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Abstract 

Examining the Minor Allele Frequency Spectrum of the Heritability of Complex 

Human Traits 

By Kevin A Hartman 

The genetic architecture of complex human traits remains largely unknown. The 

distribution of heritability across the minor allele frequency (MAF) spectrum for a trait 

will be a function of the MAF of its causal variants and their effect sizes. Assumptions 

about these relationships underpin the tools used to estimate heritability. We examine 

the performance of two widely used tools, Haseman-Elston (HE) Regression and 

genomic-relatedness-based restricted maximum-likelihood (GREML). Our simulations 

show that HE is less biased than GREML under a wide-variety of models, and that the 

estimated standard error for HE tends to be substantially overestimated. We then 

applied HE Regression to infer the heritability of 72 quantitative biomedical traits from 

up to 50,000 individuals with genotype and imputation data from the UK Biobank. We 

found that adding each individuals’ geolocation as covariates corrected for population 

stratification that could not be accounted for by principal components alone (particularly 



 

 vi 

for rare variants). The biomedical traits we analyzed had an average heritability of 0.27, 

with low frequency variants (MAF≤0.05) explaining an average of 47.7% of the total 

heritability (and lower frequency variants with MAF≤0.02 explaining a majority of our 

increased heritability over previous estimates). Variants in regions of low LD accounted 

for 3.3-fold more heritability than the variants in regions of high LD, an effect primarily 

driven by low frequency variants. These findings suggest a moderate action of negative 

selection on the causal variants of these traits. 
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Chapter 1 Introduction 

Complex traits are caused by a combination of environmental factors and genetic 

variants scattered throughout the genome of an organism. The mechanisms by which 

the alleles at those sites induce differences in traits among individuals in a population is 

often unknown, and can be intertwined with many loci influencing many traits (Boyle, Li, 

& Pritchard, 2017). The collective fraction of the variance of a trait between individuals 

in a population that can be explained by the genetic variance between people is known 

as heritability, specifically the trait’s broad-sense heritability, H2. Family studies have 

measured the heritability of many complex human traits to be as high as 90% for height 

(Silventoinen et al., 2003), 72% for type 2 diabetes (Willemsen et al., 2015), and 83% 

for autism (Sandin et al., 2017). 

In the search for causal loci, genome-wide association studies (GWAS) are performed 

(typically assuming an additive model), and many sites have been statistically 

associated with a bevy of traits. However, while the collective fraction of a trait’s 

variance explained by the additive effects of all causal variants (the narrow-sense 

heritability, h2) can be approximated by the statistically associated variants (h2
GWAS), this 

estimate often remains much lower than the estimates of broad sense heritability [e.g. 

only 16% for height (Wood et al., 2014), and 10% for type 2 diabetes (Ali, 2013)]. Even 

the collective fraction of variance in height explained by additive effects across all 

genotyped and imputed sites in these GWAS is only 60% in cohorts with n>250,000 

(Wood et al., 2014). One of the potential explanations for this so-called “missing 

heritability” problem is the contribution of rare variants. Indeed, recent studies have 
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implicated rare variants as a major source of missing heritability for height and BMI 

(Wainschtein et al., 2019) as well as gene expression (Hernandez et al., 2019), but a 

broader understanding of the extent to which rare variants contribute to the heritability of 

complex traits is needed. 

The minor allele frequency (MAF) of a variant represents the frequency of the less-

common allele in a sample of individuals from a population. Populations that have 

recently experienced rapid population growth will exhibit a larger fraction of rare alleles 

than populations that have not been rapidly growing. However, population genetic 

theory suggests that population growth alone is insufficient to drive rare variants to 

constitute a substantial fraction of heritability (Uricchio, Zaitlen, Ye, Witte, & Hernandez, 

2016; Uricchio, 2019; Sanjak, Long, & Thornton, 2017). Natural selection is the 

evolutionary force that puts pressure on deleterious alleles to stay at low frequency (or 

be eliminated from the population) and increases the chance that advantageous alleles 

will increase in frequency (toward fixation in the population). If alleles that have major 

causal effects on a phenotype are evolutionarily deleterious, then natural selection will 

preferentially keep large effect alleles at low frequency, and this process can indeed 

drive rare variants to constitute a substantial fraction of heritability (Pritchard, 2001; 

Eyre-Walker, 2010; Simons, Turchin, Pritchard, & Sella, 2014; Uricchio et al., 2016). 

When strong effect alleles are deleterious in a population that has recently expanded 

(like many European and Asian populations), these evolutionary forces can act in 

concert to cause the genetic architecture of a trait to be dominated by rare variants 

(Uricchio et al., 2016; Hernandez et al., 2019; Lohmueller, 2014).  
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Note that a particular trait itself does not need to be under selective pressure directly to 

drive an effect of rare variants. If pleiotropy is common, then causal variants for a trait 

will have widespread phenotypic effects through interconnected networks [e.g. an 

omnigenic model, (Boyle et al., 2017)], and if any one of the affected traits negatively 

impacts reproductive fitness, then the causal alleles could be evolutionarily deleterious. 

Indeed, much evidence supports the omnigenic model: 1) conserved regions of the 

genome tend to account for a disproportionate fraction of heritability of several complex 

traits (Finucane et al., 2015), 2) several attempts to infer the contribution of rare variants 

to heritability have found substantial evidence for it (Mancuso et al., 2016; Hernandez et 

al., 2019; Wainschtein et al., 2019), and 3) efforts to model the genetic architecture of 

complex traits as a function of purifying selection have argued that purifying selection is 

a prevalent force acting on causal variants (Gazal et al., 2018; Gazal et al., 2017; Zeng 

et al., 2018). 

