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GAUSS’S LEAST SQUARES CONJECTURE

JOAKIM EKSTRÖM

Abstract. �is article investigates the claim of Gauss, made in �eoria Motus, that deviations from
the normal distribution is of no importance in practice relative to whether the method of generalized
least squares yields the most probable value under the density criterion. �e main result of the article
is that given an independence assumption the method of generalized least squares yields the most
probable value under the density criterion if and only if the observational errors are median zero
normally distributed. As a consequence, the method of generalized least squares carries within itself
a normal distribution assumption, in this sense. �e corresponding claim under Pearson’s distance
criterion is also studied, yielding a similar conclusion.
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1. Introduction

In�eoria Motus (1809), Carl Friedrich Gauss sought to determine Kepler orbits of observed
heavenly bodies. To this end, he employed the ��h axiom of Bernoulli (1713), “Between two, the
one that seems more probable should always be chosen”, the density criterion of Lambert (1760, 1765),
“Given a probability distribution, the value with the higher probability density is deemed to be more
probable than the value with the lower probability density”, and his own theory of observational errors,
by which hypotheses can be empirically evaluated through their corresponding residuals.
Gauss’s work yielded the method of generalized least squares. If the joint probability distribution

of the observational errors has covariance matrix Σ, then the most probable Kepler orbit is that
whose residual vector x minimizes the generalized least squares expression xtΣ−1x, where xt denotes
matrix transpose of x. �e expression can be rewritten through xtΣ−1x = ∥Σ−1/2x∥2 = ∥x∥2

⋆
, where

∥x∥2 = xtx denotes the squared Euclidean norm, and ∥x∥⋆ is a separate covariance-adjusted norm.
As a consequence the method of generalized least squares is intuitively interpretable in geometric
terms. Furthermore, Legendre (1805) had shown that the minimum of the generalized least squares
expression is easily found by solving his system of normal equations.
�emethod is remarkably elegant; it has a probabilistic foundation, it is geometrically interpretable,

conceptually intuitive, and it was easy to apply in practice during the time when there were no
electronic computers. However, there is one circumstance that detracts from the elegance of the
method: the derivations of Gauss rest on an arbitrary normal distribution assumption.
Not only is the assumption of normally distributed observational errors arbitrary, it is quite

unreasonable. It is di�cult to imagine that any astronomer who is measuring angles on the celestial
sphere would obtain observational errors as great as 180 degrees, corresponding to the antipodal
point, not to mention 500 degrees or greater. Gauss (1809, §178) acknowledges that the observational
errors ought to be bounded by certain limits, but claims that the misspeci�ed probability distribution
of the observational errors is of no importance in practice. Additionally, he claims (§179) that as a
consequence the method of generalized least squares should be considered an axiom with the same
propriety as the method of the arithmetic mean.
�is short article aims to thoroughly investigate Gauss’s claim that the distribution assumption is

unimportant relative to whether the method of generalized least squares yields the most probable
value under the density criterion. Since Gauss did not provide any formal proof, the claim is referred
to as Gauss’s least squares conjecture and is, for the purpose of the present investigation, formalized as
follows.

Gauss’s least squares conjecture. �e value obtained through the method of generalized least squares
is the most probable under the density criterion.

An immediate historical remark is that Gauss’s least squares conjecture is falsi�ed by Daniel
Bernoulli (1778). �e nephew of Jakob Bernoulli conducted an investigation basically identical to
that of Gauss (1809), applying Bernoulli’s ��h axiom and the density criterion to determine the most
probable value, but concluded that the arithmetic mean, a special case of the method of generalized
least squares, does not yield the most probable value under the assumption of independent and
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identically semi-circle distributed observational errors. Coincidentally, the analytically inconvenient
non-normal distribution assumption made Daniel Bernoulli’s method practically unusable, as noted
in a comment by Leonhard Euler.

