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Contemporary views on inflammatory pain mechanisms: TRPing
 over innate and microglial pathways [version 1; referees: 3

approved]
Zhonghui Guan,  Judith Hellman, Mark Schumacher
Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA

Abstract
Tissue injury, whether by trauma, surgical intervention, metabolic dysfunction,
ischemia, or infection, evokes a complex cellular response (inflammation) that
is associated with painful hyperalgesic states. Although in the acute stages it is
necessary for protective reflexes and wound healing, inflammation may persist
well beyond the need for tissue repair or survival. Prolonged inflammation may
well represent the greatest challenge mammalian organisms face, as it can
lead to chronic painful conditions, organ dysfunction, morbidity, and death. The
complexity of the inflammatory response reflects not only the inciting event
(infection, trauma, surgery, cancer, or autoimmune) but also the involvement of
heterogeneous cell types including neuronal (primary afferents, sensory
ganglion, and spinal cord), non-neuronal (endothelial, keratinocytes, epithelial,
and fibroblasts), and immune cells. In this commentary, we will examine 1.) the
expression and regulation of two members of the transient receptor potential
family in primary afferent nociceptors and their activation/regulation by products
of inflammation, 2.) the role of innate immune pathways that drive inflammation,
and 3.) the central nervous system’s response to injury with a focus on the
activation of spinal microglia driving painful hyperalgesic states.
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Primary afferent nociceptors and inflammatory pain
Specialized primary afferent neurons that function to detect  
noxious chemical, thermal, and mechanical stimuli are referred to 
as nociceptors1. Their cell bodies, found primarily in the trigeminal  
and dorsal root ganglion (DRG), provide sensory innervation to  
virtually all tissues – except the brain parenchyma. Specialized 
receptors, channels, and synthetic pathways help define the specifi-
city of particular nociceptor subtypes, allowing the detection and 
signaling of both acute and persistent (chronic) noxious stimuli. 
We will focus on two principle receptors/channels that have been  
identified and characterized on nociceptors that detect noxious 
inflammatory stimuli. The first, transient receptor potential cation 
channel subfamily V member 1 (TRPV1 – previously known as 

vanilloid receptor 1 [VR1]), was initially reported to function as 
an integrator of multiple noxious stimuli through the demonstration 
that diverse products of inflammation, such as protons, anandamide, 
bradykinin, and nerve growth factor (NGF), functioned as positive 
modulators or full agonists at TRPV12,3. Products of the lipoxygenase 
pathway of arachidonic acid, 12-(S)-hydroperoxyeicosatetraenoic  
acid and leukotriene B4, have also been found to activate TRPV1 
in vitro, and activated protein kinase C can directly activate or 
lower the activation threshold of TRPV1 to thermal stimuli2,4–8. 
Two derivatives of dopamine (N-arachidonoyl dopamine and 
N-oleoyl dopamine) have also been found to activate TRPV1 and 
are associated with experimental hyperalgesia9,10 (for review, see 
Figure one and also 11,12).
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Figure 1. Inflammatory Pain. Tissue injury evokes a complex series of cellular responses that together is proposed to drive painful hyperalgesic 
states. Specialized primary afferent nociceptors (top center) innervate tissues and signal potential or actual cellular injury through detection of 
noxious chemical, thermal and mechanical stimuli. Electrochemical transduction of noxious stimuli at nociceptor terminals include activation 
of transient receptor potential (TRP) ion channel family members. As a result of the synthesis and/or release of injury – induced inflammatory 
products, nociceptor transducing elements may be positively modulated or directly activated driving painful and hyperalgesic states.  
A number of these products (eg: peptides [BK], activation of PKC, TrkA activation by NGF, acid [H+], lipoxygenase products - 12-HPETE, 
LTB4, NADA, as well as reactive oxygen species [ROS], aldehydes, HNE and HXA3) have been shown to either modulate or activate TRPV1 
and TRPA1 respectively (bottom right). Certain products of inflammation (eg: nerve growth factor [NGF], ROS, aldehydes) modulate multiple 
pain transducing receptors/elements. Depending on the mechanism and severity of tissue injury, innate immune cell responses will be 
recruited. Damage-associated molecular patterns (DAMPs) such as HMGB1 and mitochondrial derived DNA bind and activate toll-like 
receptors (TLRs) expressed on nociceptor terminals further driving hyperalgesia. Monocyte derived macrophages invade injured tissue 
and release a complex array of cytokines, chemokines and growth factors such as NGF. Together, they conspire to transform nociceptor 
phenotype to pathophysiologic states of persistent nociceptor activation, lowered firing thresholds and/or exaggerated response properties. 
Tissue inflammation also influences the central processing of nociceptive input in the dorsal horn of the spinal cord (bottom left). As a result, 
central nociceptor terminals upregulate and release signaling molecules such as CASP6 that activates microglia – dependent inflammatory 
hyperalgesia.
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Taken together, it is proposed that the development of thermal 
hyperalgesic states, and in part spontaneous inflammatory pain, 
arises from the activation of TRPV1 expressed on C-type nocic-
eptors. Moreover, the trophic factor NGF, derived from inflamed 
non-neuronal cells, has been found to drive both early and long-
term pain behaviors13–17. In fact, long-term (days to weeks)  
development of thermal hyperalgesia appears to be dependent  
on increased expression of TRPV1 in nociceptors18–22. More 
recently, overexpression of TRPV1 has also been implicated in the  
persistent NGF-dependent inflammatory pain of oral cancer23.  
Interestingly, links between TRPV1 and mechanical hypersensitivity  
pain have continued to emerge in the context of inflammation  
arising from pathophysiologic models of visceral/colorectal  
distension24–26, bone cancer pain27–29, sickle cell disease30, and 
UVB-induced skin inflammation31. Taken together, these findings 
also illustrate the limitations of certain models of inflammation.  
Notably, the experimental use of complete Freund’s adjuvant  
(CFA) or other agents may not necessarily induce inflammatory 
conditions observed in human disease.

