
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Classification of ribbon categories with the fusion rules of SO(N)

Permalink
https://escholarship.org/uc/item/1071d62g

Author
Copeland, Daniel

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1071d62g
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Classification of ribbon categories with the fusion rules of SO(N)

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Mathematics

by

Daniel R. Copeland

Committee in charge:

Professor Hans Wenzl, Chair
Professor Russell Impagliazzo
Professor John McGreevy
Professor David Meyer
Professor Justin Roberts

2020



Copyright

Daniel R. Copeland, 2020

All rights reserved.



The dissertation of Daniel R. Copeland is approved, and
it is acceptable in quality and form for publication on mi-
crofilm and electronically:

Chair

University of California San Diego

2020

iii



DEDICATION

To Alex,

for everything.

iv



Table of Contents

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of notation and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Categorical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Ribbon categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The universal grading group and spherical structures . . . . . . . . . . . . 25
2.3 The cocycle construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Tensor product rules for SO(N) . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Lie theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Representations and Young diagrams . . . . . . . . . . . . . . . . . . . . . 44
3.3 Fusion rings of SO(N)-type . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Fusion rings associated to orthogonal groups . . . . . . . . . . . . . . . . . 57
3.5 Normalization of BCD-type categories . . . . . . . . . . . . . . . . . . . . 59
3.6 Examples of SO(N) and O(N) type categories . . . . . . . . . . . . . . . . 62

4 Classification of SO(2n+ 1) type categories . . . . . . . . . . . . . . . . . . 68

v



5 Monoidal algebras and their diagonals . . . . . . . . . . . . . . . . . . . . 74
5.1 Reconstruction for Z2-graded monoidal algebras . . . . . . . . . . . . . . . 78

6 Jucys-Murphy theory for ribbon categories . . . . . . . . . . . . . . . . . 85
6.1 Path idempotents for centralizer algebras . . . . . . . . . . . . . . . . . . . 86
6.2 Matrix representations for Jones projections . . . . . . . . . . . . . . . . . 92
6.3 The full twist and Jucys-Murphy elements . . . . . . . . . . . . . . . . . . 96
6.4 Low dimensional representations of AB2 . . . . . . . . . . . . . . . . . . . 99

7 Computation of braid representations and restriction of parameters . 104
7.1 Jucys-Murphy eigenvalues and restriction of parameters . . . . . . . . . . . 105
7.2 Uniqueness of dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Uniqueness of braid representations . . . . . . . . . . . . . . . . . . . . . . 119

8 Classification of SO(2n) type categories . . . . . . . . . . . . . . . . . . . . 131

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.1 Other classification problems . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.2 Applications of SO(N) classification . . . . . . . . . . . . . . . . . . . . . 136

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

vi



List of Notation and Abbreviations

[n]q the quantum number qn−q−n
q−q−1

ZN the group of integers mod N

C× non-zero complex numbers

C �D Deligne product

Gr+(C) Grothendieck semigroup/semiring

Gr(C) Grothendieck ring

U(C) universal grading group

H3(G) third cohomology group of G with values in C×

H3
ab(G) third abelian cohomology of G

dimC(X) categorical dimension of an object X

cX,Y braiding map X ⊗ Y → Y ⊗X

θX twist on the object X in a ribbon category

Γ,Γ(C),Γ(G) sets of irreducible isotypes

W Weyl group of SO(N)

P weight lattice for SO(N)

V(q, r) orthogonal type category

Rep SO(N)q quantum group category for SO(N)

B(k) kth level of the Bratteli diagram

Jk k-th Jucys-Murphy element

∆2
k k-th full twist

AB2 affine braid group on two strands

vii



List of Figures

Figure 6.1 The first 4 levels of the Bratteli diagram for SO(6). . . . . . . . . . 87

Figure 6.2 The Jucys-Murphy element J4 ∈ End(X⊗6). . . . . . . . . . . . . . 98

viii



List of Tables

Table 3.1 Simple roots for SO(N), even and odd . . . . . . . . . . . . . . . . . 40

Table 3.2 Relation between fusion rule and order of q2 for O(2n+ 1) categories. 66

ix



Acknowledgements

A very special thanks to my advisor Hans Wenzl for introducing to me the problem

considered in this thesis, and patiently explaining the philosophy, and many details, of its

solution. This project would not have been possible without his guidance.

Thank you to my friends Marino Romero and Mike Gartner for sharing their

enthusiasm. I would like to thank David Meyer and the discrete physics group for always

welcoming me, and for the exposure to so many new and interesting ideas. Thanks to

Justin Roberts, who delivered a wonderful series of personalized lectures on TQFTs in the

early years that enamored me with the subject. I appreciate the warm encouragement

and friendly conversations with Nolan Wallach. Steven Sam generously provided me

financial support in the last year. Thanks to the staff in the math department for helping

me through the pipeline and for assistance TAing, in particular Kelly Guerriero, Holly

Proudfoot, Scott Rollans and Mark Whelan.

Many kind mathematicians have educated me in the theory of ribbon categories.

Thanks to Josh Edge, Cain Edie-Michell, Fred Goodman, Paul Gustafson, Corey Jones,

Dave Penneys, Emily Peters, Julia Plavnik, David Reutter, Eric Rowell, Andrew

Schopieray, Noah Snyder, Sachin Valera, Dominic Verdon, and Yilong Wang for shar-

ing their time and knowledge.

Thanks to Jamie Pommersheim, with whom math is always a blast.

I never could have done this without the help of my closest loved ones. Thanks so

much to my family Christa, Mo, and Nick for their love and support, which has been so

x



important to me. Thank you to Alex for the ceaseless encouragement, outrageous humor,

and all the climbing trips. Every day in your company makes me feel like the luckiest

person in the world. And a big thanks to my friend Shaggy for all the advice and fine

dining.

Finally, thanks again to Alex and Shaggy for editing early drafts of the thesis.

xi



Vita

EDUCATION

2011 Bachelor of Arts, Reed College, Portland
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ABSTRACT OF THE DISSERTATION

Classification of Ribbon Categories with the Fusion Rules of SO(N)

by

Daniel R. Copeland

Doctor of Philosophy in Mathematics

University of California San Diego, 2020

Professor Hans Wenzl, Chair

We classify ribbon categories with the tensor product rules of the finite-dimensional

complex representations of SO(N), for N ≥ 5 and N = 3. The strategy is to study

representations of the braid group which appear in End(X⊗k), where X corresponds to the

defining representation. The fusion rules serve to define path bases for these algebras, and

we prove that the matrix representations of the braid elements are uniquely determined

by the eigenvalues of a braid operator on X⊗X. We use this to show that the equivalence

class of a category with SO(N) fusion rules depends only on one of the eigenvalues of

the braid operator. The classification applies both to generic SO(N) tensor product rules

and to certain fusion rings having only finitely many simple objects.
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1

Introduction

This thesis is concerned with the classification of ribbon categories whose tensor

product (a.k.a. fusion) rules resemble those of the special orthogonal group SO(N,C). We

consider both the actual tensor product rules for finite dimensional C-representations of

SO(N), involving infinitely many simple objects, and certain related fusion rings spanned

by finitely many simple elements, which come from the representation theory of SO(N)

in a more complicated way. These ribbon categories appear in several different contexts,

notably Drinfel’d-Jimbo quantum groups, Turaev-Wenzl style skein theory, and repre-

sentations of affine Lie alegbras. Such categories are perhaps best known as algebraic

ingredients for producing low dimensional TQFT’s and the resulting quantum invariants

of 3-manifolds [Wal] [Tur16], e.g. the Reshetikhin-Turaev [RT91] and Turaev-Viro in-

variants [TV92]. However, this thesis is entirely algebraic. Our main result is that if a

ribbon category has certain prescribed fusion rules associated to SO(N), then it must

“come from” a quantum group – meaning it can be obtained from a known quantum

group category through a standard construction. Without referring to quantum groups

we can roughly state our result as the following.

Theorem 1.0.1. Categories with SO(N) type fusion rules are determined (after a stan-

dard normalization) by the eigenvalues of the braid operator cX,X acting on X⊗X where X

is a simple object corresponding to the N-dimensional defining representation of SO(N).
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More precisely, the fusion rules dictate that X ⊗X splits into 3 irreducible subob-

jects, so that the braid element cX,X has 3 eigenvalues. Part of the theorem is that these

eigenvalues can be written (q,−q−1, q−(N−1)) where q is some non-zero complex number.

Hence (up to the “standard normalization”) these categories depend only on their fu-

sion rules and the parameter q. Similar results were previously obtained for SL(N) by

Kazhdan and Wenzl [KW93] and for O(N) and Sp(N) by Tuba and Wenzl [TW05].

Ribbon categories are beautiful algebraic structures that are fundamental to a

branch of mathematics called quantum algebra.1 This broad field has many facets, in-

terrelating representation theory, low dimensional topology, Hopf algebras and noncom-

mutative geometry, subfactor theory, higher category theory, quantum field theory, and

quantum computation. To get a feeling for the type of objects in this field the reader

is reminded of a central gadget, the Jones polynomial. This is a knot invariant with a

simple combinatorial definition discovered by Jones [Jon87] while studying subfactors.

Jones realized the polynomial as a Markov trace on the Iwahori-Hecke algebra of type

A – a well known q-deformation of the group algebra of the symmetric group. Later,

Witten [Wit89] observed a connection between the Jones polynomial and topological

quantum field theories (TQFTs) built out of SU(2) Chern-Simons theory at certain roots

of unity. It was later realized that these structures could be mathematically described

by a quantum group – in this case a certain q-deformation of the classical group SL(2).

Such quantum groups had been previously introduced and studied by Drinfel’d [Dri86]

and Jimbo [Jim86], thanks to a connection with solvable models in statistical mechanics.

In fact, Jimbo realized that the Hecke algebras are in duality with the quantum groups

of type SL(N) in exactly the same way that the symmetric group and SL(N) are in

duality via classical Schur-Weyl duality [Wey66]. 2 The ribbon category connected to all

1Or quantum topology if you prefer.
2In a fascinating development from this millenium, Freedman, Larsen and Wang [FLW02] showed

that simulating certain of the theories considered by Witten was a “BQP-complete” problem (both
universally difficult and doable by a quantum computer). This was later elaborated by Aharanov, Jones
and Landau [AJL09] to show that computing an approximation for the Jones polynomial of certain links
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of these objects is constructed from the representation category of the Drinfel’d-Jimbo

quantum group Uq(sl2), which is a Hopf algebra by definition. In this thesis we are con-

cerned with the “special orthogonal” version of these objects. For instance, the Jones

polynomial is replaced by the Kauffman polynomial [Kau90] and the Hecke algebra by

the Birman-Murakami-Wenzl algebra 3 [BW89], [Wen90].

Someone who has seen invariant theory, quantum computing, or even classical

circuit diagrams, will be familiar with the use of planar diagrams to represent various

operations. Tensor categories provide a rigorous framework in which to interpret such

diagrams (e.g. consisting of boxes and wires) as morphisms between tensor products of

objects. Ribbon categories are a further specialization which allow us to interpret braids

and tangles (knotted strands of wires4) as morphisms in a way that only depends on the

topology of the tangle. We will frequently use the graphical calculus of tensor categories.

We hope to have persuaded the reader that ribbon categories are interesting objects

worthy of investigation. To understand ribbon categories one might start with examples.

Almost all known ribbon categories come from finite groups or Lie groups through vari-

ous constructions, which are sometimes complicated but seem to be well understood by

specialists. Searching for so called exotic ribbon categories that aren’t already coming

from groups (at least in a known way) is an exciting and difficult challenge. Relatively

few are known, such as the Haagerup category and its relatives [BPMS12] and Izumi’s

examples [Izu01]. If one does not know where to look for new examples then they may

refine the search using some invariant. Probably the most fundamental invariant is the

Grothendieck ring of the category, which encodes how tensor products decompose into

simple objects. Having an invariant, one would like to know to what degree it differ-

entiates ribbon categories. We want to answer questions such as: how many distinct

is also BQP-complete.
3The BMW algebras are actually “full orthogonal” or “symplectic” versions of the Hecke algebra,

depending on 2 parameters. Part of the challenge of this thesis is the absence of an analogue for the
Hecke algebra in the special orthogonal situation.

4Technically our wires must be framed, oriented links or “ribbons”, see [Tur16].
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ribbon categories have a particular Grothendieck ring? What information besides the

fusion rules (if any) is needed to specify a ribbon category, up to equivalence? This is

the categorification problem for fusion rings. The answers depend on the particular fusion

ring under consideration and are usually hard to answer (see the next section for a survey

of some results). There is no known criterion for testing whether an abstract fusion ring

admits a categorification. We bypass this problem by starting with a fusion ring that

we know already admits at least one categorification, namely a quantum group category.

The question then becomes, are there any other ribbon categories with the same fusion

rules as the quantum group? Most people expect the answer to be no, at least modulo

some “standard modification,” and this is what we prove for the fusion rules of SO(N).

Previously, a classification of tensor categories with the fusion rules of SL(N,C)

was determined by Kazhdan and Wenzl [KW93]. They find that tensor categories (rigid,

semisimple C-linear monoidal categories) with the fusion rules of SL(N) are parametrized

(up to monoidal equivalence) by a parameter q ∈ C, which is either ±1 or not a root

of unity, and an N -th root of unity τ . When τ = 1 the category corresponding to

q is monoidally equivalent to Rep SL(N)q, the subcategory of Uq(sln)-representations

generated by the N -dimensional defining (vector) representation X. It is well known

this category is braided, and the braid operator cX,X has eigenvalues q and −q−1. The

other choices for τ result from twisting the associativity constraints of Rep SL(N)q by

a non-trivial 3-cocycle of ZN , and they are not braided in general. Kazhdan and Wenzl’s

strategy is to prove that the family of algebras End(X⊗k) must be a certain quotient of a

Hecke algebra (as is the case for the quantum group categories), and from this the entire

category can be reconstructed.

The approach of Tuba and Wenzl to the classification of ribbon categories with the

fusion rules of O(N) or Sp(N) is quite similar to that of Kazhdan and Wenzl: starting

with a category C with the given fusion rule, analyze the family of algebras End(X⊗k) and

show they must be a certain quotient of the BMW algebra, another well known quotient
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of the braid group. An important part of the analysis is showing that the braid elements

generate the whole endomorphism algebra. Tuba and Wenzl assume (as we do) that the

category is braided to begin with. It is an interesting open problem to classify tensor

categories of type BCD without the ribbon assumption, as was achieved by Kazhdan and

Wenzl in type A.

Considering there is already a classification for ribbon categories with fusion rules

coming from the full orthogonal groups one may wonder why there is not an immediate

classification for SO(N) type categories. It turns out this is the case for N odd. Indeed,

the restriction rules fromO(2n+1) to SO(2n+1), namely that every irrep stays irreducible,

imply that the endomorphism algebras for the special orthogonal group are essentially

the same as for the orthogonal group. Since the Tuba-Wenzl strategy is to study these

endomorphism algebras, their classification method also applies for SO(N) categories with

N odd. We provide a formal proof of the classification in Sec. 4 as a direct consequence

of Tuba and Wenzl’s result for O(2n+ 1) categories.

For N = 2n it is a different story since even for quantum group categories, the

braid group fails to generate the algebras End(X⊗k) for k ≥ n. In addition to the braid

elements, one needs a minimal idempotent in End(X⊗n) corresponding to the first O(2n)

irrep whose restriction to SO(2n) is no longer irreducible. Hence there is no hope to

recognize these as quotients of the braid group in the normal way. A somewhat similar

situation is also confronted in recent work by Martirosyan and Wenzl on G2 type categories

( [MW17], [MW20]). Here the centralizer algebras are generated by braid elements, but

the resulting representations of the braid group are not yet well understood like in the

BMW and Hecke algebra cases. Their strategy, and ours, is to show more or less directly

that the braid operators are uniquely determined by the fusion rules and one of the

eigenvalues q of the braid on the 2nd tensor power. We specify a basis (the path basis)

for modules of End(X⊗k) and show that the matrix entries of the braid generators must

be specific rational functions of q, and so are uniquely determined by q. In the language

5



of Martirosyan and Wenzl we are proving the path rigidity for the braid representations

attached to the fusion rules of SO(N).

Showing that in the path basis the braid matrices are uniquely determined by q

forms the main novel contribution of this thesis. Here we use an almost purely combina-

torial approach based on the similarity of path bases with Young’s seminormal basis for

the irreps of the symmetric group [Gar03]. This goes back to Vershik and Okounkov’s

method of constructing Young’s seminormal form using eigenvalues of Jucys-Murphy ele-

ments [VYO05].

Besides the actual result for SO(N), we hope that the more flexible approach of

path rigidity used in this thesis can be be modified to achieve classification results for

other fusion rules coming from quantum groups, e.g. coming from exceptional Lie groups.

Unfortunately, our results do not extend to these situations since we rely heavily on the

fact that X⊗X decomposes into exactly three irreps–a condition not usually satisfied for

the exceptional types. 5 We hope our classification results may be leveraged to work for

fusion rules which include the spin representations, i.e. coming from the Lie algebra soN .

This problem is under investigation by Wenzl. Aside from other classification projects we

hope our results could lead to a planar algebra presentation of SO(N)-type categories in

a similar way that the BMW -algebras present the orthogonal and symplectic categories.

This could be interpreted as a “fundamental theorem of quantum SO(N) invariant theory”

in comparison to classical FFTs of invariant theory [GW]. Such a presentation would

be immediately useful for the important task of classifying autoequivalences of type D

categories, as was recently done by Edie-Michell [EM20a] for Lie types A,B,C and G.

5We thank Wenzl for pointing out that certain simple objects in an E6 category do have this property,
but they are not self-dual.
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1.1 Related work

Though this work is closest in spirit to the work of Wenzl and collaborators, there

are many other nice classification results. In particular, much work has focused on the

case of fusion categories, which are distinguished by having only finitely many isotypes. A

famous result known as Ocneanu rigidity (see [ENO05]) says there are only finitely many

equivalence classes of fusion categories with a fixed Grothendieck ring. However, a given

fusion ring may not have any categorifications at all [Ost02] and simply deciding whether

a given fusion ring admits any categorification can be very hard.

Ostrik ( [Ost02], [Ost15]) and Larson [Lar14] classify categories with 2, 3 and 4

simple objects respectively (with various assumptions), and pushing this classification

to larger numbers of simple objects is an active area of research. In particular, unitary

modular tensor categories (a special case of ribbon fusion categories) with ≤ 4 simple

objects are classified by Rowell, Stong and Wang [RSW09].

One way to classify tensor categories is by the dimension of a generating object.

This is motivated by the close connection between unitary fusion categories generated by

an object X, finite index subfactors of the hyperfinite II1 factor ( [Jon83], [Müg03]) and

subfactor planar algebras ( [Jon99], [MPS10]). The categorical dimension of X is related

to the index of the subfactor. Hence famous results on classification of subfactors by index

may be interpreted as classification of singly-generated unitary fusion categories according

to the dimension of a generating object. Recently Edie-Michell has obtained results for

unitary fusion categories generated by objects of small dimension [EM19], [EM20b].

Another approach to classifying tensor categories, related to planar algebras, is

via generating morphsims and relations. For instance, Liu [Liu16] has classified tensor

categories that are generated by a morphism in End(X⊗2) satisfying a “Yang-Baxter

relation” generalizing the braid relation. The BMW categories fall into this classification.
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It is plausible that Liu’s work can be used to classify BCD tensor categories without

the braiding assumption. In a similar direction Morrison, Peters and Snyder [MPS16]

achieve some classification results for categories generated by a trivalent vertex, which is

a morphism X → X ⊗ X. In particular their results apply to G2 categories, together

with the assumption that the category is generated by the trivalent vertex. Martirosyan

and Wenzl have shown that it suffices to assume that the image of the braid group

generates End(X⊗3), and it is conjectured that this assumption is always true. Etingof and

Ostrik [EO18] use their results to achieve a classification of SO(3)-type tensor catgories

without any braiding assumption and so this result is stronger than the result we present

for SO(3)-type categories.

In another direction, the portion of this thesis concerned with the study of braid

matrices with respect to a path basis is closely related to a large body of work in com-

binatorial representation theory, in particular the study of seminormal representations.

Much of this can be described as an outgrowth of Schur-Weyl duality to various classical

and quantum algebraic structures. Some of the braid matrices we encounter (namely the

actions on the “new stuff”) are famous representations of the Hecke algebra first described

by Hoefsmit [Hoe74] and used by Wenzl [Wen88] to construct subfactors. Nazarov [Naz90]

used this approach to matrix representations for the Brauer algebra appearing in the clas-

sical setting of Rep O(N). The work of Leduc and Ram [LR97] uses the Jucys-Murphy

approach to write down braid matrices in path bases for quantum groups of type ABC.

This is rather similar to what we do (since we are trying to show that the braid represen-

tations must agree with the ones coming from quantum groups), but Leduc and Ram do

not address the subtleties with SO(2n) and we do not provide explicit formulas for the

braid matrices in all cases (only proving uniqueness). Martirosyan and Wenzl [MW20]

also use a Jucys-Murphy approach, based on techniques developed by Wenzl for type

EN [Wen03] . Cyclotomic algebras provide a built-in approach to Jucys-Murphy theory,

the most relevant example being the cyclotomic affine BMW algebras [Goo12]. The cru-

8



cial facts about AB2 representations established in Sec. 6.4 may be regarded as simple

facts about the related 2-strand Ariki-Koike algebra [AK94]. However almost none of this

literature directly addresses SO(2n)-type endomorphism algebras since in the SO(2n)

case the algebras are not generated by braid morphisms. Even in the classical case I do

not believe it is completely understood what should be the analogue of the Brauer algebra

for SO(2n). In his original paper [Bra37], Brauer proposed a diagram algebra for SO(2n),

but the algebra is nonassociative. This algebra was further studied by Grood [Gro99].

1.2 Outline of thesis

We start with preliminary notation and background on ribbon categories in Sec. 2.

In Sec. 2.2 we discuss conditions under which a self-dual object is symmetrically self dual.

We think the results in this section are new to the literature, though they are a result

of an argument due to Turaev. We give extra background on how to “twist”6 Z2-graded

ribbon categories with cohomological data as the construction plays an important role in

the classification results (the modifications here account for the “standard normalization”

in the statement of Thm. 1.0.1). We refer to this as the cocycle construction throughout.

In Sec. 3 we describe in detail the tensor product rules for SO(N) (which has

infinitely many simple objects) and associated fusion rings (which have only finitely many

simple objects). This is standard material in the literature, but we provide a lot of detail

so it is clear which tensor product rules we are considering. Readers who are not already

acquainted or otherwise not interested in the Lie theoretic parametrization of irreps by

highest weight can skip Sec. 3.1 and accept the fusion rules as a “black box”. 7 Most of

the thesis uses a combinatorial approach, namely a parametrization of simples by Young

6This is common terminology that we try to avoid in the thesis since we often give that name to the
twist morhpism on an object in a ribbon category.

