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The nonlinear saturation of beam-driven instabilities: 
Theory and experiment 

W. W. Heidbrink, H. H. Duong, J. Manson, E. Wilfrid, and C. Obeman* 
Department of Physics, Universi@ of California, irvirte, California 92717 

E. J. Strait 
General Atomics, P.O. Box 85608, San Diego, California 92186-9784 

(Received 14 December 1992; accepted 8 March 1993) 

Intense fast-ion populations created by neutral-beam injection into a tokamak can destabilize 
toroidicity-induced AlfvCn eigenmodes (TAE modes) or internal kink modes. Experimentally, 
these modes stabilize when fast ions are ejected from the plasma, producing a cycle of relaxation 
oscillations about the marginal stability point. A pair of coupled differential equations describes 
this cycle. This simple theoretical formalism successfully describes the cycles observed during 
TAE experiments in DIII-D [Plasma Physics Controlled Nuclear Fusion Research, 1986 
(International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 1591. 

1. INTRODUCTION 

In tokamaks, the confinement of super-thermal ions is 
usually superior to the confinement of thermal particles, 
and “fast” ions generally thermalize within the plasma.’ If 
the density of fast ions is sufficiently large, however, the 
free energy in the fast-ion population can drive normal 
modes of the background plasma unstable and degrade the 
fast-ion contkrement. Losses associated with collective in- 
stabilities can damage the walls of the device and can re- 
duce the heating efficiency. In particular, instabilities 
driven by alpha particles may prevent ignition in a 
deuterium-tritium (D-T) reactor. 

Several potentially dangerous fast-ion-driven instabili- 
ties exist. The “fishbone” instability was first observed2 
during perpendicular beam injection into the Princeton Di- 
vertor Experiment (PDX) and was subsequently seen in 
many tokamaks.’ This is a relatively low-frequency mode 
[8 ( 10 kHz)] with the structure of an n = 1 internal kink 
( IZ is the toroidal mode number). A related instability, 
which we call the “sawbone” instability, also has the struc- 
ture of an n = 1 internal kink, but the mode amplitude 
collapses relatively suddenly (similar to the crash phase of 
the “sawtooth” instability3) and the frequency spectrum 
contains higher-frequency components of 4 ( 100 kHz) . 
Sawbones were observed4 during tangential injection into 
the Princeton Beta Experiment (PBX) and also in several 
other tokamaks.’ AlfvCn modes are also dangerous. 
Toroidicity-induced AlfvCn eigenmodes (TAE) are ob- 
served in the Tokamak Fusion Test Reactor (TFTR),’ in 
(Doublet III-D),6 and may have been observed in other 
tokamaks.’ These are modes with frequencies of 8( 100 
kHz) that have toroidal mode numbers between n= l-10 
and a ballooning structure poloidally. Other instabilities, 
such as global AlfvCn eigenmodes (GAE),’ ellipticity- 
induced AlfvCn eigenmodes (EAE),8 and kinetic balloon- 
ing modes9 may be important in existing and future de- 
vices. 

All these modes are destabilized by the fast-ion popu- 
lation. Since the density of the background plasma is gen- 

*Deceased. 

erally much greater than the fast-ion density, the frequency 
and spatial structure of the mode are determined primarily 
by the thermal plasma. In the absence of fast ions, the 
modes are weakly damped, with the damping determined 
by properties of the plasma (such as the magnetic shear 
and the temperature and density profiles of the various 
thermal species). Theoretically, the fast-ion drive term de- 
pends upon the velocity and spatial distribution of the fast 
ions, and upon their number density. A generic drive term 
is of the form y,=J’“YF, where JY depends upon the 
number of fast ions, Y depends upon their spatial distri- 
bution, and 9 depends upon their velocity distribution. 
For example, for TAE modes the fast-ion drive term is of 
the form1c-‘2 

yfaPf y-1 
( 1 

F(v), 

where yf is the growth rate associated with the fast-ion 
drive, flf is the ratio of the fast-ion kinetic energy to mag- 
netic field energy, Oar is the fast-ion diamagnetic fre- 
quency, w is the mode frequency, and F(v) is a function 
that depends upon the fraction of fast ions with parallel 
velocities comparable to the phase velocity of the mode. 
According to Eq. ( 1 ), the drive term for TAE modes de- 
pends upon the product of the density of fast ions (l?f), 
their spatial distribution (off), and the fraction of reso- 
nant particles (F) . The drive term for other fast-ion-driven 
instabilities is qualitatively similar. 

There are several mechanisms that could determine the 
saturation amplitude of an unstable fast-ion-driven mode. 
Nonlinear coupling to stable modes could provide addi- 
tional damping, but the modes under consideration tend to 
be separated in frequency w and wave vector k from other 
modes, so this mechanism is likely to be relatively weak. 
The instability could change the properties of the back- 
ground plasma and thereby modify the linear damping 
terms. The time scale for changes in the temperature or 
current profiles is relatively long, however, so this mecha- 
nism is very improbable. Alternatively, frequency shifts 
introduced by nonlinearities could increase coupling to 
damped modes, thereby enhancing the damping. However, 
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the most likely scenario is that nonlinear saturation of fast- 
ion-driven modes is caused by modification of one or more 
of the factors that compose the drive term. In previous 
studies of the saturation of TAE modes, modification of the 
spatial gradienti and of the velocity distribution’41” were 
explored as potential saturation mechanisms. Saturation 
via particle loss was originally explored as part of theoret- 
ical studies of the fishbone instability.‘Q’7 

In this paper, we assume that the dominant saturation 
mechanism is the loss of fast ions, i.e., that saturation is 
achieved through reduction in ,Y of the drive term. This 
hypothesis is motivated by the experimental observation 
that large numbers of beam ions are expelled from the 
plasma during Ashbone and TAE19t20 activity and that 
saturation is coincident with the fast-ion losses. Another 
important experimental observation is that the saturation 
mechanism is a powerful one that tends to clamp the fast- 
ion beta near the point of marginal stability.‘9*21 This ob- 
servation tends to ‘preclude nonlinear couplings or fre- 
quency shifts as potential saturation mechanisms. 
Although changes in the spatial gradient and velocity dis- 
tribution may occur, only fast-ion loss is firmly established 
experimentally. We find that the observed growth and sat- 
uration of the TAE mode in DIII-D is consistent with the 
hypothesis that particle loss is the dominant saturation 
mechanism. 