A second transient receptor potential-related channel expressed 
on nociceptors, transient receptor potential cation channel  
subfamily A member 1 (TRPA1), was subsequently identified and 
has been considered by some investigators as a “gatekeeper for 
inflammation”32. TRPA1 is now considered to play an important 
and possibly complementary role to TRPV1 in the development 
and maintenance of inflammatory pain states. This is supported 
by reports that TRPA1 is activated by both exogenous (allyl 
isothiocyanate [mustard oil], acrolein, and aldehydes) and endog-
enous (methylglyoxal, 4-hydroxynonenal, 12-lipoxygenase-derived 
hepoxilin A3, 5,6-epoxyeicosatrienoic acid, and reactive oxygen 
species [ROS]) inflammatory mediators33. Increasingly, TRPA1 has 
been linked to persistent models of inflammatory pain, mechani-
cal and cold hypersensitivity34, inflammatory muscle pain35, and 
pancreatitis pain driven by multiple inflammatory pathways36–39.

Given TRPV1 and TRPA1’s seminal roles in the signaling of inflam-
matory pain, there has been considerable interest in the develop-
ment of high-affinity antagonists against them40,41. Indeed, there are 
endogenous inhibitors of TRPV1 and TRPA1, including resolvins 
and maresins, which are among the group of lipid mediators that 
are involved in resolving inflammation42–44. Preliminary reports 
suggest that resolvins may help to prevent or reduce inflam-
matory pain via transient receptor potential channels42,43,45,46.  
Although many of these compounds have been shown in preclini-
cal studies to reduce inflammatory pain, there is concern that,  
owing to a broader pattern of expression of TRPV1 and TRPA1 in 
neuronal and non-neuronal cell types47, complete inhibition of one 
or both channels may result in unwanted side effects such as hypo-
thermia or inhibition of acute protective heat pain41. These concerns 
may be heightened given reports that TRPV1 deletion enhances 
local inflammation and accelerates the onset of systemic inflam-
matory response syndrome48,49. Paradoxically, TRPV1 activation 
may be protective and anti-inflammatory in certain conditions, 
despite its peripheral activation producing neuropeptide release 
and neuroinflammation. Research is ongoing to devise transient  
receptor potential agonist/antagonist strategies that selectively block 
inflammatory pain without disrupting its homeostatic or acute 
pain protective roles. Given these challenges, perhaps a better  

understanding of our innate immune system’s response to injury and 
its subsequent role in driving inflammatory pain may provide com-
plementary therapeutic approaches to our understanding of sponta-
neous and mechanical pain mediated by TRPV1 and TRPA135,50.