7Several computer algebra systems have built in algorithms for computing tensor product multiplici-
ties, e.g. Sage and LiE.
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diagram (or plus/minus variants in the N even case), as explained in Sec. 3.2. We call the

simple isotypes SO(N) shapes. The most important fusion rule will be that of tensoring

with an object X corresponding to the fundamental or defining N -dimensional irrep of

SO(N) which is labeled by the 1-box Young diagram [1]. The “generic rule” (meaning

when N is very large) says that whenever you tensor X with a Young diagram λ, you get

a (multiplicity free) direct sum of simples corresponding to the Young diagrams obtained

by adding or subtracting a box from λ. This generic rule has to be modified once the

Young diagrams are large enough to have N/2 rows.

In the next parts of Sec. 3 we discuss the existence of categories with SO(N) and

O(N) fusion rules, coming from quantum groups and Turaev-Wenzl skein theory, respec-

tively. This discussion is critical for the classification of SO(2n+ 1) type categories. For

the SO(2n) classification it is mostly unnecessary to know anything about the examples.

However, there is a single point where the quantum group categories are used, namely in

determining the dimensions of objects in an abstract SO(2n) type category.

We proceed in Sec. 3 to apply the “twisting” of Sec. 2 to describe a normalization

for the categories we consider. A nice argument by Morrison, Peters and Snyder [MPS11]

shows that if X is a self-dual object whose tensor square splits into 3 distinct simples, then

the framed link invariant associated to X must be the Dubrovnik or Kauffman polynomial

[Kau90]. Furthermore, in a Z2 graded category one can switch between Dubrovnik and

Kauffman types with a cocycle twist. We may thus “normalize” any category with SO(2n)

type fusion rules by requiring the link invariant to be Dubrovnik. With this choice, the

eigenvalues for the braid element cX,X (an element of the 3-dimensional commutative

algebra End(X⊗2)) must be of the form (q,−q−1, r−1).

In Sec. 4 we precisely state the Tuba-Wenzl classification for O(2n + 1) type

categories and show how this implies a classification of SO(2n+ 1) type categories.

In Sec. 5 we lay the categorical framework that justifies reducing the study of a

ribbon category to the study of the family of algebras End(X⊗k). This family, together
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with morphisms between them coming from the tensor product, constitute the diagonal

of the category. The idea that the category can be understood through a study of the

centralizer algebras arguably goes back to Schur and Weyl. In particular, Weyl famously

used Schur duality to construct the irreducible SL(N) representations by identifying the

algebras End(X⊗k) as quotients of the group algebra of the symmetric group [Wey66].

We show that when a tensor category is Z2 graded and generated by a self-dual object

X, the diagonal determines the category up to a cocycle modification. These results and

methods are very similar to [TW05], Sec. 4. 8 Our results are slightly stronger because

they do not use any assumption of braiding.

The next step is to study in detail the algebras End(X⊗k) and the tensor product

maps between them. In the proof of the main classification result, Thm. 8.0.1, we show

how the diagonal is determined by the matrices for braid elements in a certain basis, the

path basis. These correspond to minimal idempotents in the centralizer algebras, called

path idempotents. These idempotents are indexed by paths through the Bratteli diagram,

which encodes the rule for tensoring with X. In a ribbon category we are provided with

special central elements in End(X⊗k), called full twists, which are certain braids closely

related to the twist on X⊗k coming from the ribbon category structure. From these we

define the Jucys-Murphy elements, which act diagonally in a path basis and satisfy simple

relations with the braid generators. This is all detailed in Sec. 6 and consists of fairly

well known material.

Sec. 7 is devoted to the goal of showing that the braid matrices are uniquely deter-

mined in the path basis by the braid eigenvalue q. This constitutes the most substantial

novel contribution of this thesis. A subtask is to show the restriction of parameters,

which states that the eigenvalues for the braid element cX,X must in fact be of the form

(q,−q−1, q−(2n−1)), and that q must be a certain root of unity depending on the fusion

8The “tower of centralizer algebras” approach is broadly related to the standard invariant in subfactor
theory.
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rules (or not a root of unity if we are considering the generic fusion rules of SO(2n) with

infinitely many simples). The restriction of parameters is achieved in tandem with com-

puting the eigenvalues of the JM elements in terms of q. The key is to focus on Young

diagrams that are hook shaped. As with many arguments in this area, one proceeds by

induction, propagating information through the Bratteli diagram.

Once the restriction of parameters and JM eigenvalue computation is complete,

we continue in Sec. 7 to the uniqueness of braid representations. We advance by brute

force. First we specify a path basis more completely. In general, the path basis is defined

only up to rescalings, or in other words conjugation by a diagonal matrix, so we eliminate

this ambiguity. We then show inductively that the entries of the braid elements can (in

principle) be written as a rational expression in q. Except for a few cases, we do not write

down the explicit formulas, and satisfy ourselves with inductive formulas.

In Sec. 8 we apply the results of the previous section to prove the classification

result for SO(2n) type categories. We conclude the thesis in Sec. 9 with a discussion of

related unsolved problems and potential applications for our results.
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2

Categorical preliminaries

2.1 Ribbon categories

This thesis is concerned with classifying C-linear semisimple ribbon categories with

fusion rules coming from SO(N). In this section we review the terminology required to

make sense of this problem. The definitions are standard and can be found in a textbook

on tensor categories, e.g. [EGNO15] or [Kas95]. It is helpful to keep in mind the central

examples Rep G (or more generally Rep H for a semisimple Hopf algebra H) as easy

examples of tensor categories. Rep G will always denote either the finite-dimensional

C-representations of a finite group G or the finite-dimensional C-representations of a

classical Lie group G. However, from the quantum algebra perspective we are much more

interested in similar categories that do not have a symmetric braiding, since symmetric

braidings produce rather trivial link invariants. Quantum groups provide examples for

these but are less familiar.

A category C consists of a set of objects, and for any two objects X, Y ∈ C, a set

of morphisms denoted HomC(X, Y ) called the hom-set between X and Y . When X = Y

we use the special notation EndC(X) and refer to this hom-set as the endomorphism

ring of X.1 We sometimes omit the subscript when C is established by context. Every

1Although at this level of generality EndC(X) is merely a monoid, in a pre-additive category it is a
ring.

13



object X has an identity morphism 1X ∈ EndC(X). A category is C-linear if all of its

hom-sets are vector spaces over C and the composition of morphisms in the category

is linear in each argument. In particular the rings EndC(X) are C-algebras. A simple

object in a C-linear category is one with no non-trivial subobjects. If C is an abelian

category (so it contains finite direct sums, has a zero element, etc.) and every object in

C is isomorphic to a finite direct sum of simple objects then C is a semisimple category.

The set of simple objects modulo isomorphism are the simple isotypes of C, denoted Γ(C).

Semisimplicity is an important assumption which tells us that objects are determined

(up to isomorphism) by the multiplicities with which each simple isotype appears. In a

C-linear semisimple category, Schur’s Lemma is an if and only if: an object X is simple if

and only if EndC(X) = C. Moreover, for any X ∈ C (not necessarily simple) the algebra

EndC(X) is a finite-dimensional semisimple C-algebra. In other words a direct product

of matrix rings with entries in C. The simple two-sided ideals (i.e. full matrix blocks) of

EndC(X) correspond to the simple isotypes appearing in X.

The Grothendieck semigroup of a semisimple C-linear category C is the free abelian

semigroup generated by the set Γ of isomorphism types of simple objects. Hence elements

of the Grothendieck semigroup are finite linear combinations

∑

γ∈Γ

aγγ.

where aγ ∈ N and γ ∈ Γ is a simple isotype. We denote the Grothendieck semigroup

by Gr+(C). We reserve the simpler notation Gr(C) for the Grothendieck group of C,

which consists of all Z-linear combinations of elements of Γ. The Grothendieck group is

more frequently encountered than the semigroup but is slightly subtler as it should be

considered a based object, meaning a free abelian group together with a fixed basis (in

this case corresponding to the simple objects). There is a map from the simple objects

of C to Gr+(C), denoted X 7→ [X], which sends a simple object to its isotype. Since C is
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semisimple, this extends to a map defined on all objects of C which satisfies

[Y ⊕ Y ′] = [Y ] + [Y ′]

for all Y, Y ′ ∈ C. Note that [X] = [Y ] if and only if X is isomorphic to Y , so the elements

of the Grothendieck semigroup parametrize the isomorphism types of all objects in C.

Any additive functor F : C → D between semisimple categories induces a morphism of

Grothendieck semigroups, which can be described by a matrix with non-negative integer

coefficients (describing how F of a simple object in C decomposes in D). The functor F

is determined up to natural isomorphism by this matrix.

Given two C-linear semisimple categories C and D we can construct more. The

direct product category C × D is defined in the usual way. This category is C-linear but

not semisimple (it is not closed under direct sums), but taking the direct sum completion

we get a semisimple category whose Grothendieck semigroup is Gr(C) ⊕ Gr(D). This

direct sum completion (or matrix construction) is a general procedure to manually add

in direct sums to C (see [TW05], [MPS10]). 2

It turns out that it is more useful to have a way to combine C and D in a way that

is reflected as the tensor product on the level of Grothendieck semigroups, to produce a

category whose simple elements are indexed by the product Γ(C) × Γ(D). Consider the

category C ⊗ D with the same objects as C × D but hom-sets are given by HomC⊗D :=

HomC(X) ⊗C HomD(Y ). The Deligne product C � D is defined to be the direct sum

completion of C ⊗D. As before, the Deligne product is semisimple if C and D are. There

is a natural functor C × D → C � D which is C-linear in both variables, and the image

of an object (X, Y ) is denoted X � Y . The simple isotypes of C � D are all of the form

2To summarize the construction, one takes as objects all possible tuples of objects in C, and a morphism
between a n-tuple (X1, . . . , Xn) and an m-tuple (Y1, . . . Ym) is a size m× n matrix whose (i, j)-th entry
belongs to HomC(Xj , Yi). Composition of morphisms is defined via matrix multiplication (and the C-
linear structure of hom-sets).
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X�Y where X and Y are simples in C and D. Hence the Grothendieck semigroup of the

product is Gr+(C �D) = Gr+(C)⊗N Gr+(D).

A monoidal category is a category C together with a (functorial) tensor product

operation, denoted X ⊗ Y , which is associative and unital up to a fixed natural isomor-

phism. The unit object is typically denoted 1 and satisfies 1 ⊗ X ∼= X ∼= X ⊗ 1 for all

X ∈ C. To be precise, the category is equipped with fixed natural isomorphisms (the

“unitors”) which witness the above isomorphisms. Similarly, part of the data of C are

associators, which are isomorphisms

αX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z

that depend naturally on X, Y and Z, and satisfy certain coherence conditions (the “pen-

tagon” and “triangle” axioms). For instance, the pentagon axiom says that the two ways

of obtaining an isomorphism of (((X⊗)Y ) ⊗ Z) ⊗W ) with (X ⊗ (Y ⊗ (Z ⊗W ))) using

associators result in the same map. MacLane’s coherence theorem [ML98] asserts that

there is exactly one map between different parenthesizations of any number of objects

which can be made using associators and unitors. As a result, in a monoidal category

we can refer to morphisms between unparenthesized objects without ambiguity. This is

critical for the graphical calculus used later. A monoidal category is strict if one has

X ⊗ (Y ⊗Z) = (X ⊗ Y )⊗Z on the nose and the associators are identity maps. Whether

or not the category is strict we always assume w.l.o.g. that the unitor is strict, i.e.

X ⊗ 1 = 1⊗X = X on the nose. The coherence theorem implies any monoidal category

is (monoidally) equivalent to a strict one, called a strictification of C. We will see this in

more detail in Sec. 5.

A monoidal functor F between monoidal categories C and D is a functor for which

F (X) ⊗ F (Y ) is naturally isomorphic to F (X ⊗ Y ). More precisely, part of the data of

F is a natural isomorphism which witnesses this, often denoted F 2
X,Y : F (X) ⊗ F (Y ) →
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F (X ⊗ Y ). A monoidal natural isomorphism η between two monoidal functors F and G

does not come with extra data (it is just a natural isomorphism) but it must satisfy

ηX⊗Y ◦ F 2
X,Y = G2

X,Y ◦ (ηX ⊗ ηY ).

If C is a semisimple monoidal category then Gr+(C) inherits a multiplication mak-

ing it a semiring. The category C is said to categorify the semiring R if Gr+(C) ∼= R.

The Grothendieck ring of C is Gr(C) with the inherited ring structure. In order not to

forget the semiring we started with, Gr(C) should be considered a Z-based ring, i.e. a

ring whose underlying abelian group is free, with a specified basis satisfying a positivity

condition (that the product of two basis elements is a positive Z-combination in that

basis). We sometimes refer to elements of this basis as simple elements. A morphism

of Z-based rings is required to send a simple element to a non-negative combination of

simple elements. Any monoidal functor between semisimple monoidal categories induces

a map of Z-based rings. We say such a functor categorifies the corresponding ring map.

As usual, the categorification of a given ring map is typically far from unique, if it exists.

If C and D are semisimple and monoidal then C � D is also semisimple monoidal

and its Grothendieck ring is given by

Gr(C �D) ∼= Gr(C)⊗Z Gr(D) (2.1)

and the simple objects of C�D are all of the form X�Y with X, Y simple. For instance,

if C = Rep G and D = Rep H are the category of representations of finite groups G and

H, then C �D ∼= Rep (G×H).

A C-linear monoidal category is left rigid if for every object X there exists an
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object X∗ and duality morphisms

dX : X∗ ⊗X → 1

iX : 1→ X ⊗X∗

satisfying the S-bend identities:

(1X ⊗ dX) ◦ (iX ⊗ 1X) = 1X

(dX ⊗ 1X∗) ◦ (1X∗ ⊗ iX) = 1X∗ .

To explain why these are S-bend identities, we introduce the standard graphical notation

for these duality morphisms:

dX

1

XX∗

=

XX∗

iX

1

X X∗

=

X X∗

We remark on several conventions. First, in our graphical calculus we read from

bottom to the top, i.e. the labels on the bottom of the diagram describe the source of the

morphism, and the labels on the top give the target of the morphism. By the coherence
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theorem we may erase the strand labeled by the trivial object 1 without any ambiguity.

With these notations established, the S-bend identities read

X∗

X∗

=

X∗

X

X

X

=

X∗ is called the left dual to X. There is a similar definition for right rigid, with

the notation ∗X for the right dual. Such an object, together with the duality morphisms,

is unique up to unique isomorphism. The category is rigid if both left and right duals

exist. In a left rigid category we have natural isomorphisms

HomC(X ⊗ Y, Z) ∼= HomC(X,Z ⊗ Y ∗) (2.2)

HomC(X, Y ⊗ Z) ∼= HomC(Y
∗ ⊗X,Z) (2.3)

(and similar isomorphisms for right duals). In a (left) rigid monoidal category we may

declare (X ⊗ Y )∗ = Y ∗ ⊗ X∗ with the duality morphisms defined in the appropriate

manner.

A tensor category is a C-linear semisimple rigid monoidal category. A Serre subcat-

egory ( [EGNO15]) of a semisimple category is a full subcategory obtained as all possible
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direct sums made out of some subset of the simple isotypes. A tensor subcategory means

a Serre subcategory closed under tensor product. Tensor subcategories are in bijection

with subsets of simple isotypes closed under tensor product, and consequently can be

enumerated by the fusion rules alone. We say a tensor category is generated by the object

X if every simple object arises as a subobject of X⊗k, for some k ≥ 0. A category with a

simple generating object is called singly-generated.

We say C is G-graded (where G is a group) if C has a direct sum decomposition into

full nonzero Serre subcategories C =
⊕

g∈G Cg such that Cg ⊗ Ch ⊂ Cgh. The category is

G-graded if and only if its Grothendieck ring is G-graded in an appropriate sense. Every

category admits a universal grading by its universal grading group U(C):

C ∼=
⊕

g∈U(C)

Cg.

For example, if H is a a finite or classical group then U(Rep (H)) is isomorphic to Ẑ(H),

the group of characters of the center of H. See Sec. 2.3 for the definition and more

discussion of U(C). We will only deal with the cases when U(C) = Z2 or U(C) is the

trivial group.

A category is pivotal if there exists a natural isomorphism φX : X → X∗∗. This

is equivalent to saying that for every object X, in addition to the right duality maps iX

and dX , left duality maps i′X : 1 → X∗ ⊗ X and d′X : X ⊗ X∗ → 1 can be chosen such

that the left and right duality functors (∗− and −∗) coincide (see [TV17], Sec. 1.7).

In a pivotal category one can define the left and right categorical (or quantum)

traces which are linear functionals End(X)→ C:

TrlX(f) = d′X ◦ (f ⊗ 1) ◦ iX

TrrX(f) = dX ◦ (1⊗ f) ◦ i′X .
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A pivotal category is spherical if left and right traces coincide. In a spherical category

one has a well defined notion of categorical (or quantum) dimension of an object X:

dimC(X) = TrX(1) = d′X ◦ iX = dX ◦ i′X .

The dimension only depends on the isotype of X, so it induces a map on the Grothendieck

ring dimC : Gr(C)→ C. We will often use the important fact that this map is a character

of Gr(C), i.e.

dimC(X ⊕ Y ) = dimC(X) + dimC(Y )

dimC(X ⊗ Y ) = dimC(X) dimC(Y ).

In a rigid semisimple tensor category duality induces an involution −∗ : Gr(C) → Gr(C)

that sends simple elements to simple elements. This map is determined by the tensor

product rules, since for simple elements µ and λ, µ = λ∗ if and only if 1 appears in µ⊗λ.

A C-linear monoidal category is braided if there exists a natural isomorphism

cX,Y : X ⊗ Y → Y ⊗X

satisfying the hexagon identity, namely that

cX⊗Y,Z = (1⊗ cY,Z) ◦ (cX,Z ⊗ 1)

and similarly in the second coordinate (note these axioms require associators in the non-

strict setting). The Grothendieck ring of a braided category is commutative.

A braided category is ribbon if it is right rigid and there is a natural isomorphism

θX : X → X
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satisfying the equation

cY,XcX,Y (θX ⊗ θY ) = θX⊗Y (2.4)

as well as the compatibility conditions

θ∗X = θX∗

and

(θX ⊗ 1) ◦ iX = (1⊗ θX∗) ◦ iX .

A braided category is ribbon if and only if it is also spherical and it is sometimes useful

to consider the braiding and spherical structures rather than the twist. We say that two

ribbon categories are ribbon equivalent if there is a monoidal equivalence between them

which is compatible with the braiding and spherical structures.

Any morphism in a ribbon category can be represented by the graphical calculus

(see for example [Kas95], [TV17]), which consists of planar diagrams composed of coupons

and oriented ribbons3 whose ends either attach to a coupon or the bottom or top of the

diagram. The ribbons are labeled with objects of C, the coupons are labeled by morphisms

of the category, and the orientation determines whether cups and caps are left or right

duality maps. Diagrams are always read bottom to top. They are invariant under any

isotopies of the ribbon/coupon configuration which keep the boundary of the diagram

fixed. We will usually deal with symmetrically self dual objects (see the discussion in

the next section), which will allow us to employ unoriented diagrams. Any ribbon can

be “flattened” by taking the blackboard framing 4, which allow us to represent ribbons by

(unframed) tangle diagrams invariant only up to regular isotopy (i.e. only invariant under

Reidemeister II and III). We use this convention throughout since ribbons are harder to

3A ribbon is a slight thickening of a curve to a 2-dimensional band. Thinking of our diagrams in
3-space this corresponds to a choice of normal vector at every point on the curve, which is called a
framing.

4The blackboard framing corresponds to a normal vector lying in the plane of the diagram.
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draw, but be warned – these diagrams are not invariant under Reidemeister I.

In a left rigid ribbon category we can define morphisms

i′X = (1⊗ θX) ◦ cX,X∗ ◦ iX : 1→ X∗ ⊗X (2.5)

d′X = dX ◦ cX,X∗ ◦ (θX ⊗ 1) : X ⊗X∗ → 1. (2.6)

This turns X∗ into a right dual for X as well as a left dual, so the category is rigid. By

direct computation one can check that the left and right duality functors coincide, so the

left duality maps above define a pivotal structure. In fact it is spherical, so we may write

TrX(f) for the left (or right) trace of f ∈ EndC(X). Given any f ∈ Hom(X, Y ) and

g ∈ Hom(Y,X) we have

Tr(fg) = Tr(gf).

In particular, if pλ is a minimal idempotent in a EndC(X) with image isomorphic to Vλ

then

Tr(pλ) = dimC(Vλ).

This follows since semisimplicity ensures the existence of a ∈ Hom(Vλ, X) and b ∈

Hom(X, Vλ) such that ba = 1 and ab = pλ.

If C is a semisimple spherical category then dimC(X) 6= 0 whenever X is a simple

object of C. Consequently for any object X the quantum trace TrX(−) is non-degenerate.

The normalized trace of f ∈ EndC(X) is defined by

trX(f) =
1

dimC X
TrX(f).

Using the normalized trace the inclusion EndC(X)
−⊗1−−→ End(X ⊗ Y ) is trace preserving.

The non-degeneracy of the trace allows us to define the conditional expectation (or partial
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trace) εY : End(X ⊗ Y )→ End(X), characterized by

trX(εY (f)g) = trX⊗Y (f(g ⊗ 1)) (2.7)

for all f ∈ End(X ⊗ Y ), g ∈ End(X). We can write an explicit formula for εY (f) using

left duality maps as follows.

Lemma 2.1.1.

εY (f) =
1

dimC Y
(1⊗ d′Y )(f ⊗ 1)(1⊗ iY ) (2.8)

Hence we can express εk in the graphical calculus by

f

X Y

εY

( )
= f

X

1
dimC Y

Y

If X is simple then for f ∈ End(X ⊗ Y ) we have

εY (f) = trX⊗Y (f)1X (2.9)

by taking traces. This implies that the conditional expectations satisfy what is known as

the Markov property:

Lemma 2.1.2. Suppose X is simple and Y and Z are arbitrary objects. Let f ∈ End(Z⊗

X) and m ∈ End(X ⊗ Y ). Then

εY ((f ⊗ 1)(1⊗m)) = trX⊗Y (m)f. (2.10)
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Both the trace and normalized trace are multiplicative over tensor product, e.g.

trX⊗Y (f ⊗ g) = trX(f)trY (g). (2.11)

2.2 The universal grading group and spherical struc-

tures

Here we settle some questions regarding whether a self-dual generating object X

is symmetrically self dual or not. For such an object the left and right duality morphisms

agree, and consequently one may consider any wires labeled by that object in the graphical

calculus to be unoriented. Our main results follow from an argument of Turaev [Tur16]

but seem to be new. We thank Sachin Valera for questioning a previous mistake by the

author, and for bringing to attention Wang’s conjecture, mentioned below.

