing site of ciprofloxacin. Because the mutation converted the relatively large residue of

aspartic acid to the small residue of glycine, it is likely that the mutation prevents the

obstruction of enzymatic function by ciprofloxacin.

55



Figure 3.10: Summary of sequencing results. (Left) Circos plot showing the coverage
(lines) and variants (circles) found in DG samples but not in wild type. (Top Right)
A table of SNPs showing genomic position and amino acid change. (Bottom Right)
Crystal structure of gyrase A from S. aureus (2XCT). Nicked double stranded DNA is
highlighted in green, ciprofloxacin in blue and resistance-imparting variant in red.

Ribose Import ATP Binding Protein (rbsA) is a subunit of the ribose ABC

transporter (RbsABC) responsible for binding ATP. This SNP occurs at base 3,933,247

(figure 2) and causes a missense mutation in codon 483 changing a threonine to an

isoleucine. ABC proteins have been implicated in the export of other antibiotics such

as erythromycin, tylosin, and macrolide out of prokaryotic cells (Fath 1993).

Two remaining mutations were observed in the repressor of the multiple an-

tibiotic resistance operon (marR). Both mutations were missense mutations and were

located at base 1,617,460 and 1,617,461 respectively. It is possible that these muta-

tions affect the ability of E. coli to deal with antibiotics through increased expression

of antibiotic resistance genes.

56



3.3.3 Discussion

The methods utilized in this study allow researchers to identify changes caused

by drug resistance. The method simulates spatial heterogeneity found in nature– par-

ticularly in the human body. It is particularly powerful for studying the genetic changes

that bacteria must undergo in isolation in order to develop drug-resistance.

The mutations in gyrA, rbsA and marR have all been previously identified as

necessary changes to manifest bacteria resistant to clinically relevant concentrations of

quinolones such as ciprofloxacin [62]. It is surprising that all four seemingly functional

mutations are able to fix within a population in under 10 hours. It is very unlikely

that all these mutations occurred at once and previous studies indicate they occurred

sequentially. It is also probable that all four of these mutations were necessary for the

drug-resistant bacteria to thrive at the high concentrations of ciprofloxacin used within

this study.

In addition to the spatial heterogeneity mimicked by the microchip in this

study, other levels of heterogeneity may also affect the development of resistant bacteria.

Temporal heterogeneity caused by taking relatively large doses of antibiotic with low

frequency may also drive the evolution of bacteria towards drug-resistance [9, 154].

Missed dosages exacerbate the problem by creating low levels of antibiotic. Periods of

low antibiotic concentration are analogous to wells within our microchip that have low

concentrations of drug. Research has shown that when bacteria grow in concentrations

above the MIC but below mutation prevention concentration (MPC), drug-resistant

mutations occur most frequently [180].

Drug-resistance-imparting mutations could be prevented by combining multi-

ple antibiotics and this approach has been suggested not only for antibiotic treatments,

but also for cancer therapy [look up some citations for this]. However, even with joint

therapies, the emergence of drug-resistant bacteria is still possible due to not following

physician recommendations when taking antibiotics.

Also, strategies used to prevent de novo resistance-imparting mutations in bac-

teria do not take into account horizontal gene transfer. In addition to genetic changes

that can occur to generate quinolone resistance, numerous plasmids have been discov-

ered that also contribute to drug-resistance [62]. Drug-resistance via plasmid is also a
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problem for a wide array of antibiotics in a wide array of pathogens.

In the end, a small change in the type of antibiotics or dosage regimen may

not be enough to overcome the increasing levels of drug-resistant pathogens affecting

the world. A combination of personalized medicine, dosage and immune stimulation

will be necessary to prevent complete domination of antibiotic resistant bacteria.
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Chapter 4

HLA Typing from RNA-Seq data

4.1 Introduction

HLA typing is a key diagnostic for the diagnosis of disease and matching of

donors and recipients on organ transplantation. There have been numerous attempts

to identify HLA alleles using high throughput sequencing techniques [12, 37, 42, 56, 83,

86, 124]. The majority of these techniques exploit the high throughput of modern se-

quencing machines in order to generate high-quality low-cost genotypes. To accomplish

this, the amplified HLA genes of many individuals are multiplexed and sequenced in a

single run. These techniques can thus generate many genotypes at a relatively low cost

due to economies of scale. However, these methods are also prone to failed amplification

due to mismatches in the primer region.

As the ever-dropping cost of high throughput sequencing ushers in the age

personalized medicine, it may one day become feasible to produce large amounts of

sequence data for each patient individually without the need for amplification by PCR.

Although genomic sequencing is useful for the detection of genetic predisposition to

disease, RNA sequencing provides a snapshot of the current state of the cells in the

body. If RNA sequencing experiments becomes routine in clinical diagnostics, it is

feasible that many tests that once required specific assays could be combined into a

single workflow requiring only a single test and followed by a multitude of bioinformatic

analysis.

However, HLA genotyping is a difficult task due to number of unique alleles
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that have been discovered in the human population. The MHC is the most polymorphic

region in the genome [40]. Balancing selection has generated many thousands of possible

alleles to ensure that the population has sufficient diversity to combat constantly evolv-

ing threats from other organisms [26]. Due to the extreme polymorphism in the region,

short reads can map to many possible alleles making it difficult to assign genotypes to

samples.

HLAforest is a utility that predicts HLA genotypes from high throughput se-

quencing data. It utilizes a unique knowledge-based approach that allows for accurate

prediction of allele. It was built and tested on data generated from RNA-seq exper-

iments, however, it has also been successfully applied to whole genome and exome

sequencing experiments. Although other typing methodologies from RNA and exome

sequencing have been developed [13, 164, 88, 36], HLAforest stands alone as the only

open-sourced alignment-based prediction tool that can generate predictions at all reso-

lutions from RNA-seq reads.

4.2 Methods

HLAforest is a knowledge-based technique that is designed to extract maximal

evidence from each short read. Depending on read length, a singular read may contribute

varying amounts of information used to identify an HLA allele. HLAforest exploits

the natural hierarchy of HLA nomenclature in order to extract maximal information

from each sequencing read. It does so using a series of steps. A filtering step extract

reads that map to any allele in the IMGT database. Then all possible alignments

to all alleles in the IMGT database are generated for each read. The evidence each

read can contribute is then divided amongst all alleles using a novel tree building and

pruning methodology. HLAforest also considers PHRED quality scores generated by

the sequencer while distributing evidence, which contributes to its incredible robustness

against sequencing error.

In addition to generate predictions, HLAforest is capable of generating more

accurate expression estimates for HLA genes. It can also be extended to any gene that

contains a high level of sequence homology amongst its alleles.
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4.2.1 Alignment

Accurate alignment of short reads is critical to the quality of predictions gen-

erated by HLAforest. Alignments can be performed with any alignment algorithm,

although for this work the suffix-tree based bowtie was utilized [82] . Two rounds of

alignment are performed in order to generate the final set of alignments from reads to

a database of HLA alleles. A reference index for bowtie2 was generated from version

3.10.0 of the IMGT HLA nucleotide database [133]. Null alleles were excluded from

the set of known alleles, as these sequences sometimes contain intronic sequences and

intronic reads from RNA sequencing experiments can artificially inflate scores of those

alleles.

The first round of alignment filters out reads that do not align to the HLA

database. Reads that aligned at least once to any allele sequence were kept for sub-

sequent realignment to the reference database of HLA alleles, this time outputting all

possible alignments to all alleles. Default parameters for bowtie were utilized except for

trials where only exact alignments were allowed.

After the alignment step, each read contains a set of all possible alignments

to all HLA alleles. In cases where a read aligns to the same allele in multiple locations,

the most likely alignment is kept. The most likely alignment is considered to be the

alignment with the lowest sum of sequence mismatch qualities (SMMQ). The SMMQ

is generated by taking the sum of PHRED scores at mismatching positions within the

reads. A default PHRED quality score of 20 is given to each inserted or deleted base in

the read alignment.

4.2.2 The HLA Reference Tree

HLA Nomenclature divides types hierarchically, where each allele is defined at

the gene, allele group (2-digit), protein (4-digit), nucleotide (6-digit), and intronic (8-

digit) resolution. A tree reflecting all alleles in the IMGT database can easily be built

by adhering to the nomenclature. In this implementation, a node with no biological

meaning roots the tree and is known as the ”root node”. The descendants of the root

represent genes, the highest level of classification as proposed by the nomenclature. The

descendants of gene nodes are allele groups, whose descendants are proteins, etc. All
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leaves in the tree represent alleles represented in the database, though some non-leaf

nodes may also be represented in the database.

4.2.3 Alignment Trees

Alignment trees store all the alignment information generated during the align-

ment stage. An alignment tree can be thought of as a subtree of the reference tree where

only nodes representing alleles aligned to the read are kept. Although they are a subtree

of the reference tree, alignment trees are built using the HLA nomenclature of aligned

alleles.

Alignment trees are important abstractions because they allow read mapping

qualities to be distributed evenly despite unequal representation in the database.

4.2.4 Building Alignment Trees

A tree is built using a read and a set of aligned alleles (Figure 4.1.A-B). Aligned

alleles are first split apart into the hierarchical units defined in the reference section.

Once allele names are split apart into tiers, tree building begins with the creation of a

root node. Aligned alleles are processed one at a time. The aligned allele is incorporated

into the root node by first checking if the gene level node exists as a child of the root

node. If no child exists, a node for the gene is created. The allele group, peptide,

nucleotide and intronic levels are incorporated in a similar manner to the gene level.