The primary tools for inferring heritability from genotypes of unrelated individuals are 

variance component models: Haseman-Elston (HE) regression (Haseman & Elston, 

1972; Elston, Buxbaum, Jacobs, & Olson, 2000; Sham & Purcell, 2001; Bulik-Sullivan, 

2015; Golan, Lander, & Rosset, 2014), Genome-based Restricted Estimation Maximum 

Likelihood (GREML) (Yang, Lee, Goddard, & Visscher, 2011; Yang et al., 2010), and 

Linkage Disequilibrium Adjusted Kinships (LDAK) (Speed, Hemani, Johnson, & Balding, 

2012). A separate category of tools, LD Score Regression, make use summary 

statistics from genome-wide association studies to estimate the same (Bulik-Sullivan, 

2015). Each approach makes assumptions regarding the genetic architecture of 
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complex traits (such as the number of causal sites, the distribution of effect sizes, or the 

relationship between effect size and MAF or linkage-disequilibrium), and the estimates 

from these techniques can be biased when models are misspecified (Evans et al., 2018; 

Speed, Cai, Johnson, Nejentsev, & Balding, 2017; Speed & Balding, 2019). 

Unfortunately, since the true underlying genetic architecture is not known in advance for 

a given trait, correcting for biases introduced by model misspecification may be 

challenging. A particularly common form of bias for variance component models is 

introduced when sites with different statistical properties are pooled together (e.g. 

heteroscedasticity). While the true causes of heteroscedasticity are often unknown, a 

first step to alleviate such biases is to partition sites by MAF and degree of linkage 

disequilibrium (LD) (Yang et al., 2015; Evans et al., 2018). Additionally, we have noted 

that partitioning sites based on the MAF inferred from a larger external cohort can 

further reduce bias for rare variants (Hernandez et al., 2019). 

The ability to study the effect of rare alleles is fundamentally limited by the difficulty and 

expense of accurately identifying and collecting rare variants in sufficiently large 

cohorts. Investigators have leveraged information from large whole genome sequencing 

databases such as the Haplotype Reference Consortium (HRC) (McCarthy et al., 2016) 

to impute millions of rare variants in cohorts of hundreds of thousands of samples [e.g. 

the UK Biobank (Howie, Donnelly, & Marchini, 2009; Bycroft et al., 2018)]. The UK 

Biobank in particular has measured a wide variety of phenotypes that we can use to ask 

about heritability and the genetic architecture of complex traits. However, before 

estimating the contribution of rare and common variants to the heritability of complex 
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traits, we must first understand the accuracy of various inference procedures. We 

conducted thousands of simulations of phenotypes from genetic data and assessed 

how well two methods for heritability inference perform. We then explored the impact of 

sample size on the bias and standard errors of the estimated heritability. Lastly, we 

explored the impact of excluding rare MAF partitions on the inference of heritability for 

common variant partitions. We then applied our framework for studying variants across 

the MAF spectrum to infer the heritability of 72 quantitative human traits from the UK 

Biobank.  
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Chapter 2 Methods and Materials for the Simulations of Complex Traits and 

Inference of Complex Trait Heritability 

Genomic and Phenotypic Data 

The primary genomic data for both simulations and the heritability inference came from 

the UK Biobank (Bycroft et al., 2018). The UK Biobank consists of a cohort of roughly 

500,000 individuals recruited from the United Kingdom (UK) National Health Services. 

Individuals were recruited on the basis of age between 40 and 69 at the time of 

assessment. The total dataset collected included blood samples, urine samples, body 

measurements, self-reported ancestry, medical history, and lifestyle exposures. 

The blood samples allowed the extraction and genotyping of DNA on one of two 

genotyping arrays designed for the UK Biobank. These genotype data were quality 

controlled then imputed to the HRC (McCarthy et al., 2016) with additional sites imputed 

to a whole genome sequence reference panel consisting of UK10K haplotype reference 

pane l and the 1000 Genomes Phase 3 reference panel (Chou et al., 2016). These 

imputed allelic dosages were retrieved as BGEN filetype (Band & Marchini, 2018). We 

used PLINK 2.0 (Chang et al., 2015) for further quality control and to export variants to 

PLINK 1 format for downstream analysis. Post-imputation quality control consisted of 

restricting to sites with imputation info score greater than 0.3 (Howie et al., 2009), with 

greater than 95% genotype hard-calls from dosage, and no deviation from Hardy-

Weinberg Equilibrium (p-values > 1⨉10-5) (Winkler et al., 2014). 
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From all the individuals of the UK Biobank we applied the filtration steps described in 

Table 2.1. These filters retained a total of 366,647 high-quality, unrelated individuals. 

For computational reasons, we selected a subset of 50,000 of these individuals at 

random for both our inference of heritability and for our simulation studies. To evaluate 

the role of sample size, we also selected random subsets of 500 and 5,000 individuals 

to be used for some of the simulations. 

We examined all 72 quantitative phenotypes that had at least 25,000 reported values 

within our 50,000 person cohort. This included 42 blood measurements, 22 

anthropometric traits, 5 respiratory traits, and 3 urinary traits. 

A preliminary set of experiments were conducted using the Wellcome Trust Case 

Control Consortium (WTCCC) data (Burton et al., 2007). Specifically, this includes a 

shared set of 3,000 controls (1,500 from the 1958 British Birth Cohort and 1,500 from 

the UK Blood Service Collection) and 2,000 samples from each of seven diseases: 

bipolar disorder, coronary heart disease, Crohn's disease, hypertension, rheumatoid 

arthritis, type 1 diabetes, and type 2 diabetes. Genotypes of these individuals were 

retrieved from the European Genotype Archive (Lappalainen et al., 2015). Pre-

imputation quality control consisted of restricting to sites with <5% missingness, no 

deviation from Hardy-Weinberg Equilibrium (p-values > 5.7⨉10-5) (Winkler et al., 2014), 

no evidence of trend between the two control groups (p-values > 5.7⨉10-5). The 

remaining genotypes were imputed to the HRC (McCarthy et al., 2016) using the 

Michigan Imputation Server (Das et al., 2016). Post-imputation quality control consisted 

of restricting to sites with imputation info score > 0.9 (Howie et al., 2009) though a 
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subset of experiments were conducted with a more permissive information threshold. 

