
UCLA
UCLA Electronic Theses and Dissertations

Title
1,2,3,...,2n+1, infinity!

Permalink
https://escholarship.org/uc/item/1075v66x

Author
Palamourdas, Konstantinos

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1075v66x
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

1,2,3,...,2n+1,∞!

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Konstantinos Palamourdas

2012



c© Copyright by

Konstantinos Palamourdas

2012



Abstract of the Dissertation

1,2,3,...,2n+1,∞!

by

Konstantinos Palamourdas

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Itay Neeman, Chair

It is well known by [1] that the Borel chromatic number of a graph generated by a Borel

function is ω or at most 3. In this dissertation we will prove that the Borel chromatic number

of a graph generated by n Borel functions that commute is ω or at most 2n + 1. On top of

that, we will prove that the Borel chromatic number for graphs generated by 2 functions is

ω or at most 2 × 2 + 1 = 5, while the Borel chromatic number for graphs generated by 3

functions is ω or at most 8.
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CHAPTER 1

Preliminaries

There has been a lot of work in descriptive set theory on actions on Borel spaces. Each

such action can be viewed naturally as a directed graph induced by a Borel function. In

[1], Kechris, Solecki and Todorcevic initiated the study of definable combinatorics of these

graphs. More precisely, they defined the notions of Borel coloring and Borel chromatic

number. The concept of Borel chromatic numbers is parallel to that of the usual chromatic

numbers from graph theory. However, one can easily see that the two behave very differently,

as there are examples of trees with infinite Borel chromatic numbers (see [1]).

In [1] they showed among other things that a Borel graph generated by one (Borel)

function has a Borel chromatic number which is ω or at most 3. In this dissertation we will

generalize the results to more than one functions.

In Chapter 2 we give a summary of these results. But first, we give all the relevant

definitions and some background from [1]:

Definition 1.1. Let X be a set.

• A (directed) graph G on X is a binary relation E ⊆ X × X which is irreflexive (i.e.

(x, x) /∈ E). We write this as G = (X,E). Every (x, y) ∈ E is called an edge of the

graph G and every x ∈ X is called a vertex or node of G. If X is finite then G is a

finite graph.

• A forward path in G is a sequence (xn)n∈k where k ∈ ω + 1, and (xi, xi+1) ∈ E for all i

s.t. i+ 1 ∈ k. Since we do not deal with any other kinds of paths, we sometimes omit

the word “forward”. If k = ω we say that the (forward) path is infinite or unbounded.
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If k ∈ ω, x0 = x and xk−1 = y then we call this a path from x to y.

• A set A ⊆ X is said to be bounded if it does not contain any infinite (forward) paths.

• A cycle in G is a sequence (xn)n∈k where k ∈ ω, each xn ∈ X, xi 6= xj for all

(i, j) ∈ (k × k) \ {(0, k − 1)}, x0 = xk−1, and (xi, xi+1) ∈ E for all i + 1 ∈ k. A graph

with no cycles is called acyclic

• A connected component of G is a set A ⊆ X s.t. any two elements in A are connected

via a path. If G has only one connected component we call it connected. An acyclic

connected graph is called a tree. An acyclic (but not necessarily connected) graph is

called a forest.

• A successor or descendant of a node x ∈ X is every node y ∈ X s.t. (x, y) ∈ E. The

out-degree of x is the cardinality of the set of its successors.

• A predecessor or ancestor of a node x ∈ X is every node y ∈ X s.t. (y, x) ∈ E. The

in-degree of x is the cardinality of the set of its predecessors.

• The degree of x ∈ X is the cardinality of the sum of the sets of its successors and its

predecessors.

• A finite graph G = (X,E) is called a clique if for every two x, y ∈ X we either have

(x, y) ∈ E or (y, x) ∈ E. If in addition, X has exactly k ∈ ω elements then we call G

a k-clique.

• Let I be an (index) set and FI be a family of functions Fi : X → X (i ∈ I). We

say that G is generated by FI , and write G = GFI , if G = (X,E) where (x, y) ∈ E iff

x 6= y and Fi(x) = y for some i ∈ I. Also, if FI = {F1, F2, ..., Fn} then we say that G

is generated by {F1, F2, ..., Fn} and we write G = GF1,F2,...,Fn .

• A coloring of G is a map: c : X → Y , s.t. (x, y) ∈ E ⇒ c(x) 6= c(y). If |Y | = k then

we call c a k-coloring. The smallest cardinal k for which G admits a k-coloring is called

the chromatic number of G. We write this as X (G) = k.
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• A graph G = (X,E) on a standard Borel space X will be called Borel if the relation

E ⊆ X2 is Borel. Note that if I is countable and all functions Fi (i ∈ I) are Borel then

GFI is Borel. In particular GF1,F2,...,Fn is Borel for any n ∈ ω and any Borel functions

F1, F2, ..., Fn.

Definition 1.2. Let G = (X,E) be a graph on a standard Borel space X. Let n ∈ ω + 1.

A Borel n-coloring of G is an n-coloring which is also Borel, meaning that its corresponding

coloring map is a Borel function. Equivalently, the coloring may be viewed as a partition

X =
⊎
i∈IAi where |I| = n, every Ai is Borel, and if x, y ∈ Ai then (x, y) /∈ E and (y, x) /∈ E.

We also define the Borel chromatic number of G, denoted XB(G), to be the smallest n ∈ ω+1

s.t. G admits a Borel n-coloring. If such a coloring does not exist we say that: XB(G) > ω.

In what follows we will work with graphs G on a standard Borel spaceX that are generated

by finitely many Borel functions {F1, F2, ..., Fn} and thus they are Borel. By [1] we already

know the following:

Fact 1.3. Let X be a standard Borel space, n ∈ ω, and Fi : X → X be Borel functions for

i ∈ n. Then for G = GF0,F1,...,Fn−1 we have that XB(G) ≤ ω.

Fact 1.4. There is a Borel space X and a Borel function F : X → X s.t. XB(GF ) = ω.

It is also a well known fact from graph theory that:

Fact 1.5. Let X be a finite set (with |X| = k ∈ ω), n ∈ ω, and G be a (finite) graph on X

s.t. every node x ∈ X has out-degree ≤ n. Then X (G) ≤ 2n+ 1

Sketch of Proof. First, note that there is x0 ∈ X with degree ≤ 2n. Otherwise, G would have

more than (2n)k/2 = nk edges. But this would imply that at least one of its k nodes has

out-degree more than n. In the same manner, in the graph induced by X \ {x0} we can find

a node x1 ∈ X \ {x0} with degree ≤ 2n in the induced subgraph on X \ {x0}. Recursively,

we can enumerate X = {x0, x1, ..., xk−1} in such a way that for every i ∈ k, xi has degree

≤ 2n in the graph induced by {xi, xi+1, ..., xk−1}. Now, we can color G recursively as follows:
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We start with the node xk−1 which we can color arbitrarily with any of the available 2n+ 1

colors. Next, assuming that we have colored the nodes xi+1, ..., xk−1 we observe that xi is

connected to at most 2n vertices from the set {xi+1, ..., xk−1} so by the pigeon-hole principle

we can color it using one of the available 2n + 1 colors which is different than the colors of

the nodes from {xi+1, ..., xk−1} which are connected to xi.

Fact 1.6. Let n ∈ ω. There is a standard Borel space X and Fi : X → X Borel functions

(for i ∈ n) s.t. XB(GF0,F1,...,Fn−1) ≥ 2n+ 1.

Proof. Let X = 2n+1. We define Fi(x) = x+i (mod(2n+1)) for all x ∈ X and i ∈ n. By the

definition we observe that for x, y ∈ X there is at most one i ∈ n s.t. Fi(x) = y. Otherwise,

if i, j ∈ n, i 6= j and Fi(x) = Fj(x) = y then x+ i = x+ j (mod(2n+ 1)) which implies that

i = j (mod(2n + 1)) and thus i = j since i, j < n. Moreover, if Fi(x) = y then there is no

j ∈ n s.t. Fj(y) = x. Otherwise, x+i = y (mod(2n+1)) and thus y+j+i = y (mod(2n+1))

which means that j+ i = 0 (mod(2n+1)) which is a contradiction since j+ i ≤ 2n < 2n+1.

We conclude that G = GF0,F1,...,Fn−1 = (X,E) has no double edges in the sense that if x, y ∈ X

with (x, y) ∈ E then (y, x) /∈ E while there is a unique F ∈ {F0, F1, ..., Fn−1} s.t. F (x) = y.

Therefore, G has exactly n∗ (2n+1) =
(
2n+1

2

)
(single) edges, which is the most a finite graph

with 2n + 1 nodes and no double edges can have. We conclude that G is a clique and thus

X (G) ≥ 2n+ 1 which in turn means that XB(G) ≥ 2n+ 1.

All the above lead naturally to the following question which was first asked in [1]:

Question 1.7. Let X be a standard Borel space, n ∈ ω and Fi : X → X be Borel functions

for i ∈ n. Is it true that XB(GF0,F1,...,Fn−1) ∈ {1, 2, ..., 2n+ 1}
⋃
{ω}?

By the results above, a positive answer would be optimal: By Facts 1.6 and 1.4, 2n + 1

and ω are both possible Borel chromatic numbers for graphs generated by n Borel functions.

Question 1.7 is the main topic of this dissertation. We will present several new results

on various cases, that provide or approach positive answers. But first we present the results

from [1] that provide a positive answer in case n = 1.
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Theorem 1.8. Let X be a standard Borel space and F : X → X be a Borel functions. Then

XB(GF ) ∈ {1, 2, 3, ω}.

Proof. We will give a proof slightly different than the one in [1]. This is because we want to

be consistent with the ideas that we will use later on for proving the Least Available Subset

Lemma 5.1. By Fact 1.3 XB(G) ≤ ω. So, say that XB(GF ) = k ∈ ω and c : X → k is the

coloring function. Now, setting Ai = c−1(i) we have X =
⊎
i∈k Ai and each Ai is 1-colorable.

We will re-partition X in a different way into the sets B and C (i.e. X = B ] C) using the

Ai recursively as follows:

• We first set B0 = A0 and C0 = ∅.

• Now (for 0 < i ≤ k − 1) assuming that A0 ∪ A1 ∪ ... ∪ Ai−1 ⊆ Bi−1 ∪ Ci−1 we set

B̄i = {x ∈ Ai | the successor of x (if it exists) /∈ Bi−1}. We also set C̄i = Ai \ B̄i. Next,

we set Bi = Bi−1 ∪ B̄i and Ci = Ci−1 ∪ C̄i.

• Finally, we set B = Bk−1 and C = Ck−1.

Clearly, we have that Bi ⊆ Bi+1 and Ci ⊆ Ci+1 for all i < k − 1.

Claim 1.9. The set B is bounded.

Proof. Towards contradiction, assume that there is an unbounded path P ⊆ B. Since c is

a finite coloring of GF , there is x ∈ P s.t. F (x) 6= x, F (x) ∈ P and c(F (x)) ≤ c(x). Since,

c(F (x)) 6= c(x) it follows that c(F (x)) < c(x). Thus since we know that F (x) ∈ B we must

have that F (x) ∈ Bc(F (x)) ⊆ Bc(x)−1. Therefore, during the (c(x))-th step of the recursion

above x /∈ B̄c(x) (as the successor F (x) ∈ Bc(x)−1). We conclude that x ∈ C̄c(x) ⊆ C which is

of course a contradiction.

Claim 1.10. The set B is 2-colorable.

