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ABSTRACT OF THE DISSERTATION 

Continuous Glucose Monitoring and Diabetes Management Behaviors:  
A Secondary Data Analysis from the REPLACE-BG Trial 

by 

Margaret Anne Crawford 

Doctor of Philosophy in Public Health (Health Behavior) 

University of California San Diego, 2018 
San Diego State University, 2018 

 
Professor John P. Pierce, Co-Chair 

Professor David R. Strong, Co-Chair 
 

 Background: Continuous glucose monitors (CGM) are becoming a norm for type 1 

diabetes management and provide the opportunity to describe hypoglycemic and hyperglycemic 

events experienced by people with type 1 diabetes (T1Ds). This dissertation had four objectives: 

1) derive scales from the Hypoglycemia Fear Survey- Behavior (HFS-B) scale that represent 

unique constructs of hypoglycemia- related behavior, 2) describe the frequency and severity of 

CGM- measured hypoglycemic events, and assess how these relate to levels of hypoglycemia- 

related behaviors, 3) develop severity categories for CGM- measured hyperglycemic events and 
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describe how the severity categories relate to A1C, and 4) collate insulin pump and CGM data to 

describe how participants at different levels of A1C use insulin boluses to manage their 

hyperglycemic events. 

 Methods: Four analyses were conducted using CGM, insulin pump, demographic, and 

HFS-B data collected over 26 weeks from 216 T1Ds in the REPLACE-BG trial. The first was a 

psychometric analysis of the HFS-B. The second identified and measured hypoglycemic events 

and assessed how these events related to hypoglycemia-related behaviors. The third identified 

hyperglycemic events, categorized them by severity, and assessed how measures of 

hyperglycemic event severity predict A1C, the standard measure of glucose control. The fourth 

identified hyperglycemic events in which insulin boluses were administered and assessed the 

association of proactive insulin bolusing with the occurrence of severe hyperglycemic events. 

 Results: Three scales were derived from the HFS-B, labelled hypoglycemia avoidance, 

reaction, and prevention behavior. Higher levels of hypoglycemia prevention behavior were 

associated with a lower percentage and shorter duration of moderate hypoglycemic events. Four 

categories of hyperglycemic event severity were developed, and those in the best glucose control 

(A1C < 7.1) had 1) a larger percent occurrence of non-severe hyperglycemic events and 2) a 

smaller percentage of time in the most severe event category. Finally, those in the best glucose 

control were more likely to practice proactive bolusing to prevent severe hyperglycemic events. 

 Conclusion. This analysis demonstrated the importance of CGM data in its continuous 

form. CGM identifies behaviors associated with prevention of both hypo- and hyperglycemia, 

which are preferentially performed by those with the best glucose control. 
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CHAPTER 1:  

INTRODUCTION & SPECIFIC AIMS 

 Over a million people in the United States have type 1 diabetes, a disease in which the 

body has lost the ability to produce insulin and patients must actively regulate their blood 

glucose levels. Less than a third of adults with type 1 diabetes (T1D) successfully manage their 

diabetes according to American Diabetes Association (ADA) guidelines.1 Uncontrolled diabetes 

occurs when glucose levels are consistently out of the recommended range, and is associated 

with later severe health consequences like liver failure, kidney failure, blindness, and limb 

amputation.2 Type 1 diabetes requires daily management of glucose levels through insulin 

injections, self- monitoring glucose levels, physical activity, and food choices. Glucose levels, 

which are not readily observable, are also impacted by environmental and physiological factors, 

like altitude, stress, and fatigue. To successfully manage their glucose levels, patients must first 

monitor them, and then engage in a series of glucose management behaviors which need to be 

adapted to their idiosyncratic glucose responses to environmental and physiological factors.  

 Continuous glucose monitors (CGMs) passively measure glucose levels every 5 minutes; 

provide a continuous visualization of patients’ glucose levels, annotated with direction and rate 

of change; and sound alarms to alert patients when their glucose is out of the specified range or 

rapidly changing. Continuous glucose monitoring is a new and innovative technology that has 

been on the consumer market for about ten years. Prior to this, glucose monitoring required 

intermittent finger pricking to obtain a blood sample that could be read photometrically. Another 

important innovation in diabetes management in the past few decades has been the insulin pump, 

which is continuously connected to a T1D’s body, provides an adjustable infusion rate of basal 

insulin, and records the time and volume of insulin boluses that the T1D instructs the pump to 
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deliver. Prior to the introduction of the insulin pump, T1Ds injected insulin by filling a 

disposable syringe and injecting themselves. In studies that test the impact of CGM on glucose 

management, participants who wear CGM have improvements in A1C, average glucose, quality 

of life, and time spent in hypoglycemia.3,4 Patients who wear CGM report the utility of observing 

their glucose values and trends in real-time, which allow for insights on how variations of food, 

physical activity, insulin dosing, and physiological idiosyncrasies impact their glucose.5 

 The REPLACE-BG dataset contains CGM data over a six-month period for over 200 

participants, all of whom were chosen because they were considered to have well controlled 

diabetes. The REPLACE-BG dataset is innovative and unique in that it provides both CGM and 

insulin pump data for a six-month period, allowing for the assessment of insulin dosing as related 

to glucose values. CGM provides a significant amount of data which can be analyzed for glucose 

patterns, which represent glucose levels and trends that people with diabetes observe and respond 

to in their routine diabetes management. Most CGM- related research reports the A1C (a 

measure of average glucose control over previous few months) benefits of CGM and glucose 

metrics from aggregated CGM data,3,4,6 but does not evaluate CGM data in its continuous form. 

However, the power of CGM is that it provides continuous glucose data to individuals who need 

to make moment to moment decisions on glucose management.  

 The ADA bases their guidelines for diabetes management on A1C--- while A1C is an 

established metric and useful for predicting risk of complications,7 it does not describe the 

hyperglycemic and hypoglycemic events that inevitably occur during the management of type 1 

diabetes. By measuring glucose every five minutes, CGM provides T1Ds with vital real-time 

data on their glucose values and trends. CGM data can be used retrospectively to reflect on 

behavioral explanations for glucose levels and to describe and predict time spent outside of the 
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optimal glucose range. By studying these patterns, we can characterize T1Ds who are able to 

utilize glucose management techniques to minimize hyper- or hypoglycemic events. The 

combination of CGM and insulin pump data provides an excellent evaluation platform for 

studying the effectiveness of different approaches to glucose management. 

Specific Aims 

Specific Aim 1 

 To understand which items from the Hypoglycemia Fear Survey- Behavior (HFS-B) 

scale are useful for measuring currently promoted diabetes management behaviors, and to derive 

scales that measure unique hypoglycemia-related behavior constructs. 

Hypothesis 1: The HFS-B will measure more than one domain of hypoglycemia-related 

behavior.  

Specific Aim 2 

 To describe the frequency and severity of hypoglycemic events in a group of people with 

well-controlled type 1 diabetes, and relate these measures to scores on hypoglycemia- related 

behavior scales.  

 We will classify hypoglycemic events based on minimum glucose value reached during 

the event--- mild events have a minimum value <70 mg/dL but > 50 mg/dL, moderate events 

have minimum values < 50 mg/dL. Our primary outcome variables (separate models) will be 1) 

the percent of all hypoglycemic events that are moderate and 2) the duration of moderate 

hypoglycemic events. Our predictor variables will be scores on hypoglycemia avoidance, 

prevention, and behavior scales, which were derived from the HFS-B as part of Specific Aim 1. 
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Hypothesis 2: Participants who score lower versus higher on the hypoglycemia 

prevention behavior scale will experience a higher percentage of moderate 

hypoglycemic events and a longer duration of moderate hypoglycemic events. 

Specific Aim 3 

 Develop categories of severity for hyperglycemic events and describe how measures of 

hyperglycemic events predict A1C levels. 

 We will classify hyperglycemic events based on duration and maximum glucose value 

reached during the event, using American Diabetes Association guidelines to formulate our 

thresholds for event severity. 

Hypothesis 3: Participants at higher levels of A1C will experience more frequent 

hyperglycemic events and a higher percent of total hyperglycemic events that are 

severe. 

Specific Aim 4 

 Collate insulin pump data and CGM data to describe how participants at different levels 

of A1C use insulin boluses to manage hyperglycemic events.  

Hypothesis 4: We hypothesize that participants with lower A1C levels will be more likely 

to administer insulin boluses during non-severe hyperglycemic events. 



 

5 

REFERENCES 

1. Miller KM, Foster NC, Beck RW, et al. Current state of type 1 diabetes treatment in the 
U.S.: updated data from the T1D Exchange clinic registry. Diabetes Care. 
2015;38(6):971–978. 

2. Mays L. Diabetes mellitus standards of care. Nurs Clin North Am. 2015;50(4):703–711. 

3. Beck RW, Riddlesworth T, Ruedy K, et al. Effect of continuous glucose monitoring on 
glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND 
randomized clinical trial. JAMA. 2017;317(4):371–378. 

4. Lind M, Polonsky W, Hirsch IB, et al. Continuous glucose monitoring vs conventional 
therapy for glycemic control in adults with type 1 diabetes treated with multiple daily 
insulin injections: the GOLD randomized clinical trial. JAMA. 2017;317(4):379–387. 

5. Pickup JC, Ford Holloway M, Samsi K. Real-time continuous glucose monitoring in type 
1 diabetes: a qualitative framework analysis of patient narratives. Diabetes Care. 
2015;38(4):544–550. 

6. Vigersky RA, Fonda SJ, Chellappa M, Walker MS, Ehrhardt NM. Short- and long-term 
effects of real-time continuous glucose monitoring in patients with type 2 diabetes. 
Diabetes Care. 2012;35:32–38. 

7. The Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, 
et al. The effect of intensive treatment of diabetes on the development and progression of 
long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 
1993;329(14):977–986. 



 

6 

CHAPTER 2:  

BACKGROUND AND DESCRIPTION OF DATA SOURCE 

Continuous Glucose Monitoring and Glucose Measurement 

 People with type 1 diabetes (T1D) are told to manage their diabetes according to 

guidelines set forth by the American Diabetes Association (ADA) for A1C and glucose levels.1 

A1C is the established standard measurement for glucose control. It involves a simple 

venipuncture blood draw with a relatively inexpensive analysis that provides an acceptably 

accurate measure of glucose values over the past three months. Continuous glucose monitoring 

(CGM) involves the insertion of a sensor under the skin to provide glucose readings every 5 

minutes, which was a significant technological improvement for those who need to make 

moment-to-moment glucose management decisions. CGM records a patient’s glucose value 

every five minutes and transmits the glucose value to a smartphone app or receiver, which has 

software to allow visualization of trends in the person’s glucose values. CGM delivers targeted 

and proximal feedback that allows the evaluation of recent glucose management practices. This 

is a significant advance on the single reading obtained every 3 months from regular A1C 

readings.  

 Current research practice for quantifying CGM data reports glucose metrics that are 

aggregated over a time period for average glucose, the percent of time spent in different 

glycemic categories, and the coefficient of variation of glucose.2,3  However, the continuous data 

allows for more detailed characterization of glucose, such as how glucose changes over time and 

quantifying metrics of when the individual crosses key thresholds for both hypoglycemia and 

hyperglycemia. Rather than describing a person’s average glucose over a period of time, these 

metrics describe how frequently the person experiences hypoglycemic and hyperglycemic 
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events, the duration of each glycemic event, and their most extreme glucose values. The 

following sections describe how current diabetes knowledge can be enriched through the analysis 

of CGM data, addressed in topical order of this dissertation. 

Hypoglycemia 

 A hypoglycemic event is defined as any period of time that an individual has a glucose 

level <70 mg/dL. Glucose levels between 70 and 55 mg/dL are defined as mild hypoglycemia 

and glucose levels <55 mg/dL are defined as moderate hypoglycemia. If the hypoglycemic event 

is not arrested, the hypoglycemic event can become severe, defined as glucose levels below 35 or 

40 mg/dL and requiring assistance from another individual to treat the low glucose levels. Not all 

T1D experience symptoms of hypoglycemia, but mild and moderate hypoglycemia can be 

characterized by symptoms such as sweating, shakiness, and low mental acuity; severe 

hypoglycemia is characterized by loss of consciousness, seizures, and death.4–6 Mild 

hypoglycemic events occur regularly in T1D,4,5,7,8 and their frequency and severity are associated 

with decreased psychological well-being and diabetes-related quality of life6,9 and increased 

healthcare costs.6,10 People with diabetes are encouraged to manage their glucose above 70 

mg/dL and to be prepared to implement glucose management to counter hypoglycemia.  

Hyperglycemia 

 A hyperglycemic event is defined as occurring when a T1D’s glucose levels increase 

beyond 180 mg/dL.  While hyperglycemic events are not associated with the same dire 

symptoms that occur in hypoglycemic events, long term tissue exposure to hyperglycemia is 

associated with microvascular and macrovascular complications of diabetes, such as retinopathy, 

neuropathy, nephropathy, coronary artery disease, and stroke.11–15 These consequences are 

associated with the major health care costs associated with diabetes. In the Diabetes Control and 
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Complications Trial and follow-up Epidemiology of Diabetes Interventions and Complications 

study (DCCT/ EDIC),16 and Action to Control Cardiovascular Risk in Diabetes (ACCORD) 

trial,17 there was a continuous gradient between higher A1Cs (i.e.. greater exposure to 

hyperglycemia) and serious long term complications. 

 The American Diabetes Association (ADA) recommends that people with type 1 diabetes 

maintain their blood glucose levels between 70 and 180 mg/dL, called euglycemia, with a goal of 

minimizing later complications by maintaining their regular A1C below 7%18 for most people.  

However, aggressive management to keep A1Cs close to the non-diabetic range (<6.5mg/dl) is 

often associated with more hypoglycemic events, particularly when the individual does not have 

access to frequent blood glucose readings.4,5,19 Prior to the development of CGM technology, 

access to frequent blood glucose readings meant fingerprick testing 4-6 times a day. 

CGM Alarms 

 The CGM sensor is a hair-thin wire that sits just under the skin, passively measures 

glucose every 5 minutes, and sends a continuous datastream of glucose levels to a user’s 

smartphone or receiver via a thin transmitter that sits atop the sensor (also attached to the body). 

The data delivered in real-time to a T1D includes their current glucose level, the direction and 

rate of change of glucose, alarms that sound when glucose moves beyond pre-set thresholds, and 

a continuous visualization of their glucose levels over the past 24 hours. Hyperglycemia alarms 

are pre-set to sound when a person’s glucose becomes greater than 180 mg/dL; hypoglycemia 

alarms are pre-set to sound when a person’s glucose becomes less than 70 mg/dL, and again 

when their glucose is below 55 mg/dL (labelled an “urgent low glucose alarm”). Additionally, 

alarms will repeat if glucose has been out of range for a designated period of time--- typically 

over 30 minutes for hypoglycemic levels and over 2 hours for hyperglycemic levels. The 180 
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mg/dL and 70 mg/dL alarms and time period before repeating can be configured to an 

individual’s preferences; the 55 mg/dL alarm is non-configurable, as it is alerting to impending 

severe hypoglycemia. 

Hypoglycemia Reduction with CGM Wear 

 In the recent DIAMOND study,20 participants with type 1 diabetes who wore CGM for 

six months significantly increased their time in euglycemia over the study period, while 

significantly decreasing the amount of time they spent in hypoglycemia. Similarly, a study that 

investigated the impacts of CGM alarms on glucose management found that participants (n=35) 

who received CGM alarms during hypoglycemic events reduced the amount of time spent in 

hypoglycemia (p=0.03) compared to controls (n=36) who received CGM data without alarms.21 

Hypoglycemia Fear 

 Particularly in the time before CGM technology, the aversive consequences of 

hypoglycemic events led some T1Ds to develop hypoglycemia fear (HF) which became a barrier 

to optimal glucose management22,23 as they would try to avoid having blood glucose readings at 

the lower end of the euglycemic range. When blood glucose levels are somewhat volatile, HF 

can result in T1Ds targeting the upper portion of the euglycemic range which often also leads to 

more time spent in hyperglycemia.19,24,25 The Hypoglycemia Fear Survey (HFS)22 was developed 

in the 1980s and it contained two sub-scales: a Behavior subscale and a Worry subscale. Changes 

since then, including the introduction of CGM, have made many of the items out of date.  

However, the Behavior Subscale (HFS-B) includes information of a person’s likelihood for 

performing behaviors that impact glucose levels, some of which are key to preventing 

hypoglycemia. We utilize the HFS-B in our analyses.  
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Enrichment from CGM 

 Analyzing CGM data in its continuous form can enhance current knowledge of 

hypoglycemia and hypoglycemia- related behaviors by quantifying the frequency, duration, and 

severity of hypoglycemic events. By understanding what percent of all hypoglycemic events are 

moderate (< 50 mg/dL), we can address our research hypotheses on how hypoglycemia- related 

prevention behaviors relate to how people respond to CGM- delivered hypoglycemia alarms. 

Glucose Optimization with CGM Wear 

 In the recent DIAMOND trial,20 which tested for differences in glucose outcomes over 

time between participants who wore CGM (n=105) versus those who did not (n=53), participants 

who wore CGM reduced their A1C by 1.1% (0.7) within 12 weeks and sustained this reduction 

over the 24-week study period. This reduction in A1C was significantly greater than the control 

group, who had an average A1C reduction of 0.5% (0.7) that was also sustained between 12- and 

24- weeks. The A1C reduction over time within the CGM group corresponded to a significant 

decrease in daily minutes spent in hyperglycemia (assessed as minutes >180 mg/dL, >250 

mg/dL, and >300 mg/dL) between baseline and 12- and 24-weeks, and as compared to the 

control group. Similarly, the recent GOLD trial26 used a crossover randomized clinical trial to 

assess changes in A1C during CGM wear in two different participant groups (n= 69, n=73; mean 

(SD) A1C 8.7% (0.8)), found that A1C was reduced by 0.43% after a CGM wear period, 

compared to during non-CGM wear periods. While it can be assumed that these participants 

reduced the amount of time spent in hyperglycemia, the GOLD trial did not report time spent in 

glycemic ranges. 
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Insulin Administration for Glucose Management 

 The American Diabetes Association recommends that people with diabetes manage their 

glucose through insulin dosing, food choices, and physical activity.18 However, these are like 

three simultaneous equations that are impossible to optimize without controlling one of the 

variables. In this study, we do not have information on either the timing or the content/quality of 

food intake, nor were the participants wearing physical activity measurement devices. However, 

all were wearing insulin pumps which record insulin doses over time. Accordingly, we limit our 

study of glucose management decisions to the use of insulin boluses.  An insulin bolus is a dose 

of fast-acting insulin administered proactively to treat hyperglycemia that is expected to come 

with food intake, and reactively to reduce blood glucose and escape from a hyperglycemic event. 

By facilitating more frequent monitoring of glucose and delivering alarms for hyperglycemia, 

CGM facilitates more opportunities for a person to observe and respond to glucose values that 

are discrepant with their personally optimal glucose range--- a number of guides have been 

developed (for both health professionals and T1Ds) for best management practices for different 

CGM scenarios.27–31 

Enrichment from Insulin Pump and CGM Data 

 For any given hyperglycemic event during this study, we know when the CGM triggered 

an alarm indicating the need for a management decision. Using this alarm as a starting point, we 

are able to calculate when each T1D decided that it was necessary to give an insulin bolus to 

drop their glucose back into the euglycemic range, as well as the size of the bolus relevant to 

usual insulin intake. As hyperglycemic events are a highly prevalent event, we have replicate 

data on individuals which can help us develop meaningful patterns of dosing across the study.  
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Behavioral Theory of How CGM Impacts Glucose Management Behavior 

 CGMs provide a visualization of continuous glucose values that highlight temporal 

patterns in patients’ glucose fluctuations. Alarms attached to crossing high and low glucose 

thresholds act as “cues to action” to implement glucose management behaviors. A person’s 

previous history of success and/or difficulty in applying behavioral solutions to optimize glucose 

levels impacts their self-efficacy and confidence that they can be successful in future 

management. When a person acts, they evaluate the outcome of that action through a self-

reflection process (Figure 2.1) and a self-regulation process (Figure 2.2), constructs of the Social 

Cognitive Theory. In this study, CGM use with alerts that are “cues to action” are expected to 

produce different responses among T1Ds with different histories of good glucose management 

(i.e. A1C levels) and we expect that diabetes self-management decisions will be mediated by 

their use of self-reflection, self-regulation, and control theory responses.  