Individuals were filtered to include only individuals without 3rd degree or closer 

relationships. 
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Computing MAF and LD Score Partitions 

Variable sites in the 50,000 individual UK Biobank cohort were partitioned in two ways. 

First by MAF computed using PLINK 2.0 across the full set of >360,000 unrelated, 

quality-controlled individuals into 17 MAF bins according to the following upper (closed) 

breakpoints: 2×10-6, 5×10-6, 1×10-5, 2×10-5, 5×10-5, 1×10-4, 2×10-4, 5×10-4, 1×10-3, 2×10-

3, 5×10-3, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5. We next used GCTA (Yang et al., 2011) to 

compute LD scores across the full set of quality-controlled individuals within each MAF 

bin, in sliding windows of 10 megabases along each chromosome. We then partitioned 

each MAF bin into high and low LD score bins using the median value LD score for that 

partition. This procedure resulted in a total of 34 bins of sites. 

Variable sites from the imputed WTCCC data were filtered to one of three different 

minimum MAF thresholds based on HRC MAF: minor allele count ³ 5, MAF ³ 0.001, 

and MAF ³ 0.01. For each of these MAF thresholds, the remaining MAF spectrum was 

divided in to 5 bins with roughly logarithmic spacing (with the breakpoint closes to MAF 

0.01 explicitly set at 0.01). The resulting MAF bounds are listed in Table S.2. 
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Simulation Framework 

Simulations were performed to compare two inference methods, Haseman-Elston (HE) 

Regression and genomic-relatedness-based restricted maximum-likelihood (GREML), 

as well as to identify the most suitable conditions for inference. We used PLINK 1.9 

(Purcell et al., 2007) to recode the genotypes for the selected individuals into a 

genotype matrix, , where the genotype of individual  at variant ,  is 0, 1, or 2 copies 

of the non-reference allele. In each simulation we selected a specified number of causal 

variants. For each causal variant, we drew effect sizes, ,  from a standard normal 

distribution, , with the effect sizes of the non-causal variants implicitly 0. The 

unscaled genetic component of the phenotype for individual ,  was then the sum of the 

product of the effect sizes with their corresponding genotypes,  or . 

This unscaled genetic component was rescaled to give the appropriate variance, 

, where  is the simulated heritability. The phenotype of individual , , 

was the sum of the scaled genetic component and a residual of appropriate variance 

, where . 

In simulations where total heritability, , was partitioned across  collections of variants 

(or bins) as , we represented each collection of variants as genotype 

matrices: , , …, . Letting, , be the vector of effect sizes in collection  with the 

specified number of causal sites drawn from that partition as  and the 
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remaining non-causal sites with effect size 0, the unscaled genetic component of the 

phenotype from collection  was , which we rescale by the appropriate 

heritability, . The phenotypes were then the sum of the genetic 

components and a residual term: , where  as before.  



 

 12 

Simulation Parameters 

We conducted a series of 5 sets of simulations, the parameters of which are 

summarized in Table 2. For each parameter combination or distribution of heritability we 

conducted 500 simulations. 

For Sets 1-3, causal variants were drawn from the entire genome of 500 unrelated 

individuals. The variants were partitioned by MAF computed within the 500 individual 

cohort itself. In Set 1 we varied the total heritability as well as the fraction of causal 

variants drawn from MAF < 0.01 with uniform effect size across the MAF partitions. In 

sets 2 and 3 we simulated 500 individuals with heritability distributed across 7 and 8 

MAF partitions respectively. 

For Set 4, we simulated phenotypes for 50,000 individuals using genotypes from 

chromosomes 18-22. We partitioned these variants by their MAF in the >360,000 

unrelated individuals into 17 MAF partitions. We further subdivided each of these by LD, 

and simulated heritability on each of the 34 MAF-LD bins.  
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Heritability Inference 

We used GCTA to compute the genetic relatedness matrices of individuals from the 

variants of each partition described. We inferred GREML heritability using GCTA’s 

unconstrained restricted maximum likelihood method (“--reml-no-constrain” flag) using 

multiple GRMs. For HE heritability, we used either HE Regression as implemented in 

GCTA or in our own implementation in R, which we verified gave the same results to 

single floating-point precision. Heritability inferred on the observed scale for the WTCCC 

data were converted to liability scale using the prevalence values listed in Table S.1. 

When inferring the heritability of the UK Biobank quantitative traits, we progressively 

included the first 15 principal components (PCs) of genetic variation and three 

geographic parameters of the subjects location (North-South coordinate, East-West 

coordinate, and distance to coast) as covariates. As the HE method of GCTA did not 

allow the inclusion of covariates directly, these were included as pseudo-GRMs [as per 

(Hernandez et al., 2019); See Supplemental Methods].  
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Summarizing Inference Performance 

Two metrics were used to summarize the quality of the inference for each set of 

simulations: bias and empirical standard errors. The bias reported represents the mean 

of the difference between the estimated and true value. Empirical standard errors were 

calculated as the average of the standard deviation of the inferred heritability for each 

set of simulations weighted by the number of simulations in each set. 

Software 

We used PLINK1.9 v1.90b6.9 and PLINK 2.0 v2.00a2LM to manipulate the genomic 

data including computing MAF, filtering sites, and exporting to formats. We used GCTA 

version 1.92.0 to compute GRMs and to perform REML and HE regression. We used R 

version 3.5.1 with packages ggplot2_3.0.0, dplyr_0.8.0.1 to analyze results and 

generate figures. We used Python version 2.7.5 to compute covariate GRMs. 