Proof. Since B is bounded then for every x ∈ B there is a k ∈ ω s.t. F k+1(x) = F k(x) or

F k(x) /∈ B. If there is a k ∈ ω s.t. F k+1(x) = F k(x) then set e(x) equal to the minimum
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such k. Otherwise, set e(x) to be k− 1 where k is now the minimum integer s.t. F k(x) /∈ B.

Note that if F (x) ∈ B with F (x) 6= x then e(F (x)) = e(x) − 1. Now define d : B → 2 by

setting d(x) = e(x)mod2. Clearly, this produces a 2-coloring for B.

Claim 1.11. The set C is 1-colorable.

Proof. Towards contradiction we assume that there is an x ∈ C s.t. F (x) 6= x and F (x) ∈ C.

Suppose first that c(x) > c(F (x)). Then since F (x) ∈ C and C ∩ B = ∅, at stage i = c(x)

we have that F (x) /∈ Bi−1. By construction this implies that x ∈ Bi ⊆ B and thus x /∈ C

which is a contradiction. Suppose next that c(x) < c(F (x)). If c(x) = 0 then x ∈ B0 ⊆ B

and thus x /∈ C which is a contradiction. If c(x) > 0 then at stage i = c(x) we have

F (x) /∈ Bi−1 ∪ Ci−1. By construction this implies that x ∈ Bi ⊆ B and thus x /∈ C which is

a contradiction. Therefore, c(x) = c(F (x)) which contradicts the definition of the coloring

function.

From all the above and the fact that X = B ]C it is now obvious that XB(GF ) ≤ 3.

Remark 1.12. Note that all x ∈ X s.t. F (x) = x and all x ∈ B s.t. F (x) /∈ B are assigned

the same color in the coloring we described above. All such x belong to B and are given

the color d(x) = 0 in the proof of Claim 1.10. Moreover, the proof of Claim 1.10 does not

use anything more than the fact that B is Borel and bounded. Therefore, we proved that

each Borel and bounded set B for which each x ∈ B has at most one successor is Borel

2-colorable, and all its elements with no successor in B are assigned the same color.

Finally, if we set Bi = {x ∈ B | d(x) = i} then we have the following properties:

• X = B0 ]B1 ] C.

• The set B0 ]B1 = B is bounded.

• Each Bi, C is Borel 1-colorable.

• Each x ∈ B1 is followed by an element in B0.
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Based on the above theorem we can prove the following corollary that also appears in

[1]:

Corollary 1.13. Let X be a Borel space and F0, F1, ..., Fn−1 be Borel functions on X. Let

G = GF0,F1,...,Fn−1. If XB(G) < ω then XB(G) ≤ 3n.

Proof. Since XB(G) < ω then clearly XB(GFi) < ω for each i ∈ n. Thus, from 1.8

we can define ci : X → 3 to be a Borel coloring of GFi for all i ∈ n. Then c(x) =

(c0(x), c1(x), ..., cn−1(x)) is easily a Borel coloring of G.

Also, since the set C in theorem 1.8 is clearly Borel, we can give the following character-

ization which can be found in [2]:

Theorem 1.14. (Finite Colorable Characterization for a Single Function) Let X be a Borel

space, f : X → X be a Borel function with f(x) 6= x for all x ∈ X, and let G = Gf be the

corresponding Borel graph generated by f . Then the following statements are equivalent:

(i) χB(G) ≤ 3

(ii) χB(G) < ω

(iii) There is a Borel subset A ⊆ X s.t. for each x ∈ X there exists an i ∈ ω s.t. f i(x) ∈ A

and f i+1(x) /∈ A.

Proof. (i)→ (ii) : This is trivial.

(ii) → (iii) : We take A = C where C is the 1-colorable set described in the proof of

Theorem 1.8. Now if x /∈ C then x ∈ B (where again B is the 2-colorable set described

in the proof of Theorem 1.8) and thus since (∀y)f(y) 6= y, there should be an i ∈ ω s.t.

f i(x) /∈ B ⇒ f i(x) ∈ C ⇒ f i(x) ∈ A. Moreover, since C is 1-colorable and f i+1(x) 6= f i(x),

we have that f i+1(x) /∈ C = A. Similarly if x ∈ C then f(x) /∈ C and thus as before we can

find a i ∈ ω s.t. f i+1(x) ∈ A while f i+2(x) /∈ A.
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(iii)→ (i) : Let A0 ⊆ A be the set of all x ∈ A s.t. f(x) /∈ A. Clearly, A0 is 1-colorable.

Also, X \ A0 is bounded. This is because if x ∈ X \ A0 then by (iii) there is an i ∈ ω s.t.

f i(x) ∈ A but f i+1(x) /∈ A. By the definition of A0, this means that f i(x) ∈ A0 and thus

X \A0 cannot contain unbounded paths. Thus X \A0 is bounded and therefore by the proof

of Claim 1.10 it is 2-colorable. Since A0 is 1-colorable it follows that X = A0 ] (X \ A0) is

3-colorable.
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CHAPTER 2

Summary of Results

In this section we will provide a list with all the new results proved in this dissertation. First

of all, we will give a positive answer to Question 1.7 in the general case of n functions that

commute with each other. More specifically:

Theorem 2.1. Let X be a Borel space, n ∈ ω, F1, F2, ..., Fk : X → X be Borel functions

which commute with each other and G = GF1,F2,...,Fk . Then either χB(G) ≤ 2k+1 or χB(G) =

ω.

Next, we will prove a key lemma that in its essence generalizes Theorem 1.8, and which

will be essential for the proof of our major results in the next chapters. The idea of the

lemma is that we can find non-trivial extensions of graphs generated by a single (Borel)

function which have the property that they are Borel 3-colorable, provided that they are

finitely Borel colorable. More formally:

Lemma 2.2. (The simple 1-colorable Subset Lemma). Let X be a Borel space and G be a

finitely (Borel) colorable Borel graph over X with the following two properties:

• Every x ∈ X has at most two descendants in X.

• The set of splitting nodes Y = {x ∈ X|x has exactly 2 descendants } is 1-colorable.

Then G is Borel 3-colorable.

Then, we will use our new ideas we already used for the proof of Theorem 1.8 in order

to produce a quadratic bound for the chromatic number of graphs generated by n Borel
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functions (for an arbitrary n ∈ ω), which is already better than the exponential one given

on Corollary 1.13. More precisely we will prove the following:

Lemma 2.3. (The Least Available Subset): Let X be a Borel space, k ∈ ω and Fi :

X → X be Borel functions for all i ∈ k. Let also G = GF0,F1,...,Fk−1
. Suppose finally that

χB(G) < ω. Then χB(G) ≤ 1 + 2 + ...+ (k + 1) = k2

2
+ 3k

2
+ 1 = O(k2).

By combining the two Lemmas above, we will be able to give a positive answer to the

main Question 1.7 for the case n = 2 when the functions do not necessarily commute with

each other:

Theorem 2.4. (Non-commutative functions) Let X be a Borel space and F,G : X →

X be Borel functions. Let also G = GF,G. Suppose finally that χB(G) < ω. Then χB(G) ≤ 5.

Then, by using a generalized version of the 1-colorable subset Lemma and by the Least

Available Subset lemma, we will get a better than quadratic (but still not optimal) bound

for the case n = 3 with arbitrary Borel functions:

Theorem 2.5. Let X be a Borel space and F,G,H : X → X be Borel functions. Let also

G = GF,G,H . Suppose finally that χB(G) < ω. Then χB(G) ≤ 8.

Finally, we apply the above results and ideas to conclude bounds for Baire and µ-

measurable chromatic numbers which are defined as follows:

Definition 2.6. Let X be a Polish space and G be a graph on X. Let also, c : X → ω be a

coloring of G. Then:

• The Baire chromatic number of G (χBP(G)) is given by: χBP(G) = min {|c(X)| where

c is a Baire measurable coloring of G}.

• The µ-measurable chromatic number of G (χµ(G)) is given by: χµ(G) = min {|c(X)|

where c is a µ-measurable coloring of G}. (Here, µ is a probability measure on X).

For starters we give a different proof of the following theorem proved first in [2]:

10



Theorem 2.7. Let X be a Polish space, µ be a probability measure on X, and f : X → X

be a Borel function. Then χBP(Gf ) ≤ 3 and χµ(Gf ) ≤ 3.

Then, we give two more results that use the bounds and ideas for the Borel chromatic

number of graphs generated by n functions, that are described above:

Theorem 2.8. Let X be a Polish space, µ be a probability measure on X, and f0, f1 : X → X

be two Borel functions on X. Then χBP(Gf0,f1) ≤ 5 and χµ(Gf0,f1) ≤ 5.

Theorem 2.9. Let X be a Polish space, µ be a probability measure on X, n ∈ ω and

f0, f1, ..., fn−1 : X → X be Borel functions on X. Then, we have that: χBP(Gf0,f1,...,fn−1) < ω

and χµ(Gf0,f1,...,fn−1) < ω.

11



CHAPTER 3

Commuting Functions

The functions F0, F1, ..., Fn−1 on X are said to commute with each other if and only if

Fi(Fj(x)) = Fj(Fi(x)) for all x ∈ X and i, j ∈ n.

In the single function case (Theorem 1.8) the issue of commutativity does not come up,

as a single function trivially commutes with itself. For n > 1, Question 1.7 splits naturally

into two subquestions: One where the functions commute, and one where they do not. In

this section we provide a general (positive) answer for all n ∈ ω in the case of commuting

functions:

Theorem 3.1. Let X be a Borel space, k ∈ ω, F1, F2, ..., Fk : X → X be Borel functions

which commute with each other and G = GF1,F2,...,Fk . Then either χB(G) ≤ 2k+1 or χB(G) =

ω.

Proof. For the sake of simplicity we are going to prove the theorem for k = 2. The proof

for k > 2 is very similar. Let F,G : X → X be Borel functions which commute with each

other. By Fact 1.3 we have that XB(G) ≤ ω. Suppose that XB(G) = n ∈ ω. Fix c : X → n

to be a Borel coloring function for G = GF,G.

We will construct a new coloring e, which uses only 2∗2+1 = 5 colors. Define d : X → n

by d(x) = c(F nGn(x)). Due to commutativity of F and G it is easy to observe that d

is a (Borel) n-coloring function. For example, if x = F (y) then d(x) = c(F nGn(x)) =

c(F nGn(F (y))) = c(F (F nGn(y))) 6= c(F nGn(y)) = d(y). Similarly for x = G(y). Now, it is

enough to construct a Borel coloring function e : X → {A,B,C,D,E}. Towards that we

will first recursively define functions ei : X → {A,B,C,D,E} ∪ n for each i ∈ n as follows:
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[i = 0:] If x ∈ d−1(0) then set e0(x) = A. Otherwise, set e0(x) = d(x).

[0 < i < n:] If x /∈ d−1(i) then set ei(x) = ei−1(x). Otherwise, we will prove that the set

{A,B,C,D,E} \ ({ei−1(F (x)), ei−1(G(x))} ∪ {ei−1(y)|y ∈ F−1(x) ∪G−1(x)})

is non-empty. Let ei(x) be the lexicographically least element of the above set.

Claim 3.2. Let i ∈ n. Then for any j ≤ i and any x ∈ d−1(j), ei(x) ∈ {A,B,C,D,E}.

Proof. Immediate from the definition of ei.

To facilitate the computations we also set e−1 = d. Also, for each x ∈ X and i ∈ n we

define P (x, i) : [−i, i]2 → n given by P (x, i)(k, l) = c(F n+kGn+l(x)).

Claim 3.3. Let 0 < i ∈ n. Then P (F (x), i− 1) can be determined uniformly from P (x, i).