CGM and Self Reflection 

 Patients create personalized diabetes management goals that evolve over time based on 

feedback from their doctors, evolving personal health requirements, and, most importantly, based 

on past experiences managing their diabetes. In the self reflection process, a person compares 

their current glucose values to their existing standards for glucose control. This process works 

constructively when a person consistently performs adequately (or better) and thus raises her 

performance standards, creating a feedback loop of progress and continual motivation. 

Alternatively, this can work negatively if a person regularly fails to meet her glucose 

management goals. In this case, the person might set lower standards or lose motivation to self-

monitor and act in response to the “cues for action”.  
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CGM and Self-Regulation 

 The self-regulation process includes a person’s self-judgment on whether they deserve 

incentives for their performance, and this is influenced by the quality of their self-observation, 

judgment, and self-reaction.32(335)  The effortless access to glucose values and “cues to action” 

provided by CGM is consistent with the three components of successful self-observation 

described by Bandura: “fidelity, consistency, and temporal proximity.”32(337) Reading glucose 

values in real-time allows the patient the opportunity to both observe her glucose and adjust her 

glucose management behaviors within a proximal time period. 

 Past CGM data serves as a reference for judging ongoing performance and shapes the 

patient’s internal standards for the glucose management that they can achieve. Since a patient’s 

daily behaviors impact their glucose values and aggregate over time, a patient’s A1C is 

determined by their habitual behaviors. Even those who have good glucose management skills 

will have several periods each day when their glucose moves to levels that require management 

action to return to euglycemia. 

CGM Alarms and Control Theory 

 While the social cognitive theory of self-regulation described above explains the long-

term effects of CGM on glucose management, control theory explains the momentary self-

regulatory process patients experience when evaluating their glucose. The control theory 

accounts for the discrepancy- reducing feedback loop that occurs within the judgmental 

process.33 If the patient’s glucose is outside of the referent range, then the patient examines the 

lower level components of their glucose management to understand why there is a discrepancy 

between their present glucose value and their internal standards for glucose values, and corrects 

their actions accordingly.33 
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 The function of hyperglycemic and hypoglycemic alarms is to draw the patient’s 

attention to the self.33  CGM alarms interrupt the patient’s current activity and focus, indicate the 

patient’s need for immediate glucose management intervention, and allow diabetes management 

behaviors to come to the forefront of the patient’s attention. Our analyses include evaluating the 

percentages of total hyperglycemic and hypoglycemic events that are mild and moderate, which 

may indicate a T1D’s inattentiveness to responding to alarms related to mild hyperglycemic and 

hypoglycemic events in order to prevent progression to moderate events. This may also indicate 

low self-efficacy or lack of knowledge about good glucose management skills. Our hypothesis is 

that those T1Ds who have better A1Cs will make quicker and more decisive decisions (i.e. larger 

insulin bolus volumes) when faced with rapidly increasing glucose levels during an 

hyperglycemic excursion.  

Data Source 

 The data analyzed in this dissertation come from the REPLACE-BG trial (RBG)34 that 

was conducted at 14 sites in the Type 1 Diabetes Exchange Clinic Network. The objective of the 

trial was to evaluate if CGM glucose values are safe to inform insulin bolusing decisions, 

compared to confirming each CGM glucose value with a fingerstick glucose value prior to 

insulin bolusing (the Food and Drug Administration (FDA) requirement at the time). Participants 

were randomized 2:1 to CGM-only (n=149) or CGM+BGM (CGM plus fingerstick monitoring, 

n=77). The outcomes of the trial showed no difference in glucose control between these two 

study groups, measured through A1C and CGM-derived time spent in glycemic ranges.  

Accordingly, for our study, we combine study groups since they received the same CGM data 

with the same alerts , and because the primary outcome paper indicated that the study had no 

impact on either glucose or psychosocial outcomes. In addition to wearing a CGM, participants 
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wore insulin pumps throughout the study, which passively recorded insulin boluses. 

Additionally, all participants took part in a run-in phase to build competency in using CGM 

glucose trends and alerts as a diabetes management tool; this run-in phase varied in length 

according to each participant’s assessed need for training in using CGM. 

Study Population 

 Participants were > 18 years of age (mean 44 + 14 years), had type one diabetes for at 

least one year (mean duration 24 + 12 years), used an insulin pump, and had an HbA1c < 9.0% 

(mean 7.0 + 0.7%). Before the study, 47% of the participants were current CGM users. The study 

randomized 226 participants between May 2015 and March 2016. 

Severe Hypoglycemia and Diabetic Ketoacidosis 

 Exclusion criteria included the following: a) severe hypoglycemia in the last 12 months 

in which the assistance of another individual was needed b) seizure/loss of consciousness in the 

past 3 years, c) significant hypoglycemia unawareness based on the Clarke Hypoglycemia 

Unawareness Survey,35 d) more than one diabetic ketoacidosis (DKA) episode in the past year, 

and e) conditions related to cardiovascular health, thyroid, pregnancy, and psychiatry. Sixty-five 

percent of participants reported never experiencing a severe hypoglycemic episode, and the 

remaining participants reported not experiencing severe hypoglycemia in the past year. Seventy-

four percent of participants reported never experiencing DKA, and the remaining participants 

reported not experiencing more than one DKA episode in the previous year. Of the 57 

participants who reported experiencing DKA, only 2 participants experienced DKA in the 

previous year.  



 

16 

Study Instruments 

Continuous Glucose Monitor (CGM) Data 

 Participants wore CGM continuously for 6 months, which recorded a glucose value every 

5 minutes. Participants’ CGM data will be analyzed for percentages of time spent in range (70-

180 mg/dL), mild hypoglycemia (<70 mg/dL, >50 mg/dL), moderate hypoglycemia (<50 

mg/dL), hyperglycemia (>180 mg/dL), mean glucose, and measures of glucose variability 

(standard deviation, coefficient of variation). 

Hypoglycemic and Hyperglycemic Events 

 Hypoglycemic and hyperglycemic events will be identified in the CGM data. We will 

measure the minimum or maximum value reached, duration of event, and time of event 

initiation. Hyperglycemic events  begin when glucose becomes greater than 180 mg/dL and ends 

when glucose returns to below 180 mg/dL. Hypoglycemic events begin when glucose is less than 

or equal to 70 mg/dL and end when glucose returns to greater than 70 mg/dL.  

Severity of Events 

 Hypoglycemic events  are categorized as mild or moderate based on the minimum 

glucose value reached during the event. Mild hypoglycemic events have minimum glucose 

values <70 mg/dL but >50 mg/dL, and moderate hypoglycemic events have minimum glucose 

values <50 mg/dL (lowest recordable glucose level by CGM is 39mg/dL). Hyperglycemic events 

are sorted into four categories based on duration and maximum value of event. For our decision 

rules, we utilize the ADA definition of mild hyperglycemia (>180 mg/dL, < 250 mg/dL) and 

moderate hyperglycemia (>250 mg/dL),13 in conjunction with their recommendation that meal-

related hyperglycemia should last less than 2 hours.13 We created hyperglycemic event 

categories by stratifying total hyperglycemic events by the duration (5 -29.9 minutes, 30-119.9 
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minutes, < 2 hours, or  >2 hours) and a binary variable that represented if the maximum glucose 

value during the excursion exceeded 250 mg/dL. 

Insulin Pump Data 

 Participants wore insulin pumps for the duration of the study. We will analyze insulin 

pump data for volume and timestamp of insulin boluses. 

Screening Survey 

 Participants answered this survey during screening and provided the following 

information: 1) demographic information (age, gender, race/ethnicity, education level, annual 

income, source of medical insurance) and 2) diabetes information (duration of diabetes 

diagnosis, most recent severe hypoglycemia, most recent DKA, and duration of CGM use). 

Participants also received a physical exam during screening, which included height, weight, and 

either point of care or laboratory A1C. 

Hypoglycemia Fear Survey (HFS) 

 Participants answered this 24-item survey that measures behavioral and worry 

dimensions of hypoglycemic fear.22 The HFS presents 24 items and asks the participant to rate 

their likelihood of performing each behavior (scale from 0 to 4). Examples include: “Keep my 

sugar high when I will be alone for a while,” “Carry fast-acting sugar with me,” “I worry about 

passing out in public,” and “I worry about feeling lightheaded or dizzy.” HFS item scores will be 

averaged, and higher scores indicate a greater fear of hypoglycemia.22 

 Our analysis of glucose metrics within this population of people with well-controlled 

glucose will identify the glucose values and patterns that are typical in T1D with A1C of 7.0% + 

0.7% and a maximum of 9.0%. Until CGM, glucose management was understood on a broad 

level that focused on A1C- indicated average glucose, but did not take into account the granular-
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level hypoglycemic and hyperglycemic events that happen multiple times throughout a day. We 

will categorize these regular hyperglycemic and hypoglycemic events and identify if there are 

different patterns depending on the A1C level of the participants. 
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Figure 2.1: CGM and the Self Reflection Process 

 

 

Figure 2.2: CGM in the Self Regulation Process 
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CHAPTER 3:  

HOW THE HYPOGLYCEMIA FEAR SURVEY MEASURES HYPOGLYCEMIA- 

RELATED BEHAVIOR CONSTRUCTS IN PEOPLE WITH TYPE 1 DIABETES WHO 

WEAR CONTINUOUS GLUCOSE MONITORS 

Specific Aim: To understand which items from the Hypoglycemia Fear Survey- Behavior (HFS-

B) scale are useful for measuring currently promoted diabetes management behaviors, 

and to derive scales that measure unique hypoglycemia-related behavior constructs. 

Hypothesis: The HFS-B will measure more than one domain of hypoglycemia-related behavior.  

Introduction 

 Hypoglycemia (low glucose levels in the body) is a common occurrence in diabetes 

management, resulting from overestimating the amount of insulin needed to treat for a given 

intake of carbohydrates or level of physical activity to maintain euglycemia (glucose levels 70- 

180 mg/dL). Hypoglycemia is often characterized by perspiration, hunger, and shakiness at mild 

levels (< 70 mg/dL), by sleepiness and confusion at moderate levels (< 55 mg/ dL), and can 

involve loss of consciousness, seizures, and death in severe cases (< 35- 40 mg/dL).1–3 The 

Hypoglycemia Fear Survey (HFS) was first published in 1987,4 was revised to its current form in 

1989 (HFS-II),5 and was designed to measure the likelihood of performing behaviors related to 

hypoglycemia and worrying about hypoglycemia given the status of glucose measurement and 

treatment at the time. The HFS is intended to be administered to adults with type 1 diabetes and 

is comprised of a behavior subscale (HFS-B) and a worry subscale (HFS-W).  

 Because the HFS was developed over 30 years ago, advances in treatment have reduced 

the relevance of some of its items to current norms in glucose management. For example, the 

item “Eating a large snack at bedtime” reflects a diabetes management behavior that is relevant 
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to the insulin regimens patients were prescribed in the 1980s and 1990s, but is not a currently 

encouraged glucose management behavior. Similarly, the items “Avoid being alone when low 

blood glucose is likely” and “Run my glucose high when I am alone” are both behaviors that 

would be likely if a person has infrequent opportunities to monitor their glucose. Recent research 

that assessed the psychometric properties of the HFS-II in contemporary populations found the 

HFS to be comprised of three factors. The HFS-W was represented by one factor (worry) while 

the HFS-B was represented by two factors, pertaining to hypoglycemia avoidance and 

maintaining high blood glucose.6,7 

 Continuous glucose monitoring (CGM) passively measures glucose levels every five 

minutes and is becoming the new norm for glucose monitoring in people with type 1 diabetes. 

Compared to past norms in diabetes management, which required detecting low glucose through 

feeling the symptoms of hypoglycemia or measuring blood glucose through fingerstick 

monitoring, CGM serves as a safety net for detecting and alerting people of hypoglycemia. CGM 

provides alerts for mild low glucose levels (<70 mg/dL) that are not immediately dangerous but 

should be treated to prevent progression of low glucose, and also moderate low glucose levels 

(<55 mg/dL) that should be treated urgently to avoid severe low glucose. Hypoglycemia alarms 

from CGM are particularly important to T1Ds who do not experience any symptoms of 

hypoglycemia, or only experience symptoms once their glucose is very low. As CGM becomes 

the norm for glucose monitoring, we aim to understand how HFS-B measures hypoglycemia- 

related behaviors in T1Ds who use CGM. We hypothesize that the HFS-B measures multiple 

constructs of hypoglycemia- related behaviors that pertain to avoiding, treating, and preventing 

hypoglycemia.  
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 The data in this dissertation comes from the Replace-BG (RBG) trial, a study of people 

with type 1 diabetes who managed their diabetes with continuous glucose monitors (CGM) and 

insulin pumps. We utilize only the HFS-B in this analysis since our objectives pertain to 

understanding how participants behave to avoid, prevent, and react to hypoglycemia. In this 

chapter, we present the psychometric properties of the HFS-B to ensure that the behavior 

questions are part of the same construct. We 1) assess face validity, 2) conduct exploratory factor 

analysis, 3) estimate reliability, 4) estimate scalability, 5) evaluate assumptions of monotonicity, 

and 6) fit models based in item response theory to describe information in the HFS-B items. We 

hypothesize that the HFS-B measures more than one domain of hypoglycemia related behaviors 

in contemporary populations due to improvements in treatments and glucose monitoring 

technology. In this analysis, we also refine the HFS-B in preparation for future analyses that 

evaluate how HFS-B constructs relate to hypoglycemic events.  

Methods 

Sample Characteristics 

 The details of the RBG trial have been previously published.8 The population is 

comprised of people with type 1 diabetes, 50% female, 90% white, and median (IQR) age 43.5 

(31.0- 55.0) years and BMI 26.7 (24.0- 30.0) kg/m2. Sixty-five percent of participants reported 

never experiencing a severe hypoglycemic event and 74% reported never experiencing diabetic 

ketoacidosis (resulting from chronic high glucose levels). The trial was conducted at 14 

endocrinology practices in the United States that were members of the Type 1 Diabetes 

Exchange Network, of which 4 were community-based and 10 were academic centers.  
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Scale Description 

 The HFS-B scale that is the focus of this chapter was administered to the study 

participants at the end of a 6-month CGM wear period. The scale is comprised of 10 items, each 

of which had the following lead-in: “I am likely to…” Participants answered questions on a 5-

point Likert scale with 0 indicating “never” and 4 indicating “always.”  

Data Analysis 

 To assess the face validity of the HFS-B items, we asked a number of experts in the field 

(diabetes endocrinologist, psychologist specializing in diabetes, person with type 1 diabetes) to 

review the items as related to describing hypoglycemia- related behaviors  that are currently 

promoted diabetes management practices. 

 To separate the different behavioral constructs measured by the HFS-B, an exploratory 

factor analyses was conducted using all HFS-B questions, and testing whether, in this population, 

these could be differentiated into one, two, and three behavioral constructs/ factors. Additionally, 

the HFS-B was modeled to estimate Omega, a hierarchal reliability index, to quantify the general 

factor affecting each item and lower-order group factors. The number of measured constructs are 

also assessed through parallel analysis, which compares the analysis dataset to random datasets 

of the same size and compares extracted factors from each to facilitate comparison of observed 

eigen values in the analysis dataset to those in the comparison dataset. We plot the parallel 

analysis results in scree plots to visualize the number of factors that are supported before the 

eigen value decreased markedly. 

 Factor loadings were considered satisfactory if loading values were > 0.30 and there was 

no cross loading or freestanding items.9 The Tucker Lewis Index (TLI) measured model fit, 

ranging from 0 to 1, with higher values suggesting a better fit, when comparing between 
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models.10 The root mean square error of approximation (RMSEA) and standardized root mean 

square residual (SRMR) measure model fit, with smaller values indicating a better fit.10 The chi-

square test for the goodness of fit of the model indicates a better fit if the value is smaller.11 

 To measure the extent that all items form a coherent scale, we compute scalability; and to 

measure the extent that individual items increase across increasing scores on the unidimensional 

latent trait, we measure monotonicity. Scalability coefficients are considered weak if between 0.3 

and 0.4, moderate if between 0.4 and 0.5, and strong if > 0.5.12–14 Item response theory (IRT) 

methods were used to evaluate if the response options of HFS-B items measured unique levels of 

the latent trait.  

 According to findings of the HFS-B scale analysis, subscales were created to measure 

unique HFS-B factors. These subscales were subsequently assessed for exploratory factor 

analysis, confirmatory factor analysis, and reliability. In order to compare the reliability of the 

full HFS-B and the derived subscales, we assess internal consistency with Cronbach’s alpha,15,16 

a measure of how closely the scale items measure the same construct. Considering the brevity of 

the scale (and subsequent subscales), Cronbach’s alpha scores were interpreted as: 0.55- 0.70: 

acceptable; 0.70- 0.90: excellent; > 0.90: consider shortening (since an increase in number of 

items is mathematically related to an increase in alpha).17 

Results 

 Table 3.1 summarizes the mean (SD) score for each item and lists the content of each 

item.  
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Face Validity 

 Items B1, B2, B3, B4, B7 were judged by the expert panel to lack face validity as 

relevant to current glucose management behaviors. Items B5, B6, B8, B9, and B10 were judged 

to have high face validity (Table 3.1).  

Exploratory Factor Analysis (EFA) of HFS-B 

 EFA of the HFS-B indicated that there were three independent factors, with fit estimates 

[X2(217)= 42.62, p <0.001; RMSEA= 0.098 (90% CI= 0.067, 0.126); (SRMR) is 0.07; TLI= 

0.811]. Fit statistics were less satisfactory in a 1 factor environment [X2(217)= 357.7, p <0.001; 

RMSEA= 0.178 (90% CI= 0.156, 0.195); (SRMR) is 0.15; TLI= 0.372] and in a 2 factor 

environment [X2(217)= 196.48, p <0.001; RMSEA= 0.14 (90% CI= 0.115, 0.161); (SRMR) is 

0.13; TLI= 0.613].  

 In the three-factor solution, items B1, B2, B3, B4, B7 (i.e. those considered to not have 

face validity) load onto the first factor, with coefficients ranging from 0.31 to 0.91. Items B5 and 

B6 load onto the second factor, with coefficients of 0.29 and 0.99, respectively. Items B8, B9, 

and B10 load onto the third factor with respective coefficients of 0.66, 0.53, and 0.52. The 

correlation between factors 1 and 2 was 0.00, between factors 1 and 3 was 0.16, and between 

factors 2 and 3 was 0.19. These results support three distinct dimensions of HFS-B, which was 

confirmed through parallel analysis as evidenced by three eigenvalues (values of 0.4, 1.0, and 

2.1) from factor analysis that were greater than eigenvalues from the randomly generated 

datasets (visualized in Figure 3.1 scree plot). 

Omega of HFS-B 

 Hierarchical factor modeling was used to estimate whether a single primary factor may 

organize variability identified within the three subscales suggested by the EFA. Omega 
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reliability, which reflects the saturation of the variance from all items by a single primary factor 

underlying the HFS-B was 0.40,  X2(217)= 180.21, p <0.001; RMSEA= 0.141 (90% CI= 0.119, 

0.159); SRMR= 0.17. The addition of the primary factor did not alter item interrelationships 

significantly, as coefficients of the items had loadings similar to the three-factor EFA--- the 5 

items that load onto factor 1 ranged from 0.4 to 0.6, the coefficients of both items that load onto 

factor 2 were 0.4, and the 3 items loading onto factor 3 ranged from 0.4 to 0.5. Scalability 

estimates of the full scale was weak (H=0.24), an additional sign of multiple sources of 

variability within this set of items.  Because the three-factor solution from the EFA was best 

supported, HFS-B items were separated according to their assigned factor and subscales were 

formed.  

Evaluation of Subscales 

 The three subscales created in response to EFA represent hypoglycemia avoidance 

behavior (items B1, B2, B3, B4, B7), hypoglycemia reaction behavior (items b5 and b6), and 

hypoglycemia prevention behavior (items B8, B9, B10). Table 3.1 indicates which items 

compose the hypoglycemia avoidance, reaction, and prevention behavior subscales. Assessment 

of the hypoglycemia avoidance, reaction, and prevention behavior subscales indicated that each 

subscale met the following criteria for reliability, scalability, and monotonicity:  

 The reliability of the hypoglycemia avoidance behavior subscale was 0.73 (Cronbach’s 

alpha), scalability was moderate (H=0.41; SE= 0.04), and H of all items ranged from 0.32 to 0.49 

in monotonicity analysis. Scalability and reliability indices indicated that the hypoglycemia 

avoidance behavior subscale reflects one factor reliably. 