  



 

 15 

Table 1.1: Quality Control of UK Biobank Genomic Data 

Quality control step Remaining Individuals 

Initial 473,850 

Restrict to samples where self-reported and 
genetic sex match 473,482 

Restrict to self-reported ethnicity 445,826 

Restrict to samples with principal components 
1 and 2 within 5 standard deviations from the 
mean 440,222 

Remove samples with inappropriate sex-
specific cancers 440,148 

Restrict to samples in imputation sample file 439,317 

Restrict sample those with Dish Quality Control 
scort (DQC) >= 0.82 439,317 

Restrict samples to those with hard call rates ³ 
97% 438,287 

Restrict to samples with heterozygosity within 
5 standard deviations of the mean 437,331 

Exclude at least one of any pair of individuals 
with 3rd degree or closer relationship (kinship 

), prioritizing exclusion of those with 
more relationships 366,647 
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Table 2.2: Simulation Parameters 

Set Number of 
individuals 

Total 
h2 

MAF 
Partitions 

Distribution of 
causal variants 

Distribution of 
heritability  

Total Number of 
Simulations 

1 500 {0.15, 
0.5, 
0.8} 

(0,0.01], 
(0.01, 0.05], 
(0.05, 0.2], 
(0.2, 0.5] 

1000 Total 
Fraction of 
causal variants 
with MAF < 
0.01 each of 
{0.1, 0.5, 0.9} 

Uniform effect 
size 

4,500 

2 500 0.8 (0, 0.002] 
(0.002, 
0.005], 
(0.005, 0.01], 
(0.01, 0.05], 
(0.05, 0.1], 
(0.1, 0.2], 
(0.2, 0.5] 

1000 Total 
143 from each 
of the 6 lowest 
MAF partitions 
and 142 from 
the last 

All 42 
permutations 
of the set: 
{0.4, 0.2, 0.04, 
0.04, 0.04, 
0.04, 0.04} 

21,000 

3 500 0.8 (0, 0.002] 
(0.002, 
0.005], 
(0.005, 0.01], 
(0.01, 0.02], 
(0.02, 0.05], 
(0.05, 0.1], 
(0.1, 0.2], 
(0.2, 0.5] 

625 Total 
125 from each 
partition with 
non-zero h2  
 

1000 
permutations 
of the set: 
{0.4, 0.2, 0.1, 
0.05, 0.05, 0, 
0, 0} 

500,000 
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Set Number of 
individuals 

Total 
h2 

MAF 
Partitions 

Distribution of 
causal variants 

Distribution of 
heritability  

Total Number of 
Simulations 

4 50,000 0.68 (0, 0.000002], 
(000002, 
0.000005], 
(0.000005, 
0.00001], 
(0.00001, 
0.00002], 
(0.00002, 
0.00005], 
(0.00005, 
0.0001], 
(0.0001, 
0.0002], 
(0.0002, 
0.0005],  
(0.0005, 
0.001], 
(0.001, 
0.002], 
(0.002, 
0.005], 
(0.005, 0.01], 
( 0.01, 0.02], 
(0.02, 0.05], 
(0.05, 0.1], 
(0.1, 0.2] 
(0.2, 0.5] 
With each 
sub-divided 
by LD 

50014 Total 
1471 from 
each MAF-LD 
partition 

0.02 from 
each MAF-LD 
partition 

500 
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Chapter 3 Evaluating the Performance of Heritability Inference 

The Role of Genetic Architecture on the Distribution of Heritability 

The first set of simulations we conducted evaluated the impact of varying the fraction of 

causal variants that were rare (MAF < 0.01), when all variants had the same distribution 

of effect sizes. The distributions of these simulated heritabilities are shown in Figure 3.1. 

In this size cohort, rare variants accounted for roughly 10% of variants. Under a “neutral 

model” where causal variants are randomly selected from the set of all variants, ~10% 

of causal variants are rare, yet they accounted for less than 1% of the simulated 

heritability. When we push the simulation to have an extreme excess of rare causal 

variants (e.g. when 90% of causal variants were rare but effect sizes maintain the same 

distribution across frequencies), rare variants still account for only 13% of the total 

heritability. These trends held regardless of total heritability (Figure S.1). In all cases, 

the majority of heritability came from the (0.2, 0.5] MAF partition, ranging from 67% of 

heritability when 10% causal variants were rare to 58% when 90% causal variants were 

rare. 

Rare variants can account for a greater fraction of heritability if the distribution of effect 

sizes is allowed to be a function of MAF. However, the actual model relating number of 

causal alleles, effect size, and MAF for actual complex traits is unknown. Instead of 

specifying such a model and in order to test the tools of heritability inference on the full 

range of possible heritability distributions, we simulated phenotypes where we directly 

specified the heritability coming from each MAF bin.  
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Comparing HE Regression and GREML 

We compared the accuracy of two common methods for heritability inference: HE and 

GREML (both implemented in GCTA, see Methods). Specifically, we examined how well 

the two methods inferred heritability across partitions of MAF when the true underlying 

heritability was known. We simulated a wide range of genetic architectures with 

heritability distributed across 8 MAF partitions using a sample size of 500 individuals 

and a total heritability of 0.8 (Simulation Set 3). We found that when n=500 individuals 

are simulated and analyzed using 8 MAF bins, GREML fails to converge ~65% of the 

time, regardless of the fraction of heritability deriving from rare variants (Figure 3.2 

panel A). When GREML does converge, the resulting heritability estimates can be 

biased (Figure 3.2 panel B). In contrast, the regression framework of HE always 

provides a heritability estimate, and the inferred values tend to be unbiased under a 

broad range of conditions (Figure 3.2 panel C).  Figure S.2 shows a direct comparison 

of heritability estimates across simulated parameters for the two algorithms, and shows 

that the standard deviation of the heritability estimates across simulations tend to be 

comparable between HE and GREML. 

