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Abstract: Coastal ecosystems are greatly endangered due to anthropogenic development and climate
change. Multiple disturbances may erode the ability of a system to recover from stress if there is
little time between disturbance events. We evaluated the ability of the saltmarshes in Barataria Bay,
Louisiana, USA, to recover from two successive disturbances, the DeepWater Horizon oil spill in 2010
and Hurricane Isaac in 2012. We measured recovery using vegetation indices and land cover change
metrics. We found that after the hurricane, land loss along oiled shorelines was 17.8%, while along
oil-free shorelines, it was 13.6% within the first 7 m. At a distance of 7–14 m, land loss from oiled
regions was 11.6%, but only 6.3% in oil-free regions. We found no differences in vulnerability to
land loss between narrow and wide shorelines; however, vegetation in narrow sites was significantly
more stressed, potentially leading to future land loss. Treated oiled regions also lost more land due to
the hurricane than untreated regions. These results suggest that ecosystem recovery after the two
disturbances is compromised, as the observed high rates of land loss may prevent salt marsh from
establishing in the same areas where it existed prior to the oil spill.

Keywords: gulf oil spill; remote sensing; hyperspectral; AVIRIS; hurricane; saltmarsh

1. Introduction

Coastal deltas, including the Mississippi River Delta, are affected by high rates of land conversion,
subsidence and anthropogenic use [1,2]. The Mississippi Deltaic Plain (MDP) contains 40% of the
coastal wetlands in the United States; thus, it is an irreplaceable resource [3]. It is also home to a
major fishery and the largest oil and gas extraction operation in the country [3,4]. The MDP has been
subjected to sea level rise and subsidence resulting in a relative sea level rise rate of approximately
1 cm·year−1, and this rate is likely to increase due to climate change [5–8]. In addition, hydrologic
changes in the MDP in recent decades reduced sediment supply because of damming of the Mississippi
River [9]. Freshwater wetlands experienced high rates of mortality due to saltwater intrusion after
construction of deep navigational channels into the delta, and coastal wetlands have experienced
direct loss due to dredging for pipelines [8,10–12], oil extraction and spills [13,14]. Moreover, the MDP
is in the path of many hurricanes, further reducing coastal wetland persistence. As a result of the
reduction in sediment supply and the loss of top soil in lost wetland areas, the MDP erosion rate
is ~50 km2·year−1 [7,8,11]. Here, we focus on assessing the effect of two sequential disturbances,
the DWH oil spill and Hurricane Isaac, on the recovery potential of coastal wetlands in the MDP.
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Shorelines are especially vulnerable to erosion from storm currents and high energy waves due to
high winds associated with hurricanes. These currents and winds redistribute sediment by eroding
it from one area and depositing it in another [11,15,16]. Even moderate hurricanes have caused
incision, break-up and shoreline retreat of barrier islands [16,17]. Marshes are disproportionately
damaged by strong winds and wave action caused by hurricanes [11,12,15,16,18]. Unconsolidated and
weakly-rooted marsh is scoured away, leading to loss of vegetation cover and erosion and, ultimately,
loss of top soil and land [6]. Hurricanes, however, are also important in the physical process of vertical
sediment accretion (a rise in marsh surface over time due to sediment deposition) in coastal areas [5,7].
For example, hurricanes Rita and Katrina deposited sediment over large areas in the southeast United
States, but converted 100 km2 of wetlands in the Breton Sound Basin in Louisiana to open water [11].
While there is widespread agreement that the rate of accretion in the MDP is insufficient to keep up
with the relative rise in sea level [3,6,10,16], the sediment deposited by hurricanes and storms is critical
in slowing the rate of land loss [5,6,11]. Thus, hurricanes can act as both a means of wetland destruction
and as agents of wetland building. Vegetation plays a critical role in maintaining the stability of coastal
marshes and promoting accretion [5,8,19,20]. Saltmarsh vegetation, especially plant root mass, is not
only important for the accumulation of soil organic matter, but also a major determinant of inorganic
vertical accretion by trapping sediment [21,22]. Therefore, loss of plant cover leads to shoreline retreat
by increasing susceptibility to soil erosion and reducing marsh sediment accretion [5,7,19,20,23].

Oil contamination causes stress in plants, which can be detected using remote sensing,
especially by detecting the red edge shift [24]. Many researchers have used this technique to map
the impact of oil spills on vegetation [25–28]. However, Turpie [29] cautions that tidal flooding in the
marsh can confound this method. Alternatively, many studies have used different indices and methods
to track impact and recovery [30–32]. Hurricane impact on plant ecosystems has also been frequently
mapped using remote sensing [33]. The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico,
the biggest coastal oil spill in U.S. history [34], severely impacted wetland vegetation, especially along
the contaminated shoreline [13,31,32,35–37]. Vegetation die-off and an increase in plant stress were
observed in the intertidal marshes up to 43 m inland from the shore [30,31,38,39]. In August 2012,
Hurricane Isaac made landfall along the same coastline impacted by the oil spill, and although it
was only a Category 1 hurricane with maximum sustained winds of 130 km/h and a storm surge of
3 m, it moved slowly re-suspending 256,000 kg of oiled material and deposited it along the coast [40].
Marsh vegetation susceptibility to hurricane damage may be enhanced when vegetation is recovering
from prior disturbances, such as an oil spill. Mishra et al. [32] showed extensive reduction of marsh
photosynthetic activity during the growing season post oil spill. Mo et al. [41] showed that during
hurricanes, marsh growth duration was half of that in “normal“ years. This suggests that if the two are
coupled, there is likely to be an amplified effect.