 The reliability of the two-item hypoglycemia reaction behavior subscale was in the lower 

range of acceptable (Cronbach’s alpha=0.49), scalability was relatively weak (H=0.37; SE= 
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0.07), compared to the hypoglycemia avoidance behavior subscale, and H of both items were 

0.37 in monotonicity analysis. Scalability and reliability indices were interpreted as supporting 

the hypoglycemia reaction behavior subscale. 

 The reliability of the three-item hypoglycemia prevention behavior subscale was also in 

the lower range of acceptable (Cronbach’s alpha=0.56), scalability was 0.36 (SE= 0.06), and H 

of all items ranged from 0.34 to 0.40 in monotonicity analysis.  Scalability and reliability indices 

were interpreted as supportive of the hypoglycemia prevention behavior subscale. 

IRT Methods 

 Visualization of option characteristic curves (OCCs) for the hypoglycemia avoidance 

behavior subscale indicated that the response options measured distinct levels of within the 

distribution of scores. For the hypoglycemia prevention behavior and hypoglycemia reaction 

behavior subscales, visualization of option characteristic curves indicated that all response 

options differentiated distinct levels well, and suggested both options 0 and 1 (never and rarely) 

were associated with very low levels of reaction behaviors, levels not differentiated in this 

sample. Upon trimming the response options, the reliability of the hypoglycemia prevention 

behavior or hypoglycemia reaction behavior subscales did not increase (prevention subscale: 5-

option Cronbach’s alpha= 0.6, 4-item Cronbach’s alpha=0.6; reaction subscale: 5-option 

Cronbach’s alpha= 0.5, 4-item= 0.5), so the original 5-option responses were maintained in 

further analyses. OCCs for representative items of the hypoglycemia avoidance, prevention, and 

reaction behavior subscales are visualized in Table 3.2. 

Discussion 

 This analysis guided the formation of three HFS-B subscales that distinctly measure three 

dimensions of hypoglycemia-related behaviors: hypoglycemia avoidance behavior, 
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hypoglycemia reaction behavior, and hypoglycemia prevention behavior. The scalability (Scale 

H) of the hypoglycemia avoidance behavior subscale is 0.41, hypoglycemia reaction behavior 

scalability is 0.37 (Scale H), and hypoglycemia prevention behavior scalability is 0.36 (Scale H). 

The monotonicity of the items within the hypoglycemia avoidance behavior subscale range from 

0.32- 0.49, the hypoglycemia reaction behavior items are both 0.37, and the hypoglycemia 

prevention behavior items range from 0.34 to 0.42. The reliability of the hypoglycemia 

avoidance behavior subscale was strong (Cronbach’s a= 0.73) and the reliability of the 

hypoglycemia reaction behavior and hypoglycemia prevention behavior subscales were 

acceptable (Cronbach’s a= 0.49, 0.56, respectively). 

 This analysis confirmed our hypothesis that, when administered to a contemporary 

population of people with type 1 diabetes who use CGM and insulin pumps, the HFS-B measures 

more than one domain of hypoglycemia- related behaviors. In accordance with the initial 

assessment of face validity, items judged as having low face validity for a construct defined by a 

primary fear of hypoglycemia instead loaded onto a separate factor, which became the 

hypoglycemia avoidance behavior subscale. The hypoglycemia avoidance behavior subscale 

reflected behaviors that were more likely if a person monitored their glucose infrequently or had 

suboptimal insulin regimens. Comparatively, the behaviors included in the hypoglycemia 

reaction behavior and hypoglycemia prevention behavior subscales are currently promoted 

diabetes management behaviors. The items in the hypoglycemia reaction behavior subscale, “Eat 

something as soon as I feel the first sign of low blood glucose,” and “Reduce my insulin when I 

think my sugar is low” are behaviors that a person engages in once their glucose is already low. 

Alternatively, the items in the hypoglycemia prevention behavior subscale, “Carry fast-acting 

sugar with me,” “Avoid exercise when I think my sugar is low,” and “Check my sugar often 



 

32 

when I plan to be in a long meeting or party” are behaviors a person does before their glucose is 

low in efforts to prevent low glucose. 

 The three subscales produced by this analysis will be used in subsequent analyses that 

evaluate the relationship between hypoglycemia-related behaviors and hypoglycemic events. By 

separating the three constructs measured by the HFS-B, these subscales allow for more specific 

measurement of how individual hypoglycemia-related behaviors relate to hypoglycemic events. 

The three subscales will be included together as predictor variables in models that predict 

duration and frequency of severe hypoglycemic events in order to evaluate which hypoglycemia-

related behavior constructs are relevant to predicting hypoglycemic events. This will further 

refine our understanding of how hypoglycemia-related behaviors, and how components of the 

HFS-B relate to hypoglycemia in a contemporary population of people with diabetes who use 

CGM and insulin pumps.  

 Because the original Hypoglycemia Fear Survey was created in 1986, the survey items 

could be updated to reflect representative hypoglycemia- related glucose management behaviors 

in a contemporary population of people with type 1 diabetes. An approach to updating the items 

would be to first hold focus groups of people with type 1 diabetes who use CGM in which the 

participants state glucose management behaviors that they engage in related to hypoglycemia 

avoidance, reaction, and prevention. The next step is to create a survey based on the focus group 

findings, with separate subscales for hypoglycemia avoidance, reaction, and prevention behavior 

constructs. Then, the survey should be administered to a small group of participants and its 

psychometric properties evaluated for scalability, reliability, and monotonicity. The survey 

should subsequently be administered to a large number of participants with a large range of 

glucose control (identified through CGM-measured frequency, duration, and severity of 
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hypoglycemia) and assessed for how the survey measures hypoglycemia avoidance, reaction, 

and prevention behaviors across the population. 

 The above described method would identify additional survey items that could improve 

the reliability and scalability of the hypoglycemia reaction and prevention behavior subscales. It 

would also capture currently relevant behaviors that people engage in related to hypoglycemia 

avoidance behavior. It is important to measure a person’s likelihood of engaging in 

hypoglycemia avoidance behavior since these behaviors are likely to result in elevated glucose 

levels. By understanding if the cause of a person’s elevated glucose levels is hypoglycemia 

avoidance behavior, a patient can be supported with education and psychological support to 

overcome this barrier to glucose management and improve their glucose outcomes. 
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Table 3.1: Hypoglycemia Fear Survey-Behavior (HFS-B) Scores, Face Validity, and Subscales 
(n=216)a 

 

Item 
Number Item Content 

Mean (SD) 
Score 

Face 
Validity Subscale 

B1 Eat large snacks at bedtime 1.4 (0.8) Low Avoidance 

B2 Avoid being alone when my 
sugar is likely to be low 

0.9 (1.0) Low Avoidance 

B3 If test blood glucose, run a little 
high to be on the safe side 

1.6 (1.0) Low Avoidance 

B4 Keep my sugar high when I will 
be alone for a while 

0.7 (0.8) Low Avoidance 

B5 Eat something as soon as I feel 
the first sign of low blood 
glucose 

2.7 (1.0) High Reaction 

B6 Reduce my insulin when I think 
my sugar is low 

2.2 (1.0) High Reaction 

B7 Keep my sugar high when I 
plan to be in a long meeting 

1.2 (0.9) Low Avoidance 

B8 Carry fast-acting sugar with me 3.5 (1.0) High Prevention 

B9 Avoid exercise when I think my 
sugar is low 

2.8 (1.1) High Prevention 

B10 Check my sugar often when I 
plan to be in a long meeting or 
party 

2.4 (1.1) High Prevention 

---- Total HF Behavior Subscale 1.9 (0.5) ---- ---- 

---- HFS-B Avoidance Subscale 1.2 (0.6) ---- ---- 

---- HFS-B Reaction Subscale 2.5 (0.8) ---- ---- 

---- HFS-B Prevention Subscale 2.9 (0.8) ---- ---- 

aAll items are responded to in the context of “How likely are you to perform these behaviors?” with 
response options on a 0-4 scale. A response of 0 indicates “never” and 4 indicates “always.”  
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Figure 3.1: Scree Plot of HFS-B 
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Table 3.2: Option Characteristic Curves for Representative HFS-B Subscale Items 

 

Hypoglycemia Avoidance Subscale 

Item: Avoid being alone when my 
blood sugar is likely to be low. 

 

 

Hypoglycemia Reaction Subscale 

Item: Eat something as soon as  
I feel the first sign of low blood 
glucose. 

 

 

Hypoglycemia Prevention Subscale 

Item:  Avoid exercise when I think 
my sugar is low. 

 

aAll items are responded to in the context of “How likely are you to perform these 
behaviors?” with response options on a 0-4 scale. A response of 0 indicates “never” and 4 
indicates “always.” 
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CHAPTER 4:  

THE ASSOCIATION OF CGM- MEASURED HYPOGLYCEMIC EVENTS AND 

HYPOGLYCEMIA BEHAVIOR CONSTRUCTS 

Specific Aim: To describe the frequency and severity of hypoglycemic events in a group of 

people with well-controlled type 1 diabetes, and relate these measures to scores on 

hypoglycemia- related behavior scales.  

Hypothesis: Participants who score lower versus higher on the hypoglycemia prevention 

behavior scale will experience a higher percentage of moderate hypoglycemic events and 

a longer duration of moderate hypoglycemic events. 

Introduction 

 Hypoglycemic events occur regularly in many people with type 1 diabetes (T1D)1–4 and 

are often characterized by perspiration, hunger, and shakiness at mild levels of hypoglycemia 

(<70 mg/dL), by sleepiness and confusion at moderate levels (<50 mg/ dL), and can involve loss 

of consciousness, seizures, and death in severe cases (< 35 mg/dL).2,5,6  Frequent hypoglycemic 

events are associated with decreased psychological well-being and diabetes-related quality of 

life5,7 and increased health care costs.5,8 The American Diabetes Association (ADA) recommends 

that people with diabetes manage their glucose in the range of 70 and 180 mg/dL and are 

prepared to treat hypoglycemia by carrying fast acting sugar.9 

 Continuous glucose monitors (CGM) record a person’s glucose levels in real time, 

providing continuous information to the person and alarms when glucose levels become 

hypoglycemic. The CGM alarms provide a cue to action that, if responded to quickly with fast-

acting sugar, can prevent a mild hypoglycemic event (glucose <70 mg/dL and >50 mg/dL) from 

becoming moderate or severe.9 Because not all people experience symptoms of hypoglycemia, 
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the CGM alarm for hypoglycemia is especially important in alerting T1Ds that action is required 

to maintain safe glucose levels. In studies of people with type 1 diabetes who wear CGM,10–12 

participants have varying levels of glucose control despite everyone receiving their glucose 

values in real time. Social cognitive theory suggests that simply providing CGM data, with or 

without alarms, will be insufficient to ensure that people with diabetes implement appropriate 

glucose management behaviors. Additionally, Pettus and Edelman write about the variation in 

behavioral responses to CGM data, describing a study of 222 participants who reported a wide 

range of insulin dosing, insulin timing, and carbohydrate consumption responses to the same 

scenarios of CGM-delivered glucose information.13,14 

 In Chapter 3, we demonstrated that the following behavioral constructs were adequately 

measured in the REPLACE-BG study: hypoglycemia avoidance behavior, hypoglycemia 

reaction behavior, and hypoglycemia prevention behavior. Hypoglycemia avoidance behavior 

represents behaviors that are performed with the intent of keeping glucose high in order to avoid 

any potential hypoglycemia. Hypoglycemia reaction behavior represents behaviors that a person 

may engage in once their glucose is already low in order to return to euglycemia.  Hypoglycemia 

prevention behavior represents currently promoted glucose management behaviors that are 

performed to prevent hypoglycemia, but are not attached to keeping glucose levels high in order 

to avoid hypoglycemia. Since CGM is becoming a norm in diabetes management, it is of interest 

to understand which hypoglycemia behavior constructs are related to the occurrence of 

hypoglycemic events in a population of people with type 1 diabetes who all use CGM and insulin 

pumps to manage their glucose. 

 In this study, we use CGM data to classify the severity of hypoglycemic events in a 

population of people with well-controlled diabetes, and explore how the frequency and duration 
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of hypoglycemic events are associated with hypoglycemia avoidance, reaction, and prevention 

behavior constructs. Our classification of hypoglycemic event severity is based on previous 

thresholds for mild and moderate hypoglycemia.9–11 We hypothesize that higher levels of 

hypoglycemia prevention behavior will be associated with a lower percent occurrence and 

shorter duration of moderate hypoglycemic events, and that participants who report higher levels 

of hypoglycemia avoidance behavior, compared to lower levels, will have a higher mean glucose 

and fewer total hypoglycemic events. 

Methods 

Sample 

 This analysis examined data from 216 participants who recorded > 14 days of CGM data 

and completed the baseline and end of study surveys. We chose 14 days as a minimum amount 

for CGM data because glucose metrics from a 14-day sampling period of CGM data have been 

shown to be sufficient to categorize behavioral response patterns that correlate highly with 

glucose metrics from sampling periods of 30-days to 3 months.15 

Study Design 

 This analysis used data from the Replace-BG Trial, which has been previously 

described.11 Briefly, this trial was a 6-month, two-arm, randomized (2:1), controlled trial that 

compared glucose outcomes between participants who used CGM-only versus CGM with 

confirmatory BGM (fingerstick blood glucose meter). All participants used a Dexcom G4 

Platinum CGM System (Dexcom, Inc., San Diego, CA) with an enhanced algorithm (Software 

505), which measures glucose concentrations from interstitial fluid in the range of 40- 400 

mg/dL every 5 minutes for up to 7 days.  
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 This analysis does not distinguish participants by study group since the primary outcome 

paper reported no significant differences in glucose metrics between study groups or over time 

and because the presence or absence of adjunctive BGM is not hypothesized to impact glucose 

management outcomes.  

Measures 

 Demographic and diabetes history information was collected via questionnaire at the 

initial screening visit. A1C was measured at a central laboratory (Northwest Lipid Research 

Laboratories, University of Washington, by using the Diabetes Control and Complications Trial 

standardized analyzer (Tosoh Bioscience, South San Francisco, CA)); A1C measurement at the 

26-week time point of the trial was used in this analysis since it reflects the participants’ glucose 

levels over the study period. 

 The hypoglycemia avoidance behavior, hypoglycemia reaction behavior, and 

hypoglycemia prevention behavior constructs explored in this analysis were measured at the 26-

week visit through administration of the Hypoglycemia Fear Survey- Behavior subscale.16 Each 

item was answered on a scale of 0-4, with greater values indicating greater likelihood of 

occurring; mean scores were generated for each item and each construct. 

 For each participant, we plotted the time trend for glucose readings over the duration of  

the study period and calculated the percent time and mean (SD) minutes/ day spent in 

euglycemia (70- 180 mg/dL), hyperglycemia (> 180 mg/dL), mild hypoglycemia (<70 mg/dL 

and >50 mg/dL), and moderate hypoglycemia (< 50 mg/dL); mean (SD) glucose; and glucose 

coefficient of variation. For each instance that the glucose curve went below 70 mg/dL, we 

measured the duration until the glucose value returned to above 70 mg/dL, and we recorded the 

minimum glucose value during each “hypoglycemic event.” 
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 We created hypoglycemic event categories by stratifying total hypoglycemic events by 

the minimum glucose value reached during the event (mild events: 51-70 mg/dL, moderate 

events: < 50 mg/dL).9–11 These decision rules utilize the ADA definition for mild hypoglycemia 

and characterize moderate hypoglycemia using the < 50 mg/dL cutpoint applied in the primary 

outcomes paper for the REPLACE-BG study. The following metrics were calculated for each 

hypoglycemic event category on the participant level: mean frequency of weekly mild or 

moderate events, percent of total weekly events that were mild or moderate, and mean duration 

of mild and moderate events. 

Analysis 

 We reported the mean (SD) weekly frequencies of mild and moderate hypoglycemic 

events for standard demographic categories and performed ANOVA to test for differences across 

categories. We created high- and low- score categories for each hypoglycemia behavior construct 

using the median score of the respective construct’s scale to divide the population into two 

categories. Then, we performed ANOVA to determine how glucose metrics vary between low 

and high categories of hypoglycemia avoidance behavior, hypoglycemia reaction behavior, and 

hypoglycemia prevention behavior constructs. We performed additional ANOVA to determine 

how the following vary between low and high categories of hypoglycemia behavior constructs: 

weekly frequency of total hypoglycemic events, percent occurrence of weekly hypoglycemic 

events that were moderate (of total hypoglycemic events), and weekly frequency and duration of 

mild and moderate hypoglycemic events. We reported mean (SD) for all variables. We 

considered p-values <0.05 to be statistically significant and  p-values <0.1 to be borderline 

statistically significant.  
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 We conducted univariable and multivariable linear regression to examine the association 

of the hypoglycemia behavior constructs with 1) duration of moderate hypoglycemic events and 

2) percentage of moderate hypoglycemic events. Separate parsimonious multivariable linear 

regression models were built for each outcome, and both models included all three hypoglycemia 

behavior constructs in their continuous forms as predictors. Study site, age, and gender were 

included as covariates in both models to control for the multi-cohort nature of the population and 

multi-site nature of the study. Univariate associations were tested between each model outcome 

and BMI, glucose coefficient of variation and percent time in euglycemia---  variables with p-

values <0.2 in univariable models were considered as covariates in multivariable models, where 

p-values <0.05 were considered statistically significant. SAS 9.4 was used for all analyses. 

Results 

 A total of 216 participants were included in the analysis: 50% were female, 94% were 

white, 56% were over 40 years old, 56% had diabetes for more than 20 years, and 66% were 

overweight or obese (BMI > 25 kg/m2) (Table 4.1). Sixty-five percent of participants reported 

never experiencing a severe hypoglycemic event, defined as needing help from another person to 

recover from low glucose, and the remaining participants reported not experiencing severe 

hypoglycemia in the past year. Seventy-four percent of participants reported never experiencing 

DKA, and the remaining participants reported not experiencing more than one DKA episode in 

the previous year.  

 Each participant recorded a mean (SD) of 162.2 (25.3) days of CGM data during the 

study period. All 216 participants experienced at least one mild hypoglycemic event during the 

study period, and 214 participants experienced at least one moderate hypoglycemic event during 

the study period. The mean frequency of weekly mild hypoglycemic events ranged from 4.3- 6.8 
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across demographic categories, and the mean frequency of weekly moderate hypoglycemic 

events ranged from 1.4- 2.2. Most differences between categories of the same demographic 

variables were small, but the largest differences occurred in age, A1C, and ethnicity. Participants 

< 40 years recorded 6.5 mild and 2.2 moderate hypoglycemic events per week, compared to 

participants > 40 years recorded 6.0 mild and 1.6 moderate hypoglycemic events per week. 

People who were of non-White ethnicity recorded 6.3 mild and 1.9 moderate hypoglycemic 

events per week, compared to people of White ethnicity recording 4.3 mild and 1.4 moderate 

hypoglycemic events per week. Notably, people with A1C < 7 % recorded 7.8 mild and 2.3 

moderate hypoglycemic events per week, while people with A1C > 7% recorded 4.8 mild and 

1.5 moderate hypoglycemic events per week (Table 4.1). 

 The mean (SD) score for hypoglycemia avoidance behavior was 1.2 (0.6), on a scale of  

0- 4 (Table 4.2). The two items that had the highest mean scores--- 1.4 (0.8) and 1.6 (1.0)--- were 

“Eat large snacks at bedtime” and “If test blood glucose, run a little high to be on the safe side.” 

The two items that had the lowest mean scores--- 0.7 (0.8) and 0.9 (1.0)--- were “Keep my sugar 

high when I will be alone for a while” and “Avoid being alone when my sugar is likely to be 

low.” The mean (SD) score for hypoglycemia reaction behavior was 2.5 (0.8), and the mean 

(SD) score for hypoglycemia prevention behavior was 2.9 (0.8). The mean score for “Carry fast-

acting sugar with me” was 3.5 (1.0). 