Both HE and GREML report theoretical standard errors (SE) of the estimated 

heritability, but we found that neither algorithm report estimates of the SE that reliably 

reflected the empirical standard errors. While the SE reported by both algorithms are 

comparable for the higher MAF bins analyzed (MAF > 0.02), the reported SEs for the 

lowest MAF bin analyzed (0.001 ≤ MAF < 0.002) exhibit conflicting patterns (Figure 

S.2). When compared to the empirical standard error across simulations in a set, HE 
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tends to grossly overestimate the SE of the estimate for the lowest MAF bin, while 

GREML tends to underestimate the SE of the estimate. As a result, approximate 95% 

confidence intervals ( ) of the estimates for the lowest MAF bin are highly 

conservative for HE (100% of confidence intervals overlap the true ), but become anti-

conservative for GREML as the simulated  increases (only 83.8% of confidence 

intervals overlap the true  when the true ;  Figure S.3). Given that HE tends to 

be more unbiased than GREML and not suffer from convergence issues, we exclusively 

used HE for the remainder of our analyses. 
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Heritability Inference Quality as a Function of MAF Partitioning 

Prior research has suggested that bias can be introduced when sites of differing MAF 

are pooled into the same GRM (Lee et al., 2013; Yang et al., 2015). We assessed this 

form of bias in a cohort of 500 individuals using heritability simulated across 8 MAF 

partitions (Simulation Set 3). We inferred the heritability of these simulated phenotypes 

either with the same 8 MAF partitions upon which they were simulated or pooled MAF 

bins (diagrammed in Figure 3.3 panel A). The results of these inferences show that 

when variants are finely partitioned by MAF, the estimates are unbiased. As more of the 

MAF spectrum is included with the rarest partition, the estimate is upwardly biased, by 

as much as 0.24 (30% of the total simulated heritability) when sites 0.001 ≤ MAF < 0.1 

were pooled together. These biases in the total h2 estimates were driven by the 

estimates from the pooled variants, with the estimates from the remaining bins being 

relatively unbiased. 

Using the same set of simulations, we assessed the impact of pooling high and 

intermediate MAF partitions on the performance of HE regression (Figure S.4 and 

Figure S.5, respectively). We found that inference of heritability showed moderate 

downward bias when the highest MAF partitions are pooled, with the worst bias 

occurring when pooling MAF range (0.005, 0.5] with a bias of -0.08 (-10% of the total 

simulated heritability). Pooling variants of intermediate MAF resulted in less bias than 

the pooling of high MAF variants. 
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In any given study, issues of genotyping error, imputation, and MAF-dependent 

standard errors limit the lowest MAF that can be examined, and such sites are often 

excluded. We examined whether excluding the lowest MAF bins would bias the 

heritability estimates from the remaining MAF bins. We simulated phenotypes on 500 

individuals using heritability distributed across 7 partitions (Simulation Set 2). We 

inferred heritability across the full 7 original partitions and successively excluding rare 

variants. The biases and mean square errors of inferred heritability are shown in Figure 

3.4. We found that exclusion of rare variants did not induce a substantial bias in the 

estimates of heritability of the included bins (less than 0.02), rather than the total 

estimated heritability would be an unbiased estimate of the variants that are included. 

As a result, any heritability attributed to the excluded MAF bins would simply remain as 

missing heritability. 
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Impact of Sample Size on Heritability Inference Quality 

The forces of natural selection will drive causal variants to different frequencies in the 

population. We sought to investigate how finely we can explore the population level 

MAF-heritability spectrum for different sample sizes. To this end, we simulated 

heritability partitioned across 34 LD-MAF partitions of quality-controlled, unrelated UK 

Biobank European population (17 MAF partitions each split by median LD score) on 

50,000 individuals. We then inferred the heritability of these 34 partitions using the full 

cohort of 50,000 individuals, as well as subsets of 5,000 and 500 individuals. The 

magnitude of bias (Figure 3.5 panel A) was generally larger for the lower MAF bins, and 

the scale of the bias was much higher for smaller sample sizes. Standard error (Figure 

3.5 panel B) generally increased for more rare partitions, and decreased dramatically 

with larger sample sizes (dropping by more than a factor of 10 for each factor of 10 

increase in sample size in many of the partitions). 
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Figure 3.1: Distribution of Simulated Heritability Varying Fraction of Rare Causal Alleles 

The fraction of the simulated heritability coming from different MAF partitions (horizontal 
panels) when varying the fraction of causal rare (MAF < 0.01) shows that under 
“neutral” models where variants have uniform effect sizes across the MAF spectrum, the 
rare variants account for very little heritability. Even when 90% of causal variants are 
rare, more common variants account for the majority of heritability. 
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Figure 3.2: Simulations comparing GREML and HE 

(A) The fraction of simulations that failed to converge as a function of the fraction of h2 
that derives from rare variants (MAF<0.02). Each point represents 500 simulations of a 
different genetic architecture (see methods). For the GREML iterations that did 
converge, the distribution of mean h2 inferred across genetic architectures is shown for 
each MAF bin analyzed. True h2 shown as vertical bars. Similarly, (C) shows the 
distribution of mean h2 inferred for HE. Direct comparisons of point estimates and 
standard errors are shown in Figure S.3. 
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Figure 3.3: Impact of MAF Partitioning on Heritability Inference 

(A) The partitioning scheme of the MAF spectrum. (B) Bias of the total inferred 
heritability for different partitioning schemes. (C) Mean squared error of different 
partitioning schemes. 

  

A 
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Figure 3.4: Impact of Excluding Low Frequency Variants on Heritability Inference 

(A) The partitioning scheme of the MAF spectrum showing the exclusion of increasing 

range of the MAF spectrum. (B) The average bias of the inferred heritability of each 

A 

B 

C 
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partition included in the inference. (C) The mean squared error of the inferred heritability 

of each partition included in the inference. 
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Figure 3.5: Impact of Sample Size on Bias and Mean Squared Error of Estimates 
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Chapter 4 Heritability of Complex Human Diseases in the Wellcome Trust Case 

Control Consortium 

We examined the heritability of 7 diseases in the WTCCC: bipolar disorder, coronary 

heart disease, Crohn's disease, hypertension, rheumatoid arthritis, type 1 diabetes, and 

type 2 diabetes. We inferred heritabilities using approximately 2,000 individuals with 

each disease and 3,000 shared controls for a total of 5,000 individual in each study. We 

inferred the heritability from 5 partitions of the HRC MAF spectrum with different 

minimum MAF thresholds. These diseases had an average total heritability of 0.133 

when thresholding at MAF ≥ 0.01. However, the estimates of total heritability were 

sensitive MAF threshold with lower estimates for lower MAF threshold (Figure 4.1). 

