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Abstract
Background: The basis of genome size variation remains an outstanding question because DNA
sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican
axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp) were isolated and sequenced to characterize
the structure of genic regions.

Results: Annotation of genes within BACs showed that axolotl introns are on average 10× longer
than orthologous vertebrate introns and they are predicted to contain more functional elements,
including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts
that are differentially expressed during spinal cord regeneration and skin metamorphosis.
Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of
human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the
axolotl genome than the human genome, but the great majority (86%) of genes between axolotl
and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5×
larger than human genes, the genic component of the salamander genome is estimated to be
incredibly large, approximately 2.8 gigabases!

Conclusion: This study shows that a large salamander genome has a correspondingly large genic
component, primarily because genes have incredibly long introns. These intronic sequences may
harbor novel coding and non-coding sequences that regulate biological processes that are unique
to salamanders.
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Background
It was established before the advent of DNA sequencing
that organisms show incredible variation in genome size.
This presented a paradox because scientists originally
expected a positive relationship between genome size and
organism complexity [1]. The paradox was partially
resolved by partitioning overall genome size into two
compartments: protein coding vs non-protein coding.
This partition showed that organisms tend to have similar
numbers of genes but non-coding and presumptively
non-functional portions of genomes vary greatly [2]. In
recent years, perception has changed; it is well-established
that non-genic regions of genomes encode regulatory and
structural information, and functional RNAs [3,4]. Sur-
prisingly, almost all of the genome is transcribed in some
organisms, not simply the protein-coding portion [5-7].
Some repetitive sequence classes that were thought to
only selfishly expand genome size at the expense of the
host are known to regulate transcription and contribute to
gene evolution [8-12]. Genomes contain large non-cod-
ing regions that are conserved across species [13-15], and
lineage-specific, non-coding DNA between distantly
related species is associated with the same regulatory func-
tions; such patterns are consistent with non-coding DNA
having a regulatory function [16,17]. Finally, the amount
of non-coding DNA does scale with developmental com-
plexity in some comparative studies [18]. These findings
are motivating renewed interest into genome diversity and
function. Unfortunately, DNA sequence data are com-
pletely lacking for organisms with large genomes.

In this study, 454 DNA sequencing was used to obtain the
first glimpse of a salamander genome. The Mexican axol-
otl (Ambystoma mexicanum) was selected because it is a
model organism with an average-sized salamander
genome: ~32 × 109 bp distributed among 14 haploid
chromosomes [19]. Considering the possibility of exten-
sive repetitive DNA tracts in the axolotl genome that
would confound downstream sequence assembly, it was
reasoned that genic regions of the genome would be less
likely to contain repetitive DNA. Also, recent analyses sug-
gest that regulatory elements within the human genome
tend to be associated with the location of known genes
[20]. Thus, a partial BAC library was developed and PCR
screening identified 16 clones that contain expressed
sequence tags (ESTs) [21]. This allowed direct comparison
of orthologous genic regions between axolotl and the
human genome and analysis of two BACs that contained
presumptively novel axolotl transcripts. To complement
this approach, computational analyses were used to
search existing EST databases for genes that are specific to
axolotls and perhaps other amphibians. The results from
these analyses, discussed below, begin to address the basis
of the axolotl's large genome size and the significance of
excess DNA in genic regions.

Results
BAC sequence assembly and annotation
A small BAC library (36,864 clones) was constructed and
screened by PCR to identify 16 clones that contained cod-
ing sequences for previously identified ESTs (Table 1).
Altogether, these clones span more than 1.7 megabases
(non-redundant) of the axolotl genome. BAC clones were
end-sequenced using the ABI-Sanger method and then
454 sequencing technology was used to generate several
thousand, high quality sequence reads for each clone
(Table 2). Sequence assembly statistics (N50 and average
sequence coverage) indicate that high quality assemblies
were generated for each BAC; seven BAC assemblies
yielded a single long contig and three BAC assemblies
yielded two contigs separated by single gaps. The
sequence coverage provided by the assemblies approxi-
mated the estimated size of BAC clones on agarose gels
(data not shown). The remaining assemblies consisted of
6 or fewer large contigs. The reason why a few contigs
yielded incomplete assemblies is not clear because differ-
ent numbers of high quality reads were obtained for each
BAC and contig numbers within assemblies were not cor-
related with sequencing depth. However, in only one case
was it clear (while editing and annotating contigs) that
repetitive sequences confounded contig assembly of a
BAC (clone H3_4F24). Indeed, very few repetitive DNA
sequences were identified overall within axolotl BACs,
with retrotransposons representing the largest fraction
(Table 3). These results suggest that genic regions of the
axolotl are not completely structured by repetitive
sequences. Annotated BAC assemblies have been depos-
ited in GenBank [GenBank: EU686400–EU686415].