In this study, we sought to determine if the co-occurrence of two disturbances makes the saltmarsh
more susceptible to land loss. We hypothesized that recovery of marsh vegetation affected by the oil
spill was stalled or declined due to Hurricane Isaac. We focused on Barataria Bay (Figure 1) because
it was severely impacted by both the oil spill and Hurricane Isaac, and we used airborne imagery
(Advanced Very High Resolution Image Spectrometer (AVIRIS)) over this area soon after the oil spill
in September 2010, a year later in August 2011 and post-hurricane in October 2012. The cumulative
effect of both disturbances should result in greater land loss in oiled areas, as the oil spill should have
made the marshes more vulnerable. Further, the spatial configuration of the land areas should affect
the amount of land loss, with narrower sites being more likely to lose vegetation or land than sites
along wider beaches that can better withstand the frictional pressures of a hurricane, such as currents
and waves.

To test these hypotheses, we compared vegetation index values in oiled and oil-free sites in all
three years and expected that: (i) index values would show significant stress in oiled sites compared
to oil-free sites in 2010; (ii) that index values would be similar in 2011 as an indication of recovery or
partial recovery; and (iii) index values would decline again at oiled sites if the hurricane preferentially
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affected oiled sites compared to oil-free sites. Furthermore, it is reasonable to expect that the cumulative
effects of oil spill and Hurricane Isaac would also be reflected in land cover changes. For this scenario,
we expected to find: (i) a lower green vegetation fraction in oiled sites compared to oil-free sites in
2010; (ii) a gain in green vegetation pixels in 2011 due to recovery or partial recovery of oiled sites;
and (iii) a greater loss of green vegetation in oiled sites in 2012 due to Hurricane Isaac relative to
oil-free sites.
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Figure 1. Color-infrared AVIRIS imagery acquired in September 2010 over Barataria Bay in the Gulf
of Mexico.

2. Materials and Methods

2.1. Study Area

Figure 1 shows the location of Barataria Bay in the Gulf of Mexico along the Louisiana coastline.
The bay is in an interlobe basin between the Bird’s Foot Delta and the abandoned Lafourche Delta
lobes [42]. It is mainly saltmarsh habitat, as it is cutoff from fresh water or sediment input due to
levees along the Mississippi River and the closure of Bayou Lafourche. The dominant vegetation
in the low intertidal saltmarshes is Spartina alterniflora (saltmarsh cordgrass) and Juncus roemerianus
(needlegrass rush), with subdominants Spartina patens (salt meadow cordgrass), Distichlis spicata
(saltgrass) and Batis maritima (saltwort), which are more common in the higher marsh [43]. The DWH
oil spill occurred offshore, about 160 km away from Barataria Bay. The oil came in with the tides
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primarily contaminating the seaward edges of these marshes, and the impact of oil in most areas
extended approximately 15 m inland from the shore [31]. The impacted area next to the shoreline
is mainly dominated by S. alterniflora and J. roemerianus [31]. The spill started on 20 April 2010 and
continued until the well was capped on 15 July 2010. There were confirmed reports of oil in Barataria
Bay by 7 July 2010 [44], and most of the oil had already arrived by August before our September
image acquisition [39]. Hurricane Isaac made landfall on the Barataria Bay shoreline two years later on
29 August 2012.

2.2. Remote Sensing Data

We used AVIRIS image spectroscopy data collected on 14 September 2010, 15 August 201,
and 19 October 2012, with a 3.3-m pixel resolution (86 km2; Figure 1). Image data used in this study
are publicly available from the Jet Propulsion Laboratory (JPL) AVIRIS archive (aviris.jpl.nasa.gov).
2010 AVIRIS data were atmospherically calibrated using ACORN 6, Mode 1.5 (ImSpec LLC, Seattle),
to apparent surface reflectance. 2011 and 2012 imagery was calibrated by the Jet Propulsion Laboratory
before delivery. The 2010 imagery was then georectified to 1-m National Agricultural Imagery Program
(NAIP) color infrared images collected in 2010. Finally, the 2011 and 2012 imagery was co-registered
to the 2010 imagery using an automated image registration technique [45] that combines robust
band-wise compensation for radiometric differences in images [46] with an iterative gradient-based
video-sequence alignment method by Irani [47]. Areas of large or systematic change in the scene
(e.g., cloud masses, shorelines at different tidal stages or eroded shorelines) were excluded from the
image motion estimation. As a result of the image co-registration, the residual pixel misregistration
was markedly reduced, allowing more accurate estimates of the changes in the three-year period.

Table 1 summarizes information about each flight line acquisition along with the tidal stage at the
time of acquisition. Tidal data were downloaded for the Grand Isle station (tidesandcurrents.noaa.gov)
and provide actual water levels recorded, not predicted tides. The water level during the 2010 and
2011 acquisitions is almost identical (4-cm difference). The water level in 2012 is 14 cm lower than
in 2011. This could potentially lead to an under-estimation of land lost due to Hurricane Isaac or an
over-estimation of recovery due to the exposure of more land. Results will be discussed taking this
into consideration.

Table 1. Date and time of image acquisitions for all three years and water level at the time of collection.