 Hypoglycemia avoidance behavior scores ranged from 0.0- 1.1 and 1.2- 3.2 in low and 

high categories, respectively (Table 4.3). Hypoglycemia reaction behavior scores ranged from 

0.5- 2.4 and 2.5- 4.0 in low and high categories, respectively. Hypoglycemia prevention behavior 

scores ranged from 0.0- 2.9 and 3.0- 4.0 in low and high categories, respectively.  
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 A1C, mean glucose, and minutes/ day in euglycemia varied significantly between 

categories of hypoglycemia avoidance behavior: A1C 6.9% vs. 7.2%, mean glucose 155.0 vs. 

165.8 mg/dL, and minutes/ day in euglycemia 958.3 vs. 867.0, respectively in low vs. high 

categories (all p-values < 0.001) (Table 4.3). Neither minutes per day spent in mild or moderate 

hypoglycemia, nor glucose coefficient of variation varied between categories of any 

hypoglycemia behavior construct. Additionally, no aggregate glucose metrics varied 

significantly between low and high categories of hypoglycemia reaction behavior or 

hypoglycemia prevention behavior (Table 4.3).  

 The mean weekly frequencies of total and mild hypoglycemic events varied significantly 

between categories of hypoglycemia avoidance behavior: 8.8 vs. 7.5 total events/ week and 6.7 

vs. 5.7 mild events/ week in low vs. high categories, respectively (all p-values < 0.05)  

(Table 4.4). For moderate hypoglycemic events, the percent of total events, frequency, and 

duration did not vary significantly by category of hypoglycemia avoidance behavior. In low vs. 

high categories of hypoglycemia reaction behavior, the weekly frequencies of total and mild 

hypoglycemic events were 8.5 vs. 7.8 and 6.6 vs. 6.0, respectively, but were not significantly 

different. In both categories of hypoglycemia reaction behavior, the weekly frequency of 

moderate hypoglycemic events was 1.9, and mean duration was 69 minutes, (Table 4.4). 

 In low vs. high categories of hypoglycemia prevention behavior, the mean (SD) weekly 

frequency of moderate hypoglycemic events was 2.1 (1.6) vs. 1.8 (1.4), respectively, and 

borderline significant (p < 0.1); the mean duration of moderate hypoglycemic events was 73.0 

and 66.0 minutes, respectively, and significant (p <0.05); and the mean duration of mild 

hypoglycemic events was 29.8 minutes vs. 28.3 minutes, respectively, and borderline significant 

(p< 0.1) (Table 4.4). 
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 In conducting the multiple linear regression analysis for the outcome “Duration of 

Moderate Hypoglycemic Events,” we included the hypoglycemia avoidance, reaction, and 

prevention scales in their continuous forms and adjusted for study site, gender, and age. BMI did 

not have a significant univariate association with “Duration of Moderate Hypoglycemic Events” 

and was not tested in the multivariate model. Percent time in euglycemia had a significant 

univariate association with “Duration of Moderate Hypoglycemic Events,” but was not 

significant in the multivariate model and was not retained in the final model. Glucose coefficient 

of variation had a significant association with the outcome in both univariate in multivariate 

models, and was retained in the final model. The final model included the hypoglycemia 

avoidance, reaction, and prevention behavior scales, study site, age, gender, and glucose 

coefficient of variation. The model included the 214 participants who experienced at least one 

moderate hypoglycemic event during the study period. In the final model (Table 4.5), higher 

scores of hypoglycemia prevention behavior were significantly associated with shorter duration 

of moderate hypoglycemic events (beta= -6.9, SE= 2.2, p< 0.01). Greater glucose coefficient of 

variation was significantly associated with longer duration of moderate hypoglycemic events 

(beta= 1.9, SE=0.3, p< 0.0001). 

 A similar process was used in conducting the multiple linear regression analysis for the 

outcome “Percent Occurrence of Moderate Hypoglycemic Events.” BMI was not significantly 

associated with the outcome in univariate models, so was not included in the multivariate model. 

Percent time in euglycemia had a significant univariate association with the outcome, but was 

not significant in the multivariate model and was not retained in the final model. Glucose 

coefficient of variation had a significant association with the outcome in both univariate in 

multivariate models, and was retained in the final model. The final model (Table 4.5) included 
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the hypoglycemia avoidance, reaction, and prevention behavior scales, study site, age, gender, 

and glucose coefficient of variation. In the final model, higher scores of hypoglycemia 

prevention behavior were significantly associated with a lower percentage of moderate 

hypoglycemic events (beta= -2.2, SE= 0.7, p-value < 0.01), greater glucose coefficient of 

variation was associated with a higher percentage of moderate hypoglycemic events (beta= 1.0, 

SE= 0.1, p < 0.0001), and being female was significantly associated with a higher percentage of 

moderate hypoglycemic events (beta= 2.8, SE= 1.1, p <0.05). 

Discussion 

 In this study of CGM-measured hypoglycemic events, we identified that hypoglycemic 

events were frequent for all T1D regardless of their A1C level, demographics, or level of 

hypoglycemic avoidance, reaction, and prevention behavior. However, the level of hypoglycemia 

prevention behavior was the main variable that differentiated the frequency and duration of 

moderate hypoglycemic events. Participants in the lower category for hypoglycemia prevention 

behavior experienced hypoglycemic events an average of 2.1 times per week, lasting an average 

duration of 73.0 minutes, compared to participants in the high score category experiencing an 

average 1.8 moderate hypoglycemic events per week that lasted 66.0 minutes.  

 We define moderate hypoglycemic events as having a minimum glucose value < 50 

mg/dL, which is both uncomfortable and dangerous to experience. Each hypoglycemic event 

requires a behavioral response to correct for hypoglycemia, and is accompanied by potentially 

dangerous low glucose symptoms. The higher percentage of moderate hypoglycemic events in 

participants in the lower category of hypoglycemia prevention behavior indicates that these 

participants do not respond to decreasing glucose levels as quickly as participants who are in the 

higher category of hypoglycemia prevention behavior, and mild hypoglycemic events are less 
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likely to be prevented from becoming moderate. The more frequent and longer duration 

moderate hypoglycemic events experienced by participants who engage in fewer hypoglycemia 

prevention behaviors put them at higher risk for problems associated with hypoglycemia, such as 

car crashes and disruptions in work or social events.  

 The percent occurrence of moderate hypoglycemic events ranged between 20.3% and 

22.4% across all categories of hypoglycemia avoidance, reaction, and prevention behavior. It is 

important to notice that, across this population of participants with well-controlled diabetes 

(mean (SD) A1C of 7.0 (0.2)), about a fifth of all hypoglycemic events are severe. Since all 

participants received real-time CGM data and alarms when their glucose drops < 70 mg/dL, the 

likelihood of a mild hypoglycemic event becoming moderate depends on a person’s likelihood of 

paying attention to their CGM values and alarms, and their preparation of having a carbohydrate 

source available.  

 In our multivariable analyses that assessed the association of hypoglycemia avoidance, 

reaction, and prevention behavior constructs with the outcomes 1) duration of moderate 

hypoglycemic events and 2) percentage of moderate hypoglycemic events, we found that 

hypoglycemia prevention behavior was the only hypoglycemia behavior construct that was 

significantly associated with the hypoglycemic event metrics.  

 Our final multivariate model that assessed the association of the duration of moderate 

hypoglycemic events with hypoglycemia prevention behavior indicated that for every 1-point 

increase in a participant’s hypoglycemia prevention behavior score, the participant has a 7 

minute decrease in the mean duration of their moderate hypoglycemic events (p <0.01). 

Additionally, for every 4.2-unit decrease in a participant’s glucose coefficient of variation, their 

mean duration of moderate hypoglycemic events decreases by 5 minutes (p <0.001). 
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 Our final multivariate model that assessed the association of the percent occurrence of 

moderate hypoglycemic events with hypoglycemia prevention behavior indicated that for every 

1-point increase in a participant’s hypoglycemia prevention behavior score, the participant has a 

2% decrease in the percent occurrence of moderate hypoglycemic events (p <0.01). Additionally, 

for every 1-unit decrease in a participant’s glucose coefficient of variation, the participant has a 

1% decrease in their percent occurrence of moderate hypoglycemic events (p <0.0001). The 

model also indicated that females have a 2.8% higher percent occurrence of moderate 

hypoglycemic events compared to males, when all other conditions are held constant (p <0.05). 

 These regression results indicate that participants who are more likely to engage in 

hypoglycemia prevention behaviors--- carrying fast-acting sugar in case of hypoglycemia, 

avoiding exercise if glucose is already low, and self-monitoring glucose levels--- have a 

significantly lower likelihood of mild hypoglycemic events becoming moderate. In the case that 

a hypoglycemic event is moderate, these participants are able to recover from hypoglycemia 

significantly faster than participants who are less likely to engage in hypoglycemia prevention 

behaviors. 

 Our findings in Table 4.1 show that females and males have the same mean weekly 

frequency moderate hypoglycemic events, and that males experience 0.4 more weekly mild 

hypoglycemic events than females. The finding in the multivariate model that females have a 

significantly higher percent occurrence of moderate hypoglycemic events than males (2.8% 

greater occurrence) may be a function of smaller denominator of total events (0.4 fewer total 

hypoglycemic events per week), which is not a material difference and does not suggest a greatly 

higher risk for moderate hypoglycemia when interpreted in context. 



 

51 

 The significant increase in A1C and mean glucose between low and high categories of 

hypoglycemia avoidance behavior, and significant decrease in percent time spent in euglycemia, 

demonstrate how a person’s entire glucose curve shifts upward as their likelihood for engaging in 

hypoglycemia avoidance behaviors increases. Oppositely, the glucose coefficient of variation 

does not vary across any hypoglycemia behavior construct. This illustrates a main challenge of 

glucose management, pointed out by Kovatchev,17,18 which is the likely increased frequency of 

hypoglycemia upon lowering mean glucose due to the difficulty of decreasing the variation of 

glucose. The glucose coefficient of variation is determined largely by the activity of insulin and 

the absorption rate of carbohydrates into a person’s blood--- two factors that are challenging to 

control, but may be improved through use of CGM as people can better understand the timeline 

in which their food, insulin, and physical activity impact their glucose. 

 The glucose coefficient of variation represents how widely a person’s glucose values 

fluctuate around their mean glucose, and was positively and significantly associated with both 

duration and percentage of moderate hypoglycemic events in final models. These associations 

indicate that participants who have larger fluctuations in their glucose have a higher likelihood of 

mild hypoglycemic events becoming moderate, and take longer to return to euglycemia from 

moderate hypoglycemic events. This suggests that a greater coefficient of variation increases 

participants’ risk for problems associated with hypoglycemia and is an indicator of poor glucose 

control. 

 The range of hypoglycemia behavior construct scores across the population confirms the 

variation in behavioral responses to CGM data recognized by Pettus et al.14 In this study, 

hypoglycemia prevention behavior was able to predict exposure to moderate hypoglycemia, and 

higher hypoglycemia avoidance behavior scores were significantly related to increased glucose 
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levels. An ideal scale for evaluating the relationship between behaviors and glucose management 

would measure both hypoglycemia prevention behavior and hyperglycemia prevention 

behaviors. Measuring the behaviors that impact both sides of the euglycemic range would allow 

for the prediction of hypoglycemic and hyperglycemic event duration and frequency, glucose 

coefficient of variation, and combinations of behaviors that maximize time spent in euglycemia. 

 A key observation made in this study is the lack of variation in A1C across low and high 

score categories for hypoglycemia prevention behavior, but significantly longer duration and 

higher percentage of moderate hypoglycemic events in low vs. high hypoglycemia prevention 

behavior categories. Alternatively, A1C is significantly lower in low vs. high hypoglycemic 

avoidance behavior score categories, but there is no significant difference in occurrence of 

moderate hypoglycemic events. The discordant variation of A1C and moderate hypoglycemic 

events can be explained by the small amount of time spent in moderate hypoglycemia, which has 

a minute impact on average glucose levels and A1C. This highlights the importance of using 

CGM to measure glucose control, since any time in moderate hypoglycemia is physiologically 

dangerous and disruptive to a person’s daily activities, but can be easily missed by an A1C test. 

 Also of interest is the lack of variation in mild and moderate hypoglycemic event 

frequency across categories of history of severe hypoglycemia--- a hypoglycemic event that 

required help from another individual to recover from--- and history of DKA. The participants in 

this study were chosen for having very good glucose control; 65% of participants reported 

having never experienced severe hypoglycemia and 74% reported not having experienced DKA 

within the past year. Regardless of participants reporting ever or never experiencing severe 

hypoglycemia, they had a mean of 1.9 moderate hypoglycemic events per week and 6.1 or 6.3 

mild hypoglycemic events per week (respectively). The same frequencies applied to participants 
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who reported ever or never experiencing DKA. These uniform frequencies indicate that, in this 

population of well-controlled T1Ds, past experiences do not seem to impact the participants’ 

current frequency of hypoglycemic events. 

 A limitation of our study is that the study population is not generalizable to the 

population of people with type 1 diabetes in America. A 2015 demographic description of the 

Type 1 Diabetes Exchange clinic registry,19 from which the REPLACE-BG (RBG) population 

was recruited, reported an average A1C of 8.4% (7.0% in RBG),  83% white race (90% in RBG), 

and 34% reporting incomes greater than $100,000/ year (39% in RBG). Sixty percent of the 

Type 1 Diabetes Exchange population reported using an insulin pump, and 11% reported using a 

CGM, whereas the entire RBG population utilized insulin pumps and CGMs during the study 

period. 

 Our data indicate that all participants experience mild and moderate hypoglycemic 

events, regardless of A1C, demographics, or level of hypoglycemia avoidance, reaction, and 

prevention behavior. Our analysis shows that increased levels of hypoglycemia prevention 

behavior are associated with shorter durations of hypoglycemic events and a greater likelihood of 

preventing mild hypoglycemic events from becoming moderate. Our paper highlights the 

variation in behavioral responses to CGM data and illustrates the advantages of measuring 

glucose control with CGM versus A1C in order to accurately measure hypoglycemia. This paper 

utilizes CGM data in its continuous form to enhance the understanding of how hypoglycemic 

events relate to the hypoglycemia behavior constructs and suggests the importance of promoting 

hypoglycemia prevention behaviors to mitigate the risks of diabetes. 
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Table 4.1: Weekly frequency of mild and moderate hypoglycemic events by demographic 
categories (N=216)a,b 

 

N (%) 

Mild 
hypoglycemic 

events 

Moderate 
hypoglycemic 

events 
Age, years    
     < 40 years 96 (44) 6.5 (3.7) 2.2 (1.7) 
     > 40 years 120 (56) 6.0 (2.9) 1.6 (1.3) 
BMI (kg/m2)    
     <25 kg/m2 73 (34) 6.8 (3.4) 2.0 (1.4) 
     >25 kg/m2 143 (66) 5.9 (3.2) 1.9 (1.6) 
Gender    
     Female 108 (50) 6.0 (3.2) 1.9 (1.4) 
     Male 108 (50) 6.4 (3.4) 1.9 (1.6) 
A1C*    
     < 7% 102 (47) 7.8 (3.6) 2.3 (1.7) 
     > 7% 114 (53) 4.8 (2.2) 1.5 (1.2) 
Income    
    <$50,000 23 (11) 5.8 (3.0) 1.7 (1.4) 
    $50,000- $100,000 55 (25) 6.5 (3.9) 2.0 (1.7) 
    >$100,000 84 (39) 6.4 (3.1) 1.9 (1.5) 
   Unknown/ Missing 54 (25) 5.9 (3.1) 1.8 (1.4) 
Ethnicity    
    White 203 (94) 4.3 (2.2) 1.4 (1.3) 
    Other/ Unknown 13 (6) 6.3 (3.3) 1.9 (1.5) 
Duration of Diabetes    
     < 20 years 96 (44) 6.1 (3.3) 1.7 (1.5) 
     >20 years 120 (56) 6.3 (3.3) 2.0 (1.5) 
History of Severe 
Hypoglycemia 

   

     Yes 76 (35) 6.1 (3.2) 1.9 (1.6) 
     No 140 (65) 6.3 (3.4) 1.9 (1.5) 
History of DKA    
     Yes 57 (26) 6.1 (3.5) 1.9 (1.5) 
     No 159 (74) 6.3 (3.2) 1.9 (1.5) 
aMild hypoglycemic events have a minimum value <70 mg/dL and >50 
mg/dL. Moderate hypoglycemic events have a minimum value <50 mg/dL.  
bFrequencies of hypoglycemic events are reported as mean (SD).  
*A1C measured at 26-week visit (end of study). 
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Table 4.2: Hypoglycemia Behavior Constructs, Items, and Scores (n=216)a 
Construct Item Content Item 

Scoreb 
Construct 

Scoreb 

Hypoglycemia 
Avoidance Behavior 

Eat large snacks at bedtime 1.4 (0.8) 

1.2 (0.6) 

Avoid being alone when my sugar 
is likely to be low 

0.9 (1.0) 

If test blood glucose, run a little 
high to be on the safe side 

1.6 (1.0) 

Keep my sugar high when I will be 
alone for a while 

0.7 (0.8) 

Keep my sugar high when I plan to 
be in a long meeting 

1.2 (0.9) 

    
Hypoglycemia 
Reaction Behavior 

Eat something as soon as I feel the 
first sign of low blood glucose 

2.7 (1.0) 

2.5 (0.8) 
Reduce my insulin when I think my 
sugar is low 

2.2 (1.0) 

    
Hypoglycemia 
Prevention Behavior 

Carry fast-acting sugar with me 3.5 (1.0) 

2.9 (0.8) 
Avoid exercise when I think my 
sugar is low 

2.8 (1.1) 

Check my sugar often when I plan 
to be in a long meeting or party 

2.4 (1.1) 

aAll items are responded to in the context of “How likely are you to perform these behaviors?” with 
response options on a 0-4 scale. A response of 0 indicates “never” and 4 indicates “always.”  
bScores reported as mean (SD). 
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Table 4.3: Glucose metrics across categories of Hypoglycemia Behavior Constructs (n=216)a 
 Hypoglycemia 

Avoidance 
 Hypoglycemia Reaction  Hypoglycemia 

Prevention 
 Low Score 

Category 
High Score 
Category 

 Low Score 
Category 

High Score 
Category 

 Low Score 
Category 

High Score 
Category 

Score Rangeb 0.0- 1.1 1.2- 3.2  0.5- 2.4 2.5- 4.0  0.0- 2.9 3.0- 4.0 
N (%) 105 (48.6) 111 (51.4)  87 (40.3) 129 (59.7)  85 (39.4) 131 (60.7) 

A1C 6.9 (0.6) 7.2 (0.7)  7.0 (0.6) 7.0 (0.7)  7.0 (0.6) 7.0 (0.7) 

Mean Glucose, 
mg/dL  

155.0 
(18.9) 

165.8 
(24.1) 

 157.1 
(21.2) 

162.9 
(22.8) 

 161.1 
(20.7) 

160.1 
(23.4) 

Euglycemia, 
Minutes/dayc 

958.3 
(156.1) 

867.0 
(191.4) 

 934.1 
(178.7) 

896.0 
(180.9) 

 907.9 
(170.1) 

913.6 
(187.7) 

Mild 
Hypoglycemia,  
Minutes/ dayd  

54.1 (36.1) 52.0 (36.7)  55.6 (38.8) 51.4 (34.6)  51.8 (36.8) 53.9 (36.1) 

Moderate 
Hypoglycemia,  
Minutes/daye  

7.9 (7.0) 8.8 (9.9)  8.4 (8.4) 8.3 (8.8)  8.7 (10.2) 8.2 (7.4) 

Glucose 
Coefficient of 
Variation 

36.5 (4.4) 37.5 (4.9)  36.7 (5.2) 37.3 (4.3)  37.1 (5.2) 37.0 (4.3) 

aAll values reported as Mean (SD).  
bScore categories are formed by dividing the population above and below the median score for the respective 
hypoglycemia-related behavior scale.  
cEuglycemia includes glucose values 70- 180 mg/dL.  
dMild hypoglycemia includes glucose values <70 mg/dL and >50 mg/dL.  
eModerate hypoglycemia includes glucose values <50 mg/dL.  
Bold values indicate ANOVA p-value <0.05 testing across median score categories within Hypoglycemia 
Behavior construct. 
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Table 4.4: Hypoglycemic event characteristics across categories of Hypoglycemia Behavior 
Constructs (n=216)a 

 Hypoglycemia Avoidance  Hypoglycemia Reaction  Hypoglycemia Prevention 
 Low Score 

Category 
High Score 
Category 

 Low Score 
Category 

High Score 
Category 

 Low Score 
Category 

High Score 
Category 

Score Range 0.0- 1.1 1.2- 3.2  0.5- 2.4 2.5- 4.0  0.0- 2.9 3.0- 4.0 
N (%) 105 (48.6) 111 (51.4)  87 (40.3) 129 (59.7)  85 (39.4) 131 (60.7) 
Total 
Hypoglycemic 
Events/ Week 

8.8 (4.8) 7.5 (4.1)  8.5 (4.9) 7.8 (4.2)  8.4 (4.4) 7.9 (4.6) 

% Moderate 
Hypoglycemic 
Eventsb 

20.8 (9.0) 21.1 (9.6)  20.3 (8.2) 21.5 (9.9)  22.4 (9.7) 20.1 (8.9) 

Mild Hypoglycemic Eventsc 

Events/ Week 6.7 (3.5) 5.7 (3.0)  6.6 (3.7) 6.0 (3.0)  6.2 (3.1) 6.2 (3.5) 
Event Duration, 
minutes 

28.7 (6.5) 29.0 (6.6)  28.6 (5.8) 29.0 (7.0)  29.8 (7.0) 28.3 (6.1) 

Moderate Hypoglycemic Eventsd  
Events/ Week 2.0 (1.5) 1.8 (1.5)  1.9 (1.5) 1.9 (1.5)  2.1 (1.6) 1.8 (1.4) 
Event Duration, 
minutes 

67.8 (21.6) 69.7 (26.2)  68.9 (21.2) 68.7 (25.8)  73.0 (24.7) 66.0 (23.2) 

aAll values reported as Mean (SD).  
b% of total events accounted for by moderate events. 
cMild hypoglycemic events have a minimum value <70 mg/dL and >50 mg/dL.  
dModerate hypoglycemic events have a minimum value <50 mg/dL.  