A complete theory of mode saturation requires careful 
kinetic analysis of the nonlinear interaction of particles 
with the excited modes. In this paper we adopt a simpler, 
semiempirical approach. We begin by generalizing and ex- 
tending the heuristic model proposed by Coppi et al. l7 to 
other beam-driven instabilities (Sec. II) $ A more complete 
solution of the equations is given (Sec. II) and the rela- 
tionship of the solution to measured quantities is consid- 
ered (Sec. III). The model is then applied to experimen- 
tally observed cycles of instability in the DIII-D tokamak2z 
(Sec. IV). The model is able to reproduce the essential 
features of the magnetics and neutron measurements, and 
gives reasonable values for the linear mode damping rate 
(Sec. V). We conclude that fast-ion loss controls mode 
saturation in present experiments and will probably dom- 
inate nonlinear saturation in future devices as well (Sec. 
VI). 

II. THEORY 

The linear stability of a beam-driven mode such as the 
TAE mode is determined by a competition between the 
fast-ion drive term yf and the damping of the background 
plasma, which is characterized by a “growth rate,” 
-Y&mr. Call the mode amplitude A. Then, if nonlinear 
couplings are negligible, the time evolution of A is 

dA 
-$= b’f--Ydamp)A~ (2) 

Theoretically, the drive term for fishbones, TAE modes, 
and other beam-driven modes is linearly proportional to 
the number of beam ions. Experimentally, the number of 

beam ions Nb appears to oscillate about the (linear) mar- 
ginal stability point. We therefore rewrite the drive term as 

Nb - 
Yf=-Tf, 

Nb 

where Nb is the number of beam ions at marginal stability 
and 7f = ydamp is the drive term evaluated at marginal sta- 
bility. With these definitions, Eq. (2) becomes 

(3) 

Growth of the instability induces fast-ion loss. Several 
loss mechanisms are possible. Resonant convective trans- 
port (“mode-particle pumping”) causes losses that are lin- 
early proportional to the mode amplitude A.23 Another 
resonant loss process that may be of importance for TAE 
modes is velocity-space transport across the passed/ 
trapping boundary onto an unconfined banana orbit; this 
mechanism is also calculated to result in losses that are 
linearly proportional to the mode amplitude A.‘4 Stochas- 
tic orbit loss due to island overlap in phase space is another 
potential loss mechanism; in this case, diffusive losses that 
scale as A2 are predicted.” The destruction of magnetic 
surfaces at large mode amplitudes could result in losses 
with an even stronger functional dependence upon mode 
amplitude. 

In a stable plasma, the beam number Nb is determined 
by the competition between beam fueling and Coulomb 
drag. In a plasma with strong beam-driven instabilities, 
mode-induced loss joins Coulomb drag as an important 
loss mechanism. If the period between magnetohydrody- 
namic (MHD) bursts T is short compared to the charac- 
teristic thermalization time rLj and the losses at each burst 
are relatively small ( ANdNbg 1 >, then the steady-state 
losses associated with Coulomb drag are simply related to 
the thermalization time and the average number Nb by 
dNddt cc - ii&th. Under these conditions, which are 
usually satisfied in practice, we can define an effective 
fueling rate S, 

Sd&?+i&/T&, (4) 

that is approximately constant in time. (Here Pb is the 
beam power and Eb is the injection energy.) 

To account for the various possible loss mechanisms, 
we assume that the losses are proportional to A”, where 
Y= 1 for resonant losses and ~=2 for diffusive losses. The 
equation for the time evolution of the beam number be- 
comes 

The constant ylOss is a normalization factor that depends 
upon the efficacy and type of the loss mechanism, and upon 
the units of the mode amplitude A. (In the experimental 
section of this paper, we normalize the mode amplitude to 
the poloidal field Be, but other normalizations are also 
possible.) Strictly speaking, the loss term should be pro- 
portional to Nb rather than the average number Nb, but 
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FIG. 1. Numerical solution of Eqs. (9) and (10) for am= 3.0. For Y= 1, 
this solution reproduces the PDX fishbone cycle (Fig. I of Ref. 2). 

use of the average value only modifies the losses by a few 
percent for realistic parameters. The validity of our model 
is discussed in more detail in Sec. V. 

Equations similar to Eqs. (3) and (5) were first de- 
rived in Refs. 16, 17, and 25. The equations resemble the 
equations Volterra introduced to describe two species that 
live in a predator-prey relationship.26 In our case, the 
mode amplitude acts as the “predator” that preys upon the 
population of beam ions. 