We recall some definitions (see [EGNO15] Secs. 3.6 and 4.14). Let C be a semisim-

ple tensor category. The universal grading group of C is the group U(C) generated by

symbols deg(X) for every simple object X, subject to relations deg(X) deg(Y ) = deg(Z)

if Z appears in X ⊗ Y . For convenience in the formulas below we sometimes write

x = deg(X), y = deg(Y ), etc.The universal grading group depends only on the fusion

rules of C. The map X → deg(X) ∈ U(C) defined on simple objects yields a grading of C:

C =
⊕

g∈U(C)

Cg

and every other grading comes from a quotient of U(C).5 Furthermore, the character

group Hom(U(C),C×) is naturally isomorphic to Aut⊗(1C), the group of monoidal auto-

morphisms of the identity functor. If C is pivotal then the set of pivotal structures forms

a torsor for the group Aut⊗(1C). In terms of characters, if χ : U(C)→ C× is a character

5Recall that we require all gradings to be faithful, meaning every graded piece is nontrivial.
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and j is a pivotal structure on C, then we can define a new pivotal structure χ · j by

(χ · j)X = χ(x)jX . (2.12)

If the original structure j is spherical, then χ · j is spherical iff χ2 = 1. Switching the

spherical structure changes quantum dimensions by

dimχ
C X = χ(x) dimC X.

Note that modifying the spherical structure can only change q-dims by factors of ±1.

Now suppose X is self-dual and let iX : 1 → X ⊗ X and dX : X ⊗ X → 1 be

right duality morphisms with left duality morphisms i′X and d′X defined using the ribbon

structure as in Eqs. 2.5. Since dim Hom(1, X⊗2) = 1, we have i′X = αiX and d′X = α̃dX

for some scalars α, α̃ ∈ C×. The S-bend relations imply α̃ = α−1 and sphericality implies

α ∈ {±1}. When α = 1 the self-dual object X is called symmetrically self-dual. The

scalar α is also known as the 2nd Frobenius Schur indicator of the object X, denoted

ν2(X).6

Being symmetrically self-dual is equivalent to admitting left duality morphisms iX ,

dX and right duality morphsims i′X , d
′
X such that iX = i′X and dX = d′X . In the graphical

calculus this means that the orientation of any strands labeled X are irrelevant (they do

not affect the morphism); we may consider them unoriented.

In a ribbon category the FS indicator is given by

ν2(X) = θXr
−1 ∈ {±1}. (2.13)

where θX is the twist on X and r−1 is the eigenvalue of the braid cX,X : X ⊗X → X ⊗X
6Classically, an irreducible self-dual representation of G has FS indicator +1 if the representation

preserves a non-degenerate symmetric form, and FS indicator -1 if it admits a non-degenerate skew-
symmetric form.
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on the object 1 ⊂ X⊗X. The spherical structure on C is called unimodal if every self-dual

object is symmetrically self dual.

Lemma 2.2.1. If X is symmetrically self dual then C is unimodal.

Proof. Turaev presented an argument for particular categories in Thm. XII.7.2 of [Tur16],

and the argument applies to this more general setting. It goes like this. If Y is a simple

object in C then let f be an integer so that Y ⊂ X⊗f . Let pY be a minimal idempotent

in End(X⊗f ) of type Y , such that

p∗Y = pY .

Here’s why such an idempotent exists: the duality functor −∗ acts by an involutive

anti-automorphism on the semisimple algebra End(X⊗f ) and it preserves the ideal corre-

sponding to the isotype of Y . This ideal is isomorphic to a full matrix algebra. Hence by

the Skolem-Noether theorem, −∗ is given by transposition of matrices for some choice of

basis. Now any symmetric rank-1 idempotent will do.

Let a : Y → EndX
⊗f

and b : EndX
⊗f

be morphisms such that a ◦ b = pY and

b ◦ a = 1Y . Then the morphisms

iY := (b⊗ b) ◦ iX⊗f , dY := dX⊗f ◦ (a⊗ a)

define left duality maps for Y . Here the duality maps on X⊗f are defined using the duality

maps for X. The S-bend relations follow from p∗Y = pY .

Now the FS indicator for Y can be computed using Eq. (2.13) and naturality of
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twist and braiding:

ν2(Y )iY = (1⊗ θY ) ◦ cY,Y ◦ iY = (1⊗ θY ) ◦ cY,Y ◦ (b⊗ b) ◦ iX⊗f

= (b⊗ b)(1⊗ θX⊗f ) ◦ cX⊗f ,X⊗f ◦ iX⊗f

= (b⊗ b)i′X⊗f

= (b⊗ b)iX⊗f .

In the last equality we used that iX⊗f = i′
X⊗f , which is true since they are defined in terms

of iX and i′X , and we assume iX = i′X . This shows ν2(Y ) = 1 and Y is symmetrically

self-dual.

Since C is generated by X and X is self-dual, the universal grading group U(C) is

either trivial or equal to Z2. The following lemma is easy to prove.

Lemma 2.2.2. U(C) is trivial if and only if the trivial object appears in some odd tensor

power of X.

Example 2.2.3. Suppose C is a tensor category with the fusion rules of O(N), Sp(N) or

SO(2n). Then C is generated by an object X corresponding to the defining representation.

It is self-dual. For these groups, since the trivial object never appears in an odd tensor

power of X, we conclude U(C) ∼= Z2 with the grading on simple objects degXλ = 0 if Xλ

appears in an even tensor power of X and degXλ = 1 if Xλ appears in an odd tensor

power of X. If C has the fusion rules of SO(2n+ 1) then U(C) is the trivial group, since

the trivial object appears in X⊗2n+1.

Let jY : Y → Y ∗∗ denote the spherical structure on C. Recall that given a character

χ of the finite group U(C) one can modify j to get a new spherical structure on the (tensor

category) C. It is defined by

j′Y = χ(y)jY
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where y ∈ U(C) denotes the degree of the simple object Y in the universal grading. Every

possible spherical structure on C arises in this way. Hence if U(C) is trivial then there is

a unique spherical structure and if U(C) = Z2 there are two.

Lemma 2.2.4. This modification changes the FS indicator of a simple object by

ν ′2(Y ) = χ(y)ν2(Y ).

Proof. This is because changing the spherical structure changes the twist by a factor of

χ(y) but leaves the braid unchanged. Then apply Eq. (2.13).

Theorem 2.2.5. If U(C) = Z2 then X is symmetrically self-dual for one of the spherical

structures and anti-symmetrically self-dual for the other. If U(C) is trivial then X is

symmetrically self-dual.

Proof. First, if U(C) = Z2, then the category is Z2-graded and the object X has odd

degree. Therefore changing the spherical structure with the nontrivial character of Z2

affects ν2(X) by a minus sign (by the second lemma).

If U(C) is trivial, then consider the ribbon category C � Rep Z2. The self dual

object X �−1 generates C �Rep Z2 (this is implied by the first lemma) and U(C � Z2)

is Z2. Hence there are two distinct spherical structures j and j′ on C � Rep Z2. For one

of them X �−1 is symmetrically self-dual. By Turaev’s Lemma C is unimodal, so X � 1

is also symmetrically self-dual. However, if X�1 is symmetrically self-dual for one of the

spherical structures j, j′ then it is for both, since X�1 lives in the even graded part of the

category and the spherical structures j and j′ agree there. Hence X was symmetrically

self-dual to begin with.

Hence in the Z2 graded cases we may always choose the unique spherical structure

for which X is symmetrically self-dual. In the SO(2n+1) case, there is only one spherical
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structure compatible with the underlying tensor category, and we have deduced that X

is symmetrically self-dual.

Finally, we present some corollaries of this theorem which may be of independent

interest. The next result generalizes Lemma 2.2 of [MPS16].

Corollary 2.2.6. If X is a self-dual object in a ribbon category (not necessarily generated

by X) such that 1 appears in an odd tensor power of X, then X is symetrically self-dual.

Proof. Indeed just apply the theorem (and the lemma about 1 appearing in an odd tensor

power) to the subcategory generated by X.

Wang conjectured that in a ribbon category the adjoint subcategory (the subcate-

gory tensor generated by all objects of the form Y ⊗Y ∗) is unimodal ( [Wan10], Conjecture

4.26). We can prove a special case of this.

Corollary 2.2.7. Suppose C is a ribbon category generated by a self-dual object X. Then

the adjoint subcategory is unimodal.

Proof. There are two cases. If U(C) is trivial then then the adjoint subcategory is equal

to the whole category, which is unimodal by the theorem. If U(C) = Z2 then the adjoint

subcategory is exactly the 0 graded piece of C (it is generated by X2). Now we can do the

same argument as in the proof of the theorem. Namely, for one of the spherical structures

X is symmetrically self dual. Hence for this spherical structure the adjoint subcategory

is unimodal. However, changing the spherical structure doesn’t affect the 0-graded piece,

so the adjoint subcategory is unimodal regardless of the choice of spherical structure.

2.3 The cocycle construction

Given a group G a 3-cocycle is a function ω : G3 → C× satisfying

ω(a, b, c)ω(a, bc, d)ω(b, c, d) = ω(ab, c, d)ω(a, b, cd) (2.14)
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for all a, b, c, d ∈ G. The group of 3-cocycles is denoted Z3(G). A 3-coboundary is a

function of the form δ(µ) : G3 → C× where µ : G2 → C× is an arbitrary function and

δ(µ)(a, b, c) = µ(a, b)µ(a, bc)−1µ(ab, c)µ(b, c)−1. (2.15)

The set of coboundaries is a subgroup B3(G) of Z3(G) and H3(G) = Z3(G)/B3(G) is the

third cohomology group of G (we omit mention of the coefficient ring C× since it is fixed

throughout). Every cohomology class contains a normalized 3-cocycle, which additionally

satisfies

ω(e, a, b) = ω(a, e, b) = ω(a, b, e) = 1 for all a, b ∈ G. (2.16)

In the case G = ZN we have H3(ZN) ∼= {τ ∈ C : τN = 1}. Explicitly, given an Nth root

of unity τ ∈ C the formula

ωτ (a, b, c) =





1 if a+ b < N

τ c if a+ b ≥ N

(2.17)

yields an isomorphism {τ ∈ C : τN = 1} ∼= H3(G).

Given a tensor category whose simple objects are all invertible and form a group G,

one can obtain new tensor categories with the same objects and fusion rules by twisting

the associativity constraints with a 3-cocycle of G. The same construction works for

tensor categories, which are graded by a group G. In the following we use the notation

x = deg(X), y = deg(Y ), etc.

Definition 2.3.1. (Cocycle construction.) Given a 3-cocycle ω : U(C)3 → C× we can

define C twisted by ω, denoted C(ω), as the tensor category with the same objects and

morphisms as C, but with a new associativity morphism defined on simple objects X, Y, Z

by

α′X,Y,Z = ω(x, y, z)αX,Y,Z
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and new unit constraints

l′X = ω(1, 1, g)−1lX and r′X = ω(g, 1, 1)rX

where α, l, r denote the original data of C.

Two 3-cocyles ω and ω′ are cohomologous if and only if the identity functor C(ω)→

C(ω′) can be equipped with a monoidal structure. Hence the cocycle construction only

depends (up to monoidal equivalence) on the cohomology class of ω. In particular, we

always assume ω is a normalized cocycle, so C and C(ω) have the same unit constraints.

If C is rigid then C(ω) is also rigid but the duality morphisms must be altered to

satisfy the S-bend identities. For any simple object X we fix the following left duality

morphisms in C(ω):

i(ω)X = ω(x−1, x, x−1)iX

d(ω)X = dX .

Similarly we define right duality morphisms by

i′(ω)X = i′X

d′(ω)X = ω(x, x−1, x)d′X .

If C is pivotal, we may assume the duality morphisms are chosen so that the left

and right duality functors coincide. A computation shows that with the definitions above,

the left and right duality functors in C(ω) also coincide, so C(ω) is pivotal (in fact, the

pivotal structure j : id → −∗∗ in C is also a pivotal structure on C(ω)). Furthermore,

any normalized 3-cocycle ω satisfies ω(x, x−1, x) = ω(x−1, x, x−1)−1 which implies that

the left trace of C(ω) coincides with the left trace of C, and similarly for the right trace.
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Therefore if C is spherical then so is C(ω) (using the pivotal structure provided by the

duality morphisms above) and we have

dimC(ω) X = dimC X (2.18)

for all objects X in C.

Next suppose C is braided. In this case U(C) is abelian, and we can construct

braided twists of C using abelian cocycles, defined below (this is explained in the setting

of pointed categories by Sec. 3 of [JS93]). Note that C(ω) is not necessarily braided

via the morphisms cX,Y coming from C. However, if we are provided with a function

a : U(C)2 → C× which satisfies both

a(x, y + z) = ω(y, z, x)−1ω(y, x, z)ω(x, y, z)−1a(x, y)a(x, z) (2.19)

a(x+ y, z) = ω(z, x, y)ω(x, z, y)−1ω(x, y, z)a(x, z)a(y, z) (2.20)

then we can define a braiding on C(ω) by

c(ω, a)X,Y = a(x, y)cX,Y .

Indeed, the conditions above are equivalent to the hexagon axioms for c(ω, a). A pair

(ω, a) where ω is a normalized 3-cocycle of an abelian group G and a satisfies the above

conditions is called an abelian 3-cocycle. The abelian 3-cocycles form a group Z3(G). As

we’ve seen, given an abelian 3-cocyle (ω, a) we can modify the associativity and braiding

morphisms in C using the formulas above to form a new braided tensor category which

we denote C(ω, a).

Let k : G2 → C× be a function satisfying

k(x, 0) = 1 = k(0, y).
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Then δk is defined to be the abelian cocycle (ω, a) defined by

ω(x, y, z) = k(y, z)k(x+ y, z)−1k(x, y + z)k(x, y)−1

a(x, y) = k(x, y)k(y, x)−1.

The set of abelian cocyles of the form δk form a subgroup B3
ab(G) ≤ Z3

ab(G) and the

quotient is the 3rd abelian cohomology group of G, H3
ab(G). Similarly to before, two

abelian cocycles (ω, γ) and (ω′, γ′) are cohomologous if and only if the identity functor

C(ω, a)→ C(ω′, a′) can be equipped with monoidal structure, and is braided.

When C is braided and spherical, i.e. ribbon, the pivotal structure can be trans-

ferred as before to C(ω, a) to produce another ribbon category. The q-dims of objects in

C are unchanged. However, the twist of C(ω, a) differs from that of C on a simple object

X by

θ(ω, a)X = a(x, x)θX .

Another modification is to change the spherical structure given a character χ : U(C)→ C×

such that χ2 = 1, as discussed earlier. The resulting category is denoted C(ω, a)χ and the

passage from C to C(ω, a)χ affects the q-dims and twists of a simple object X by

dimX 7→ χ(x) dimX

θX 7→ χ(x)a(x, x)θX .

The notation C(ω, a)χ is justified as the modifications of the spherical structure by χ and

braiding/associativity by ω are independent, i.e. (C(ω, a))χ = (Cχ)(ω, a).

We summarize the discussion in a proposition.

Proposition 2.3.2. Suppose C is a semisimple ribbon category with universal grading

group U(C). Then for any abelian 3-cocycle (ω, a) and character χ : U(C) → C× such

34



that χ2 = 1 we can modify the associativity, braiding, and twist of C on simple objects

X, Y, Z by

αX,Y,Z 7→ ω(x, y, z)αX,Y,Z

cX,Y 7→ a(x, y)cX,Y

θX 7→ χ(x)a(x, x)θX

to produce a new ribbon category C(ω, a)χ with the same fusion rules. The q-dims of simple

objects X change by

dimC(ω,a)χ X = χ(x) dimC X.

The identity functor C(ω, a)χ → C(ω′, a′)χ′ can be equipped with monoidal structure if and

only if ω and ω′ are cohomologous (as 3-cocyles). The identity functor can be equipped

with braided monoidal structure if and only if (ω, a) and (ω′, a′) are cohomologous (as

abelian 3-cocycles) and preserves the spherical structure if and only if χ = χ′.

2.3.1 Abelian 3-cocyles of Z2

All the categories we will consider have U(C) = {e} or U(C) = Z2 so here we

describe the abelian 3-cocyles of Z2.

As a representative set of normalized 3-cocyles for H3(Z2) ∼= Z2 we choose {1, ω}

where ω : Z3 → C× is given by

ω(a, b, c) =





1 if (a, b, c) 6= (1, 1, 1)

−1 if (a, b, c) = (1, 1, 1)
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One computes H3
ab(Z2) ∼= Z4. For z ∈ C let fz : Z2

2 → C× be the function

fz(a, b) =





1 if (a, b) 6= (1, 1)

z if (a, b) = (1, 1)

Then {(1, f1), (1, f−1), (ω, fi), (ω, f−i)} are a representative set of abelian 3-cocycles of Z2.

Remark 2.3.3. Including the spherical structure and mirror modifications, we end up

with 16 total ways to modify a Z2-graded ribbon category to get a new one. It would be

nice to connect this phenomenon to the 16-fold way for minimal modular extensions of

super-modular categories [BGH+17].
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3

Tensor product rules for SO(N)

The fusion ring of Rep SO(N) is a Z-based ring indexed by the set of non-

isomorphic simple objects. The multiplication in this ring comes from the tensor product

of representations. The finite dimensional (always assumed polynomial) irreducible rep-

resentations of classical groups are parametrized by their highest weight.

3.1 Lie theory

The special orthogonal group G = SO(N) consists of the linear transformations

CN → CN which preserve a non-degenerate symmetric bilinear form, with determinant 1.

Over C the isomorphism type of the group doesn’t depend on the form, so for concreteness

we choose

v · JNw (3.1)
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where · is the usual dot product on CN and

J2n =




0 In

In 0


 (3.2)

J2n+1 =




0 In

1

In 0




(3.3)

where In is the n×n identity matrix. This choice of form is convenient since the diagonal

matrices in G now form a maximal torus, denoted T . The upper triangular matrices of

G form a subgroup B called a Borel subgroup.

Let g = soN denote the Lie algebra of SO(N) and h the Lie algebra of T . Both

g and h act faithfully on CN . Since T consists of diagonal matrices, so does h, and more

precisely

h =





{diag(a1, . . . , an,−a1, . . . ,−an)} for G = SO(2n)

{diag(a1, . . . , an, 0,−a1, . . . ,−an)} for G = SO(2n+ 1).

(3.4)

On any finite-dimensional representation V of SO(N) the abelian algebra h acts by diag-

onalizable matrices and the simultaneous eigenvector decomposition gives V as a direct

sum of weight spaces:

V =
⊕

µ

Vµ.

Here µ ∈ h∗ is a linear functional and

Vµ = {v ∈ V | Av = µ(A)v for all A ∈ h}.

The dimension of Vµ is the multiplicity of the weight µ in V , denoted multV (µ). The
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character of V is the formal sum

χV =
∑

µ

multV (µ)eµ

where eµ denotes a standard basis element of the group algebra Z[h∗]. This means we can

multiply formal sums using eµeλ = eµ+λ. Any two finite-dimensional representations are

equivalent if and only if they have the same character. We also have

χV⊕W = χV + χW

χV⊗W = χV χW .

Let {ε1, . . . , εn} denote the usual basis of h∗ coming from Eq. (3.4), i.e.

εi(diag(a1, . . . , an,−a1, . . . ,−an)) = ai

in the SO(2n) case. Let h∗R denote the R-span of these vectors and let P be the weight

lattice of G, here defined as the Z-span of the εi. The weights occurring in any finite-

dimensional SO(N)-representation belong to P , hence in this basis we can describe any

weight by an n-tuple of integers, for instance (λ1, . . . , λn) ∈ Zn.

A weight vector which is also an eigenvector for the Borel subgroup B is a highest

weight vector of V . The theorem of highest weight states that f.d. irreps of SO(N) always

contain a unique highest weight vector (up to scalar multiplication) and isotypes of irreps

are in 1-1 correspondence with highest weights belonging to the set Γ(G) where

Γ(SO(2n)) = {(λ1, . . . , λn) | λi ∈ Z, λ1 ≥ · · · ≥ |λn| ≥ 0} (3.5)

Γ(SO(2n+ 1)) = {(λ1, . . . , λn) | λi ∈ Z, λ1 ≥ · · · ≥ λn ≥ 0}. (3.6)

For λ ∈ Γ(G) let V (λ) denote the irreducible module with highest weight λ. We now
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see that the fusion ring of Rep SO(N) is equipped with a distinguished basis labeled

by elements of Γ(SO(N)). Since every representation of Rep SO(N) is self-dual, the

involution in Gr(Rep SO(N)) is trivial. To describe the fusion rule we return to the Lie

theoretic background.

The group G acts by conjugation on g; this is the adjoint representation. The

non-zero weights of the adjoint representation are the roots of G and their Z-span in h∗R is

the root lattice, denoted Q. We specify a choice of simple roots, given below for SO(2n)

and SO(2n+ 1) in Table 3.1, which form a Z-basis for the root lattice.

Table 3.1: Simple roots for SO(N), even and odd

SO(2n)
αi = εi − εi+1 = (. . . , 0, 1,−1, 0, . . . ) for 1 ≤ i ≤ n− 1

αn = εn−1 + εn = (0, . . . , 1, 1).

SO(2n+ 1)
αi = εi − εi+1 = (. . . , 0, 1,−1, 0, . . . ) for 1 ≤ i ≤ n− 1

αn = εn = (0, . . . , 0, 1).

Every root which can be expressed as a non-negative sum of simple roots is a

positive root. The set of positive roots is Φ+, and Φ = Φ+∪−Φ+, meaning every root can

be written (uniquely) as a positive sum or negative sum of simple roots.

We equip h∗R with the inner product 〈, 〉 for which the εi are orthonormal. Note that

〈α, α〉 = 2 for short roots. For every root α there is orthogonal reflection sα : h∗R → h∗R

about the hyperplane perpendicular to α. The Weyl group W is the group generated by

these reflections. W acts faithfully on the set of roots so in particular it is a finite group.

It also preserves the weight lattice. For G = SO(2n + 1) the Weyl group is Sn n Zn2 ,

where Sn is the symmetric group, acting on the weight lattice by permutations, and Zn2

acts by sign changes on the coordinates. For G = SO(2n) we have W ∼= SnnZn−1
2 , where

the Zn−1
2 part acts by sign changes affecting an even number of entries (this Zn−1

2 can be

seen as the subgroup of Zn2 consisting of strings with an even number of 1’s). We denote

the action of W on the weight lattice by w(λ). There is another important action of W ,
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namely by shifted reflections:

w · λ := w(λ+ ρ)− ρ

where ρ is half the sum of the positive roots. The dominant Weyl chamber is a cone

emanating from the origin, bounded by hyperplanes orthogonal to the simple roots. The

sets Γ(G) parametrizing irreps correspond exactly to weights which lie in the closure of

the Weyl chamber. These are identical to the weights which lie in the interior of the shifted

Weyl chamber, which is the translation of the Weyl chamber by −ρ and is an analogous

fundamental domain for the shifted Weyl group action.

