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Unraveling Spatial Heterogeneity in Mass Spectrometry
Imaging Data with GraphMSI

Lei Guo, Peisi Xie, Xionghui Shen, Thomas Ka Yam Lam, Lingli Deng, Chengyi Xie,
Xiangnan Xu, Chris Kong Chu Wong, Jingjing Xu, Jiacheng Fang, Xiaoxiao Wang,
Zhuang Xiong, Shangyi Luo, Jianing Wang, Jiyang Dong,* and Zongwei Cai*

Mass spectrometry imaging (MSI) provides valuable insights into metabolic
heterogeneity by capturing in situ molecular profiles within organisms. One
challenge of MSI heterogeneity analysis is performing an objective
segmentation to differentiate the biological tissue into distinct regions with
unique characteristics. However, current methods struggle due to the
insufficient incorporation of biological context and high computational
demand. To address these challenges, a novel deep learning-based approach
is proposed, GraphMSI, which integrates metabolic profiles with spatial
information to enhance MSI data analysis. Our comparative results
demonstrate GraphMSI outperforms commonly used segmentation methods
in both visual inspection and quantitative evaluation. Moreover, GraphMSI
can incorporate partial or coarse biological contexts to improve segmentation
results and enable more effective three-dimensional MSI segmentation with
reduced computational requirements. These are facilitated by two optional
enhanced modes: scribble-interactive and knowledge-transfer. Numerous
results demonstrate the robustness of these two modes, ensuring that
GraphMSI consistently retains its capability to identify biologically relevant
sub-regions in complex practical applications. It is anticipated that GraphMSI
will become a powerful tool for spatial heterogeneity analysis in MSI data.
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1. Introduction

Understanding spatial heterogeneity within
biological tissues is essential for decipher-
ing the mechanisms of various biologi-
cal processes.[1,2] Spatial omics techniques,
which employ in situ molecular measure-
ments, have been instrumental in revealing
the intricate spatial heterogeneity within
tissues.[3,4] Among these techniques, mass
spectrometry imaging (MSI) stands out as
a label-free method that enables compre-
hensive spatial profiling of thousands of
molecules, offering critical insights into
metabolic heterogeneity within tissue.[5–8]

Due to its high sensitivity and high through-
out, MSI has been widely used to ex-
plore the relationship between spatial het-
erogeneity and disease progression, high-
lighting its importance in contemporary
biomedical research.[9,10]

Spatial segmentation is a crucial
step in analyzing heterogeneity in MSI
data.[11] It involves partitioning the mass
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spectra into distinct clusters associated with different pathologi-
cal or physiological categories. Effective spatial segmentation can
reveal the landscape of heterogeneous tissue samples, facilitat-
ing a deeper understanding of the biological processes. However,
spatial segmentation remains challenging due to the complexi-
ties of MSI data, which are characterized by high dimensionality,
low signal-to-noise ratio, and a lack of benchmark datasets.[12]

Segmentation methods are typically classified as either super-
vised or unsupervised, depending on whether the ground truth
data is used. Supervised methods often rely on reference images
from other modalities, such as hematoxylin and eosin (H&E)-
stained image or magnetic resonance imaging, to guide MSI
data segmentation.[13,14] However, because MSI data often con-
tains much richer molecular information than these other imag-
ing modalities, using them as guides can obscure “hidden”
structures within tissue, leading to biased spatial heterogeneity
analysis.[15,16] Unsupervised methods, on the other hand, clus-
ter spots based on their spectral similarity and spatial proxim-
ity, making them more practical for spatial heterogeneity analysis
when reliable ground truth is often unavailable.

Several unsupervised methods have been developed specifi-
cally for spatial segmentation of MSI data. For example, Abdel-
mola et al. combine t-distributed stochastic neighbor embed-
ding (t-SNE) with K-Means method to analyze tumor heterogene-
ity, identifying several molecular markers associated with prog-
nostic tumor subpopulations.[17] Additionally, vender software
SCiLS Lab and widely used Cardinal package enhance spatial
measurement by incorporating spatial location, thereby reduc-
ing the occurrence of undesirable discontinuous results.[18,19] De-
spite these advancements, most of these methods rely on statis-
tical model-based algorithms that depend on specific mathemat-
ical assumptions about MSI data. Given the high heterogeneity
of MSI data, different regions may have varying degrees of va-
lidities under a given model-based clustering algorithm,[20] often
resulting in poor-determined segmentation results. Deep learn-
ing, with its data-driven strategy and the ability of automatically
capture heterogeneous structure in MSI data, offers a more flex-
ible and adaptive strategy for MSI analysis.[21–23] For example,
Gardner et al. develops a convolutional autoencoder (CNNAE)
model specifically for MSI data, which outperforms statistical
model-based methods in spatial heterogeneity analysis.[24] Simi-
larly, Kim et al. presents a standard convolutional neural network
(CNN)-based unsupervised segmentation method that delivers
more accurately results than model-based methods, and it can
be directly applied to MSI segmentation.[25]