Equations (3) and (5) constitute a pair of coupled 
first-order, ordinary differential equations in the variables 
A and Nb . The use of dimensionless variables simplifies the 
analysis. Introduce a normalized time y, 

I n \ l/2 

Y” (; vydamp) 6 

a normalized beam number n that oscillates about the mar- 
ginal stability point at n=O, 

N,--Nb &, 
n=: 

Nb J 
- Yy&mp, 
S 

and a normalized mode amplitude a, 

(7) 

Equations (3) and (5) then become 

da 

dy=na 
and 

dn 
~-=1-a. 
dY 

(9) 

(10) 

The solution to these equations is periodic in the normal- 
ized time y. Without loss of generality, we can select as 
initial conditions a=a,) 1 and n = 0 at y =O. The solution 
then depends upon a single parameter: the maximum am- 
plitude a, (the initial condition). Graphs of the solution 
for a particular case are shown in Fig. 1. Initially, the 
amplitude a > 1, so the beam number n decreases, since 
1 -a < 0 [Eq. ( lo)]. Since n is negative, the mode ampli- 
tude a, which is always greater than zero, decays according 

to Eq. (9 ). The number of beam ions reaches its minimum 
value as the amplitude passes through a = 1. At this point, 
n begins to increase, but the amplitude continues to decay 
until n passes through zero. At this point na>O, so the 
amplitude begins to grow [Eq. (9)]. The growth phase 
continues until the amplitude crosses unity from below and 
dn/dy becomes negative. The maximum amplitude is 
reached when n passes through zero, and the cycle repeats. 

The solution of the above equations was previously 
discussed by Coppi et a1,17 [Note that there are errors in 
their Eqs. (C8) and (C!10).27] However, a more transpar- 
ent treatment is facilitated by obseming that, with the iden- 
tifications p = n and q=ln a, Eqs. (9) and ( 10) assume the 
form of Hamiltons’s equations in the position coordinate 4 
and the momentum coordinate p, The Hamiltonian H, 
which is conserved2* and equals the energy E, is given by 

H=in2+a-ln a=E. (111 

Noting that a=am at n =O, we find that the number of 
beam ions is related to the amplitude by 

n= *fl a,-a-ln(a,/a), (12) 
and the total change in n during the cycle An~n~~~-n,,,i,, 
is 

Ar~=2~/~JamrT-innm. (13) 
According to Eq. ( 12), the decay and growth phases of the 
cycle are symmetric in the normalized time y, while it is 
antisymmetric. From the expression for the energy we also 
find that t-he minimum amplitude amin is related to the 
maximum amplitude by 

amin - In amin = a, - In a,. (14) 
For Hamilton’s equations, the period Y is related to 

the action J and energy E by Y=dJ/dE, where the action 
is J= 9~ dq, Differentiation of J yields an explicit expres- 
sion for the period, 

(15) 

It is possible to show that for weak instability (a,+ 1 ), the 
period Y + 27~. Only for the special case of a, = 1 (the limit 
point of the cycle) is a steady-state solution obtained. The 
numerical solution for Y as a function of a, is graphed in 
Fig. 2. The period Y increases gradually with increasing 
mode amplitude a,. This behavior arises from the compe- 
tition between two opposing tendencies. Large mode am- 
plitude occurs when the effective fueling s/@b iS StrCmg, 
resulting in explosive growth of the mode, Strong fueling 
tends to shorten the recovery between bursts, but large 
amplitudes cause large fast-ion losses, which tends to 
lengthen the period. Since the latter effect is stronger, the 
period increases weakly with increasing mode amplitude. 

III. RELATIONSHIP TO MEASURED QUANTITIES 

Having solved the equations, we next consider the re- 
lationship of the solution to experimentally measured 
quantities. Figure 3 shows typical neutron and magnetic 
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data during a relaxatibn cycle of a TAE mode in DIII-D. 
In this discharge, deuterium beams are injected into a deu- 
terium plasma. For these conditions, the 2.5 MeV neutron 
emission is dominated by beam-plasma reactions 
( > 700/o), with a much smaller contribution from beam- 
beam reactions and negligible contribution from thermo- 
nuclear reactions. For beam-plasma reactions, the neutron 
emission 1, is linearly proportional to the total number of 
beam ions in the plasma Nb ,’ 

I,&iNd~), (16) 

where fid is the deuterium density in the plasma center and 
(av) is the fusion reactivity (which depends strongly upon 
the injection energy and weakly upon the background 
plasma parameters). In principle, a redistribution of beam 
ions to regions of lower deuterium density may cause a 
reduction in neutron emission. Edge measurements indi- 
cate that beam ions are expelled from the plasma by 
fishbones29’30 and TAE’9*2’ activity, however, so we assume 

2.6 ', I 

400 
I 

I -200 1......,.,,.........,.........,...,.....,......... 
2689 2691 2593 2695 2597 2599 

TIME (ms) 

FIG. 3. Tie evolution of the neutron emission and of the signal from a 
magnetic pickup loop (digitally filtered to pass frequencies above 70 kHz) 
for the discharge with TAE activity shown in Fig. 6. The change in beam 
number AN, is inferred from the drop in neutron emission AI,,. The 
effective fueling rate S/fib is ‘obtained from the slope of the neutron 
emission between bursts. The I/e rise and fall times r, are obtained from 
the Minov signal. The period T is the time between bursts. 

that the reduction in neutron emission is due to a reduction 
in the number of beam ions, ANdfib= AI,,/& (Fig. 3). 
The rate of effective beam fueling is obtained from the 
slope of the neutron emission during the period between 
beam bursts (when t_he beam-ion I_osses are negligible), 
using the relation S/N,= (&J&)/l, (Fig. 3 ) . 

The mode amplitude is inferred from measurements of 
the magnetic fluctuations at the plasma edge &,. Theoret- 
ically, the amplitude of greatest interest is the displacement 
within the plasma, but this is not routinely measured on 
most tokamaks. If the mode structure is constant in time, 
the edge fluctuations are linearly proportional to the cen- 
tral displacement, and we assume that this is the case. For 
the fishbone instability, the frequency of the mode often 
changes in time,2 so it is necessary to distinguish b_etween 
the measured signal & and the mode amplitude B,; cor- 
rections for changes in frequency are unimportant for TAE 
modes. Both the “rise” time and “fall” time are well- 
defined quantities experimentally (Fig. 3). These quanti- 
ties are obtained from the envelope of the magnetics signal, 
assuming that the mode grows and decays approximately 
exponentially with a time constant rx. 