In particular, if x1, x2 ∈ X and P (x1, i) = P (x2, i) then P ((F (x1), i− 1) = P ((F (x2), i− 1).

Similarly for G.

Proof. Let x1, x2 ∈ X and P (x1, i) = P (x2, i). Let k, l ∈ [−(i− 1), i− 1]. Then:

P (F (x1), i− 1)(k, l) = c(F n+k+1Gn+l(x1)) (3.1)

= P (x1, i)(k + 1, l) (3.2)

P (F (x2), i− 1)(k, l) = c(F n+k+1Gn+l(x2)) (3.3)

= P (x2, i)(k + 1, l) (3.4)

By (3.2),(3.4) and the fact that P (x1, i) = P (x2, i), we conclude that

P ((F (x1), i− 1) = P ((F (x2), i− 1)

.

Claim 3.4. Let 0 < i ∈ n, and let y ∈ F−1(x). Then P (y, i−1) can be determined uniformly

from P (x, i). In particular if y1, y2 ∈ X and P (F (y1), i) = P (F (y2, i) then P (y1, i − 1) =

P (y2, i− 1).
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Proof. Let y1, y2 ∈ X and P (F (y1), i) = P (F (y2, i). Let k, l ∈ [−(i− 1), i− 1]. Then:

P (y1, i− 1)(k, l) = c(F n+kGn+l(y1)) (3.5)

= P (F (y1), i)(k − 1, l) (3.6)

P (y2, i− 1)(k, l) = c(F n+kGn+l(y2)) (3.7)

= P (F (y2), i)(k − 1, l) (3.8)

By (3.6),(3.8) and the fact that P (F (y1), i) = P (F (y2, i) we conclude that

P (y1, i− 1) = P (y2, i− 1)

.

Claim 3.5. Let i ∈ n and x ∈ X. Then the value of ei(x) depends only on P (x, i). Precisely

this means that if x1, x2 ∈ X are such that: P (x1, i) = P (x2, i) then ei(x1) = ei(x2).

Proof. We will prove this using induction on i ∈ n. The base case is trivial since e0(x)

depends only on d(x) = c(F nGn(x)) = P (x, 0)(0, 0). Now, let x1, x2 ∈ X and 0 < i < n

with P (x1, i) = P (x2, i). By the recursive construction above we know that both ei(xj)

(j = 1, 2) depend only on d(xj), ei−1(xj), ei−1(F (xj)), ei−1(G(xj)) and all ei−1(y) for y s.t.

y ∈ F−1(xj) ∪G−1(xj).

Since P (x1, i) = P (x2, i) we conclude that P (x1, 0) = P (x2, 0) and P (x1, i−1) = P (x2, i−

1). Thus, d(x1) = d(x2) and ei−1(x1) = ei−1(x2). Also, since P (x1, i) = P (x2, i) then by the

claim above we get P ((F (x1), i− 1) = P ((F (x2), i− 1). Therefore, by induction hypothesis

we have ei−1(F (x1)) = ei−1(F (x2)). Similarly, ei−1(G(x1)) = ei−1(G(x2)). Also, let y1 ∈

F−1(x1) and y2 ∈ F−1(x2) then since P (x1, i) = P (x2, i) and thus P (F (y1), i) = P (F (y2, i),

we can conclude from the claim above that P (y1, i−1) = P (y2, i−1). Therefore, by induction

hypothesis we have ei−1(y1) = ei−1(y2).

Now using the last line of the first paragraph it follows that ei(x1) = ei(x2).

Claim 3.6. Let i ∈ n and x ∈ d−1(i). Then the following set is non-empty:

Y = {A,B,C,D,E} \ ({ei−1(F (x)), ei−1(G(x))} ∪ {ei−1(y)|y ∈ F−1(x) ∪G−1(x)})
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Proof. We will prove this using induction on i ∈ n. The base case is trivial. Now, we fix

0 < i < n and we further assume that all the ei−1 values are well-defined. If y1, y2 ∈ X

with F (y1) = F (y2) = x, then since we trivially have that P (F (y1), i) = P (F (y2), i), we

can conclude by a claim above that P (y1, i− 1) = P (y2, i− 1). Therefore, again by a claim

above we can deduce that ei−1(y1) = ei−1(y2). Therefore, we conclude that ei−1(y) is the

same for all y ∈ F−1(x). Similarly, ei−1(y) is the same for all y ∈ G−1(x). We conclude that

the cardinality of {ei−1(F (x)), ei−1(G(x))}∪{ei−1(y)|y ∈ F−1(x)∪G−1(x)} is at most 4 and

thus Y 6= ∅.

Claim 3.7. Let i ∈ n. Then ei is a Borel coloring.

Proof. This is immediate by the above claim and the definition of ei.

Claim 3.8. en−1 is a Borel coloring function from X to {A,B,C,D,E}

Proof. This is immediate by the claims above.

We conclude the proof by setting e = en−1. This completes the proof for the case k = 2.

The proof of the general case (k > 2) is exactly the same with the only difference that we

define d(x) = c(F n
1 F

n
2 ...F

n
k (x)) and that we have 2 ∗ k restrictions for the values of ei rather

than just 2 ∗ 2 = 4.

From now on we will drop the assumption of commutativity and we will focus on graphs

generated by not necessarily commuting functions. More specifically, in the following chap-

ters we will give a proof for the case n = 2.
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CHAPTER 4

The 1-colorable subset Lemma

The first step towards the proof of the case n = 2 is the following lemma which basically

extends the graphs of theorem 1.8 while at the same time maintains the 3-coloring. But

first, a few important definitions.

Definition 4.1. Let X be a set, G = (X,E) a graph on X and A ⊆ X. We say that A has

property Pk (k ∈ ω) if every x ∈ A has at most k descendants in A. Also, if k = 1 we simply

say that A has property P .

Fact 4.2. Let X be standard Borel space, G = (X,E) be a Borel graph on X and A ⊆ X

be a Borel set with propery P . If G � A is finitely colorable then XB(G � A) ≤ 3. In fact,

there is a Borel coloring c : A→ {1, 2, 3} with the property that if x ∈ A has no descendants

in A, then c(x) = 1. We call such x a top element of A.

Proof. We define F : A → A to be as follows: We set F (x) = x if there is no y ∈ A s.t.

(x, y) ∈ E � A. Otherwise, we set F (x) to be the unique y ∈ A s.t. (x, y) ∈ E � A. F is

clearly Borel and thus we can apply Theorem 1.8 on the graph H = (A,E � A). Also, by

Remark 1.12 all x ∈ A with no descendants in A are given the same color. W.l.o.g. this

color can be 1.

Lemma 4.3. Let X be standard Borel and G = (X,E) be a Borel graph with a finite Borel

coloring that has property P . Then we can partition G into two subgraphs G1 = (X1, E � X1)

and G2 = (X2, E � X2) s.t. G1 is Borel 1-colorable and every connected component of G2 has

at most 2 elements. On top of that:

• If x ∈ X has no successors in G then x ∈ X2.

16



• If K is a bounded connected component of G, then G2 � K is 1-colorable.

We call G1 the 1st part of G and G2 the 2nd part of G.

Proof. For each x ∈ X let Kx be the maximum connected component of G containing x.

Now define E = {x ∈ X | Kx is bounded} and U = {x ∈ X | Kx is unbounded}. Then by

Remark 1.12 we can have E = E0 ] E1 and U = B0 ] B1 ] C where E0, E1 are 1-colorable

Borel subsets of X, E0 contains all elements in E with no successor in X, and B0, B1, C

are defined exactly as in Remark 1.12.

Let X1 = E1 ] B0 and X2 = E0 ] B1 ] C. Clearly G1 = (X1, E � X1) is 1-colorable.

Also, by the definition of E and U , no element in E0 is ever connected to any element in

B1 ] C, and at the same time no element in B1 is followed by an element in C. Thus,

using the additional fact that E0, E1, B0, B1 and C are all 1-colorable we can conclude that

every connected component of G2 = (X2, E � X2) has at most 2 elements. Finally, again by

Remark 1.12 and the fact that E0 ⊆ X2 we can deduce that G2 contains all x ∈ X with no

successors in G.

Definition 4.4. Let X be an arbitrary set, n ∈ ω, c : X → {1, 2, ..., n}, and r : X →

P({1, 2, ..., n}). We say that c is restricted by r if c(x) /∈ r(x) for all x ∈ X. We also say

that x is restricted by i ∈ {1, 2, ..., n} if i ∈ r(x).

Definition 4.5. Let X be any set, and G = (X,E) be a graph on X. Then the function

dG : X → P(X) defined by dG(x) = {y ∈ X | (x, y) ∈ E}, is called the successor function of

G. Also, for A ⊆ X we define dAG : A → P(A) by dAG (x) = {y ∈ A | (x, y) ∈ E}, to be the

successor function of G � A.

Remark 4.6. If G is Borel then dG is also Borel. Moreover, if G and A ⊆ X are both Borel,

then dAG is Borel too.

Lemma 4.7. Let X be standard Borel, G = (X,E) also Borel, n ∈ ω, and r : X →

P({1, ..., n}) be Borel as well. Also, let A ⊆ X be Borel and bounded, with the additional
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property that (∀x ∈ A)(|dAG (x)| + |r(x)| ≤ n). Then there is a Borel coloring c : A →

{1, ..., n+ 1} that is restricted by r.

Proof. We start with a recursive definition of the function rk : X → ω that assigns a rank

to each element of A and a pseudo-rank to every element in X\A:

Base Case: For all x /∈ A let rk(x) = −1

Recursive Step: Let x ∈ A and assume that all rk(y) for y ∈ dAG (x) have already been

defined. Then we let rk(x) = max{rk(y) | y ∈ dAG (x)}+ 1.

Since, every node x ∈ X of the graph G � A has finite out-degree ≤ n, then by Konig’s

lemma and the fact that A is bounded, we deduce that the function rk is well-defined and

that rk(x) ∈ ω for all x ∈ X. Now, using this ranking function we can easily construct a

Borel coloring function c : A→ {1, ..., n+ 1} as follows:

Base Case: For all x ∈ A s.t. rk(x) = 0 set c(x) to be the least m ∈ {1, ..., n+1}\ r(x).

Recursive Step: Let x ∈ A s.t. rk(x) = q ≥ 1. Then for all y ∈ dAG (x) we have

rk(y) ≤ q − 1 and hence c(y) has already been defined. Set c(x) to be the least m ∈

{1, ..., n+ 1} \ ({c(y) | y ∈ dAG (x)} ∪ r(x)). Such m exists since |dAG (x)|+ |r(x)| ≤ n.

The function c is a Borel (n+ 1)-coloring for A.

Remark 4.8. If A ⊆ X has no restrictions, then by the above construction we conclude

that every x ∈ A with c(x) = k is followed by a ym ∈ A with c(ym) = m for all 1 ≤ m < k.

Lemma 4.9. (The generalized 1-colorable Subset Lemma). Let X be a Borel space, r : X →

P({1, 2, 3}) also Borel, and G = (X,E) be a finitely (Borel) colorable Borel graph over X

with the following properties:

• For every x ∈ X we have that |dG(x)|+ |r(x)| ≤ 2.

• The (Borel) set of “splitting nodes” Y = {x ∈ X | |dG(x)|+ |r(x)| = 2} is 1-colorable.

