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QSM-detected iron accumulation 
in the cerebellar gray matter is 
selectively associated with 
executive dysfunction in 
non-demented ALS patients
Edoardo Nicolò Aiello 1†, Valeria Elisa Contarino 2*, 
Giorgio Conte 2,3, Federica Solca 1, Beatrice Curti 1, 
Alessio Maranzano 1, Silvia Torre 1, Silvia Casale 2, Alberto Doretti 1, 
Eleonora Colombo 1, Federico Verde 1,3, Vincenzo Silani 1,3, 
Chunlei Liu 4, Claudia Cinnante 5, Fabio Maria Triulzi 2,3, 
Claudia Morelli 1†, Barbara Poletti 1,6* and Nicola Ticozzi 1,3†

1 Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 
Milano, Italy, 2 Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 
Milano, Italy, 3 Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università 
degli Studi di Milano, Milano, Italy, 4 Department of Electrical Engineering and Computer Sciences, 
University of California, Berkeley, Berkeley, CA, United States, 5 Department of Diagnostic Imaging, 
IRCCS Istituto Auxologico Italiano, Milano, Italy, 6 Department of Oncology and Hemato-Oncology, 
Università degli Studi di Milano, Milano, Italy

Background: This study aimed to assess whether quantitative susceptibility 
imaging (QSM)-based measures of iron accumulation in the cerebellum 
predict cognitive and behavioral features in non-demented amyotrophic lateral 
sclerosis (ALS) patients.

Methods: A total of ALS patients underwent 3-T MRI and a clinical assessment 
using the ALS Functional Rating Scale-Revised (ALSFRS-R) and the Edinburgh 
Cognitive and Behavioural ALS Screen (ECAS). Regression models were 
applied to each subscale of the cognitive section of the ECAS and the ECAS-
Carer Interview to examine the effect of QSM-based measures in white and 
gray matter (WM; GM) of the cerebellum, separately for right, left, and bilateral 
cerebellar regions of interest (ROIs). These effects were compared to those of 
cerebellar volumetrics in WM/GM, right and left hemispheres while controlling 
for demographics, disease status, and total intracranial volume.

Results: Higher QSM measures of the cerebellar GM on the left, right, and 
bilateral sides significantly predicted (ps  ≤  0.003) a greater number of errors on 
the executive functioning (EF) subscale of the ECAS (ECAS-EF). Moreover, higher 
GM-related, QSM measures of the cerebellum were associated with an increased 
probability of a below-cut-off performance on the ECAS-EF (ps  ≤  0.024). No 
significant effects were observed for QSM measures of the cerebellar WM or 
for volumetric measures on the ECAS-EF. Other ECAS measures showed no 
significant effects. Bilateral QSM measures of the cerebellar GM also selectively 
predicted performance on backward digit span and social cognition tasks.

Discussion: Iron accumulation within the cerebellar GM, particularly in the 
cerebellar cortices, may be associated with executive functioning deficits in non-
demented ALS patients. Therefore, QSM-based measures could be  useful for 
identifying the neural correlates of extra-motor cognitive deficits in ALS patients.
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1 Background

Among the non-pyramidal abnormalities observed in 
amyotrophic lateral sclerosis (ALS) (1), cerebellar involvement has 
recently been proposed as a key contributor to the phenotypic 
heterogeneity of the disease, possibly due to the cerebellum’s extensive 
connections with several encephalic and spinal sites (2). It has been 
suggested that an interplay between primary degenerative processes 
affecting the cerebellum and its compensatory role for brain/spinal 
cord dysfunctions may be the pathophysiological mechanism through 
which cerebellar involvement contributes to the clinical manifestations 
of ALS (2).

While the association between cerebellar involvement and 
motor manifestations in ALS has been sufficiently explored (3, 4), 
less is known on its role towards non-motor, neuropsychological 
features (2). Despite being poorly understood how cerebellar 
abnormalities contribute to cognition and behaviour in brain 
disorders (5), a number of reports would suggest they do account, 
at least to an extent, for both cognitive (6–8) and behavioural 
dysfunctions (6, 9, 10) in ALS – likely due to an altered 
connectivity between cerebellar nuclei and extra-motor 
networks (11).