The period of the relaxation cycle T is readily obtained 
from either the neutron or the magnetics signal (Fig. 3). 

With the use of Eqs. (6)-( 8)) the measured quantities 
are related to the theoretical quantities by 

An AI, 1 -=- 
Y ?, T(S/&) 

and by 

(17) 

where r is the dimensionless l/e decay “time” of the nor- 
malized amplitude a. The quantities An/Y and r/Y are 
plotted as a function of a, in Fig. 4. These graphs and the 
formulas for An/Y and YQ-/Y allow us to relate the mea- 
sured cycle to the solution (or solutions) of the model 
equations [Eqs. (3) and (5)] that best fits the data. First 
we use Fig. 4(b) to find the value of a, that is consistent 
with the measured value of An/Y. Next, a, is used in Fig. 
4(a) to find T/Y. Comparison with the measured value of 
r.JT then yields the loss parameter Y through the formula 
Y= (7,/T)/(dY). 

As a specific example, consider the PDX fishbone cycle 
published in Fig. 1 of Ref. 2. The first nine fishbone bursts 
in the cycle are similar but not identical. The drop in neu- 
tron emission for these nine events is AI,/In -0.32 ho.06 
and the period between bursts is T=2.7*0.3 msec. From 
the rate of rise of the neutron emission between bursts we 
obtain a fueling rate of S/#b=230zt20 see-‘. The ob- 
served rise and decay times of the Mirnov signal give 
rx=0.53*0.06 msec. Substitution of these data into Eqs. 
(17) and ( 18) gives a normalized neutron drop of An/Y 
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FIG. 5. Locat ion of the discharges selected for detai led analysis in pa-  
rameter space.  The  ordinate is the volume-averaged beam beta that would 
have been  obtained in the absence of fast-ion losses (the classical beam 
beta); losses of up  to 70% reduce the actual value by as much as a  factor 
of 3  for cases with TAE activity. The  abscissa is the velocity of injected 
ful l-energy beam ions normal ized to the Alfven speed.  The unstable dis- 
charges had  TAE activity (solid points). 
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FIG. 4. Normalized decay time T/Y and  normal ized drop in the number  
of beam ions An/Y versus the maximum normal ized mode  ampli tude a,. 
The  darkened region indicates the measured value of An/Y (one standard 
deviation) for the PDX f ishbone cycle; the measured value of r/Y for 
Y= 1  and  for ~=2 are also shown. For v= 1, a,,,= 3  is consistent with the 
measured values of ?;/T and  An/Y, while for v=2, a,=5 fits the data 
(vertical lines). 

=0.52 *O. 12 and a normalized rise and fall time of 
?;/T =0.20~0.03. We  use these values in Fig. 4  to find 
values of Y and a, that are consistent with the data. If we 
assume Y= 1 (as suggested by detailed analysis of the be- 
havior of the neutron data”), we find that amz3.0 is con- 
sistent with both the observed value of An/Y and the ob- 
served value of 7,/T (Fig. 4). Because of the uncertainties 
in the experimental values, this procedure does not yield a 
unique solution for Y and a,. For the PDX fishbone cycle, 
the data are also compatible with Y= 2 (Fig. 4). 

Having found values of Y and a, that are compatible 
with the experimental cycle, we next use Eqs. (6)-( 8) to 
find the implied linear damping rate ydamp and the particle 
loss rate gloss. The damping rate at marginal stability is 

(19) 

The loss rate is 

where A, is the maximum value of A. For the PDX fish- 
bone cycle, we find from Fig. 2  that Y = 6 for am= 3. Sub- 
stitution of the measured quantities into Eq. ( 19) indicates 
that marginal stability occurs when the beam drive 
~,s=ydampE2.0x lo4 see-‘. This value is about live times 
smaller than the value of 7r0+e/4 predicted by Chen et al. M  
(@pre is the precession frequency) but agrees (to within a 
factor of 2) with the value predicted by Coppi et al. l7 

IV. DIII-D DATA 

Intense near-tangential deuterium beam injection into 
low-field ( s 1.4 T) DIII-D discharges readily destabilizes 
TAE modes.6 Other publications discuss the basic proper- 
ties of the modes,6 the effect of the instability upon 
beam-ion” and fusion-product3’ confinement, the observed 
frequencies32 and their relationship to the theoretical gap 
structure,33 and comparisons of the observations with lin- 
ear stability theory.34 For comparison, we select four dis- 
charges from data acquired during TAE mode 
experiments’9*34 with similar shapes (ROE 180 cm; a-65 
cm; ~2: 1.6; inner-wall limiter), but with markedly differ- 
ent nonlinear cycles. The location of the selected dis- 
charges in parameter space is shown in Fig. 5. Although 
none of the discharges are particularly unusual, this set of 
shots does provide a good sample of the variety in period, 
decay rate, and reductian in neutron emission that is ob- 
served. Repeated bursting is virtually always observed, al- 
though the cycle is often less reproducible than in the se- 
lected cases. 
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FIG. 6. Time evolution of the neutron emission and low-pass and high- 
pass magnetics signal in a discharge with large TAE activity (shot 

FIG. 7; ‘Time evolution of the neutron emission and low-pass and high- 

75824). Here B,=O.9 T; Z,=O.5 MA; ii,=3.4x lOi cm-3; &=9 MW; 
pass magnetics signal in a discharge without fishbone activity (shot 

and /3,=3.8%. The low-pass signal is dominated by n=l activity. The 
71491). Here B,=l.O T; Z,=O.6 MA; i ie=3.4x 1013 cm-‘; P,=14 Mw, 

high-pass signal is due to several toroidal mode numbers with the domi- 
and &=2.9%. The low-pass signal is dominated by n=2 activity. The 
high-pass signal is due to several toroidal mode numbers with the domi- 
nant mode typically an n=4, f=73 kHz mode. nant mode typically an n=6, f=98 kHz mode. 