Time
(GMT) Flight Date Pixel Resolution

(m)
Number of
Flight Lines

Tide Level at Time of Image
(m)

18:57 14 September 2010 3.5 × 3.5 4 0.21
16:14 15 August 2011 7.7 × 7.7 2 0.25
15:06 19 October 2012 3.3 × 3.3 4 0.11

Images for all three years were classified into six land cover classes: water, photosynthetic
vegetation, oil-free Non-Photosynthetic Vegetation (NPV; stems, senescent and dead plant material),
oiled NPV, oil-free soil and oiled soil. We used the oil absorption features at 1700 and 2300 nm to
differentiate oiled and oil-free shorelines [31]. To represent the shoreline, we used the boundary
between the water class and the other five classes from the September 2010 images, and the resulting
shoreline vector was simplified and divided into oiled and oil-free shore fragments (Figure 2A).
We chose oil-free shore fragments along the same islands exposed to tidal action to ensure that the
inference was not biased due to shoreline direction differences. Indeed, because the oil came in with
the tides, it had a greater probability of coming ashore on the south-facing island edges and those
closer to the open sea. Similarly, the hurricane impact was also likely greatest on the south-facing
edges of islands facing the open seas. Thus, by chance alone, we were likely to find greater impact of
the hurricane along shores that had been affected by oil than other shores.
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Figure 2. Grey-scale Normalized Difference Vegetation Index image of Barataria Bay showing (A) oiled
(red) and oil-free (blue) shore fragments and (B) a small section showing the selection of sites
(green circles) along the shore fragments.

To avoid the bias, we generated sites randomly along the oiled and oil-free shore fragments at,
on average, a 60-m distance from the centroid of any other site. This resulted in 644 total sites (oiled and
oil-free) for 2010, 536 sites in common with 2010 for 2011 and 505 sites in common with both 2010 and
2011 for 2012 (Table 2). Since the DWH oil spill created a zone of dead vegetation, approximately 14 m
to 17 m wide along the oiled shoreline [31], each site was buffered by a circle of 20 m in radius and
included approximately 115 pixels (Figure 2B).

Table 2. Total number of sites selected along oiled and oil-free shores in 2010, 2011 and 2012. Sites were
chosen in subsequent years only if they were selected in previous years. Oiled sites were further
described as narrow (a small strip of land along the shoreline) or wide (a larger wetland area going
deep into the interior beyond the intertidal zone), treated (for oil contamination) or untreated.

2010 2011 2012

oiled 311 311 290
narrow 32 32 27
wide 50 50 50

treated 173 173 165
untreated 138 138 125
oil-free 225 225 215

2.3. Measuring Impact: Vegetation Indices and Land Cover Change

Our earlier analyses showed that oil impacts were significant in September 2010, but there was
considerable recovery by August 2011 [31]. In this study, we chose the same vegetation indices to
further explore the cumulative impact of the oil spill and Hurricane Isaac in Barataria Bay oiled and
oil-free shores. Changes in vegetation productivity, pigment content and water stress, as measured by
these indices, are indicators of whether the photosynthetic capacity or phenology of the vegetation is
changing [26,31,48,49]. Table 2 describes the indices used and the vegetation characteristics they track.

The index value for a site for a certain year was calculated as the mean of that index for
“land” pixels within the site for that year. This is because difference indices, like NDVI or NDII,
while meaningful for soil, dry vegetation and green vegetation land cover types, deteriorate to pure
noise in water pixels. Therefore, there could be a different number of pixels included per site per year
for the index mean calculation. Despite the drawbacks of this approach, we preferred it over using
pixels that remained land through all three years because the number of land pixels would be reduced
considerably in many sites by the third year.
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For each site, we also calculated the fraction of a site covered by either of three land cover
types: water (wat), green vegetation (gveg) and soil and non-photosynthetic vegetation (snpv).
This calculation used the outputs from the classification of three imagery periods, and we calculated
the fractional change in each land cover type over one-year time steps (Table 3). The rate of land
cover conversion gives a measure of land loss, from land to water, or of vegetation loss, from green
vegetation to senescent (i.e., vegetation that is stressed or undergoing phenological changes) and dying
vegetation to soil to water [49,50], but also of vegetation expansion, from soil and non-photosynthetic
vegetation or water to green vegetation.

Table 3. Indices and land cover and change metrics calculated for each site along with their description,
citations, and formulae.

Variables Description

Indices NDVI10/11/12
Normalized Difference Vegetation Index: tracks
vegetation health, pigment and abundance [51]

NDII10/11/12
Normalized Difference Infrared Index: tracks plant
health and water content [52]

ARED10/11/12
Angle at Red: tracks change in land cover and
photosynthetic pigment [31]

mNDVI10/11/12

Modified NDVI or red-edge NDVI: sensitive to
change in vegetation health, pigment and
abundance [53]

ADW110/11/12
Absorption Depth of Water at 980 nm: sensitive to
plant water content [31,54]

ADW210/11/12
Absorption Depth of Water at 1240 nm: sensitive to
plant water content [31,54]

Land Cover/Change Metrics pveg_10/11/12 Number of green vegetation pixels at each site for
each year/total pixels at each site for each year (%)

psnpv_10/11/12 Number of dry vegetation pixels at each site for
each year/total pixels at each site for each year (%)

pwat_10/11/12 Number of water pixels at each site for each
year/total pixels at each site for each year (%)

∆gveg_10_11 pveg_11-pveg_10 1

∆gveg_11_12 pveg_12-pveg_11

∆wat_10_11 pwat_11-pwat_10

∆wat_11_12 pwat_12-pwat_11

∆snpv_10_11 psnpv_11-psnpv_10

∆snpv_11_12 psnpv_12-psnpv_11
1 “-“ indicates subtraction.

2.4. Comparison Methods for Cumulative Impact of Oil and Hurricane on Vegetation

In September 2010, post-spill vegetation showed signs of stress, senescence and mortality,
which were measured using the indices and change metrics described in Table 3. By 2011, recovery was
detected when there was an increase in the value of vegetation indices and an increase in the green
vegetation fraction in the affected areas [31].