We can now give Steinberg’s formula for the tensor product coefficients. Let N ν
λµ

denote the multiplicity of V (ν) in V (λ) ⊗ V (µ), and multλ(µ) the multiplicity of the

weight µ in V (λ). Then we have

Theorem 3.1.1. (Steinberg, [Ste61])

Nν
λ,µ =

∑

w∈W

(−1)wmultλ(w · ν − µ). (3.7)

This formula has a pleasing geometric interpretation for how to decompose V (λ)⊗

V (µ): take the weight diagram for λ and translate it to be centered at µ. Whenever a

portion of the diagram extends outside the shifted Weyl chamber, one can “fold” it back

towards the dominant Weyl chamber using a shifted reflection. Once all the weights have

been folded into the dominant Weyl chamber the total amount at each weight ν (counted

with signs according to how many reflections were performed) gives the multiplicity of

V (ν) in V (µ)⊗V (λ). The weights which land on the boundary planes of the Weyl chamber

contribute 0 to the decomposition.
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We compute several explicit examples we need in the SO(2n) case. In this case

ρ = (n− 1, n− 2, . . . , 1, 0)

and the shifted Weyl chamber is given by the inequalities

λi − λi+1 ≥ −1, for 1 ≤ i ≤ n− 1 (3.8)

λn−1 + λn ≥ −1. (3.9)

Let si denote the simple reflection about the hyperplane orthogonal to the simple root αi.

Under the shifted action si transforms a weight λ by affecting the i and i+ 1 coordinates

of λ:

si · (λ1, . . . , λn) = (λ1, . . . , λi+1 − 1, λi + 1, . . . , λn), for 1 ≤ i ≤ n− 1

sn · (λ1, . . . , λn) = (λ1, . . . ,−λn − 1,−λn − 1)

Example 3.1.2. Let X = C2n denote the defining representation of SO(2n). The stan-

dard basis provide a basis of weight vectors for X, and the weights which appear in X

are {±εi : 1 ≤ i ≤ n}, each with multiplicity one. Since X has a unique highest weight,

namely ε1 = (1, 0, . . . , 0), it is irreducible and X ∼= V (ε1). Let λ = (λ1, . . . , λn) be a

highest weight for SO(2n). Consider Steinberg’s formula for λ ⊗ X, using the weight

diagram for X. If µ = ±εi is a weight which appears in X, then λ + µ must lie in the

shifted Weyl chamber. If λ + µ lies on a bounding hyperplane then it contributes 0 to

λ ⊗ X. If it lies in the interior of the shifted Weyl chamber then it is a highest weight,

obtained by adding or subtracting 1 from one of the coordinates of λ. Therefore

X ⊗ V (λ) ∼=
⊕

ν↔λ

V (ν)
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where the sum is over all highest weights ν which are of the form λ± εi for some i.

Example 3.1.3. Consider
∧2(X), the second exterior power of X = C2n. Assume n ≥ 3;

then
∧2(X) is known to be an irreducible SO(2n) representation. The usual basis of

∧2(X) arising from the standard basis of X gives a basis of weight vectors. The weights

which appear are of the form ±εi± εj for i 6= j, appearing with multiplicity 1, and 0, with

multiplicity n. It has highest weight ε1 + ε2 = (1, 1, 0, . . . , 0). Hence
∧2(X) ∼= V (ε1 + ε2).

Proposition 3.1.4. Let λ be a highest weight for SO(2n) with n ≥ 3. Let d denote the

number of distinct integers in the list (λ1, . . . , λn−1, λn,−λn). Then Nλ
λ,ε1+ε2

= d− 1 and

V (ε1 + ε2)⊗ V (λ) ∼=
⊕

ν

V (ν)⊕ (d− 1)V (λ)

where the sum is over all highest weights ν of the form λ± εi ± εj with i 6= j.

Proof. Let µ be a non-zero weight of V (ε1 + ε2). Then λ + µ is either a highest weight,

or lies on a bounding hyperplane of the shifted Weyl chamber, or lies outside the shifted

Weyl chamber. We claim that whenever λ + µ lies outside, it can be folded back with a

single reflection, and the resulting weight is λ. Indeed, if λ + µ lies outside then it must

violate one of the inequalities (3.8) or (3.9). In the first case this means

(λ+ µ)i − (λ+ µ)i+1 < −1.

Then we find that

0 ≤ λi − λi+1 < µi+1 − µi − 1 ≤ 1,

where the second inequality is true since µi and µi+1 belong to {0,±1}. Hence λi = λi+1

and µ = −εi+εi+1. Therefore λ+µ = (λ1, . . . , λi−1, λi+1+1, . . . λn) and si ·(λ+µ) = λ, as

claimed. Furthermore, the number of µ for which λ+µ breaks one of the inequalities (3.8)

is equal to |{i : λi = λi+1}|. In a similar way one finds that λ + µ breaks the inequality
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(3.9) if and only if λn = −λn−1 and µ = −εn−1 − εn, in which case sn · (λ+ µ) = λ.

Hence, by Steinberg’s formula, every highest weight ν of the form λ + µ appears

with multiplicity 1 in V (ε1 + ε2) ⊗ λ, since none of these weights are cancelled out by

folding. The only question is the multiplicity of λ. Let r denote the number of weights µ

of X such that λ + µ lies outside the shifted Weyl chamber. Since the weight 0 appears

with multiplicity n in X, the previous analysis shows Nλ
λ,ε1+ε2

is equal to n− r. Using the

conditions on λ and µ derived in the previous paragraph, one finds that n−r = d−1.

Remark 3.1.5. Note that Nλ
λ,ε1+ε2

≥ 1 for all non-zero λ.

We will also need a well known general fact concerning tensor product rules:

Proposition 3.1.6. ( [GW], Prop. 5.5.19) The tensor product V (µ)⊗ V (λ) decomposes

as

V (µ)⊗ V (λ) ∼= V (µ+ λ)⊕
⊕

ν

Nν
λ,µV (ν)

where the sum is taken over those highest weights ν for which λ+µ− ν is a positive root.

In other words, we have Nλ+µ
λ,µ = 1 and Nν

λ,µ = 0 unless ν = λ + µ − α for some

positive root α.

3.2 Representations and Young diagrams

For most of the thesis we will take a combinatorial approach and parametrize

irreps using Young diagrams. Already we’ve seen that irreps of SO(N) are parametrized

by highest weights, which correspond to a sequence of integers satisfying λ1 ≥ λ2 ≥ · · · ≥

|λn|. Such a sequence is a partition if λn ≥ 0. We identify a partition with its Young

diagram, which is a collection of boxes arranged in rows, the ith row containing λi boxes.

We use exponential notation to denote Young diagrams, so for instance [1k] denotes the

one column Young diagram with k boxes while [k] denotes the one row diagram of size k.
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The Young diagram associated to any sequence λ is obtained by replacing λn with |λn|.

The size of λ, denoted |λ|, is the number of boxes in λ. Given a Young diagram λ let

λ′ denote the transpose diagram whose ith column has λi many boxes. Note that λ′i is

equal to the number of boxes in the ith column of λ. Let Y denote the set of all Young

diagrams and Yk diagrams of size k. Then the irreducible representations of O(N) and

Sp(N) are parametrized by the following sets:

(a) Γ(O(N)) = {λ ∈ Y : λ′1 + λ′2 ≤ N}

(b) Γ(Sp(N)) = {λ ∈ Y : λ1 ≤ N}

The corresponding sets for the special orthogonal groups depend on whether N is even

or odd. We define

(c) Γ(SO(2n+ 1)) = {λ ∈ Y : λ′1 ≤ n}

(d) Γ(SO(2n)) = {λ ∈ Y : λ′1 < n} ∪ {λ± : λ ∈ Y , λ′1 = n}

Here the definition of Γ(SO(2n)) means that for every Young diagram λ with exactly n

rows there are two distinct elements labelled λ+ and λ−, corresponding to λn positive or

negative. This is the only case in which the irreps are not exactly parametrized by Young

diagrams. We refer to elements of Γ(G) as G-shapes.

Define an involution r : Γ(O(N)) → Γ(O(N)) where r(λ) is the Young diagram

which is obtained from λ by replacing the first column of λ with N − λ′1 many boxes. 1

The condition λ ∈ Γ(O(N)) ensures that r(λ) is a Young diagram belonging to Γ(O(N)).

When r(λ) 6= λ we say they are associate diagrams. This involution coincides with the

map λ 7→ λ⊗ det where det is the determinant representation of O(N) (corresponding to

1This corresponds to the automorphism of the Dynkin diagram for type D which swaps the two
endpoints connected to the triple point.
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the Young diagram [1N ]). Then the restriction rule can be stated as

λ|SO(N)
∼=





λ or r(λ) if r(λ) 6= λ

λ+ ⊕ λ− if r(λ) = λ

where in the first case we choose between λ or r(λ), taking the unique diagram with < n

boxes in its first column. Note the condition r(λ) = λ occurs exactly when N = 2n and

λ has n boxes in its first column.

In the case of N odd, the restriction map is onto, ie

Gr(O(2n+ 1))|SO(2n+1) = Gr(SO(2n+ 1)) (3.10)

and in fact

Γ(O(2n+ 1)) ∼= Γ(SO(2n+ 1))× {±1}. (3.11)

via the bijection

λ 7→





(λ, (−1)|λ|) if λ′1 ≤ n

(r(λ), (−1)|λ|) if λ′1 > n.

(3.12)

This map is a bijection thanks to the decomposition O(2n+ 1) ∼= SO(2n+ 1)×{±I} and

the fact that −I acts on the isotype λ by (−1)|λ|. The map extends to (or is categorified

by) an equivalence of symmetric monoidal categories:

Rep (O(2n+ 1)) ∼= Rep (SO(2n+ 1)) � Rep Z2.

Under this correspondence, Rep SO(2n+1) ∼= Rep SO(2n+1)�1 appears as the tensor

subcategory of Rep O(2n+1) spanned by Young diagrams with an even number of boxes.

This identification sends an SO(2n + 1)-shape λ to itself if |λ| is even, and to r(λ) if |λ|
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is odd. On the level of Grothendieck rings we have (by Eq. (2.1))

Gr(O(2n+ 1)) ∼= Gr(SO(2n+ 1))⊗Z Gr(Z2). (3.13)

In the even case, the restriction map is not onto but the image can be described

as follows. We have an involution σ : Γ(SO(2n)) → Γ(SO(2n)) which fixes λ for every

λ with λ′1 < n and exchanges λ+ with λ−. This involution coincides with the action

on characters given by conjugation with a certain element of O(2n) (which gives an

outer automorphism of SO(2n)). This shows that σ is an involutive automorphism of

Gr(SO(N)). Let Gr(SO(2n))σ denote the fixed ring of σ. Then

Gr(O(2n))|SO(2n) = Gr(SO(2n))σ. (3.14)

This fixed ring consists of Z-linear combinations of simple elements such that the coeffi-

cients for any pair λ+ and λ− are equal.

Lemma 3.2.1. The fixed ring Gr(SO(2n))σ is generated algebraically by the elements

[1], [12], . . . , [1n−1], [1n]+ + [1n]−.

Proof. See [KT], Prop. 1.2.6. In fact they show that the fixed ring is a free polynomial

ring with the above elements as generators.

Lemma 3.2.2. The ring Gr(SO(2n)) is generated algebraically by the elements

[1], [12], . . . , [1n−1], [1n]+, [1n]−. (3.15)

Proof. Let S denote the (unital) subring generated by these elements. We can prove that

every simple element belongs to S using double induction with respect to (1) the size

of the corresponding diagram and (2) the partial order � on highest weights defined by
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µ� λ if λ−µ is a positive root.2 Note that here λ−µ does not denote subtraction in the

Grothendieck ring, but subtraction as elements of the weight lattice. In the following we

use the notation λ⊕ µ to denote the operation of plus in the Grothendieck ring. By the

previous lemma, the only simple elements that can’t already be written as a polynomial

in the elements in (3.15) are of the form λ+ or λ−. Any SO(2n)-shape of the form λ+ has

an associated shape µ obtained by removing the first column from λ+. Then by Prop.

3.1.6,

[1n]+ ⊗ µ = λ+ ⊕
⊕

ν�λ+
N ν

[1n]+,µν.

By induction, all the simple elements ν which appear in the sum belong to S. Similarly,

since µ has fewer boxes than λ, µ also belongs to S by induction. Hence λ+ also belongs

to S. Finally, λ+ ⊕ λ− already belongs to S by the previous lemma, so λ− ∈ S as well,

which completes the proof.

For any classical group G there is a distinguished irrep which is the defining repre-

sentation (or fundamental module) X whose underlying vector space is CN . It corresponds

to λ = [1], the one-box Young diagram. Multiplying a simple module Xλ by X is easily

described:

X ⊗Xλ
∼=
∑

µ↔λ

Xµ (3.16)

where the notation µ↔ λ means the sum is taken over every µ ∈ Γ(G) obtained from λ

by adding or removing a box. In the case of SO(N = 2n) the fusion rule is slightly more

delicate. For λ with λ′1 < n we have

X ⊗Xλ
∼=
∑

µ↔λ





Xµ if µ′1 < n

Xµ+ ⊕Xλ− if µ′1 = n

(3.17)

2Note that for each λ, the set of highest weights µ with µ� λ is finite so the induction is valid.
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while for λ with λ′1 = n we have

X ⊗Xλ±
∼=
∑

µ↔λ





Xµ if µ′1 < n

Xµ± if µ′1 = n

(3.18)

where again the sum is always taken over all those µ obtained from λ by adding or

removing a box. For SO(2n) we abuse language a bit and say λ is obtained from µ by

adding (removing) a box whenever λ is a component of X ⊗ [µ] with one more (fewer)

boxes than µ, even when λ and/or µ have n rows and are labeled with plus/minuses.

Remark 3.2.3. Proposition 3.1.4 gives the SO(2n) rule for tensoring with [12], when

n ≥ 3. A particularly useful example is

[12]⊗ [K] = [K, 12] + [K + 1, 1] + [K − 1, 1] + [K]. (3.19)

This equation is valid for n ≥ 4; for n = 3 the term [K, 12] should be replaced by

[K, 12]+ + [K, 12]−. Aside from the multiplicity of λ in [12]⊗ λ, the rule is simple, and we

restate it in terms of SO(2n) shapes:

Lemma 3.2.4. Suppose λ, ν are distinct SO(2n) shapes, with n ≥ 3. Then ν appears in

[12] ⊗ λ if and only if ν can be obtained by adding or removing a box from two distinct

rows of λ. If it appears then it has multiplicity 1.

The rule for tensoring by [2] can be obtained via

[2]⊗ λ = X⊗2 ⊗ λ− [12]⊗ λ− λ, (3.20)

due to the decomposition X⊗2 = [2] + [12] + 1.

Lemma 3.2.5. Suppose λ, ν are distinct SO(2n) shapes with n ≥ 3. Then ν appears in
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[2] ⊗ λ if and only if ν can be obtained by adding or removing a box from two distinct

columns of λ. If it appears then it has multiplicity 1.

Proof. If ν is obtained from λ by adding or removing boxes in the same row but different

columns, then ν appears only once in X⊗2 ⊗ λ (due to the unique shape in X ⊗ λ which

differs from both λ and ν by one box). On the other hand ν does not appear in [12]⊗ λ,

so it must appear in [2]⊗ λ, by Eq. 3.20.

If ν is obtained by adding or removing boxes in different rows and different columns

then the multiplicity of ν in X⊗2 ⊗ λ is 2, owing to the two shapes in X ⊗ λ which are

exactly one box different from both ν and λ. Since ν appears in [12]⊗λ with multiplicity

1 by Lemma 3.2.4, the same is true for [2]⊗ λ by Eq. 3.20.

Finally, if ν is any other shape in X⊗2 ⊗ λ then it must be obtained from λ by

adding or removing boxes from the same column. In this case ν appears only once in

X⊗2 ⊗ λ, and it also appears in [12]⊗ λ. Hence it does not appear in [2]⊗ λ.

3.3 Fusion rings of SO(N)-type

There also exist ribbon categories with only finitely many simple objects (i.e. fu-

sion categories)3 whose fusion ring is a quotient of that of SO(N). The simple objects

are parametrized by integer points in a Weyl alcove, which is a linear simplex formed

by truncating the Weyl chamber by a hyperplane orthogonal to a certain positive root.

Combinatorially we can characterize these simple objects by a condition on the length of

the first row or first two rows of a Young diagram. If the condition is just that λ1 ≤ K

then the fusion ring is said to be of SO(N)−Sp(K) type. If the condition is λ1 +λ2 ≤ K

then the fusion ring is of SO(N)−O(K) type. The terminology comes from the fact that

the condition on the rows is the same condition put on the columns of Young diagrams

3In general a semisimple category is fusion if it has finitely many simple isotypes. A fusion ribbon
category is also called a premodular category.
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parametrizing irreps in O(K) (resp. Sp(K)), see Sec. 3.2, (a) and (b). 4 For certain

values of N and K there are also fusion rings of type SO(N) − SO(K) arising from de-

equivariantizations of SO(N)−O(K) type categories, see e.g. [BB01]. We hope to address

these in future work. The categories considered now arise in several contexts, including

quantum groups at roots of unity ( [AP95], [Saw06]), affine Lie algebras (e.g. [Fei02]) and

Turaev-Wenzl style skein theory coming from the BMW algebras ( [Wen90], [TW97]).

Here we just describe the relevant fusion rings. We review the basic language of affine

Weyl groups and alcoves, for instance as in [Hum90]. See [BK01], [Sch18] for a discussion

specialized to our context.

3.3.1 SO(N)−O(K) type fusion rings

First let us describe the SO(N)−O(K) rings. These have simple elements indexed

by

Γ(SO(N)−O(K)) = {λ ∈ Γ(SO(N)) : λ1 + λ2 ≤ K}. (3.21)

In terms of highest weights, these correspond to weights in the (closure of the) dominant

Weyl chamber which satisfy the extra condition

〈λ, θ〉 ≤ K

where θ = (1, 1, 0, . . . 0) is the highest root of SO(N). It is often more convenient to think

of these as the weights inside the interior of the shifted Weyl alcove, which is the subset

of h∗R bounded by the shifted Weyl chamber and the additional hyperplane

{λ : 〈λ, θ〉 = K + 1}.
4The notation is inspired by a general symmetry called level-rank duality, which arises from the

transpose operation on Young diagrams.
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If we translate the shifted Weyl alcove to emanate from the origin (instead of −ρ), we get

the Weyl alcove, which is the truncation of the dominant Weyl chamber by the additional

hyperplane

{λ : 〈λ, θ〉 = κ}.

where κ = K + 〈ρ, θ〉+ 1.

We define the affine Weyl group Ŵ to be the group generated by the reflections

about the hyperplanes bounding the Weyl alcove. This includes the reflections orthogonal

to simple roots, so Ŵ contains the Weyl group W as a subgroup. In fact we have Ŵ ∼=

W n L where L is the subgroup of translation in Ŵ . We may identify L with a discrete

subgroup of h∗R: if tv denotes translation by v then L = {v ∈ h∗R : tv ∈ Ŵ}. Then one can

show that L = κQ∨ = {κx : x ∈ Q∨} where

Q∨ := {λ ∈ Zn :
∑

i

λi is even}. (3.22)

This important W -invariant sublattice of P is called the coroot lattice. Just like the Weyl

group, the affine Weyl group also acts on h∗R by its shifted (or dot action). Under both the

normal action and shifted action the weight lattice P is preserved by Ŵ . Now the Weyl

alcove (resp. shifted Weyl alcove) are fundamental domains for the action (resp. shifted

action) of Ŵ . The set we’re interested in are the weights contained in the interior of the

shifted Weyl alcove. 5

Now we present the fusion ring of type SO(N)−O(K) as a quotient of Gr(SO(N)).

It is well known that Gr(SO(N)) can be identified with Z[P ]W , the invariants (under the

Weyl group) of the group algebra of P , by sending a simple element to its character (see

e.g. [KT]). Since L = κQ∨ is a W -invariant sublattice of P , the quotient P/L is a W -

5This no longer coincides with the weights in the closure of the Weyl alcove because the extra bounding
hyperplane for the Weyl alcove is located further away from the origin than the corresponding hyperplane
for the shifted Weyl alcove.
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module and we can define the invariant ring (Z[P/L])W . We have a ring homomorphism

φK : (Z[P ])W → (Z[P/L])W

obtained by extending the quotient map P → P/L. The following theorem is presumably

well known but hard to pin down in the literature (see e.g. [Wen11], Prop. 1.1 for the

argument).

Theorem 3.3.1. Let χλ denote the image of χλ under φK.

1. (Modification rule.) For any w ∈ Ŵ and λ ∈ Γ such that w.λ ∈ Γ, we have

χw.λ = (−1)wχλ.

2. The image of φK has a Z-basis given by {χλ : λ ∈ Γ(SO(N)−O(K))}.

3. φK is surjective.

It is critical to note that w.λ refers to the shifted action of the affine Weyl group.

The formula implies that the character of any irrep whose highest weight belongs to one

of the walls of the shifted Weyl alcove gets sent to 0 by φK . Let IK denote the kernel of

φK , considered as a map on Gr(SO(N)).

Definition 3.3.2. The fusion ring of type SO(N)−O(K), denoted Gr(SO(N)−O(K)),

is the quotient of Gr(SO(N)) by IK , with simple elements corresponding to the images

of λ belonging to Γ(SO(N)−O(K)).

By the theorem we can explicitly take the fusion ring to be Z[P/L]W with simple

elements χλ, which we usually refer to just as λ. It is well known that there exist ribbon

categories whose Grothendieck rings are isomorphic to Gr(SO(N) − O(K)). From this
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we deduce the non-obvious fact that the structure coefficients of Gr(SO(N)−O(K)) are

non-negative, so it is indeed a Z-based ring in the precise sense of Sec. 2.1.

The fusion rule of this ring has a simple description in terms of the affine Weyl

group and the SO(N) tensor product multiplicities Nν
λ,µ, thanks to the previous theorem:

Theorem 3.3.3. (Kac-Walton formula.) Let λ, µ, ν be simple elements of the SO(N)−

O(K) type fusion ring and let N ν
λ,µ denote the multiplicity of ν in λ⊗ µ. Then

N ν
λ,µ =

∑

w∈Ŵ

(−1)wNw.ν
λ,µ .

Indeed, both the Kac-Walton formula and Part (1) of Thm. 3.3.1 are equivalent

to a geometrical algorithm for computing λ⊗ µ in Gr(SO(N)− O(K)): first decompose

V (λ)⊗ V (µ) in Rep SO(N), and then use the shifted action of the affine Weyl group to

“fold” the constituents back into the set Γ(SO(N)−O(K)), where they contribute with

a sign according to the number of reflections used in folding. Note the similarity of this

algorithm with Steinberg’s Rule (Thm. 3.1.1). In fact Steinberg’s Rule can be combined

with the Kac-Walton formula to obtain

Theorem 3.3.4. (Quantum Racah Rule.)

N ν
λ,µ =

∑

w∈Ŵ

(−1)wmultλ(w.ν − µ),

Here multλ(µ) denotes the classical multiplicity of µ in the SO(N)-irrep V (λ).

Often the Kac-Walton formula is used to define the fusion ring directly, as an alternate

to the definition provided here. We use this definition just to emphasize the fusion ring

as a quotient of the classical Grothendieck ring.