Shot 75824 (Fig. 6) is a typical discharge with TAE 
activity. Large bursts of MHD activity occur about every 5 
msec. By digitally filtering the magnetics signal, it is evi- 
dent that the activity occurs in two frequency bands: a 
low-frequency band below 25 kHz and a higher frequency 
band above 70 kHz. Fourier analysis of the magnetics and 
soft x-ray data shows that the low-frequency activity is 
caused by an n= 1 fishbone mode that is nearly stationary 
in the plasma frame.35 The high-frequency band is caused 
by a set of propagating TAE modes.6 Occasionally small 
TAE bursts occur alone but, in this discharge, the large 
TAE bursts are all accompanied by a fishbone burst. The 
drop in neutron emission (15%) correlates much better 
with the amplitude of the TAE activity than with the fish- 
bone amplitude, however, and this trend is generally ob- 
served in DIII-D.r9 (F or example, at 2598.5 msec the slope 
of the neutron emission is positive, even though the ampli- 
tude of the fishbone is large.) Detailed analysis of the slope 
of the neutron emission, which is proportional to the rate 
of fast-ion loss,l* shows that the fast-ion losses scale lin- 
early with the TAE mode amplitude for these bursts,” 
implying that Y= 1 for these conditions. The total drop in 
neutron emission also scales linearly with the maximum 
mode amplitude for these conditions, which also suggests 
resonant lossesr9 ( Y= 1) . 

In DIII-D, TAE activity is usually accompanied by 
low-frequency n = 1 activity, but, in roughly 20% of the 
discharges, fishbone and sawtooth activity are absent. In 
these discharges, the low-frequency band is often domi- 
nated by an n = 2 mode, whose amplitude changes little on 
the time scale of the TAE bursts (possibly a tearing 
mode). Figure 7 shows shot 71491, which is an example of 
this behavior. In this discharge, the amplitude of the low- 
frequency activity is uncorrelated with the behavior of the 
neutron emission. Relatively large-amplitude TAE bursts 
occur with a period of approximately 2. msec, and these 
bursts correlate with small reductions in neutron emission 

( - 3% ) . -The reduction in mode amplitude between bursts 
is very modest compared to the previous case (Fig. 6). 
Qualitatively, this TAE cycle resembles the “run-on fish; 
bones” occasionally observed on PDX and other 
tokamaks.’ 

Figure 8 shows the TAE cycle in shot 71520, which is 
near the high-field, low ~11 /u, extreme of our data set (Fig. 
5). In this discharge, fishbone and TAE bursts occur si- 
multaneously about every 7 msec, and each burst corre- 
lates with a modest drop ( - 4% ) in neutron emission. The 
amplitude of both the TAE bursts and the fishbone bursts 
are relatively weak in this cycle. The time-dependent 
change in slope in the neutron emission correlates better 
with the instantaneous TAE amplitude than with the fish- 
bone amplitude. 
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FIG. 8. Time evolution of the neutron emission and low-pass and high- 
pass magnetics signal in a discharge with weak TAE activity (shot 
71520). Here B,=1.4 T; Z,=O.6 MA; ii,=3.0~10’~ cm m3; P,=8 MW; 
and &= 1.3%. The low-pass signal is dominated by fishbone activity and 
the high-pass signal is due to several toroidal mode numbers with the 
dominant mode typically an n=4, f= 123 kHi mode. 
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FIG. 9. Time evolution of the neutron emission and low-pass and high- 
pass magnetics signal in a discharge dominated by sawbone activity (shot 
71527). Here B,=0.6 T; Z,=O.6 MA, ii,=3.5X10’3 cmm3; Pb=8 MW, 
&=4.5%. The low-pass signal is dominated by n=l activity and the 
high-pass signal is dominated by harmonics of the n= 1 activity. 

Figure 9 shows the cycle in shot 71527, which is at the 
low-field, large uII /uA limit of DIII-D operation (Fig. 5). 
Despite intense injection of super-Alfvenic beam ions, no 
evidence of TAE activity is found in the Fourier spectrum 
of the magnetics signals for this condition. In the digitally 
filtered signals, high-frequency activity is apparent (Fig. 
9), but the Fourier spectra of these bursts are dominated 
by harmonics of the low-frequency activity. The low- 
frequency activity consists of two types of n= 1 bursts: 
fishbones and sawbones. The fishbone bursts (for example, 
at 1815 and 1838 msec) decay more gradually, have less 
high-frequency harmonic content, and cause a much 
smaller reduction in neutron emission than the sawbone 
events (for example, at 1821 and 1843.5 msec). The saw- 
bone events resemble the modes observed during tangential 

TABLE I. Analysis of experimental cycles. 

-200 1 
I 

I I , I 
2589 2591 2593 2595 2597 2599 

TIME (ms) 

FIG. 10. Comparison of the data in Fig. 6 (jagged curves) with the 
solution of Eqs. (9) and (10) for Y= 1 and am= 10 (smooth curves). The 
magnetics data are digitally filtered to eliminate frequencies beIow 
70 kHz. 

injection into P13X.4 The sawbones occur about every 22 
msec, cause quite large drops in neutron emission (36%)) 
and appear to dominate the nonlinear cycle (Fig. 9). 