2. Investigation and results

�e present section aims to �nd necessary and su�cient conditions for Gauss’s least squares
conjecture under the assumption of independent observations (Gauss, 1809). To this end, the result
that themethod of generalized least squares yields themost probable value if and only if the probability
distribution is unimodal and median zero elliptical with a density function (see Ekström, 2012a,
�eorem 10) is used.
�e following lemma is shown through a standard argument; its inclusion in the present text

does not constitute a claim of originality. For a random variable U , the notation L(U) denotes the
probability distribution (or law) of U .

Lemma 1. Suppose the random variable U has two or more components, at least two of which are
pair-wise independent, and L(U) is spherical, then L(U) is normal.

Proof. Since L(U) is spherical, L(AU) = L(U) for all orthogonal transformations A. By taking
permutations, which are orthogonal, it follows that all components of U are identically distributed
and pair-wise independent.
Let the characteristic function of the component distribution be denoted ϕ, then ϕL(U)(t⃗) =

∏
p
k=1 ϕ(tk) by independence. Additionally, ϕL(U)(At⃗) = ϕL(U)(t⃗) for all orthogonal transformations

A, thus ϕ is even and hence real-valued. By taking A such that At⃗ = cek , some c ∈ R and normalized
basis vector ek , it follows that ϕL(U)(t⃗) = ϕ(∥At⃗∥)∏l≠k ϕ(0) = ϕ(∥t⃗∥) since ϕ(0) = 1 for all
characteristic functions.
By continuity, ϕ(x) > 0 for x ∈ Br(0), some r > 0. Let h(y) = log ϕ(y1/2), y ∈ [0, r2), and take

t⃗ ∈ Br2(0) and note that

h(
p

∑
k=1

t2k) = h(∥t⃗∥2) = log ϕ(∥t⃗∥) = log
p

∏
k=1

ϕ(tk) =
p

∑
k=1
log ϕ(tk) =

p

∑
k=1

h(t2k).

By induction, h(y) is de�ned for all y ∈ [0,∞) and h(ny) = nh(y) for all n ∈ N. Since nh(y/n) =
h(y), h(qy) = qh(y) for all non-negative rational numbers q, and thus for all non-negative real
numbers sinceQ is dense inR and h continuous. Consequently, h(y) = yh(1) = ay some a ∈ R, and
thus ϕ(t) = eat2 for all t ∈ R since ϕ is even. �e conclusion follows from uniqueness of characteristic
functions. �

�eorem 2. Suppose the random variable U has two or more components, at least two of which are
pair-wise independent and non-degenerate, and L(U) is elliptical, then L(U) is normal.

Proof. By de�nition of elliptical random variables, L(U) = L(AV) where L(V) is spherical and A
some a�ne transformation. Transform each of the two independent non-degenerate components
a�nely by subtracting the median and normalizing the di�erence by some non-zero inter-percentile
range; the two non-zero inter-percentile ranges exist because the randomvariables are non-degenerate.
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�en the two are jointly spherical and independent, and thus the spherical distribution L(V) is
normal by Lemma 1. Hence L(U) = L(AV) is normal. �

In addition to Lambert’s density criterion, a statistical criterion proposed by Karl Pearson (1900)
is widely used. Pearson’s distance criterion utilizes his chi distance, which was later extended into
the Mahalanobis distance. �e distance criterion is formalized: “Given a probability distribution, the
value with smaller Mahalanobis distance to the distribution point of reference is deemed to be more
probable than the value with greater Mahalanobis distance to the distribution point of reference.” �e
distribution point of reference is typically the median, particularly for elliptical distributions, but can
also be taken as an extreme value, for instance the value zero relative to the chi distribution.
For completeness, Gauss’s least squares conjecture is investigated also relative to the distance

criterion. �e value that is most probable under the distance criterion is sometimes referred to as the
minimum chi-square estimate. �e following theorem is of interest.

�eorem 3. Suppose the random variable U has two or more components, all of them independent,
and L(U) is such that the generalized method of least squares yields the most probable value under the
distance criterion, then L(U) is normal.

�e proof of �eorem 3 uses the following lemma relating to Mahalanobis balls, i.e. the set of
points that have a smaller than the radius Mahalanobis distance to the center-point of the ball.