Then there is a Borel coloring c : X → {1, 2, 3} on G which is restricted by r.
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Proof. In what follows, we will define c on different subsets of X that partition X. And

every time we define c on a new subset A ⊆ X we will make sure that c(x) 6= r(x), while

c maintains its coloring property, namely c(x) 6= c(y) when (x, y) ∈ E and c(x), c(y) are

both defined. We will also call this procedure “coloring” the set A ⊆ X. We first define

Z = {x ∈ X|x is followed by y ∈ Y }. Note that Z ∩ Y = ∅ by the assumption that Y is

1-colorable. Now we color X in steps:

Step 1: First we observe that since X \ (Y ]Z) has no splitting nodes, it has property P.

We can therefore color X \ (Y ]Z) using 3 colors, namely 1,2,3. We will do that as follows:

For the connected components of X \ (Y ] Z) that have no elements with restrictions, we

use Fact 4.2 to color our graph, while for all the other components, we use Lemma 4.7. That

way, since the only elements in X \ (Y ]Z) with restrictions are top elements which are not

followed by an element in Z, we can arrange by 4.2, that no z ∈ Z is preceded by a 2 or 3.

Step 2: Now we color all elements of Y which are not followed or restricted by 1, with

the color 1. This does not violate the coloring property, as the only predecessors of a y ∈ Y

belong to Z which is yet to be colored.

Step 3: Finally let W ⊆ X be the set of all nodes we have not assigned a color to yet.

We can color W using the colors 2 and 3 without violating the property of the coloring

function c. This is possible because:

(i) W ⊆ Y ] Z.

(ii) By the previous step, every w ∈ W ∩ Y is followed or restricted by at least one 1.

(iii) By its definition, Z ⊆ W and every z ∈ Z is followed by one element in Y , and it’s

not restricted by any i ∈ {1, 2, 3}.

(iv) We have already seen above that if w ∈ W ∩ Z ⊆ Z then w is not preceded by a 2 or

3. We also have that if w ∈ W ∩ Y ⊆ Y then w is preceded only by elements in Z

which are yet to be colored. We conclude that W is not preceded by a 2 or 3.
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(v) Since W ⊆ Y ] Z, then in every unbounded component K of W , every w ∈ K ∩ Y

is followed exactly by a 1 and an element in K ∩ Z, and every element in w ∈ K ∩ Z

is followed exactly by an element in K ∩ Y . Thus we can color this component by

assigning the color 2 to every element in K ∩ Y and the color 3 to every element in

K ∩ Z.

(vi) Let K be a bounded component of W . By (ii) and (iii), the only element of K

that can have a restriction other than a 1 is the top element. Hence, if we define

r′(x) = r(x) \ {1}, we get that |dWG (x)| + |r′(x)| ≤ 1 for all x in bounded components

of W . Now by Lemma 4.7 it is clear that we can color the bounded components of W

using the colors 2 and 3 and without violating the coloring property.

This gives us a Borel 3-coloring c : X → {1, 2, 3} which is restricted by r.

Now we give as a corollary a weaker version of this lemma:

Corollary 4.10. (The simple 1-colorable Subset Lemma). Let X be a Borel space and G be

a finitely (Borel) colorable Borel graph over X with the following two properties:

• Every x ∈ X has at most two descendants in X.

• The set of splitting nodes Y = {x ∈ X|x has exactly 2 descendants } is 1-colorable.

Then G is Borel 3-colorable.
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CHAPTER 5

The Least Available Subset Lemma

In this section we prove a Lemma that gives us a quadratic bound (even though not the

optimal one) for the Borel chromatic number of a Borel graph generated by n Borel function.

Note, that this is already a better bound than the obvious exponential bound (i.e. 3n) we

can derive from Corollary 1.13.

Lemma 5.1. (The Least Available Subset): Let X be a Borel space, k ∈ ω and Fi :

X → X be Borel functions for all i ∈ k. Let also G = GF0,F1,...,Fk−1
. Suppose finally

that χB(G) < ω. Then, there is a Borel coloring c of G into pairs 〈i, j〉 s.t. i, j ≥ 0,

i + j ≤ k and if c(x) = 〈i, j〉 then x is followed by a ym ∈ X with c(ym) = 〈i,m〉, and

by a zl ∈ X with c(zl) = 〈l, jl〉 (jl ≤ k − l) for all m < j and l < i. In particular,

χB(G) ≤ 1 + 2 + ...+ (k + 1) = k2

2
+ 3k

2
+ 1 = O(k2).

Proof. For clarity, we prove the lemma when k = 2. (The argument for the higher dimensions

is a direct generalization to what follows and therefore can be easily deduced by the reader).

Since k = 2 let F0 = F and F1 = G. Also, since χB(G) < ω we can fix some n ∈ ω s.t.

χB(G) ≤ n. Let X = A0]A1] ...]An−1 be a n-Borel coloring of G over X. Using induction

on i ∈ n we will find a partition of X into three sets: B0, B1 and B2. The inductive

construction of the sets B0, B1 and B2 goes as follows:

[i = 0:] In that case, we put all x ∈ A0 into B0. In other words A0 ⊂ B0.

[i→ i+1:] For that step we assume that i+1 ∈ n and that A0]A1]...]Ai ⊆ B0]B1]B2.

Then, for every x ∈ Ai+1 we define j(x) ∈ 3 to be the minimal index j ∈ 3 s.t. both F (x) /∈ Bj

and G(x) /∈ Bj. Then we let x ∈ Bj(x). In other words, we send x to the least “available”
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subset Bj. We note here that j(x) is obviously well-defined, since F (x) and G(x) can belong

to at most two different Bj’s.

Claim 5.2. The sets B0, B1 and B2 are all bounded.

Proof. Assume otherwise. Then for some j ∈ 3 we will have that Bj contains an infinite path

I = {xi | i ∈ ω} ⊆ Bj. Since I is infinite and the coloring given by A0, . . . , An−1 is finite, we

can find i, k, l ∈ ω s.t. xi ∈ Ak, xi+1 ∈ Al and k > l. So, in our inductive construction above,

the element xi+1 gets priority over xi. And thus, by the time we reach the k-th step of our

inductive construction, the element xi+1 should already be in Bj. Then by construction, at

stage k we put xi ∈ Bj′ for some j′ ∈ 3 s.t. j′ 6= j. This is of course a contradiction since

xi ∈ I ⊆ Bj. We conclude that none of the Bj’s contains an infinite path and therefore, they

are all bounded.

Claim 5.3. The set B0 is Borel 3-colorable. Moreover, we can construct a Borel coloring

b0 : B0 → {〈0, 0〉, 〈0, 1〉, 〈0, 2〉} with the additional two properties:

1. If x ∈ B0 is s.t. b0(x) = 〈0, 2〉 then there are two descendants y, z ∈ B0 of x s.t.

b0(y) = 〈0, 0〉 and b0(y) = 〈0, 1〉.

2. If x ∈ B0 is s.t. b0(x) = 〈0, 1〉 then x has a descendant y ∈ B0 s.t. b0(y) = 〈0, 0〉.

Proof. This is immediate by Lemma 4.7, Remark 4.8, and the fact that for all x ∈ B0 we

have |dB0
G (x)| ≤ 2 and no other restrictions.

Claim 5.4. The set B1 is (Borel) 2-colorable. Moreover, we can construct a Borel coloring

b1 : B1 → {〈1, 0〉, 〈1, 1〉} with the additional property that if x ∈ B1 is s.t. b1(x) = 〈1, 1〉 then

x has a descendant y ∈ B1 s.t. b1(y) = 〈1, 0〉.

Proof. First, we claim that by the definition of B0 and B1, every element x ∈ B1 has at least

one direct descendant in B0. To see this, let’s assume that x ∈ Ak for some k ∈ n. Then in

the k-th step of our inductive construction we will look at the direct descendants of x. But

if none of them are in B0 then we would have had that x ∈ B0 which is a contradiction.
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Since each x ∈ B1 has at most two descendants overall, and one of them belongs to B0,

we have |dB1
G (x)| ≤ 1. Thus we can use Lemma 4.7 and Remark 4.8 conclude the claim.

Claim 5.5. The set B2 is (Borel) 1-colorable.

Proof. Assume otherwise. Then there should be two elements x, y ∈ B2 s.t. y is a successor

of x. But x ∈ B2 iff x has successors in both B0 and B1. Since x has two successors, it

cannot then have a successor y ∈ B2.

By the above claim we can construct a Borel coloring b2 : B2 → {〈2, 0〉}.

Now, by all the claims above and the fact that X = B0 ] B1 ] B2, we can construct a

Borel function c : X → {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 0〉, 〈1, 1〉, 〈2, 0〉} by c(x) = bi(x) for x ∈ Bi.

Clearly, c is a coloring function. Moreover, by the properties of all bi, if c(x) = 〈i, j〉 then x

is followed by a ym ∈ X with c(ym) = 〈i,m〉, and by a zl ∈ X with c(zl) = 〈l, jl〉 (jl ≤ k− l)

for all m < j and l < i. This completes the proof of the lemma for k = 2.

Remark 5.6. By all the above, it is now fairly obvious that in the general case of k-functions

we will have that X = B0 ] ...]Bk where each Bi will be bounded and have property Pk−i,

and each element x ∈ Bi will have successors in each of the sets B0, . . . , Bi−1.

The last observation together with Remark 4.8 are enough to complete the proof of the

lemma in the general case of k > 2.

We now give a helpful definition and some remarks in order to clarify some of the proof

ideas of the previous lemma:

Definition 5.7. (White-Blue-Red elements)

• We call every element x ∈ B0 a White element.

• We call every element x ∈ B1 a Blue element.

• We call every element x ∈ B2 a Red element.
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White: 〈0, 0〉 〈0, 1〉 〈0, 2〉

Blue: 〈1, 0〉 〈1, 1〉

Red: 〈2, 0〉

Figure 5.1: Coloring partition for 2 functions

Notational Abuse: In what follows, we will call an element x of X by the number

which is assigned to it by the corresponding bj coloring function. For example: If x ∈ B1

and b1(x) = 〈1, 1〉 then we will say that this x is a 〈1, 1〉, if y ∈ B2 then we will say

that this y is a 〈2, 0〉 etc... Figure 5.1 summarizes the coloring partition of Lemma 5.1 to

White/Blue/Red sections, as well as the coloring within each component of the partition.

All the above leads to the following Remark:

Remark 5.8. For the coloring c of Lemma 5.1 the following properties hold:

1. Every 〈2, 0〉 is followed by exactly one White and one Blue element.

2. Every 〈1, 1〉 is followed by a White element and a 〈1, 0〉.

3. Every 〈1, 0〉 is followed by at least one White element.

4. Every 〈0, 2〉 is followed by exactly a 〈0, 0〉 and a 〈0, 1〉.

5. Every 〈0, 1〉 is followed by at least one 〈0, 0〉.

6. A 〈0, 0〉 gives us inconclusive info, in the sense that it could be followed by any two

non-〈0, 0〉 elements.

We will use the above observations to obtain an optimal coloring for n = 2 in the following

chapter.
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CHAPTER 6

The 2 functions case (no restrictions)

Theorem 6.1. (Non-commutative functions) Let X be a Borel space and F,G : X →

X be Borel functions. Let also G = GF,G. Suppose finally that χB(G) < ω. Then χB(G) ≤ 5.