These data (Figs. 6-9) are analyzed in terms of the 
theoretical model of Sets. II and III. For the shots with 
TAE activity, we use the high-pass filtered magnetics sig- 
nal to determine the rise and fall time rx, since the neutron 
signal correlates better with this signal than the low-pass 
signal. For the shot with sawbone bursts (71527), we use 
an unfiltered magnetics signal and ignore the fishbone 
bursts, since they have only a minor effect upon the ob- 
served cycle. The results are tabulated in Table I. The 
agreement with theory is good, as is illustrated in Fig. 10 
for a typical case. Since the theoretical model assumes that 
the rise and fall times of the burst are equal, we use both 

Shot AZdZ, T (msec) 

PDX 0.32*0.06 2.7AO.3 
75824 0.15*0.05 4.8hO.8 
71491 0.029*0.006 1.810.2 
71520 0.037*0.005 7.0*0.2 
71527 0.36hO.09 22*4 

Measured quantities 
r, (msec) 

0.53*0.06 
0.38fO.30 
0.71*0.28 
1.0*0.6 
040~0.16 

S/IV, (set-‘) 

230 
35 
32 
10 
20 

&/z3, (10-3) 

1.8 
1.2 
0.06 
1.1 

Derived quantities 

Shot An/Y 7dT Y a, ?-damp (sech’) noss (set-‘1 

PDX 0.52*0.12 

75824 0.89*0.33 

71491 0.50*0.12 

71520 0.53+0.07 

71527 0.82kO.27 

‘Does not fit within error bars. 

0.20*0.03 

0.08*0.06 

0.39AO.16 

0.14 f 0.09 

0.018*0.007 

1 3 l&l 
2 4.2 3.2e4 
1 10 8.3e4 
2 10 8.3e4 
1 2.6a 2.0eSa 
2 2.9 2.5e5 
1 4.2 l.oe5 
2 3.3 6.5e4 
1 20 2.04 
2 20 2.0e4 

2e5 
le8 
7e4* 
6e7 
7e5 
9e9 
4-25 
3e8 
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data in our calculation of rx, even though the fall time is 
often greater; in the discharges where they differ signifi- 
cantly, the error in rx is large (Table I). Also listed in 
Table Lis the maximum amplitude of the high-pass filtered 
burst BdB,, where B, is determined from the integral of 
the magnetics signal and Be is the poloidal field at the coil. 

Using the measured quantities, we infer the parameters 
v, ydamp, and gloss as described in Sec. III. The results are 
given in Table I. In every case but the shot with the n=2 
“tearing” mode (shot 7149 1 ), the error bars are suffi- 
ciently large that solutions with Y= 1, ~=2, or even higher 
values of Y are compatible with the data. Shot 71491 is not 
compatible with resonant loss (Y== l), however. Fortu- 
nately, the inferred marginal stability point y&,,,, is inde- 
pendent of Y [Eq. ( l9>]. The damping rate Ydamp is com- 
parable (-1.0X lo5 set-‘) in the two shots with 
combined fishbone and TAE activity (shots 75824 and 
71520), while it is about a factor of 2 larger in the dis- 
charge with n = 2 low-frequency activity. The marginal sta- 
bility point in the discharge with sawbones (71527) is con- 
siderably smaller than in the TAE discharges (-2X 10’ 
SC’), and is comparable to the damping rate found for 
fishbones in PDX. For both Y= 1 and for y=2, the loss 
term gloss varies considerably. (Comparing ‘yloss for differ- 
ent values of Y is not physically meaningful, since the mag- 
nitude of yi,,ss depends upon the normalization selected for 
the mode amplitude A.) 

To assess the generality of these findings, we examine 
our database of DIII-D discharges with fast (500 kHz 
sampling) magnetics data. Nearly 100 discharges in the 
database have cycles dominated by repetitive, reproducible 
MHD bursts (which may be a combination of more than 
one instability). These discharges span the parameter 
range B,=0.8-1.4 T, 1,=O.H.8 MA, ~=l.l-1.8, 
Ee=2-5 X lOi cmA3, injected power P,=2-20 MW, toroi- 
da1 beta &= 1%-5%, and normalized beta fiN= 1.7-6 (the 
large values of PN are obtained with negative current ramp- 
ing). Virtually all the discharges have TAE activity. 

We first examine the dependence of the decay time rx 
on the normalized- mode amplitude a,. Theoretically, the 
decay time is expected to decrease as the mode amplitude 
increases [Fig. 4(a)], because large amplitude occurs when 
the fueling S/fib is strong, and this results in both rapid 
growth and rapid quenching of the burst. Since the values 
of Yloss and Y that convert the measured mode amplitude to 
a, [Eq. (811 are not known a priori, we plot r,/T vs 
A/(S/flb) for Y= 1 and versus A/ m for y-=2. We also 
explore various possible definitions of the mode amplitude 
A and of the decay time T~ (in our theory, the rise time of 
the instability rtirise equals the fall time rfall, but experimen- 
tally the rise and fall times often differ). The results of the 
analysis are shown in Fig. 11. The scatter in the data is 
smaller when using the average value of the rise and fall 
times, rx=0.5(rti,,+rfJ than with the definition 7;c=rtiTe 
or rx=rfd. The scatter is also reduced when the measured 
fluctuation amplitude is normalized to the pLasma current 
rather than to the-toroidal field, i.e., A= Be/B, gives a 
better fit than A= BB/B,. A better fit is obtained with the 
normalization appropriate for resonant losses 
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FIG. 11. Normalized decay time versus normalized mode amplitude for 
many discharges. The l/e time 7; is the average of the rise time of the 
high-pass magnetics signal rtiSc and the decay time rm,; only data with 
rraa < 4rrise are included. In the abscissa, the approximation A CC &,,,,/I, is 
used, where B,, is the average value Ef the high-pass signal during the 
burst, and the scale was normalized to &/Be for one representative case. 
The error bars indicate the standard deviation of many discharges. The 
curve is the theoretical dependence for v=l, which was fit to the data 
using ~,,,~~=3.8X lo5 WC’.’ 