Nevertheless, existing methods still face significant challenges
in practical biomedical research, highlighted by the following
issues: First, improper use of spatial information can suppress
small but critical biological signals, and may even introduce ar-
tificial non-biological signals that negatively affect segmentation
results.[26] Second, commonly used unsupervised segmentation
methods often produce algorithmically correct but biologically
inappropriate segmentation. For example, sub-regions with
histomorphological differences are often incorrectly merged
into a single region when MSI data fails to capture these differ-
ences or when the differences are too subtle for unsupervised
methods to detect.[27] Third, the three-dimensional (3D) MSI
data provides rich molecular information on high chemical
specificity across multiple tissue sections. However, commonly

used methods for analyzing 3D MSI data are hindered by batch
effects among different slices and significant computational
demand on hardware.[28] There is an urgent need for more
efficient methods that allow researchers to analyze large 3D MSI
data with enhanced speed and accuracy.

To address these challenges, we propose a novel deep learning-
based method, namely GraphMSI, specifically designed for un-
raveling spatial heterogeneity within tissue. GraphMSI com-
prises two key modules: dimensionality reduction (DR) and fea-
ture clustering (FC). The DR module employs parametric-UMAP
to reduce data dimensionality while preserving spectral informa-
tion and minimizing noise. In the FC module, the graph convolu-
tional network (GCN) is used instead of the commonly used CNN
to learn more meaningful representation for each spot based on
its metabolic profiles and spatial location. To reduce the computa-
tional burden of GCN, we limit the construction of the adjacency
matrix to consider the feature difference between each spot and
its 8 nearest neighbors (rather than all spots), as illustrated in
Figure S1 (Supporting Information). Comparative experiments
and ablation study on mouse kidney dataset demonstrate the ef-
fectiveness of GraphMSI, outperforming commonly used meth-
ods in both visual inspection and quantitative evaluation while
maintaining acceptable computational complexity.

Existing methods face challenges due to inadequate integra-
tion of biological context and excessive computational require-
ments. To address these issues, GraphMSI can be extended to two
operational modes, scribble-interactive and knowledge-transfer
to ensure versatile applications across various biomedical sce-
narios. The scribble-interactive mode allows for the incorporate
of partial or coarse biological contexts, enabling corrections of
inappropriate segmentations produced by the basic GraphMSI
model. Meanwhile, the knowledge-transfer mode facilitates the
segmentation of unseen MSI data by utilizing the model pre-
trained on MSI data from adjacent slice, allowing for faster and
more accurate 3D MSI segmentation. Two typical applications il-
lustrate the effectiveness of GraphMSI in these two modes: pin-
pointing organs or sub-organs in mouse fetus dataset to improve
segmentation results, and more effective segmentation of het-
erogeneous regions in complex 3D cancer cell spheroids (CCS)
dataset. GraphMSI is expected to become a critical tool for explor-
ing spatial heterogeneity in MSI data.

2. Results

2.1. Overview of GraphMSI Model

The workflow of GraphMSI is illustrated in Figure 1. Biological
tissue is first sectioned, followed by the application of the MSI
technique to measure the metabolic profiles and spatial location
for each spot. These data are then input into GraphMSI for
spatial heterogeneity analysis within the tissue, as shown in
Figure 1a. The GraphMSI model consists of two modules:
the DR module and the FC module. The DR module employs
parametric-UMAP which incorporates multiple fully connection
networks to preserve spectral information while minimizing
noise. The FC module, built on a GCN-based architecture,[29]

includes two GCN layers and a classifier to achieve accuracy
segmentation by effectively capturing spectral and spatial infor-
mation from MSI data, as depicted in Figure 1b. A multi-task
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Figure 1. Overflow of the proposed GraphMSI for MSI segmentation. a) GraphMSI is designed to integrate the metabolite profiles and spatial location for
each spot to generate the segmentation result for spatial heterogeneity analysis. b) GraphMSI takes as inputs the MSI data that includes the metabolite
profiles and spatial location. Latent embedding data is obtained using parametric-UMAP to preserve the informative features from the metabolite profiles.
Then, the spatial neighborhood graph is constructed based on the spot coordinates. Both of them are inputted into the two GCN layers and a classifier
to obtain the spatial segmentation result. c) The GraphMSI model is trained using the multi-task learning. Particularly, the scribble-interactive mode
incorporates the partial or coarse biological contexts to fine-tuning the basic model to achieve enhanced results. d) The GraphMSI with knowledge-
transfer mode trains on MSI data from slice-1 and then directly applies the trained model to perform segmentation on unseen MSI data from slice-2,
which are adjacent slices, without the need for re-training.

learning loss function is specially designed to ensure that
GraphMSI produces reliable segmentation results, with the
backpropagation of errors illustrated in Figure S2 (Supporting
Information). Detailed descriptions of the model architecture
and training scheme can be found in the Experimental Section.