Examination of the reverse cumulative distribution of heritability (Figure 4.2) shows that 

the discrepancy in total estimate comes from negative estimates in the lower MAF bins 

and that the contribution of the higher MAF bins is relatively consistent. 

We investigated the impact of imputation quality on the estimates from different MAF 

partitions using a MAF threshold of 0.001. The per bin heritability estimates (Figure 4.3) 

increased moderately for the highest three MAF bins (those with MAF ≥ 0.01) with more 

permissive imputation filtering, and decreased substantially for the lowest MAF bin. The 

total effect was that the estimates of total heritability were negative for 6 of the diseases 

with the most permissive imputation filter (Figure S.1). Ultimately these results indicated 

that we would need large cohort sizes to investigate the MAF ranges we were interest 

in.  
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Figure 4.1: Total Heritability of WTCCC Disease with Different MAF Threshold 
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Figure 4.2: Reverse Cumulative Heritability of WTCCC Disease for Different MAF 
Thresholds 

The cumulative heritability above a given MAF value, inferred for each disease. 
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Figure 4.3: Heritability per Bin of WTCCC Disease for Different Imputation Quality 
Thresholds 

Heritability across 5 MAF bins with a lower MAF threshold of 0.001. 
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Chapter 5 Heritability of Complex Human Traits in the UK Biobank 

We randomly selected 50,000 unrelated individuals to infer the genetic architecture of 

quantitative human traits. We restricted the analysis to the 72 quantitative traits among 

the biomedical categories blood, body, breath, and urine that were measured in at least 

25,000 individuals. We used HE regression to infer the heritability of each trait using 

variants with MAF ≥ , partitioned across 11 MAF bins, each split into 2 LD bins 

(see methods). To correct for population structure, we progressively added principal 

components (PCs) as covariates up to 15 PCs. We then added three geolocation 

covariates that describe where each individual lives (north/south, east/west, and 

distance from the coast; Figure S5). We found that there is only a subtle effect of adding 

additional PCs beyond the fifth PC. However, geolocation covariates corrected for an 

additional source of rare variant stratification (particularly for variants with low LD). For 

further analysis, we focus on the inclusion of 15 PCs and the three geolocation 

covariates. 

The average total heritability of these traits was 0.269 (full list of  in Figure S.4). 

Figure 5.1 panel A shows the heritability estimates across MAF/LD bins. The plurality of 

heritability derives from the most common MAF bin ( , representing 

34.3% of the average total heritability; Figure 5.1 panel A). However, there is 

considerable variation in the contribution of different MAF bins to heritability of different 

traits (Figure 5.1 panel B, which shows the cumulative, left, and reverse-cumulative, 

right, heritability across MAF bins for each of the 72 traits). Averaging across traits 

(Figure 5.1 panel C), we find that little heritability derives from ultrarare variants. 
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Superimposing the cumulative and reverse-cumulative heritability plots allows us to 

easily identify the MAF at which half the heritability has been described (the intersection 

of the cumulative and reverse-cumulative heritabilities). Overall, approximately half the 

heritability is explained by variants with MAF ≤ 0.05. Partitioning alleles by low versus 

high LD, we find that low LD variants constitute 3.3-fold more heritability than high LD 

variants, which is largely driven by low frequency variants (approximately half the 

heritability of low LD variants is explained by variants with MAF≤0.02), while heritability 

of high LD variants is primarily driven by common variants (approximately half the 

heritability of high LD variants is explained by the highest MAF bin alone). 

Previous estimates of heritability from these data have been calculated using LD Score 

(LDS) regression (Walters et al., n.d.). Our estimates of total heritability using HE 

regression have a reasonable concordance with the LDS estimates (Figure 5.1 panel 

D), with a correlation of . The discrepancies between our HE estimates and the 

LDS estimates are mostly driven by the contribution of low frequency variants (MAF ≤ 

0.02) to our HE-based estimates (Figure 5.1 Panel E). 
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Figure 5.1: Heritability of Human Traits in UK Biobank 

(A) Stacked bar plot of average heritability in each MAF-LD partition across 69 
biomedical traits. (B) Cumulative and reverse cumulative heritability of all biomedical 
traits (with traits colored according to their total heritability, see Figure S4). (C) Average 
cumulative and reverse cumulative heritability across traits (solid line) with envelope 
showing the 95% quantile range from 1000 bootstrap samples. Dashed and dotted lines 
represent low and high LD partitions, respectively. (D) Comparison of the inferred total 
heritability across traits using HE regression (y-axis) versus LD Score (LDS) regression 
(x-axis). (E) Difference between HE and LDS heritability estimates versus our inferred 
rare variant (MAF≤0.02) heritability estimate. In D-E, points are colored according to the 
four biomedical categories of traits, with diagonal line show for reference.  
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Chapter 6 Discussion 

Our simulations show that drawing causal alleles and the effect sizes for those alleles 

independently of MAF will result in the majority of heritability arising from common 

alleles. While certain models could propose a relationship between probability of being 

drawn as a causal allele, effect size distribution, and minor allele frequency the actual 

relationship underlying actual traits remains unknown. If heritability inference 

procedures are tested and calibrated on a small subset of possible models, the 

performance on traits that do not fit that model may not be accurate. Indeed we found 

that REML exhibited substantial bias in many of our simulations. HE Regression, in 

contrast, was much more robust to a variety simulated heritabilities. 

Our investigation into the performance of HE Regression underscored the importance of 

partitioning variant by MAF. The simulations we conducted also highlighted the 

importance of sample size in assessing the contribution of rare variants. A ten-fold 

increase in sample size reduced standard errors by more than a factor of ten for rare 

variants. The computational efficiency of HE Regression based methods should allow 

for examination of greater sample sizes, and therefore the examination of the 

contribution of rarer variants, as compared to REML. 