Introns and exons within BACs
To further investigate the structure of genic regions within
the axolotl genome, introns and exons were identified
within BACs and compared to orthologous sequences
from humans. BLAST analysis confirmed the presence of
targeted EST sequences within 14 of 16 BAC assemblies.
The length of orthologous coding sequences between
axolotl and humans is highly conserved, as is the location
of exon/intron boundaries (Table 1; Additional file 1).
However, axolotl introns are strikingly longer than
human introns: within five genes for which orthology
could be firmly established, axolotl introns average 9454
bp while human introns average only 1938 bp (N = 32
introns compared). Further comparisons show that axol-
otl introns are approximately 14× larger than orthologous
introns from chicken (N = 32) and 12× larger than orthol-
ogous introns from Xenopus tropicalis (N = 25; purinergic
receptor P2X3 was not identified in the X. tropicalis assem-
bly) (Additional file 1, Figure 1). Thus, non-coding genic
regions are contributing significantly more to axolotl
genome size than they are to vertebrates with "average-
sized" genomes.
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Composition of axolotl introns
It is possible that axolotl introns are large because they
contain DNA sequence classes that are unique or over-rep-
resented in comparison to other vertebrates. To test this
idea, all axolotl introns and orthologous human introns
were searched for self-similarity, repetitive DNAs (trans-
posons and retrotransposons), and non-coding RNAs
(including miRNAs and snoRNAs). Examination of indi-
vidual self-self intron alignments and alignment of the
concatenated intron dataset revealed that axolotl introns
do not contain extensive tracts of repetitive DNA and are
composed of largely unique sequence (Additional files 2

and 3). Multiple retroelement types were identified in
axolotl introns in the selected genes but none were identi-
fied in the orthologous human introns (Table 3).
Although the human genome contains many repeat
classes, the only repeats identified in this sample of
human introns were DNA transposons. The proportion of
nucleotides accounted for by interspersed repetitive
sequences is significantly higher in axolotl introns, rela-
tive to human introns (1.82% vs. 0.38%, Z = 25.6, p <<
0.0001). A total of 70 candidate miRNA precursors and 21
snoRNAs (16 HACA type snoRNAs and 5 CD type snoR-
NAs) were identified from sense DNA strands of the axol-

Table 1: Identity and structure of genes within BACs

BAC Ambystoma Sequence Presumptive Human Ortholog Complete Axolotl
ORF?

Introns
Identified

Exons
Identified

H3_1D2 Tig_NM_4343_Contig_1 NP_004334.1 calreticulin precursor Complete 8 9

H3_4A11 Mex_Nohits_2574_Contig_1 Unknown Complete 9c 10

H3_4F24 Tig_NM_362_Contig_1 NP_003247.1 tissue inhibitor of metalloproteinase 4 
precursor

Unknown 1c 3e

H3_37I11 Tig_NM_7006_Contig_1 NP_008937.1 cleavage and polyadenylation specific 
factor 5

Partial 5 6

H3_37I23 Tig_NM_18948_Contig_1 NP_061821.1 mitogen-inducible gene 6 protein Completea - 1

H3_37N9 Mex_Nohits_697_Contig_1 NP_071436.1 platelet receptor Gi24 Partial 5 5

H3_41L21 Mex_NM_687_Contig_1 NP_000678.1 S-adenosylhomocysteine hydrolase Pseudogeneb - -

H3_46H10 Tig_NM_1428_Contig_1 NP_001419.1 enolase 1 Partial - 1

H3_48F8 Tig_NM_859_Contig_1 NP_000850.1 3-hydroxy-3-methylglutaryl-
Coenzyme A reductase

Complete 14 15

H3_48K23 Mex_NM_20169_Contig_4 NP_996846.1 retinoic acid receptor responder Partial 1c 2