To enhance the practical applicability of GraphMSI, it can
be extended to two optional modes: scribble-interactive and
knowledge-transfer, thereby increasing its adaptability to various
scenarios. The scribble-interactive mode, shown in Figure 1c,
improves basic segmentation by incorporating scribbles input
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Figure 2. Results of GraphMSI on mouse kidney dataset. a) Color-encoded segmentation result derived from GraphMSI alongside the corresponding
H&E-stained image. b) Scatter plot of data points in the UMAP embedding space related to (a) displayed on the left panel, and a network depicting
metabotypic similarities across sub-regions on the right panel. c) Identification of potential molecular markers associated with four kidney sub-regions.

that integrate partial or coarse biological contexts from other
sources, such as reference imaging modalities or domain knowl-
edge. Meanwhile, the knowledge-transfer mode, illustrated in
Figure 1d, enables segmentation on unseen MSI data by using a
model pre-trained on adjacent slice’s data, eliminating the need
for re-training. This significantly improves the speed and accu-
racy of 3D MSI segmentation. Notably, these two modes are com-
plementary and can be used together in complex application sce-
narios.

2.2. Precisely Resolving Mouse Kidney Structures Using
GraphMSI

Differentiating kidney sub-regions based on metabolic hetero-
geneity is critical for understanding the links between specific
functions and their corresponding metabolic profiles.[30,31] In this
study, GraphMSI is applied to an MSI dataset of the mouse kid-
ney (Figure 2). The segmentation results reveal five distinct sub-
regions: the outer cortex (red), inner cortex (dark green), renal
medulla (blue), renal pelvis (orange), and an additional perirenal
fat region (light green), as shown in Figure 2a. These sub-regions
are consistently observed in the corresponding H&E-stained im-
ages.

Next, the metabotype similarity among different kidney sub-
regions kidney is analyzed (Figure 2b). The scatter plot shows dis-
tinct separation of data points in the embedding space, indicating
the significant differences in metabolic profiles across these sub-
regions. A metabotypic similarity network is then constructed by
calculating the Euclidean distance between cluster centers from
different regions. The results demonstrate that spatially adjacent
kidney sub-regions exhibited similar metabolic features, with the

renal pelvis showing high similarity to the medulla, and the outer
cortex resembling the inner cortex. These findings align with pre-
vious studies,[32,33] confirming the capability of GraphMSI in ex-
ploring the biological function of mouse kidney sub-regions.

Potential markers for each sub-region are screened, with
some manually annotated by matching known metabolites from
public databases within the 5 ppm tolerance (Figure 2c). Notably,
high expression levels of m/z 452.28 LPE(16:0) and m/z 754.61
CerP(44:2) are found in the outer cortex; m/z 395.25 LPA(O-16:0)
and m/z 772.52 PE(O-40:8) are detected in the inner cortex; m/z
865.59 PI(36:0) and m/z 894.62 PS(44:4) in the renal medulla;
m/z 905.65 PI(O-40:1) and m/z 709.51 PA(O-38:4) in the renal
pelvis. These markers have been reported in previous study.[34]

Additional co-localized ions identified through searches are
presented in Figure S3 (Supporting Information). These results
demonstrate the potential of the proposed GraphMSI approach
for unrevealing metabolic heterogeneities in the mouse kidney
MSI dataset.

2.3. Using GraphMSI with Scribble-Interactive Mode for
Comprehensive Capture of Mouse Fetus Anatomy

Accurately distinguishing organ and sub-regions is complex but
essential preprocessing step with important applications in em-
bryological genetics, pathology, and pharmacology.[35,36] Due to
the heterogeneity in mouse fetus tissue, current segmentation
methods often fail to delineate organs and sub-regions effectively.
The introduction of GraphMSI with its scribble-interactive mode
bridges this gap, enabling comprehensive mapping of the mouse
fetus anatomy by incorporating the coarse and partial biological
contexts from H&E-stained image.
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Figure 3. Enhanced segmentation results on brain region in mouse fetus dataset using GraphMSI with scribble-interactive mode. a) H&E-stained image;
b) Color-encoded segmentation result derived from the basic of GraphMSI using unsupervised learning manner; c) Scatter plot of the whole data points
in the UMAP embedding space related to (b); d) The created scribble and the corresponding segmentation results using scribble-interactive mode;
e) Scatter plot of the brain data points related to (d); f) Boxplot of Top 10 discriminative ions whose AUC > 0.70; g) Spatial distribution of discriminative
ions.