When comparing indices across oiled and oil-free sites, we used the non-parametric
Kruskal–Wallis test [55]. Within groups, the index data were not normally distributed,
frequently showing skewed or multimodal distributions, due to the presence of green and dying
vegetation in oiled pixels (Figure 3). Parametric tests can be robust for skewed data and moderate
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deviations from normality, but are affected by kurtosis [56]. The Kruskal–Wallis test [55] is insensitive
to both skewness and kurtosis [56] and can be used as a measure of the difference between group
medians as long as the two distributions being compared have similar variances and distributions [57].
Figure 3 shows that this is true for our between-group comparisons. Hence, a significant p-value
indicates that the median index value was significantly different between oiled and oil-free sites,
while the sign of the difference shows the direction of change.

Land cover or change metrics were compared using a generalized linear model (GLM) with a logit
link function [58,59]. Proportion data, such as change metrics or land cover metrics, do not exhibit the
same variance for the mean across the entire range of possible values. As the mean value approaches
0% or 100% cover, variance tends to zero, while it is maximum near a mean of 50% [60,61]. Classic tests,
such as Student’s t-test or ANOVA, assume equal within-group variances and their independence
of the group mean, whereas the logit link function naturally models the change in variance across
the range of the mean values (i.e., 0% and 100% [58,59]). Hence, this method is appropriate and
recommended for such data analyses [60]. The model reports the significance of the slope and intercept
for each comparison.

A significant slope indicates that the dependent land cover or change metric is significantly
different between the two groups of sites (e.g., oiled vs. oil-free, treated vs. untreated, etc.), while the
sign of the slope indicates the direction of change. A significant intercept indicates that there is a
remnant value of the metric that is not related to group membership. For example, since every site was
centered around a point on the shoreline edge, it was likely to have half its pixels as water (see Figure 2).
Thus, the metric measuring “percent cover of water” at a site often had a significant intercept.
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In addition to site-based comparisons, we also estimated green vegetation and land loss along the
entire affected shoreline (oiled and oil-free) in Barataria Bay after Hurricane Isaac. We quantified the
number of pixels that transitioned from green vegetation to soil, NPV or open water between 2010
and 2011. This comparison was done zone-to-zone (bands of pixels away from the shore by the same
distance), i.e., the zone of the first pixel next to the shore was compared between oiled and oil-free
shores, then the pixel-zone next to the shoreline pixels, and so on, until the maximum inland extent of
the oil is reached. We expected the maximum impact at the shoreline and decreasing impact as we
moved further inland.

2.5. Effect of Site Characteristics on Vulnerability to Disturbances

Several studies have shown that the physical characteristics of the impacted site can have an
influence on the effect of both oil-spills and hurricanes [5,6,62]. We hypothesized that shores of narrow
land masses were likely to be more susceptible to erosion and show slower recovery compared to
shores of wider islands. To test this hypothesis, we divided our sites into narrow and wide sites,
where a site along a shore less than 50 m wide was considered a narrow site. Since there were many
fewer narrow sites compared to wide sites, we randomly selected 50 sites from more than 250 wide
sites to test against the narrow sites. We determined whether oiled narrow sites showed greater land
loss and vegetation stress relative to oiled wide sites by comparing indices using the Kruskal–Wallis
test and land cover and change metrics using the GLM test as described in Section 2.4.

Between September 2010 and August 2011, several sites were identified as treated by cleanup
crews using multiple treatment methods. We did not have data on the kind of treatment performed
at each site, but we did have access to information on whether a site was treated or not [63].
We hypothesized that oiled sites that were treated would likely show better recovery in 2011 and less
land loss in 2012 as a result of the hurricane. We compared 173 treated sites to 138 sites that were not
treated. Treatment was carried out in the years 2010 to 2011 before the 2011 imagery was acquired.
The post-oil management actions were geared towards salt marsh recovery and included marsh cleanup
actions. Most of the marsh oiling occurred in Louisiana (94.8%), and treatment was customized to
specific shoreline segments (71 km out of 796 km of affected marshes) [63]. Cleanup activities were
terminated when there was no visible flushable oil, no release of sheens and no thick oil (>1 cm) was
detected on the marsh. Natural attenuation was often recommended to avoid further damage to the
marshes [63]. We tested whether untreated oiled sites showed greater land loss and vegetation stress
relative to treated oiled sites by comparing indices using the Kruskal–Wallis test and land cover and
change metrics using the GLM test as described in Section 2.4.

3. Results

3.1. Cumulative Impact of Oil and Hurricane on Vegetation Indices

In September 2010, land pixels were significantly more stressed in oiled sites relative to oil-free
sites. This pattern was observed across all six indices, which showed median and average index
values significantly higher for oil-free pixels than for oiled pixels (Table 4). In August 2011,
the between-group difference in index values became statistically non-significant (with the exception
of mNDVI11 − p-value = 0.012). In other words, index values in oiled and oil-free sites became more
similar in 2011 suggesting some recovery (Table 4). In October 2012, after the hurricane, five of the
six indices again showed significant differences in value between oiled and oil-free sites suggesting
that recovery was pushed back by the hurricane. All five indices exhibited lower values in oiled sites
relative to oil-free sites; however, the difference between the medians was smaller (Table 4: difference
in medians).
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Table 4. Analysis of variance using the Kruskal–Wallis test between oiled and oil-free sites for
indices calculated on all land pixels for all three years. p-values in bold are significant at the
0.05 significance level.