Bold values indicate ANOVA p-value <0.05, Italicized bold values indicate ANOVA p-value <0.1, testing across 
median score categories within Hypoglycemia Behavior construct.  
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Table 4.5: Regression results for the associations of Hypoglycemia Behavior Constructs with 
duration (n=214) and percent occurrence (n=216) of moderate hypoglycemic eventsa 

Outcome: Duration of Moderate Hypoglycemic Events 

 B SE p-value 
Hypoglycemia Avoidance Behavior 2.5 2.5 0.3 
Hypoglycemia Reaction Behavior 1.5 2.0 0.5 
Hypoglycemia Prevention Behavior -6.9 2.2 <0.01 
Glucose Coefficient of Variation 1.9 0.3 <0.0001 
Age, 5 years -1.05 0.55 0.06 
Gender -2.1 3.2 0.5 
Study Site -0.2 0.3 0.5 

Outcome: Percent Occurrence of Moderate Hypoglycemic Events 

Hypoglycemia Avoidance Behavior -0.4 0.9 0.6 
Hypoglycemia Reaction Behavior 0.5 0.7 0.4 
Hypoglycemia Prevention Behavior -2.2 0.7 <0.01 
Glucose Coefficient of Variation 1.0 0.1 <0.0001 
Age, 5 years -0.35 0.2 0.06 
Gender 2.8 1.1 <0.05 
Study Site -0.04 0.1 0.7 
aModel for outcome “Duration of moderate hypoglycemic events” includes the 214 participants who 
experienced at least 1 moderate event during the study period. 
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CHAPTER 5:  

THE FREQUENCY AND DURATION OF SEVERE HYPERGLYCEMIC EVENTS 

VARIES BY A1C 

Specific Aim: Develop categories of severity for hyperglycemic events and describe how time in 

different categories is related to A1C levels. 

Hypothesis: Participants at higher levels of A1C will experience more frequent hyperglycemic 

events and a higher percent of total hyperglycemic events that are severe. 

Introduction 

 Continuous glucose monitoring (CGM) is becoming a norm for managing type 1 diabetes 

(T1D)1–3 and has been shown to reduce A1C in several randomized controlled trials.4,5 CGM is a 

useful diabetes management tool because it provides real-time glucose levels and alerts for 

hyper- and hypoglycemia to people with T1D. CGM records a datastream that can be analyzed in 

its continuous form to describe events in glucose management, like individual hyperglycemic 

events, which are typically measured in aggregate form as the percent of time a person’s glucose 

is above a set glucose threshold.  

 The current standard measure of blood glucose control for clinical decisions is the 

hemoglobin A1C, which measures average glucose levels over the previous three months.6,7 The 

ADA target for A1C in people with T1D is below 7%, preferably around 6.5%,8 and diabetes 

complications are more likely in people who maintain higher A1Cs.9–11  The American Diabetes 

Association (ADA) recommends that people with T1D maintain their blood glucose levels 

between 70 and 180 mg/dL, called euglycemia,8 and defines glucose levels >180 mg/dL as 

moderate hyperglycemia and glucose levels >250 mg/dL as severe hyperglycemia. There are 

both microvascular and macrovascular complications that are the consequences of too much time 



 

62 

spent in hyperglycemia,6,12 and these are manifested as retinopathy, neuropathy, nephropathy, 

coronary artery disease, and stroke.7,9,13–15 

 While A1C does provide a good monitor of hyperglycemic exposure over the past three 

months, it does not provide feedback that is proximal to when the individual needs to make 

moment-to-moment management decisions or describe patterns in glucose levels that can be used 

to improve their glucose management behaviors--- either through self-reflection or through 

discussion with a health care provider. Thus, compared to CGM, A1C is not an optimal decision 

support tool for people with T1D. 

 CGM data from the REPLACE-BG trial16 are publicly available and provide a detailed 

record of glucose levels over a period of 6 months for over 200 people with T1D. These data 

provide the opportunity to explore hyperglycemic events among T1D who are at four different 

levels of good blood glucose control. For each of these groups, we explore how different 

measures that describe these hyperglycemic excursions (i.e. the frequency of excursions, the 

maximum glucose level reached, and the time spent in hyperglycemia) are related to improved 

A1C levels. We hypothesize that we will be able to identify a metric that is the most powerful 

predictor of A1C levels so that in future studies we can identify glucose management practices 

that minimize exposure on this metric. 

Methods 

Sample 

 This analysis examined data from 216 participants who recorded > 14 days of CGM data 

and completed the baseline and end of study surveys. We chose 14 days as a minimum amount 

for CGM data because glucose metrics from a 14-day sampling period of CGM data have been 
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shown to capture period prevalence of habitual glucose management and to correlate highly with 

glucose metrics from sampling periods of 30-days to 3 months.17 

Study Design 

 This analysis used data from the REPLACE-BG trial16 which has been previously 

described in the primary outcomes paper  and in Chapters 2, 3, and 4 of this dissertation. Briefly, 

this trial was a 6-month trial in which all participants used a Dexcom G4 Platinum CGM System 

(Dexcom, Inc., San Diego, CA) with an enhanced algorithm (Software 505), which measures 

glucose concentrations from interstitial fluid in the range of 40- 400 mg/dL every 5 minutes. The 

trial was conducted at 14 endocrinology practices in the U.S. that are members of the Type 1 

Diabetes Exchange Network. 

 Study inclusion and exclusion criteria are described in Chapter 4. Of specific relevance is 

that potential participants were excluded based on the occurrence of any severe hypoglycemic 

event, an event in which the person required assistance from another person to treat their low 

glucose levels, or diabetic ketoacidosis within the past year. The study randomized 226 

participants between May 2015 and March 2016. 

Measures 

 Demographic and diabetes history information was collected via questionnaire at the 

initial screening visit. A1C was measured at a central laboratory (Northwest Lipid Research 

Laboratories, University of Washington, by using the Diabetes Control and Complications Trial 

standardized analyzer (Tosoh Bioscience, South San Francisco, CA)); A1C measurement at the 

26-week time point of the trial was used in this analysis since it reflects the participants’ glucose 

levels over the study period. 
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 We plotted all available glucose readings for each participant’s CGM data and calculated 

the percent time in hyperglycemia (> 180 mg/dL) and euglycemia (70- 180 mg/dL), as well as 

mean (SD) glucose level and glucose coefficient of variation. For each hyperglycemic event, we 

measured the duration that the glucose level was above 180 mg/dL (a single hyperglycemic 

event), and we recorded the maximum glucose value during the event. 

 To categorize the severity of hyperglycemic events, we utilize the ADA definition of 

moderate hyperglycemia (180 to < 250 mg/dL) and severe hyperglycemia (> 250 mg/dL),8 in 

conjunction with their recommendation that meal-related hyperglycemic events should not last 

more than 2 hours. We divide the duration of events into three time-periods (5 -29.9 minutes, 30-

119.9 minutes, and > 2 hours) and binarize whether the maximum glucose level was beyond the 

250 mg/dL threshold for severe hyperglycemia. Thus, we created the following 4 categories of 

hyperglycemic events: Category 1 = duration of less than 30 minutes; Category 2= duration of 

30- 119.9 minutes; Category 3= duration > 2 hours, maximum glucose value < 250 mg/dL; 

Category 4= duration > 2 hours, maximum glucose value > 250 mg/dL. We analyze all available 

CGM data in weekly increments and report the mean (SD) for the following metrics: total 

weekly events, percent of total hyperglycemic events accounted for by each severity category, 

and duration and maximum value of events by severity category. 

Analysis 

 We reported the frequency and percent of total events for all hyperglycemic events 

recorded during the study period, by severity category. We performed ANOVA to determine 

how weekly frequency of total hyperglycemic events and percent occurrence of hyperglycemic 

events of each severity category varied within standard demographic categories. Descriptive 
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statistics were generated as means with standard deviations for continuous variables, and 

frequencies with percentages for categorical variables. 

 We categorized participants into quartiles of A1C measured at the 26-week time-point 

and performed ANOVA to determine how aggregate glucose metrics, mean weekly frequency of 

total events, and percent occurrence of events in each severity category varies across A1C 

quartiles. For each of these variables, we also performed linear regression with 26-week A1C to 

test for linearity. 

 We performed an additional ANOVA to determine how metrics specific to Cat 4 events--

- total weekly events, duration, maximum glucose value, and percent of all time in 

hyperglycemia spent in Cat 4 events--- vary across A1C quartiles. In order to quantify and test 

for significant differences between individual A1C quartiles, we performed Bonferroni tests of 

differences. 

 We conducted univariable and multivariable linear regression to examine the association 

of A1C with 1) percent occurrence of events in each severity category and 2) percent of all time 

in hyperglycemia spent in Category 4 events. A1C was the outcome in both models, and separate 

parsimonious multivariable linear regression models were built for each primary predictor 

variable. Both models included study site, age, and gender as covariates to control for the multi-

cohort nature of the population and multi-site nature of the study. In our first model (predictor: 

percent occurrence of events in each severity category), we included the percent occurrences of 

all hyperglycemic event categories in the initial model and used a data reduction approach to 

include the event categories that best predicted A1C. BMI, glucose coefficient of variation, and 

total weekly hyperglycemic events were tested as covariates based on their univariate association 

with the model outcome. Variables with p-values <0.2 in univariable models were considered as 
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covariates in multivariable models, where p-values <0.05 were considered statistically 

significant. SAS 9.4 was used for all analyses. 

Results 

 A total of 101,020 hyperglycemic events occurred during the study period, over all 

participants. These events included many instances of each of the severity categories: 24% were 

Cat 1, 33% were Cat 2, 17% were Cat 3, and 26% were Cat 4 (Table 5.1). 

 A total of 216 participants were included in the analysis: 50% were female, 94% were 

white, 56% were over 40 years old, 56% had diabetes for more than 20 years, and 66% were 

overweight or obese (BMI > 25 kg/m2) (Table 5.2). Seventy-four percent of participants reported 

never experiencing DKA, and the remaining participants reported not experiencing more than 

one DKA episode in the previous year. 

 Each participant recorded a mean (SD) of 162.2 (25.3) days of CGM data during the 

study period. The mean frequency of weekly hyperglycemic events ranged from 16.2- 19.4 

across demographic categories. The mean percent of total hyperglycemic events accounted for 

by each severity category ranged from 22.3- 26.7 for Cat1 events, 29.9- 36.9 for Cat2 events, 

15.4- 17.7 for Cat3 events, and 19.3- 31.8 for Cat 4 events (Table 5.2). Most differences between 

categories of the same demographic variables were small, but participants with an A1C < 7% vs. 

>7% experienced 16.2 (4.2) vs. 19.4 (3.9) mean (SD) weekly hyperglycemic events, of which 

26.7% (5.3%) vs. 22.3% (3.9%) were Cat1, 36.9% (7.1%) vs. 29.9% (6.1%) were Cat2, and 

19.3% (8.5%) vs. 31.8% (9.8%) were Cat4--- all differing significantly between A1C categories. 

Participants < 40 vs. > 40 years old experienced 23.6% (5.1%) vs. 25.0% (5.0%) Cat 1 events, 

15.4% (3.7%) vs. 17.7% (5.1%) Cat 3 events, and 28.0% (11.7%) vs. 24.2% (10.3%) Cat 4 

events--- all differing significantly between age categories (Table 5.2). Participants who had ever 
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vs. never experienced DKA experienced a significantly different amount of cat 4 events--- 28.4% 

(10.6%) vs. 25.0% (11.1%) respectively. 

 Participants were categorized based on 26-week A1C quartiles. Mean glucose and 

percent of time spent in euglycemia, hyperglycemia (>180 mg/dL), and severe hyperglycemia 

(>250 mg/dL) had significant trends across A1C quartiles. Mean glucose and percent time in 

hyperglycemia (>180 mg/dL) increased in each higher A1C quartile, percent time in euglycemia 

decreased in each higher A1C quartile, and glucose coefficient of variation did not vary across 

A1C quartiles. Participants in each higher quartile spent 333.2 (169.9), 426.1 (140.8), 552.3 

(149.0), and 631.6 (183.8) minutes in hyperglycemia respectively (p-value for linearity <0.0001) 

(Table 5.3). 

 The mean frequency of weekly events per participant varied significantly across A1C 

quartiles (p< 0.0001 for ANOVA and linearity tests) (Table 5.3). Even in the lowest A1C 

quartile, there were an average of 15 hyperglycemic events every week during the study. While 

the frequency of events was significantly higher for those in the upper quartile of A1C compared 

to the lowest quartile, these participants experienced an average of only 3 additional events per 

week. The mean frequency of weekly events increased across A1C quartiles 1, 2, and 3 (15.0, 

18.1, 20.7 events/ week, respectively), but decreased to 18.0 events / week in A1C Quartile 4 

(Table 5.3).  

 The percent occurrence of Cat 1 and Cat 2 events decreases significantly in higher A1C 

quartiles, individually and combined (Cat1 and Cat 2 events combined are “non-severe events,” 

p-values for linearity <0.0001). Cat 3 events did not vary significantly across A1C quartiles and 

Cat 4 events increase significantly in higher A1C quartiles (p-value for linearity < 0.0001)  

(Table 5.3). The percent of non-severe events (cumulative percent of Cat 1 and Cat 2 events) was 
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66.2% (9.7%), 60.0% (7.8%), 54.7% (7.7%), and 49.1% (7.6%) in respective increasing A1C 

quartiles. The composition of events in the lowest A1C quartile was: 27.1± 5.6 % Cat1, 39.1 ± 

6.8% Cat 2, 16.5 ± 5.1% Cat 3, and 17.6 ± 7.8% Cat 4 (Table 5.3). Comparatively, the 

composition of events in the highest A1C quartile was: 21.8 ± 3.7% Cat 1, 27.3 ± 5.9% Cat 2, 

16.4 ± 4.7% Cat 3, and 34.5 ± 10.5% Cat 4 (Table 5.3). 

 Table 5.4 presents the data for Cat 4 events, including p-values from ANOVA and 

indicates that participants in the lowest quartile of A1C had an average of 2.8 ±1.5 Cat 4 events/ 

week, the mean event duration was 294.1± 66.7 minutes (~5 hours) and the maximum glucose 

level during this period was an average of 290.3±9.8 mg/dL. Those in the highest quartile of 

A1C had more than twice as many Cat 4 events /week (6.1±1.9, Bonferroni p <0.0001) as A1C 

Quartile 1, the mean duration was 46% longer with a lot more variation in length (428.3 ± 111.9 

minutes, ~7 hours, Bonferroni p <0.0001), and the maximum glucose reached was an average of 

6% higher (Bonferroni p <0.0001). A1C Quartile 2 was differentiated from A1C Quartile 1 on 

both the number of events /week (4.3± 2.1, Bonferroni p <0.001) and their average duration 

(333.9± 86.0 minutes, ~5.5 hours, Bonferroni p=0.07), though not on the average maximum 

glucose attained (Bonferroni p= 0.44). A1C Quartile 3 differed from A1C Quartile 2 in the 

number of events per week (6.0±1.8, Bonferroni p <0.0001) and average maximum glucose 

value attained (Bonferroni p <0.05), but not in the average duration (Bonferroni p =1.0). A1C 

Quartile 4 did not differ from A1C Quartile 3 in the number of events per week (p =1.0), but the 

average duration of event was 33% longer (Bonferroni p <0.0001) and maximum glucose 

attained was 2% higher (Bonferroni p =0.11) in A1C Quartile 4. Additionally, the percent of all 

hyperglycemic minutes accounted for by Cat 4 events increased significantly across A1C 



 

69 

quartiles: 43%, 52%, 62%, and 70% respectively. Only one participant did not experience a Cat 

4 event during the study period. 

 In conducting the multiple linear regression analysis for the outcome A1C and the 

primary predictor “percent occurrence of events in each severity category,” we found the percent 

occurrence of non-severe events (cumulative Cat 1 and Cat 2 events) to be significantly 

associated with A1C. Glucose coefficient of variation had a non-significant univariate 

association with A1C and was not tested in the multivariate model. BMI and total weekly 

hyperglycemic events had significant associations with A1C in both univariate in multivariate 

models, and were both retained in the final model. The final model included percent occurrence 

of non-severe hyperglycemic events, total weekly hyperglycemic events, BMI, age, gender, and 

study site. In the final model (Table 5.5), percent of non-severe events was significantly, 

inversely associated with A1C (beta= -0.04, SE =0.004, p <0.0001). Total weekly events was 

significantly, positively associated with A1C (beta =0.02, SE =0.01, p <0.05). 

 A similar process was used in conducting the multiple linear regression to evaluate the 

association of “percent of all time in hyperglycemia spent in Cat 4 events” and A1C. The above-

described univariate association screening process informed the inclusion of BMI and total 

weekly events, but not glucose coefficient of variation, in the multivariate models. The final 

model adjusted for total weekly hyperglycemic events, BMI, age, gender, and study site. In the 

final model (Table 5.5), “percent of all time in hyperglycemia spent in Cat 4 events” was 

significantly, positively associated with A1C (beta= 0.03, SE=0.002, p<0.0001). Total weekly 

events was positively, but non-significantly associated with A1C (beta= 0.01, SE=0.009, p= 0.2). 

Age was significantly, positively associated with A1C (beta= 0.008, SE=0.003, p< 0.05). 
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Discussion 

 In this study of hyperglycemic events, we identified that hyperglycemic events were 

frequent for all T1D regardless of their A1C level. However, experiencing higher percentages of 

non- severe events (Cat 1 and Cat 2) was significantly associated with lower A1C, and a greater 

percent of time spent in hyperglycemia accounted for by Cat 4 events was significantly 

associated with increased A1C.  

 Participants in the highest A1C quartiles spend 2.5 times more time in hyperglycemia 

than participants in the lowest A1C quartiles (10.6 hours vs. 4.3 hours). The increase in daily 

minutes in hyperglycemia across increasing A1C quartiles, in conjunction with the increasing 

percent of all minutes in hyperglycemia accounted for by Cat 4 events, highlights the large 

amount of time that participants in higher A1C quartiles spend in Cat 4 events. Alternatively, 

participants in A1C quartiles 1 and 2 experience significantly more non-severe hyperglycemic 

events than participants in higher A1C quartiles. 