H3_61C19 Mex_Nohits_221_Contig_2 Unknown Complete - 1

H3_61K9 Mex_NM_5032_Contig_2 NP_005023.2 plastin 3 Partial 1 2

H3_62O21 Mex_NM_18947_Contig_1f NP_002550.2 purinergic receptor P2X3 Partial 7 8

H3_67L15 Tig_NM_4343_Contig_1 NP_004334.1 calreticulin precursor Complete 8e 9

H3_71A8 Tig_NM_182513_Contig_1 NP_872319.1 spindle pole body component 24 
homolog

False positive - -

H3_71D15 Mex_NM_6276_Contig_2 NP_001026854.1 splicing factor, arginine/serine-rich 
7, 35 kDa

Completea - 1

a – start codon was not identified, but it is likely present in assembled sequence. b – this BAC contains a presumptive processed pseudogene. The 
aligning BAC and cDNA sequence are 91% identical and the BAC sequence contains no introns. c – not used in multispecies alignments due to lack 
of obvious vertebrate orthologies. d – exons were identified on two different contigs. e – not considered in multispecies alignments due to 
redundancy with H3_1D2. f – contig was originally identified as cytochrome c.
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otl (Additional files 4 and 5). The miRNAs totaled 7 kb
and the snoRNAs totaled 2.7 kb for a total contribution of
2.7% to overall intron length. By way of comparison,
computational searches of 39 orthologous human introns
(58,313 bp) identified 6 candidate miRNAs, 1 CD type
snoRNA, and no candidate HACA type snoRNAs (Addi-
tional files 4 and 5); none of these human introns contain
annotated miRNAs or snoRNAs within the current human
genome assembly [22]. Thus, the density of predicted
small, intronic ncRNAs is significantly higher in axolotls
than in humans (Table 4). These analyses show that axol-
otl introns contain a greater diversity of transposable ele-

ments and potentially functional DNA sequence elements
than human introns.

The high density of predicted miRNA structures within
axolotl introns could be an artifact of the methods that
were used to identify candidate miRNAs, or could repre-
sent other complex hairpin sequences that do not enter
miRNA processing. To investigate this further, predicted
miRNA sequences were aligned to 773,450 small RNA
sequences that were recently characterized from ampu-
tated and regenerating axolotl limbs (unpublished data).
This new axolotl miRNA database will be described else-
where. Two of the predicted miRNAs from axolotl introns
had stem regions that aligned perfectly with mature
miRNA sequences from the axolotl limb miRNA database
(Figure 2): AMmiRNA16 aligned to a single 24 bp
sequence and AMmiRNA23 aligned to three independ-
ently sampled 26 bp sequences. These perfect alignments
suggest that some of the predicted elements within axolotl
introns are likely to be bona fide miRNA genes.

Novel genes
Two of the BACs in this study were selected because they
contain transcripts with no known homolog in other ver-
tebrates (Table 1). Results from microarray analyses pre-
dict a role for these "no-hit" EST contigs in two unique
salamander developmental processes: metamorphosis
and regeneration. The no-hit transcript that is encoded on
H3_4A11 (Mex_Nohits_2574_Contig_1) is significantly
downregulated during spinal cord regeneration, while the
no-hit transcript that is encoded on H3_61C19
(Mex_Nohits_221_Contig_2) is significantly upregulated
during spinal cord regeneration and downregulated dur-
ing skin metamorphosis [23,24]. Although some no-hit
ESTs are truncated versions of known genes, it is possible
that many of the ~2000 no-hit transcripts in the

Table 2: Summary statistics for axolotl BAC sequencing and assembly

Total Assembly Length (bp) Number of Contigs N50 Length (bp) Sequences Covering BAC Avg. Seq. Coverage

102210 1 102210 9777 24.51
137463 1 137463 11218 20.27
123412 6 21185 9033 23.44
113164 2 56755 9036 22.39
137255 4 51165 9238 12.78
118832 2 51165 8882 18.57
117549 1 117549 9049 19.83
120452 3 48654 5323 12.76
120467 1 120467 6120 13
125197 6 31049 2093 6.55
99252 2 51540 7858 19.82
102224 1 102224 6448 16.08
113103 1 113103 7360 15.99
110421 3 67330 3833 9.01
114195 4 41502 12090 27.65
108550 1 108550 7159 16.58