For each level, the tree is first checked if an equivalent node exists underneath the parent

and creates it if it does not. For the allele group, the gene-level group is checked for

equivalent a node equivalent to the allele group level of the allele. This process reiterates

until all levels of all aligned alleles have been incorporated into the tree.

After this process completes, an alignment tree will describe all possible align-

ments from a read to alleles in the database. However, because alignment quality

information has not been incorporated into the tree, all leaves are equally likely to be

the allele from which the read originated.
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Figure 4.1: Method for building a weighted read tree. Given a set of alignments (A)
for a single read, a tree is built such that all possible alignments are leaf nodes (B).
Gene, allele group, peptide, nucleotide and intronic digits are represented as nodes on
the tree. Sum of mismatch qualities (SMMQs) are converted to alignment probabilities
for leaf nodes (C). Probabilities are then distributed upwards such that the probability
of a parent node is equal to the maximum probability of its children (D). Weights are
distributed downwards in such that the weight of a node is dependent on the local
probability of the node and the weight of the parent child (E & F). Equations used for
generating probability of an alignment and weights of example nodes are outlined (G).

4.2.5 Weighting Nodes in Alignment Trees

HLAforest considers all reads when generating predictions of HLA genotypes.

However, not all reads contribute equally to the prediction. Some reads may map to
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regions with high sequence homology resulting in many alignments for an individual

read. Alternatively, some reads may map to a single allele uniquely. HLAforest uses a

weighting scheme that distributes evidence based on the quality of alignment, the num-

ber of aligned reference sequences and their position in the read tree. Thus, reads that

align to a single reference sequence has more influence on the final predicted genotype

than a read which maps promiscuously.

Weighting nodes is accomplished first by calculating the local alignment prob-

ability at each leaf node or node with corresponding alignment(Figure 4.1.B). The local

alignment probability can also be thought of as the probability that any mismatches,

insertions or deletions in an alignment were due to sequencing error (Figure 4.1.C). The

local alignment probability, pleaf can be calculated with the equation:

pleaf = −10−
∑i qi

10 (4.1)

where q represents the PHRED quality value corresponding to mismatched

base at position i in the read. For deletions in a read sequence, a default PHRED

quality value of 20 is applied. These local alignments are then pass upwards to parents

nodes such that

pnode = max(pchildren). (4.2)

Distributing probability this way ensures that the most likely alignment is

considered for each level along the alignment tree. For example, if a read aligns better

to A*01:01 than to A*01:02, this methodology ensures A*01 alignment probability is

not unfairly penalized by the lower scoring alignment to A*01:02. Finally, alignment

probabilities are converted to weights, which allows the evidence to be summed to

produce a score for each allele. The weights are determined at each level following the

equation:

wnode = wparent ×
pnode∑
psiblings

, (4.3)

where wnode is the final weight of a node, wparent, is the weight of the parent

node, andpsiblings are the local alignment probabilities of nodes that share the same

parent as the node (Figure 4.1.E-F). In this implementation, the weight of the root
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node is set to 1 for all reads, however this weight can be modified to reflect variable

read lengths or overall sequencing quality.

This weighting scheme ensures that the sums of weights at any particular tier

(gene, allele group, protein, etc) sum to at most 1. This allows us to predict the genotype

at any resolution by summing the weights of nodes in a tier. After all read trees have

been built and weighted, the trees are fully prepared for use in genotype prediction.

Figure 4.2: An example of the top-down pruning algorithm. Given a set of reads and
their alignments (a), read trees are built for each read (b). The evidence for each allele
group is determined by taking the sum of the evidence of all allele groups represented in
the trees (c). Here it is assumed that the weight of each node is 1. The allele group with
the maximum evidence is assumed to be the primary allele group for each gene and edges
in trees containing the primary allele group are pruned (d). After pruning, the trees are
reweighted and the evidence for each allele group (e). The second highest scoring allele
group is then considered to be the minor allele. Read trees are then repruned such that
only edges supporting the primary or secondary allele group remain (f). The process
repeats itself iteratively until the most likely leaf nodes remain (g and h).
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4.2.6 Type Prediction

HLAforest predicts HLA types using a top down, greedy, iterative pruning

algorithm (Figure 4.2). The top down approach means that the highest level type are

predicted first, e.g., the algorithm first picks the allele group of each gene before it picks

the protein or nucleotide levels. The greedy selection of nodes allows HLAforest to

pick alleles that explain the majority of the data. Finally, by pruning trees to contain

only branches of most likely alleles, reads can have a larger impact on higher resolution

predictions.

The algorithm begins by predicting a primary and secondary allele at the allele-

group resolution for each gene. A “primary” type is defined here as the allele with the

most evidence in an experiment and a “secondary” type is defined as the allele with less

evidence. The primary type is chosen by summing the weighted evidence of all read

trees at the allele-group level. For each gene in the reference database, the allele-group

with the highest score is chosen as the primary type (Figure 4.2.c).

After the primary allele-group is chosen, a temporary set of pruned read trees

is generated to predict secondary allele-groups. This step prevents reads originating

from the primary allele-group from contaminating predictions of the secondary allele

group. To accomplish this, read trees containing alignments to the primary allele-group

are pruned such that all branches that do not correspond to the primary allele-group are

pruned. Secondary allele-groups are then predicted by summing the weights of nodes at

the allele-group level over all read trees (Figure 4.2.d). The top two scoring allele-groups

after this step are considered to be the primary and secondary allele-groups.

Following the choice of the primary and secondary allele-groups, read trees are

pruned such that only edges corresponding to the primary or secondary allele-groups or

their children remain. Read trees containing alignments to both primary or secondary

allele-groups, the allele-group with the lower weight is pruned. In the event that a read

tree contains both primary and secondary allele groups of equal weight, the read tree is

assigned to a random allele group. Read trees are then reweighted.

Homozygosity at the allele-group level is accounted for by checking the evidence

assigned to the secondary allele-group. If the secondary allele-group contains less than

5% of the total evidence distributed to a gene, it is considered to be homozygous. This
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threshold was determined empirically (data not shown). For homozygous allele groups,

read trees are reweighted to removed the spurious secondary allele-group.

Peptide level predictions are generated using similar methodology used to pre-

dict allele-groups. The weights of peptide-level nodes are summed over all pruned read

trees. The peptide node with the largest sum of weights for the primary and secondary

genotypes are chosen. For samples where the allele-group was determined to be ho-

mozygous, the algorithm calls a primary and secondary genotype at the peptide-level

if the evidence for the secondary peptide-level prediction exceeds 5%. For samples

heterozygous at the allele-group level, only one peptide-level prediction is made.

The peptide-level prediction process reiterates for the nucleotide and intron

level until all genotypes are predicted to the highest resolution.

4.2.7 Simulations

Simulations were used to test the predictive performance of HLAforest. For

each simulation, two alleles were randomly chosen for all genes in the IMGT nucleotide

reference. Reads were generated using ART, a utility that generates realistic high

throughput sequencing reads using error profiles determined from empirical datasets

[58]. Paired end 100 nt reads were generated with a mean fragment size of 250 nt and

fragment size standard deviation of 50 nt. 25x coverage was generated for each allele

with an inferred substitution rate of 8.7x10−5. 5,000 simulations using all genes were

performed.

Figure 4.3: Simulation results showing the effect of read length (a), sequencing depth
(b), and substitution rate (c) on average accuracy of HLA-A, HLA-B, HLA-C, and
HLA-DRB1.

Simulations are particularly useful in comparison to real data because conflat-

ing factors can be tested in isolation. Here we tested the effect of varying sequencing
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depth, sequencing error and read length on performance of HLAforest. To test the

effect of these variables, two alleles were chosen for the genes HLA-A, HLA-B, HLA-C

and HLA-DRB1 as these genes displayed the most diversity in the IMGT nucleotide

database (Figure 4.3).

Simulations tested read lengths typically generated with Illumina sequencing

runs. Paired reads with lengths 37 nt, 50 nt, 75 nt, 100 nt and 200 nt were tested.

Sequencing error was likewise tested over realistic error ranges with inferred substitution

rates of .009%, 0.5%, 1.1%, 2.2%, 4.4% and 8.8% tested. Coverage level in real data is

dependent on sequencing depth, so a wide range of sequencing coverages were chosen

to see at which depths HLAforest would be useful. Coverage levels of 1x, 10x, 25x, 50x,

100x and 500x were tested. Each variable was tested independently and the parameters

other than the one being tested were kept constant. Default parameters were the same

as used in the simulations using all genes. 5,000 simulations were run for each parameter.

To test the effect of alignment sensitivity, HLAforest was run twice for each

simulation. One run allowed only exactly matching reads to be used as input, while the

second run allowed all aligned reads to be used as input.

HLAforest predictions made from simulated data were considered to be accu-

rate if the true allele (determined during the selection step of simulation) was consistent

at the allele-group, peptide, nucleotide or intron level. Accuracy was assessed over all

levels present in the true allele. If the true allele was only typed to the peptide level,

accuracy was not assessed at the nucleotide or intron level. For example, the reference

allele HLA-A*02: 90 is only typed to the peptide level and accuracy at the nucleotide

level cannot be determined for this allele. Of the 8,631 sequences present in the IMGT

database: 87 (1%) are typed to the allele group level; 6,014 (70%) are typed to the

peptide level; 2,308 (27%) are typed to the nucleotide level; and 222 (2%) are typed to

the intron level.