Proof. By the L.A.S. lemma 5.1, our space X can be partitioned into three sets, the White

set W , the Blue set B, and the Red set R, each of which is bounded and has respectively,

property P2, property P1 and property P0. Moreover, every (Blue) element in B is followed

by at least one (White) element in W and every (Red) element in R is followed by exactly

one (White) element in W and one (Blue) element in B. To sum up:

1. X = W ]B ]R

2. All sets W , B, R are bounded

3. W has property P2 and thus since it’s also bounded it is Borel 3-colorable.

4. B has property P1 and thus since it’s also bounded it is Borel 2-colorable.

5. R has property P0 and thus it’s Borel 1-colorable.

6. Every Blue element is followed by at least one White element.

7. Every Red element is followed by exactly one Blue and one White element.

Moreover, using the colors 1,2,3 in this order for the White colors 〈0, 0〉, 〈0, 1〉, 〈0, 2〉 (of

Lemma 5.1), 4,5 for the Blue colors 〈1, 0〉, 〈1, 1〉, and 6 for the Red color 〈2, 0〉, we have by

Remark 5.8 that:
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• Every 2 and 3 is followed by at least one 1

• Every 5 is followed by at least a 4

Now we define D ⊆ X to be the set of all 2’s, 3’s, 5’s and 6’s. By the above and since

every element in D has trivially at most two descendants, we have that every 2,3 and 5

has at most one descendant in D and thus only the 1-colorable subset of 6’s can have two

descendants in D. We conclude that the set D satisfies the assumptions of the 1-colorable

subset Lemma 4.10 and thus it should be 3-colorable. Now, clearly, X = D ] (X \ D). D

is Borel 3-colorable by the above, and X \D is trivially Borel 2-colorable. Therefore, G will

be Borel 5-colorable as desired.

Using all the above, we can give the following characterization of all the finitely Borel-

colorable graphs generated by two Borel functions:

Theorem 6.2. Let X be a Borel space, F,G : X → X be arbitrary Borel functions and

G = GF,G, the corresponding Borel graph generated by them. Then the following statements

are equivalent:

i. χB(G) ≤ 5

ii. χB(G) < ω

iii. There are 3 Borel Subsets A, B and C s.t.

– X = A ]B ] C

– All A, B and C are bounded

– If x ∈ B then F (x) ∈ A or G(x) ∈ A

– If x ∈ C then (F (x) ∈ A, G(x) ∈ B) or (F (x) ∈ B, G(x) ∈ A).

Proof. It’s enough to prove that i→ ii, ii→ iii and iii→ i.

[i→ ii :] This is trivial.
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[ii → iii :] This implication follows from the construction in the proof of the L.A.S.

Lemma 5.1 and Claim 5.2.

[iii → i :] This is just by the proof of the theorem 6.1. I.e. the set A will be our White

set, B will be our Blue set and C will be our Red set.
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CHAPTER 7

The 3 functions case (no restrictions)

In this chapter, we explore the n = 3 case:

Theorem 7.1. Let X be a Borel space and F,G,H : X → X be Borel functions. Let also

G = GF,G,H . Suppose finally that χB(G) < ω. Then χB(G) ≤ 8.

Proof. According to the L.A.S. lemma 5.1 we can color the graph G in 10 colors and in such

a way that we can get the following properties (see Figure 7.1):

• All elements colored by 1,2,3 or 4 are further labelled ‘white’

• All elements colored by 5,6 or 7 are further labelled ‘blue’

• All elements colored by 8 or 9 are further labelled ‘red’

• All elements colored by 10 are further labelled ‘black’

• All 2’s are followed by at least a 1

• All 3’s are followed by at least a 2 and a 1

• All 4’s are followed by at least a 3, a 2 and a 1

White: 1 2 3 4

Blue: 5 6 7

Red: 8 9

Black: 10

Figure 7.1: Coloring partition for 3 functions
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• All 5’s are followed by at least a white element

• All 6’s are followed by at least a 5 and a white element

• All 7’s are followed by at least a 6, a 5 and a white element

• All 8’s are followed by at least a blue and a white element

• All 9’s are followed by at least an 8, a blue and a white element

• All 10’s are followed by at least a red, a blue and a white element

Now let’s define Y ⊆ X to be the set of all 2’s, 3’s, 4’s, 6’s, 7’s, 9’s and 10’s. It’s enough

to prove that G � Y is 5-colorable. We will color G � Y using the colors A, B, C, D and E.

Also for notational simplicity, when we talk about coloring on Z we will really mean coloring

on G � Z. We will color Y in 5 colors using the following steps:

Step 1: By the listed properties above, except for the 10’s, every element in Y has at

most 2 successors in Y .

Step 2: We set Y0 ⊆ Y to be the set of all y ∈ Y which has a path that ends with a 10.

I.e. all y ∈ Y s.t. there exists an n ∈ ω and a sequence Li ∈ {F,G,H} (for all i ∈ n) s.t.

Ln−1(...(L1(L0(y)))...) is a 10. Note also that all 10’s are trivially in Y0.

Step 3: We color the set Y \ Y0 in 5-colors (A,B,C,D,E). This is simply by theorem

6.1, the fact that Y is finitely Borel colorable and the fact that every element in Y \ Y0 has

at most two successors in Y \ Y0.

Step 4: We set Z0 ⊆ Y0 to be the set of all 10’s.

Step 5: For y ∈ Y0 \ Z0 we define dist(y) to be the minimal n ∈ ω s.t. there are

Li ∈ {F,G,H} (for all i ∈ n) s.t. Ln−1(...(L1(L0(y)))...) is a 10.

Step 6: We set Z1 = {y ∈ Y0 \ Z0|dist(y) is odd }, Z2 = {y ∈ Y0 \ Z0|dist(y) is even }.
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Step 7: The set Z1 has property P. This is simply because every element y ∈ Z1 is

followed by at least one element in Z0 ∪Z2 (and one element in X \Y ). Similarly the set Z2

also has property P. This is simply because every element y ∈ Z2 is followed by at least one

element in Z1 (and one element in X \ Y ).

Step 8: We set W1 ⊆ Z1 to be the set of all elements in Z1 that have two successors

in M = Y0 ∪ C ∪ D ∪ E, namely, either in Y0, or in Y \ Y0 and colored with C, D or E.

(In addition there is a third successor outside Y .) W1 has property P since it’s contained

in Z1. By lemma 4.3, applied to the graph G � W1, let V1 be the 1st part of W1. By this

construction we clearly have that the set of all elements in Z1\V1 with exactly two successors

in M \ V1 is 1-colorable. This is because by lemma 4.3 if y ∈ Z1 \ V1 has this property then:

• y has to be an element of the 2nd part of W1.

• Every successor of an element in the 2nd part of W1 which is also in the 2nd part of

W1, has a successor on the 1st part of W1.

Also every element in V1 is immediately followed by exactly one element in Z1 \ V1,

because if not then by lemma 4.3 such element would be the first of a bounded component

which means it would belong in the 2nd part of W1 and thus in W1 \ V1. As a corollary,

every element in V1 is followed by at most one element in Z0 ] Z2.

Step 9: We set W2 ⊆ Z2 to be the set of all elements in Z2 that have two successors

in M \ V1. By lemma 4.3 let V2 be the 2nd part of W2. By this construction we clearly

have that every element in Z2 \ V2 has at most one successor in M \ (V1 ] V2). This is again

because of lemma 4.3 and the fact that if y ∈ W2 \V2 then it has to be in the 1st part of W2

and thus it should be followed by an element in V2.

Step 10: Now we set V0 ⊆ Z0 to be all the 10’s which are followed by at most one

element in V1 ∪V2 ∪A∪B (this means that the 10 is followed by at most one element which

is in V1 ∪ V2 or it’s in Y \ Y0 and it’s colored by A or B).
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Step 11: By all the above, the set V = V0 ] V1 ] V2 has property P. On top of that,

by construction of V2, an element in V2 is never followed by an element in V0 ] V1 and thus

the only unbounded components of V contain elements only from the 1-colorable sets V0

and V1. We conclude that the restriction of V to its unbounded components is 2-colorable.

Since we also have by Lemma 4.7 that every bounded component with property P is Borel

2-colorable, we conclude that V is 2-colorable. Moreover, we can color the entire set V using

exactly the colors A and B without violating the coloring property with respect to nodes

that have already been colored, namely nodes in Y \ Y0. This is simply because: (a) all

predecessors of nodes in V belong to Y0, (b) no element in V1 ] V2 is followed by an element

in (Y \ Y0) ∩ (A ∪ B), and (c) if y ∈ V0 is followed by an (A ∪ B)-element in Y \ Y0 then

the connected component Ky of V that contains y is bounded and has y as its first/top

element. The latter implies that by Lemma 4.7 we can treat the (A ∪ B)-successor of y as

a restriction, when coloring the bounded components. Moreover, Lemma 4.7 gives a two

coloring into {A,B} that respects these restrictions.

Step 12: The remaining graph on U = Y0 \ V is 3-colorable and we can color it using

C, D and E without violating the coloring property. This is because U ⊆ Z0 ] Z1 ] Z2 and

all elements in (Z0 ]Z2) \ V have at most one successor in U ∪ (C ∪D ∪E). To verify this,

we observe that any y ∈ Z0 \ V is followed by at least two elements in A ∪ B (this includes

elements of V that were colored using A and B in step 11) and any y ∈ Z2 \ V is followed

by at least one element in V2 and one element in X \ Y . So, if U0 ⊆ U is the set of all

elements in U that have two successors in U ∪ (C ∪D ∪E) then U0 ⊆ Z1 \ V . But we have

already shown above that such a set should be 1-colorable. Define r : U → P({C,D,E}) by

“a ∈ r(y)” iff “there is a successor of y which is colored by a ∈ {C,D,E}”. Then, by the

generalized 1-colorable subset lemma 4.9 we can find a Borel coloring c : U → {C,D,E} on

U which is restricted by r and thus it does not violate the coloring property.

All the above shows that we can color Y in 5-colors, i.e. A,B,C,D,E and thus we can

color X in 8-colors, namely A,B,C,D,E, 1, 5, 8. Therefore, χB(G) ≤ 8
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Using all the above, we can give the following characterization:

Theorem 7.2. Let X be a Borel space, F0, F1, F2 : X → X be arbitrary Borel functions

and G = GF0,F1,F2, the corresponding Borel graph generated by them. Then the following

statements are equivalent:

i. χB(G) ≤ 8

ii. χB(G) < ω

iii. There are 4 Borel Subsets A, B, C and D s.t.

– X = A ]B ] C ]D

– All A, B, C and D are bounded

– If x ∈ B then F0(x) ∈ A or F1(x) ∈ A or F2(x) ∈ A

– If x ∈ C then there are i, j ∈ 3 with i 6= j s.t. Fi(x) ∈ A and Fj(x) ∈ B

– If x ∈ D then there are i, j, k ∈ 3 with i 6= j, i 6= k, j 6= k s.t. Fi(x) ∈ A,

Fj(x) ∈ B and Fk(x) ∈ C.

Proof. i→ ii : This is trivial.

ii→ iii : This implication is an immediate result of the L.A.S. Lemma 5.1.

iii → i : This is just by the proof of the theorem 7.1. I.e. the set A will be our White

set, B will be our Blue set, C will be our Red set and D will be our Black set.
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CHAPTER 8

Other chromatic numbers

We recall the following definitions from Chapter 2:

Definition 8.1. Let X be a Polish space and G be a graph on X. Then:

• The Baire chromatic number of G (χBP(G)) is given by: χBP(G) = min {|c(X)| where

c is a Baire measurable coloring of G}.

• The µ-measurable chromatic number of G (χµ(G)) is given by: χµ(G) = min {|c(X)|

where c is a µ-measurable coloring of G}. (Here, µ is a probability measure on X).

Definition 8.2. A set C ⊆ X of a graph (X,E) is called upward invariant if x ∈ C implies

y ∈ C for all successors y of x. The same set C ⊆ X is called downward invariant if x ∈ C

implies y ∈ C for all predecessors y of x.