Table 3: Percentages of repetitive elements within BACs and 
introns

Axolotl Human

BACs Introns Introns

Total interspersed: 2.32 1.82 0.38

Total retroelements: 2.24 1.72 0
SINEs: 0 0 0
LINEs: 0.29 0.25 0

L2/CR1/Rex 0.11 0.16 0
R1/LOA/Jockey 0 0 0
RTE/Bov-B 0.01 0.01 0
L1/CIN4 0.18 0.07 0

LTR elements: 1.95 1.47 0
Gypsy/DIRS1 1.42 0.78 0
Retroviral 0.24 0.37 0

DNA transposons: 0.08 0.1 0.38
Hobo-Activator <0.01 0.05 0
PiggyBac 0 0 0.18
Tourist/Harbinger 0.06 0.04 0
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Ambystoma EST database correspond to novel axolotl
genes. Annotation of axolotl no-hit EST/BAC alignments
supports the later hypothesis. Two novel genes, Axnovel_1
and Axnovel_2, were identified within H3_4A11 and
H3_61C19, respectively. These novel genes correspond to
the no-hit transcripts described above. Unexpectedly, a
group of no-hit ESTs aligned to a second region of

H3_4A11 that is distinct from Axnovel_1. These align-
ments predict a third novel gene (Axnovel_3) that has
introns and is spliced (Figure 3). None of these three
genes show sequence similarity to any known vertebrate
gene.

To determine if these novel genes encode proteins or non-
coding RNAs, EST/BAC sequence alignments were manu-
ally curated and searched for open reading frames (ORFs)
using ORF finder at NCBI [25]. In all three cases the long-
est ORF was oriented 5' to 3' relative to the EST sequences.
Axnovel_2 and Axnovel_3 can be translated into long ORFs
(Axnovel_2 – 786 bp and Axnovel_3 – 360 bp) that are ini-
tiated with a start methionine and terminated by a stop
codon. Manual curation of Axnovel_3 revealed several
small exons that were not identified by automated

Comparison of intron lengths among the axolotl (AM), human (HS), chicken (GG), and frog Xenopus tropicalis (XT) for cleavage and polyadenylation specific factor 5 (NUDT21) and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR)Figure 1
Comparison of intron lengths among the axolotl (AM), human (HS), chicken (GG), and frog Xenopus tropicalis 
(XT) for cleavage and polyadenylation specific factor 5 (NUDT21) and 3-hydroxy-3-methylglutaryl-Coenzyme A 
reductase (HMGCR). One exon of HMGCR could not be identified in the X tropicalis genome.

Table 4: Densities of predicted non-coding RNAs identified 
within salamander BACs and human orthologous introns

Predicted ncRNAs Ambystoma Human Z P-value

miRNA 1.6% 1.0% 11.1 <<1e-4
snoRNA 0.6% 0.1% 15.0 <<1e-4
Total 2.3% 1.2% 17.4 <<1e-4
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sequence alignments (Figure 3). The coding sequence
spans eight small 5' exons that range in length from 21 to
60 bp and extends 48 bp into a longer 3' exon that con-
tains the presumptive 3' UTR of this gene. Nearly the
entire length of Axnovel_1 (249 of 313 bp) can be trans-
lated into a single ORF with a stop codon. The only in-

frame methionine codon is located in the middle of the
ORF, however the first codon of the longest ORF is CTG,
so it is possible that this gene uses an alternative CUG start
codon [26]. Interestingly, orthologous EST sequences
have also been sampled for Axnovel_1 in A. tigrinum tigri-
num, a close relative. The A. t. tigrinum contig shares >98%
nucleotide identity with Axnovel_1 and also encodes a 5'
CUG. It is unclear if Axnovel_1 is translated into a func-
tional protein or if it functions as a ncRNA; however
maintenance of gene structure and sequence identity
between salamander species that diverged several million
years ago supports the idea that it is functional.

The most likely mechanism for the origin of novel, func-
tional genes in the Ambystoma genome is gene duplica-
tion, as there is no evidence for whole genome
duplication in A. mexicanum. It is important to consider
the possibility that the large Ambystoma genome may have
been shaped by a higher rate of gene duplication and
fewer gene losses, and thus contain a greater overall
number of genes. If paralogous loci are abundant in the
Ambystoma genome, then many salamander genes are
expected to show relatively more, many-to-one orthology
relationships with genes from other vertebrates. To test
this hypothesis, paralogs were predicted for a high quality,
human-salamander ortholog dataset (N = 577), wherein
primary axolotl orthologs were required to cover > 89% of
the annotated length of each primary human ortholog.
Approximately 86% (N = 498) of the human-axolotl gene
pairs in this dataset were predicted to be 1:1 orthologs
(Additional file 6). Many: many ortholog groups were

Structure of two A. mexicanum miRNAs (AMmiRNA16, AMmiRNA23) that were predicted from axolotl intronsFigure 2
Structure of two A. mexicanum miRNAs 
(AMmiRNA16, AMmiRNA23) that were predicted 
from axolotl introns. The red bases indicated positions 
where the predicted miRNA sequences show complete iden-
tify to small RNAs isolated from regenerating limbs.