Role of innate immune pathways
The innate immune system initiates and directs the acute inflam-
matory response to microbial infections and to sterile tissue injury 
in a multitude of disorders including sepsis, trauma, hemorrhage, 
cardiac arrest, vascular occlusion, organ transplantation, and inju-
rious chemicals. Innate immune responses are triggered through 
the engagement of pattern recognition receptors (PRRs) by compo-
nents of microorganisms known as pathogen-associated molecular  
patterns (PAMPs) and/or by factors released by stressed or injured 
host cells that are collectively known as damage-associated molec-
ular patterns (DAMPs)51–53. The binding of PAMPs or DAMPs 
to their cognate PRR triggers early inflammatory responses via 
complex intracellular pathways involving multiple adapter pro-
teins, interleukin-1 receptor-associated kinases (IRAKs), mitogen-
activated protein kinases (MAPKs), and NFκB, which ultimately 
lead to the expression and/or activation of numerous inflammatory 
mediators, including cytokines (e.g. TNFα, IL-1β, IL-6, and IL-10),  
chemokines (e.g. IL-8), ROS, and adhesion molecules, and to leu-
kocyte trafficking and activation within organs and other tissues. 
These responses help to acutely contain and eliminate the infec-
tion or endogenous threat, promote the development of adaptive  
specific immunity, and initiate the repair of injured tissues. However, 
in contrast to these benefits, dysregulated inflammatory responses 
can lead to deleterious outcomes via excessive pro-inflammatory 
products, the failure to resolve inflammation and restore immune 
homeostasis, and/or the development of immunosuppression.

PRRs have been most extensively studied in leukocytes, but they 
are expressed by multiple non-leukocyte cell populations including 
endothelial cells, cardiomyocytes, epithelial cells, and neurons54–60. 
Notably, PRRs expressed in cells of the nervous system, including 
glial cells and neurons, are postulated to contribute to a number 
of acute and chronic neurologic processes including, but not  
limited to, ischemic brain damage, Alzheimer’s disease, neuropathic 
pain, and other pain syndromes such as sickle cell disease51,61–73. 
A number of DAMPs induce acute inflammation via PRRs and 
have been implicated in chronic neuropathic pain. Analogous to 
PRRs’ dualistic roles in systemic inflammatory conditions such 
as sepsis, their activation in cells of the nervous system can have  
beneficial effects, such as promoting neuronal repair, but, conversely,  
dysregulated inflammation can also have pathologic effects on  
the nervous system that lead to the development chronic pain.

Members of the Toll-like receptor (TLR) family and the receptor  
for advanced glycation end products (RAGE) are emerging 
as significant contributors to the pathogenesis of neuropathic 
pain72,74–79. By far the most extensively studied PRRs are the TLRs,  
mammalian homologs of Drosophila Toll which participate in  
dorsoventral development and in antimicrobial defences80–82. TLRs 
are transmembrane proteins that are expressed at the cell surface  
and in endosomes and endolysosomes53,81,82. Common microbial  
TLR agonists include LPS, bacterial lipoproteins, lipoteichoic 
acid, peptidoglycan, flagellin, and nucleic acids81,83–90. Endogenous  
agonists of the TLRs include HMGB1 (TLR2, TLR4, and TLR9), 
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heparan sulfate (TLR4), heat shock proteins (TLR2 and TLR4), 
hyaluronan (TLR2 and TLR4), versican (TLR2), RNA (TLR3), mito-
chondrial DNA (TLR9), and β-amyloid (TLR2 and TLR4)61,91–101. 
TLRs and downstream signaling intermediaries, such as the adapter 
proteins MyD88 and TRIF, have also been reported to contribute 
to neuropathic pain syndromes74–76,102,103. RAGE is a multi-ligand  
member of the immunoglobulin superfamily that is expressed at the 
cell surface and in a secreted form104. There are numerous endog-
enous RAGE agonists, including, but not limited to, β-amyloid, 
HMGB1, and S100 proteins, and there is accumulating evidence  
that RAGE is important in neuropathic pain99,101,104–109. Notably, 
HMGB1 has been reported by a number of groups to be released 
by stressed and injured tissues and to facilitate the development of  
neuropathic pain63,77,78,110–112. In addition to the TLRs and RAGE, 
other PRRs may also contribute to inflammatory pain. For exam-
ple, the NLRP3 inflammasome, a multiprotein cytosolic complex 
responsible for the production of active IL-1β and IL-18, has been 
implicated in chronic pain and has been reported to contribute to 
opioid-induced hyperalgesia in animal models113–116. Multiple  
factors stimulate the NLRP3 inflammasome, including microbial  
components such as LPS, nigericin, zymosan, and malarial  
hemozoin, and several endogenous factors, including β-amyloid, 
uric acid, ATP, and calcium pyrophosphate dehydrate52,117–121.