While currently available studies on the topic mostly addressed 
morphological/functional neuroimaging techniques (2), none of 
them employed quantitative susceptibility mapping (QSM) 
algorithms (12) – although such an approach has proved promising 
in delivering a biomarker of subtle brain abnormalities underlying 
motor signs/symptoms in ALS (13–16). QSM algorithms indeed 
allow to derive an estimate of iron accumulation in brain tissues 
based on magnetic resonance imaging (MRI) scans, this being a 
feature common to several neurodegenerative diseases (17). 
Relatedly, it has been shown that QSM measures do relate to 
neuropsychological measures in such conditions (17), having thus 
been suggested as a promising marker for cognitive decline in 
several brain disorders (18).

A growing body of evidence has indicated that iron overload may 
play a causal role in neuronal death, leading to neurodegeneration 
(19, 20). Thus, QSM analyses might serve as a valuable tool for 
detecting subtle alterations in brain tissue iron content before 
regional brain atrophy occurs as an epiphenomenon of 
neurodegeneration (21), including in conditions such as 
ALS (16). This is particularly relevant for cerebellar involvement, in 
ALS, which is often subtle and may go undetected by 
standard volumetric measurements (8). Within such a framework, it 
would not be unreasonable to hypothesize that QSM algorithms might 
enhance the study of the relationships between cerebellar involvement 
and neuropsychological features in this population.

Given the above premises, the present study aimed to assess 
whether cerebellar QSM measures, compared to standard volumetric 
MRI measures, can predict cognitive and behavioral features in 
non-demented ALS patients.

2 Methods

2.1 Participants

Data from 61 consecutive ALS patients diagnosed according to 
the El Escorial criteria (22) and referred to IRCCS Istituto Auxologico 
Italiano between 2016 and 2021 were retrospectively retrieved. 
Patients with available MRI and neuropsychological data, specifically 
Edinburgh Cognitive and Behavioural ALS Screen (ECAS) scores 
(23), were selected for inclusion. No patient met the criteria for any 
frontotemporal degeneration phenotype (24, 25). The exclusion 
criteria included (1) the presence of other neurological/psychiatric 
disorders, (2) severe or uncompensated general medical conditions 
(i.e., internal/metabolic diseases or organ/system failures), or (3) 
uncorrected hearing/vision deficits. This study was approved by the 
Ethical Committee of IRCCS Istituto Auxologico Italiano (I.D.: 
23C722_2017). Informed consent was obtained from all participants, 
and data were treated in accordance with current regulations.

2.2 Materials

2.2.1 Clinical assessment
The ALS Functional Rating Scale-Revised was employed to assess 

motor-functional outcomes (26). Cognition and behavior assessments 
were conducted using the cognitive section of the ECAS (23) and the 
ECAS-Carer Interview (ECAS-CI) (27), respectively. The cognitive 
section of the ECAS is a performance-based screening tool ranging 
from 0 to 136, comprising five subscales that assess both ALS-specific 
cognitive function, including language (ECAS-L; range = 0–28), verbal 
fluency (ECAS-F; range = 0–24), and executive functioning (ECAS-EF; 
range = 0–28), as well as ALS-nonspecific cognitive functions, such as 
memory (ECAS-M; range = 0–24) and visuospatial abilities (ECAS-
VS; range = 0–12) (23). The ECAS-CI is a 13-item, Likert-scaled, 
caregiver-report questionnaire that covers the full range of 
frontotemporal and dysexecutive behavioral features typical of ALS; 
higher scores indicate a greater degree of behavioral involvement (27).