 The average duration of Cat 4 events differentiated individuals in different quartiles of 

A1C. Those in excellent control (A1C <6.5%) experienced category 4 events an average of 2.8 

times per week, with each event lasting just under 5 hours. Those with an A1C range of 6.5-7.1% 

experienced such events 4.3 times per week, with each event lasting about 5.5 hours. Those with 

an A1C range of 7.2- 7.4% experienced such events an average of 6 times/ week, with each event 

lasting an average of 5.7 hours; and those with an A1C range of 7.5- 10.2% experienced such 

events an average of 6.1 times per week, with each event lasting 7.1 hours (33% longer than the 

previous A1C group). For each of the A1C groups the average maximum glucose reached during 

category 4 events was between 294 and 308 mg/dL. 
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 Cat 4 events are the most severe as they have both long duration (>2 hours) and 

maximum glucose values > 250 mg/dL. The mean duration of Cat 4 events in A1C Quartile 4 is 

more than 1 hour longer than the mean duration of the A1C Quartiles 2 and 3, and more than 2 

hours longer than that of A1C Quartile 1. The mean event duration in A1C Quartile 4 is 7 hours, 

which accounts for more than 25% of a day, and is a significant amount of time for glucose 

levels to remain in hyperglycemia, especially when events of this type are occurring nearly daily 

(6.1 times/ week). 

 Participants in the lowest A1C quartile experience the fewest hyperglycemic events of 

any type, including Cat 4 events. While A1C Quartile 1 participants do experience some Cat 4 

events, they are the shortest in duration and lowest in maximum value of all the A1C quartiles. 

Participants in A1C Quartile 2 experience fewer overall events and Cat 4 events than A1C 

Quartile 3 participants. However, the Cat 4 events that A1C Quartile 2 participants do experience 

are similar in duration to those of A1C Quartile 3 participants, and only slightly lower in 

maximum glucose value attained. This indicates that the glucose management behaviors that lead 

to Cat 4 events occur less frequently in A1C Quartile 2 participants, but that the glucose 

management behaviors that occur to manage a Cat 4 event once it has occurred are similar 

between A1C Quartile 2 and 3 participants.  

 Oppositely, participants in A1C Quartiles 3 and 4 experience the same weekly number of 

category 4 events, but the duration of category 4 events is significantly longer in A1C Quartile 4 

participants. In fact, A1C Quartile 3 participants experience more total hyperglycemic events 

than A1C Quartile 4 participants, but are able to manage their glucose to experience a smaller 

percentage of category 4 excursions than A1C Quartile 4 participants. This indicates that the 

glucose management behaviors that lead to severe hyperglycemic events (Cat 3 and 4) occur at a 
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similar frequency in A1C Quartile 3 and 4 participants, but that the glucose management 

behaviors that occur once the event has begun are different between A1C Quartile 3 and 4 

participants.  

 Key diabetes management behaviors are described by the ADA as insulin dosing, food 

choices, and physical activity.8 A combination of food and insulin dosing decisions tend to 

precede hyperglycemic events--- determining frequency of events, while insulin dosing and 

physical activity are behavioral tools for lowering glucose back to euglycemia--- determining 

duration and maximum value of events. In this population of people with Type 1 Diabetes and in 

other recent studies using CGM in a T1D population,4,5 all participants received their CGM- 

recorded glucose values in real time, yet they had varying levels of glucose control. This 

suggests that information alone does not drive glucose control and suggests the importance of 

understanding how diabetes management behaviors differ across A1C quartiles.  

 Our multivariate model that assessed the association of A1C with percent occurrence of 

non- severe hyperglycemic events indicated that for each 6.3% increase in occurrence of non-

severe events, A1C value decreased by 0.25%. Additionally, for every 12.5 additional 

hyperglycemic events per week, A1C value increased by 0.25%. These results indicate that 

participants who are able to manage their hyperglycemic events to be non-severe have lower 

A1Cs, which is likely due to proactive glucose management behaviors--- like making food and 

insulin dosing decisions that allow for glucose to return back to euglycemia within two hours, as 

opposed to making an less effective food and insulin dosing decision that leads to prolonged 

hyperglycemia (cat 3 and cat 4 events). 

 Our finding that participants in A1C quartiles 3 and 4 have the same number of Cat 4 

events, but are distinguished by event duration, suggests the potential for moving between A1C 
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quartiles solely through improved management of hyperglycemic events. Our final multivariate 

model that assessed the association of A1C with percent time in hyperglycemia accounted for by 

Cat 4 events indicated that for each 8.5% increase in percent time in hyperglycemia accounted 

for by Cat 4 events, A1C value increased by 0.25%. Since percent time in hyperglycemia 

accounted for by Cat 4 events reflects both the frequency and duration of cat 4 events, this 

finding highlights that both preventing and managing the duration of these events have an impact 

on A1C. Of note, participants’ insulin administration patterns during hyperglycemic events 

reflect a participant’s attentiveness to out-of-range glucose levels and are likely to impact 

duration of events, and insulin bolusing is a behavior that is hypothesized to vary across A1C 

quartiles. This points to the importance of understanding how diabetes management behaviors 

vary across A1C quartiles, especially in respect to glucose lowering behaviors. 

 Also of interest is the lack of variation across A1C quartiles for history of severe 

hypoglycemia, history of DKA, and glucose coefficient of variation. The consistent values of 

glucose coefficient of variation across A1C quartiles indicates that glucose coefficient of 

variation does not vary with a person’s average glucose as measured by A1C. The participants in 

this study were chosen for having very good glucose control; 74% and 65% of participants 

reported having never experienced DKA or severe hypoglycemia (respectively). Among 

participants who reported past DKA or severe hypoglycemia, the uniform distribution across 

A1C quartiles suggests that these past experiences do not impact the participants’ current A1C 

values. However, we do see that participants who have a history of DKA have a significantly 

higher occurrence of Cat 4 events than participants who have never experienced DKA, which 

suggests that these participants typically experience a higher severity of hyperglycemic events.  
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 A limitation of our study is that the RBG population is not generalizable to the population 

of people with type 1 diabetes in America. A 2015 demographic description of the Type 1 

Diabetes Exchange clinic registry,1 from which RBG recruited, reported an average A1C of 8.4% 

(7.0% in RBG),  83% white race (90% in RBG), and 34% reporting incomes greater than 

$100,000/ year (39% in RBG). Sixty percent of the Type 1 Diabetes Exchange population 

reported using an insulin pump, and 11% reported using a CGM, whereas the entire RBG 

population utilized insulin pumps and CGMs during the study period. 

 A takeaway message for T1Ds and their health care providers is that it T1D in good 

glucose control experience hyperglycemia, and even severe hyperglycemic events, but that the 

shorter duration hyperglycemic events are associated with lower levels of A1C. This analysis 

suggests a glucose management goal of minimizing the duration of most hyperglycemic events 

to less than two hours. T1D can use CGM to optimize their glucose management by paying 

attention to hyperglycemia alarms, and using these alarms as a cue to action for assessing if an 

appropriate amount of fast-acting insulin is on board to return to euglycemia. CGM can be used 

as a self-reflection tool by T1Ds and a point of discussion with health care providers by reading 

through the past day’s or week’s CGM trace for hyperglycemic events, assessing the severity and 

duration of events, and planning for behavioral patterns that can mitigate the severity and 

duration of hyperglycemic events. 

 Our data indicate that regardless of A1C level, all participants spend time in 

hyperglycemia and most experience severe hyperglycemic events. Our analysis shows that at 

higher levels of A1C, participants have longer continuous durations of hyperglycemic exposure, 

which is a key risk factor for developing diabetes-related complications. Our analysis also 

indicates that experiencing mostly non- severe hyperglycemic events is associated with improved 
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A1C. This paper utilizes CGM data in its continuous form to enhance the understanding of how 

hyperglycemic events relate to A1C and suggests the importance of promoting glucose lowering 

behaviors in optimizing diabetes management. 
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Table 5.1: Description and Frequency of Hyperglycemic Event Severity Categories for Events 
Measured over Duration of Study, for All Participants (n=101, 020) 

Category Definition Frequency % of Total 
Events 

Cat 1 Duration <30 minutes  
Any maximum glucose value 

24,268 24% 

Cat 2 Duration >30 minutes, < 2 hours  
Any maximum glucose value 

33,304 33% 

Cat 3 Duration >2 hours 
Maximum glucose value  
<250 mg/dL 

16,804 17% 

Cat 4 Duration >2 hours 
Maximum glucose value  
>250 mg/dL 

26,644 26% 

Total ----- 101,020 100% 
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Table 5.2: Weekly frequency of hyperglycemic events and percent composition of event severity 
by demographic categories (N=216) 
 

N (%) 
Weekly 
Eventsa 

Percent of Total Hyperglycemic Events Accounted 
for by Severity Categoryb 

Category 1 Category 2 Category 3 Category 4 
Age, years       
     < 40 years 96 (44) 17.7 (4.4) 23.6 (5.1) 33.0 (7.9) 15.4 (3.7) 28.0 (11.7) 
     > 40 years 120 (56) 18.1 (4.4) 25.0 (5.0) 33.3 (7.1) 17.7 (5.1) 24.2 (10.3) 
BMI (kg/m2)       
     <25 kg/m2 73 (34) 17.3 (5.2) 25.2 (5.3) 34.7 (7.7) 16.8 (4.5) 23.6 (10.8) 
     >25 kg/m2 143 (66) 18.2 (3.9) 23.9 (5.0) 32.4 (7.2) 16.6 (4.8) 27.1 (11.1) 
Gender       
     Female 108 (50) 18.5 (4.2) 23.9 (5.0) 33.3 (7.9) 15.7 (4.3) 24.5 (11.1) 
     Male 108 (50) 17.4 (4.2) 24.8 (5.1) 33.1 (7.0) 17.6 (4.9) 27.3 (10.9) 
A1C       
     < 7% 102 (47) 16.2 (4.2) 26.7 (5.3) 36.9 (7.1) 17.3 (4.9) 19.3 (8.5) 
     > 7% 114 (53) 19.4 (3.9) 22.3 (3.9) 29.9 (6.1) 16.1 (4.4) 31.8 (9.8) 
Income       
    <$50,000 23 (11) 18.2 (3.2) 24.3 (5.6) 32.6 (8.5) 17.2 (4.6) 25.9 (11.3) 
    $50,000- $100,000 55 (25) 17.8 (5.0) 24.7 (5.9) 34.0 (7.2) 16.4 (4.7) 25.4 (10.0) 
    >$100,000 84 (39) 17.8 (4.2) 24.8 (4.9) 33.1 (6.9) 17.8 (4.3) 24.4 (10.8) 
    Unknown/ Missing 54 (25) 18.2 (4.4) 23.3 (4.2) 32.8 (8.1) 15.0 (4.8) 28.8 (12.1) 
Ethnicity       
    White 203 (94) 17.9 (4.4) 24.4 (5.1) 34.3 (6.9) 18.2 (4.1) 26.1 (11.2) 
    Other/ Unknown 13 (6) 18.8 (3.6) 24.0 (5.1) 33.1 (7.5) 16.6 (4.7) 23.6 (9.7) 
Duration of Diabetes       
     < 20 years 96 (44) 17.8 (4.6) 24.7 (4.9) 33.7 (7.0) 16.5 (4.7) 25.4 (10.5) 
     >20 years 120 (56) 18.0 (4.2) 24.1 (5.2) 32.8 (7.8) 16.8 (4.7) 26.3 (11.6) 
History of Severe 
Hypoglycemiac 

      

     Yes 76 (35) 17.5 (4.1) 23.6 (5.1) 33.3 (7.5) 16.4 (4.8) 27.0 (10.9) 
     No 140 (65) 18.6 (4.8) 24.8 (5.1) 33.1 (7.5) 16.8 (4.6) 25.3 (11.2) 
History of Diabetic 
Ketoacidosis3 

      

     Yes 57 (26) 18.1 (4.3) 23.8 (5.3 32.3 (7.9) 16.0 (5.3) 28.4 (10.6) 
     No 159 (74) 17.8 (4.4) 24.5 (5.0) 33.5 (7.3) 16.9 (4.4) 25.0 (11.1) 
aWeekly frequency of hyperglycemic events is reported as mean (SD).  
bPercent of total hyperglycemic events accounted for by respective severity category, reported as mean (SD). 
cHistory of DKA and Severe Hypoglycemia are reported as Never or as Last episode occurring >6 and >12 
months ago (respectively), based on exclusion criteria.  
Bold values indicate p< 0.05 for ANOVA testing across categories within demographic variables. 
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Table 5.3: Characteristics of Hyperglycemic Events by A1C Quartile Membership (N=216)a,b 
 A1C Quartiles  
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-valuee 

N (%) 53 (24.5) 61 (28.2) 49 (22.7) 53 (24.5) ---- 
A1C Range, % 5.2-6.5 6.6- 7.1 7.2- 7.4 7.5- 10.2 ---- 
      
Weekly Events 15.0 (4.3) 18.1 (4.0) 20.7 (3.9) 18.0 (3.5) < 0.0001 
Daily Minutes in 
Hyperglycemia 

333.2 (169.9) 426.1 (140.8) 522.3 (149.0) 631.6 (183.8) < 0.0001 

Percent Cat 1c 27.1 (5.6) 25.6 (4.7) 22.5 (4.2) 21.8 (3.7) < 0.0001 
Percent Cat 2c 39.1 (6.8) 34.0 (6.2) 32.1 (5.8) 27.3 (5.9) < 0.0001 
Percent Non-
Severe Eventsc,d  

66.2 (9.7) 60.0 (7.8) 54.7 (7.7) 49.1 (7.6) < 0.0001 

Percent Cat 3c 16.5 (5.1) 17.7 (4.5) 15.8 (4.4) 16.4 (4.7) 0.07 
Percent Cat 4c 17.6 (7.8) 22.6 (8.9) 29.5 (9.0) 34.5 (10.5) < 0.0001 
aAll statistics reported as mean (SD).  
bA1C quartiles calculated from 26-week A1C.   
cPercent of total hyperglycemic events accounted for by respective severity category.  
dCumulative Cat1 and Cat2 events are defined as “Non-Severe events.”  
ep-value is calculated from test for linearity with 26-week A1C. 

 

Table 5.4: Characteristics of Cat 4 Hyperglycemic Events by A1C Quartile Membership 
(N=216)a,b 

 A1C Quartiles  
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-valuec 
N (%) 53 (24.5) 61 (28.2) 49 (22.7) 53 (24.5) ---- 
      
Events/ Week 2.8 (1.6) 4.3 (2.1) 6.0 (1.8) 6.1 (1.9) < 0.0001 
Event Duration, 
minutes 

294.1 (66.7) 333.9 (86.0) 343.5 (55.9) 428.3 (111.9) < 0.0001 

Maximum Glucose 
Value, mg/dL 

290.3 (9.8) 294.8 (12.9) 301.9 (12.4) 308.0 (16.4) < 0.0001 

Percent of All Minutes 
in Hyperglycemia 
Accounted for by Cat 4 
Events  

43.0 (14.5) 51.9 (15.7) 61.8 (12.0) 69.5 (11.9) < 0.0001 

aAll statistics reported as Mean (SD).  
bA1C quartiles calculated from 26-week A1C.   
cp-value indicates ANOVA results. 
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Table 5.5: Regression Results for the Associations of A1C with Occurrence of Non-Severe 
Events, and with Percent Time in Hyperglycemia Accounted for by Cat 4 Events (n=216) 

Primary Predictor: Occurrence of Non-Severe Events 

 B SE p-value 
Occurrence of Non-Severe 
Eventsa 

-0.04 0.004 < 0.0001 

Total Weekly Events 0.02 0.01 < 0.05 
BMI 0.005 0.01 0.6 
Age  0.005 0.003 0.1 
Gender 0.09 0.07 0.2 
Study Site -0.009 0.008 0.3 

Primary Predictor: Percent time in Hyperglycemia Accounted for by Cat 4 
Events 

% time in Hyperglycemia 
Accounted for by Cat 4 Events 

0.03 0.002 <0.0001 

Total Weekly Events 0.01 0.009 0.2 
BMI 0.004 0.008 0.5 
Age  0.008 0.003 <0.05 
Gender 0.04 0.07 0.6 
Study Site -0.006 0.008 0.5 
aOccurrence of non-severe events is defined as the percent of all hyperglycemic events 
accounted for by Cat1 and Cat2 events combined. 
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CHAPTER 6:  

PROACTIVE INSULIN BOLUSING IS ASSOCIATED WITH LOWER A1C AND 

REDUCED OCCURRENCE OF SEVERE HYPERGLYCEMIC EVENTS 

Specific Aim: Collate insulin pump data and CGM data to describe how participants at different 

levels of A1C use insulin boluses to manage hyperglycemic events.  

Hypothesis: We hypothesize that a higher likelihood of proactive insulin bolusing is associated 

with lower A1C levels and a lower percent occurrence of severe hyperglycemic events. 

Introduction 

 Hyperglycemia (glucose >180 mg/dL) occurs regularly in most people with type 1 

diabetes (T1D), and while having relatively few consequences in the moment, is associated with 

increased risk for long-term diabetes complications.1,2 Appropriate dosing and timing of fast-

acting insulin boluses is a key behavior for preventing and reducing hyperglycemia, as 

recommended by the American Diabetes Association (ADA).3 Dosing the correct amount of 

insulin is a complicated calculation with material consequences that T1D must make in real-

time: over-estimating the volume of insulin needed results in hypoglycemia, and under-

estimating the volume of insulin results in sustained hyperglycemia. Continuous glucose 

monitors (CGM) provide T1D with their real-time glucose levels that can inform their insulin 

dosing decisions, and with alarms for hyperglycemia and hypoglycemia that indicate if 

corrective action needs to be taken. 

 In Chapter 5, we demonstrated that time spent in hyperglycemia (>180 mg/dL) increases 

significantly across A1C quartiles, and that participants in the highest A1C quartile experience 

twice as many Cat 4 hyperglycemic events (lasting >2 hours and glucose levels > 250 mg/dL), 

lasting twice as long, as participants in the lowest A1C quartile. This suggests that those in better 
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glucose control take more proactive action to reduce their blood sugars to reduce the likelihood 

of severe hypoglycemic events [cumulative Cat 3 events (lasting >2 hours, but not exceeding 250 

mg/dL) and Cat 4 events]. The major preventive action that T1Ds can take to avoid severe 

hyperglycemic events is to give themselves an extra bolus of insulin. The increased frequency 

and duration of severe hyperglycemic events among participants with higher A1Cs illustrates the 

importance of understanding how to prevent hyperglycemia from developing into severe 

hyperglycemic events in order to improve glucose outcomes.  

 In order to have the optimal amount of insulin on board, T1Ds are expected to calculate 

their current macronutrient intake, insulin sensitivity, any recent food intake that may still be 

impacting their glucose levels, recent fast-acting insulin injection volumes, basal insulin levels, 

and a number of idiosyncrasies that likely dictate that person’s insulin dosing decisions.4 The 

action of fast-acting insulin peaks at two hours,5,6 so administering an insulin bolus within two 

hours of entering hyperglycemia indicates that the T1D judges that their current insulin on board 

is insufficient to return to euglycemia. When administering additional insulin boluses within two 

hours of a previous insulin bolus, T1Ds must consider “insulin stacking,” which occurs when 

insulin from multiple boluses are active in a person’s body, increasing the cumulative amount of 

fast-acting insulin on board. Insulin stacking is useful when used proactively to decrease glucose 

levels, but can result in dangerously low glucose levels if miscalculated or done accidentally. We 

define “proactive insulin bolusing” as insulin boluses that are administered within two hours of 

the beginning of a hyperglycemic event--- which, using our classification of hyperglycemic 

event severity, is any insulin bolus that occurs during a non-severe hyperglycemic event. 

 We use data from the REPLACE-BG (RBG) trial,7 a study of 216 T1Ds who had 

excellent A1C levels throughout the trial and wore CGM and insulin pumps for the trial duration. 
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In Chapter 5, we demonstrated that all of these T1Ds were equally likely to have a 

hyperglycemic event. In this study, we use the categorization of hyperglycemic events developed 

in Chapter 5 and describe how insulin bolusing during hyperglycemic events varies by A1C 

quartile. We evaluate how proactive insulin bolusing is associated with the occurrence of severe 

hyperglycemic events, and overall glucose control measured by A1C. We hypothesize that a 

higher likelihood of proactive insulin bolusing will be associated with decreased occurrence of 

severe hyperglycemic events, and lower A1C. 