Intron-exon structure of a novel axolotl salamander gene (AxNovel_3) discovered within BAC H3_4A11Figure 3
Intron-exon structure of a novel axolotl salamander 
gene (AxNovel_3) discovered within BAC H3_4A11. 
Intron/Exon boundaries are represented by vertical 
black bars. The predicted coding sequence for AxNovel_3 is 
shaded in blue. Red figures join the relative locations of 
sequences in the transcript and genomic sequence.
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predicted for 15 human-axolotl gene sets (Additional file
7) and include members from gene families that are noto-
rious for gene duplication and gene conversion events
(e.g. globins, tubulins, and actins). Of the remaining gene
pairs, 2.6× more paralogs were predicted for axolotl pri-
mary orthologs (Additional files 8 and 9). Specifically,
one or more human paralogs correspond to 25 human
primary orthologs, yielding 32 different paralogs overall.
In comparison, 39 primary axolotl orthologs correspond
to 84 different axolotl paralogs. The list of axolotl specific
paralogs include annexin A1 (N = 4), ferritin heavy polypep-
tide (N = 4), H3 histone family 3A (N = 3), calmodulin 2 (N
= 2), and matrix metalloproteinase 1 (N = 2). The largest
number of axolotl paralogs (N = 28) was identified for
paternally expressed 10 isoform RF1 (peg10), an imprinted
mammalian gene that shows sequence similarity to retro-
transposons. As these axolotl paralogs exhibit higher
sequence similarity to fish pol polyproteins [27] than
human peg10, they probably correspond to an active ret-
rotransposon family in the axolotl genome. Overall, these
data predict 2% more duplicated loci in the axolotl
genome versus the human genome (39/577 vs. 25/577),
and more paralogs are predicted on average for axolotl
duplicated loci (2.3 vs. 1.3). These estimates support the
hypothesis of more lineage specific genes in the axolotl
genome than the human genome. Assuming these genes
also contain longer introns, the genic portion of the axol-
otl genome is predicted to exceed the total genome size of
some vertebrates (see below).

Discussion
Comparative DNA sequence data are needed from large
genomes to better understand structural and functional
features that influence genome size evolution. This study
demonstrates that DNA sequence data can be sampled
efficiently from the large genome of the Mexican axolotl
using 454 DNA sequencing. It was possible to assemble de
novo short-DNA sequence reads (50–300 bp) from shot
gun sequenced BACs into complete contigs, and then use
this information to reveal the structure of genic regions of
the genome. The results show that axolotl genic regions
encode novel genes and make a significant contribution
to genome size. In particular, axolotl introns are 5–10×
longer than introns in other vertebrates and this maybe
typical of salamander genomes [28].

Many different ideas have been proposed to explain
genome size variation among organisms. The simplest
explanation is a change in the ratio of DNA that codes for
proteins versus non-protein coding DNA [29]. Although
variation in gene number maybe important, this distinc-
tion is too simple because non-protein coding DNA has
been shown in recent years to encode a diversity of func-
tional elements. For example, protein-coding sequences
(exons) are associated with introns that encode a diversity

of regulatory elements and non-coding RNAs that affect
transcription, translation, and chromatin structure [30-
32]. In order to understand the relationship between
genome size and regulatory complexity, it is therefore crit-
ical to consider the proportion of DNA that resides in
transcribed (genic) versus non-transcribed (i.e. inter-
genic) DNA. Changes in genome size that occur over rela-
tively short evolutionary timeframes may not result in a
correlated expansion of genic regions (i.e. introns), pre-
sumably due to greater evolutionary consrtaint [33,34].
However, positive correlations are observed between
genome size and the number and length of introns at a
broader evolutionary scale [35-37]. Correlations observed
at this broader scale are presumably the outcome of drift
and selection as population sizes and functional con-
straints fluctuate over millions of generations [37]. Sala-
manders are particularly interesting in this regard because
they present a situation wherein large genomes are the
rule rather than the exception. Very large genomes have
likely been maintained within this group at least since the
divergence of the ancestral salamander lineage >160 mil-
lion years ago [38,39]. Thus, salamanders can provide
novel insight into the evolutionary potential of vertebrate
genomes over deep, evolutionary time.