Proposition 8.3. If C ⊆ X is comeager, C is upward invariant, G = Gf0,f1,...,fn is generated

by n Borel functions and χB(G � C) ≤ k, then χBP(G) ≤ max{2n+ 1, k}. (Similarly for χµ,

if C ⊆ X has µ-measure 1).

Proof. If such a C exists, then we will first color G � C in a Borel — and thus also in a Baire

— way, using k colors. Then we will color the remaining graph on X \ C using at most

2n+ 1 colors without violating the coloring property. This is possible since we could do this

for any finite subset of G � (X \ C). Therefore, by applying compactness (AC) we can get

a 2n+ 1 coloring on G � (X \ C) which may not be Borel but it will be Baire, since the set

X \ C is meager.
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Ben Miller showed in [2] that in the case of graphs G generated by one Borel function,

there is always a both upward and downward invariant co-meager Borel set C ⊆ X s.t.

χB(G � C) is finite (and similarly with µ-measure 1 set C). From this, Theorem 1.14 and

the last remark, it follows that χBP(G) ≤ 3 and χµ(G) ≤ 3.

In this chapter we generalize the results to graphs generated by more functions. More

precisely, for any n ∈ ω and any Borel functions f0, f1, . . . , fn there is an upward invariant

co-meager C ⊆ X s.t. χB(Gf0,...,fn � C) is finite. (Similarly for µ-measure 1 set C.)

Historical Remark: After we mentioned our generalization to Ben Miller, he found a

simple variant of his theorem in [2] saying that for any Borel functions f0, f1, . . . , fn−1 and

for any i < n there is a comeager C ⊆ X which is upward invariant under all functions

f0, f1, . . . , fn−1 and s.t. χB(Gfi � C) ≤ 3 (similarly for µ-measure 1 sets). Applying this to

each i < n and intersecting the sets C, one gets an upward invariant co-meager (or µ-measure

1) C∗ ⊆ X s.t. χB(Gf0,...,fn � C∗) ≤ 3n < ω. We give our full original proof here, in case its

other ideas become useful for other work.

We start by giving a different proof of the theorem first proved in [2] while keeping some

of his details and ideas intact.

Theorem 8.4. Let X be a Polish space, µ be a probability measure on X, and f : X → X

be a Borel function. Then there is a co-meager upward and downward invariant set C s.t.

χB(Gf � C) ≤ 3, and similarly for µ-measure 1 set C. In particular, χBP(Gf ) ≤ 3 and

χµ(Gf ) ≤ 3.

Proof. We know that χB(Gf ) ≤ ω, so we can fix an ω Borel coloring Di for Gf (i ∈ ω). Now,

for each n ∈ ω we let Fn = D0 ]D1 ] ... ]Dn. Clearly, Fn ⊆ Fn+1 and
⋃
Fn = X. Finally,

we let An = {x ∈ X|∀i ∈ ω∃j > i s.t f j(x) ∈ Fn}.

Lemma 8.5. The Borel chromatic number of Gf � An is at most 3.

Proof. Fix n ∈ ω. By looking at An∩D0, An∩D1, ..., An∩Dn, we can find a 1-colorable set

Yn ⊆ An s.t. if x ∈ An then there exists an m ∈ ω s.t. fm(x) ∈ Yn. Clearly, the set An \ Yn
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is bounded by Yn and thus it is Borel 2-colorable. We conclude that the entire Gf � An is

Borel 3-colorable.

A close inspection to the above construction shows that we can do it in such a way that:

1. Yn ⊆ Yn+1 (for all n ∈ ω)

2.
⋃
n∈ω Yn is 1-colorable

3. On the n-th step, we recursively preserve the colors we assigned during the previous

steps. That is, on step n we only assign colors to the elements of An that haven’t been

colored during the steps 0,1,...,n− 1, while we keep the previously assigned colors for

the rest of the elements of An.

4. In the end the entire set
⊎
n∈ω An is Borel 3-colorable.

Since An is both upward and downward invariant, the lemma above allows us to assume

without loss of generality that An = ∅ for all n ∈ ω. This means that for each x ∈ X and

n ∈ ω there exists some i ∈ ω s.t. f j(x) /∈ Fn for all j ≥ i + 1. Now, for each α ∈ 2≤ω, we

define Cα =
⋃
α(n)=1Dn.

Lemma 8.6. There is a comeager both upward and downward invariant Borel set C ⊆ X

such that χB(Gf � C) ≤ 3.

Proof. For all x ∈ X, k ∈ ω and s ∈ 2<ω, there exist t ⊇ s and i ≥ k s.t. f i(x) ∈ Ct

and f i+1(x) ∈ F|t| \ Ct. To see this, let n = |s|. Since An = ∅ there is some i ≥ k s.t.

f i(x) /∈ Fn and f i+1(x) /∈ Fn. So, we can find m, l > n (m 6= l) that satisfy: f i(x) ∈ Dm and

f i+1(x) ∈ Dl. We now expand s to t ∈ 2<ω in such a way that t(m) = 1, t(l) = 0, t � |s| = s

and |t| = max{m, l} + 1. The latter gives us that f i(x) ∈ Ct and f i+1(x) ∈ F|t| \ Ct as

desired. We now have that:

∀x ∈ X∀∗α ∈ 2ω∀k ∈ ω∃i ∈ ω(f i+k(x) ∈ Cα and f i+k+1 /∈ Cα)
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where the part “∀∗α ∈ 2ωφ(α)” indicates that the set {α ∈ 2ω|φ(α)} is comeager. Now the

Kuratowski-Ulam Theorem gives us that for comeagerly many α ∈ 2ω, the set:

Cα = {x ∈ X|∀k ∈ ω∃i ∈ ω(f i+k(x) ∈ Cα and f i+1+k(x) /∈ Cα)} is comeager

Thus, in order to complete the lemma it’s enough to fix any α0 with that property. By the

Finite Colorable Characterization for a Single Function (Theorem 1.14), it is very easy to

see that χB(Gf � Cα0) ≤ 3. Moreover, a straightforward computations shows that Cα0 is also

both upward and downward invariant. The proof of the lemma is now complete.

Lemma 8.7. There is a µ-conull both upward and downward invariant Borel set C ⊆ X

such that χB(Gf � C) ≤ 3.

Proof. First we observe that for each ε > 0, p ∈ ω, and n ∈ ω there exists an m > n s.t.

µ({x ∈ X|∃i ∈ ω s.t. fp+i(x) ∈ Fm \ Fn}) ≥ 1 − ε/2. To see this we consider in(x) to be

the least i ∈ ω s.t. f j(x) /∈ Fn for all j ≥ i (This is well defined since An = ∅). Now, we

define Bk = {x ∈ X|f in(x)(x) ∈ Dk}. Clearly,
⋃
k>nBk = X since f in(x)(x) /∈ Fn. Thus,

we can find m > n big enough s.t. µ(
⋃
n<k≤mBk) ≥ 1 − ε/2. Thus, µ({x ∈ X|∃i ∈ ω s.t.

fp+i(x) ∈ Fm \ Fn}) ≥ 1− ε/2 as desired.

Now, an argument like the one above, allows us to also find an l > m s.t.:

µ({x ∈ X|∃i ∈ ω s.t. fp+i(x) ∈ Fm \ Fn and fp+i+1(x) ∈ Fl \ Fm}) ≥ 1− ε.

Hence, for each n ∈ ω and each s ∈ 2n, we can find t ∈ 2l+1 such that:

µ({x ∈ X|∃i ∈ ω s.t. fp+i(x) ∈ Ct and fp+i+1(x) ∈ F|t| \ Ct}) ≥ 1 − ε. (We just set

t � n = s, t(k) = 1 for all n ≤ k ≤ m and t(k) = 0 for all m < k ≤ l). Now we can recursively

construct an α ∈ 2ω s.t.:

{x ∈ X|∀p ∈ ω∃i ∈ ω s.t. fp+i(x) ∈ Cα and fp+i+1(x) /∈ Cα} is µ-conull. To see

this, we observe that we can find strictly increasing sequence of tk ∈ 2<ω (tk ( tk+1) s.t.

µ(Hk) ≥ 1− 1/2k for all k ∈ ω, where:

Hk = {x ∈ X|∃i ∈ ω s.t. fpk+i(x) ∈ Ctk \ F|tk−1| and fpk+i+1(x) ∈ F|tk| \ Ctk}, while

{pk|k ∈ ω} lists all natural numbers each repeated infinitely many times. Then, we let
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Tj =
⋂
k>j Hj. Set T =

⋃
j Tj. Clearly, µ(Tj) ≥ 1 − 1/2j and µ(T ) = 1. Thus, α =

⋃
k tk

is as desired. This is simply because by the definition of Hk, for each x ∈ Tj we have that

∀p ∈ ω∃i ∈ ω s.t. fp+i(x) ∈ Cα and fp+i+1(x) /∈ Cα.

Then let C = {x ∈ X|∀p ∈ ω∃i ∈ ω s.t. fp+i(x) ∈ Cα and fp+i+1(x) /∈ Cα}. Clearly, C

is a µ-conull both upward and downward invariant borel subset of X. Also, by the Finite

Colorable Characterization for a Single Function (Theorem 1.14), it is very easy to see that

χB(Gf � C) ≤ 3, as desired.

Theorem 8.8. Let X be a Polish space, µ be a probability measure on X, and f0, f1 : X → X

be two Borel functions on X. Then there is an upward invariant and co-meager set C s.t.

χB(Gf0,f1 � C) ≤ 5, and similarly for µ-measure 1 set C. In particular, χBP(Gf0,f1) ≤ 5 and

χµ(Gf0,f1) ≤ 5.

Proof. Let X be any Polish space and f0, f1 : X → X be any two Borel functions on X. For

the first part it is enough to show that there is a comeager C ⊆ X s.t. χB(Gf0,f1 � C) < ω.

Our plan is to partition X into sets E, E0, E1, E2, Mα0 , and B, in such a way that, on an

upward invariant comeager set (and similarly for a co-null set):

1. E, E0, E1, E2, and Mα0 all have property P .

2. B is bounded.

Then B can be Borel 3-colored using Lemma 4.7, while E, E0, E1, E2, and Mα0 can be

Borel 3-colored on a comeager (co-null) set using Theorem 8.4. The entire graph can then

be Borel 3× 6 = 18 colored on a comeager (co-nulll) set.

We know that χB(Gf0,f1) ≤ ω, so we can fix an ω Borel coloring
⊎
i∈ωDi for Gf0,f1 . Now,

for each n ∈ ω we let Fn = D0 ]D1 ] ... ]Dn. Clearly, Fn ⊆ Fn+1 and
⋃
Fn = X. We now

give the following very useful notational definition:
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Definition 8.9. Let x ∈ X, n ∈ ω and s ∈ 2n. Then we will use the following notation:

f s(x) = fs(n−1)...fs(1)fs(0)(x) (Clearly,f ∅(x) = x)

We now let An = {x ∈ X|∃∞s ∈ 2<ω with f s(x) ∈ Fn}, where ∃∞s ∈ 2<ω is an

abbreviation for “there exist infinitely many distinct s ∈ 2<ω”. We set, A =
⋃
An. We

also define the following sets: En = (An \
⋃
j<nAj) ∩ Dn for every n ∈ ω. We also set

E =
⋃
n∈ω E

n.

Claim 8.10. The set E has property P .

Proof. Let x ∈ En for some n ∈ ω. We will prove that either f0(x) /∈ E or f1(x) /∈ E. This

is enough to prove the claim.