Mean Standard Deviation Difference Kruskal–Wallis

Index Oiled Oil-Free Oiled Oil-Free in Medians H p-Value

NDVI10 0.527 0.627 0.138 0.125 0.090 102.36 <0.0001
NDII10 0.422 0.503 0.113 0.106 0.081 74.90 <0.0001

ARED10 4.795 5.204 0.544 0.371 0.385 77.93 <0.0001
mNDVI10 0.356 0.457 0.120 0.113 0.098 107.00 <0.0001
ADW110 293.8 365.5 126.9 107.4 81.2 51.80 <0.0001
ADW210 606.2 701.2 264.5 221.3 129.5 29.52 <0.0001

NDVI11 0.531 0.539 0.109 0.094 0.007 0.12 0.7275
NDII11 0.318 0.317 0.093 0.083 −0.004 0.24 0.6263

ARED11 0.868 0.795 0.366 0.266 −0.050 2.71 0.0998
mNDVI11 5.094 5.050 0.435 0.332 −0.093 6.27 0.0123
ADW111 404.6 389.2 141.2 125.6 −16.8 0.90 0.3416
ADW211 643.8 653.5 177.2 146.7 18.4 0.65 0.4219

NDVI12 0.310 0.357 0.169 0.120 0.032 6.77 0.0093
NDII12 0.528 0.516 0.136 0.120 −0.032 2.21 0.1373

ARED12 3.958 4.040 0.490 0.380 0.079 4.38 0.0365
mNDVI12 0.207 0.244 0.132 0.099 0.035 6.85 0.0089
ADW112 134.8 147.0 58.6 50.0 11.4 4.19 0.0407
ADW212 465.8 503.7 156.9 137.3 21.4 4.62 0.0315

3.2. Cumulative Impact of Oil and Hurricane on Land Cover

In 2010, land cover metrics were significantly different between oiled and oil-free sites, with oiled
sites having significantly fewer green vegetation pixels and higher soil/NPV pixels compared to oil-free
sites (Table 5). The change in green vegetation and soil/NPV from 2010 to 2011 was significantly
different between oiled and oil-free sites. In oiled sites, there was a reduction in soil/NPV pixels,
which likely greened up, leading to an increase in green vegetation pixels. In 2012, post hurricane,
there was a significant loss of green vegetation pixels to water and soil/NPV in both oiled and oil-free
sites. Although all sites showed loss of green vegetation, in oiled sites, the loss was evenly divided
between conversion to soil/NPV (∆snpv_11_12 = 8.8%) or water (∆wat_11_12 = 8.7%). In oil-free
sites, most of the green vegetation converted to soil/NPV (∆snpv_11_12 = 12.1%) rather than water
(∆wat_11_12 = 3.4%).

Table 5. GLM results using the binomial model for oiled vs. oil-free sites for land cover change metrics
calculated for all sites. p-values in bold are significant at the 0.05 significance level.

Land Cover Mean Standard Deviation Slope Intercept

Change Metric Oiled Oil-Free Oiled Oil-Free Z-Value p-Value Z-Value p-Value

pveg_10 36.31 50.85 14.88 15.44 −8.87 <0.001 9.57 <0.001
pwat_10 43.10 46.96 13.21 15.43 −2.97 0.003 4.24 <0.001

psnpv_10 20.58 2.24 11.12 3.84 10.75 <0.001 −9.95 <0.001

pveg_11 57.69 57.68 21.40 20.69 0.01 0.992 1.65 0.100
pwat_11 40.89 41.97 21.47 20.68 −0.56 0.573 2.69 0.007

psnpv_11 1.38 0.36 4.80 1.59 2.57 0.010 3.88 <0.001
∆gveg_10_11 21.39 6.83 22.58 19.07 6.87 <0.001 −0.12 0.905
∆wat_10_11 −2.22 −4.99 19.40 18.55 1.60 0.109 5.01 <0.001

∆snpv_10_11 −19.20 −1.88 12.15 4.34 −10.69 <0.001 −8.89 <0.001

pveg_12 40.26 42.20 22.58 21.54 −0.96 0.335 3.12 0.002
pwat_12 49.56 45.36 22.36 19.08 2.18 0.030 −0.07 0.944

psnpv_12 10.21 12.49 7.69 9.00 −3.00 0.003 5.19 0.001
∆gveg_11_12 −17.43 −15.48 19.89 16.85 −1.15 0.251 2.88 0.004
∆wat_11_12 8.67 3.40 20.44 16.15 3.03 0.002 3.63 <0.001

∆snpv_11_12 8.83 12.13 8.96 8.67 −3.98 <0.001 5.99 <0.001
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3.3. Zone-Wise Impact Moving Inland from the Shore between Oiled and Oil-Free Shores

The analysis of oiled and oil-free shorelines by zone also confirms the disproportionate impact of
the hurricane in oiled areas. While Hurricane Isaac caused shoreline erosion across the entire Barataria
Bay in the first 14 to 17 m along the shore, in every zone (n pixels away from shore), the oiled shorelines
lost more land than oil-free shorelines (Figure 4). In the first two pixels along the shore (0 to 7 m from
the shore), oil-free shorelines lost 13.6% of their land; however, oiled shorelines lost 17.8% of land.
Land loss decreased further inland from the shore. In the next two pixels along the shore (7 to 14 m
from the shore), the oil-free shorelines lost only 6.3% of their land, while oiled shorelines lost 11.6% of
their land (Figure 5).
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Figure 5. Color infrared imagery of Barataria Bay showing oiled and oil-free shores and the location of
three insets, (A) moderately oiled island shoreline, (B) lightly oiled big island shoreline and (C) heavily
oiled narrow land strip and island shore. The row images show classification results for all three years
(2010, 2011 and 2012) for each inset and the distribution of oiled/oil-free sites within it. Severely oiled
dead and dying vegetation pixels in 2010 show greening in 2011, but are vulnerable to loss after the
hurricane in 2012. Panel (C) also shows the greater loss of vegetation in narrow sites relative to wide sites.

3.4. Effect of Landmass on Vulnerability to Impact

For all six indices, values in narrow oiled sites were significantly lower than wide sites in 2010 and
continued to show a similar pattern in 2011, with the exception of mNDVI (Table 6). In 2012, four of
the six indices still showed narrow sites with significantly lower index values relative to wide sites.
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Table 6. Kruskal–Wallis test results for narrow vs. wide oiled sites for indices calculated on all land
pixels for all three years. p-values in bold are significant at the 0.05 significance level.