2.2.2 MRI acquisition
The patients underwent brain MRI scans using a 3-T SIGNA 

(General Electric, GE Healthcare Medical Systems, Chicago, 
Illinois, US) at the Istituto Auxologico Italiano, IRCCS, Milano, 
Italy. The MR protocol included the following sequences: a whole-
brain sagittal three-dimensional FSPGR BRAVO T1-weighted 
sequence (TR = 8.7 ms, TE = 3.2 ms, inversion time = 450 ms, voxel 
size = 1 × 1 × 1 mm3, flip angle = 12°, acquisition matrix 256 × 256); 
a sagittal 3D fluid-attenuated inversion recovery (FLAIR) sequence 
(TR = 6,000 ms, TE = 108 ms, inversion time = 1,824 ms, voxel 
size = 1 × 1 × 1.4 mm3, flip angle = 90°, acquisition matrix 224 × 224); 
an axial T2-weighted fast spin-echo (FSE) sequence (TR = 3,000 ms, 
TE = 82 ms, pixel size = 0.234 × 0.234 mm2, slice thickness = 2 mm, 
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slice gap = 0.2 mm, flip angle = 111°, acquisition matrix 320 × 320); 
and three-dimensional spoiled gradient-echo multi-echo (GRE) 
pulse sequences (TR = 39 ms, TE = 24 ms, delta TE = 3.3 ms, number 
of echoes = 7, voxel size = 0.468 × 0.468 × 1.4 mm3, flip angle = 20°, 
acquisition matrix 416 × 320).

Images were assessed by an expert neuroradiologist and were 
found to be free of motion and severe artifacts on T1-weighted or 
GRE images.

2.2.3 MRI processing
FreeSurfer was used to automatically segment T1-weighted 

images (28). The Left-Cerebellum-Cortex (coded “8”) and Right-
Cerebellum-Cortex (coded “47”) regions were merged to create the 
CerebellumGM Region of Interest (ROI). Similarly, the Left-
Cerebellum-White-Matter (coded “7”) and Right-Cerebellum-White-
Matter (coded “46”) regions were merged to create the CerebellumWM 
ROI, as shown in Figure 1. The volumes of the CerebellumGM and 
CerebellumWM ROIs were measured in cubic millimeters (mm3).

Whole-brain QSM (quantitative susceptibility mapping) was 
calculated using STI Suite, a MATLAB toolbox specifically developed 
at UC Berkeley for MRI phase and magnetic susceptibility mapping 
(29). First, a single-subject brain mask was generated from the echoes-
averaged magnitude image using the FSL Brain Extraction Tool (30). 
Then, the VSHARP algorithm was applied to remove the background 
field from phase images using the brain mask, followed by the 
application of the Streaking Artifacts Reduction (STAR) algorithm 
(31) to the VSHARP filtered phase images, resulting in subject-level 
susceptibility maps (32).

The SPM12 MATLAB Toolbox was used to coregister the QSM 
map to the T1-weighted image. For each patient, a transformation 
matrix was calculated by aligning the magnitude image to the 
T1-weighted image, which was then applied to the QSM image. The 
CerebellumGM and CerebellumWM ROIs overlaid on the coregistered 
QSM map (Figure 2). MATLAB (The MathWorks, Natick, MA) R2018 
was used to extract the mean of the QSM values for the CerebellumGM 
and CerebellumWM ROIs in the left and right hemispheres separately, 
as well as for the total bilateral ROIs.

The neuroimaging pipeline was adapted from a previous QSM 
study focused on the precentral cortex (13).

2.3 Statistics

Both cognitive and behavioral measures did not meet the linear 
model assumptions (i.e., normality and homoscedasticity), as indexed 
by excessive skewness and values (i.e., ≥ |1| and |3|, respectively) (33), 
visual abnormalities in Q-Q plots and histograms, and significant 
Shapiro–Wilk’s tests (ps < 0.001). Specifically, ECAS-L, -F, -EF, -M, 
and-VS scores were left-skewed (i.e., showed ceiling effects), whereas 
ECAS-CI scores were right-skewed (i.e., showed floor effects). 
Additionally, both cognitive and behavioral measures showed 
overdispersion, meaning that they were highly variable between 
individuals. To address these issues, predictions of interests were 
tested using negative binomial (NB) regressions, which are suitable for 
modeling left-skewed and overdispersed count-like data (34) and have 
been shown to effectively model ALS patients’ cognitive/behavioral 
data (27, 35, 36).