Sample size ultimately limited our ability to describe the contribution of rare alleles 

complex human diseases in the WTCCC. Based on our simulations of 5,000 individuals, 

we cannot reliably infer the contribution of variants with MAF < 1%. These samples also 

were potentially more susceptible to population structure as they gathered for a case-
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control cohort and therefore a less random subset than the UK Biobank data. As these 

are dichotomous traits, their heritabilities are reported on a liability scale which utilizes a 

correction base on prevalence of the disease. If the prevalence used does not match 

the population described, the liability scale of these traits will be inaccurate. 

Using a cohort of 50,000 individuals from the UK Biobank, we were able to examine the 

heritability of 72 biomedical traits down to a MAF of 0.01%. We found that these traits 

had average heritability was 0.269. Of this, 34.3% of the total heritability was found in 

the highest MAF partition and 34.9% of the total heritability was explained by variants 

with MAF ≤ 1%. These data are inconsistent with simulations that have independent 

and identically distributed effect sizes across MAF bins (where we inferred 67% of 

heritability to be due to the highest MAF bin; Figure 1). This suggests that causal 

variants are disportionately at low frequency or that these low frequency causal variants 

have larger effect sizes than common causal variants. The variants in regions of low LD 

accounted for 3.3-fold more heritability than those in regions of high LD, consistent with 

past findings (Zeng et al., 2018; Wainschtein et al., 2019) and is considered evidence of 

negative selection. That the variants with MAF≤0.02 explain roughly half of the 

heritability of the low LD variants may be further suggestive of negative selection acting 

upon the genetic architecture of these traits. 

One important caveat to our analysis is that we have only considered variants identified 

through genotyping and imputing samples to an external reference panel. This means 

that a majority of ultrarare variants that are carried by the 50,000 individuals we studied 

were not included in our analysis. Indeed a recent study showed that there were more 



 

 39 

than ten times as many variants with MAF < 0.01% revealed through whole exome 

sequencing in a cohort of 50,000 UK Biobank individuals than in a genotyped and 

imputed comparable cohort (Hout et al., 2019). Therefore, our ability to infer the 

contribution of these ultrarare variants to heritability of complex traits is nonexistent. 

While we did not conduct simulations directly to assess the impact of genotyping and 

imputation error, these effects would mostly be observed in the most rare MAF bins, 

where we only observed modest amounts of heritability. As technologies for collection of 

genetic material improve and computational feasibility of ever-larger cohorts is 

achieved, we will be better able to examine the contribution of ultrarare variants to 

heritability of human traits. 

The findings here relate to the specific population studied, a non-random sample of the 

UK population. While findings may have some sensitivity to the inclusion of additional 

covariates, covariates must be examined on a case-by-case basis to avoid altering the 

interpretation of particular phenotypes. Future work can examine how these findings 

generalize to other populations.  
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Supplementary Materials 

Inclusion of Covariates 

As GCTA has not implemented the inclusion of covariates in their HE Regression 

method, these were included as “pseudo GRMs.” Letting  be the value of the th 

individual for the covariate , the mean-centered, unit-variance-adjusted covariate, , is: 

. 

The entry of the covariate matrix for the pair of individuals  and ,  , would be  

. These covariate matrices were computed in Python and exported in a format 
matching that of GCTAs GRMs. Individuals missing values for covariates were replaced 
with median of the remaining values.  
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Figure S.1: Total inferred heritability of WTCCC disease for different imputation quality 
and MAF thresholds 
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Figure S.2: Distribution of Simulated Heritability Varying Fraction of Rare Causal Alleles 
across Different Total Heritabilities 
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Figure S.3: Simulations comparing GREML and HE 

In all plots, each point represents 500 simulations of a single genetic architecture when 
the true total h2=0.8. Each row of figures represents a different MAF bin (rare variants at 
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the top, common variants on the bottom), where each point is colored by the true h2 that 
derives from that MAF bin and is one of: green (h2=0), orange (h2=0.05), blue (h2=0.1), 
pink (h2=0.2), or brown (h2=0.4). Plots in the first column (left) compare the mean 
estimated h2 (across 500 simulations, or the number that converged, see main text 
Figure 4.2 panel A) for GREML (y-axis) versus HE (x-axis). Note that the density 
functions in main text Figure 4.2 panel B-C represent the marginal distributions of these 
points. The 2nd column of plots compare the standard deviation of the estimates for 
each genetic architecture. The third column of plots compare the reported standard 
errors from GREML vs HE. The fourth (right) column of plots compare the fraction of 
approximate 95% confidence intervals (CI) that overlap the true h2 for a given bin. In all 
plots, the dashed lines connect the average across all sets of simulations with the same 
true h2 in a bin to their axis, and the black line represents the y=x line. 
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Figure S.4: Impact of MAF Partitioning on Heritability Inference for High MAF 

(A) The partitioning scheme of the MAF spectrum used for inference to investigate the 

impact of pooling variants of high MAF. (B) Bias of the total inferred heritability for 

different partitioning schemes. (C) Mean squared error of different partitioning schemes.  

A 

B C 
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Figure S.5: Impact of MAF Partitioning on Heritability Inference for Intermediate MAF 

(A) The partitioning scheme of the MAF spectrum used for inference to investigate the 
impact of pooling variants of intermediate MAF. (B) Bias of the total inferred heritability 
for different partitioning schemes. (C) Mean squared error of different partitioning 
schemes.  