Mean Standard Deviation Difference Kruskal–Wallis

Index Wide Narrow Wide Narrow In Medians H p-Value

NDVI10 0.545 0.372 0.121 0.176 −0.141 35.81 <0.0001
NDII10 0.427 0.377 0.109 0.131 −0.075 5.29 0.0215

ARED10 4.835 4.442 0.484 0.850 −0.305 5.73 0.0167
mNDVI10 0.372 0.219 0.105 0.150 −0.140 31.70 <0.0001
ADW110 305.6 191.1 121.6 128.0 −116.7 19.05 <0.0001
ADW210 626.4 430.5 261.5 225.8 −160.8 16.38 0.0001

NDVI11 0.541 0.430 0.103 0.123 −0.085 23.39 <0.0001
NDII11 0.325 0.253 0.090 0.097 −0.068 14.62 0.0001

ARED11 0.836 1.177 0.335 0.496 0.209 18.48 <0.0001
mNDVI11 5.091 5.118 0.444 0.350 −0.002 0.00 0.9843
ADW111 412.8 326.0 135.8 168.9 −98.2 13.45 0.0002
ADW211 660.1 487.3 167.6 193.2 −186.3 25.01 <0.0001

NDVI12 0.331 0.114 0.150 0.221 −0.236 27.78 <0.0001
NDII12 0.527 0.534 0.136 0.135 0.060 0.26 0.6077

ARED12 3.961 3.926 0.498 0.407 0.054 0.09 0.7706
mNDVI12 0.221 0.066 0.119 0.169 −0.176 22.71 <0.0001
ADW112 138.0 103.5 58.4 51.5 −37.0 8.62 0.0033
ADW212 482.3 305.0 146.8 163.6 −210.1 23.38 <0.0001

Narrow oiled sites had significantly fewer green pixels and more water pixels than wide sites
(Table 7). In 2011, narrow and wide sites again differ significantly in green vegetation and water pixels;
however, none of the change metrics show any significant difference between the two groups. The 2012
pattern mimics those of 2010 and 2011, showing significant differences only in green vegetation and
water pixels, but no significant differences in any of the change metrics.

Table 7. GLM results using the binomial model for narrow vs. wide oiled sites for land cover change
metrics calculated for all sites. p-values in bold are significant at the 0.05 significance level.

Land Cover Mean Standard Deviation Slope Intercept

Change Metric Narrow Wide Narrow Wide Z-Value p-Value Z-Value p-Value

pveg_10 19.65 38.15 13.88 13.31 5.73 <0.001 −2.32 0.021
pwat_10 59.32 41.31 11.87 13.84 −6.17 <0.001 7.67 <0.001

psnpv_10 21.10 20.52 11.15 11.03 −0.28 0.783 5.71 <0.001

pveg_11 40.71 59.58 20.43 22.78 4.35 <0.001 0.25 0.799
pwat_11 59.06 38.88 20.38 22.79 −4.59 <0.001 7.62 <0.001

psnpv_11 0.26 1.50 5.03 1.44 1.17 0.240 10.96 <0.001
∆gveg_10_11 21.06 21.43 22.94 19.42 0.08 0.933 8.44 <0.001
∆wat_10_11 −0.26 −2.43 19.77 15.82 −0.59 0.554 11.58 <0.001

∆snpv_10_11 −20.84 −19.01 12.27 11.01 0.79 0.427 6.61 <0.001

pveg_12 19.61 42.55 21.97 17.10 4.94 <0.001 2.09 0.037
pwat_12 70.52 47.24 21.50 19.06 −5.07 <0.001 7.84 <0.001

psnpv_12 9.94 10.24 7.79 6.83 0.21 0.836 6.89 <0.001
∆gveg_11_12 −21.10 −17.03 20.14 17.40 1.08 0.279 8.62 <0.001
∆wat_11_12 11.45 8.36 20.94 15.26 −0.80 0.424 10.55 <0.001

∆snpv_11_12 9.68 8.73 9.14 7.20 −0.56 0.577 8.28 <0.001

3.5. Effect of Post-Oil Treatment on Vulnerability to Impact

While post-treatment comparisons are meaningful only for 2011 and 2012 data, we present the
2010 data here to emphasize that the treated and untreated sites were significantly different even
before the treatment was applied. The treated sites had significantly lower index values for five of
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the six indices (Table 8) and significantly less green vegetation and more soil/NPV pixels relative to
the untreated sites (Table 9). This might indicate that heavily-impacted shores were more likely to be
treated than moderately and lightly affected shores.

Table 8. Kruskal–Wallis test results for treated vs. untreated oiled sites for indices calculated on all
land pixels for all three years. p-values in bold are significant at the 0.05 significance level.