Figure 3 showcases the capabilities of GraphMSI with the
scribble-interactive mode for segmenting MSI dataset of the
mouse fetus. Twelve organs/sub-organs can be clearly observed
from H&E-stained image,[37] including cerebellum (B1), mid-
brain (B2), cortex (B3), and pons and medulla (B4), nasal cavity
(N), cartilage (C), lung (Lu), stomach (S), dorsal skin (D), heart
(H), Liver (Li) and kidney (K) (the left panel of Figure 3a).
Using these organ identification as biological contexts, seven
organs/sub-organs — brain (B), cartilage (C), lung (Lu), stomach
(S), dorsal skin (D), heart (H), and Liver (Li)— are successfully
segmented by the basic GraphMSI model (Figure 3b). However,
some algorithmically correct but biologically inappropriate
segmented regions are identified (Figure 3c). For example, while

clustering spots with similar metabolic profiles in the brain
region is algorithmically accurate from a global perspective,
the sub-regions of the cerebellum (B1), midbrain (B2), cortex
(B3), and pons and medulla (B4) could not be distinguished,
which is biological inappropriate. It suggests that the basic of
GraphMSI, which employs an unsupervised learning approach,
lacks sufficient local adaptability, thereby limiting the analysis
of metabolic heterogeneity between different brain sub-regions.
GraphMSI with scribble-interactive mode can correct these
inappropriate segmentations. By using sub-organ information
from H&E-stained image as biological contexts, such as the
mouse brain consisting of at least four sub-organs — cerebel-
lum (B1), midbrain (B2), cortex (B3), and pons and medulla
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Figure 4. The schematic of the iterative fine-tuning process in scribble-interactive mode. The process begins with the input of preprocessed MSI data
into GraphMSI in an unsupervised manner, generating an initial segmentation (SegMap-0) that identifies major anatomical regions, such as the brain,
cartilage, dorsal skin, heart, stomach, liver, and lung. Next, Scribble-1 provides detailed guidance to refine SegMap-0 by focusing on specific brain regions:
the cortex, midbrain, cerebellum, and pons and medulla, resulting in SegMap-1. Additional fine-tuning steps incorporate Scribble-2, which targets the
kidney and other abdominal regions, yielding SegMap-2, and Scribble-3, which identifies the nasal cavity and neck regions, culminating in SegMap-3.

(B4) — we can refine the segmentation. In this case, a blank
scribble image is created, and four distinct color scribbles are
drawn to correspond to these sub-regions (Figure 3d). Using the
scribble-interactive mode, GraphMSI successfully segments the
mouse brain into four distinct sub-regions (B1, B2, B3, and B4),
accurately matching the cerebellum, midbrain, cortex, and pons
and medulla observed in histological images. Figure 3e shows
these four regions clearly separated in UMAP embedding space
using scribble-interactive mode.

To further illustrate the significant differences between the
identified sub-regions, the area under the curve (AUC) is used to
identify the discriminative ions for each region, with top 10 ions
(AUC ≥ 0.70) displayed in Figure 3f. Among these, m/z 882.55
(AUC = 0.78), m/z 810.53 (AUC = 0.78), m/z 221.47 (AUC =
0.75), m/z 772.41 (AUC = 0.73), m/z 525.40 (AUC = 0.72), m/z
180.88 (AUC = 0.72), m/z 766.47 (AUC = 0.71), m/z 145.24 (AUC
= 0.71), m/z 178.90 (AUC = 0.70) and m/z 770.43 (AUC = 0.70)
are identified as differentially expressed across these regions
(Figure 3g), some of them are manually assigned by matching the
known metabolites from public databases, as shown in the Table
S1 (Supporting Information). Additionally, improvements in kid-
ney and nasal cavity segmentation achieved by GraphMSI with
the scribble-interactive mode are illustrated in Figures S4 and S5
(Supporting Information). These findings highlight the general-
izability of GraphMSI with scribble-interactive mode in refining
algorithmically correct but biologically inappropriate results.

The flexibility of GraphMSI with scribble-interactive mode is
further demonstrated by its ability to enhance segmentation re-
sults through multiple interactive refinements, as seen in our
previous work.[38] As shown in Figure 4, three scribble images
(Scribble-1, Scribble-2, and Scribble-3) are used sequentially to

fine-tune the GraphMSI model. Each scribble image is designed
to correct specific regions: Scribble-1 divides the brain into four
sub-regions, Scribble-2 differentiates the kidney from the abdom-
inal area, and Scribble-3 separates the nasal cavity from the neck
region. Initially, the base GraphMSI model uses the inputting
data to create a preliminary segmentation result (SegMap-0).
Fine-tuning with Scribble-1, Scribble-2, and Scribble-3 subse-
quently produces the enhanced segmentation results SegMap-
1, SegMap-2, and SegMap-3, respectively. The transfer of the
model between iterations ensures versatility in the results. These
findings highlight the adaptability of GraphMSI with scribble-
interactive mode, emphasizing its practical application in biolog-
ical research.