4.2.8 Real Data

Three datasets representative of typical use cases of HLA typing using RNA-

Seq data were chosen based on availability of sequence-based typing (SBT) of HLA

genes. The datasets include a parent-child trio, a large number samples sequenced at
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high depth with short read lengths and a moderate number of cancer samples sequenced

at moderate depth with high read length.

The first set of data was generated from three cell lines (gm12878, gm12891 and

gm12892) representing a mother-father-daughter trio as part of the ENCODE project

[25]. Raw FASTQ files containing paired 75 nt reads were downloaded from the UCSC

Genome Browser, Encode release 4 (August 2012).

The second set of data was generated as part of the HapMap project. Fifty

RNA-seq samples were sequenced in a study performed by de Bakker et al., 2006 HLA

alleles were determined using SBT by Montgomery et al., 2010 [28, 101]. Short reads

were downloaded from the NCBI SRA with the study accession id ERP000101. These

samples were sequenced using paired 37 nt reads and represent the type of data typically

generated in early RNA-seq runs or for runs where turnaround time is essential.

Finally, sixteen colorectal cancer samples were HLA typed in a study performed

by Warren et al., 2012 [164]. These samples were initially sequenced in an attempt to

identify fusion genes in colorectal cancer, but serve as a useful dataset for HLA typing.

The samples were sequenced as paired 100 nt reads at moderate depth. The data were

downloaded from the NCBI SRA under the study accession id SRP10181.

4.3 Results

4.3.1 Simulations

Accuracy was largely affected by read length, with longer reads providing sub-

stantially better results. Read lengths of 2x50, 2x75, 2x100, and 2x200 nt were tested

for their effect on accuracy (Figure 3a). Greater read lengths provided more accurate

results, with 2x200 nt achieving very high accuracy (96.7%) at the peptide level. At

2x100 nt an average accuracy of 94% was achieved. At lower read lengths, accuracy

declined at the peptide level but increased at the nucleotide level. This effect is artifac-

tual as accuracy is not assessed at the nucleotide level if the true allele is only typed

to the peptide level. Allele group level suffered with 2x37nt and 2x50nt reads, achiev-

ing 94.5% and 97.6% accuracy, respectively. However, accuracy was above 98.7% for

2x75nt, 2x100nt and 2x200nt read lengths.
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Simulations showed a minimal effect of increasing sequencing depth on accu-

racy. Total coverage amounts of 1x, 10x, 25x, 50x, 100x and 500x for each chosen allele

were tested (Figure 3b). Although high resolution performance suffered at very low cov-

erage (64% at 1x), accuracy jumped to 92% with just 10x coverage. Increasing coverage

above 25x had minimal effect on high resolution accuracy. Peptide level accuracy was

above 94.9% for all coverage levels above 25x. Allele group level accuracy was above

98.9% at coverage levels greater than 10x.

Substitution rates of 0.009%, 0.5%, 1.1%, 2.2%, 4.4%, and 8.8% were assayed in

order to test the effect of sequencing error on the accuracy of the method. Substitution

rate had minor effects on the accuracy of the method. With substitution rates below

2.2%, peptide level accuracy was above 93%. At 4.4%, accuracy declined to 90%. With

a large substitution rate of 8.8%, peptide level accuracy was still respectable at 84%.

Allele group level accuracy was above 98.9% for all substitution rates tested.

Simulations using all genes in the IMGT database rather than just HLA-A,

HLA-B, HLA-C and HLA-DRB1 were conducted to see the accuracy of the method on

each individual gene. Low resolution accuracy was above 98% for most genes except for

a few selected genes (DPA1, DPB1, DRB6, MicA, MicB, Tap1, Tap2, V). Peptide level

accuracy was above 91% for HLA-A, HLA-B, HLA-C, but fell below 90% for remaining

genes.

Disallowing mismatches during the alignment step resulted in higher accuracy

when substitution rates were sufficiently low. At 0.009% error, peptide level accuracy

was 94.3% when mismatches were allowed, but increased to 95.6% when only exact

matches were utilized. However, at higher substitution rates, performance declined

achieving an accuracy of 55% at 1.1% error rate. At 0.009% substitution rate, accuracy

was improved by 1-2% over all conditions tested when no mismatches were allowed

during alignment. With a low substitution rate and sufficiently high coverage, it may

be beneficial to restrict the number of mismatches during alignment. Boegel et al.,

2012 report a similar effect and recommends allowing only a single mismatch during

alignment [13].

An example demonstrating the effect of read weighting and tree pruning can

be visualized in Figure 4.4. Here, one hundred 2x100 nt reads were sampled for the
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HLA alleles HLA- A*02: 90 and HLA-A*26: 36. The difficulty of predicting HLA allele

groups without read weighting or tree pruning can be seen in Figure 4a, which charts

the maximum number of reads that map to a child member of an allele group. Although

HLA- A*26 is ranked first in the number of reads supporting that allele, three incorrect

allele groups rank above the true allele group of HLA-A*02.

Figure 4.4: Effect of read weighting and tree pruning on predicting allele group. In this
simulated example, HLA-A*02: 90 (labeled in red text) and HLA-A*26: 30 (labeled
in blue text) are the true alleles. (a) The maximum number of reads mapping to any
descendant of allele groups are shown. These results represent a naive attempt at
predicting alleles from RNA-seq data where reads are unweighted. (b) Evidence for
each allele group after building weighted read trees. Allele groups are labeled on the
outermost circle. Arcs connecting allele groups have widths proportional to the amount
of evidence that shared between connected allele groups. Here it is already evident that
A*02 and A*26 have the most evidence, but other alleles have substantial evidence.
(c) The effect of pruning read trees after selecting the primary allele (A*02) clearly
distinguishes the secondary allele group (A*26) from other allele groups. (d) A final
pruning step removes all ambiguous edges and assigns all evidence to the true allele
groups.

Hierarchically weighting and pruning the simulated reads allows for the reduc-

tion of noise and for accurate prediction of allele groups in this example. The hierarchical

weighting procedure provides multiple benefits. First it distributes all the evidence a

single read could provide to all possible alignments, rather than giving equal weight to

all alignments. Secondly, it allows for the visualization of the amount of shared evidence

between all allele groups (Figure 4.4.B). After weighting has been applied, HLA-A*02

and HLA-A*26 contain the majority of evidence, however much of the evidence for the

incorrect allele groups remain. The intermediate pruning step, where ambiguous evi-

dence is assigned to the primary allele group, significantly reduces noise. Figure 4.4.C
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shows that post pruning, the secondary allele group with the most evidence is clearly

A*26. The final pruning step removes all ambiguous evidence (Figure 4.4.D).

4.3.2 Colorectal Cancer Data

In a study by Warren et al., 2013 on HLA typing using short read assembly,

he presented a dataset of sixteen RNA-seq samples for which Class I molecules were

typed by PCR [164]. Of the 96 total possible alleles, 87 were typed to the peptide level.

Reads for this dataset were 2x100nt in length. On average, 3,500 reads aligned to the

IMGT database. HLAforest predicted 85 (97.7%) of low resolution alleles correctly and

74 (85%) of high resolution peptides correctly.

Table 4.1: Accuracy of typing results from 50 HapMap samples with 2x37bp reads
allowing or not allowing mismatched alignments to references.

Mismatches A B C DQA DQB DRB Total

Allele Group Yes .950 .930 .950 .980 .980 .976 .960

Peptide Yes .940 .838 .680 .804 .804 .872 .821

Allele Group No .950 .940 .950 1 .990 .963 .965

Peptide No .940 .848 .730 .804 .825 .872 .835

4.3.3 HapMap data

Fifty HapMap samples that have been both HLA typed with Sanger Sequenc-

ing and for which there are RNA-seq data available were analyzed using HLAforest.

RNAseq data was 2x37nt in length. HLAforest was able to predict 96% of allele-groups

correctly. 82% of peptide-level alleles were also predicted correctly. When alignments

were restricted to disallow mismatches, HLAforest was able to predict 96.5% and 83.5%

of peptide level alleles correctly (Table 4.1). On average, 127,000 reads aligned to the

IMGT database with mismatches allowed during alignment and 91,000 reads aligned

when only exact matches were reported.
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4.3.4 Family Trio

Three cell lines, gm12878, gm12891, and gm12892, representing a daughter-

father-mother trio, respectively, were used to test this method. It is expected that the

daughter (gm12878) would carry a set of alleles from each parent. 2x75bp reads were

used to predict alleles for all genes present in the IMGT database.

Table 4.2: Predicted alleles of major HLA genes on the daughter-father-mother trio of
cell lines using exact alignments.