Mean Standard deviation Difference Kruskal–Wallis

Index Treated Untreated Treated Untreated In Medians H p-Value

NDVI10 0.527 0.528 0.118 0.160 0.019 2.03 0.1544
NDII10 0.402 0.447 0.100 0.123 0.055 15.74 0.0001

ARED10 4.692 4.923 0.492 0.580 0.394 20.44 <0.0001
mNDVI10 0.344 0.371 0.106 0.134 0.054 10.02 0.0015
ADW110 266.5 328.1 107.0 141.2 82.7 20.31 <0.0001
ADW210 543.4 684.9 219.4 294.4 136.7 19.09 <0.0001

NDVI11 0.521 0.543 0.113 0.104 0.023 3.06 0.0804
NDII11 0.313 0.325 0.094 0.092 0.012 1.52 0.2174

ARED11 0.930 0.789 0.408 0.287 −0.122 8.52 0.0035
mNDVI11 5.054 5.144 0.491 0.347 0.022 0.53 0.4682
ADW111 394.5 417.4 136.8 146.2 29.3 2.43 0.1188
ADW211 622.8 670.7 184.8 163.7 62.6 5.45 0.0196

NDVI12 0.280 0.351 0.169 0.161 0.055 18.50 <0.0001
NDII12 0.514 0.547 0.140 0.128 0.044 5.42 0.0199

ARED12 3.832 4.123 0.428 0.517 0.439 29.62 <0.0001
mNDVI12 0.176 0.247 0.132 0.122 0.068 25.40 <0.0001
ADW112 122.3 151.3 56.0 58.0 29.3 17.75 <0.0001
ADW212 435.5 505.8 147.7 160.3 73.6 16.68 <0.0001

Table 9. GLM results using the binomial model for treated vs. untreated oiled sites for land cover
change metrics calculated for all sites. p-values in bold are significant at the 0.05 significance level.

Land Cover Mean Standard Deviation Slope Intercept

Change Metric Treated Untreated Treated Untreated Z-Value p-Value Z-Value p-Value

pveg_10 34.17 38.98 14.54 14.91 −2.80 0.005 3.31 <0.001
pwat_10 42.18 44.26 12.64 13.85 −1.38 0.168 1.89 0.059

psnpv_10 23.67 16.70 10.59 10.58 5.28 <0.001 −3.98 <0.001

pveg_11 57.96 57.36 21.58 21.25 0.24 0.807 0.46 0.646
pwat_11 40.10 41.88 21.53 21.43 −0.73 0.468 1.56 0.119

psnpv_11 1.96 0.65 5.81 2.98 2.21 0.027 1.20 0.230
∆gveg_10_11 23.79 18.38 22.17 22.82 2.09 0.037 0.00 0.997
∆wat_10_11 −2.08 −2.38 18.09 21.00 0.14 0.891 1.98 0.047

∆snpv_10_11 −21.71 −16.04 12.58 10.83 −3.99 <0.001 −2.45 0.014

pveg_12 38.23 42.82 21.36 23.86 −1.78 0.075 2.50 0.013
pwat_12 50.80 48.01 21.53 23.35 1.09 0.274 −0.19 0.850

psnpv_12 11.01 9.20 7.85 7.39 2.04 0.041 −0.47 0.641
∆gveg_11_12 −19.73 −14.54 17.40 22.36 −2.26 0.024 −0.03 0.977
∆wat_11_12 10.70 6.13 18.96 21.97 1.95 0.052 1.07 0.286

∆snpv_11_12 9.05 8.55 9.90 7.65 0.49 0.628 1.07 0.284

Furthermore, our results show that the treated sites experienced a significantly greater conversion
from soil/NPV to green vegetation relative to untreated sites (treated: ∆gveg_10_11 = 23.8,
∆snpv_10_11 = −21.7, untreated: ∆gveg_10_11 = 18.4, ∆snpv_10_11 = −16), thus suggesting that
treated sites did recover better than untreated ones. Results from the index value comparisons were
more ambiguous. Only two indices showed a significant difference between treated and untreated sites.
ARED indicated a slight greening up of land pixels (negative difference in medians, p-value < 0.01),
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while ADW2 indicated that there was still a water deficit in the recovering plants (positive difference
in medians, p-value = 0.02).

In 2012, however, the treated sites showed greater loss of green vegetation and had more soil/NPV
pixels relative to untreated sites. Furthermore, all indices showed significantly lower values in treated
sites compared to untreated sites indicating more stressed vegetation.

4. Discussion

The impact of hurricanes on subsiding wetlands, such as the saltmarshes of Louisiana, can be
beneficial due to sediment accretion in some areas [5,7], but detrimental in areas vulnerable to massive
erosion and land loss [11,12,16]. Along shorelines that were affected by the DWH oil spill in 2010,
we found that the overarching effect of Hurricane Isaac was loss of green vegetation and of land mass
in the first several pixels along the shore.

4.1. Cumulative Effect of Oil Contamination and Hurricane Isaac

This study suggests that there is a cumulative effect of oil and hurricane stress. We observed
that vegetation index values in oiled and oil-free sites became more similar in 2011 compared to 2010,
suggesting some recovery consistent with the analysis of Khanna et al. [31]. However, after Hurricane
Isaac in October 2012, index values again became more dissimilar between oiled and oil-free sites.

Oil coating causes vegetation stress, damaging the canopy and ultimately changing leaf color
and leading to vegetation mortality [64]. The spectral resolution of imaging spectroscopy is sufficient
to enable discrimination between healthy and stressed vegetation and to monitor the impact of oil
contamination [26]. Oil coating may affect the ability of plants to photosynthesize, which can be
measured as a shift towards shorter wavelengths of the “red edge” (ca. 700 nm) due to decreased
chlorophyll concentration [65]. The loss of photosynthetic ability can decrease the leaf area index,
resulting in decreased scattering between leaves [24]. Oil coating can also increase plant stress by
altering the water balance and water exchange capacity of the leaves [4]. Our results suggest that in
the case of the DWH oil spill, oil coating affected both the photosynthetic capacity of the plants and
its water content. These results can be better understood in conjunction with the change detection
results in the next section, which corroborate the loss of green vegetation pixels in 2012 in both oiled
and oil-free sites.