In addition, the robustness of the scribble-interactive mode is
discussed in Section S1 (Supporting Information). The results
indicate that GraphMSI consistently retains its capability to iden-
tify biologically relevant sub-regions in complex practical applica-
tions.

2.4. Accelerated 3D Segmentation of Cancer Cell Spheroids
Using GraphMSI with Knowledge-Transfer Mode

The application of MSI segmentation on 3D CCS dataset is criti-
cal for advancing our understanding of the tumor microenviron-
ment and its spatial heterogeneity.[39,40] Traditional segmentation
methods for 3D MSI dataset are often limited by high computa-
tional demands and the batch effect across the tissue slices. Here,
we utilize the knowledge-transfer mode of GraphMSI to segment
3D CCS dataset comprising 27 slices, demonstrating its capabil-
ity in handling 3D MSI data.
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Figure 5. Results of the GraphMSI with knowledge-transfer mode on 3D CCS dataset. a) Segmentation of slices 10, 11, and 12 along with the corre-
sponding optical image; b) Scatter plot of data points in the UMAP embedding space, colored according to (a) on the left panel, and colored by slice
index on the right panel; c) Identification of potential molecular markers associated with each sub-region. d) Division of the training and testing sets
across all slices for GraphMSI model; e) The result of 3D reconstruction for all 27 slices.

Figure S6 (Supporting Information) shows the optical images
of 27 slices, while Figure S7 (Supporting Information) presents a
scatter plot in UMAP space, highlighting batch effects across the
slices and the complexities in analyzing 3D CCS MSI dataset. In
Figure 5a, we demonstrate a segmentation where MSI data from
slice 11 is used for model training, and the pre-trained model is
then applied to predict segmentation in adjacent slices 10 and 12,
facilitating knowledge-transfer between slices. The segmentation
clearly delineates three distinct regions within the 3D CCS: a pro-
liferative region (blue), a quiescent region (yellow), and a necrotic
region (red), all consistent with morphological evaluations. The
scatter plot in the left panel of Figure 5b shows that metabolic
features from these regions are distinct, with clear separations in
the embedding space. Notably, we find that data points from slice
12 are distinctly separated from those of slices 10 and 11 (right

panel of Figure 5b). An analysis of variance (ANOVA) test reveals
that slice 12 exhibits significant metabolic differences compared
to slices 10 and 11 (p-value < 0.05), indicating the batch effect
among the slices, as shown in Table S2 (Supporting Information).
The GraphMSI model alleviates the batch effect by focusing on
modeling relationships between spots rather than relying solely
on basic intensity information.

Figure 5c highlights the potential molecular markers identi-
fied in these regions: high expression of m/z 659.50 SM(d31:1)
in the necrotic region; m/z 835.50 PI(34:1) in both the quiescent
and necrotic regions; and m/z 766.50 PE(38:4) in the prolifera-
tive region, consistent with the previous studies.[41,42] Figure 5d
shows the distribution of the training and testing set, with
33.33% of the dataset (spectra from 9 tissue sections) used for
training and 66.67% (spectra from 18 tissue sections) for testing,
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saving approximately two-thirds of the computational time com-
pared to training on all slices individually, as shown in Table S3
(Supporting Information). Segmentation results, UMAP scatter
plots, and spatial distribution of potential molecular makers for
all slices are shown in Figures S8–S12 (Supporting Information),
showing that the GraphMSI with knowledge-transfer mode ac-
celerates the analysis process while maintaining segmentation
quality. The 3D reconstruction of these 27 slices using ImageJ
is displayed in Figure 5e. Overall, these results illustrate the
effectiveness of GraphMSI with knowledge-transfer mode in
performing MSI segmentation on unseen data, significantly
speeding up the 3D segmentation process and reducing the
impact of batch variations.