Example 3.3.5. We compute [12] ⊗ [K] in the SO(2n) − O(K) fusion rules for n ≥ 3
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and K ≥ 3. By Eq. 3.19, [12]⊗ [K] decomposes in Gr(SO(2n)) as

[12]⊗ [K] = [K, 12] + [K + 1, 1] + [K − 1, 1] + [K] (3.23)

where [K, 12] should be replaced with [K, 12]+ +[K, 12]− when n = 3. We have to see what

happens to each simple element under the quotient map φK : Gr(SO(2n))→ Gr(SO(2n)−

O(K)). The shifted Weyl alcove has the bounding inequality

λ1 + λ2 ≤ K + 1

and the corresponding simple reflection s0 of the affine Weyl group acts by

s0 · (λ1, λ2, . . . , λn) = (K + 1− λ2, K + 1− λ1, λ3, . . . , λn).

Hence [K, 12] (resp. [K, 12]+ and [K, 12]− for n = 3) lies on the boundary of the shifted

Weyl alcove, so φK([K, 12]) = 0. Since s0 · [K + 1, 1] = [K] we have φK([K + 1, 1]) =

−φK([K]) by the modification rule of Thm. 3.3.1. Therefore in Gr(SO(2n)− O(K)) we

have

[12]⊗K = [K − 1, 1]. (3.24)

In fact, it can be seen that [K] is an invertible simple element, which means λ ⊗ [K] is

simple whenever λ is simple.

Since the classical Grothendieck ring is generated (algebraically) by the shapes

corresponding to columns (see Lemma 3.2.2), the same is true in the quotient:

Lemma 3.3.6. Gr(SO(N)−O(K)) is generated by the simple elements corresponding to

the 1-column SO(2n) shapes: [1], [12], . . . , [1n−1], [1n]+, [1n]−.

In the SO(2n) case the involution σ on Gr(SO(2n)) (which interchanges plus/minus
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labeled simple elements and fixes the rest) descends to the quotient. Hence by Lemma

3.2.1 we have

Lemma 3.3.7. The fixed ring Gr(SO(2n)−O(K))σ is generated by the elements

[1], [12], . . . , [1n−1], [1n]+ + [1n]−.

3.3.2 SO(2n+ 1)− Sp(2k) type fusion rings

In the special case N = 2n+ 1 we can form another family of fusion rings, arising

from having roots of different lengths type B. These have simple elements indexed by

Γ(SO(2n+ 1)− Sp(2k)) := {λ ∈ Γ(SO(2n+ 1)) : λ1 ≤ k}.

The discussion concerning the fusion rules is nearly identical to the SO(N)−O(K) case.

The difference is modifying the Weyl alcove and affine Weyl group. The new shifted

Weyl alcove is the truncation of the shifted dominant Weyl chamber by the hyperplane

{λ : 〈λ, β〉 = k + 1/2} where β = (1, 0, . . . , 0) is the highest short root of the SO(2n+ 1)-

type root system. The affine Weyl group is the semidirect product W n L where now

L = κP with κ = 2k + 2〈β, ρ〉 = 2k + 2n − 1. As before, Gr(SO(N) − Sp(K)) may be

defined as the image of Gr(SO(N)) under the map

Gr(SO(N)) ∼= (Z[P ])W → (Z[P/L])W .

The simple elements are the characters which correspond to shapes in Γ(SO(2n + 1) −

Sp(2k)). The Kac-Walton formula and quantum Racah rule still work as stated.
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3.4 Fusion rings associated to orthogonal groups

While our main interest is in fusion rules associated to the special orthogonal

groups, it is useful to briefly discuss fusion rings coming from the full orthogonal groups.

These are the rings which are considered in the classification by Tuba and Wenzl. The

close relationship between SO(2n+ 1) and O(2n+ 1) (namely, that every O(2n+ 1) irrep

stays irreducible upon restriction to SO(2n+1)) means that the Tuba-Wenzl classification

for O(2n + 1) categories immediately implies a classification for SO(2n + 1) categories;

this is explained in Sec. 4. For the classification of SO(2n) type categories we do not need

to know anything about orthogonal type categories so here we restrict our attention to

the N = 2n+1 case. This is convenient since every SO(2n+1) shape is a bonafide Young

diagram, so we don’t have to worry about the pesky plus/minus shapes as in SO(2n).

Fusion rings associated with the full orthogonal group O(2n+ 1) have elements in

bijection with the following sets of Young diagrams:

Γ(O(2n+ 1)−O(K)) := {λ : λ′1 + λ′2 ≤ 2n+ 1, λ1 + λ2 ≤ K} ∪ {[K, 12n−1]} (3.25)

Γ(O(2n+ 1)− Sp(2k)) := {λ : λ′1 + λ′2 ≤ 2n+ 1, λ1 ≤ k}. (3.26)

In the first case, the hook shape [K, 12n−1] is the only Young diagram appearing whose

transpose is not a valid O(K) shape. However, it is a valid O(2n+ 1) shape since its first

two columns add up to 2n+ 1. In the second case, the transpose of every Young diagram

which appears is a valid Sp(2k) shape.

As in the generic case, there is a bijection

Γ(O(2n+ 1)−G) ∼= Γ(SO(2n+ 1)−G)× {±1}.

Indeed, it is given by the same formula Eq. 3.12. Under this map, an O(2n+1)−G shape
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λ is sent to either (λ, (−1)|λ|) or (r(λ), (−1)|λ|), depending on whether λ or its associate

diagram r(λ) has fewer than n rows. Recall r(λ) just differs from λ in the first column,

and that the sum of their first columns is 2n + 1. In particular, the “extra” diagram in

Eq. (3.25) is associate to the row diagram [K]. We will use the following facts, which

serve to define the fusion ring of O(2n+ 1)−G type:

Fact 1. There exists a Z-based ring Gr(O(2n+ 1)−G) (with G = O(K) or Sp(2k)) with

a set of simple elements parametrized by Γ(O(2n+ 1)−G).

Fact 2. These are the fusion rings considered in the Tuba-Wenzl classification [TW05].

Fact 3. The bijection between simple elements extends to a Z-based ring isomorphism

Gr(O(2n+ 1)−G) ∼= Gr(SO(2n+ 1)−G)⊗Z Gr(Z2). (3.27)

The first fact follows from the stronger fact that there are ribbon categories whose simple

objects are parametrized by the set Γ(O(2n+ 1)−G) (more detail on this in Sec. 3.6.2).

Definition 3.4.1. An O(2n+1)−G type category is a ribbon category whose Grothendieck

ring is identified with Gr(O(2n+ 1)−G).

These are also known as examples of BCD categories [BB01, TW05]. They are

perhaps most easily described as coming from quotients of the BMW algebras specialized

at certain roots of unity [Wen90], [TW00]; this is the Turaev-Wenzl skein theory referred

to above. We sketch a proof of Facts (2) and (3). By [TW05], Prop. 8.6, the fusion

rules for an O(2n+ 1)−G category are completely determined by the labeling of simple

isotypes and the rule for tensoring with an object X corresponding to the Young diagram

[1]. The rule is simple and given by

[1]⊗ λ ∼=
⊕

λ↔µ

µ
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where the sum is taken over all Young diagrams µ obtained by adding or removing a

box from λ. Hence (2) and (3) may be proved at the same time by showing that the

corresponding object in the ring Gr(SO(2n+ 1)−G)⊗Z Gr(Z2) satisfies this rule, which

reduces to a routine check using the known fusion rules of Gr(SO(2n+ 1)−G).

Remark 3.4.2. It is interesting to note that Gr(SO(2n+ 1)−G) embeds in Gr(O(2n+

1)−G) as the subring spanned by diagrams with an even number of boxes. For instance

the SO(2n+1)−G shape [1] corresponds to the O(2n+1)−G shape [12n]. In categorical

language, this amounts to saying that the adjoint subcategory of an O(2n+1)−G category

is an SO(2n + 1) − G category. Furthermore, any O(2n + 1) − G category is Z2 graded

according to whether a simple object has odd or even many boxes in its diagram.

3.5 Normalization of BCD-type categories

As we’ve seen in 2.2, a ribbon category C with the fusion rules of SO(2n), Sp(2n)

and O(2n + 1) are Z2 graded, with the grading on a simple object λ appearing in X⊗k

given by (−1)k. By the results of Section 2.2, there is a unique spherical structure so that

X is a symmetrically self-dual object. This means the left and right duality morphisms

coincide, and we may represent wires labeled X by unoriented strands.

In graphical notation we represent iX = i′X by and dX = d′X by . Let

e = iX ◦ dX = . Likewise the braid morphism cX,X is denoted c = . Thus c−1 = .

For the categories considered above, X⊗2 splits into 3 simples labeled 1, [2] and

[12]. The following proposition is well known and proves that the framed link invariant

coming from any symmetrically self-dual simple object whose tensor square splits into 3

simples is either the Kauffman or Dubrovnik polynomial [Kau90,TW05,MPS11].

Proposition 3.5.1. ( [MPS11], Thm. 3.1) Suppose X is a symmetrically self-dual simple

object in a ribbon category C whose tensor square decomposes into three distinct simples.
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Then there are complex numbers z, r such that one of the following sets of relations hold:

• The Kauffman relations:

+ = z
(

+
)

= r , = r−1

• The Dubrovnik relations:

− = z
(
−

)

= r , = r−1 .

Proof. First, note that r is the scalar associated to the twist θ = θX :

r = θ.

Now since dim End(X⊗2) = 3 there must be a non-zero linear relation of the form

A +B + C +D = 0. (3.28)

Consider the operator on End(X⊗2) which sends f 7→ (1⊗ dX)(1⊗ f ⊗ 1)(iX ⊗ 1).

Using the braiding and rigidity axioms one checks that this operator performs the swaps

←→

←→

We call it the 1-click operator since its effect on these diagrams is to rotate them by π/2
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clockwise. The 1-click has order two on the space of relations of the form (3.28), and so

it admits an eigenrelation with eigenvector 1 or −1. In the eigenvalue +1 case we have a

relation of the form

A
(

+
)

= C
(

+
)
.

Note that A must be nonzero, as otherwise is both non-invertible and proportional to

the identity. Hence we can divide by A and take z = C/A (so we are in the Kauffman

case). The case of a −1 eigenvalue leads in the same way to the Dubrovnik relation.

Corollary 3.5.2. Suppose X is a symmetrically self-dual object in a ribbon category C

whose tensor square decomposes into three distinct simples. If cX,X satisfies the Dubrovnik

relation, there exist q, r ∈ C× such that has eigenvalues {q,−q−1, r−1} where r = θX

and z = q − q−1. In the Kauffman relation case there exist q, r ∈ C× such that the

eigenvalues of are {iq,−iq−1, ir−1} where r = iθX and z = iq − iq−1.

Ribbon categories with the fusion rules of one of these groups are classified by the

eigenvalues of the braid element cX,X , which we denote (q, q′, r−1) where q is the eigenvalue

on the simple object [2] ⊂ X⊗2, q′ is the eigenvalue on [12] and r−1 is the eigenvalue on

the trivial irrep 1 ⊂ Xλ. Twisting C by the cocycle (1, f−1) changes the eigenvalues of

cX,X by

(q, q′, r−1) 7→ (−q,−q′,−r−1).

The resulting category is monoidally equivalent to C. On the other hand, twisting C by

an abelian cocycle (ω, a) modifies the braiding by cX,X(ω, f±i) = ±icX,X . If cX,X satisfies

the Kauffman relation then cX,X(ω, f±i) satisfies the Dubrovnik relation and vice versa.

Summarizing, for a ribbon tensor category which is Z2 graded and generated by a

self-dual simple object X with X⊗2 we may modify the spherical structure and/or twist

by an abelian 3-cocycle to guarantee the braid element cX,X is symmetrically self-dual,

satisfies the Dubrovnik relation and has eigenvalues (q,−q−1, r−1) for some r, q ∈ C×.
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A similar construction (but unrelated to the cocycle construction) is the mirror.

Given a braided tensor category C, the mirror C is the braided tensor category obtained

by defining new braid morphisms cX,Y = c−1
Y,X . When C is ribbon, the mirror is also, with

twist given by θX = θ−1
X . Switching from C to its mirror affects the eigenvalues of cX,X by

(q, q′, r−1) 7→ (q−1, (q′)−1, r)

without changing the monoidal equivalence class of the category.

3.6 Examples of SO(N) and O(N) type categories

Here we summarize the various facts regarding existence of SO(N) type categories.

3.6.1 SO(N) categories from quantum groups

We briefly describe SO(N) categories coming from Drinfel’d-Jimbo quantum

groups [Dri86, Jim86, Jan96, Kas95, CP95]. These are q-deformations UqsoN of the uni-

versal enveloping algebra of the Lie algebra so(N). In the generic case, when q is not

a root of unity, one can extract out of the category of finite dimensional representa-

tions a semisimple ribbon category Rep UqsoN whose Grothendieck ring is isomorphic

to Rep soN . Since this category was built from the Lie algebra soN rather than SO(N)

itself, it includes simple objects corresponding to spin representations (i.e. highest weights

with half-integer coordinates), which we don’t consider in the thesis.

Definition 3.6.1. For q not a root of unity, Rep SO(N)q is the subcategory of

Rep Uqso(N) spanned by simple objects with integer highest weights.

This category has the same fusion rules as SO(N) but the eigenvalues of the braid

element cX,X are given by (q,−q−1, q2n). There are well known Lie-theoretic formulas
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for the dimensions of simples and twists which depend only on q (we give the dimension

formula below.) We have intermediate results in Sec. 7 which show that any ribbon

category with SO(N) fusion rules must have the same dimensions and twists. This will be

an important step towards classification (but does not immediately imply a classification

since in general the fusion rules, dimensions and twists are not a full set of invariants for

a ribbon category).

When q is a root of unity the category of finite-dimensional representations is

no longer semisimple. However if one instead looks at the category of tilting modules

[AP95,Saw06] and takes the quotient by negligible morphisms, one obtains a semisimple

ribbon category (Rep Uqso(N))ss. The simple objects are parametrized by the highest

weights of soN which are contained in a Weyl alcove, exactly as in Sec. 3.3. The only

difference from the SO(N)-type fusion rules is the category of tilting modules includes spin

representations (half integer weights) in addition to the SO(N) shapes. Nevertheless the

fusion rules are given by the Kac-Walton formula (now generalized to include all highest

weights of soN). Using this it is easily checked that the simples corresponding to integer

highest weights are closed under tensor product, hence span a full tensor subcategory.

Definition 3.6.2. When q is a root of unity, Rep SO(N)q denotes the ribbon subcategory

of (Rep Uqso(N))ss spanned by simples with integer highest weights.

The Grothendieck ring of Rep SO(N)q is isomorphic to Gr(SO(N)−G) for some

G depending on q (this is the same dependence as described in Table 3.2 below), and every

ring Gr(SO(N) − G) occurs for some value of q. The eigenvalues of the braid operator

are (q,−q−1, q−(N−1)).

The promised and well-known dimension formula (valid for any q 6= ±1) is a q-

version of Weyl’s dimension formula:

dimRep SO(N)q(λ) =
∏

α∈Φ+

[〈α, λ+ ρ〉]q
[〈α, ρ〉]q

. (3.29)
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Here [n]q = qn−q−n
q−q−1 and the product is over all positive roots.

Remark 3.6.3. One can use the formula to check

dimRep SO(2n)q(λ
+) = dimRep SO(2n)q(λ

−) (3.30)

when λ+ and λ− differ just by a sign in their last entry.

Remark 3.6.4. The Lie superalgebra osp(1|2n) has semisimple representation theory and

its tensor product rules are the same as for SO(2n+1) [RS82]. For generic q there exists a

q-deformation Uq osp(1|2n) and the associated representation category Rep Uq osp(1|2n)

has the same fusion rules as SO(2n + 1) [Zha92b]. By ( [Zha92a], Sec. C.1) the funda-

mental object X has braid eigenvalues 6

(−q, q−1, q−2n).

Presumably there are associated fusion categories when q is not a root of unity which

have fusion rules of SO(2n+1)−G type. If this is the case then they are classified by our

SO(2n+1) theorem. Zhang [Zha92a] and Blumen [Blu05] have studied finite-dimensional

versions of Uq osp(1|2n) when q is a root of unity, from which one should be able to extract

a semisimple category which likely has fusion rules of SO(2n+ 1)−G type.

3.6.2 O(N) categories from BMW algebras

The simplest construction to get ribbon categories associated to the full orthogonal

group O(N) is to take a quotient of a tangle category by a Dubrovnik (or Kauffman) skein

relation. Turaev and Wenzl introduced these categories by this method in [TW97]. They

are further studied by Beliakova and Blanchet [BB01]. The connection between BMW

6Actually Zhang’s q is our −q−1. See also Blumen’s work, e.g. ( [Blu06], Cor. 7.1), whose q agrees
with ours.

64



algebras and quantum groups is explained by Wenzl in [Wen90], who first observed that

certain endomorphism algebras for quantum group representations are quotients of the

BMW algebras. In the classical setting this is the role played by the Brauer algebra and

indeed the BMW algebras form a deformation of the Brauer algebras.

Roughly speaking, one considers the tangle category whose objects are natural

numbers and the morphism space Hom(n,m) is the C-space spanned by (n,m)-ribbons

connecting n lower points to m upper points. Given non-zero complex numbers q, r we

have the Dubrovnik skein relation

− = (q − q−1)
(
−

)

= r , = r−1 .

The C-space of (0, 0)-tangles (i.e. linear combinations of framed links) modulo

these relations is 1-dimensional, and yields an invariant of framed links called the Kauff-

man bracket [Kau90]. Using the tangles ∪ and ∩ one can close any (n, n)-tangle to a

(0, 0)-tangle and compute its invariant using the Kauffman bracket. This yields so-called

Markov traces HomT (n, n)→ C. Upon quotienting by the tensor ideal of negligible mor-

phisms and idempotent completing we obtain a ribbon category V(q, r).7 The Markov

traces carry over to Markov traces on the endomorphism algebras of V(q, r). These en-

domorphism algebras are well known quotients of BMW algebras which are the algebras

one gets by quotienting the braid group algebra by the Dubrovnik relation (so named for

Birman-Murakami-Wenzl). The construction of the categories by Turaev and Wenzl uses

detailed results on the structure of the BMW algebras and certain semisimple quotients

by Wenzl [Wen11]. We need detailed information only in the odd case O(2n+ 1).

1. The category is generated by a single self dual object X (the “1-strand” object).

7With respect to a trace tr, a negligible morphism f is one which satisfies tr(f ◦ g) = tr(h ◦ f) = 0 for
all g, h which compose with f .
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Its tensor square splits into 3 simple objects and the braid element cX,X has the

eigenvalues (q,−q−1, r−1).

2. For q not a root of unity and r = ±q2n for some n ≥ 1 the category V(q, r) is semisim-

ple with the fusion rules of O(2n + 1). The braid morphism cX,X has eigenvalues

(q,−q−1, r−1). Explicit formulas for the q-dims were derived by Wenzl [Wen90] and

are listed in this context by [BB01], Eqs. (6) and (7). We need information con-

cerning the simple object corresponding to the determinant representation, labeled

by the Young diagram [12n+1]. When r = q2n the q-dims and twists are given by

dimV(q,q2n)[1
2n+1] = 1

θ[12n+1] = 1

whereas when r = −q2n they are given by

dimV(q,−q2n)[1
2n+1] = 1

θ[12n+1] = −1.

3. When q2 is a primitive l-th root of unity and r = ±q2n with l ≥ 2n+2, the category

V(q, r) is semisimple with the fusion rules of O(2n+ 1)−G, where G depends on q

according to the table:

Table 3.2: Relation between fusion rule and order of q2 for O(2n+ 1) categories.

fusion rule
l even O(2n+ 1)−O(l − 2n+ 1)

l odd, ql = −1 O(2n+ 1)−O(l − 2n+ 1)
l odd, ql = 1 O(2n+ 1)− Sp(l − 2n− 1)
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The braid morphism cX,X again has eigenvalues (q,−q−1, r−1). The q-dims and

twists are given by the same formula, in particular for the simple object corre-

sponding to the Young diagram [12n+1].

4. For q = ±1 the Kauffman relation does not suffice to reduce the (0, 0)-tangles to

a 1-dimensional space. Upon adding the relation = d for some d ∈ Z \ {0}

one can define a trace as before and quotienting by negligibles yields a semisimple

symmetric category. For d = 2n + 1 or d = −2n + 1 for some n ≥ 1 this category

has the fusion rules of O(2n + 1). If d = 2n then the category has O(2n) fusion

rules while d = −2n yields Sp(2n) fusion rules.

Remark 3.6.5. The full orthogonal categories corresponding to r = q2n can be obtained

from the quantum group categories Rep SO(N)q by taking the Deligne product with

Rep Z2 (c.f. the proof of Thm. 4.0.3). The categories with r = −q2n are Rep SO(2n+

1)−q � Z2, twisted by the cocycle (1,−1). Hence it is natural to view these as coming

from the Lie superalgebra osp(1|2n) (see Remark 3.6.4 and 4.0.7).
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4

Classification of SO(2n + 1) type categories

The classification result of Tuba and Wenzl implies a classification of ribbon cat-

egories with the fusion rules of SO(N) for N = 2n + 1 odd and at least 3, as explained

now.

For a ribbon category C of type SO(2n+ 1) or SO(2n+ 1)−G and λ ∈ Γ(C), Xλ

refers to a simple object of C corresponding to the partition λ. Let X = X[1] be an object

corresponding to the fundamental irrep. The basic fusion rule (Eq. 3.16) implies

X ⊗X ∼= 1⊕X[12] ⊕X[2].

Here we require 2n + 1 ≥ 3 since for 2n + 1 = 1 the Young diagram [12] is not a valid

shape. To ensure the diagrams are all valid in the SO(2n + 1) − G fusion case we also

assume the rank of G is at least 3. In other words G must be O(2k), O(2k+ 1) or Sp(2k)

with k ≥ 3.

Remark 4.0.1. The quantity k is often called the level of the fusion ring. The level 1

and level 2 cases contain several interesting families of categories that we are omitting in

this discussion (and the pending result).

Let us precisely state the special case of Tuba and Wenzl’s result on O(2n+1) and

O(2n + 1) − G type categories. By the Sec. 3.5 the braid eigenvalues of cX,X are either
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of the form (q,−q−1, r−1) (the Dubrovnik case) or (q, q−1, r−1) (the Kauffman case). In

either case q denotes the eigenvalue of cX,X on the object [2]. All the O(2n + 1) type

categories are Z2 graded so in the next theorem we assume all categories are equipped

with the unique spherical structure so that the generating object X is symmetrically self

dual.

Theorem 4.0.2. ( [TW05], Thm. 9.4) Ribbon categories with the fusion rules of O(2n+1)

or O(2n + 1) − G for some G with rank ≥ 3 are determined, up to equivalence, by the

eigenvalues of the braid operator cX,X , which must be of the form (q,−q−1, εq−2n) (the

Dubrovnik case) or (q, q−1, εq−2n) (the Kauffman case), where ε ∈ {±1} and the order of

q as a root of unity (possibly ∞) is determined by the fusion rules as in Table 3.2. More

precisely, two such categories C and C ′ with the same fusion rules and braid eigenvalues q

and q′ are monoidally eqivalent if and only if they are both Dubrovnik (or both Kauffman),

q′ ∈ {q±1} and ε′ = ε, or q′ ∈ {−q±1} and ε′ = −ε. They are ribbon equivalent if and

only if q = q′ and ε = ε′.