At this point we can only speculate about the reasons why
large introns evolved in A. mexicanum. In general, introns
tend to be longer in genes that have tissue specific or
developmentally relevant functions, than introns in
house keeping or widely expressed genes [40-42]. This
pattern may reflect evolution of complex transcriptional
regulatory mechanisms [43-46]. It is possible that sala-
manders maintain large introns in-part because they
encode information necessary to accomplish unique
developmental processes. In particular, salamanders are
capable of complex tissue regeneration, and a single
genome can express both a metamorphic and paedomor-
phic outcome [47,48]. These processes involve transcrip-
tional activation and silencing of thousands of genes that
may depend upon transcriptional binding sites and
ncRNAs within introns. That large salamander introns
might have a functional role is supported by the absence
of shared repetitive sequences among introns and the pre-
diction of numerous miRNA and snoRNA genes in axolotl
introns. It is also possible that long introns indirectly
moderate cellular and developmental processes by influ-
encing transcription and mitotic rates [49,50]. We note
that the predicted repetitive DNAs and ncRNAs only
account for a small proportion of total intron size. Char-
acterization of additional axolotl genes, and in particular
genes that function in regeneration and metamorphosis,
will help optimize searches for other functional and struc-
tural elements (e.g. matrix attachment sites or unknown
functional classes) that are associated with large intron
size, including "junk" DNA.
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Conclusion
Results from this study show that the genic compartment
of the Ambystoma genome is incredibly large. Our analysis
suggests that genes in the axolotl genome are 5× larger
than they are in humans and conservative estimation of
lineage specific genes predicts more genes in the salaman-
der genome than the human genome. If there are approx-
imately 2% more genes in the axolotl genome than a
20,000 gene estimate for the human genome, and each
salamander gene is on average 5× larger than a 27 kilobase
average estimate for human genes [51], the genic portion
of the Ambystoma genome is estimated to be a staggering
2.8 gigabases! Thus, the large salamander genome is not
simply large because of excess, repetitive DNA; the genic
component is also correspondingly large. Equally stagger-
ing is the fact that our estimate of genic content only
accounts for 1/12th of the total genome size of 32 giga-
bases. Even if considerably more genes are discovered to
be novel in the axolotl genome, using more aggressive
computational approaches to identify highly divergent
proteins, this is not likely to solve the mystery of large
genome size in salamanders. Additional, DNA sequencing
is needed to solve this mystery and this study shows that
new sequencing technologies allow such datasets to be
readily generated for organisms with large genomes.

Methods
BAC library construction and screening
A BAC Library was constructed from partially digested and
size selected genomic DNA that was isolated from the
erythrocytes of a single A. mexicanum female. Methods for
DNA isolation and BAC library construction followed
[52]. 36,864 colonies were robotically picked into ninety-
six 384 well plates. BAC pools were constructed and
screened by PCR with 96 EST primer sets to identify 16
BACs that contained protein-coding loci.

Sequencing, assembly, and annotation
DNA was isolated for each of the 16 BAC from 200 ml of
overnight culture using a Plasmid Maxi Kit (Qiagen). All
of the BACs were sequenced in a single 454 GS20 sequenc-
ing run, on one plate that was divided into subregions
using a sixteen-lane gasket. Clones were also end
sequenced using BigDye 3.1 chemistry and electrophore-
sis on an ABI capillary sequencer. Sequences were
screened by Crossmatch [53] to remove vector
(pCC1BAC), contaminating E. coli sequences
(NC_002695.1), and additional contaminating
sequences (gis:146575, 215104, 469217, 520486,
2501752) that were identified by a preliminary search of
all BAC sequences against the NCBI nr database. After
automated assembly using Phrap [53] (force level = 1, all
other parameters set to default), all contigs over 10 kb
were aligned to one another to identify contigs that con-
tained presumptively overlapping sequence. These were

visually inspected using SeqMan (DNASTAR Lasergene)
and manually joined when appropriate. Contiguous
sequences of assembled BACs were searched (blastn) [54]
against the complete set of all known salamander tran-
scripts at Sal-Site [55] and human RefSeq (blastx and
tblastp) [56] to identify and annotate gene regions within
BACs. For multispecies comparisons, the locations of
orthologous intron breaks were identified by aligning
(blat) [57] human RefSeq proteins to genome sequence of
human (Build 36.2), chicken (galGal3), X. tropicalis
(xenTro2), and salamander (current study). Self/self and
all vs. all alignments of salamander intron sequences were
performed using the program dottup (EMBOSS package)
[58].