A 

B C 
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Figure S.6: Inferred Total Heritability of Different Quantitative Measurements in UK 
Biobank  
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Figure S.7: Total Heritability of Different Quantitative Measurements in UK Biobank with 
Differing Covariates Used 

The left panels show the cumulative heritability below a given MAF, and the right panels 
show the reverse cumulative heritability above a given MAF. Top panels show the 
average total heritability, while the middle and bottom panels examine the low LD and 
high LD bins (respectively). 
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Figure S.8: Distributions of Total Heritability Inferred for Simulations of 5,000 Individuals 

using HE Regression and REML 

We simulated 800 phenotypes for 5,000 individuals (Simulation Set S1) with 0.8 
heritability distributed across 11 MAF Bins. We inferred heritability distributed across the 
11 bins using either HE Regression (blue) or REML (red). 125 of 800 simulations 
(15.6%) did not converge for REML. The distribution of heritability inferred by HE 
Regression for these 125 phenotypes is show in blue with a dashed line. The vertical 
lines correspond to the means of the associated distributions. We observed that HE 
Regression is relatively unbiased compared to REML. The phenotypes that did not 
converge for REML had higher inferred heritabilities by HE regression than those that 
did converge. 
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Table S.1: Prevalence of Diseases in WTCCC 

Phenotype Prevalence 
Bipolar Disorder 0.005 
Coronary Artery Disease 0.06 
Crohn's Disease 0.001 
Hypertension 0.26 
Rheumatoid Arthritis 0.005 
Type 1 Diabetes 0.005 
Type 2 Diabetes 0.08 
Bipolar Disorder 0.005 
Coronary Artery Disease 0.06 
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Table S.2: MAF Breakpoints for WTCCC Heritability Inference 

Minimum MAF/MAC MAF Bin Lower MAF Upper MAF 

MAC ≥ 5 

1 7.69941E-05 0.000447 
2 0.000447 0.00258 
3 0.00258 0.00100 
4 0.0100 0.0865 
5 0.0865 0.5 

MAF ≥ 0.001 
 

1 0.00100 0.00346 
2 0.00348 0.00100 
3 0.0100 0.0417 
4 0.0417 0.144 
5 0.144 0.5 

MAF ≥ 0.01 
 

1 0.0100 0.0218 
2 0.0218 0.0478 
3 0.0478 0.104 
4 0.104 0.228 
5 0.228 0.5 
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Table S.3: Supplementary Simulation Parameters 

Set Number of 
individuals 

Total 
h2 

MAF Partitions Distribution 
of causal 
variants 

Distribution of 
heritability  

Total Number of 
Simulations 

S1 5000 0.8 (1e-04, 2e-04], 
(2e-04, 5e-04], 
(5e-04, 0.001], 
(0.001, 0.002], 
(0.002, 0.005], 
(0.005, 0.01], 
(0.01, 0.02], 
(0.02, 0.05], 
(0.05, 0.1], 
(0.1, 0.2], 
(0.2, 0.5] 

1100 total 
(100 per 
MAF Bin) 

See Table S.4 800 
(50 for each 
heritability level 
in Table S.4) 

S2 50,000 0.68 (0, 0.000002], 
(000002, 
0.000005], 
(0.000005, 
0.00001], 
(0.00001, 
0.00002], 
(0.00002, 
0.00005], 
(0.00005, 
0.0001], 
(0.0001, 
0.0002], 
(0.0002, 
0.0005],  
(0.0005, 
0.001], 
(0.001, 0.002], 
(0.002, 0.005], 
(0.005, 0.01], 
( 0.01, 0.02], 
(0.02, 0.05], 
(0.05, 0.1], 
(0.1, 0.2] 
(0.2, 0.5] 
With each sub-
divided by LD 

50014 Total 
(100 from 
each MAF-
LD partition) 

0.02 from 
each MAF-LD 
partition 

500 
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Table S.4: Heritability Levels for Simulation Set S1 

Heritability 
Distribution MAF Bin 1 MAF Bin 2 MAF Bin 3 MAF Bin 4 MAF Bin 5 MAF Bin 6 
1 0 0.1 0.1 0.1 0.1 0.1 
2 0.125 0.0875 0.0875 0.0875 0.0875 0.0875 
3 0.25 0.075 0.075 0.075 0.075 0.075 
4 0.5 0.05 0.05 0.05 0.05 0.05 
5 0.1 0.1 0.1 0 0.1 0.1 
6 0.0875 0.0875 0.0875 0.125 0.0875 0.0875 
7 0.075 0.075 0.075 0.25 0.075 0.075 
8 0.05 0.05 0.05 0.5 0.05 0.05 
9 0.1 0.1 0.1 0.1 0.1 0.1 
10 0.0875 0.0875 0.0875 0.0875 0.0875 0.0875 
11 0.075 0.075 0.075 0.075 0.075 0.075 
12 0.05 0.05 0.05 0.05 0.05 0.05 
13 0.1 0.1 0.1 0.1 0.1 0.1 
14 0.0875 0.0875 0.0875 0.0875 0.0875 0.0875 
15 0.075 0.075 0.075 0.075 0.075 0.075 
16 0.05 0.05 0.05 0.05 0.05 0.05 

 

Heritability 
Distribution MAF Bin 7 MAF Bin 8 MAF Bin 9 

MAF Bin 
10 

MAF Bin 
11 

1 0.1 0.1 0.1 0.1 0.1 
2 0.0875 0.0875 0.0875 0.0875 0.0875 
3 0.075 0.075 0.075 0.075 0.075 
4 0.05 0.05 0.05 0.05 0.05 
5 0.1 0.1 0.1 0.1 0.1 
6 0.0875 0.0875 0.0875 0.0875 0.0875 
7 0.075 0.075 0.075 0.075 0.075 
8 0.05 0.05 0.05 0.05 0.05 
9 0 0.1 0.1 0.1 0.1 
10 0.125 0.0875 0.0875 0.0875 0.0875 
11 0.25 0.075 0.075 0.075 0.075 
12 0.5 0.05 0.05 0.05 0.05 
13 0.1 0.1 0.1 0.1 0 
14 0.0875 0.0875 0.0875 0.0875 0.125 
15 0.075 0.075 0.075 0.075 0.25 
16 0.05 0.05 0.05 0.05 0.5 
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