3. Discussion

3.1. GraphMSI Surpasses Commonly Used Methods in Both
Visual Inspection and Quantitative Evaluation

In this study, GraphMSI is compared with commonly used meth-
ods for analyzing MSI dataset of mouse kidney (Figure S13a,
Supporting Information), including t-SNE + K-Means,[17] SCiLs
Lab,[18] Cardinal,[19] CNNAE + K-Means,[24] and a CNN-based
segmentation method.[25] To ensure fair comparison across all
methods, the number of clusters is manually calibrated to delin-
eate five key anatomical regions: outer cortex, inner cortex, re-
nal medulla, renal pelvis, and perirenal fat. The segmentation
result from t-SNE+ K-Means, which do not incorporate spatial
information, is marred by numerous discrete points and noise,
making sub-regions difficult to delineate clearly. In contrast, the
SCiLs Lab, Cardinal, CNNAE + K-Means, and CNN-based seg-
mentation method produce more continuous segmentation re-
sults, successfully identifying the five regions. However, these
methods also introduce edge artifacts due to the improper han-
dling of spatial information, as illustrated in Figure S14 (Sup-
porting Information). GraphMSI, on the other hand, generates
continuous segmentation results without edge artifacts, provid-
ing superior visual clarity in the analysis of kidney dataset. Ad-
ditionally, we quantify the effectiveness of each segmentation
method by measuring the degree of co-localization between the
four segmented regions and their corresponding manually an-
notated lipids, LPE(16:0), LPA(O-16:0), PS(44:4), and PI(40:1), as
shown in Figure S13b (Supporting Information). The AUC, as
described in the Experimental Section, is used for quantitative
evaluation. The proposed GraphMSI model achieves the highest
AUC value, demonstrating its superior effectiveness in MSI seg-
mentation at a quantitative level.

3.2. The Superior Performance of GraphMSI is Driven by Its
GCN-Based Architecture and Multi-Task Learning

To investigate the factors contributing to the superior perfor-
mance of GraphMSI, we conduct the ablation studies to ex-
plore the model’s internal workings. First, unlike previous deep
learning-based segmentation methods that use CNNs for feature
extraction, GraphMSI employs GCNs to capture both spectral
and spatial information from MSI data. Figure S15 (Supporting

Information) compares the segmentation results obtained using
GCN and CNN. Notably, the GCN approach significantly reduces
the artificial edge effects seen in the CNN version, demonstrating
GCN’s adaptability in processing spatial information. Addition-
ally, the multi-task learning loss function, specifically designed
for GraphMSI ensures the production of reliable segmentation
results. Figure S16 (Supporting Information) presents the seg-
mentation results when each individual loss component is re-
moved from the multi-task leaning loss function. When umap
is removed, only the renal pelvis is identified, with other regions
significantly distorted, highlighting umap’s role in preserving the
rich metabolic profiles during model training. Exclusion sim re-
sults in numerous unknown regions, indicating the model’s dif-
ficulty in clustering similar spots into the same region. The re-
moval of tv leads to discontinuous segmentation, demonstrat-
ing tv

′s ability to reduce non-biological discrepancies between
spatially adjutant spots. The absence of ent results in the seg-
mentation with only one region, demonstrating its importance in
preventing travail solution. Finally, removing scr inherent hin-
ders the model from learning any biological contexts from the
scribble-input. These findings demonstrate the GCN-based ar-
chitecture and multi-task learning are critical to the superior per-
formance of GraphMSI.

4. Conclusion

We present the GraphMSI, a deep learning-based method de-
signed for MSI data to elucidate spatial heterogeneity within
tissue. Multiple results have demonstrated that GraphMSI is a
straightforward and more accurate method for identifying sub-
regions with different metabolic profiles, offering more reliable
segmentation results compared to commonly used methods.
The ablation study confirms that the effectiveness of GraphMSI
stems from its GCN-based architecture combined with a multi-
task learning training strategy. The GCN-based architecture not
only preserves essential information but also prevents the cre-
ation of edge artifacts in contiguous segmentation results. Addi-
tionally, the implementation of multi-task learning ensures that
GraphMSI delivers reliable segmentation results.

GraphMSI can be further extended to two enhanced optional
modes: scribble-interactive and knowledge-transfer, highlighting
its superior flexibility and effectiveness compared to commonly
used methods. The versatility and robust performance of these
modes are demonstrated across two representative MSI datasets:
the whole mouse fetus and 3D CCS. In the scribble-interactive
mode, the model leverages partial or coarse biological contexts
from reference images or domain knowledge, enabling iterative
refinements that enhance segmentation accuracy and biological
relevance for complex dataset like the whole mouse fetus. The
knowledge-transfer mode allows the model to segment new, un-
seen MSI data by utilizing a network pre-trained on adjacent
slices, eliminating the need for re-training and mitigating batch
effects, particularly in the analysis of 3D CCS. These modes sig-
nificantly enhance the versatility of GraphMSI, making it become
a more practical tool for a variety of MSI applications.

However, a limitation of GraphMSI is that the user-defined
cut-off value for graph construction can impact segmentation
results, with inappropriate cut-off values leading to suboptimal
results. To address it, we develop a cut-off selection strategy
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and an interactive graphical user interface for GraphMSI to
assist in determining appropriate cut-off values for effective
segmentation, as detailed in Section S2 (Supporting Informa-
tion). Furthermore, the computational time for the GCN-based
model increases more significantly than that of CNN-based
models as the data size grows due to the tensor operations in-
volving the adjacency matrix (as shown in Table S4, Supporting
Information), posing a challenge when applying GraphMSI to
large-scale MSI data analysis. Future studies may explore more
advanced architectures to improve the computational efficiency
of the GraphMSI model. Since GraphMSI does not require prior
knowledge about specific molecular characteristics, it is antici-
pated to have broad applicability across various computational
tasks involving other spatial omics techniques, including spatial
transcriptomics data, spatial proteomics, and other forms of
medical imaging. GraphMSI is expected to become a general
tool for exploring spatial heterogeneity in spatial omics data.