Gene Father (gm12891) Mother (gm12892) Daughter (gm12878)

Primary Secondary Primary Secondary Paternal Maternal

A 01:01:01** 24:02:01** 11:01:18**3 02:01:01** 01:01:01** 11:01:01**3

B 08:01:01** 07:02:01** 15:01:01** 15:01:201 08:01:01** 56:01:01**1

C 07:02:01** 07:02:01*2 01:02:01** 04:01:01** 07:01:01**2 01:02:01**

DPA1 01:03:01 01:03:01 02:01:01 01:03:01 01:03:01 02:01:01

DPB1 04:01:01 03:01:01 14:01 06:01 04:01:01 14:01

DQA1 05:01:01 01:02:01 01:01:01 01:01:01 05:01:01 01:01:01

DQB1 02:01:01 06:02:01 05:01:01 05:01:01 02:01:01 05:01:01

DRA 01:02:03 01:02:02 01:01:01 01:01:01 01:02:02 01:01:01

DRB1 03:01:01 15:01:01 01:01:01 01:01:01 03:01:01 01:01:01

* Consistent at allele group level with types from Erlich et al., 2011 [37]

** Consistent at peptide level with types from Erlich et al, 2011.

1 Inconsistent between parent and daughter at allele group level

2 Inconsistent between parent and daughter at peptide level

3 Inconsistent between parent and daughter at nucleotide level

When compared to types determined by targeted resequencing and Sanger

sequencing as performed by Erlich et al., 2011 [37], all HLA class I alleles were recapitu-

lated for gm12878 at the peptide level (Table 4.2). Most class I alleles were recapitulated

for gm12891 and gm12892, except for those that were found to be discordant when com-

pared to gm12878. In all, sixteen out of eighteen (89%) of class I molecules were called

consistently with previous studies. Accuracy of other genes, assessed by looking for

consistent predictions between the daughter (gm12878) and her parents, had accuracy
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similar to major class I genes.

Accuracy of typing was assessed over the fifteen genes with sufficient coverage

(greater than 1% of all mapped reads supporting the gene). Of the thirty alleles in these

genes, twenty-six were predicted consistently at the peptide level, two were predicted

consistently at the allele group level and two were completely miscalled.

Figure 4.5: Final pruned weights supporting each gene in the IMGT database shows
expression over major class I molecules (A, B, C) as well as over most major class I
molecules (DMA, DMB, DPA1, DPB1, DQB1, DRA, DRB1). Some expression is seen
in minor class I alleles (E, F) and non classical molecules (TAP1 and TAP2).

In addition to predicting alleles, the method allows for the estimation of ex-

pression of all genes. Figure 4.5 shows the number of pruned reads aligning to each

HLA gene. We see that classical class I molecules (HLA-A, HLA-B, HLA-C) have

moderate expression in all samples. Likewise there is moderate to high expression of

some major class II genes (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-

DRA and HLA-DRB1). There is lower expression of the minor class I molecules along
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with some class II molecules (HLA-E, HLA-F, HLA-DMA, HLA-DMB, HLA-DOA and

HLA-DOB).

4.4 Discussion

The method described here performed well in simulations with read length and

substitution rates mirroring those of available sequencing technologies, namely Illumina

sequencers. HLAforest has the advantage of scaling well with longer reads and it fully

utilizes the phasing information present in paired-end reads. The method is general-

izable to any set of genes that can be arranged hierarchically. It also has the major

benefit of selecting alleles individually, thus reducing the complexity and combinatorial

difficulty of selecting two alleles simultaneously. Some problems remain, including the

inability to call novel alleles and report ambiguous alleles, but these can be addressed

in the future.

Simulations show that this method can achieve a high resolution accuracy

of 93% (2x100bp reads and 0.5% substitution rate) over the genes that represent the

majority of diversity in the IMGT database (HLA-A, HLA-B, HLA-C, HLA- DRB1).

Evaluation of this method on the daughter-father- mother cell line trio shows that

26/30 (87%) the daughter’s alleles were predicted consistently at the peptide level.

After comparison to results of Sanger sequencing and targeted resequencing with Roche

454, it was determined that errors in typing occurred within gm12891 and gm12892

(Table 4.2). Errors in typing may be related to the 2x75bp read lengths available for

these cell lines. In order to make accurate predictions, HLAforest relies on the phasing

information within individual reads, which are dependent on read length.

The majority of information extracted from short reads comes from the abil-

ity to phase discriminatory SNPs across the most diverse coding regions of the HLA

genes. For class I genes, the majority of diversity are present in exons 2-4 [119]. Here,

short reads of sufficient length and quality are able to phase the discriminatory SNPs

that define each allele. Indeed, increasing the read length to 2x200 nt in simulations

substantially improves the accuracy of the method with accuracy greater than 96.7% at

the peptide level. This finding is significant as high throughput sequencing technologies

such as Illumina and Ion Torrent have announced plans to release 2x200 nt sequencing
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kits. The HLAforest method is best applied to RNA-seq data as reads are more likely

to phase discriminatory SNPs across exons in fully spliced transcripts. If read lengths

or insert size exceed the length of introns in these genes, this method can be extended

to the whole genome or targeted sequencing datasets without loss of accuracy.

The robustness of this method is apparent in simulations testing effect of sub-

stitution rate on accuracy. Modern Illumina machines report an overall substitution

rate <0.5% [125]. In simulations with comparable error rates, HLAforest is able to

predict 93% of alleles at the peptide level. Even with substitution rates as high as 8.8%,

HLAforest can predict 99% of low resolution alleles correctly.

This method has major benefits over earlier methods. First it can be gen-

eralized to any set of genes that are classified hierarchically. Secondly, as opposed to

competing methods, there are no combinatorial issues with selecting two alleles to score

simultaneously. In this method, alleles are chosen procedurally and this reduces the

computation time necessary for scoring many hypothetical pairs of alleles.

Recently, HLAMiner has been published and shares many of the same bene-

fits as HLAforest. The major distinction between the methods is HLAMiner’s reliance

on the de novo assembler, TASR [166]. HLAforest exploits highly efficient short read

alignment algorithms, which have been the subject of major development in the bioin-

formatics field. This alignment step is easily parallelizable, as opposed to de novo

assembly methods that require shared memory. Additionally, HLAforest uses all the

phasing information within paired-end reads rather than attempting de novo assembly

with shorter k-mers. Differences in the methodologies make direct comparison of the

methods difficult. However, our simulations with 2x100 nt reads and 0.55% substitution

rate show an average major class I accuracy of 92.7% at the peptide level as opposed to

HLAMiner’s sensitivity and specificity of 84.7% and 89.65% with the same parameters,

respectively. When error rates were increased to 2%, average major class I accuracy

with HLAforest dropped slightly to 92.7% whereas the sensitivity and specificity of

HLAminer’s simulations were 54.9% and 87.5% respectively. The data suggests that

HLAforest’s predictions are more accurate than HLAMiner even with larger error rates.

When compared to HLAMiner on sixteen colorectal cancer samples, HLAforest

was able to predict 97.7% of low resolution alleles and 85% of high resolution alleles
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for Class I molecules. HLAMiner reported 95.6% sensitivity and 99% specificity at

low resolution, and 90.7% sensitivity and 93.5% specific at high resolution. It is worth

noting that the sensitivity and specificity measures reported by Warren, et al. are not

standard. Whereas HLAforest generated 96 predictions for the 96 possible peptide-level

Class I alleles, HLAMiner generated 235 predictions.

HLAforest’s predictions for colorectal cancer samples fell below the levels pre-

dicted by simulations with 2x100nt read lengths. This is perhaps due to the low number

of reads aligning to the IMGT database, especially when compared to the HapMap sam-

ples (3,500 for colorectal samples vs 127,000 for HapMap samples). Insert size may also

play a role in prediction accuracy.

HLAforest performed well on fifty HapMap samples using 2x37nt reads. It

was able to predict 96% low resolution types accurately. Performance of HLAforest was

comparable to seq2HLA, which predicted low resolution types with 100% sensitivity and

93% specificity. However, HLAforest was also able to predict 82% of high resolution

types correctly. Remarkably, HLAforest performed better on these samples than it did in

simulation with similar readlengths. This is perhaps due to the increased coverage in the

HapMap samples as well as the reduced representation of alleles present in these samples.

These cross study comparisons imply better performance with HLAforest; however,

such comparisons should be interpreted cautiously until systematic benchmarking can

be performed.

Although HLAforest presents many strengths, there are some shortcomings.

First, typing class II MHC molecules may be impossible based on the cell type of the

input RNA. Because only specialized antigen presenting cells (such as B cells, dendritic

cells, etc) express class II MHC molecules, some of these cells must be present in the

sample in order to generate the corresponding reads. Second, the method is restricted to

alleles that already exist in the IMGT database. HLAforest chooses the closest matching

allele, but does not reconstruct the actual allele. It is feasible to look for novel alleles

by generating a consensus sequence from the reads supporting each predicted allele and

then checking for novel SNPs. Third, HLAforest reports only two alleles and does not

produce confidence scores at this time. Finally, this method does not yet incorporate

population-based frequency data that has been shown to improve the accuracy of all
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typing methods in well-studied populations [120].
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Chapter 5

UCSC Immunobrowser

5.1 Background

The previous chapter discussed the MHC/HLA molecules that are important

for displaying the peptides found intracellularly or extracellularly. HLA alleles encode

the range of peptides that can be displayed. The genetic diversity of HLA alleles in

the population is generated by balancing selection, the surface structure recognized by

TCRs also include a processed peptide. The diverse surface structure of the MHC-

peptide complex is therefore a result of a large number of HLA alleles in addition to the

set of proteins found within the human body. Although the surface structures of MHC-

peptide complexes are highly diverse, the peptide display functionality allows structural

diversity to be encoded directly within the genome.

It is the T-cell’s responsibility to analyze displayed peptides and to elicit an

immune response when abnormal peptides are detected. T-cells are able to detect a wide

array of possible MHC+Peptide complexes through the characteristic T-cell receptor

(TCR) [109]. TCRs bind to peptides that have been processed and presented by MHC

class I and II molecules. The wide array of displayed peptides are reflected by the

number of unique TCRs that circulate freely through the lymphatic and circulatory

systems [49].