[n = 0]: In this case, x ∈ D0 and either f0(x) ∈ A0 or f1(x) ∈ A0 (by definition of

A0). If f0(x) ∈ A0 then f0(x) /∈ E0 (since f0(x) /∈ D0), while f0(x) /∈ Ej for all j > 0 since

Ej ∩A0 = ∅ for all j > 0. We conclude that f0(x) /∈ E. If f1(x) ∈ A0 then we work similarly.

[n > 0]: In this case, x ∈ Dn and either f0(x) ∈ An or f1(x) ∈ An (by definition of

An). If f0(x) ∈ An then f0(x) /∈ En (since f0(x) /∈ Dn) while f0(x) /∈ Ej for all j > n since

Ej ∩ An = ∅ for all j > n. Also, f0(x) /∈ Ej for all j < n. This is simply because if there

was some m < n s.t. f0(x) ∈ Em then that would imply that f0(x) ∈ Am and thus x ∈ Am

which is impossible since x ∈ En and thus x /∈ Aj for all j < n. We conclude that f0(x) /∈ E.

If f1(x) ∈ A0 then we work similarly.

The proof is now complete. We conclude that E has in fact property P .

Claim 8.11. Let x, y ∈ X, s ∈ 2<ω and y = f s(x). If y ∈ A then x ∈ A as well.

Proof. Since y ∈ A then we can fix the minimum n ∈ ω s.t. y ∈ An. But since y = f s(x)

then it is immediate that x ∈ An by the definition of An.

As a corollary of the claim above we get that the set X \ A is upward invariant.

Claim 8.12. For all x ∈ A there exists some s ∈ 2<ω s.t. f s(x) ∈ E.
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Proof. Let x ∈ A. Then we can find an n ∈ ω such that x ∈ An \
⋃
j<nAj. By definition of

An this means that: ∃∞s ∈ 2<ω s.t. f s(x) ∈ Dn \
⋃
j<nAj. However, the latter is equivalent

to: ∃∞s ∈ 2<ω s.t. f s(x) ∈ En.

We now define recursively on A the following rank function: rk : A → ω, which is well

defined by the previous claim.

• If x ∈ E ⊆ A then rk(x) = 0.

• If x ∈ A \ E then rk(x) = min{|s| s.t. f s(x) ∈ E}

The above, allows us to partition A \ E =
⊎
i≥1

Xi where x ∈ Xi iff rk(x) = i. Next we

will recursively re-partition A \ E into the sets E0 ] E1 ] E2.

(i = 1) In that case, we set X1 ⊆ E0.

(i > 1) For this one, we recursively assume that X1] · · ·]Xi−1 ⊆ E0]E1]E2. For each

x ∈ Xi we let x ∈ Ej where j ∈ 3 is the minimum index such that f0(x) /∈ Ej and f1 /∈ Ej.

This construction clearly gives us: A \E = E0 ]E1 ]E2 from which we can clearly get:

A = E ] E0 ] E1 ] E2.

Claim 8.13. The sets E0, E1 and E2, they all have property P .

Proof. It is enough to prove that for each j ∈ 3 and x ∈ Ej we can find i ∈ 2 s.t. fi(x) /∈ Ej.

Since E0 ] E1 ] E2 = E \ A, we can prove this using induction on the rank of x ∈ E \ A:

(rk(x) = 1) Then, x is followed by an element in E.

(rk(x) > 1) By definition of the rk function, we know that there is an i ∈ 2 s.t.:

fi(x) ∈ Xrk(x)−1 ⊆ E0 ] E1 ] E2. However, by the recursive definition of the sets E0, E1, E2

above, we know that fi(x) /∈ Ej as desired. The proof of the lemma is now complete.

Remark 8.14. We can alternatively partition A = E ]E0 ]E1 in such a way that both E0

and E1 have property P .

Proof. As before we recursively define on A the following function: rk : A→ ω:
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• If x ∈ E ⊆ A then rk(x) = 0.

• If x ∈ A \ E then rk(x) = min{|s| s.t. f s(x) ∈ E}

Now we set E0 = {x ∈ A|rk(x) is even but not zero } and E1 = {x ∈ A|rk(x) is odd }.

Then it’s clear that every element in E0 is followed by an element in E1 and every element

in E1 is followed by an element in E ∪ E0.

We now concentrate on X \A. For convenience, let us simply work on X while assuming

that A = ∅. We will later return to the general situation of A 6= ∅. As in theorem 8.4 we set

Cα =
⋃
α(n)=1Dn for all α ∈ 2≤ω. We now prove the following useful lemma:

Lemma 8.15. For each x ∈ X and s ∈ 2<ω there exist some r ∈ ω and t ∈ 2<ω (with t ⊇ s)

that satisfy the following:

∀h0 ∈ 2r∃h1 ⊆ h0 : fh1(x) ∈ Ct but fh1_<i>(x) ∈ F|t| \ Ct (some i ∈ 2)(∗)

Proof. Let x ∈ X, n ∈ ω and s ∈ 2n. Let Bn = {y ∈ X|y = x or y = fu(x) ∈ Fn for some

u ∈ 2<ω}. Clearly, Bn is finite (since A = ∅). Now, we find m > n big enough s.t.: if y ∈ Fn

or y = x then both f0(y) ∈ Fm and f1(y) ∈ Fm. We can do this because Bn is finite. Now,

we let Bm = {y ∈ X|y = x or y = fu(x) ∈ Fm for some u ∈ 2<ω}. Again, Bm is finite. Now

we let B0
m ⊆ Bm to be the set of all y ∈ Bm s.t. either f0(y) /∈ Bm or f1(y) /∈ Bm. Clearly by

the definition of m, B0
m ∩ (Fn ∪ {x}) = ∅. Finally, we find l > m big enough s.t.: if y ∈ B0

m

then both f0(y) ∈ Fl and f1(y) ∈ Fl.

Now, let U = {u ∈ 2<ω|fu(x) ∈ Bm}. Since A = ∅, U is finite. Set r ∈ ω to be

r = max{|u| : u ∈ U}. We also set t ∈ 2l+1 to be t � n = s, t(n) = t(n+ 1) = ... = t(m) = 1

and t(m + 1) = t(m + 2) = ... = t(l) = 0. We will now prove that (∗) holds for these r and

t. Towards that, let h0 ∈ 2r. Then, there must be some k ≤ r s.t. fh0�k(x) ∈ B0
m.

If not, then fh0�k(x) ∈ Bm \B0
m for all k ≤ r. In particular, fh0�r(x) = fh0(x) ∈ Bm \B0

m

which means that both fh0_<0>(x) ∈ Bm and fh0_<1>(x) ∈ Bm, which contradicts the

maximality of r, as both |h0 _ (0)| = r + 1 and |h0 _ (1)| = r + 1.
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We set h1 = h0 � k ⊆ h0. Then fh1(x) ∈ Fm \ Fn but fh1_<i>(x) ∈ Fl \ Fm for some

i ∈ 2. Thus, fh1(x) ∈ Ct but fh1_<i>(x) ∈ F|t| \ Ct for some i ∈ 2. We conclude that the

(∗) and thus the lemma holds.

Hence, ∀x ∈ X∀∗α ∈ 2ω∃r ∈ ω s.t. ∀h0 ∈ 2r∃h1 ⊆ h0 s.t. [fh1(x) ∈ Cα and fh1_<i> /∈ Cα

(some i ∈ 2)], where the part “∀∗α ∈ 2ωφ(α)” indicates that the set {α ∈ 2ω|φ(α)} is

comeager.

We now return to the situation where A 6= ∅. Using the fact that X \ A is upward

invariant, the work above gives us the following statement:

∀x∀∗α if x ∈ X \ A then ∃r∀h0 ∈ 2r∃h1 ⊆ h0 s.t. fh1(x) ∈ Cα but fh1_<i>(x) /∈ Cα for

some i ∈ 2.

For each such α we can define Mα = {x ∈ Cα|f0(x) /∈ Cα or f1(x) /∈ Cα}. That way, we

make sure that Mα has property P . Moreover:

∀x∀∗α if x ∈ X \ A then ∃r∀h0 ∈ 2r∃h1 ⊆ h0 s.t. fh1(x) ∈Mα

For simplicity, we set Q(x, α) = ∃r∀h0 ∈ 2r∃h1 ⊆ h0 s.t. fh1(x) ∈Mα.

Therefore, so far we have:

∀x∀∗α if x ∈ X \ A then Q(x, α).

Now using the proof of theorem 8.4 and the fact that E has property P we can get

ĀE ⊆ E s.t. χB(G � ĀE) ≤ 3 and on E \ ĀE we have:

∀x∀∗β if x ∈ E \ĀE then ∃s ∈ 2<ω s.t. f s�n(x) ∈ E for all n ≤ lh(s) and [(f s_<i>(x) /∈ E

for all i ∈ 2) or (f s(x) ∈ Cβ but f s_<i>(x) ∈ E \ Cβ for some i ∈ 2)]

Of course, the same statements are true for all the sets E0, E1, E2 and Mα (for the

comeagerly many α’s) since they all have property P .

Set R(x, β, Y ) = ∃s ∈ 2<ω s.t. f s�n(x) ∈ Y for all n ≤ lh(s) and [(f s_<i>(x) /∈ Y for all

i ∈ 2) or (f s(x) ∈ Cβ but f s_<i>(x) ∈ Y \ Cβ for some i ∈ 2)].

We then have by the above that for each Y ∈ {E,E0, E1, E2,Mα} there are sets ĀY ⊆ Y

s.t. χB(G � ĀY ) ≤ 3 and:
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(∀x)(∀∗α)(∀∗β)(x ∈ Y \ ĀY → R(x, β, Y ))

Let:

T (x, α, β) =

( ∧
Y ∈{E,E0,E1,E2,Mα}

(
x ∈ Y \ ĀY → R(x, β, Y )

))
& (x ∈ X \ A→ Q(x, α)).

Then, (∀x)(∀∗α)(∀∗β)T (x, α, β). Also, replacing x by f t(x), where t ∈ 2<ω, we get

equivalently that:

(∀x)(∀t ∈ 2<ω)(∀∗α)(∀∗β)T (f t(x), α, β).

Now, it’s finally time to “switch quantifiers” by using the Kuratowski-Ulam theorem:

For comeagerly many α’s and β’s the following set is comeager:

Cα,β = {x ∈ X|∀t ∈ 2<ωT (f t(x), α, β)}.

Finally, all we have to do is fix some α0 and β0 such that the set C = Cα0,β0 is comeager.

Clearly, C is upward invariant. We check that it is also Borel finitely colorable. Since the set

C is partitioned into

( ⊎
Y ∈{E,E0,E1,E2,Mα0}

(Y ∩ C)

)
] (C \ (A ∪Mα0)), it is enough to check

that the graph G is Borel 3-colorable on each of the pieces. Then the entire graph will be

Borel 18 colorable in C. But, each Y ∩ C is Borel 3-colorable as in the proof of Theorem

8.4, using the property that (∀x ∈ (Y \ ĀY ) ∩ C)R(x, β, Y ) and the fact that ĀY (and thus

ĀY ∩C) is upward and downward invariant inside Y as well as Borel 3-colorable. At the same

time, the set C \ (A ∪Mα0) is bounded by A ∪Mα0 and thus it’s also Borel 3-colorable by

Lemma 4.7. Combining these colorings we get that χB(G � C) ≤ 18 and hence by Theorem

6.1, χB(G � C) ≤ 5.

Next we turn to the µ-measurable chromatic number. We start with the following useful

lemma:

Lemma 8.16. For each ε > 0, u ∈ 2<ω and s ∈ 2<ω there exists some t ∈ 2<ω (with t ⊇ s)

s.t.: µ({x ∈ X|fu(x) ∈ X \ A→ [∃r ∈ ω∀h0 ∈ 2r∃h1 ⊆ h0 : fu_h1(x) ∈ Ct, fu_h1_<i>(x) ∈

F|t| \ Ct (some i ∈ 2)]}) ≥ 1− ε.