For the ECAS-L/-F/-EF/-M/-VS subscales, NB regression was 
applied by focusing on the number of errors on each subscale as the 
outcome (37). This approach reversed the skewness of the empirical 
distribution without altering the original operationalization of the 
data (i.e., accuracy) (38). Moreover, the NB model was chosen over 
linear models with normalized and variance-stabilized transformed 
outcomes, as those transformations would have changed the original 
measurement units of the outcomes. In contrast, ECAS-CI scores 
already followed an NB distribution and, thus, did not require 
any transformation.

NB regressions were conducted for each subscale of the cognitive 
section of the ECAS and the ECAS-CI to test the effect of QSM-based 
white and gray matter (WM; GM) cerebellar measures, separately for 
right, left, and bilateral cerebellar ROIs (resulting in three models for 
each outcome). These were compared to WM/GM measures and right 
and left cerebellar volumetrics. Within these models, demographic 
variables (age, education, and sex), disease duration (in months), 
ALSFRS-R scores, presence of C9orf72 hexanucleotide repeat 
expansion, and total intracranial volume were included as covariates.

For those NB regressions that identified significant QSM 
predictors, a logistic regression (LR) was subsequently performed to 
assess above versus. Below-cut-off performance on the relevant ECAS 
measure of interest (23). Poletti et al.’s (23) cut-offs were derived using 

FIGURE 1

Axial (A), sagittal (B), and coronal (C) view of the cerebellum segmented on T1-weighted images. Cerebellar gray matter is colored red, and cerebellar 
white matter is yellow.
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a 2 SD-based approach and are stratified by age and education level 
(i.e., ≤60 and > 60 years of age and < 14 and ≥ 14 years of education, 
respectively). Accordingly, given that ECAS cut-offs are already 
adjusted for age and education, these covariates were not included in 
the LR models. Collinearity within the LR models was diagnosed if 
the variance inflation factor (VFI) exceeded 10 or if the tolerance 
index was less than 0.1 (39).

Missing data were excluded on a pairwise basis. The significance 
level was set at α = 0.05, with Bonferroni-corrected applied to target 
predictors whenever adequate. Analyses were conducted using 
jamovi 2.5.1

3 Results

Table 1 summarizes the patients’ background, clinical, volumetric, 
and QSM-based measures.

As shown in Table 2, no significant effects were observed for either 
QSM-based or volumetric cerebellar measures on ECAS-L, ECAS-F, 
ECAS-M, ECAS-VS, or ECAS-CI scores. However, higher QSM 
measures of the cerebellar GM, on both the left and right sides, as well 
as the total mean QSM measures, were found to selectively predict a 
higher number of errors on the ECAS-EF subscale (Figure  3). In 
contrast, neither QSM-based measures of the cerebellar WM nor 
volumetric cerebellar measures significantly predicted ECAS-EF 
errors (Table 2). Supplementary Tables 1–6 provide the full results of 
the NB models that address bilateral QSM-based and 
volumetric measures.

LRs conducted on above-vs. below-cut-off ECAS-EF performance 
confirmed that higher GM-related, QSM-based measures of the 
cerebellum were associated with a higher likelihood of a below-cut-off 
ECAS-EF performance (right-sided: b = 3.72, z = 2.41, p = 0.016; left-
sided: b = 1.85, z = 2.36, p = 0.018; total: b = 4.36, z = 2.06, p = 0.034). In 
contrast, neither QSM-based measures of the cerebellar WM nor 
volumetric measures have any significant effects (ps ≥ 0.538 and 

1 https://www.jamovi.org/

ps ≥ 0.197, respectively). No collinearity issues were detected in the 
models addressing right-and left-sided measures; however, collinearity 
was observed between right-and left-sided GM and WM volumetric 
measures (VFI ≥ 14.8; tolerance index≤0.07) in the model addressing 
total mean QSM measures. Supplementary Table 7 shows the full 
results of the LR model addressing bilateral QSM-based and 
volumetric measures.