Rather than encoding the detecting receptor of each peptide directly in the

genome, T-cells utilize a system for generating a diverse array of binding pockets. VDJ

Recombination is the molecular process that gives TCRs their diversity. This system
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allows for the generation of T-Cells with 1015-1020 different receptor sequences. In the

process of recombination, each T-cell precursor undergoes a somatic rearrangement of

multiple gene segments to create a novel DNA sequence. The rearranged DNA sequence

defines the binding specificity of its receptor. Recombination contains multiple steps

including combinatorial junction joining, junctional flexibility, palindromic addition (P-

addition), and random nucleotide addition (N-addition).

Combinatorial junction joining is the process in which V, D and J segments

are joined together randomly. Each V and J segment contain conserved sequences for

the formation of the immunoglobulin fold, but differ significantly at the sequence level.

Combinatorial joining of individual V, D and J segments account for 2.25 x 106 and 5.29

x 106 possible combinations in BCRs and TCRs. TCR-β and IgH chains recombine V,

D and J units while TCR-alpha, Igλ and Igκ recombine only the V and J segments.

During the joining of V, D, or J segments, genetic sequence may be altered by

deletion or by addition of palindromic sequence at the junctions of a segment. These

additions are a result of the joining process that creates a hairpin at the end of each seg-

ment and creates a nick randomly. Following the creation of a nick, random nucleotides

are added by terminal deoxyribonucleic acid transferase. These deletions and additions

account for much of the diversity found in recombined TCRs.

T-cells express only a single receptor despite having two parental loci for each

gene. Studies have shown that some T-cells have rearrangements in both parental

alleles. Despite this, only a single parental allele for each chain is expressed. The

method which silences a parental allele is known as allelic exclusion. If a productive

VDJ rearrangement is made, a functional chain is translated and molecular mechanisms

stop any further rearrangement. If a VDJ rearrangement is nonfunctional, the second

parental allele is rearranged. If both rearrangements are nonproductive, the cell dies

through apoptosis [97, 142].

Maturation of B-cells and T-cells share many similarities. Both B-cells and

T-cells are created from hematopoietic stem cells in the bone marrow. B-cells remain

in the bone marrow throughout maturation, whereas progenitor T-cells will migrate to

the thymus to mature [87]. During maturation, sequential somatic recombination of

receptor locii produce mature B-cells and T-cells. Self-reactive B-cells and T-cells are
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deleted by apoptosis in a process known as negative selection[113]. B-cells that are

self-reactive may undergo light chain rescue, in which alternative recombination of the

light chain can reduce self-binding affinity [111]. T-cells also undergo positive selection

in which T-cells that are unable to recognize self MHC are eliminated [144].

B-cells and T-cells have less in common during activation than they do during

maturation. T-cell activation requires the binding of a TCR and its coreceptor CD4 or

CD8 to a peptide-MHC complex. A costimulatory signal between B7 on the antigen

presenting cell and CD28 on the T-cell are also required for activation of the T-cell.

Stimulation of the CD28 receptor on the T-cell by CTLA-4, a close relative to B7,

prevents activation and suspends the T-cell in a resting state known as anergy. Activated

T-cells generate effector and memory T-cells. Memory T-cells are more easily activated

than naive T-cells allowing for a faster response to second exposure of an antigen [76].

B-cells migrate from the bone marrow into the periphery where they are gener-

ally activated by helper T-cells. With lipopolysaccharides and other repetitive epitopes

In some cases, B-cells can activate in the absence of T-cells. Activation of B-cells result

in the production of both plasma B-cells, that produce antibodies in large quantities,

and memory B-cells. A week after activation, germinal centers form in lymph nodes,

which serve as a site of somatic hypermutation, antibody class switching, and clonal

expansion of B-cells [76].

There is a discordance between the number of possible VDJ rearrangement

and the number typically observed in sequencing experiments. This can be partially

explained by the degeneracy of the genetic code multiple DNA sequences can code for

the same amino acid sequence. This is most evident in infant samples, where due to

a lack of TdT expression, the number of possible rearrangements are much lower than

in adults [30]. There are many ways to generate the same amino acid sequence from

varying junctional joinings. It has been theorized that these early rearrangements target

common antigens allowing the young to build up a strong and capable immune defense

against common environmental pathogens.

This observation has been seen in both the BCR and TCR loci. In a study

of zebrafish, Jiang et al., 2011 found that Ig VDJ junctional usage between young

zebrafish were highly correlated. A different correlation were observed in older fish.

81



The primary recombination rates in adult zebrafish were highly correlated, although

clonal expansions lower the correlation at the total repertoire level [66]. Rudd et al.,

2011 observed a similar phenomenon in young and old mice responding to a common

antigen [134]. Another important observation in Rudd’s study was that there were

multiple different TCR rearrangements that targeted the same antigen.

It is important to consider HLA alleles in the shaping of the immune reper-

toire. A number of studies have found a relationship between VDJ usage of an immune

response to a specific antigen and the allele of individuals [100]. The difference in

structure of MHC class I and class II molecules also effect the VDJ usage in T-cells,

where specific gene segments are preferred for specific MHC alleles [155]. In one ex-

ample, adults positive for HLA-A*02 preferentially use TCR-α-10.2 and TCR-β-17 V

gene segments during an immune response to the influenza virus [145]. Some of these

public immune responses even share the same CDR3 amino acid sequence. Typically

the shared amino acid sequence is largely derived from rearrangements with low num-

bers of insertions, further supporting the theory that early rearrangements provided a

broad defense against common antigens. Recently, TCR sequencing experiments also

provide some evidence for preferential VDJ usage among healthy individuals with the

same allele that are not undergoing an immune response to an antigen [165].

TCR sequencing experiments have been useful beyond general study of the im-

mune repertoire and the detection of public TCRs. Recent years have shown increasing

study of the role of the immune system in cancer. The immediate applications of TCR

sequencing experiments have obvious applications to T-cell driven Leukemia. Numer-

ous studies have shown that TCR sequencing experiments are as effective at detecting

lymphoid cancers such as ALL and CLL versus standard methods such as spectratyping

or Sanger sequencing [95]. They are also effective for tracking the treatment efficacy of

chemotherapies. Post treatment sequencing experiments are also useful for tracking of

minimal residual disease (MRD) for the detection of cancer relapse.

Perhaps the greatest side effect of common standard of care cancer therapies

such as chemotherapy and radiation is the destruction of all quickly replicating cells.

Although these have the capability of destroying cancer, they also have the side effect

of destroying the immune system, which relies on replication and clonal expansion for
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effector functions of the adaptive immune system. In the case of lymphomas, immune

depletion may be the intended effect where the immune system is then reconstituted by

hematopoietic stem cell transplantation (HSCT). In either case, the reconstitution of the

immune repertoire can be carefully monitored to ensure that healthy immune function

is restored post therapy. As HSCT is extended for diseases outside of cancer, such as

MS or HIV, proper immune reconstitution monitoring becomes another important use

case for TCR sequencing.

5.1.1 Sequencing of TCR Repertoires

High throughput sequencing (HTS) or next generation sequencing (NGS) refers

to a class of sequencing machines that produce a much greater throughput of sequence

information when compared to traditional Sanger/capillary based sequencing [95]. Cap-

illary based sequencing is typified by its long read length, but is only capable of sequenc-

ing a single amplicon at a time. HTS machines are capable of producing significantly

greater amounts of sequencing information in a single run, but typically produce shorter

read lengths than those afforded by Sanger sequencing. Of the many HTS technologies

available, platforms by Illumina and Roche 454 are preferred for immunosequencing

assays although Ion torrent sequencers have also seen increasing use [129]. Both tech-

nologies have their strengths and drawbacks and the selection of a sequencing platform

depends on the main goal of the experiment.

The 454 titanium generates long read lengths (read lengths up to 1,000 bp

have been reported) and produces around 106 reads per run. The long read lengths

allow researchers to sequence an entire variable domain of BCR/TCR, which range

from 350-400 bp in total length [179]. This is especially important for BCRs because of

the somatic hypermutation that can generate SNPs across the entire domain. However,

the relatively low number of reads limits the sampling depth of the repertoire and rare

clonotypes are typically missed with this sequencer.

The HiSeq is Illumina’s latest sequencing machine and is known for its gen-

erous throughput. A single run on a HiSeq is capable of producing upwards of 3x109

sequencing reads. However, the read length is much shorter than that offered by the

454. The maximum read length of a HiSeq is 100 bp read from either end of a DNA
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fragment. Known as paired-end sequencing, this method generates 100bp reads from

both the 5’ and 3’ end of a fragment [179]. The shorter read length prevents researchers

from sequencing an entire variable domain. Thus, researchers tend to concentrate on

the CDR3 region of BCR/TCRs. Because TCRs do not undergo somatic hypermu-

tation, the DNA sequence of the entire variable domain of a specific clonotype is less

informative than for BCRs.

The choice of sequencing platform greatly dictates the sample preparation

methods used to prepare the sequencing libraries. Because the 454 offers longer read

lengths, sequencing primers can be designed in more conserved regions of the BCR/TCR.