Methods 

Sample 

 This analysis examined data from 216 participants who recorded > 14 days of CGM data 

and completed the baseline and end of study surveys. We chose 14 days as a minimum amount 

for CGM data because glucose metrics from a 14-day sampling period of CGM data have been 

shown to capture period prevalence of habitual glucose management and to correlate highly with 

glucose metrics from sampling periods of 30-days to 3 months.8  

Study Design 

 This analysis used data from the REPLACE-BG trial7 which has been previously 

described in the primary outcomes paper7 and in Chapters 2, 3, and 4 of this dissertation. Briefly, 

this trial was a 6-month trial in which all participants used a Dexcom G4 Platinum CGM System 

(Dexcom, Inc., San Diego, CA) with an enhanced algorithm (Software 505), which measures 

glucose concentrations from interstitial fluid in the range of 40- 400 mg/dL every 5 minutes. The 

trial was conducted at 14 endocrinology practices in the U.S. that are members of the Type 1 

Diabetes Exchange Network. 
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 Study inclusion and exclusion criteria are described in Chapter 4. Of specific relevance is 

that potential participants were excluded based on the occurrence of any severe hypoglycemic 

event, an event in which the person required assistance from another person to treat their low 

glucose levels, or diabetic ketoacidosis within the past year. The study randomized 226 

participants between May 2015 and March 2016. 

Measures 

 Demographic and diabetes history information was collected via questionnaire at the 

initial screening visit. A venipuncture sample collected at week 26 was used to measure A1C by 

a central laboratory (Northwest Lipid Research Laboratories, University of Washington, by using 

the Diabetes Control and Complications Trial standardized analyzer (Tosoh Bioscience, South 

San Francisco, CA)). The 26-week A1C measurement was used in this analysis since it reflects 

the participants’ glucose levels over the study period. 

 We utilize the measurement and categorization of hyperglycemic events that was 

developed in Chapter 5, combining cat 1 and cat 2 events into a “non-severe hyperglycemic 

events” category and combining cat 3 and cat 4 events into a “severe hyperglycemic events” 

category. For each participant’s CGM data over the entire study period, we utilize the mean 

frequency of total hyperglycemic events per week, percent of total hyperglycemic events 

accounted for by severe events, percent of total minutes in hyperglycemia accounted for by 

severe events; and mean duration of severe events. We also utilize aggregate glucose metrics 

measured in Chapter 5, including percent time in hyperglycemia (> 180 mg/dL) and glucose 

coefficient of variation. 

 We analyze the insulin pump data to describe the frequency and volume of administered 

insulin boluses. In order to evaluate if an insulin bolus was administered during a hyperglycemic 
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event, we matched the insulin pump data and CGM data by date and timestamp. The percent of 

hyperglycemic events in which an insulin bolus was administered was calculated for each 

participant for each event severity category, and for all non-severe hyperglycemic events 

(defined as the likelihood of administering a proactive insulin bolus). 

Analysis 

 We performed ANOVA to determine how mean daily bolus frequency, mean volume of 

insulin injected per bolus, and likelihood of administering a proactive bolus varied within 

standard demographic categories. Descriptive statistics were generated as means with standard 

deviations for continuous variables, and frequencies with percentages for categorical variables. 

 We categorized participants into quartiles of A1C measured at the 26-week time-point 

and performed ANOVA to determine if percent occurrence of severe hyperglycemic events, 

mean daily minutes in hyperglycemia, percent of minutes in hyperglycemia accounted for by 

severe events, and mean duration of severe events varied significantly across A1C quartiles. To 

quantify differences in insulin bolusing behavior across A1C quartiles, we performed ANOVA 

for the following variables: daily number of boluses, total insulin bolus volume per day, 

likelihood of administering a proactive bolus, and the percent of Cat3 and Cat4 events 

(separately) in which an insulin bolus was administered. For each of the above- mentioned 

variables, we also performed linear regression with 26-week A1C to test for linearity.  

 We conducted univariable and multivariable linear regressions to examine the association 

of the likelihood of proactive insulin bolusing with 1) the percent occurrence of severe 

hyperglycemic events and 2) A1C. Likelihood of proactive insulin bolusing was the primary 

predictor variable in both models, and separate parsimonious multivariable linear regression 

models were built for each outcome. Both models included study site, age, and gender as 
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covariates to control for the multi-cohort nature of the population and multi-site nature of the 

study. BMI and glucose coefficient of variation were tested as covariates based on their 

univariate association with the model outcome. Variables with p-values <0.2 in univariable 

models were considered as covariates in multivariable models, where p-values <0.05 were 

considered statistically significant. SAS 9.4 was used for all analyses. 

Results 

 A total of 216 participants were included in the analysis: 50% were female, 94% were 

white, 56% were over 40 years old, 56% had diabetes for more than 20 years, and 66% were 

overweight or obese (BMI > 25 kg/m2) (Table 6.1). Seventy-four percent of participants reported 

never experiencing DKA, and the remaining participants reported not experiencing more than 

one DKA episode in the previous year. 

 Each participant recorded a mean (SD) of 162.2 (25.3) days of CGM data during the 

study period. The mean daily frequency of insulin boluses ranged from 4.5- 4.9 across 

demographic categories; there were no significant differences between categories of the same 

demographic variables (Table 6.1). The mean volume of insulin injected/ bolus ranged from  

2.7- 4.7 units across demographic categories. Participants with a BMI <25 kg/m2 vs. >25 kg/m2 

injected a mean (SD) volume of 2.7 (1.5) units vs. 4.5 (2.5) units per insulin injection, and 

female vs. male participants injected a mean (SD) volume of 3.2 (1.6) units vs. 4.7 (2.5) units per 

insulin injection (both p-values <0.05). Participants with an A1C < 7% vs. >7% injected a mean 

(SD) volume of 3.6 (2.0) vs. 4.2 (2.5) units per insulin injection (p <0.05) (Table 6.1). The 

likelihood of administering a proactive bolus ranged from 21.8% to 27.3%, and only varied 

significantly between participants with an A1C  <7% vs. >7% (27.3% (12.3%) vs. 21.8% (9.3%), 

p <0.0001). 
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 Participants in each higher A1C quartile spent a mean (SD) 333.2 (169.9), 426.1 (140.8), 

522.3 (149.0), and 631.6 (183.8) minutes per day in hyperglycemia (p-value for linearity 

<0.0001) (Table 6.2). The percent of all hyperglycemic events accounted for by severe events 

increased significantly across the sequential A1C quartiles [33.8% (9.7%), 40.3% (7.8%), 45.3% 

(7.7%), and 50.9% (7.6%), p-value for linearity <0.0001], as did the percent of all hyperglycemic 

minutes accounted for by severe events [71.5% (13.8%), 79.9% (8.1%), 83.7% (7.2%), and 

88.79% (4.4%), p-value for linearity <0.0001], and the mean duration of severe events [242.7 

(45.5), 272.0 (48.1), 277.8 (33.2), and 325.1 (65.5) minutes, p-value for linearity <0.0001] 

(Table 6.2).  

The daily number of insulin boluses was significantly different between A1C quartiles (p-

value for linearity <0.01), with A1C quartiles 1 and 3 injecting at a higher frequency--- a mean 

5.3 (2.1) and 4.9 (1.6) insulin boluses per day, respectively (Table 6.3). A1C quartiles 2 and 4 

injected a mean 4.3 (1.5) and 4.1 (1.5) insulin boluses per day, respectively. The total daily 

volume of insulin injected varied significantly between A1C quartiles (p <0.001), with 

participants in A1C quartiles 1 and 4 injecting a greater volume of insulin per day--- 17.9 (10.4) 

and 18.3 (10.9) International Units (IU), respectively. Participants in A1C quartiles 2 and 3 

injected a mean of 15.2 (8.8) and 16.7 (8.2) IU of insulin per day. The mean (SD) likelihood of 

proactive insulin bolusing decreased significantly across increasing A1C quartiles [31.5% 

(12.6%), 23.1% (10.0%), 23.8% (9.7%), and 19.3% (8.6%), p- value for linearity <0.0001], as 

did the mean (SD) percent of Cat 3 events in which an insulin bolus was administered [74.5% 

(18.1%), 65.1% (20.0%), 64.6% (17.8%) p- value for linearity < 0.0001] (Table 6.3). The percent 

of cat 4 events in which a bolus was administered did not vary significantly across A1C quartiles  

(p-value for linearity of 1.0).  
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 In conducting the multiple linear regression analysis for the outcome percent occurrence 

of severe hyperglycemic events and primary predictor likelihood of proactive insulin bolusing, 

our final, parsimonious model adjusted for age, gender, study site, BMI, and glucose coefficient 

of variation. Glucose coefficient of variation and BMI had significant associations with the 

outcome in both univariate in multivariate models, and were retained in the final model. In the 

final model, we found the likelihood of proactive insulin bolusing to be significantly, inversely 

associated with the percent occurrence of severe hyperglycemic events (beta= -0.4, SE=0.05,  

p <0.0001) (Table 6.4); and glucose coefficient of variation and BMI were significantly, 

positively associated with percent occurrence of severe hyperglycemic events (BMI: beta= 0.3, 

SE=0.1, p <0.05; glucose coefficient of variation: beta= 0.5, SE= 0.1, p< 0.001).  

 In conducting the multiple linear regression analysis for the outcome A1C and the 

primary predictor likelihood of proactive insulin bolusing, our final, parsimonious model 

adjusted for BMI, age, gender, and study site. Glucose coefficient of variation did not have a 

significant univariate association with A1C and was not included in the multivariable model. 

BMI had a significant univariate association with A1C and was retained in the final multivariate 

model because it met criteria for borderline significance (p < 0.1). In the final model (Table 6.4), 

the likelihood of proactive insulin bolusing was significantly, inversely associated with A1C 

(beta= -0.02, SE =0.004, p <0.0001).  

Discussion 

 In this study of how of T1Ds utilize insulin boluses to manage CGM-measured 

hyperglycemic events, we identified that participants in lower quartiles of A1C have a higher 

likelihood of proactive insulin bolusing compared to participants in higher A1C quartiles. We 
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found that a higher likelihood of proactive insulin bolusing is significantly associated with a 

lower percent occurrence of severe hyperglycemic events, and lower A1C.  

 Across all levels of glucose control, participants injected insulin about four to six times 

per day. The total volume of insulin injected per day was highest, and nearly identical, in A1C 

quartiles 1 and 4 [17.9 (10.4) IU vs. 18.3 (10.9) IU]. Participants in A1C quartile 1 injected 

significantly more insulin boluses per day than participants in A1C quartile 4 [5.3 (2.1) vs. 4.1 

(1.5) daily injections]. Additionally, participants in A1C quartile 1 administered proactive insulin 

boluses in a mean (SD) of 31.5 % (12.6%) of their non-severe hyperglycemic events, compared 

to 19.3% (8.6%) for participants in A1C quartile 4.  

 When looking at these insulin bolusing patterns in the context of glucose control, we see 

that participants in the lowest A1C quartile spend about half as much time in hyperglycemia as 

participants in the highest A1C quartile [333.2 (169.9) minutes vs. 631.6 (183.8) minutes], and 

experience 30 percent fewer severe hyperglycemic events as participants in the highest A1C 

quartile [33.8% (9.7%) vs. 50.9% (7.6%)]. Additionally, we see that for the severe 

hyperglycemic events that do occur, the mean duration is more than an hour shorter for 

participants in A1C quartile 1 vs. 4. This suggests that while participants in different A1C 

quartiles may use similar total daily volumes of insulin, participants in the lowest A1C quartile 

inject smaller and more frequent boluses, are more likely to bolus proactively than participants in 

higher A1C quartiles, and are able to spend significantly less time in hyperglycemia than 

participants in higher A1C quartiles.  

 Our multivariate model that assessed the association of percent occurrence of severe 

hyperglycemic events with the likelihood of proactive insulin bolusing indicated that for each 

2.5% increase in likelihood of proactive bolusing, the percent occurrence of severe 
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hyperglycemic events decreases by 1%. This indicates that participants who have a higher 

likelihood of proactively bolusing are able to keep more of their hyperglycemic events from 

becoming severe, compared to participants who are less likely to proactively bolus. Additionally, 

for every 2 unit increase in glucose coefficient of variation, the percent occurrence of severe 

hyperglycemic events increases by 1%. This model also indicates that for every 3.3 kg/m2 

increase in BMI, percent occurrence of severe hyperglycemic events increases by 1%. 

 Our multivariate model that assessed the association of A1C with the likelihood of 

proactive insulin bolusing indicated that for each 12.5% increase in likelihood of proactive 

insulin bolusing, A1C value decreases by 0.25%. This indicates that a higher likelihood of 

proactively bolusing has a material impact on A1C, the clinical standard for glucose control. This 

association, in conjunction with our finding that the total daily volume of insulin is nearly 

identical between the lowest and highest A1C quartiles, suggests that the timing of insulin 

injections, and not the total volume injected, is crucial to optimizing glucose control, as 

measured by A1C. 

 The glucose coefficient of variation represents how widely a person’s glucose values 

fluctuate around their mean glucose, and was positively and significantly associated with the 

percent occurrence of severe hyperglycemic events in final models. These associations indicate 

that participants who have larger fluctuations in their glucose have a higher likelihood of 

hyperglycemic events becoming severe, and that glucose coefficient of variation is an indicator 

of poor glucose control. 

 In this study we define administering an insulin bolus during a non-severe hyperglycemic 

event to be “proactive” because the T1D likely still has insulin on board from a previous insulin 

bolus at this time, but is judging that they will require more insulin to return to euglycemia. The 
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T1D is likely utilizing information from their CGM, like current glucose value and rate of 

change, to decide that they require additional insulin even though their most recent dose is still 

active, and that injecting an additional insulin dose is not likely to drive their glucose levels low. 

Even though not all non-severe hyperglycemic events will require an additional insulin bolus 

since the current insulin bolus on board may be adequate to return glucose levels to euglycemia, 

we use the percent of non-severe hyperglycemic events in which a bolus was administered as a 

proxy for proactive insulin bolusing behavior as this metric indicates a person’s attentiveness to 

high glucose levels and likelihood to take action to return to euglycemia. 

 While this analysis was useful in describing the significant relationships between 

proactive insulin bolusing and percent occurrence of severe hyperglycemic events, and proactive 

insulin bolusing and A1C, it points toward additional research questions that can be evaluated 

with this dataset. Because this dataset contains CGM data on the 5-minute level, and all insulin 

boluses administered during the study period, future analyses can use the CGM and insulin pump 

data to assess the context of a T1D’s glucose levels when an insulin bolus is administered. This 

may include measuring the glucose value and glucose rate of change when a bolus is 

administered, and calculating the amount of time that has elapsed since the last insulin bolus was 

administered and since leaving euglycemia. Future analyses can also calculate the amount of 

time it takes to return to euglycemia, and how the glucose trend changes after an insulin bolus is 

administered. 

 A limitation of this study is that, while we have rich CGM and insulin pump data, we do 

not have information on food intake or physical activity, which are key behaviors that impact 

glucose levels. Additionally, this dataset does not provide information on insulin basal rates, 
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which account for a large portion of insulin on board and are an integral part of glucose 

management. 

 Our data indicate that that administering proactive insulin boluses is key to preventing the 

occurrence of severe hyperglycemic events. Additionally, we show that an increased likelihood 

of proactive insulin bolusing is significantly associated with lower A1C levels, which is the 

clinical standard for measuring glucose control. This paper is novel in its concatenation of CGM 

data in its continuous form and insulin pump data to enhance understanding of the occurrence 

and management of hyperglycemic events across participants with different A1C levels, and 

suggests the importance of promoting proactive insulin boluses in order to optimize diabetes 

management. 
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Table 6.1: Mean Daily Frequency and Volume of Insulin Boluses, and Likelihood of 
Administering Proactive Insulin Boluses, by Demographic Categories (N=216)a,b 

 

N (%) 

Mean Daily 
Bolus 

Frequency 

Mean Volume of 
Insulin Injected/ 

Bolus 

Likelihood of 
Administering 

Proactive Bolus 
Age, years     
     < 40 years 96 (44) 4.8 (2.0) 4.1 (2.3) 25.0 (12.6) 
     > 40 years 120 (56) 4.6 (1.6) 3.8 (2.3) 23.9 (9.9) 
BMI (kg/m2)     
     <25 kg/m2 73 (34) 4.9 (1.8) 2.7 (1.5) 25.2 (11.1) 
     >25 kg/m2 143 (66) 4.5 (1.7) 4.5 (2.5) 24.0 (11.2) 
Gender     
     Female 108 (50) 4.6 (1.8) 3.2 (1.6) 24.6 (11.6) 
     Male 108 (50) 4.7 (1.8) 4.7 (2.7) 24.1 (10.8) 
A1C*     
     < 7% 102 (47) 4.8 (1.9) 3.6 (2.0) 27.3 (12.3) 
     > 7% 114 (53) 4.5 (1.6) 4.2 (2.5) 21.8 (9.3) 
Income     
    <$50,000 23 (11) 4.9 (2.4) 3.2 (2.0) 24.3 (12.8) 
    $50,000- $100,000 55 (25) 4.8 (1.8) 3.5 (1.6) 25.0 (12.8) 
    >$100,000 84 (39) 4.5 (1.6) 3.5 (1.6) 25.0 (12.3) 
    Unknown/ Missing 54 (25) 4.6 (1.7) 4.0 (2.3) 24.1 (11.8) 
Ethnicity     
    White 203 (94) 4.7 (1.7) 3.9 (2.4) 24.2 (11.0) 
    Other/ Unknown 13 (6) 4.9 (2.0) 4.6 (2.0) 27.9 (12.7) 
Duration of Diabetes     
     < 20 years 96 (44) 4.7 (2.0) 4.0 (2.7) 23.5 (11.3) 
     >20 years 120 (56) 4.6 (1.5) 3.9 (2.1) 25.1 (11.0) 
History of Severe 
Hypoglycemia 

    

     Yes 76 (35) 4.8 (1.7) 3.9 (2.0) 24.9 (11.3) 
     No 140 (65) 4.6 (1.8) 3.9 (2.5) 24.1 (11.1) 
History of DKA     
     Yes 57 (26) 4.6 (1.8) 3.9 (2.0) 25.0 (11.9) 
     No 159 (74) 4.7 (1.8) 3.9 (2.5) 24.2 (10.9) 
a Proactive insulin boluses defined as: insulin boluses administered during non-severe 
hyperglycemic events. 
b All variables are reported as mean (SD).  
*A1C measured at 26-week visit (end of study). 
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Table 6.2: Characteristics of Hyperglycemia and Severe Hyperglycemic Events by A1C Quartile 
(n=216)a,b 

 A1C Quartile  
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-valuee 

N (%) 53 (24.5) 61 (28.2) 49 (22.7) 53 (24.5) ---- 
A1C Range (%) 5.2-6.5 6.6- 7.1 7.2- 7.4 7.5- 10.2 ---- 
Total Events/ Week 15.0 (4.3) 18.1 (4.0) 20.7 (3.9) 18.0 (3.5) < 0.0001 
Percent Occurrence of 
Severe Eventsc 

33.8 (9.7) 40.3 (7.8) 45.3 (7.7) 50.9 (7.6) <0.0001 

Daily minutes in 
Hyperglycemiad 

333.2 (169.9) 426.1 (140.8) 522.3 (149.0) 631.6 (183.8) < 0.0001 

% of Minutes in 
Hyperglycemia 
Accounted for by 
Severe Events 

71.5 (13.8) 79.9 (8.1) 83.7 (7.2) 88.7 (4.4) <0.0001 

Mean Duration of 
Severe Events, minutes 

242.7 (45.5) 272.0 (48.1) 277.8 (33.2) 325.1 (65.5) <0.0001 

aAll values reported as Mean (SD).  
bSevere hyperglycemic events defined as events lasting longer than 2 hours.  
cPercent of total hyperglycemic events accounted for by severe events.  
dHyperglycemia defined as glucose values >180 mg/dL.  
ep-value is calculated from test for linearity with 26-week A1C. 
 