Finally, an explanatory, data-driven set of regression models was 
conducted to test which specific ECAS-EF tasks (i.e., backward digit 
span, alternation, sentence completion, and social cognition) could 
be predicted by QSM measures. To this end, each ECAS-EF task was 
regressed using the set of predictors and covariates used in the 
abovementioned NB models addressing bilateral cerebellar ROIs. 
However, models including only right or left cerebellar measures were 
not conducted, as no laterality effects were used in the analyses 
addressing the ECAS-EF as a whole. Specifically, linear regressions were 
used for backward digit span and sentence completion scores due to their 
normal distribution, while NB regressions were used for alternation and 
social cognition tasks, with the number of errors as the outcome variable.

Table 3 presents the results of these off-label analyses. Overall, only 
backward digit span (b = −0.74; z = −2.69; p = 0.010) and social cognition 
performances (b = 0.90, z = 2.89, p = 0.004) were significantly predicted 
by QSM measures of the cerebellar GM. No significant effects were 
found for QSM measures of the cerebellar WM or volumetric 
measures. Supplementary Tables 8–11 provide the full results of the 
NB models addressing bilateral QSM-based and volumetric measures.

4 Discussion

The present study provides, for the first time, promising evidence 
of the predictive capability of QSM-detected iron accumulation within 
the cerebellar GM in relation to executive functioning (EF) deficits in 
non-demented ALS patients.

Notably, this predictive capability (1) was not observed in 
QSM-based measures and (2) did not apply to common volumetrics 
of the cerebellum. Such selectivity of QSM-based measures, as opposed 
to macroscopic volumetric ones, aligns with the idea that tissue 
alteration, such as iron overload, may precede brain atrophy (19, 20).

FIGURE 2

Superior (A), middle (B), and inferior (C) axial slices of the segmented cerebellum overlapped on the quantitative susceptibility map.
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However, it is somewhat surprising that these findings were 
significant for cerebellar GM regions of interest (ROIs) but not for 
WM ROIs, which, in this study using Freesurfer segmentation, 
included the cerebellar nuclei. This is unexpected, given that both 
cerebellar nuclei and cortical-cerebellar connections have frequently 
been shown to underlie the clinical phenotype of ALS (2), rather than 
the cerebellar cortex. This raises the possibility that, in non-demented 
ALS patients, the cerebellar cortices also play a role in their cognitive 
profiles. Given the novelty of these results, further research is needed 
to determine whether the cerebellar cortex is selectively involved in 
characterizing the cognitive features of non-demented ALS patients.

In the present study, QSM-based measures of cerebellar GM 
selectively predicted EF measures but did not predict other cognitive 
functions or behaviors. This finding aligns with the current knowledge 
of the cerebellum’s contributions to cognition in both healthy and 
brain-damaged individuals, where the cerebellum is known to 
be substantially involved in EF (40, 41). However, previous studies on 
neurodegenerative conditions other than ALS have not detected a link 
between cognitive features and QSM-detected iron accumulation in 
the cerebellum (17, 18). This unprecedented finding highlights the 
need for further research into the role of cerebellar iron accumulation 
in cognitive impairment across neurodegenerative disorders, 
including ALS.

In this respect, it is also worth mentioning that a set of off-label 
analyses revealed that QSM-based measures of the cerebellar GM 
selectively predicted performance on backward digit span tasks, which 
are related to phonological working memory and social cognition 
tasks. The first finding aligns with previous neuroimaging studies in 
both healthy (42, 43) and brain-damaged populations (44, 45), which 
have linked phonological working memory abilities to the integrity of 
cerebellar structures. Similarly, the current link between social-
cognitive abilities and iron accumulation in the cerebellar GM is 
consistent with the widely accepted idea that the cerebellum supports 
such a set of high-order skills by storing “social scripts,” which help 
individuals predict social interactions (46).