When generating a library for Illlumina, generally multiplex PCR techniques with

primers designed for each V and J segment are necessary. As the read length of high

throughput sequencing machines increase, it is likely that all immunosequencing exper-

iments will sequence the entire variable domain in order to reduce primer bias and call

alleles in each sample.

A number of approaches for amplifying CDR regions have been applied in

human [16, 41, 78, 131, 132, 161, 165], other organisms [66, 128, 167] and phage-display

libraries [127]. Once DNA or RNA is isolated from a sample, the VDJ region is amplified

by a variety of techniques. The simplest approach is PCR where primers have been

designed for conserved regions of an RNA transcript. In this scheme, a single reverse

primer designed for the constant domain of each TCR/BCR can be utilized with a small

number of forward primers.

DNA based approaches must utilize primers designed specifically for each V

and J segment because the constant region is separated by a large intronic region. Be-

cause the recombination joins V segments to J segments randomly, primers designed

specifically to each V and J are utilized. Multiplex PCR (mPCR) differs only from tra-

ditional PCR in that more than one pair of primers is used. Methods based on mPCR

tend to have problems with quantification because small differences in template GC con-

tent and primer binding efficiency can result in a largely skewed final dataset [122, 70].

In order to combat primer bias in multiplex PCR schemes, Klaranbeek chose to first use

bi-directional linear amplification followed by universal PCR (uPCR) primers [78]. In

bi-directional linear amplification, forward and reverse primers are designed in the same
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manner as PCR. The primers in this study also contained universal primer sequences

at the 5’ end which are utilized during the universal PCR step. During amplification,

only a single directional primer is used preventing the exponential amplification that

would have resulted in large biases. After the forward amplification is finished, the

remaining primers are removed and a reverse directional amplification is done. After

the linear amplification, traditional PCR with universal primers is done to increase the

total amount of DNA material available for sequencing. This method reduces the effect

of primer bias by amplifying exponentially only after the initial template is enriched by

linear amplification.

Amplicon Rescue Multiplexed PCR (armPCR) is a proprietary technique that

is conceptually similar to linear PCR followed by uPCR [53]. In the armPCR scheme,

a low concentration of gene specific primers are used for a small number of PCR cycles.

The left over primers are degraded with an exonuclease followed by a large scale am-

plification using universal primers. Because the primer bias is only in effect for a small

number of cycles, it is believed that armPCR gives a more realistic viewpoint of the

depth of clonal expansion within a sample.

5.1.2 Junctional Analysis Software

Immunosequencing data analysis is directed by the goal of the experiment.

Thus the analysis techniques differ greatly from study to study. However, every exper-

iment begins with junctional analysis software, which converts short sequencing reads

into immunologically meaningful data. The types of results produced by these pro-

grams ultimately depends on the package. These tools, however, generally V and J

gene segments. Some are able to call D segments, characterize insertions and deletions

in junctional regions, translate the nucleotide sequence into a protein sequence, and

determine whether a sequence produces a frame-conserving amino acid sequence.

Most publicly available software for junctional analysis was developed before

the advent of immunosequencing. There are two types of tools: blast-based tools that

utilize fast alignment algorithms to identify gene segments and HMM-based tools that

are capable of producing statistically rigorous probabilities of each gene-segment call

with higher accuracy.
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Blast-based tools such as IMGT/V-QUEST+JVTA, Ab-origin, NCBI IgBlast,

and JOINSOLVER are functionally similar. DNA sequences are blasted against a

database of known immunoglobulin sequences and the highest scoring results are re-

ported [143, 45, 18, 162]. Typically, the DNA sequences are blasted against V-segments

and J-segments separately. Once both V and J segments are called, the frame of the

V-segment is identified and the nucleotide sequence is translated to an amino acid se-

quence. A D-segment may also be called if it is available, but typically D-segments are

difficult to call due to their inherently short length and the deletions/insertions created

during the recombination process.

HMM-based methods work in a manner similar to blast-based tools, but more

sensitive HMM based alignments are used in place of blast-based tools. HMM-based

junctional analysis tools are designed to align specifically to the VDJ recombination

region and incorporate insertions and deletions into their topography. HMMs such as

iHMMune-align and SoDA report the most probable alignment, by using the Viterbi

algorithm [43, 159]. SoDA2, the successor to SoDA, gains the capability of reporting the

probabilities of multiple possible alignments by implementing the backward algorithm

[108]. A benchmark by Jackson et al., 2010 shows that HMMs have better results than

blast-based tools [61].

These tools were all designed with low throughput experiments in mind. Tools

such as iHMMune-align and SoDA2 sacrifice runtime for increased sensitivity and power.

Some attempts have been made to transform these algorithms for high throughput data

(IMGT-HIGH, V-QUEST). However, IMGT is not suitable for automation due to a

web-only interface and a 150,000 sequence limit per submission and only IMGT is able

to perform junctional analysis on TCR sequences, the remaining tools have concentrated

on IG sequences.

As the technology matures, numerous groups have developed software to better

handle data at the scale of HTS. Decombinator and miTCR are two software packages

that have been developed to handle the size of datasets being generated by modern

sequencers. Decombinator uses a finite state machine in order to generate gene segment

predictions in linear time [150]. Although the method is fast, the method fails to assign

segments to 12% of reads with 1% sequencing error. miTCR identifies gene segments
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using a seeded-extension algorithm based on the short motifs found in V and J gene

segments [14]. miTCR performs well due by performing junctional analysis on high

quality reads. Low quality reads are then mapped to high quality reads in linear time.

The methodology is capable of eliminating >95% of sequencing errors and executes

quickly enough to be applicable to real world datasets.

However, the majority of these tools are dedicated to the processing of raw

sequencing data, calling VDJ gene segments in recombined receptors and mitigating

sequencing error. Even software packages that offer visualization tools, such as miTCR,

are not well suited for cross-sample comparison. While commercial services such as

adaptiveTCR and iRepertoire offer web-based analysis and visualization tools, these

are not open to the public and data generated using open protocols are not compatible

with their systems. Thus, the need for an open academic resource for the comparison

of T-cell receptor data is apparent.

5.1.3 Repertoire Analysis Methods

The types of repertoire-level analysis that are performed is application specific.

Since its initial description in 2008, the assay has been utilized for characterizing general

features of the TCR, tracking of cancer relapse and identification of public TCRs.

Because TCR sequencing offered an unprecedented sampling depth and sen-

sitivity compared to previous methods, early studies often sought to character general

characteristics of the TCR repertoire. Features such as gene-segment usage, CDR3

length, clonal expansion and upper bound estimates of the number of TCR sequences

were assessed by numerous groups.

Gene-segment usage analysis can be explored to test for biased VDJ gene-

segment usage or as a proxy for clonal expansion. The underpinning methods used for

analysing gene-segment usage are simple. The fraction of reads or clonotypes which

utilize a particular V or J gene segment ares counted and are plotted as a histogram

where a categorical range is defined by the set of V or J genes. Finer granularity can be

achieved by generating fractions for V-J pairs, or clonotypes that utilize a specific V and

J. Comparison of V or J gene segment usage across multiple samples can be accomplished

simply by plotting samples as lines or color-encoding samples in barcharts.
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Visualizing V-J pairs is often performed with standard InfoVis techniques for

two-dimensional histograms. Heatmaps, 3d histograms, scatterplots or chord diagrams

are usually used to display V-J usage frequency. Both paired and unpaired gene-segment

usage visualizations allow researchers to quickly identify overrepresentation of gene-

segment usage.

By themselves, these plots are useful for identifying over-representation of a

gene segment usage. Although these plots are generalizable to any TCR sequencing

experiment, a variety of conclusions can be drawn depending on input material and data

processing. For example, by looking at the non-coding subset of unique TCR sequences

originating from DNA it was possible to determine that VDJ gene segment selection

during recombination is indeed biased [110]. Alternatively, by looking at the overall

frequency of coding sequences from DNA, it is possible to predict the total number of

T-cells within the body sharing the same TCR sequence [165]. Or by sequencing both

the RNA and DNA from a blood sample, it’s possible to identify V-J gene segment

subsets that are undergoing clonal expansion, as it is known that during activation

and clonal expansion expression of the TCR is increased [76]. However, comparison

of paired gene-segments usage across multiple TCR samples is difficult because each

sample requires its own plot.

CDR3 length is another feature of TCR sequences that can be assayed and

visualized at a repertoire level. CDR3 length can be determined at both the nucleotide

and amino acid level. At the amino acid level, CDR3 length is distributed as a Gaus-

sian. Due to selection for coding TCR sequences during development, nucleotide CDR3

length of multiples of 3 are also distributed as a Gaussian, whereas the remaining lengths

are considered non-coding and underrepresented [156]. Nucleotide histograms of CDR3

length frequency recreate spectratypes, where the read out is fluorescent intensity mea-

sured during capillary electrophoresis. For RNA-sequencing experiments, the frequency

of non-coding lengths should be near zero. As with V-J usage diagrams, clonal ex-

pansions are easily identified in these plots. When assayed in samples originating for

DNA and by looking at only non-coding sequences, parameters for the distribution of

insertions and deletions generated by the VDJ recombination process can be measured.

Ultimately, many studies focus on clonal expansion. Large clones can be read-
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ily identified by sorting a list of all TCRs by their frequency. Large clones also present

themselves in gene-segment usage plots as V-J pairs with large representation or in

spectratypes as abnormally large peaks. Some studies utilize figures that plot the cu-

mulative frequency of a sorted list of clones to show the extent of clonal domination

within a sample. Likewise, statistical summaries such as Shannon’s entropy also serve

as a single number that represents the extent of clonal expansion where smaller numbers

represent more clonal dominance within a dataset.