Over the last decade and a half, strong links have been identified 
between the nervous system and the immune system. Multiple 
cell lineages in the central and peripheral nervous system express 
PRRs, including neurons, microglia, astrocytes, Schwann cells, 
and oligodendrocytes72,73,122–125. The links between the immune 
system and nervous system are bidirectional – the immune system  
is able to modulate neuronal function and vice versa. There is 
strong evidence that a neuroimmune response that is medi-
ated through the vagus nerve, spleen, and cholinergic receptors  
modulates host responses to endotoxemia and infection126,127.  
Furthermore, several studies suggest that TRPV1 modulates the  
outcomes of bacterial sepsis128–131. There is also accumulating evi-
dence that the activation of innate immune pathways, particularly 
TLR- and RAGE-dependent pathways, contributes to the devel-
opment of chronic pain following nerve injury62–64,67,69,79,109,132.  
From a mechanistic standpoint, leukocyte-derived factors released 
in response to DAMP-mediated activation of PRRs expressed  
by microglia and peripheral monocytes are believed to induce  
pain through their actions on sensory neurons.

Intriguingly, the direct activation of neuronally expressed PRRs 
may also be involved in the development of acute and chronic pain. 
TLR agonists have been reported to directly activate DRG neurons 
and to increase levels of TRPV1 expression in DRG neurons73.  
Furthermore, TRPV1-expressing nociceptive neurons have also 
been reported to express TLR4125. While the focus of this discussion 
has been on innate immune pathways in the pathogenesis of pain, 
recent reports also point to a role for the adaptive immune system 
in chronic pain102,133–137. For example, modulating T lymphocyte cell 
responses pharmacologically has been reported to reduce chronic 
neuropathic allodynia and chronic constriction injury-induced 
neuropathic pain in rats133,134. Similarly, the downregulation of 
IL-12p70 (a proinflammatory cytokine that promotes the prolifera-
tion of T lymphocytes and natural killer cells), the deletion of the 
adapter protein MyD88, or the downregulation or neutralization of 

IL-17A (which links innate and adaptive immunity) have all been 
reported to attenuate chronic neuropathic pain in rodents102,134,137,138. 
The fact that diverse conditions, including chronic pain, sepsis, 
trauma, and ischemia reperfusion injury, have shared pathways 
raises the intriguing but complex possibility of developing thera-
peutics that can reverse inflammatory pain without compromising 
immune function.

The central nervous system’s response to injury
The spinal cord microglia, the tissue-resident immune-like macro-
phages of the central nervous system139, can respond to peripheral 
injuries that are distant from the spinal cord to produce neuroin-
flammation in the central nervous system140. Indeed, traumatic 
injuries to the peripheral nerves activate microglia, both in the 
dorsal horn where sensory nerve endings from the DRG terminate 
and in the ventral horn where activated microglia wrap around 
the injured motoneurons141. In fact, neuroinflammation in the 
spinal cord, presented as microglia activation, is well known 
to contribute to the development of neuropathic pain after nerve 
injury140–143.

One of the first clues that microglia might contribute to inflam-
matory pain came from the report that spinal cord microglia are 
activated in the formalin inflammatory pain model144. In this 
widely used inflammatory pain model, 5% formalin is injected  
subcutaneously into the hind paw of a rat or mouse. Fu et al.  
observed spinal cord microglia activation, defined as enhanced 
immunoreactive signaling of microglia markers, after formalin  
injection in male rats, starting on day 1 and peaking on day 7 post  
injection143. Interestingly, pre-treatment of local anesthetic  
bupivacaine does not block formalin-induced spinal cord micro-
glia activation, even though it successfully blocks formalin-evoked  
pain behaviors145, indicating that the nociceptive input from the 
acute inflammatory response of formalin is not required for spinal 
cord microglia activation.