The “if” part of the theorem may be restated as: every O(2n+1) or O(2n+1)−G

type category is a cocycle/mirror modification of one of the ribbon categories V(q, q2n)

or V(q,−q2n) of Sec. 3.6.2 with q belonging to a fundamental domain for the action of

Z2 × Z2 by q 7→ ±q±1. The idea of SO(2n + 1) classification is very simple. If you start

with an SO(2n+ 1) type category C then C � Rep Z2 has the fusion rules of O(2n+ 1),

so we can apply the Tuba-Wenzl classification to this category.

Theorem 4.0.3. (a) Ribbon categories of type SO(2n + 1) with non-symmetric braid-

ings are determined (up to monoidal equivalence) by the eigenvalues of cX,X , which

are of the form (q,−q−1, q−2n) for q not a root of unity. More precisely, two such cat-

egories with eigenvalues (q,−q−1, q−2n) and (q′,−q′−1, q′−2n) are monoidally equiva-

lent if and only if q′ ∈ {q±1}. They are ribbon equivalent if q = q′.
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(b) Ribbon categories of type SO(2n + 1) − G with n ≥ 1 and rank(G) ≥ 3 must

have non-symmetric braiding and are determined (up to monoidal equivalence) by

the eigenvalues of cX,X which are of the form (q,−q−1, q−2n) where q is a root of

unity whose order is determined by G (just as in Table 3.2). More precisely, two

such categories with eigenvalues (q,−q−1, q−2n) and (q′,−q′−1, q′−2n) are monoidally

equivalent if and only if q′ ∈ {q±1}. They are ribbon equivalent if q = q′.

Remark 4.0.4. Recall that SO(2n+ 1) categories refer to ribbon categories with a fixed

identification of their Grothendieck ring with Gr(SO(2n + 1)) or Gr(SO(2n + 1) − G).

When we say “two categories are monoidally/ribbon equivalent” in the theorems above

and proof below we mean equivalent via an equivalence which is the identity map on the

level of Grothendieck rings.

Proof. First we consider the generic case, with infinitely many simple isotypes. Given a

ribbon category C with the tensor product rules of SO(2n+ 1), form the Deligne product

C�Rep Z2 where Rep Z2 is considered as a ribbon category with the standard symmetric

braiding and trivial twists. C � Rep Z2 becomes a ribbon category with straightforward

braiding and twist, e.g.

cX�ε,Y �ε′ = cX,Y ⊗ 1

θX�ε = θX ⊗ 1.

Then C � Rep Z2 has the tensor product rules of O(2n + 1) by Eq. (3.13). If X is the

object corresponding to the fundamental representation of SO(2n + 1) then X � −1 is

the object of C � Rep Z2 corresponding to the fundamental irrep of O(2n + 1). Note

that by Thm. 2.2.5 the object X in C is symmetrically self-dual, so the same is true for

X � −1 in C � Rep Z2 without having to change the spherical structure. To apply the

Tuba-Wenzl classification we examine the eigenvalues of cX�−1,X�−1 which are equal to
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the eigenvalues of cX,X .

Let q denote the eigenvalue of X on [2] ⊂ X⊗2. First we show that the all

the eigenvalues of cX,X are given by (q,−q−1, q−2n), i.e. the categories must satisfy the

Dubrovnik (and not the Kauffman) relation and the third parameter r is equal to q2n.

If q /∈ {±1,±i} then the Tuba-Wenzl classification states that q is not a root of unity

and C � Rep Z2 is ribbon equivalent to a cocycle or mirror modification of V(q′, q′2n) or

V(q′,−q′2n) for some q′ ∈ {q, q−1} (see Secs. 3.6 and 3.5 ). In C � Rep Z2 the q-dim

and twist of the object 1 � −1 corresponding to the determinant representation (with

Young diagram [12n+1]) are both 1. The same is true for V(q′, q′2n). Furthermore, we

see from the cocycle modification rules (Prop. 2.3.2) that modifying V(q′, q′2n) by any

non-trivial cocycle and character alters (at least one of) the q-dim or twist of 1 � −1.

Hence if C�Rep Z2 is ribbon equivalent to a twist of V(q′, q′2n), then the twist is trivial,

q′ ∈ {q±1}, and the eigenvalues of cX,X are of the form (q,−q−1, q−2n). On the other hand

consider what happens if C�Rep Z2 is ribbon equivalent to a twist of V(q′,−q′2n). There

is a unique cocycle modification which makes both the q-dim and twist of [12n+1] equal to

1, namely the abelian cocycle (1, f−1). Hence if C � VectZ2 is equivalent to V(q′,−q′2n)

then q′ ∈ {−q±1} and cX,X again has eigenvalues (q,−q−1, q−2n).

Now suppose two categories C, C ′ have the same braid eigenvalues (q,−q−1, q−2n).

Then the above discussion shows C �Rep Z2 is ribbon equivalent to C ′�Rep Z2 via an

equivalence which induces the identity on Grothendieck rings. In particular this restricts

to a ribbon equivalence between the subcategories C� 1 and C ′� 1 so C and C ′ are ribbon

equivalent. Now if q′ = q−1 then the mirror of C has the same eigenvalues as C ′ so C ′ is

ribbon equivalent to C, which is monoidally equivalent to C.

Conversely, if C and C ′ are monoidally equivalent then C�Rep Z2 and C�Rep Z2

are monoidally equivalent and from the “only if” part of the Tuba-Wenzl thereom we

conclude that q′ ∈ {±q±1}. It suffices to show that if q′ = −q then actually C and C ′ are

not monoidally equivalent. The previous discussion shows C�Rep Z2 is ribbon equivalent
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to (possibly the mirror of) either V(q, q2n) or V(−q,−q2n)(1,f−1). Similarly if q′ = −q then

C ′ � Rep Z2 is ribbon equivalent to one of V(−q, q2n) or V(q,−q2n)(1,f−1) (or a mirror

of these). In any case C ′ � Rep Z2 is not monoidally equivalent to C � Rep Z2 by the

Tuba-Wenzl theorem. Hence C and C ′ are themselves not monoidally equivalent.

The case of a fusion ring (with finitely many isotypes) is virtually identical thanks

to the facts stated in Sec. 3.4. In particular, by Fact (3), C�Rep Z2 has O(2n+ 1) type

fusion rules and by Fact (2) the Tuba-Wenzl classification applies to C�Rep Z2. The same

considerations concerning the twist and dimension of the object X � −1 (corresponding

to the Young diagram [12n+1]) are identical and lead to the same conclusion.

The theorem may be rephrased in terms of quantum groups (c.f. [EO18], Thms

A.1 and A.3 for the SO(3) case without the ribbon assumption).

Corollary 4.0.5. Every SO(2n + 1) or SO(2n + 1)−G type ribbon category with braid

eigenvalue q is ribbon equivalent to Rep SO(2n+ 1)q.

Proof. The quantum group categories achieve every possible value for q (see Sec. 3.6).

Remark 4.0.6. We see that on one hand there are “fewer” SO(2n + 1) categories than

O(2n + 1) categories. In particular, every SO(2n + 1) category must be Dubrovnik,

all self-dual objects are symmetrically self-dual, and we must have r = q2n and not

r = −q2n. However the latter family did not really disappear since the SO(2n + 1)

categories corresponding to ±q are not equivalent (at least by an equivalence which is

the identity on the Grothendieck ring). They come from the two families of O(2n + 1)

categories with ε = ±1. In the q = 1 limit they produce distinct symmetric tensor

categories, namely Rep SO(2n+ 1) and Rep osp(1|2n).

We also obtain the following result (see Remark 3.6.4):

Corollary 4.0.7. For q not a root of unity, we have

Rep Uq osp(1|2n) ∼= Rep SO(2n+ 1)−q
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as ribbon categories.

In particular, the two categories give identical link invariants, reproducing a result

of Clark [Cla15].
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5

Monoidal algebras and their diagonals

The classification of SO(2n)-categories will not directly rely on the results on

Tuba and Wenzl but it follows their strategy. The strategy of [KW93] and [TW05] is to

describe the family of algebras End(X⊗n) where X is a simple object corresponding to the

fundamental (or vector) representation of the underlying Lie group. For this to work we

need some understanding of the relationship between a category generated by an object

X and the family of algebras End(X⊗n).

Our approach here is very similar to [TW05], Section 4. The main difference in

exposition is an emphasis on the cocycle construction. Our results are slightly stronger

since they do not require any sort of braiding assumption.

Definition 5.0.1. A monoidal algebra is a strict C-linear monoidal category A with

objects 1, X,X2, X3, . . . in bijection with N with tensor product rules Xk ⊗X l = Xk+l.

Sometimes we denote a monoidal algebra as a pair (A, X) to emphasize that the

choice of the object X is part of the definition (i.e. monoidal algebras are “based”).

Accordingly, a morphism between monoidal algebras (A, X) and (B, Y ) is a monoidal

functor F : A → B satisfying F (X) = Y . It turns out that any monoidal functor between

monoidal algebras is (monoidally) naturally isomorphic to a strict monoidal functor. Fur-

thermore, any monoidal equivalence between monoidal algebras is naturally isomorphic

to a strict monoidal isomorphism (these facts are proved in Lemma 5.0.7 below). Hence
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to classify monoidal algebras up to monoidal equivalence it suffices to use the following

simpler notion of isomorphism:

Definition 5.0.2. An isomorphism of monoidal algebras is a morphism of monoidal

algebras F : A → B which is strict monoidal:

F (f ⊗ g) = F (f)⊗ F (g),

and bijective on Hom-spaces.

Definition 5.0.3. Given a strict tensor category C and object X of C the monoidal algebra

generated by X, denoted 〈X〉, is the full (tensor) subcategory with objects 1, X,X⊗2, . . . .

Remark 5.0.4. When C is not strict, one can form a strictification Cstr and define

the monoidal algebra generated by X in Cstr (the equivalence class of this monoidal

algebra does not depend on the choice of strictification). More directly, we can form

〈X〉 as follows. When C is not a strict category we use the notation Xn for the ob-

ject (. . . ((X ⊗X)⊗X) · · · ⊗X). Then 〈X〉 is defined (as an abelian category) to be

the full subcategory of C with objects 1, X,X2, . . . . To define the tensor structure let

f ∈ HomC(X
k, Xp) and g ∈ HomC(X

l, Xq). Then f ⊗〈X〉 g ∈ HomC(X
k+l, Xp+q) is given

by

f ⊗〈X〉 g = α−1
p,q(f ⊗C g)αk,l (5.1)

where αi,j : X i+j → X i ⊗C Xj is the appropriate associator (in C). This defines a strict

monoidal structure on 〈X〉 and the resulting monoidal algebra is equivalent to the one

obtained by first strictifying C.

With strictification in mind we occasionally abuse terminology, using the notation

X⊗k to refer to Xk.

Definition 5.0.5. An object X of a semisimple tensor category C generates C if every

simple object of C appears in some tensor power of X.
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As one might expect, if X generates C then the category C can be recovered from

the monoidal algebra 〈X〉. To recover C from 〈X〉 we add subobjects using idempotent

completion, and direct sums using the additive completion (also called the matrix con-

struction). The result, denoted 〈X〉, is always a strict category, and is rigid, spherical,

braided, ribbon etc. whenever C is. The construction is functorial, so equivalent monoidal

algebras give rise to equivalent completions. This is well known and a proof can be found

in [TW05], Sec. 3.

Theorem 5.0.6. Suppose C is a semisimple tensor category generated by X. Then C

is monoidally equivalent to 〈X〉. If C is braided (ribbon) then the equivalence is braided

(ribbon).

This theorem indicates that to identify (up to monoidal equivalence) a category C

generated by an object X, it suffices to identify the (monoidal equivalence class of) the

monoidal algebra 〈X〉. In fact it is enough to consider a seemingly stronger notion of

equivalence for monoidal algebras, which is a consequence of various well known strictifi-

cation results:

Lemma 5.0.7. Suppose C,D are semisimple tensor categories generated by objects X, Y

respectively. Then there exists a monoidal equivalence (F, γ) : C → D for which F (X) is

isomorphic to Y if and only if there is a strict monoidal isomorphism 〈X〉 → 〈Y 〉 taking

X to Y .

Proof. On one hand, the functoriality of the construction 〈X〉 → 〈X〉 shows that a strict

monoidal isomorphism 〈X〉 → 〈Y 〉 gives rise to a monoidal equivalence from 〈X〉 ' C to

〈Y 〉 ' D (which sends X to Y ).

For the other direction, we must show that a monoidal equivalence (F, γ) gives rise

to a strict monoidal isomorphism between the monoidal algebras. Fix an isomorphism

u : F (X) → Y . First we construct a strict tensor functor F ′ : 〈X〉 → 〈Y 〉 from F in the
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following manner. It is clear what F ′ does on objects and on a morphsim f : X i → Xj

define F ′(f) to be the unique morphism making the following diagram commute:

F (X i)
F (f)−−−→ F (Xj)yΓ

yΓ

F (X)i F (X)jyu⊗i
yu⊗j

Y i F ′(f)−−−→ Y j

Here the maps Γ stand for any morphism with the given source and target which

are obtained through applications of the monoidal structure axioms for (F, γ). Coherence

for monoidal functors ensures there is a unique such map (so it doesn’t matter how you

reduce F (X i) to F (X)i using γ and associators, see [JS93], Cor. 1.8 and [ML98], Sec.

XI.2). This defines a (C-linear) functor. Using coherence for monoidal functors it can be

checked that F ′ is strict monoidal.

Hence quasi-inverse monoidal equivalences F : C → D and G : D → C give rise to

strict monoidal equivalences F ′ and G′ between 〈X〉 and 〈Y 〉. Let η : G′F ′ → id〈X〉 and

µ : id〈Y 〉 → F ′G′ be monoidal natural isomorphisms. We can modify G′ to produce a new

functor G′′ which is identical to G′ on objects and defined on a morphism g : Y i → Y j by

the commutative diagram

G′F ′(X i) = X i G′(g)−−−→ Xj = G′F ′(Xj)

ηXi

y η
Xj

y

X i G′′(g)−−−→ Xj

Since η is a monoidal natural isomorphsim, G′′ is a strict monoidal functor. By

construction it is a left inverse to F , ie G′′F ′ = 1C. Similarly, one can use µ to produce a

right inverse to F ′ from G′. Since F ′ has a left and right inverse, the inverses are equal

and F ′ is an isomorphism.
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5.1 Reconstruction for Z2-graded monoidal algebras

We now examine to what extent a Z2-graded monoidal algebra is determined by

its diagonal subalgebra.

Definition 5.1.1. A monoidal algebra A = 〈X〉 is Z2-graded if C = A is rigid, Z2-graded,

and X is self-dual in C.

Definition 5.1.2. The diagonal of a monoidal algebra A, denoted ∆A, is the monoidal

algebra with the same objects as A and

Hom∆A(X⊗k, X⊗l) =





EndA(X⊗k) if k = l

0 if k 6= l.

Definition 5.1.3. The adjoint subalgebra of a Z2-graded monoidal alegbra A, denoted

AdA, is the full subcategory of A with objects 1, X2, X4, . . . .

The diagonal algebra is the main invariant we will use to classify ribbon categories

with the tensor product rules of SO(2n). Its data consists of a family (or “tower”)

of semisimple algebras End(X0),End(X1),End(X2), . . . together with a bilinear tensor

product operation

End(X i)× End(Xj)→ End(X i+j)

taking (f, g) to f ⊗ g. It is required that the tensor product is associative, unital, and

satisfies the interchange axiom:

(f ⊗ g) ◦ (f ′ ⊗ g′) = (f ◦ f ′)⊗ (g ◦ g′).

One might expect that the diagonal contains all the information of a Z2-graded

monoidal algebra, since the only missing information is the off-diagonal Hom spaces
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HomA(X i, Xj), which are only non-zero when i and j have the same parity. But if

i+ j is even, then in C the left duality provides a natural isomorphism

HomC(X
i, Xj) ∼= EndC(X

(i+j)/2).

This provides a way to recover the off-diagonal Hom spaces from the endomorphism

algebras. We follow this strategy but find that up to isomorphism there are precisely

two monoidal algebras with the same diagonal and they differ by a 3-cocycle twist. To

prove this, we first describe the additional piece of data needed to reconstruct a monoidal

algebra from its diagonal.

Suppose A = 〈X〉 is a Z2-graded monoidal algebra and let C = A. By assumption

X is self-dual so in C the trivial object 1 appears (with mulitplicity 1) in X⊗2. Let

ι : 1→ X2 and π : X2 → 1 be chosen such that π ◦ ι = 1 and ΠA = π ◦ ι is an idempotent

with image 1. In the graphical calculus for A we introduce the following symbols for ι

and π:

ι = , π = .

We use the dots to distinguish these cups and caps from those which are normalized to

satisfy the S-bend relations. Note that π and ι may be rescaled but ΠA is independent of

this choice.

If Ψ : A → A′ is an isomorphism of Z2-graded monoidal algebras then Ψ(ΠA) =

ΠA′ , since both Ψ(ΠA) and ΠA′ project onto the trivial object which appears with mul-

tiplicity 1 in the second tensor power.

Definition 5.1.4. Suppose A = 〈X〉 and A′ = 〈Y 〉 are Z2-graded monoidal algebras. We

sayA′ is an extension of the diagonal ∆A if there is an isomorphism (of monoidal algebras)

ψ : ∆A → ∆A′ such that ψ(ΠA) = ΠA′ . We say A and A′ are diagonally isomorphic if

the isomorphism ψ can be extended to an isomorphism of monoidal algebras A → A′.
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Given a Z2-graded monoidal algebra A we use the cocycle construction of Sec.

2.3 to twist the associator by a normalized 3-cocycle ω ∈ H3(Z2, C×) and obtain a new

tensor category A(ω) whose objects coincide with those of A. This is not a monoidal

algebra (it is not strict) but the object X still generates a monoidal algebra, following the

construction of Remark 5.0.4.

Definition 5.1.5. The twist of A by ω ∈ H3(Z2,C×) is the monoidal algebra Aω gener-

ated by X in A(ω).

Proposition 5.1.6. Suppose A = 〈X〉 is a Z2-graded monoidal algebra. Then for each

3-cocycle ω ∈ H3(Z2,C×) the monoidal algebra Aω extends the diagonal of A.

Proof. Using the construction of Remark 5.0.4, the objects and morphism spaces of A and

Aτ are the same (the difference between the monoidal algebras lies in the tensor products

of morphisms). Thus we can define the identity functor from A to Aτ , and we claim its

restriction to ∆A is a diagonal isomorphism. We check this is a strict monoidal functor,

i.e. f ⊗A g = f ⊗Aτ g whenever f and g are endomorphisms. Indeed, the definition of

tensor product in Aτ dictates that for f ∈ End(X⊗k) and g ∈ End(X⊗l), we have

f ⊗Aτ g = (α′k,l)
−1(f ⊗A g)α′k,l.

Now the associator α′k,l is a composition of smaller associators α′r,s,t in Aτ which are all

scalar multiples of the identity of X⊗k+l. Therefore α′k,l commutes with f ⊗A g and so

f ⊗Aτ g = f ⊗A g as needed.

As A and Aτ have the same Hom-spaces, it is clear that ΠA = ΠA′ (in fact, we

can pick the same ι’s and π’s).

Now we consider when an isomorphism ψ : ∆A → ∆A′ can be extended to an

isomorphism between A and A′. Suppose A is generated by X and A′ by Y and fix

morphisms ιX , πX and ιY , πY as above. For each k = 1, 2, . . . define an element τX,k ∈
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End(Xk+2) by τX = (1Xk ⊗ ιX) ◦ (πX ⊗ 1Xk):

k

τX,k =

Similarly we define υX,k:

k

υX,k =

Note that τX,k and υX,k do not depend on the choice of ιX and πX , which implies that if

ψ extends to an isomorphism A → A′ then ψ(τX,k) = τY,k and similarly for υX,k. We will

soon show that ψ extends if and only if ψ(τX,1) = τY,1.

Lemma 5.1.7. Suppose A and A′ are Z2-graded monoidal algebras and suppose ψ :

∆A → ∆A′ is an isomorphism of diagonals. Then

ψ(τX,1) = ±τY,1.

Proof. Since ψ(ΠA) = ΠA′ , we see that ψ(τX,1) belongs to the space

(1Y ⊗ ΠA′) End(Y 3)(ΠA′ ⊗ 1Y ). This space is 1-dimensional since 1Y ⊗ ΠA and ΠA ⊗ 1Y

are minimal idempotents in End(Y 3). Thus ψ(τX,1) = λτY,1 for some scalar λ. Now the

equality τX,2 = (1X ⊗ τX,1) ◦ (τX,1 ⊗ 1X) implies ψ(τX,2) = λ2τY,2. If we precompose this

equation with 1Y 2 ⊗ ΠA′ we obtain ψ(ΠA ⊗ ΠA) = λ2ΠA′ ⊗ ΠA′ . Hence λ2 = 1.

Recall that twisting a monoidal algebra by a 3-cocycle produces a diagonal exten-

sion with the same objects. For convenience in the next lemma we use the symbol Xω to

refer to the generating object of Aω.
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Lemma 5.1.8. Suppose A is a Z2-graded monoidal algebra and Aω the monoidal alegbra

obtained by twisting with a nontrivial cocycle ω. Let ψ : ∆A → ∆Aω denote the identity

functor between diagonals. Then

ψ(τX,1) = −τXω ,1.

Proof. Since A and Aω differ only in how morphsims are tensored, they have the same

compositional rules so we may choose ιXω = ιX and πXω = πX . Let’s examine the factors

in the definition τXω ,1 = (1Xω ⊗Aω ιXω) ◦ (πXω ⊗Aω 1Xω). From the definition of tensor

product in Aω (see Remark 5.0.4) we have

πXω ⊗Aω 1Xω = πX ⊗A 1X

and

1Xω ⊗Aω ιXω = ω(1, 1, 1)−11X ⊗A ιX = −(1X ⊗A ιX).

Hence τXω ,1 = −τX,1 as desired.

Proposition 5.1.9. Suppose A and A′ are Z2-graded monoidal algebras and suppose

ψ : ∆A → ∆A′ is an isomorphism of diagonals. Then the following are equivalent:

1. ψ extends to an isomorphism Ψ : A → A′ of monoidal algebras.

2. ψ(τX,1) = τY,1.

3. ψ(υX,1) = υY,1.

4. ψ(τX,k) = τY,k and ψ(υX,k) = υY,k for all k = 1, 2, 3, . . .

Proof. That 1 implies 2 and 3 is straightforward. To show 2 implies 3, note that υX,1

can be described in terms of τX,1 as the unique element of the 1-dimensional space (ΠA⊗

1X) End(X3)(1X ⊗ ΠA) which satisfies τX,1 ◦ υX,1 = 1X ⊗ ΠA. Hence it suffices to check
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that τY,1 ◦ ψ(υX,1) = 1Y ⊗ ΠA′ , which follows from the assumption and the fact that (by

definition) ψ(ΠA) = ΠA′ . Proving 3 implies 2 is identical.