[aa, ccA/(S/NJ for Y= l] than with the normalization ap- 
propriate for diffusive losses [a, a A2(S/gb) for ~=2]. 
The data show the expected tendency for the decay time to 
shorten as the mode amplitude increases. In plotting all the 
data on the same graph we are implicitly assuming that all 
the discharges have the same value of gloss (and Y); scatter 
in yloss associated with variations in mode structure pre- 
sumably accounts for much of the scatter in the fit. 

Theoretically, the normalized period increases gradu- 
ally with increasing mode amplitude (Fig. 2). Since the 
value of Y&mp that converts the measured period T to the 
normalized period Y [Eq. (6)] is unknown, we consider 
the dependence of T m upon A/(S/Nb), as in Fig. 11. 
Figure 12 shows the results for all discharges with LZ= 1 
low-frequency activity (most of the discharges in the da- 
tabase). The data show the expected tendency for slightly 
longer periods as the mode amplitude increases. By simul- 
taneously fitting the theoretical curves in Figs. 2 and 4(a) 
to the data in Figs. 11 and 12, we convert the experimental 
abscissa to the theoretical amplitude a,, and thereby infer 
the loss coefficient gloss. The curves shown in the figures 
imply that the average value of gloss for this data set is 
3.8~ lo5 set-‘, in rough agreement with the values found 
from analysis of the individual cases (Table I). Similarly, 
the fit to the ordinate in Fig. 12 indicates that the average 
value of the marginal stability point Ydamp is 1.6 X lo5 see- ’ 
for this data set. Presumably, the relatively large scatter in 
the data in Fig. 12 is associated with variation in the quan- 
tities Ydamp and ~~~~~ for the various plasma conditions. In- 
clusion of the discharges that do not have n= 1 Iow- 
frequency bursts increases the scatter, presumably because 
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FIG. 12. Normalized period versus normalized mode amplitude for many FIG. 14. Fast-ion loss rate (Al,,/Z,)/T versus the product of the TAE 
discharges with a= 1 low-frequency activity. The abscissa is the one em- mode amplitude and the effective fueling rate S/IV* for discharges with 
ployed in Fig. 11. The error bars indicate the standard deviation of many relatively small a= 1 low-frequency activity. The error bar shows the 
discharges. The curve is the theoretical dependence for v= 1, which was error for a representative discharge in the database. (Here A in the ab- 
fit to the data using ylW=3.8X 10’ set-’ and ydYaamp=l.6X 10’ set-‘. scissa is actually &,,,JIP, as in Fig. 11.) 

these “tearing mode” discharges increase the variation in 
ydamp and ylcss (Table I). 

Theoretically, An/Y assumes a value between zero and 
unity [Fig. 4(b)]. With the use of Eqs. (6) and (7), we see 
that this is equivalent to the statement that (g,/I,)/T 
should not exceed the effective fueling rate S/hrb. Figure 
13 shows that the data in our database are consistent with 
this prediction. The fast-ion loss rate (AI,/I,)/T is the 
reciprocal of the average fast-ion confinement time.” Since 
z6 tends to clamp near the point of marginal stability, the 

FIG. 13. Fast-ion loss rate (AI,,/Z,)/r versus the effective fueling rate 
S/g, for many discharges. The error bar shows the error for a represen- 
tative discharge in the database. Theoretically, the data should all fall 
below the diagonal line. 

I  

b.00 0104 OIOS d.12 
A@/&) ts-‘1 

18 

data in Fig. 13 suggest that as the beam power is increased 
past the point of marginal stability (increasing S), the 
beam-ion confinement time degrades to preserve the con- 
dition RbE const. 

In summary, the duration of the burst rX, the period 
between bursts T, and the magnitude of the fast-ion losses 
ti,,/I, are all consistent with our theoretical model. 

We have also examined our data set for other relation- 
ships between the variables. Empirically, we find that the 
fast-ion loss rate scales with the product of the mode am- 
plitude A and the effective fueling rate (Fig. 14). A similar 
correlation with AfifC is also found, where PfC is the 
volume-average beam beta expected in the absence of fast- 
ion losses” (the classical fast-ion beta). Like Fig. 13, these 
empirical correlations reflect the tendency for the beam 
beta to saturate at the point of marginal stability. 

V. DlSCUSSlON 

Analysis of the observed nonlinear cycle yields the 
mode damping rate Ydamp [Eq. (l9)]. Measurements of the 
temperature, density, and current profiles of the plasma 
permit an independent calculation of the expected damping 
of TAE modes. Use of approximate formulas for the ion 
and electron damping,36 coupling to kinetic Alfvin 
waves,37 and continuum damping3’ yield a value of 
yd,,,C%5x lo4 set-’ for a discharge similar to 71520 and 
71527, with an estimated accuracy of no better than a fac- 
tor of 2.34 The value of Y&,,,p inferred from the nonlinear 
cycle is w 8 X lo4 see-’ (Table I), so the two methods are 
in reasonable agreement. 