The present study is not free of limitations. First, the current 
investigation merely focuses on the cerebellum, which limits our ability 
to determine whether iron accumulation in other structures, either 
supratentorial or supratentorial, might also be associated with EF in the 
present cohort. Future research should explore whether the association 
between iron accumulation and FTD-spectrum cognitive deficits in ALS 
patients is specific to the cerebellum or extends to other brain regions.

Second, the lack of a control group prevented us from assessing 
whether QSM-based measures are similarly associated with executive 
functioning in healthy individuals. Third, the sample was relatively 
limited in size, possibly undermining the generalizability of the 
present findings. Fourth, the patients included were not stratified 
according to Strong et al.’s (47) criteria, and there were no cases of ALS 
with comorbid frontotemporal degeneration. Future studies should 
aim to replicate these analyses with a larger, more representative, and 
well-characterized sample of ALS patients.

Fifth, the cerebellum was segmented based on broad dichotomies 
(i.e., GM vs. WM and left vs. right hemispheric lateralization). Cerebellar 
nuclei were included within the WM ROIs and were not individually 
analyzed, although, as previously stated, cerebellar nuclei have been 
frequently identified as relevant to the clinical characterization of ALS 
(2). Therefore, further studies are needed to focus on more detailed 
cerebellar ROIs. In this respect, it should also be noted that, instead of 

TABLE 1 Patients’ background, clinical and neuroradiological features.

N 61

Age (years) 63.9 ± 10.5 (41–84)

Sex (male/female) 34/27

Education (years) 11.1 ± 4.6 (5–23)

Disease duration (months) 20.4 ± 34.1 (2–264)

ALSFRS-R 38.5 ± 6.2 (23–48)

ΔFS 0.9 ± 1 (0–5.2)

NIV (%) 5.1%

PEG (%) 0%

Genetics (N)

  C9orf72/TARDBP 5/3

ECAS

  Total 99.9 ± 17.6 (47–127)

   Impaired (%) 31.1%

  Language 23.5 ± 4 (12–28)

   Impaired (%) 24.6%

  Fluency 16.3 ± 5.8 (0–24)

   Impaired (%) 16.4%

  Executive 34.6 ± 7.6 (13–48)

   Impaired (%) 21.3%

  Memory 14.3 ± 4.8. (2–21)

   Impaired (%) 24.6%

  Visuospatial 11.3 ± 1.2 (6–12)

   Impaired (%) 9.8%

  Carer Interview 0.7 ± 0.8 (0–3)

   Abnormal (%) 2%

Total ICV (mm3) 1508913.1 ± 159358.8 (1251380.9–

1879999.7)

Cerebellar volumes (mm3)

  Gray matter

   Right hemisphere 53,480 ± 6,085 (41364.2–64792.5)

   Left hemisphere 53416.2 ± 5693.6 (41475.3–65381.8)

  White matter

   Right hemisphere 13124.6 ± 2647.4 (8866.2–24547.5)

   Left hemisphere 13431.5 ± 2005.3 (9446.2–18434.3)

Cerebellar QSM measures

  Gray matter

   Right hemisphere −1.4 ± 1 (−3.6–1.1)

   Left hemisphere −1.1 ± 0.9 (−3.1–1.3)

   Bilateral −1.2 ± 0.8 (−2.9–1.1)

  White matter

   Right hemisphere −0.5 ± 1.3 (−3.6–2.2)

   Left hemisphere −0.2 ± 1.3 (−3.4–3.2)

   Bilateral −0.3 ± 1.1 (−3.2–2.3)

ALS, amyotrophic laterals sclerosis; ECAS, Edinburgh Cognitive and Behavioural ALS 
Screen; ALSFRS-R, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; ΔFS, 
progression rate, computed as: [(48-ALSFRS-R)/disease duration in months]; NIV, non-
invasive ventilation; PEG, percutaneous endoscopic gastrostomy; QSM, quantitative 
susceptibility mapping.
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using FreeSurfer, other cerebellum-specific segmentation techniques, 
such as SUIT, could have been employed (48). While the current choice 
of FreeSurfer was motivated by its widespread use and acceptability 
among local collaborating Italian institutions, future studies should 
consider using more specialized segmentation approaches to replicate 
or challenge these findings. Finally, a statistical limitation must 
be highlighted: collinearity was identified among cerebellar volumetrics 

within the LR model addressing bilateral QSM-based measures. 
Although this collinearity was expected, it may have introduced some 
bias into the results of the abovementioned model.