Lemma 4. Suppose the random variable U has two or more components, all of them independent, and
the Mahalanobis balls under L(U) at some center-point are Euclidean, then L(U) is normal.

Proof. Suppose initially that the Euclidean Mahalanobis balls have center-point zero. For any or-
thogonal transformation A and any r ≥ 0 it holds that Br(0) = Es(0) = AEs(0) = ABr(0) for some
s ≥ 0, where Br(0) and Es(0) denote the Mahalanobis and Euclidean balls, respectively, with center-
point 0 and radii r and s. It follows that ∂Br(0) = A∂Br(0), and since orthogonal transformations
have orthogonal inverses the Mahalanobis distance under L(U) satis�es d(Ax , 0) = d(x , 0) for all
orthogonal transformations A.
Since the components of U are independent by assumption, by the Pythagorean property the

Mahalanobis distance saties�es for all x ∈ Rp

d(x , 0)2 =
p

∑
k=1

dk(xk , 0)2,

where p is the number of components of U and d1, . . . , dp are the Mahalanobis distances under the
distributions of each component. Under necessary uniqueness conditions (Ekström, 2011a) those
univariate Mahalanobis distances satisfy

dk(xk , 0) = ∣Φ−1 ○ Fk(xk) −Φ−1 ○ Fk(0)∣,

where Fk is the distribution function of the distribution of the k:th component and Φ−1 is the inverse
standard normal distribution function. Let hk(z) = dk(z, 0), then since d(Ax , 0) = d(x , 0) for all
orthogonal transformations A, including permutations, it follows that h1, . . . , hp are all identical and
even.
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By construction of the Mahalanobis distance, the Mahalanobis transformation Φ−1 ○ Fk maps the
k:th component of U to a standard normally distributed random variable. Because both Φ−1 and
Fk are non-decreasing, the Mahalanobis transformation is non-decreasing, and since it also is real-
valued it follows that every discontinuity is a positive jump. However, if it had a jump discontinuity
then the transformation could not map a random variable to a normally distributed ditto; hence the
Mahalanobis transformation and hk are continuous. Since Fk is a distribution function, its limits at
±∞ are zero and one, respectively, and since hk is continuous and even with a �xed point at zero, the
positive and negative limits of hk are both∞. Hence, there is a z ∈ (0,∞) such that h(z) ∈ (0,∞),
where h = hk all k = 1, . . . , p.
Take x = (z, . . . , z)t, then d(x , 0)2 = d(∥x∥ek , 0)2 = h(√pz)2, where ek denotes a normalized

basis vector, and by the Pythagorean property d(x , 0)2 = ph(z)2. By iteration, h(nz) = nh(z)
for all positive integer times √p multiples n. Since nh(z/n) = h(z), the equality holds for all
positive rational times√p multiples n, and because h is non-decreasing on the positive half line,
h(nz) = nh(z) for all positive reals n. Because the functionsΦ−1○Fk(z)−Φ−1○Fk(0), k = 1, . . . , p, are
non-decreasing, they are odd, and thus Φ−1 ○ Fk(z) = az + b for some real a > 0 and b = Φ−1 ○ Fk(0).
Consequently, all component distributions are normal and since they are independent by assump-

tion,L(U) is normal. Lastly, if the center-point is some non-zerom, then it holds by the homogeneity
property of Mahalanobis balls that BL(U−m)r (0) = BL(U)r (0 + m) − m = Es(m) − m = Es(0), and
thus L(U −m) is normal by the preceding argument. �erefore L(U) is also normal, which is the
conclusion of the lemma. �

As a remark prior to the proof of �eorem 3, the method of generalized least squares can in some
instances be conceived even though no covariance matrix exists. For example, suppose a random
variable U has Cauchy distributed components and there exists a matrix A such that A−1U has
pair-wise uncorrelated components that are identically (Cauchy) distributed, then the method of
generalized least squares may well be de�ned by minimization of xtA−2x, i.e. in this example there is
a matrix that can substitute for the non-existent covariance matrix. To obtain the greatest degree
of generality, the proof of �eorem 3 does not presume existence of a covariance matrix, but only a
linear injective transformation L such that the inversely transformed random variable has pair-wise
uncorrelated components.