5. Experimental Section
Samples Collection and Data Acquisition: All animal experiments con-

ducted in this study received approval from the Committee on the Use
of Human and Animal Subjects in Teaching and Research at Hong Kong
Baptist University (approval number: REC/22-23/0468) and relied on by all
animal experiments. Three typical MSI datasets including mouse kidney,
mouse fetus, and 3D CCS are employed to comprehensively evaluate and
validate the performance of the proposed GraphMSI method. Details of
the sample preparation and data acquisition for these three datasets can
be found in Sections S3 and S4 (Supporting Information). Then, the raw
MSI data were exported from the MSI instrument.

Data Preprocessing: Data preprocessing was performed to improve
the MSI data by decreasing the unwanted effects introduced during sam-
ple preparation and data acquisition. Specifically, the baseline correlation,
peak finding, and peak alignment were performed using SCiLs Lab (Bruker
company, Germany). Peak filtering was performed using Python scripts.
Finally, the raw MSI data was converted to preprocessed matrix MX*Y*Z,
where the X and Y represent the horizontal and vertical number of spec-
tra, and the Z represents the number of detected ions.

Architecture of GraphMSI: By introducing the deep learning into the
MSI segmentation, the GraphMSI can cluster the spot with similar
metabolite profile and spatial location into the same cluster. It consists
of dimensionality reduction (DR) and feature clustering (FC) module.
DR module is to learn the mapping function f(· |𝜽) to project the high-
dimensional MSI data MX*Y*Z to the low-dimensional embedding data
EX*Y*l, as follows:

EX∗Y∗l = f𝜽 (MX∗Y∗Z) (1)

where 𝜽 is the network parameter to be trained. DR module consists of two
fully connection layers, where the BatchNorm layer and ReLU activation
function are applied in the first layer, while no activation function was used
in the second layer. FC module was achieved by learning the nonlinear
mapping function g(· |ϑ) to cluster the embedding data EX*Y*l into the
segmentation result OX*Y, as follows:

OX∗Y = g𝜗 (EX∗Y∗l) (2)

where ϑ is the network parameter to be trained. There are many structures
that can be selected for MSI unsupervised segmentation. In this study,
GCNs followed by the argmax classifier were adopted here for obtaining
robust, stable, and accuracy segmentation results. Specifically, the graph
𝔾 = (𝕍 , 𝔼) was first constructed using the spectral and spatial informa-
tion of the MSI data. In this graph 𝔾 = (𝕍 , 𝔼), 𝕍 represents the set of
nodes, where each node corresponds to the embedding data of an indi-

vidual spot. The set 𝔼 consists of edges that represent the connections
within the graph, linking the nodes based on their spectral and spatial
similarity. For node vu ∈ 𝕍 , to relieve the computational complexity of
graph construction, the focus was only on the differences between vu and
its 8-neighbor spots U(vu). The edge between vu and its neighbor node vi
∈ U(vu) is established if the Euclidean distance within the user-defined
cut-off value, and the adjacency matrix A of graph 𝔾 is defined as follows:

aui =
{

1 if dist (vu, vi) < cut − off value
0 if dist (vu, vi) ≥ cut − off value (3)

Then, the graph 𝔾 = (𝕍 , 𝔼) is inputted into two GCN layers to aggre-
gate the neighborhood information for each node, thus offering the flexibil-
ity of feature-specific aggregation of information provided by neighboring
spectra. Here, the operation in two GCN layers are displayed as follows:

H(1) = ReLU
(
ÂÊW(0)) (4)

H(2) = ÂH(1)W(1) (5)

where the Â = D̂
− 1

2 (A + I)D̂
− 1

2 , Ê ∈ RXY×l is the 2D matrix obtained by
reshaping E ∈ RX × Y × l, D̂ is the diagonal degree matrix of (A + I), I is the
identity matrix, W(0) ∈ Rl × k and W(1) ∈ Rk × k are the parameters that need
to be trained. Finally, the output H(2) is reshaped to the response map
RX*Y*k = ( rx, y, i) , and it is inputted to BatchNorm layer followed by the
argmax classifier to get the segmentation result OX*Y = (Ox, y) , as follows:

ox,y :=
{

i ||| rx,y,i ≥ rx,y,j ,∀j ≠ i ≤ k
}

(6)