In conclusion, iron accumulation within the cerebellar GM, i.e., 
in the cerebellar cortices, may be  associated with EF deficits in 
non-demented ALS patients, thereby suggesting that cerebellar in this 
population might contribute, at least in part, to FTD-spectrum 

TABLE 2 The negative binomial regressions yielded the effects of QSM-based and volumetric measures on the number of errors on the cognitive 
subscales of the ECAS and the ECAS-CI.

Model ECAS-L ECAS-F ECAS-EF ECAS-M ECAS-VS ECAS-CI

LH1 QSM WM 0.320 0.144 0.938 0.902 0.318 0.792

GM 0.925 0.165 0.003 0.294 0.369 0.847

Volume WM 0.833 0.141 0.988 0.512 0.138 0.968

GM 0.441 0.573 0.904 0.315 0.197 0.757

RH1 QSM WM 0.826 0.939 0.349 0.175 0.832 0.625

GM 0.273 0.792 <0.001 0.995 0.090 0.376

Volume WM 0.334 0.820 0.753 0.488 0.035 0.937

GM 0.824 0.803 0.735 0.225 0.083 0.788

Bilateral QSM WM 0.425 0.397 0.796 0.328 0.618 0.840

GM 0.645 0.416 <0.001 0.789 0.241 0.475

Volume-LH WM 0.797 0.169 0.941 0.785 0.457 0.773

GM 0.098 0.127 0.563 0.880 0.085 0.351

Volume-RH WM 0.659 0.530 0.870 0.874 0.086 0.818

GM 0.146 0.129 0.611 0.459 0.377 0.336

1αadjusted = 0.013. 2αadjusted = 0.008. Each model comprised sex, age, education, presence of C9orf72 hexanucleotide repeat expansion, disease duration (in months), ALS Functional Rating 
Scale-Revised scores, and total intracranial volume as covariates; p-values refer to the χ2-statistics for the main effect of each term (significant ones are in bold). ECAS, Edinburgh Cognitive 
and Behavioural ALS Screen; L, Language; F, Fluency; EF, Executive functioning; M, Memory; VS, Visuo-spatial; CI, Carer Interview; QSM, quantitative susceptibility mapping; WM, white 
matter; GM, gray matter; LH, left hemisphere; RH, right hemisphere.

FIGURE 3

Predictions of left- (upper-left panel) and right-sided (upper-right panel), as well as bilateral (lower panel) QSM-based measures of the cerebellum 
towards the ECAS-EF. ECAS, Edinburgh Cognitive and Behavioural ALS Screen; EF, Executive functioning; QSM, quantitative susceptibility mapping; 
WM, white matter; GM, gray matter; LH, left hemisphere; RH, right hemisphere. Gray areas represent the SE of the estimate of the Negative Binomial 
regression (left-sided: z  =  2.97; p  =  0.003; right-sided: z  =  3.75; p  <  0.001; bilateral: z  =  3.95; p  <  0.001). The measurement unit on the x-axis is ppb; these 
predictors have been mean-centered for this graphical representation.

https://doi.org/10.3389/fneur.2024.1426841
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Aiello et al. 10.3389/fneur.2024.1426841

Frontiers in Neurology 07 frontiersin.org

phenotypic features in this population. Additionally, this report is the 
first to demonstrate the potential usefulness of QSM-based measures 
in uncovering the neural correlates of extra-motor cognitive 
deficits in ALS.
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