Identification of largely dominant clones is important for the detection of can-

cers such as chronic lymphoblastic leukemia or acute lymphoblastic leukemia. In cases

of CLL or ALL, a single TCR sequence will dominate the majority of the represented

repertoire (cite harlan and other groups that have measured this). Such a large effect

is readily visible in all described plots as well as entropy measures. Once a cancer-

associated TCR sequence is identified, subsequent sequencing experiments during ther-

apy and remission can track the effectiveness of treatment and detect cancer recurrence.

Clone tracking and overlap analysis is a common for the tracking of cancer-

associated sequences, TCR sequences across T-cell compartments, as well as for identi-

fying TCRs shared across multiple samples and potential public TCR sequences. TCR

sequences shared across multiple samples or individuals potentially target the same epi-

tope. Identifying shared sequences from flat files can be computationally inefficient due

to the need to process large files and store sequences in memory. Previously sequenced

samples may also provide insight into function of TCR sequences, however, current tools

do not enable the identification of sequences shared over many samples– only samples

within the current study.

Once a TCR sequence of interest is identified, IMGT offers a blast-based service

for identifying similar sequences annotated in Genbank. However, many studies do not

submit their sequences to Genbank, instead opting to include the sequences in their

main text or in their supplement.

5.1.4 Issues with Current Methods

Although current methods are powerful, there are areas that could be dras-

tically improved. Ease of use, improved visualizations and simpler access to a large
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repository of TCR sequences are not emphasized. Without the standardization of tools,

analyzing TCR sequencing experiments requires a background in computer science and

the ability to program.

5.1.5 Considerations for Designing the Immunobrowser

A public resource for the analysis and storage of TCR sequencing experiments

should provide powerful analytic tools, serve as a repository for sequencing data, be

easily accessible, expandable and shareable.

The tools should be usable by those without substantial programming experi-

ence. The browser should not only recreate typical analysis performed on TCR sequenc-

ing experiments, but also overcome existing issues with current analytic techniques and

visualizations. In order to be useful as an analytic tool, it must also be powerful enough

analyze subsets of the data that are of interest and to produce new results in real time.

Tasks such as tracking shared clones must be fast and the identification of all samples

which share the same clone must be done quickly. Analytical tasks must be easily al-

tered and the results persistent. The tools should not only be publicly accessible, but

provide persistent results that are easy to share.

Finally, because technology and analytical methods continue to improve, the

design of the Immunobrowser should be such that it is easy to expand and maintain.

Analysis methods and visualizations should be modular, reusable and should not affect

the underlying data.

5.2 Implementation

The UCSC Immunobrowser was built following a web-based Model-View-Controller

(MVC) software design pattern. MVC architecture is one of the oldest design patters

for user interface (UI) development and applications designed using MVC principles are

prevalent in modern web applications. The major benefit of the MVC design pattern

is the separation between the underlying data (Model), “business logic” (Controller)

and the user interface (View). The UCSC Immunobrowser utilizes the python package,

Django [31], which allows for simplified implementation of web sites.
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All data storage and manipulation are sequestered within the Model layer.

A built in object-relational mapping (ORM) allows for pythonic objects to be stored

directly within a relational database (RDB), in this case a MySQL database is used.

In addition to data storage and retrieval, all methods for data manipulation prior to

presentation are encapsulated within this layer.

The controller layer is responsible for identifying the types of data and ma-

nipulations that should be prepared for presentation to the user. In the context of

the Immunobrowser, the views receive a command from the user, decides what data to

return and chooses the appropriate view to render the data.

The view is the user interface of the Immunobrowser. All the visualizations,

tables and statistics generated by the immunobrowser are described in the views. Al-

though django is capable of generating static visualizations when paired with other

python libraries such as matplotlib, interactive figures require the use of javascript. I

utilize d3.js to generate interactive figures [15]. In addition, jQuery and bootstrap.js

are both utilized to build user-interface modules throughout the browser.

5.2.1 Immunobrowser Model Layer

The Model Layer describes, stores and manipulates all the data utilized by

the Immunobrowser. The objects stored in the browser are generally divided into two

classes. The first class stores experimentally derived data such as patient information,

blood sample from a patient, clonotypes, genetic recombinations and amino acid se-

quences. The second class stores downstream analysis data such as the set of filtering

parameters used to generate visualizations and comparisons between multiple patients

or samples.

Five models are associated with data generated directly from a TCR sequenc-

ing experiment (Figure 5.1). A patient model stores individual-specific information that

does not change between blood draws including: name, gender, disease and birthday.

A sample model reflects individual TCR sequencing experiment and stores associated

information such as cell type, blood draw date and a patient. A single patient may

be associated with many samples. Each sample object is associated with one or more

clonotypes. Biologically, a clonotype refers to a clonal population of T-cells sharing the
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Figure 5.1: An entity relationship diagram of key Django models used to build the Im-
munobrowser. The Patient, Sample, Clonotype, Recombination and AminoAcid models
store data generated from TCR sequencing experiments. The Clonofilter model and
Comparison models store data associated with post-sequencing analysis.

same TCR. Here, the Clonotype model describes the abundance of T-cells expressing

the same TCR nucleotide sequence in a sample. The Recombination model stores the

genetic TCR sequence generated through VDJ recombination in vivo. A nucleotide

sequence generated through targeted high throughput sequencing first undergoes junc-

tional analysis using miTCR to identify the V, D and J gene segments used during

recombination along with deleted and inserted bases. The annotated nucleotide se-

quence is then stored following the Recombination model. Finally, if a recombination is

productive, it may be associated with an Amino Acid object that stores only a protein
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sequence.

The ClonoFilter and Comparison models are used for comparative analysis of

TCR sequencing experiments and are generated during repertoire analysis. ClonoFilters

are associated with a single sample and store filtering parameters that allow researchers

to visualize subsets of data. ClonoFilters are then used to retrieve a subset of clonotypes

that adhere to filters present in a ClonoFilter. For example, a ClonoFilter with a

minimum count of 10 would be used to query all clonotypes from a sample with at

least 10 counts. ClonoFilters also have a normalization factor, which by default is set

to the sum of observed counts. A comparison object is a set of clonofilters. ClonoFilter

objects allow for many possible subsets of the data to be visualized on the fly, allow for

persistent results with minimal data storage and simplifies sharing of results.

In addition to storing and retrieving data, the Model layer also contains meth-

ods for preprocessing data. For example, a method can return the total number of unique

amino acid sequences found within a patient by performing an aggregate database query.

More complex queries, such as returning the number of sequence reads associated with

all V-J gene segment pairs are used to generate interactive visualizations presented by

the Immunobrowser.

5.2.2 InfoVis Views for Exploratory Analysis of TCR Repertoires

Information visualization (InfoVis) is a subfield of data visualization that stud-

ies effective visual presentation of abstract data. The major focus of the field is to present

large quantities of data in an intuitive and informative manner. Although the InfoVis

field typically focuses on discovering and testing optimal methods for data presentation,

the discovered techniques can be applied to the visualization of data generated from a

array of fields including biology, economics, computer science, statistics and other fields

where the structure of data does not have a rigid underlying visual structure. InfoVis

techniques have also been utilized in TCR sequencing experiments to visually represent

the usage of VDJ gene segments in the repertoire.

The UCSC Immunobrowser leverages common InfoVis techniques such as color

coding, opacity and interactivity to enable visual analysis of TCR sequencing experi-

ments. By incorporating these InfoVis elements, the shortcomings of traditional static
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visualizations are avoided. In the following section, I review visualizations used in the

Immunobrowser and compare their functionality to existing plots.

The majority of visualizations used in the Immunobrowser appear in the Com-

parison view. In the view, an arbitrary number of samples are compared through the

use of a summary table, spectratype plot, scatterplot, functionality plot, domination

plot and shared clones plot. InfoVis techniques are also utilized in other portions of

the browser including the repertoire filter forms, TCR sequence view and the literature

search view.

5.2.2.1 Summary Table

In some instances, a table can outperform a figure. This is the case with unre-

lated summary statistics generated from repertoire of a single sample. A summary table

shows the number of unique amino acids, recombinations and sequencing reads observed

for each sample. Shannon’s entropy is also reported as a measure of clonal expansion

in the repertoire. A low entropy value indicates the presence of highly dominant clones

within a sample. It also contains a link to all the clonotypes within a sample that pass

user-defined filters (Figure 5.2).

Figure 5.2: Summary table in the Compare view shows a numerical summary of filtered
repertoires. Each row corresponds to a sample and shows the number of high throughput
reads, genetic recombinations and unique amino acid sequences detected. In addition,
the entropy of observed clonotype frequencies give a single numerical summary of clonal
dominance in a sample. A hyperlink takes users to a detailed view of all clonotypes
associated with the sample.
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Figure 5.3: A spectratype shows the abundance of clonotypes (Y-axis) based on the
nucleotide length (X-axis) of the recombined CDR3 sequence in the Compare view. In
a sample derived from the DNA of a healthy non-challenged individual, it is typical to
see peaks at lengths that are modal-3 (or every third length). Such a pattern is occurs
due to selection of protein-coding receptor sequences during T-cell development. It is
also typical to see peaks that are normally distributed in healthy individuals. Non-
normal distributions often indicate an active expansion of clonotypes that often occurs
during the adaptive immune response.