Proof. Towards that, we let ε > 0, u ∈ 2<ω, n ∈ ω and s ∈ 2n. Then we can find m > n

such that:
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µ({x ∈ X|fu(x) ∈ X \ A→ [∃r ∈ ω∀h0 ∈ 2r∃h1 ⊆ h0: f
u_h1(x) ∈ Fm \ Fn]} ≥ 1− ε/2.

To see this, let rn(x) to be the least r ∈ ω s.t. fu_h(x) /∈ Fn for all h ∈ 2<ω with |h| ≥ r.

Such r exists since fu(x) /∈ A. We also set Bk = {x ∈ X|fu_h(x) ∈ Fk for all h ∈ 2≤rn(x)}.

Clearly,
⋃
k>nBk = X and thus we can find m > n big enough s.t. µ(

⋃
n<k≤mBk) ≥ 1− ε/2.

In the same manner, we can find l > m such that:

µ({x ∈ X|fu(x) ∈ X \A→ [∃r ∈ ω∀h0 ∈ 2r∃h1 ⊆ h0: f
u_h1(x) ∈ Fm \Fn, fu_h1_<i>(x)

∈ Fl \ Fm (some i ∈ 2)] } ≥ 1 − ε. Now, we define t ∈ 2l+1 to be such that: t � n = s,

t(k) = 1 for all n ≤ k ≤ m and t(k) = 0 for all m < k ≤ l. Clearly, the t in question satisfies

the properties of the lemma.

Now we can recursively construct an α ∈ 2ω s.t.:

The set C = {x ∈ X|(∀u ∈ 2<ω)[fu(x) ∈ X \ A→ ∃r ∈ ω∀h0 ∈ 2r∃h1 ⊆ h0: f
u_h1(x) ∈

Cα but fu_h1_<i>(x) /∈ Cα (some i ∈ 2)] } is µ-conull.

To see this, we observe that we can find strictly increasing sequence of tk ∈ 2<ω (tk ( tk+1)

s.t. µ(Hk) ≥ 1− 1/2k for all k ∈ ω, where:

Hk = {x ∈ X|fu(x) ∈ X \ A → [∃r ∈ ω∀h0 ∈ 2r∃h1 ⊆ h0: f
uk_h1(x) ∈ Ctk \ F|tk−1|

but fuk_h1_<i>(x) ∈ F|tk| \ Ctk (some i ∈ 2)] }, while {uk|k ∈ ω} lists all finite sequences

u ∈ 2<ω each repeated infinitely many times, and F|t−1| is defined to be the empty set. Then,

we let Tj =
⋂
k>j Hj and T =

⋃
j Tj. Clearly, µ(Tj) ≥ 1 − 1/2j and µ(T ) = 1. Thus,

α =
⋃
k tk is as desired. This is simply because by the definition of Hk, for each x ∈ Tj we

have that (∀u ∈ 2<ω)[fu(x) ∈ X \ A → ∃r ∈ ω s.t. ∀h0 ∈ 2r∃h1 ⊆ h0: f
u_h1(x) ∈ Cα but

fu_h1_<i>(x) /∈ Cα].

Next, we let Dα ⊆ Cα to be the set of all x ∈ Cα s.t. either f0(x) /∈ Cα or f1(x) /∈ Cα. It

is then easy to see that:

C = {x ∈ X|(∀u ∈ 2<ω)[fu(x) ∈ X \ A→ ∃r ∈ ω∀h0 ∈ 2r∃h1 ⊆ h0: f
u_h1(x) ∈ Dα]} is

µ-conull.

For notational simplicity, we set E = E3 and Dα = E4. Thus, A ∪ Dα = E0 ] E1 ]
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E2 ]E3 ]E4. Note that all Ej’s have property P . Using this fact, we can define a function

g :
⋃
j∈5Ej ⇀

⋃
j∈5Ej s.t. g(x) = fi(x) if both x, fi(x) ∈ Ej (for some i ∈ 2 and j ∈ 5), or

else g(x) ↑ (meaning that g(x) is undefined). For each Y ∈ {E0, E1, E2, E3, E4} let ĀY be

the union of the sets An defined at the start of proof of Theorem 8.4, for the graph G � Y .

Also, for s, t, u ∈ 2<ω and Y ∈ {E0, E1, E2, E3, E4} we define:

Hu
Y (s, t) = {x ∈ X|y = fu(x) ∈ Y \ ĀY → [(∃k ∈ ω s.t. gk(y) ↑) or (∃k ∈ ω s.t.

gk(y) ∈ Ct \ F|s| but gk+1(y) ∈ F|t| \ Ct)]}.

Lemma 8.17. Let ε > 0, s, u ∈ 2<ω and Y ∈ {E0, E1, E2, E3, E4}. Then we can find t ∈ 2<ω

s.t. s ⊆ t and µ(Hu
Y (s, t)) ≥ 1− ε.

Proof. Let ε > 0, n ∈ ω, s ∈ 2n, u ∈ 2<ω, and Y ∈ {E0, E1, E2, E3, E4}. Clearly, by the

definition of Y \ ĀY , when gj(x) is defined for all j ∈ ω, and x /∈ ĀY , we can also define in(x)

to be the least i ∈ ω s.t. gj(x) /∈ Fn for all j ≥ i. Now, define Bk = {x ∈ X|y = fu(x) ∈

Y \ ĀY → [(∃k ∈ ω s.t. gk(y) ↑) or (gin(y)(y) ∈ Dk)]}. Clearly,
⋃
k>nBk = X. Thus we can

find m > n s.t. µ(
⋃
n<k≤mBk) ≥ 1− ε/2. Therefore:

µ({x ∈ X|y = fu(x) ∈ Y \ ĀY → [(∃k ∈ ω s.t. gk(y) ↑) or (∃k ∈ ω s.t. gk(y) ∈

Fm \ Fn)]}) ≥ 1− ε/2. Similarly, we can find an l > m s.t.:

µ({x ∈ X|y = fu(x) ∈ Y \ ĀY → [(∃k ∈ ω s.t. gk(y) ↑) or (∃k ∈ ω s.t. gk(y) ∈ Fm \ Fn

but gk+1(y) ∈ Fl \ Fm)]}) ≥ 1− ε.

Finally, we define t ∈ 2l+1 to be such that: t � n = s, t(k) = 1 for all n ≤ k ≤ m and

t(k) = 0 for all m < k ≤ l. Clearly, for that t we have that µ(Hu
Y (s, t)) ≥ 1− ε, which proves

the lemma.

Now, let dk = (Ejk , uk) be an enumeration of all pairs (Ej, u) with j ∈ 5 and u ∈ 2<ω,

where each pair appears infinitely many times in the enumeration. Next, starting with t0 = ∅

we recursively construct a sequence {ti}i∈ω of elements in 2<ω s.t. µ(Hi) > 1 − 1/2i where

Hi = Hui
Eji

(ti, ti+1). We also set H =
⋃
j

⋂
i>j Hi. Clearly µ(H) = 1. We also let β =

⋃
i ti.

By all the above, it should also be clear that:
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H = {x ∈ X|(∀u ∈ 2ω)[y = fu(x) ∈
⊎
j∈5

(
Ej \ ĀEj

)
→ [(∃k ∈ ω s.t. gk(y) ↑) or (∃k ∈ ω

s.t. gk(y) ∈ Cβ but gk+1(y) /∈ Cβ)]]} which is µ-conull.

Let C ′ = Cα,β = {x ∈ X|∀u ∈ 2<ωT (fu(x), α, β)}, where T is the predicate defined in the

proof for the comeager case above. Clearly C ′ = H ∩ C and thus C ′ is µ-conull. Moreover,

C ′ is easily upward invariant.

We also check that C ′ is Borel finitely colorable: Since the set C ′ is partitioned into(⊎
j∈5

(Ej ∩ C ′)

)
]

(
C ′ \

(⊎
j∈5

Ej

))
, it is enough to check that the graph G is Borel 3-

colorable on each of the pieces. Then the entire graph will be Borel 18 colorable in C ′. But,

each Ej ∩ C ′ is Borel 3-colorable exactly as in the proof of Theorem 8.4, using the property

that (∀x ∈ (Ej \ ĀEj)∩C ′)R(x, β, Ej), where R is the predicate defined in the proof for the

comeager case above, and the fact that ĀEj (and thus ĀEj ∩ C ′) is upward and downward

invariant inside Ej as well as Borel 3-colorable. At the same time, the set C ′ \ (
⊎
j∈5

Ej)

is bounded by
⊎
j∈5

Ej and thus it’s also Borel 3-colorable by Lemma 4.7. Combining these

colorings we get that χB(G � C ′) ≤ 18 and hence by Theorem 6.1, χB(G � C ′) ≤ 5.

The method used in the proof of the above theorem can be used to obtain the following

theorem as a corollary:

Theorem 8.18. Let X be a Polish space, µ be a probability measure on X, and G = (X,E)

be a graph generated by countably many Borel functions. Then let E0, . . . , En−1 be disjoint

subsets of X with property Pk. Then
⊎
j∈n

Ej is Borel finitely colorable on an upward invariant

comeager subset of X. Similarly for µ measure 1 set. In particular, if f0, f1, ..., fk−1 : X →

X are Borel functions on X, then there is an upward invariant and comeager set C s.t.

χB(Gf0,f1,...,fk−1
� C) < ω, and similarly for µ-measure 1 set C. It follows, we have that:

χBP(Gf0,f1,...,fk−1
) < ω and χµ(Gf0,f1,...,fk−1

) < ω.

Proof. The proof of Theorem 8.8 shows that given any graph G generated by k + 1 Borel

functions, we can find an upward invariant comeager (µ-conull) set C ⊆ X s.t. C can

be partitioned into sets E0, E1, . . . , Ek+3 and C \ (
⊎

j∈k+4

Ej) where all Ej have property Pk
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and C \ (
⊎

j∈k+4

Ej) is bounded by
⊎

j∈k+4

Ej. By induction, there is an upward invariant and

comeager (µ-conull) C ′ ⊆ C s.t. C ′ ∩Ej is Borel finitely colorable. Moreover, C ′ \ (
⊎

j∈k+4

Ej)

is also Borel finitely colorable by Lemma 4.7. We conclude that the graph G is Borel finitely

colorable on C ′.

Now let E0, . . . , En−1 be disjoint sets with property Pk+1. By the proof of Theorem 8.8

the following set is upward invariant and comeager:

C = Cα = {x ∈ X|(∀u ∈ ω<ω)
∧
i∈n

(fu(x) ∈ Ei \ AEi → Q(fu(x), α))}

Now, again by the proof of Theorem 8.8, we also get that inside Ei ∩ C we can find

some disjoint sets E0
i , . . . , E

k+3
i s.t. each Ej

i has property Pk while (Ei ∩C) \

( ⊎
j∈k+4

Ej
i

)
is

bounded by
⊎

j∈k+4

Ej
i .

Now, let: E =
⊎
i∈n

⊎
j∈k+4

Ej
i . By induction, we get that E is Borel finitely colorable on a

upward invariant comeager set C ′ ⊆ C. Moreover, since (Ei ∩ C ′) \

( ⊎
j∈k+4

Ej
i

)
is bounded

by
⊎

j∈k+4

Ej
i , then by Lemma 4.7 we have that:

⊎
i∈n

Ei is Borel finitely colorable on C ′.

For the µ measurable chromatic number we work similarly.
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