Table 6.3: Insulin Bolusing Characteristics by A1C Quartile (n=216)a 
 A1C Quartile  
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-valueb 

Daily Number of 
Boluses 

5.3 (2.1) 4.3 (1.5) 4.9 (1.6) 4.1 (1.5)) < 0.01 

Total Insulin Bolus 
Volume/ Day, IUc 

17.9 (10.4) 15.2 (8.8) 16.7 (8.2) 18.3 (10.9) < 0.001 

% Likelihood of 
Proactive Bolusingd 

31.5 (12.6) 23.1 (10.0) 23.8 (9.7) 19.3 (8.6) <0.0001 

% Cat3 Events with 
Bolus Administerede  

74.5 (18.1) 65.1 (20.0) 64.6 (17.8) 60.3 (17.8) <0.0001 

% Cat4 Events with 
Bolus Administeredf 

86.5 (14.2) 84.0 (20.3) 88.9 (11.7) 84.8 (17.8) 1.0 

aAll values reported as Mean (SD).  
bp-value is calculated from test for linearity with 26-week A1C.  
cInsulin volume unit is IU (International Unit). 
dThe likelihood of proactive bolusing is the percent of all non-severe (<2 hours) hyperglycemic events in 
which an insulin bolus was administered.  
eCat 3 events are >2 hours and the maximum glucose value is 180- 250 mg/dL.  
fCat4 events are >2 hours and the maximum glucose value is >250 mg/dL. 
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Table 6.4: Regression Results for the Associations of Likelihood of Proactive Insulin Bolusing 
with Percent Occurrence of Severe Hyperglycemic Events, and A1C (n=216)a,b 

Outcome: Percentage of Severe Hyperglycemic Events 

 B SE p-value 
Likelihood of Proactive Bolusing -0.4 0.05 <0.0001 
Glucose Coefficient of Variation 0.5 0.1 <0.001 
BMI 0.3 0.1 <0.05 
Age -0.06 0.04 0.2 
Gender 0.4 1.2 0.8 
Study Site 0.2 0.1 0.2 

Outcome: A1C 
Likelihood of Proactive Bolusing -0.02 0.004 <0.0001 
BMI 0.02 0.01 0.07 
Age 0.00009 0.003 0.8 
Gender 0.1 0.09 0.1 
Study Site -0.003 0.01 0.8 
aThe likelihood of proactive bolusing is the percent of all non-severe hyperglycemic events in 
which an insulin bolus was administered.  
bHyperglycemic events in which glucose was >180 mg/dL for <2 hours are defined as “non-
severe.” Hyperglycemic events in which glucose was >180 mg/dL for >2 hours are defined as 
“severe.” 
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CHAPTER 7:  

CONCLUSION AND FUTURE OF CONTINUOUS GLUCOSE MONITORING 

 The questions addressed in this dissertation relate to understanding the glucose 

management practices occurring in the current population of people with type 1 diabetes in the 

United States who use continuous glucose monitors. The participants in this dataset, 216 people 

with well-controlled diabetes from the Replace-BG trial, administered insulin with insulin pumps 

and monitored their glucose with continuous glucose monitors (CGM). CGM provides a person 

with their glucose level every five minutes and has been reported to improve diabetes 

management outcomes. Given the changing landscape of glucose monitoring and available 

diabetes treatments, we seek to describe the CGM data and glucose trends this population sees 

and responds to in real-time, to measure the glucose management behaviors occurring in the 

population, and to evaluate how these glucose management behaviors relate to CGM- derived 

glucose metrics. 

Measurement of Hypoglycemia- Related Behaviors 

Specific Aim: To understand which items from the Hypoglycemia Fear Survey- Behavior (HFS-

B) scale are useful for measuring currently promoted diabetes management behaviors, 

and to derive scales that measure unique hypoglycemia-related behavior constructs. 

Hypothesis: The HFS-B will measure more than one domain of hypoglycemia-related behavior.  

 In Chapter 3, we aimed to 1) understand which HFS-B items are useful for measuring 

currently promoted diabetes management behaviors, and 2) derive scales that measure 

hypoglycemia-related behavior constructs for use in predicting the occurrence of hypoglycemic 

events in Chapter 4. Since a number of improvements in treatments and glucose monitoring 

technology that have happened since the 1980s, when the HFS-B was created, we hypothesized 
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that the HFS-B would measure more than one domain of hypoglycemia-related behavior in the 

RBG population. 

 Compared to past norms in diabetes management, which required detecting low glucose 

through feeling the symptoms of hypoglycemia or measuring blood glucose through fingerstick 

monitoring, CGM serves as a safety net for detecting and alerting people of hypoglycemia. Since 

CGM is becoming widely adopted for glucose monitoring and management, it is important to 

understand how to measure hypoglycemia-related behaviors in this population. 

 This analysis guided the formation of three scales that measure distinct constructs of 

hypoglycemia-related behaviors: hypoglycemia avoidance behavior, hypoglycemia reaction 

behavior, and hypoglycemia prevention behavior. these scales allow for specific measurement of 

how hypoglycemia-related behaviors predict hypoglycemic events. The three scales produced by 

this analysis were used in Chapter 4 to evaluate the relationship between hypoglycemia-related 

behaviors and hypoglycemic events. 

CGM- Measured Hypoglycemic Events and Hypoglycemia Behavior Constructs 

Specific Aim: To describe the frequency and severity of hypoglycemic events in a group of 

people with well-controlled type 1 diabetes, and relate these measures to scores on 

hypoglycemia- related behavioral scales. 

Hypothesis: Participants who score lower versus higher on the hypoglycemia prevention 

behavior scale will experience a higher percent occurrence of moderate hypoglycemic 

events and a longer duration of moderate hypoglycemic events. 

 In Chapter 4, our analysis of CGM- measured hypoglycemic events, we aimed to 

describe the occurrence of mild (minimum glucose value: <70 mg/dL and >50 mg/dL) and 

moderate (minimum glucose value <50 mg/dL) hypoglycemic events in the RBG population and 
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to evaluate how hypoglycemia-related behavior constructs predict the frequency and duration of 

moderate hypoglycemic events. We hypothesized that higher levels of hypoglycemia prevention 

behavior would be associated with fewer and shorter moderate hypoglycemic events. This 

description of CGM- measured hypoglycemic events provides a snapshot of how hypoglycemic 

events occur in a population of well-controlled T1D, and the analysis of how hypoglycemia-

related behavior constructs predict hypoglycemic events will identify which behaviors have a 

material impact on glucose values. 

 We identified that hypoglycemic events were frequent for all T1D regardless of their 

A1C level, demographics, or level of hypoglycemic avoidance, reaction, and prevention 

behavior. The mean frequency of weekly mild hypoglycemic events ranged from 4.3- 6.8 across 

demographic categories, and the mean frequency of weekly moderate hypoglycemic events 

ranged from 1.4- 2.2. The level of hypoglycemia prevention behavior was the main variable that 

differentiated the frequency and duration of moderate hypoglycemic events. The mean duration 

of moderate hypoglycemic events was 6 minutes longer among participants in the lower category 

for hypoglycemia prevention behavior (defined by the median score) compared to participants in 

the higher category (73.0 vs. 66.0 minutes). 

 Our regression results indicate that participants who are more likely to engage in 

hypoglycemia prevention behaviors--- carrying fast-acting sugar in case of hypoglycemia, 

avoiding exercise if glucose is already low, and self-monitoring glucose levels--- have a 

significantly lower likelihood of mild hypoglycemic events becoming moderate. In the case that 

a hypoglycemic event is moderate, these participants are able to recover from hypoglycemia 

significantly faster than participants who are less likely to engage in hypoglycemia prevention 

behaviors. 
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 This analysis illustrates the advantage of measuring glucose control with CGM as 

opposed to A1C in order to capture the frequency and duration of hypoglycemic events. 

Additionally, this paper suggests the importance of promoting hypoglycemia prevention 

behaviors to mitigate the risks of hypoglycemia. Next steps in studying the relationship between 

behaviors and CGM-measured glucose management will be the creation of a scale that measures 

behaviors that are performed with the intent of preventing hypoglycemia and hyperglycemia. 

Measuring the behaviors that impact both sides of the euglycemic range will allow for the 

prediction of hypoglycemic and hyperglycemic event duration and frequency, glucose coefficient 

of variation, and combinations of behaviors that maximize time spent in euglycemia. 

Categorization of Hyperglycemic Event Severity and Relationship with A1C  

Specific Aim: Develop categories of severity for hyperglycemic events and describe how 

measures of hyperglycemic events relate to A1C. 

Hypothesis: Participants at higher levels of A1C will experience more frequent hyperglycemic 

events and a higher percent of total hyperglycemic events that are severe. 

 In Chapter 5, our analysis of CGM- measured hyperglycemic events, we aimed to 

categorize hyperglycemic events by severity, describe patterns in the severity of hyperglycemic 

events that are experienced by participants at different levels of A1C, and explore how different 

measures that describe hyperglycemia relate to improved A1C levels. We hypothesized that we 

would be able to identify metrics that are powerful predictor of A1C levels. This study is 

important because it relates characteristics of hyperglycemic events, which are observed in real-

time by T1D, to A1C, which is the current clinical standard for measuring glucose control. The 

single metric of hyperglycemia that is identified as a strong predictor of A1C can be used as an 
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end-point in future studies in order to identify glucose management practices that minimize 

exposure on this metric. 

 To categorize the severity of hyperglycemic events, we utilize the ADA definition of 

moderate hyperglycemia (180 to < 250 mg/dL) and severe hyperglycemia (>250 mg/dL)8, in 

conjunction with their recommendation that meal-related hyperglycemic events should not last 

more than 2 hours. We created the following 4 categories of hyperglycemic events: Category 1 = 

duration of less than 30 minutes; Category 2= duration of 30- 119.9 minutes; Category 3= 

duration > 2 hours, maximum glucose value < 250 mg/dL; Category 4= duration > 2 hours, 

maximum glucose value > 250 mg/dL. A total of 101,020 hyperglycemic events occurred during 

the study period, over all participants. These events included many instances of each of the 

severity categories:  24% were Cat 1, 33% were Cat 2, 17% were Cat 3, and 26% were Cat 4.  

 The mean frequency of weekly hyperglycemic events per participant increased 

significantly across higher A1C quartiles; even in the lowest A1C quartile, there were an average 

of 15 hyperglycemic events every week during the study. Participants in the highest A1C quartile 

spent 2.5 times more time in hyperglycemia than participants in the lowest A1C quartiles (10.6 

hours/day vs. 4.3 hours/day). The increase in daily time in hyperglycemia across increasing A1C 

quartiles, in conjunction with the increasing percent of all time in hyperglycemia accounted for 

by Cat 4 events, highlights the large amount of time that participants in higher A1C quartiles 

spend in Cat 4 events. Alternatively, participants in A1C quartiles 1 and 2 experience a 

significantly higher percentages of non-severe hyperglycemic events than participants in higher 

A1C quartiles.  

 Our regression results indicated that experiencing higher percentages of non- severe 

events (Cat 1 and Cat 2) was significantly associated with lower A1C, and a smaller percent of 
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time spent in hyperglycemia accounted for by Cat 4 events was significantly associated with 

lower A1C. The metric that we identified as a powerful predictor of A1C is the percent of time 

spent in hyperglycemia accounted for by Cat 4 events. 

 This analysis adds to the field of diabetes management by providing a snapshot of how 

hyperglycemia is experienced by T1D at varying levels of good glucose control. We show that 

everyone experiences hyperglycemia, and that managing hyperglycemic events to be non-severe 

(< 2 hours) and minimizing the amount of time spent in severe hyperglycemia is related to lower 

A1C levels. This information can be used to inform the glucose management goals and real-time 

decisions of T1Ds, and also used to direct discussions between T1Ds and their diabetes care 

providers. Our findings point to the importance of understanding which glucose management 

behaviors minimize the occurrence and severity of participants’ hyperglycemic events. Next 

steps should evaluate the relationships between metrics of hyperglycemic events and the ADA- 

suggested behaviors for glucose management: insulin dosing, physical activity, food choices, and 

emotional wellness. 

Proactive Insulin Bolusing as a Glucose Management Behavior 

Specific Aim: Collate insulin pump data and CGM data to describe how participants at different 

levels of A1C use insulin boluses to manage hyperglycemic events.  

Hypothesis: We hypothesize that a higher likelihood of proactive insulin bolusing will be 

associated with improved glucose control. 

 In Chapter 6, our analysis of insulin bolusing during hyperglycemic events, we aimed to 

describe insulin bolusing behaviors of participants at different levels of A1C, including daily 

frequency and total daily volume of insulin boluses and likelihood for administering proactive 

insulin boluses. We defined “proactive insulin bolusing” as the administration of an insulin bolus 
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within two hours of the beginning of a hyperglycemic event--- by our hyperglycemic event 

severity classification, this is an insulin bolus administered during a non-severe hyperglycemic 

event. We utilized the hyperglycemic event severity classification developed in Chapter 5, and 

evaluated how proactive insulin bolusing is related to the occurrence of severe hyperglycemic 

events and to A1C. We hypothesized that a higher likelihood of proactive insulin bolusing will 

be associated with decreased occurrence of severe hyperglycemic events and with lower A1C. 

This analysis is important because it evaluates proactive insulin bolusing as a glucose 

management behavior that may drive the occurrence of fewer severe hyperglycemic events and 

lower A1C.   

 Across all levels of A1C, participants injected insulin a mean of four to six times per day. 

The total volume of insulin injected per day was highest, and nearly identical, in A1C quartiles 1 

and 4 (17.9 (10.4) units vs. 18.3 (10.9) units). Participants in A1C quartile 1 injected the same 

amount of total insulin volume over a significantly higher number of insulin boluses per day than 

participants in A1C quartile 4 (5.8 (SD) vs. 4.4 (SD) daily injections, respectively). Additionally, 

participants in A1C quartile 1 administered proactive insulin boluses in 31.5 % (12.6%) of their 

non-severe hyperglycemic events, compared to 23.1% (10.0%), 23.8% (9.7%), and 19.3% 

(8.6%) for participants in A1C quartiles 2, 3, and 4, respectively. This suggests that the timing of 

insulin bolus administration is an important factor in glucose control since participants in 

different A1C quartiles can use a similar total volume of insulin per day but achieve varying 

glucose outcomes.  

 Our regression results indicated that that a higher likelihood of administering proactive 

insulin boluses is significantly associated with a lower occurrence of severe hyperglycemic 

events and with lower A1C levels. This analysis adds to the field of diabetes management by 
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setting a precedent for concatenating continuous CGM data with insulin pump data to enhance 

understanding of the occurrence and management of hyperglycemic events across participants 

with different A1C levels. Our findings that proactive insulin bolusing is associated with 

improved glucose control suggests the importance of promoting proactive insulin bolusing as a 

diabetes management behavior, and can also inform the development of automated insulin 

delivery systems. 

 Next steps should include studying the glucose context in which proactive insulin 

bolusing is appropriate. This may include measuring the glucose value and glucose rate of 

change when an insulin bolus is administered, calculating the amount of time that has elapsed 

since the last insulin bolus was administered and since leaving euglycemia, and measuring the 

volume of insulin that is bolused. Outcomes can include the likelihood of the hyperglycemic 

event progressing to a severe event, and also the likelihood of the insulin bolus resulting in 

hypoglycemia. Additional datasets that are created to study insulin bolusing as a glucose 

management behavior should include information on physical activity, food choices, and basal 

insulin rates, as these factors all have material effects on glucose levels. 

Conclusion 

 Our analyses indicate that in this population of T1Ds who have well-controlled diabetes 

and use contemporary glucose monitoring and insulin administration technology to manage their 

diabetes (CGMs and insulin pumps), participants at all levels of A1C experience frequent 

hypoglycemic and hyperglycemic events. We learned that a person’s likelihood of engaging in 

hypoglycemia prevention behaviors significantly predicts the occurrence and duration of 

moderate hypoglycemic events. We also learned that experiencing larger percentages of non-

severe hyperglycemic events, and spending less of time in hyperglycemia in the most severe 
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hyperglycemic events, are significantly associated with lower A1C. Our analysis that 

concatenated CGM data and insulin pump data indicated that an increased likelihood of 

administering proactive insulin boluses is significantly associated with a lower occurrence of 

severe hyperglycemic events and a lower A1C. 

 The Replace-BG dataset is unique because it provides 6-months of CGM and insulin 

pump data for a contemporary population who utilize current advanced technologies to manage 

their diabetes. The behaviors that we identified as predictors of moderate hypoglycemia and 

severe hyperglycemia can be leveraged as important behaviors to intervene on in future 

scientifically based glucose management programs. 

Future of CGM 

 The data captured by CGM is unique in that it measures a person’s level of glucose 

control and also reflects behaviors and experiences that the person engages in, such as physical 

activity, eating certain foods, stress, sleep, etc. Managing type one diabetes is a challenging task-

-- the difference in volume between a correct insulin dose and a lethal insulin dose is often 

minute. T1Ds are assigned the lifelong duty of paying close attention to their physiology and 

behaviors in order to decipher what behaviors are best for their glucose management. The 

diabetes management behaviors that diabetes care providers readily discuss are food choices, 

physical activity, and insulin dosing, but T1D learn through experience that reliance on those 

behaviors alone will not result in optimal glucose outcomes.  

 The moderate hypoglycemic events and severe hyperglycemic events defined in this 

dissertation are often the best teachers of what works (and does not work) for a person’s glucose 

management. While CGM alarms are useful alerts for when action is required to maintain safe 

glucose levels, the shaking hands and sweaty clothes that a T1D exiting a moderate 
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hypoglycemic event feels is likely to instigate an evaluation of what caused that hypoglycemic 

event and how they can avoid it in the future. In this sense, CGM data captures the glucose 

events that impact a person’s quality of life, define their days as a good or bad “diabetes day,” 

define their level of “diabetes distress,” and serve as teachers for which diabetes management 

behaviors work in what contexts of their physiology. 

 CGM is rapidly becoming a norm in diabetes management, which will allow more T1D 

to base their diabetes management decisions on real-time glucose trend data and to discuss their 

behaviors and CGM data with eachother and their diabetes care providers. In order to support 

this phenomena, it is important to have an understanding of what “normal” CGM-measured 

hypoglycemia, hyperglycemia, and euglycemia look like in T1D--- which was an objective of 

this dissertation. Additionally, behavioral recommendations are currently being developed for 

how to manage specific glucose scenarios. 

 The CGM datastream is an important input and output component for the automated 

glucose management systems that are rapidly developing. The Dexcom G6 CGM alerts for 

“predicted urgent low glucose (glucose <55 mg/dL)” based on CGM data alone. This illustrates 

the current descriptive state of CGM-derived information to consumers--- instead of providing a 

recommendation to “eat fast-acting carbohydrates” for hypoglycemia or “go on a walk” for 

hyperglycemia, current systems are restricted by the Food and Drug Administration (FDA) to 

deliver a data-centric description of glucose values that the T1D can interpret for the appropriate 

behavior. Insulin pumps are increasingly being integrated with CGM systems and can provide 

recommendations on basal insulin rates and insulin bolus doses using patient-input physical 

activity levels, food consumption, and estimated insulin: carbohydrate ratio. This is an example 
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of user-input information, machine-delivered recommendation, and a user-delivered insulin 

bolus, which still leaves the diabetes management decisions in the T1D’s hands.  

 Fully automated insulin delivery (AID) systems, which effectively remove any human 

decision making from insulin administration, are in development and leverage the CGM 

datastream to inform insulin administration decisions and to constantly measure the outcomes of 

those decisions. While proprietary, it can be imagined that AID systems calculate insulin to be 

administered as a basal-rate and as insulin boluses based on insulin-on-board, glucose trends 

from the immediate past, glucose trajectory, and any other information that can be garnered from 

the insulin and CGM datastreams. While full AID systems are still being piloted, the T:Slim 

insulin pump recently integrated a Dexcom CGM and suspends administration of basal-rate 

insulin when it predicts that the person is at risk for hypoglycemia. This illustrates that current 

AID systems are restricted from taking action to prevent hypoglycemia (ie. Suspending insulin 

delivery), but still perceive the administration of insulin boluses as risky--- something for the 

T1D to do. 

 As automated glucose management systems and automated insulin delivery systems 

become more confident in their recommendation and insulin delivery algorithms, we can expect 

these systems to take on more diabetes management decisions, and thus relieving T1D of their 

constant monitoring and decision making. Until then, CGM is a life-saving tool for T1D--- acting 

as a “safety net” by alarming for low glucose levels--- and is tool for facilitating self-reflection 

by recording the glycemic events that represent a person’s behaviors, experiences, and diabetes 

management decisions. 