5.2.2.2 Spectratype Plot

The spectratype plot emulates an immunological assay where TCR sequence

representation was assayed by length-based electrophoresis rather than sequencing [98].

Spectratypes can be interpreted as a histogram of observed CDR3 sequences binned

by nucleotide length (Figure 5.3). In general, the spectratype shows spikes on CDR3

lengths that are multiples of three. This effect is attributable to the selection of coding

TCR during T-cell development. CDR3s whose lengths are lengths are a multiple of 3

are distributed as a gaussian distribution in healthy adults who are not undergoing an

active immune response. Large deviations from a normal distribution are often viewed

as evidence of a clonal expansion.

Although spectratypes are commonly used for the study of TCR repertoire,

they do not incorporate additional information from sequencing experiments such as V
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and J gene segment usage.

5.2.2.3 VDJ Scatterplots

Visualizing VDJ gene segment usage is commonly performed using methods

capable of displaying three dimensions of data. The dimensions represented in VDJ gene

segment usage plots are the V, J and sometimes D gene segments used in recombination

along with a number representing the overall abundance for a unique VDJ combination.

Heatmaps, scatterplots, three dimensional histograms and chord diagrams are useful

methods for displaying VDJ gene segment usage. However, comparing multiple samples

in a single plot adds an addition dimension that the aforementioned techniques can not

easily accommodate.

I address this issue by color-encoding samples, using opacity to display all

samples simultaneously and utilizing interactivity to highlight individual samples or VJ

combinations (Figure 5.4.A). Scatterplots display clonotype frequency based on joint

V and J gene segment usage rather than CDR3 length. V and J gene segments are

laid out on the X and Y axis respectively. Color-coded circles representing the sum of

observed frequencies are then plotted. Circles with larger sizes represent higher observed

frequencies of a V-J gene segment pair within a sample. However, studies have shown

that the human ability to correlate area with a number is limited.

I again utilize interactivity to address this issue, preserving obvious visual dif-

ferences in circle size while simultaneously providing numerical frequencies on demand.

When a circle is highlighted with a mouse cursor, a tool tip displays decimal values of

joint V-J usage frequencies for each sample (Figure 5.4.B).

In some instances, users may be more interested in the marginal V or J gene-

segment usage rather than a joint V-J usage. To address this, V and J gene segment

usage histograms flank the main scatterplot and share the same axis labels. By default,

these histograms show the marginal usage of V and J gene segments in the dataset

(Figure 5.4.C). However, the histograms can display a specific V or J gene segment

usage histogram when an axis label is highlighted.
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Figure 5.4: A scatterplot showing joint frequencies of V and J gene segment usage in the
Compare view. Larger circles indicate larger frequencies. Histograms above and to the
right of the scatterplot show the marginal frequencies of V or J genes. B) Hovering a
mouse cursor over a circle shows the numerical frequencies of each sample in a popover
tooltip. C) Hovering over an axis label updates the histogram to show frequencies
of the selected gene segment. Here the above histogram shows the frequencies of V
gene-segments given the highlighted J gene-segment, TRBJ1-1.

5.2.2.4 Functionality Plot

Although scatterplots and spectratypes are useful tools for repertoire visu-

alization, not all TCR sequences in the repertoire encode functional receptors. The

functionality plot is a stacked bar plot that shows the proportion of the sample repre-

senting coding TCRs vs sequences with stop codons and frameshift mutations (Figure

97



5.5). This plot allows researchers to assay enrichment for functional TCR sequences in

a dataset, a metric that is especially useful for RNA-based sequencing assays where all

detected clonotypes should be functional.

Figure 5.5: A stacked bar plot shows the fraction of protein coding status for each sample
in the Compare view. During the formation of a T-cell receptor, the VDJ recombina-
tion process generates new nucleotide sequences that define the protein structure of the
receptor itself. However, this process does not guarantee that each newly-generated
receptor will produce a functional protein. A generated protein sequence can be: func-
tional, contain a stop codon, or is out-of-frame. Generally samples from RNA will
contain more functional receptors than a DNA sample.

5.2.2.5 Domination Plot

Clonotypes that represent large fractions of a total repertoire are especially

interesting in tracking of blood cancers. A domination plot shows the total cumulative

fraction of the repertoire that is represented by the top 100 clones with the largest

frequency. A quickly rising line represents large clonal expansions that dominate the

repertoire, while a slowly rising line indicates a repertoire with a more uniform distri-

bution of clonotype frequencies (Figure 5.6).

5.2.2.6 Shared Sequence Plot

Identifying shared TCR sequences is useful in samples drawn from the same

individual or for detecting “public” TCRs used to detect exposure to common pathogens.
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Figure 5.6: A line plot shows the shows the cumulative frequency (Y-axis) of the top
100 most abundant clonotypes for each sample (X-axis) in the Compare view. Larger
area under the curve indicate lower levels of diversity in a sample.

The shared clones plot displays frequencies of amino acid sequences shared between all

samples in a comparison. Frequencies for shared amino acid sequences are displayed as

both a line plot and in a table. All shared amino acids contain a link to the amino acid

detail view. Amino acids highlighted in the plot are also highlighted in the table, and

vice versa (Figure 5.7).

5.2.2.7 TCR Sequence View

In addition to interactive sample comparison views, detailed views exist for

individual clonotypes, recombination and amino acids. These views can be accessed

via the “view all clonotypes” summary table, or from the shared amino acid plot in

the comparison view. These views display the total number of reads represented in a

clonotype, the V, D and J gene segments used in a recombination as well as the final

coding amino acid sequence (if applicable) (Figure 5.8).

5.2.2.8 Literature Search

Users can search our database of CDR3 sequences mined from the literature by

inputting their protein sequence in FASTA format. Alternatively, users can access this

page from the amino acid detail view. Any resulting hits to the Literature database are
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Figure 5.7: A graphical and tabular summary of shared amino acid sequences in the
Compare view. Upper Panel : Frequency (Y-axis) of amino acid sequences in a sample
is displayed as colored circles. Amino acid sequences across samples are represented as
grey lines connecting circles. Lower Panel : A table displays the frequency of a shared
amino acid for all samples. Hovering the mouse cursor over a row of the table highlights
the corresponding line in the line plot and vice versa.

displayed with query-sequence alignments and links to the original publication (Figure

5.9).
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Figure 5.8: The detail view for a single clonotype. (Top Panel) The frequency and count
of the clonotypes within a sample are shown. (Middle Panel) Recombination detail view
shows the nucleotide sequence colorized according to membership of subsequence to a
gene segment or insertion. (Bottom Panel) Amino acid detail view shows amino acid
sequence colorized using a modified clustalw color scheme. A link allows simple access to
the built in literature search tool. All clonotypes sharing the same amino acid sequence
are listed in the table below.

5.3 Discussion

TCR sequencing experiments are utilized to study a variety of conditions in-

volving T-cells in the adaptive immune system such as tracking residual disease in blood

cancers, reconstitution of the adaptive immune system following bone marrow transplan-

tation, identification of disease-specific clonotypes. Studies utilizing TCR sequencing

perform custom analysis designed for each particular study.

The UCSC Immunobrowser provides a suite of tools that perform common
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Figure 5.9: The results page of a literature search on the CDR3 amino acid sequence
“CASSLVRGEQYF”. Amino acid sequences are colorized using a modified clustalw
color scheme.

analytic tasks of TCR sequencing experiments. For example, repertoire-level visualiza-

tions similar to the V-J scatterplot are present in numerous publications. However, the

Immunobrowser leverages color, opacity and interactivity to display multiple samples in

a single figure that simplify comparisons of V-J representation across multiple samples.

For studies on immune system reconstitution, the ability to view all different time points

in an individual’s recovery simultaneously gives researchers a strong idea of when the

immune system has returned to normal functioning levels.

Another common task is the identification, tracking and further investigation

of aberrant clones. These clones can be identified in a number of ways using the Immuno-

browser. Large clonal expansions are visually evident in the scatterplot and spectratype.

These visualizations help researchers identify the V/J gene segments and CDR3 lengths

of aberrant clones. The shared clone view directly tracks the frequency of the same

amino acid sequence across multiple samples, which simplifies the spotting of large dif-

ferences in the represented frequency of a clone in a repertoire. Once a TCR amino
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acid sequence of interest has been identified, a literature search can identify previously

published TCR’s with similar sequences.

Both repertoire and clonotype level analysis can be easily performed on the

Immunobrowser. As more data is imported into the browser, it becomes more useful as

a public resource for TCR sequencing experiments. Future improvements may allow for

user-uploaded sequences and data privacy.
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Chapter 6

Closing Remarks

The utilities of HTS techniques are not limited to those presented within this

dissertation. Because biology is exceedingly complex, assays and algorithms must con-

sider each complexity individually. With improving technology, it is feasible that the

sequencer follows the path of the computer. Whereas modern sequencers capable of se-

quencing a genome are relegated to large research institution, small personal sequencers

affordable to the hobbyist are beginning to emerge. The personal sequencer may some

day be as ubiquitous as the smart phone. Bioinformatic advancements are integral to

the development of personalized medicine beyond treatment of disease and towards the

real time monitoring of health.
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high-throughput human leukocyte antigen typing by massively parallel pyrose-

quencing for high-resolution allele identification. Human Immunology, 70(11):960–

964, November 2009.
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