To show that 2 and 3 imply 4, we use induction and the formula τX,k = (1Xk−1 ⊗

τX,1) ◦ (τX,k−1 ⊗ 1X) (the formula is easily verified graphically).

Now we suppose ψ(τX,k) = τY,k and ψ(υX,k) = υY,k for all k and prove 1. To

that end we must define Ψ on a morphism f ∈ Hom(X i, Xj) for i 6= j. Since i and

j have the same parity we have i = j ± 2r for some r ∈ N. Let f∆ ∈ End(Xmax(i,j))

denote the morphism obtained by “padding” f on the right by ιX ’s or πX ’s to produce

an endomorphism, ie

f∆ :=





f ⊗ ι⊗rX i > j

f ⊗ π⊗rX i < j.

Then we define Ψ by applying ψ to f∆ and “unpadding”:

Ψ(f) :=





(1Y j ⊗ π⊗rY ) ◦ ψ(f∆) i > j

ψ(f∆) ◦ (1Y i ⊗ ι⊗rY ) i < j

The fact that this defines a functor can be checked case-by-case and uses the assumption

ψ(ΠA) = ΠA′ . It is more critical to check that Ψ(f⊗g) = Ψ(f)⊗Ψ(g). Since Ψ is known to

be a functor it suffices to show that Ψ(f⊗1Xk) = Ψ(f)⊗1Y k and Ψ(1Xk⊗g) = 1Y k⊗Ψ(g).

The second equation follows quickly from the definition of Ψ. For the first equation we

start by checking it for f = ιX and f = πX . For f = iX we have the following graphical

proof:

Ψ

(

k

)
= ψ

(

k

)
=

k

= Ψ

( )

k
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The first equality is the definition of Ψ, the second uses the assumption ψ(υX,k) =

υX,k and the third equality follows from the observation that Ψ(iX) = iY . The proof for

f = πX is similar and uses τX,k instead. Now suppose f : X i → Xj and i < j so j = i+2r.

Then we prove Ψ(f ⊗ 1Xk) = Ψ(f)⊗ 1Y k by induction on r, the base case r = 0 is clear

since ψ is an isomorphism on the diagonal. For the inductive step, let f ′ = f ⊗ πX . Then

f = f ′ ◦ (1Xi ⊗ ιX). Now using the calculation above for ιX and the inductive hypothesis

for f ′ we deduce the result is true for f . The case for i > j is handled in the same manner.

This completes the proof that Ψ is an isomorphism of monoidal algebras.

We can now prove the main theorem of this section, which states that a Z2-graded

monoidal algebra is determined by its diagonal up to a cocycle twist. Let ω denote a

nontrivial normalized 3-cocycle of Z2.

Theorem 5.1.10. Suppose A = 〈X〉 is a Z2-graded monoidal algebra. Then up to

isomorphsim there are exactly two monoidal algebras with diagonal isomorphic to ∆A,

namely A and Aω.

Proof. By Prop. 5.1.6, ∆Aω is isomorphic to ∆A. On the other hand, if B = 〈Y 〉

is another Z2-graded monoidal algebra and ψ : ∆B → ∆A is an isomorphism then

ψ(τX,1) = ±τY,1 by Lemma 5.1.7. If the sign is +1 then by the previous proposition ψ

extends to an isomorphism so B ∼= A. If the sign is -1 then we can compose ψ with

a diagonal isomorphism φ : ∆Aω → ∆A to obtain ψ ◦ φ : ∆Aω → ∆A which satisfies

(ψ ◦ φ)(τXω) = τY,1 by Lemma 5.1.8. So in this case ψ ◦ φ extends to an isomorphism,

proving B ∼= Aω.
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6

Jucys-Murphy theory for ribbon categories

Consider a semisimple ribbon category C generated by a simple object X. We’ve

seen to what degree C can be reconstructed from the diagonal subcategory ∆C, at least

when C is Z2-graded. The diagonal is described by the family of algebras End(X⊗k),

together with tensor product maps between them:

End(X⊗k)× End(X⊗l)→ End(X⊗k+l)

sending (f, g) to f ⊗g. Ultimately the goal is to show that the diagonal is uniquely deter-

mined by the fusion rules and the braid parameter q. First we see how much information

the fusion rules alone give us. The algebras End(X⊗k) are direct sums of matrix algebras

since C is a semisimple category. The full matrix blocks correspond to the simple isotypes

appearing in X⊗k. Hence the structure of each End(X⊗k), as an individual algebra, is

determined by the fusion rules.

At the next level of scrutiny the fusion rules give us information about the inclu-

sions End(X⊗k−1) → End(X⊗k) given by f 7→ f ⊗ 1 and f 7→ 1 ⊗ f . If p is a minimal

idempotent of type λ then p⊗ 1 (and 1⊗ p) has image isomorphic to λ⊗X. Thus when

p⊗ 1 is written as a sum of minimal idempotents in End(X⊗k), the number of type µ is

equal to the multiplicity of µ in λ⊗X.

The rule for tensoring with X is encoded in a Bratteli diagram. It represents
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combinatorial scaffolding that the diagonal subcategory must rest on. In the cases we

study, the multiplicities for tensoring with X are always 1, so the Bratteli diagram is

multiplicity free. In this case we may define a complete set of minimal idempotents for

End(X⊗k), adapted to the inclusions f 7→ f ⊗ 1 and labeled by paths of length k in the

Bratteli diagram. These minimal idempotents give a natural basis for simple modules of

End(X⊗k) labeled by paths. Eventually we will show that the representation of the braid

elements in this basis is uniquely determined by q. Then, this will be enough to identify

the diagonal subcategory.

6.1 Path idempotents for centralizer algebras

Let Γ denote a set of labels for the distinct simple objects of C. With some abuse

of notation we also identify Γ with a representative set of simple objects, so expressions

such as X⊗λ denotes an object in C. We assume 1 ∈ Γ corresponds to the trivial object.

Definition 6.1.1. Given an object X ∈ C, the fusion graph) for X is a graph B with

vertices

B =
⊔

k≥0

B(k)

where

B(k) = {λ | λ appears in X⊗k}.

If x ∈ B(k) then we say x is in level k, denoted l(x) = k. The only edges are between

elements in adjacent levels. The number of edges connecting λ in level k and µ in level

k − 1 is the equal to the multiplicity of µ in X ⊗ λ.

Example 6.1.2. Suppose C has the fusion rules of SO(2n) and X corresponds to the

defining representation. According to the fusion rules described for SO(2n), in Sec. 3 the

kth level of the fusion graph consists of all those SO(2n) shapes whose diagrams have
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1
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Figure 6.1: The first 4 levels of the Bratteli diagram for SO(6).

at most k boxes, and the parity of the number of boxes agrees with k. An edge occurs

whenever a shape is obtained from another by adding or removing a box. See Figure 6.1

for the case of SO(6).

The Bratteli diagram for the SO(2n)−O(K) fusion rules (with n ≥ 3 and K ≥ 3)

is the subggraph obtained by excluding all shapes with more than K boxes in their first

two rows.

Using the semi-simplicity of C we see End(X⊗k) is a direct sum of simple matrix

algebras labeled by the irreps of C appearing in X⊗k. Such a simple component labeled

by λ we denote End(X⊗k)λ. A minimal idempotent p ∈ End(X⊗k) must be contained in

a unique simple component, which is the type of p. The isotype of p is λ if and only if
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Im p ∼= λ in C. The projection onto the λ-isotypic component of End(X⊗k) is a central

idempotent denoted zλ (or zλ,k to emphasize it is an endomorphism of X⊗k). A minimal

idempotent has type λ if and only if zλp = p.

Recall that if A =
⊕

αAα and B =
⊕

β Bβ are direct sums of matrix algebras

and A ⊂ B is a unital inclusion then we can define the Bratteli diagram of the inclusion.

It is a bipartite graph with one layer indexed by the simple isotypes of A and the other

indexed by the simple isotypes of B. To describe the edges in the graph, start with

a minimal idempotent of type α in A. Then use the inclusion into B to decompose it

into a sum of minimal idempotents in B. This decomposition is not unique, but the

number of idempotents of type β which appear doesn’t depend on the decomposition.

This multiplicity is equal to the number of edges between nodes α and β in the Bratteli

diagram. We can extend this notion to the Bratteli diagram for an arbitrary sequence of

unital inclusions A1 ⊂ A2 ⊂ . . .

The fusion graph coincides with the Bratteli diagram of the inclusions

· · · → EndC(X
⊗n)

−⊗1−−→ EndC(X
⊗n+1)→ . . . (6.1)

Indeed, if pλ ∈ End(X⊗k−1) is a minimal idempotent of type λ then pλ ⊗ 1 ∈ End(X⊗k)

is a minimal idempotent and Im (pλ⊗ 1) ∼= X ⊗Xλ in C. If we decompose pλ⊗ 1 into an

orthogonal sum of minimal idempotents of End(X⊗k), there will be mX⊗λ,µ of type µ in

the sum. Hence we also sometimes refer to the fusion graph as the Bratteli diagram.

Note that the Bratteli diagram for SO(2n) or SO(2n)−O(K) is multiplicity free.

In other words, this means for any simple object Xλ in C, X⊗Xλ decomposes as a sum of

simple objects, each with multiplicity 1. In the general discussion below we also assume

X is a simple object, so level 1 of B has a single vertex (as does level 0, which has the

single vertex 1).

We now introduce the language of paths which is well developed in [GdLHJ89]
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and [LR97]. A path of length k in B is a sequence

S = S(0)→ S(1)→ S(2)→ · · · → S(k)

such that S(i + 1) is connected by an edge to S(i) for each i = 1, 2, . . . , n − 1. In other

words, S(i+ 1) labels an irrep appearing in X ⊗ S(i). All paths we consider increase the

level at every step. The shape of S is the final term in the path, i.e. sh(S) = S(k). Given

a path S, the symbol S ′ (resp. S ′′) denotes the smaller path obtained by removing the

last (resp. last 2) elements of S. For collections of paths we use the following notation:

Pk is the set of paths of length k starting at 1 ∈ B(0).

Pλk is the set of paths of length k starting at 1 and ending at λ ∈ B(k).

Pλµ is the set of paths starting at µ ∈ B(i) and ending at λ ∈ B(k).

If S and T are paths of length k and l respectively for which S(k) = T (0) = λ then S → T

is the concatenated path of length k + l given by

S(0)→ · · · → S(k − 1)→ λ→ T (1)→ · · · → T (l).

In particular, if µ is a shape in the Bratteli diagram connected to S(k) then S → µ is the

path of length k + 1 obtained by concatenating µ to S. We inductively define the path

idempotents, a complete set of minimal idempotents for End(X⊗k) which are labeled by

paths starting at 1 and are compatible with the inclusions End(Xk−1) 7→ End(Xk) via

f 7→ f ⊗ 1.1 There is a unique path of length 0, namely (1) and we set

p(1) = 1 ∈ End(X0) = End(1).

1You could just as easily define a different set of idempotents compatible with the other inclusion
f 7→ 1⊗ f . However, figuring out how to express one set of idempotents in terms of the other is as hard
as determining the category.
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Now suppose pT ∈ End(X⊗k−1) is defined for every path T of length k − 1. Then for a

path S of length k and shape λ, the path idempotent pS is defined by

pS = zλ(pS′ ⊗ 1)

where zλ is the central idempotent of End(X⊗k) of type λ. By the multiplicity-freeness of

the Bratteli diagram, pS is a minimal idempotent. By induction, we can write pS solely

in terms of central idempotents by

pS =
k∏

i=1

zS(i) ⊗ 1X⊗k−i (6.2)

For a path of length k we have

pS ⊗ 1 =
∑

T : T ′=S

pT ,

the sum over all paths of length k+1 which start with the path S. The path idempotents

allow us to specify (up to scalars) bases for the simple modules Vλ of End(X⊗k), which

are indexed by λ ∈ B(k). A path idempotent pT of shape λ acts as a rank-1 projection

on Vλ. Choose a non-zero vector vT ∈ pTVλ. Then the collection {vT : T ∈ Pλk } forms a

basis of Vλ, uniquely determined up to scalar multiples. Any such basis is called a path

basis for Vλ. Note that Vλ is an End(X⊗i)-module for any i ≤ k by restriction along the

inclusion End(X⊗i) ⊗ 1 ⊂ End(X⊗k). For a path T = T (0) → T (1) → · · · → T (k), the

path basis vector vT is determined (up to scalars) by the property

End(X⊗i)vT ∼= VT (i) for all 1 ≤ i ≤ k

as End(X⊗i)-modules.

Path bases are particularly well suited to studying “local” endomorphisms of X⊗k,
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meaning those morphisms which are the identity away from some small number of con-

secutive factors in X⊗k. The precise result is

Proposition 6.1.3. Suppose f ∈ End(X⊗k) centralizes End(X⊗i) ⊗ 1 for some i < k.

Let Vλ be a simple End(X⊗k)-module and let vT be a path basis vector corresponding to

T = T (0) → · · · → T (k) ∈ Pλk . Let T and T denote the truncated paths T (0) → · · · →

T (i) and T (i)→ · · · → T (k) respectively. Then

fvT =
∑

S∈Pλ
T (i)

αS,TvT→S.

where the scalars αS,T depend only on S (which is a path from T (i) to λ) and the path T .

Proof. See [GdLHJ89] or [LR97].

For example we may apply the proposition to morphisms of the form 1i⊗ f which

commute with End(X⊗i) ⊗ 1. In this case it says that when 1i ⊗ f is applied to a path

basis vector the result is a sum of path vectors which are identical to the original path in

the first i levels. Another similar use is applying a morphism of the form 1i⊗ a⊗ 1j with

a ∈ End(X2). In this case the proposition says that an application of such a morphism

can only affect the i+ 1-th level of a path.

Remark 6.1.4. More precisely we can use the proposition to define subsidiary path

modules which are modules for the centralizer of End(X⊗i) in End(X⊗k), which we denote

Z(i, k) := {a ∈ End(X⊗k) : a(b⊗ 1) = (b⊗ 1)a, ∀ b ∈ End(X⊗i)}.

Given µ ∈ B(i) and λ ∈ B(k) (with i ≤ k) let W λ
µ denote the C-space with basis

{wR : R ∈ Pλµ}. Fix any path T0 of length i ending at µ. According to the proposition, if
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f ∈ Z(i, k) then for any R ∈ Pλµ we have

fvT0→R =
∑

S∈Pλµ

αS,RvT0→S

where the coefficients αS,R do not depend on T0. Thus they can be used to define the

action of Z(i, k) on W λ
µ :

fwR =
∑

S∈Pλµ

αS,RwS.

It is clear that knowing the action of f on W λ
µ in the {wS} basis is the same as knowing

the action of f on Vλ in the {vS} basis. Proposition 6.1.3 also implies a decomposition of

Vλ as an End(X⊗i)⊗ Z(i, k)-module:

Vλ =
∑

µ∈B(i)

Vµ ⊗W λ
µ . (6.3)

The path bases provide a natural basis in which to compute the representations

of the braid group appearing in End(X⊗k). We will use the Jucys-Murphy approach to

explicitly compute matrices for braid elements in a path basis when C has the fusion rules

of SO(2n). Matrix representations of End(X⊗k) using different path bases of Vλ differ

only by conjugation by a diagonal matrix. In particular, the path idempotents are always

rank-1 diagonal matrices in any path basis.

6.2 Matrix representations for Jones projections

We now assume X is a symmetrically self-dual simple object. In this case the

Bratteli diagram has a special structure, obtained by repeated reflections. It accounts

for shapes in B with fewer than k boxes. This phenomenon is an expression of the

Jones basic construction. In this setting we have unoriented cups/caps and may define
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e = ◦ = ∈ End(X⊗2) and ek to be the element 1X⊗k−1 ⊗ e ∈ End(X⊗k+1):

. . .

k + 1

ek =

The self-duality implies X⊗k ∼= X⊗k−2 ⊗X2 ⊃ X⊗k−2 ⊗ 1 ∼= X⊗k−2. Hence every

simple appearing in X⊗k−2 also appears in X⊗k. Following the notation of [TW05] we

write

X⊗k ∼= X(k−2) ⊕Xk

where X(k−2) consists of simples which appear in X⊗k−2 and Xk only consists of simples

not appearing in X⊗k−2. Clearly X(k−2) 6= 0, but it is possible Xk = 0. Colloquially we

say that X(k−2) is the “old stuff” of X and Xk is the “new stuff”. 2 Since the simples

appearing in X(k−2) and Xk are mutually distinct, we have a canonical decomposition

End(X⊗k) ∼= End(X(k−2))⊕ End(Xk).

Lemma 6.2.1. The ideal generated by ei ∈ End(X⊗k) (i ≤ k−1) is equal to End(X(k−2)).

Proof. This follows from the semisimplicity of End(X⊗k). Note that since the ei are all

conjugate, the ideal is generated by any one of them.

Note that, in particular, every ei acts by 0 in any simple End(X⊗k)-module labeled

by a new isotype. Setting x = dimC X, we see Ek := (1/x)ek is an idempotent, called the

k-th Jones projection. Let us denote by εk the partial trace εk : End(X⊗k)→ End(X⊗k−1).

This is an End(X⊗k−1)−End(X⊗k−1)-bimodule map, and by Eq. 2.8 the Jones projections

2This terminology can occasionally be misleading since Xk may contain simples which appear in a
lower tensor power even though they are not in X⊗k−2. In our setting this occurs only with SO(2n+ 1)
and not with SO(2n).

93



are related to the partial traces via

EkaEk = εk+1(a)Ek (6.4)

for all a ∈ End(X⊗k+1).

Let 〈End(X⊗k) ⊗ 1, Ek〉 denote the subalgebra of End(X⊗k+1) generated by

End(X⊗k)⊗ 1 and Ek. By Eq. 6.4 the sequence of inclusions

End(X⊗k−1)⊗ 1 ⊂ End(X⊗k)⊗ 1 ⊂ 〈End(X⊗k)⊗ 1, Ek〉

which contain an instance of the Jones basic construction (see [Wen88], Sec. 1 and [RW92]

for the basics). Critical for the basic construction is the fact that the inclusions respect

the non-degenerate (normalized) traces tr : End(X⊗k) → C, coming from the duality in

the category. 3 It can be shown that the old stuff End(X(k−1)) is contained in the latter

algebra. We will need the following facts:

1. The unital algebra homomorphism End(X⊗k) ⊗ 1 → End(X⊗k+1) → End(X(k−1))

is injective.

2. The Bratteli diagram for the resulting inclusion End(X⊗k) ↪→ End(X(k−1)) is the

reflection (about a horizontal axis) of the diagram for End(X⊗k−1) ↪→ End(X⊗k).

Fact (1) can be proved by showing the image of any minimal idempotent is non-zero and

minimal. In Fact (2) we are identifying the isotypes which are old in B(k+1) with the full

collection of isotypes in B(k − 1). Hence the portion of the Bratteli diagram concerned

with edges between B(k) and the old istoypes in B(k + 1) (i.e. whose shapes have fewer

than k+ 1 boxes), is just a reflected copy of the full Bratteli diagram between levels k− 1

3Recall tr is non-degenerate by the semisimplicity and rigidity of C, which is equivalent to the non-
vanishing of the q-dims of all simple objects.
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and k. The reader is invited to examine Fig. 6.1 and confirm this, e.g. for levels 2, 3, 4.4

Now we explain how to compute matrix representations for Ek in the path bases

in terms of the q-dims of simple objects. As before, this material is well known (see

e.g. [LR97], [RW92]) but we the statements as a convenience to the reader. To compute

the action of Ek on a path basis it suffices to consider the action of Ek on the path modules

W λ
µ where µ ∈ B(k−1) and λ ∈ B(k+ 1). In fact, if µ and λ are not the same shape then

Ek acts by 0 on W λ
µ . Indeed, any idempotent of the form pµ ⊗ Ek has image isomorphic

to µ⊗1 ∼= µ in the category, where pµ is a minimal idempotent of type µ. Hence pµ⊗Ek
is a minimal idempotent of type µ and hence acts by 0 on any End(X⊗k+1) module of

type λ.

We will use the following lemmas to compute the action of Ek on a path module

W λ
λ . The proofs can be found in [RW92].5

Lemma 6.2.2. Let S be a path of length k starting at 1. Then

εk(pS) =
dimC S(k)

x dimC S(k − 1)
pS′ .

Lemma 6.2.3. Let S be a path of length k starting at 1 and S → S(k − 1) the path of

length k + 1 obtained moving to the shape S(k − 1) after traversing S. Then

pS0

. . .

. . .

=

pS

. . .

. . .

pS

. . .

. . .

dimq S(k−1)
dimq S(k)

Now we examine the action of Ek+1 on a path module W λ
λ (with λ ∈ B(k−1),B(k+

1)). A path basis for W λ
λ is indexed by such paths.

4By Fact (2), the entire Bratteli diagram could be reconstructed just from the subdiagram of new
stuff. Borrowing terminology from subfactor theory, this subdiagram is the principal graph of X.

5In subfactor language the following facts are statements about the Ocneanu-Sunder path model.
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Proposition 6.2.4. Let λ be the shape of a simple object appearing in both X⊗k−1 and

X⊗k+1. Then Ek acts as a rank-1 projection on W λ
λ and in any path basis has diagonal

entries {(Ek)SS : S ∈ Pλλ}, where for a path S,

(Ek)SS =
dimC S(k)

x dimC λ
. (6.5)

The off-diagonal entries of Ek depend on a choice of scaling of the path basis,

but since Ek is rank-1 with all non-zero diagonal entries we see that there is always a

scaling for the path basis for which the rows of Ek are identical, i.e. the matrix entries

are constant down the columns:

ES,T = ET,T . (6.6)

We will address this rescaling in detail when computing matrices for braid elements.

6.3 The full twist and Jucys-Murphy elements

To compute the braid representations in the path bases we follow the Jucys-Murphy

approach. This approach has been used in various settings to compute seminormal rep-

resentations of various towers of algebras. For instance, it is applied by Okounkov and

Vershik to the symmetric groups [VYO05], by Ram to other Weyl groups [Ram97], by

Nazarov to the Brauer algebras [Naz90] and by Leduc and Ram to quantum groups of

type ABC [LR97]. The Jucys-Murphy approach is also used by Wenzl [Wen03] to study

the centralizer algebras coming from En-type quantum groups, and by Martirosyan and

Wenzl [MW17] to study those of a G2-type quantum group. We define the Jucys-Murphy

elements, which form a large commutative subalgebra of End(X⊗k) and act diagonally on

path bases. The eigenvalues of these elements are independent of the choice of scaling for

path bases and are determined by the eigenvalues of cX,X and the fusion rules. Once the

eigenvalues are known, we can compute the matrix entries of the braid generators in the
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path basis.

Definition 6.3.1. Let σ1, σ2, . . . , σk−1 denote standard generators of the k-strand braid

group. The full twist is a central element ∆2
k defined by

∆2
k = (σ1σ2 . . . σk−1)k.

In terms of braids, this element corresponds to a full counter-clockwise twist of the

k-strands. By convention, ∆2
0 = ∆2

1 = 1.