Training Scheme and Implementation: The DR module was imple-
mented leverages an advanced unsupervised dimensionality reduction
technique, uniform manifold approximation and projection (UMAP),
which has consistently outperformed other methods such as PCA and
t-SNE in handling MSI data.[43] Here, the enhanced variant, termed
parameter-UMAP was presented to overcome the two major limitations
commonly associated with the standard UMAP technique: 1) the challenge
of accurately projecting unseen data into a low-dimensional space without
resorting to approximations, 2) the risk of producing variable embedding
result for the same input data due to the non-convex nature of the UMAP
loss function. Specifically, the core objective of the parameter-UMAP was
to establish a non-linear mapping from the original high-dimensional fea-
ture space to a low-dimensional (often 20-dimensional) latent space. This
mapping was determined based on the mutual similarities among data
points in the high-dimensional context. The loss function of parameter-
UMAP as follows:

DR =
∑
i≠j

pi,j log
pi,j

qi,j
+
(

1 − pi,j

)
log

1 − pi,j

1 − qi,j
(7)

where the pi,j denotes the memberships in the local fuzzy simplicial set,
which was calculated based on the smooth nearest-neighbor distances in
the high-dimensional space, the qi,j represents the similarities between
data points i and j in the reduced low-dimensional space. Detailed expla-
nation of pi,j and qi,j are referred to the ref. [44] The multi-task learning
loss function of FC module was designed according to four principles:
a) Spots with similar metabolite profiles should be assigned to same
region; b) Spots with spatially continuous should be assigned to same
region; c) The number of spot categories should be as many as possible,
to cape with the trivial solution; d) Spots from the same category in
scribble-inputting should be assigned to same region. Then, the loss
function is designed as follows:

FC = sim
(
rx,y, ôx,y

)
+ tv

(
rx,y

)
+ ent

(
rx,y

)
+ scr

(
rx,y, ŝx,y

)
(8)
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where the first term represents the error between the prediction and true
value, as such sim (rx,y, ôx,y) = −

∑k
i=1 ôx,y,ilog(rx,y,i), where the ô is the

one-hot encoding of the O, second term measures the spatial similarity be-
tween the input spot and its spatial neighbors, as suchtv (rx,y) = ‖rx+1,y −
rx,y‖ + ‖rx,y+1 − rx,y‖; the third term serves as the penalty term to cope with
the extreme case that the segmentation result only contains one single
region, as such ent (rx,y) = − 1

k

∑k
i=1 rx,y,ilogrx,y,i; the fourth term measure

the error between the prediction and the scribble category, as such
scr (rx,y, ŝx,y) = −

∑k
i=1 ŝx,y,ilog(rx,y,i), where the ŝ is the one-hot encoding

of the inputting scribble label s, which is only applied in scribble-interactive
mode. Curriculum learning was applied for training the GraphMSI model,
where the DR module was first trained using LUMAP independently to
warm up the model to generate the effective low-dimensional embedding
data, and then the FC module can be trained with fewer parameters as
a slimmable neural network using the multi-task loss function. The SGD
optimizer with the 0.01 learning rate and the 0.9 momentum was set. In
particular, the GraphMSI model with scribble-interactive mode utilizes a
pretrained model using unsupervised learning manner as its base. This
base model was interactively fine-tuned using scribble-inputting to achieve
enhanced segmentation results. Similarly, the GraphMSI model with the
knowledge-transfer mode uses model pre-trained with the reference data
to perform segmentation on unseen MSI data without re-training the
models. The model was developed in Python using the PyTorch library
and trained on the workstation equipped with an Nvidia GTX 2080Ti GPU.

Potential Molecular Marker Screening: The potential molecular mark-
ers identified from sub-regions can assist in interpreting and validating the
segmentation results of GraphMSI model. AUC was used as a quantitative
metric to evaluate the classifier’s effectiveness in distinguishing between
classes, effectively summarizing the performance depicted by the receiver
operating characteristic curve. A higher AUC value indicates better model
performance in accurately differentiating between the designated positive
class (the specified sub-region) and the negative classes (other regions).
For this purpose, logistic regression was employed as the classifier model.

Performance Evaluation: Visual inspection and quantitative evaluation
were both used to evaluate the performance of different segmentation
methods. For visual inspection, the segmented sub-regions were com-
pared with H&E-stained image and existing biological knowledge from the
literature. For the quantitative evaluation, a Logistic regression model was
constructed that uses lipids expressed in manually verified sub-regions
to predict their corresponding regions. Here, AUC was used to measure
the correlation between the lipids and their associated sub-regions, with a
higher AUC value indicating more accurate segmentation results.

Statistical Analysis: Data preprocessing and deep learning model con-
struction were finished with Python 3.12.2 (e.g., transformation, normal-
ization, evaluation of outliers). All results are reported as means ± SD
based on five independent experiments. Statistical significance (*p< 0.05)
was demonstrated by ANOVA test conducted in Python 3.12.2.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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