After the two disturbances, we found that while both oiled and oil-free shores lost healthy marsh
vegetation, oiled areas lost significantly more vegetation than oil-free areas. This is likely because the
marshes at the interface between land and water were already fragile due to the effects of oil. In oiled
sites, we observed a reduction in soil/NPV pixels from 2010 to 2011, which likely greened up leading
to an increase in green vegetation pixels. In 2012, post hurricane, there was a significant loss of green
vegetation pixels to water and soil/NPV in both oiled and oil-free sites. Pixels with stressed or dead
vegetation are likely to first be converted to water because they lack the vegetation cover that serves to
hold onto the bare land. In recent research after the DWH oil spill, Lin et al. [23] reported that heavily
oiled marshes had significantly lower soil shear strength, lower sedimentation rates and higher vertical
soil surface erosion rates. Further, Silliman et al. [13] showed that oiled areas had almost double the
rate of shoreline erosion. Hence, the oiled sites lost more marsh area to water than oil-free sites.

The loss of land occurred in bands along the shore, with losses of 17.8% of land in oiled shores in
the first 7 m inland, while non-oiled shores lost 13.6% of land. From 7 to 14 m inland, oiled shores land
loss was 11.6%, and the oil-free shorelines lost only 6.3% of their land. Again, this is likely because
oil-free shores retained most of their vegetation, which traps the soil and prevents erosion due to
hurricanes. The cumulative effect of the hurricane was less pronounced inland where the oil impact was
lower [31,66]. Tide levels were lower in the 2012 images, but we do not believe that this significantly
affected our results. Lower water levels could potentially show up as a gain in soil/NPV pixels
(mudflat) at the expense of water. However, instead, our results show a loss to water, which indicates
that the hurricane caused a loss of land, but its extent may be somewhat underestimated.
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Other disturbances may have affected the study area during the duration of our study. There was
a drought in 2011 which could influence the recovery trajectories in 2011 and 2012. However,
while seasonal variations are likely to affect the entire marsh somewhat consistently, both the oil
spill (since it came in with the tides) and the hurricane preferentially affect the shoreline more than the
inland marsh (Figure 5, 2012 imagery). Plant stress due to drought starts in the marsh interior and
moves to the shoreline as observed in 2011 imagery (Figure 5). Since we have selected all of our sites
along the shoreline, we believe we are primarily looking at oil and hurricane impacts.

4.2. Effect of Landmass on Vulnerability of Oiled Shores

Our results indicated that narrow oiled sites had significantly less green pixels and more water
pixels than wide sites a priori (Table 7). This is simply due to the fact that narrow sites are likely
to have more water and less land in the 40 m-diameter circle that constitutes a site because of their
narrow structure. While most index values were significantly different between the two groups,
change detection metrics were comparable across narrow and wide sites. This suggests that recovery
of narrow and wide sites was equivalent (e.g., in both sites, green vegetation increased by more than
20%). However, the significant difference between index values in wide and narrow sites indicates that
while narrow sites do not disproportionately lose land relative to wide sites, the vegetation in narrow
sites was more stressed relative to wide sites after both the oil spill and the hurricane. This encourages
the conclusion that indeed, narrower sites are more vulnerable to oil spill impact and that this is
maintained but not necessarily exacerbated after the hurricane.

4.3. Effect of Post-Oil Treatment on the Vulnerability of Oiled Shores

Cleanup of the marsh after the oil spill helped with recovery, but was ineffective in ameliorating
hurricane impact. Sites that were treated for the impacts of oil showed some signs of greater recovery
relative to untreated sites. However, the recovery rates did not make these sites more resilient to
impacts of hurricane Isaac in 2012. Treated sites showed greater conversion of green vegetation
to soil/NPV and open water relative to untreated sites. This might be due to two reasons: first,
treated sites were originally more severely affected than untreated sites, hence they were more
vulnerable, and second, treatment often involves planting new saplings after cleanup, and these
saplings might still be vulnerable and unable to survive hurricane-force winds and the resulting
storm-surge. Zengel et al. [67] showed that manually-treated sites performed better than mechanical
treatment by minimizing the detrimental impacts of intensive treatment. There were large differences
in the degree of intervention at different sites, and some treatments worked better than others [67].
We did not have detailed information on the type of treatment applied to each of our treated sites;
hence, we could not separately test for the effectiveness of each. It is possible that having both types
of treatment sites diluted our ability to detect a strong positive impact of treatment on recovery
and resilience.

5. Conclusions

Climate change is likely to increase the intensity of hurricanes [68,69]. At the same time,
our continued reliance on oil has led companies to explore more deepwater wells, increasing the danger
of large, hard-to-stop oil spills, such as DWH. Our results suggest that the environmental impact
escalates when multiple disturbances act in quick succession on sensitive endangered ecosystems.

Remote sensing monitoring techniques are necessary to assess long-term impacts of oil spills and
the resilience of the ecosystem to recover from their effects, especially when ecosystems are exposed to
multiple natural and anthropogenic disturbances. New AVIRIS imagery was acquired in 2015 over
Barataria Bay, and future research will allow assessment of lingering impacts, five years after the spill.
It is therefore important to maintain such campaigns to understand the fate of coastal salt marshes
under the impacts of multiple disturbances. Ghosh et al. [70] have stressed the need for long-term
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monitoring of coastal wetlands throughout the year to capture seasonal changes in these ecosystems in
order to have a base line to compare to.

No single index or group of indices proved exceptionally good at measuring oil and hurricane
impact. Moreover, they only told a part of the story. The land cover and change metrics were essential
to understanding the full impact of these disturbances. For example, the indices consistently showed
narrow sites as more stressed than wide sites; however, there was no significant difference in their
land cover change. This means that hurricane and oil impacts affect the physiological health of plants,
but also engineer changes to land cover, and the directionality of the forces that bring oil to shore and
of the hurricane may impact land masses differentially. Our results highlight the increased risk to
ecosystem health from both disturbances, which can inform better management of important coastal
areas as the Mississippi Deltaic Plain.
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