Identification of repetitive elements and candidate 
miRNAs and snoRNAs
427,188 bp of sequence from 48 axolotl introns was
searched using several algorithms. Salamander BACs, pre-
dicted introns, and orthologous introns were searched for
known repetitive elements using RepeatMasker [59] and
libraries of known repeat elements [60]. Candidate miR-
NAs and snoRNAs were identified on the basis of pre-
dicted structural motifs within intronic regions of BACs.
To identify candidate miRNAs, BAC sequences were
searched using the program ProMiR II [61]. These candi-
date miRNAs were further tested for probable functional-
ity using the program MiPred [62]. Candidate snoRNAs
were identified using CDSeeker and ACASeeker functions
of snoSeeker [63], with "modified site" files containing
known human methylation and pseudouridine sites.

Identification of orthologous and paralogous genes
Reciprocal best-Blastx searching between the Ambystoma
EST assembly and human RefSeq databases identified pri-
mary ortholog pairs between A. mexicanum and human.
To ensure that axolotl EST contigs yielded a high quality
dataset for paralog prediction, the analysis was limited to
577 ortholog pairs in which primary A. mexicanum
orthologs were required to cover >89% of the annotated
length of each primary human ortholog. This limited the
analysis to relatively short genes whose overall lengths
have been conserved during evolution. The axolotl EST
contigs were assembled previously using PaCE [64] and
CAP3 [65] using a 90% nucleotide identity threshold to
assemble ESTs into contigs [21]. Singleton contigs were
excluded from the analysis. Orthologous relationships
were determined using an informatics approach followed
by manual annotation. The conservative Inparanoid
approach [66,67] was used first to identify presumptive
orthologs and paralogs. Primary A. mexicanum orthologs
were searched (blastx) against all A. mexicanum contigs
[55] and human primary orthologs were searched (blastx)
against all human RefSeq entries [56]. If these within spe-
cies searches identified amino acid sequences that were
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more similar to the primary ortholog, relative to the
between species comparison, they were tentatively consid-
ered lineage specific paralogs. This parsed human/A. mex-
icanum primary orthologs among 1:1, 1: many, many: 1,
or many: many orthology classifiers. This analysis pre-
dicted 178 axolotl paralogs and 62 human paralogs. To
complement the Inparanoid approach, A. mexicanum pri-
mary orthologs were searched (blastn) against EST contigs
that have been assembled for a close relative: A. t. tigri-
num. If 2 or more A. t. tigrinum genes were found to recip-
rocally best match a primary A. mexicanum ortholog and
significantly similar A. mexicanum contigs, the A. mexica-
num primary ortholog was considered a duplicated locus
and the corresponding A. mexicanum contigs were consid-
ered paralogs. This approach verified 19 of the Inparanoid
predictions for axolotl paralogs and suggested 18 novel
paralogs that were not predicted by Inparanoid. Because
the approaches described above do not: 1) differentiate
paralogs from splice variants, 2) evaluate the quality of
EST contigs, or 3) identify all paralogs, it was necessary to
manually inspect the quality of all overlapping sequence
alignments for presumptive 1:1 orthologs and paralogs.
As a result of manual annotation, approximately 50% of
the predicted human and axolotl paralogs were discarded
and 4 of the 1:1 orthologs were re-classified as duplicated
axolotl loci (anterior gradient 2 homolog, integral membrane
protein 2b, stress-associated endoplasmic reticulum protein 1,
and parvalbumin). We note that axolotl gene sequences in
this analysis are substantially under sampled by compari-
son to the known list of human gene sequence. This sam-
pling difference is expected to yield a minimum estimate
of the true abundance of axolotl/amphibian paralogs.

Abbreviations
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sequence tag; miRNA: micro RNA; snoRNA: small nucleo-
lar RNA; ncRNA: non-coding RNA; ORF: open reading
frame.
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