Another check on the model is the inferred value of the 
particle-loss coefficient Y. The observed nonlinear cycles 
for plasmas with low-frequency n= 1 activity are consis- 
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tent with ~>l, with the best fit to the data in Fig. 11 
implying YN 1. This is consistent with independent analysis 
of the scaling of AI,,/In with ..4 at individual bursts,lg as. 
well as with Langmuir probe measurements that imply res- 
onant beam-ion losses.ig 

The model also predicts that the beam beta clamps 
near the point of marginal stability, as observed 
experimentally.‘g 

There are interesting differences between discharges 
with n= 1 low-frequency activity and discharges with sat- 
urated tearing modes (or kinks) with 12 > 1. Both the in- 
ferred value of Ydamp and the inferred value of Y tends to be 
higher in the latter discharges, while gloss tends to be 
smaller (Table I). Perhaps the changes in current profile 
that govern the transition in low-frequency MHD activity 
also increase the damping of TAE modes. A possible ex- 
planation for the change in particle losses is that combined 
n= 1 and TAE activity can resonantly transport particles 
all the way from the plasma center to the plasma edge, 
while TAE activity alone is less effective at particle trans- 
port. Studies of the drop in neutron emission AIJI,, versus 
the TAE mode amplitude A indicate that combined TAE 
and fishbone activity cause larger losses than TAE activity 
alone. I9 

In the stability diagram of Fig. 5, it is somewhat sur- 
prising that some discharges with v,Jva > 1 such as shot 
71527 do not exhibit TAE activity. Analysis of the nonlin- 
ear cycle provides the explanation. In these very low-field 
discharges, the marginal stability point for n = 1 activity 
occurs at the relatively low value of Ydampz2 X lo4 set- ’ 
(Table I). This causes the beam beta to saturate below the 
threshold for TAE activity (which occurs for 
Ydamp - -8 x lo4 see-‘). In other words, at a very low field 
the violent losses associated with sawbone activity prevent 
excitation of TAE modes. 

The only significant discrepancy between our theory 
and experiment is in the evolution of the mode amplitude. 
In our model, the rise and fall of the mode amplitude is 
symmetric with respect to time. In the experiment, the fall 
time almost always exceeds the rise time of the TAE in- 
stability. (This was also the case for the fishbone instability 
in PDX.3g) In our model, we assume that the mode struc- 
ture, background damping rate, beam-ion gradient, and 
beam-ion velocity distribution remain constant throughout 
a burst. Presumably, changes in one or more of these quan- 
tities during the burst accounts for the asymmetric evolu- 
tion of the mode amplitude. 

Our model equations do not address the initial growth 
of the unstable mode, but represent the oscillations about 
the nonlinear steady state. Although we have compared 
ydamp with the linear damping rate, our basic equations 
apply even if nonlinear effects modify the damping, as long 
as Ydamp remains constant in time. In our model, since the 
basic equations are conservative, the system oscillates in- 
definitely once the initial conditions are established. The 
actual plasma almost certainly contains some dissipation, 
however, so one might expect the oscillations to damp to 
the marginal stability point (a, + 1) . indeed, more realis- 
tic model equations28’40 are dissipative. There may even be 

experimental evidence that the cycle decays; for example, 
the fishbone cycle in Fig. 1 of Ref. 2 does decay slightly 
between sawtooth crashes (both AI,/I, and T decrease), 
although the changes may be caused by changes in q (or 
other plasma parameters). What then prevents the cycle 
from decaying, and why are oscillations virtually always 
observed? A likely answer is that other instabilities, such as 
the sawtooth instability, perturb the plasma and reestablish 
initial conditions for the oscillatory cycle. In mathematical 
terms, a more realistic model would contain stochastic dif- 
ferential equations rather than deterministic ones, or 
would contain one or more additional evolution equations 
(for the amplitudes of other instabilities) that are coupled 
with the beam-ion equation [Eq. (lo)]. Experimentally, 
irregular bursting is often observed when several instabili- 
ties are present. Periodic cycles are observed most often 
when one instability is dominant, although occasionally a 
pair of instabilities (such as TAE bursts and sawbones) 
will alternate repetitively. Borba et al. recently showed that 
inclusion of a forcing term in Eq. (5) (to simulate the 
effect of other instabilities) can produce period doubling 
and complex, irregular bursting.41 

VI. CONCLUSION 

A semiempirical model for the nonlinear “saturation” 
of fast-ion-driven instabilities through the loss of fast ions 
was extended and solved. Instabilities with discrete, well- 
separated modes that expel the driving particles at low 
mode amplitude are governed by these equations. In par- 
ticular, the model applies to most fast-ion-driven instabil- 
ities, including fishbones, TAE modes,, EAE modes, and 
kinetic ballooning modes. 

Application of the model to TAE modes in DIII-D 
gives good agreement with the experimental observations. 
Although the model fails to reproduce exactly the detailed 
evolution of the mode amplitude within a burst, it succeeds 
in predicting all the gross features of the nonlinear cycle, 
including (i) the clamping of the beam beta near the point 
of marginal stability, (ii) the dependence of the fast-ion 
losses upon the beam fueling, (iii) the gradual increase in 
the period between bursts as the beam power increases, 
(iv) the shortening of the duration of the burst.as the beam 
power increases, (v) a linear damping rate in rough agree- 
ment with theory, and (vi) resonant losses (Y= 1) during 
n = 1 low-frequency activity. 

In light of these successes, we conclude that particle 
loss controls the saturation of TAE modes in DIII-D. 

These findings imply that it will not be possible to 
operate a reactor above the marginal stability point of 
alpha-driven instabilities. Attempts to drive the plasma 
past the marginal stability point will merely increase the 
alpha losses. Since the losses associated with fishbones and 
TAE modes are concentrated poloidally, the escaping al- 
phas threaten damage (erosion, sputtering, impurity- in- 
flux, etc.) to the inside walls without affording any appre- 
ciable benefit to the plasma performance. Prudence 
therefore dictates that reactors operate at or below the 
threshold for instability. Future studies should concentrate 
on efforts to raise the damping rate of the relevant insta- 
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bilities to increase the stable operating regime. For exam- 
ple, efforts to enhance continuum damping of TAE modes 
through current profile contro134P42 may prove useful. 
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