Proof of �eorem 3. Suppose that the method of generalized least squares yields the most probable
value under the distance criterion; i.e. suppose ∥a∥⋆ = inf x∈A ∥x∥⋆ Ô⇒ d(a,m) = inf x∈A d(x ,m)

for all sets A, where d is the Mahalanobis distance under L(U), m a point of reference, and ∥x∥⋆ =
∥L−1(x)∥ given some linear injective L. �is implication holds if and only if a ∈ ∂E⋆r (0) and E⋆r (0) ∩
A = ∅ implies for s = d(a,m) that Bs(m) ∩ A = ∅, for all sets A, where E⋆ and B denotes the balls
under ∥ ⋅ ∥⋆ and d, respectively. For any s > 0 and a ∈ ∂Bs(m), take A = E⋆r (0)c where r = ∣∣a∣∣⋆, then
the condition Bs(m) ∩ A = ∅ yields for all s ≥ 0, Bs(m) = E⋆r (0) some r ≥ 0. Additionally, m = 0
follows.
By construction of the method of generalized least squares, the linear, injective L is such that

distinct components ofL(L−1(U)) are uncorrelated. Since the components ofL(U) are independent
by assumption, Lmaywithout loss of generality be taken such that, for k = 1, . . . , p, its k:th component
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is a function only of its argument’s k:th coordinate, and as a consequence it follows that components
of L(L−1(U)) are independent.
By the homogeneity property of Mahalanobis balls, BL(L

−1
(U))

s (m) = L−1(BL(U)s (L(m)). Since
BL(U)s (m) = E⋆r (0) and L−1(E⋆r (0)) = Er(0), it follows sincem = 0 and L linear thatBL(L

−1
(U))

s (m) =

Er(0). Lemma 4 then yields that L(L−1(U)) is normal. Hence, L(U) is normal. �

Remark 1. By the proof of �eorem 3, it holds that the method of generalized least squares yields the
most probable value under the distance criterion only if the distribution point of reference used for
distance minimization is zero. If the distribution point of reference is set to equal the median, as is
conventional for all elliptical distributions, then, in the conclusion of �eorem 3, L(U) is median
zero normal; thus making the conclusion identical to the conclusion of �eorem 2. Gauss (1821)
argues that all observational error distributions should be assumed to have median zero, since the
individuals taking measurements must be presumed competent and able to properly calibrate their
measurement equipment; otherwise an analysis would be meaningless from the outset. By the same
rationale, the observational errors are assumed independent and unimodal.

�e following two theorems are the main results of the present article.

�eorem 5. Suppose the random variable U has two or more components, at least two of which are
pair-wise independent, then givenL(U) the method of generalized least squares yields the most probable
value under the density criterion if and only if L(U) is median zero normal.

Proof. By Ekström (2012a, �eorem 10), the method of generalized least squares yields the most
probable value under the density criterion if and only if L(U) is unimodal, median zero elliptical
and has a density function. Since two components of U are pair-wise independent by assumption,
the existence of a density function and�eorem 2 yield that L(U) is normal. �e conclusion then
follows by Ekström (2012a, �eorem 10). �

�eorem 6. Suppose the random variable U has two or more components, all of them independent,
then given L(U) the method of generalized least squares yields the most probable value under the
distance criterion if and only if L(U) is normal with distribution point of reference zero.

Proof. By�eorem 3, under the independence assumption the method of generalized least squares
yields the most probable value under the distance criterion only if L(U) is normal. Suppose that
L(U) is normal, with covariance matrix Σ, then the Mahalanobis distance under L(U) satis�es
d(x ,m) = ∥Σ−1/2x − Σ−1/2m∥. Consequently, the expressions d(x ,m) and ∥x∥⋆ have identical
minima only if m, the distribution point of reference, is zero. In this case d(x ,m) = ∥x∥⋆, so the
converse is immediate. �

As per �eorem 5, under the independence assumption of Gauss (1809), Gauss’s least squares
conjecture holds only if the probability distribution of the observational errors is normal. Similarly, by
�eorem 6 the method of generalized least squares yields the most probable value under the distance
criterion only if the observational errors are normal. As a result, the probability distribution of the
observational errors is of critical importance relative to the probabilistic properties of the method



GAUSS’S LEAST SQUARES CONJECTURE 7

of generalized least squares. Furthermore, under the assumptions of Gauss (1809) the method of
generalized least squares is a special case of statistical hypothesis generation under either of the
density or the distance criteria (cf. Ekström, 2012b).