Subsequently, it was reported that p38 MAPK is activated in the 
spinal cord microglia after formalin injection in male rats146, and 
this activation of p38 MAPK occurs in 2 phases147. The first phase 
of microglial p38 activation starts quickly, just a few minutes after 
formalin injection, and lasts for 1 hour, the time course that cor-
relates with early acute spontaneous nociceptive behavior146,147. 
Indeed, intrathecal inhibition of microglia with minocycline 
greatly attenuates formalin-evoked acute flinching behavior148. The 
second phase of microglial p38 activation starts 1 day after  
formalin injection and lasts for 7 days, the time course that correlates 
with persistent mechanical hypersensitivity induced by formalin  
injection147. Inhibition of p38 kinase attenuates both acute nocic-
eptive behavior and persistent mechanical hypersensitivity induced  
by formalin injection146,147. In fact, there are two p38 isoforms in the 
spinal cord, with p38α expressed in neurons and p38β expressed 
in microglia149. Downregulation of microglial p38β, rather than  
neuronal p38α, attenuates formalin injection-induced acute  
nociceptive behavior149. In addition to p38 MAPK, Src family  
kinase (SFK) is also activated in spinal cord microglia, starting 
1 day after formalin injection and lasting for 7 days150. Unlike  
p38 MAPK, SFK is necessary for persistent mechanical hyper-
sensitivity after formalin injection, although it is not required for  
formalin-induced acute spontaneous nociceptive behavior150.
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Recent evidence further supports the idea that formalin injection 
produces early microglial activation151. Berta et al. demonstrated 
that within 30 minutes of formalin injection, caspase-6 (CASP6) 
is upregulated in the central terminals of primary afferents and 
is released in the spinal cord151. The resultant CASP6-mediated 
cascade activates spinal cord microglia and stimulates micro-
glial TNF-α synthesis and release through p38 and ERK kinases. 
In fact, formalin-induced second-phase inflammatory pain is 
CASP6 dependent, and intrathecal injection of CASP6 or CASP6-
treated microglia produces pain behavior mediated in part through  
stimulation of spinal cord lamina II neurons. Moreover, CASP6 
is also required for capsaicin-elicited secondary mechanical  
hypersensitivity as well as bradykinin, carrageenan, and CFA-
induced inflammatory pain. As TRPA1 is one of the receptors  
targeted by formalin152, it is likely that in the formalin inflamma-
tory pain model, formalin activates DRG neurons through TRPA1 
to induce CASP6 and subsequently activates spinal cord microglia 
shortly after formalin injection.

Although spinal cord microglia are clearly activated shortly after 
the formalin injection in the hind paw, whether the long-term 
microglia activation days after formalin injection is caused by 
tissue inflammation itself is controversial. Importantly, in addi-
tion to tissue inflammation, hind paw formalin injection also pro-
duces damage to peripheral nerve endings, as transcription factor 
ATF3, a marker for peripheral nerve injury153, is induced in DRG 
neurons after formalin hind paw injection154. Given that peripheral  
nerve injury is a well-known factor that activates spinal cord 
microglia to produce pain behaviors140–143, it is likely that periph-
eral nerve injury and tissue inflammation, together, are responsible  
for the spinal cord microglia activation after formalin hind paw 
injection.

Summary
Inflammatory pain constitutes an ongoing enigma for the develop-
ment of novel analgesic agents. Despite the robust characterization 
of peripheral nociceptive channels (e.g. TRPV1 and TRPA1) capa-
ble of detecting a wide range of inflammatory stimuli, clinically 
relevant antagonists may surreptitiously disrupt essential homeo-
static and protective functions such as TRPV1-dependent core 
temperature regulation or the detection of warmth. Time will tell 
if antagonists to TRPA1 will encounter similar sensory physiologic 
limitations surrounding their role in cold detection, mechanosensa-
tion, or cellular signaling. If systemic administration of transient 

receptor potential antagonists continues to be problematic, perhaps 
restricting these agents to peripheral and/or spinal targets could 
still provide the desired effect. Detailed examination of innate 
immune response elements holds additional promise for novel 
analgesic development in the treatment of inflammatory pain. For 
example, the role of the endogenous TLR4 and RAGE agonist 
HMGB1, a molecule previously associated with sepsis, now has 
emerged as an important participant in mediating inflammatory and 
neuroinflammatory pain states. Developing strategies around the 
blockade of HMGB1 and/or dampening overexpression of TLR4 
or RAGE are plausible directions. Central spinal processing of 
nociceptive signaling can be modulated by microglia, the immune-
like macrophage of the central nervous system, and recent  
evidence suggests that activated microglia also contribute to the pain 
produced by tissue inflammation. Further studies on the blockade 
of spinal CASP6 under painful pathophysiologic conditions such 
as bone cancer pain, sickle cell disease, or inflammatory bowel 
disease may represent another important therapeutic opportunity 
in analgesic development.
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