3. Concluding remarks

Contrary to the discussed claim of Gauss (1809, §178), that the probability distribution of the
observational error is of no importance in practice, the probability distribution is crucial as to whether
the method of generalized least squares yields the most probable value under the density criterion
or not. Given an independence assumption, the normal distribution is not one of many, but the
only probability distribution under which the method of generalized least squares yields the most
probable value.
An implication of�eorems 5 and 6 is that given the independence assumption, the method of gen-

eralized least squares and the normal distribution assumption are inherently interconnected. Given
the independence assumption, applying the method of generalized least squares, under the implicit
assumption that it yields the most probable value, is equivalent to standard statistical hypothesis
generation under a median zero normal distribution assumption.
While the method of generalized least squares in practice is applied without speci�cation of a

probability distribution, in the sense of�eorems 5 and 6 themethod still carries within itself a normal
distribution assumption. In particular, application of the method of generalized least squares does
not in and of itself relieve the burden of a probability distribution assumption on the observational
errors; rather the circumvention of sorts e�ectively consists of a median zero normal distribution
assumption. A general understanding of this aspect among the members of the scienti�c community
is desirable, not least since the method of generalized least squares probably is one of the most
commonly used methods in modern science.
In addition to�eoria Motus, Gauss wrote two other pieces on statistical hypothesis generation;

Bestimmung der Genauigkeit (1816) and�eoria Combinationis (1821). In�eoria Combinationis,
Gauss revised his rationale for favoring the method of generalized least squares, instead making the
substantially less ambitious argument that when restricting to linear combinations of the observations,
atx, taking a = (1, . . . , 1)t/nminimizes ata while satisfying at(1, . . . , 1)t = 1, i.e. minimizing variance
while being unbiased given uncorrelated observations of equal mean and variance. �e fact that
Gauss revised his rationale may be taken as circumstantial evidence that he recognized weaknesses
in the argument of�eoria Motus, presumably his least squares conjecture.
During the time when there were no electronic computers, few practically feasible alternatives to

the method of generalized least squares existed. �erefore arbitrarily restricting estimators to linear
combinations or assuming normally distributed observational errors, while undesirable theoretically,
could be well motivated on pragmatical grounds. In the twenty-�rst century, by contrast, computer
assisted numerical optimization facilitates quick and all but e�ortless determination of most probable
values given practically any continuous probability density function, thus removing the rationale
for imposing the arbitrary restrictions or assumptions. For instance, the optimization problem of
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Bernoulli (1778), maximizing a polynomial of degree 2n − 1 where n is the number of observations,
is solved easily through computer assisted numerical optimization.
A �nal historical remark is that in the e�orts to motivate a normal distribution assumption, Gauss

(1809) discussed the circumstance that a median zero normal distribution assumption yields the
arithmetic mean as the most probable value under the density criterion, and since the arithmetic
mean is accepted with little objection, there is reason to accept the normal distribution assumption
similarly. During the nineteenth century, this argument was in part misinterpreted as a proof that all
observational errors are median zero normal (see, e.g., Airy, 1875; Merriman, 1884), and the result
was subsequently termed the law of error. Towards the end of the century, falsifying the law of
error in a convincing fashion was a primary motivation for Karl Pearson’s contributions to statistical
methodology. For example, Pearson’s seminal article On the criterion (1900) develops statistical
hypothesis testing, the p-value, and the chi-square test as means towards demonstrating that the
law of error is a falsity. In this fortuitous way,�eoria Motus and Gauss’s least squares conjecture
continued to contribute to the development statistical methodology well into the twentieth century.
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