If C is a ribbon category then the assignment σi 7→ ci where

ci = 1⊗i−1 ⊗ cX,X ⊗ 1k−i−1

defines a homomorphism from the braid group to End(X⊗k). The image of the full twist in

End(X⊗k) is also denoted ∆2
k. The following fact is a critical application of the graphical

calculus:

Lemma 6.3.2. Suppose X is an object in a ribbon category C. Then ∆2
k is central in

End(X⊗k).

Proof. For any f the diagrams representing f ◦∆2
k and ∆2

k ◦ f can be isotoped into each

other by sliding f through the twist.

For i ≤ k we consider ∆2
i as an element of End(X⊗k) via the usual embedding

End(X⊗i)→ End(X⊗k). Since ∆2
k is central in End(X⊗k) it acts as a diagonal matrix in

the path basis for a simple End(X⊗k)-module Vλ. Its eigenvalues are clearly independent

of the choice of path basis. The full twist is related to the twist coming from the ribbon

structure by the well known equation

∆2
k = θ−kX θX⊗k . (6.7)
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Definition 6.3.3. Suppose C is a non-symmetric ribbon category generated by X. The

kth Jucys-Murphy element is

Jk = ∆2
k∆
−2
k−1.

For i ≤ k we can consider Ji an element of End(X⊗k) via the usual embedding

End(X⊗i) → End(X⊗k) (i.e. we identify Di with Di ⊗ 1). As braids the JM elements

look as in Figure 6.2.

Figure 6.2: The Jucys-Murphy element J4 ∈ End(X⊗6).

Lemma 6.3.4. The Jucys-Murphy elements Jk centralize End(X⊗k−1) and satisfy the

relations

Jk = ck−1Jk−1ck−1. (6.8)

Furthermore, they are diagonal in the path basis of any simple End(X⊗k)-module.

Proof. Since ∆2
k and ∆2

k−1 centralize End(X⊗k−1), so too does Jk. The equation above is

easily verified using the graphical representation of Jk (Figure 6.2). Finally, since ∆2
k and

∆2
k−1 are both diagonal in a path basis, so is Jk.

Our aim is to determine the matrix entries of a braid element ck when expressed in

the path basis. Since ck ∈ Z(k− 2, k) it suffices (by Remark 6.1.4) to consider the action

of ck on the path modules W λ
µ spanned by paths from µ ∈ B(k − 2) to λ ∈ B(k). In fact,

Jk and Jk−1 also belong to Z(k − 2, k). When the Bratteli diagram is that of a classical
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Lie group, these spaces are often 1 or 2 dimensional and it is not hard to determine the

action of the algebra generated by ck, Jk and Jk−1 on this space, which is what we do

next. By Lemma 6.3.4, the algebra generated by ck, Jk and Jk−1 is a quotient of the group

algebra of the affine braid group AB2 which we describe below.

6.4 Low dimensional representations of AB2

Let AB2 (the 2-strand affine braid group) denote the group generated by elements

A,D1, D2 satisfying the relations

D1D2 = D2D1 (6.9)

AD1A = D2. (6.10)

Note that these relations imply D1D2 is central. As noted above we have

Proposition 6.4.1. Given µ ∈ B(k− 2) and λ ∈ B(k), the assignments A 7→ ck−1, D1 7→

Jk−1, D2 7→ Jk defines an action of AB2 on the path module W λ
µ . Under this assignment

D1D2 7→ ∆2
k∆
−2
k−2 which acts a scalar on W λ

µ .

Proof. This follows from Lemma 6.3.4 and the definition of the JM elements.

The following lemma allows us to transfer information about the fusion rules to

information about the action of A on the path module W λ
µ :

Lemma 6.4.2. Suppose C is a ribbon category generated by a simple object X, with

multiplicity-free Bratteli diagram B. Suppose Y ∈ B(2) and cX,X has corresponding eigen-

value qY . If µ ∈ B(k − 2) and λ ∈ B(k) are such that λ appears in µ ⊗ Y then qY is an

eigenvalue of A = ck−1 on the path module W λ
µ .

Proof. Let pY be a minimal idempotent in End(X⊗2) of type Y . Let S be an arbitrary

path of length k−2 ending at µ. As Z(k−2, k) modules we haveW λ
µ
∼= End(X⊗k)zλ(pS⊗1)
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where zλ is the central idempotent in End(X⊗k) of type λ. Then by assumption zλpS⊗pY is

a non-zero element of End(X⊗k)zλ(pS⊗1), and it is an eigenvector for ck−1 with eigenvalue

qY .

We study low-dimensional representations of AB2 for which A is diagonalizable.

First, note that the 1-dimensional representations are classified by pairs of non-zero scalars

(λ, d) which determine the action of AB2 via the mapping

A 7→ λ

D1 7→ d (6.11)

D2 7→ λ2d.

For convenience we denote these representations φdλ : AB2 → C. Next we dis-

cuss 2-dimensional representations. As for any 2-dimensional representation of a finite-

dimensional C-algebra, there are 3 possibilities: it either splits as the direct sum of two

1-dimensional irreps, it is irreducible, or it is indecomposable but not irreducible (so there

is exactly one shared eigenvector for the algebra operators). Note the latter case is the

only non-semisimple possibility. 6

Proposition 6.4.3. Let V be a 2-dimensional complex representation of AB2 for which

A is diagonalizable. Then either V splits into the direct sum of two 1-dimensional reps

labelled (λ1, d1) and (λ2, d2) for some λ1, λ2, d1, d2 ∈ C, or there exists a basis for V and

6We couldn’t find a way to rule this case out just by using the axioms of a ribbon category. In the
next section it takes work to establish that a 2-dimensional path module Wλ

µ must be irreducible, so in
particular we never get the non-semisimple representation. We conjecture that this is always the case,
i.e. that in a (semisimple) ribbon category all path modules for the braid group are semisimple.
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non-zero scalars a, b and λ1 6= λ2 such that

A 7→




0 −λ1λ2

1 λ1 + λ2




D1 7→



a −b(λ1 + λ2)

0 b




D2 7→



−bλ1λ2 −bλ1λ2(λ1 + λ2)

0 −aλ1λ2




Proof. Suppose V does not split as a sum of two 1-dimensional irreps. Note this implies

λ1 6= λ2 since otherwise A is a scalar times 1V (by the diagonalizability of A) and the

representation splits. There must be a simultaneous eigenvector v of D1 and D2 which is

not an eigenvector of A. Take a, β to be the scalars given by D1v = av and D2v = βv.

Since v and Av are linearly independent they are a basis of V and upon writing A,D1, D2

in this basis and setting b = −(λ1λ2)−1β we arrive at the matrices above.

By looking at the entries of D1 and D2 we deduce:

Corollary 6.4.4. Suppose V is a 2-dimensional indecomposable representation for which

A is diagonalizable, parametrized by (λ1, λ2, a, b). Suppose λ1 + λ2 6= 0. Then D1 and D2

are diagonalizable if and only if b 6= a.

Suppose λ1 + λ2 6= 0 (as will always be the case for the representations appearing

in a non-symmetric SO(N) category) and V is a 2-dimensional indecomposable repre-

sentation for which D1, D2 are diagonalizable. Pick a basis so that A,D1, D2 have the
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matrices above. Then the quantity

α :=
b− a

−b(λ1 + λ2)

is non-zero and the vectors {(α−1, 0)T , (1, α)T} form an eigenbasis for D1, D2. In this basis

we obtain the matrix representation

D1 7→



a 0

0 b




D2 7→



−bλ1λ2 0

0 −aλ1λ2




A 7→



−α−1 −(λ1 + α−1)(λ2 + α−1)

1 α−1 + λ1 + λ2


 (6.12)

If the upper right entry of A is non-zero then the representation is irreducible and if the

entry is 0 then the representation is indecomposable but admits a shared eigenvector.

Note that the upper right entry of A vanishes exactly when α = −λ−1
1 or α = −λ−1

2 ,

which by the definition of α is equivalent to b = −(λ1
λ2

)±1a. In summary we have

Proposition 6.4.5. Suppose V is a 2-dimensional AB2 representation such that A is

diagonalizable and D1, D2 act by diagonal matrices. Suppose A has eigenvalues λ1, λ2

with λ1 6= ±λ2 and D1 =



a 0

0 b


. Then either:

1. V splits as the sum of two 1-dimensional representations and

D2 =



λ2

1a 0

0 λ2
2b


 or



λ2

2a 0

0 λ2
1b


 .
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2. V is indecomposable, a 6= b, and

D2 =



−bλ1λ2 0

0 −aλ1λ2


 .

If in addition b 6= −(λ1
λ2

)±1a then V is an irreducible representation.

Remark 6.4.6. If V is indecomposable then D1D2 acts by the scalar −abλ1λ2 on V

(according to the proposition). In the case V splits then D1D2 acts by scalar only if

λ2
1a

2 = λ2
2b

2 in the first case, or λ2
2a

2 = λ2
1b

2 in the second case.

Remark 6.4.7. The results in this section are essentially a special case of Ariki’s result

[Ari94] on the conditions for semisimplicity of Ariki-Koike algebras [AK94]. As usual these

algebras are generically semsisimple and Ariki gives rational functions in the parameters

whose zero sets are exactly the parameters where semisimplicity fails.
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7

Computation of braid representations and re-

striction of parameters

The goal of this section is to explicitly compute the matrix representations of the

braid elements in the path modules for an SO(2n)-type category. Along the way we will

prove additional restrictions on the eigenvalues q,−q−1, r−1 of the braid element cX,X .

Let C be a ribbon category of SO(2n) or SO(2n) − O(K) type with n ≥ 3 and

K ≥ 3, and fix a simple object X corresponding to the fundamental representation. These

fusion rules are Z2-graded, so modifying C by a cocycle construction we may assume the

braid element c1 = cX,X has eigenvalues (q,−q−1, r−1) on the simple objects [2], [12],1

respectively. Similarly we may assume X is symmetrically self-dual, meaning we can pick

the left and right duality maps iX , dX , i
′
X , d

′
X such that iX = i′X and dX = d′X . Under

these circumstances the twist on X coming from the ribbon structure is θX = r. Let

e = 1/ dim(X)iX ◦ dX denote projection onto 1 ⊂ X⊗2. With these parameters the braid

element must satisfy the Dubrovnik relation. We infer from this that C is symmetric if

and only if q = ±1. In this thesis we will only address SO(2n) type categories with

non-symmetric braidings, so we assume henceforth q 6= ±1.

Our method of computing braid representations hinges on knowing the eigenvalues

of the full twist ∆2
k (or equivalently the Jucys-Murphy operators) on the path modules.

If V λ denotes the path module of End(X⊗k) equipped with a path basis {vT}, then the
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action of ck−1 is determined by its action on the collection of path modules W λ
µ . For

µ 6= λ there are exactly 1 or 2 paths from µ to λ, so W λ
µ is 1 or 2 dimensional. In case

W λ
µ is 1-dimensional, the action of ck−1 is determined by the fusion rules and the braid

eigenvalues (q,−q−1, r−1).

On the other hand, if W λ
µ is 2-dimensional then we can show with more effort

that eigenvalues of ck−1 are still determined by the fusion rules and braid eigenvalues.

By Prop. 6.4.5, there are 3 possibilities for W λ
µ as an AB2-module: it either splits into

the direct sum of two irreps, it is irreducible, or it is indecomposable but not irreducible.

If we know which we have then the action of ck in the path basis is determined by the

eigenvalues of ck and of the Jucys-Murphy element Jk by Prop. 6.4.1. Our aim is to

show that the eigenvalues of the JM elements can be expressed in terms of q and r, and

to determine whether each W λ
µ splits into 2 one-dimensional irreps, is irreducible, or is

not semisimple. Whether or not this happens depends on whether q and r satisfy certain

additional relations, e.g., r is an integer power of q. Ultimately we will prove that for

µ 6= λ, W λ
µ is an irreducible AB2-module, and the eigenvalues of the JM elements are

given by a certain equation in q, that r = q2n−1, and that q is a certain root of unity in

the fusion case.

7.1 Jucys-Murphy eigenvalues and restriction of pa-

rameters

Recall that the Jucys-Murphy elements are defined by Jk = ∆2
k−1∆−2

k where ∆2
k is

the full twist in End(X⊗k). Since the full twist is central, it acts by a scalar on any path

module V λ for λ ∈ B(k). We denote this scalar αk,λ:

∆2
k|V λ = αk,λ1V λ (7.1)
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Clearly the eigenvalues of the Jucys-Murphy elements are determined by these

scalars: if S is a path with S(k − 1) = µ, S(k) = λ then

JkvS = αk,λα
−1
k−1,µvS.

We will derive a combinatorial formula for these scalars below. For λ ∈ B(k), |λ| denotes

the number of boxes in the Young diagram corresponding to λ. Given a box b in the (i, j)

position of a Young diagram, the content of b is cn(b) = j − i (the positions of a Young

diagram are listed like matrices, increasing from left to right and top to bottom). To get

started we need some auxiliary statements.

Lemma 7.1.1. Let λ = [2, 1] and consider the path module V λ. Then the braid elements

c1, c2 do not commute on V λ. Therefore q 6= −q−1.

Proof. This is proved in [TW05], Lemma 6.1.

Recall that W λ
µ is the path module for AB2 spanned by paths of length 2 between

SO(2n) shapes µ ∈ B(k−2) and λ ∈ B(k) which are 2 levels apart in the Bratteli diagram.

Unless µ = λ this space is 1 or 2-dimensional.

Lemma 7.1.2. If W λ
µ is 2-dimensional and λ 6= µ then ck−1 has eigenvalues q and −q−1,

and none of the operators ck−1, Jk, Jk−1 act as a scalar times the identity on W λ
µ .

Proof. Note that by the fusion rules, if λ 6= µ then λ appears in both µ⊗ [2] and µ⊗ [12].

Hence by Lemma 6.4.2, ck−1 acts with eigenvalues q and −q−1. We have q 6= −q−1 by

the previous lemma, so ck−1 cannot act by a scalar times the identity. Now if either Jk−1

or Jk act by a scalar, then the other does too, since Jk−1Jk always acts a scalar on W λ
µ .

But from the equation Jk = ck−1Jkck−1 this implies c2
k−1 acts by a scalar. This can only

happen if the eigenvalues of ck−1 are negative of each other, which can’t happen since we

assume q 6= q−1.
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It turns out that to compute the eigenvalues of the full twist in terms of r and q

it suffices to determine the twist on “new stuff”, i.e. shapes in B(k) with k many boxes

(and not fewer).

Lemma 7.1.3. Suppose λ ∈ B(k − 2) with ∆2
k−2 acting by αk−2,λ. Then the eigenvalue

of the full twist on λ as an object of B(k) is given by

αk,λ = r−2αk,λ−2.

Proof. Let pλ be a minimal idempotent of shape λ in End(X⊗k−2). Let E = (1/x)ek−1 =

(1/x)1k−2⊗ (iX ◦ dX) denote the k− 1-th Jones projection (see Sec. 6.2). Then pλ⊗E is

a minimal idempotent in End(X⊗k) of type λ. We can compute ∆2
k(pλ ⊗ E) as follows:1

∆2
k(pλ ⊗ E) = r−kΘX⊗k(pλ ⊗ E)

(by Eq. 6.7)

= (1/x)r−kcX⊗k−2,X⊗2cX⊗2,X⊗k−2θX⊗k−2θX⊗2(pλ ⊗ (iX ◦ dX))

(by the ribbon property Eq. 2.4)

= (1/x)r−kcX⊗k−2,X⊗2cX⊗2,X⊗k−2(θX⊗k−2 ⊗ 1)(pλ ⊗ (iX ◦ dX))

(by naturality of θ and θ1 = 1)

= r−k(θX⊗k−2 ⊗ 1)(pλ ⊗ E)

(by naturality of the braiding)

= r−2(∆2
k−2 ⊗ 1)(pλ ⊗ E)

(by Eq. 6.7)

= r−2αk−2,λ(pλ ⊗ E).

Hence the result.

1These steps are also easily verified in the graphical calculus.
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Now we examine path modules corresponding to hook shapes. Recall that a Young

diagram is a hook if it is of the form [l, 1m] for some l,m ≥ 1. A hook is nontrivial if it

is not a row or column. As usual, an SO(2n)-shape is also called a hook if its underlying

Young diagram is a hook. In the following formula the notation b ∈ λ means b is a box

in the Young diagram of λ. In particular we get the same value for SO(2n)-shapes which

differ only in the sign of their nth entry.

Proposition 7.1.4. Suppose λ ∈ B(k) is a hook. Then

1. αk,λ = r|λ|−kq2
∑
b∈λ cn(b).

2. q2 is not an l-th root of unity for l = 1, . . . k − 1.

Proof. By Lemma 7.1.3, it suffices to prove the formula (1) when |λ| = k, which we do by

induction. For k = 1 we have ∆2
1 = 1 and λ = [1] has only one box with content 0 so (1)

follows and (2) is vacuous. For k = 2, we note that by our labeling convention c1 has the

eigenvalue q on the shape [2], so ∆2
2 = c2

1 acts by q2 on V [2] which agrees with the formula

to prove. Similarly for the shape [12], so formula (1) is true. We cannot have q2 = 1 as

the Dubrovnik relation would imply C is symmetric.

Next we consider k = 3 and λ = [2, 1]. Consider the path module W
[2,1]
[1] , on

which c2 has eigenvalues q,−q−1. By the previous paragraph the Jucys-Murphy element

J2 = ∆2
2 has eigenvalues (q2, q−2) on the paths going through [2] and [12], respectively.

Hence by Lemma 7.1.2, q2 6= q−2, i.e. (q2)2 6= 1, which proves (2) in this case. Now

consider W
[2,1]
[1] as an AB2-module. Since we have established q 6= ±q−1, we may apply

Prop. 6.4.5 and deduce that either W
[2,1]
[1] is indecomposable or it splits as a sum of 2 1-

dimensional representations. In the latter case we see that both c1 and c2 act diagonally

in the path basis, which contradicts Lemma 7.1.1. Hence W
[2,1]
[1] is indecomposable and

by Prop. 6.4.5, the eigenvalues of J3 are (q−2, q2) and ∆2
3 = J3J2 acts as the identity on

V [2,1], establishing (1).
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We prove the result for the remaining hooks by induction (note that removing

boxes from a hook always results in a hook). Suppose k ≥ 4 or k = 3 and λ = [3] or

λ = [13]. In this situation it is always possible to remove 2 boxes from λ in the same

row or column. Let ν be obtained in such a way from λ. Then the path module W λ
ν

is 1-dimensional, and the fusion rules imply that ck−1 acts by q or −q−1, depending on

whether λ is obtained by adding two boxes in the same row or column, respectively. Let

b1 denote the first box added to ν en route to λ and b2 the second. By induction, Jk−1

acts on W λ
ν by q2cn(b1). Since W λ

ν is 1-dimensional, Jk must act by q2(cn(b1)±1), the sign

depending on whether b1, b2 are added in the same row/column. But in the first case

cn(b2) = cn(b1) + 1 and in the second cn(b2) = cn(b1)− 1, so in either case we have that

Jk acts by the scalar q2cn(b2). So once again using the inductive hypothesis, we have that

∆2
k|Wλ

µ
= JkJk−1∆2

k−2|Wλ
µ

acts by q2(cn(b1)+cn(b2))q2
∑
b∈µ cn(b) = q2

∑
b∈λ cn(b), which establishes

(1).

To prove (2), let λ be a nontrivial hook of size k ≥ 4. We can write λ = [l, 1k−l].

Let µ = [l − 1, 1k−l−1] denote the shape obtained by removing boxes from both the first

row and first column of λ. Then the fusion rules imply that ck−1 has eigenvalues q,−q−1

on W λ
µ and by induction, Jk−1 has the eigenvalues q2(l−1), q−2(k−l) on W λ

µ . By Lemma

7.1.2 these cannot be equal so q2(k−1) 6= 1.

Corollary 7.1.5. If C is a ribbon category with the fusion rules of SO(2n) (not a fusion

category) then q2 is not a root of 1.

Proof. Indeed, there are isotypes corresponding to hooks of arbitrary size so by part (2)

of the previous proposition q2 is not a root of unity.

To determine a restriction on the parameter r, we consider another family of 2-

dimensional path modules.

Lemma 7.1.6. Suppose C is an SO(2n) or SO(2n)−O(K) category, with n and K ≥ 3,

and non-symmetric braiding. Then r 6= ±q±1.
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Proof. Since dimC(X) = 1 + r−r−1

q−q−1 must be non-zero we find r 6= −q and r 6= q−1. It

can be shown that r 6= q and r 6= −q−1 by examining the (level 3) path module W
[1]
[1]

(see [TW05], Lemma 6.4).

Proposition 7.1.7. Suppose C is an SO(2n)-category or SO(2n)− O(K) category with

n and K ≥ 3. Then r = q2n−1.

Proof. Consider the SO(2n)-shape λ = [1n]+. By the fusion rules of SO(2n) we have

X ⊗ [1n]+ ∼= [1n−1] ⊕ [2, 1n−1]+, so the path module W λ
λ (acted on by cn+1, Jn+1, Jn+2)

is 2-dimensional. According to the fusion rules, [1n]+ ⊂ [1n]+ ⊗ [12], so cn+1 acts on

W λ
λ with eigenvalues r−1 and −q−1. By Lemma 7.1.6 we know r 6= ±(−q−1) so Prop.

6.4.5 applies and we conclude W λ
λ is either indecomposable or splits as two 1-dimensional

irreps and as usual we aim to rule out the latter possibility. Using the calculation of

JM eigenvalues on hook shapes (Prop. 7.1.4), we compute the eigenvalues of Jn+1 on

the basis v(λ,[1n−1],λ), v(λ,[2,1n−1]+,λ) to be (r−2q2(n−1), q2) and the eigenvalues of Jn+2 to be

(q−2(n−1), r−2q−2). If the representation splits then looking at the eigenvalue corresponding

to the path (λ, [2, 1n−1]+, λ) yields r−2q−2 = q2r−2 or r−2q−2 = q2q−2 = 1, both of

which are absurd thanks to Prop. 7.1.4 part (2) and Lemma 7.1.6. Therefore W λ
λ is

indecomposable and by Prop. 6.4.5 the eigenvalue of Jn+2 on the (λ, [1n − 1], λ)-path is

equal to r−1q−1q2. Comparing this with our previously computed value of q−2(n−1) from

Prop. 7.1.4 we derive r = q2n−1.

In the fusion category case a similar analysis applied to row shapes gives another

restriction on r and allows us to determine the order of q as a root of unity (the answer

depends on the fusion rules). This is the main result on restriction of parameters for

fusion categories.

Proposition 7.1.8. Suppose C is an SO(2n)−O(K) category with n ≥ 3 and K ≥ 3.

1. If K is even then r = −q−(K−1) and q2 is a primitive root of order 2n+K − 2.
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2. If K is odd then either r = q−(K−1) and q is a primitive root of order l′ = 2n+K−2,

or r = −q−(K−1) and q is a primitive root of order 2(2n+K − 2).

Remark 7.1.9. In any case q2 is always a primitive root of order 2n+K − 2.

Proof. Consider the shapes µ = [K] ∈ B(K) and λ = [K − 1, 1] ∈ B(K + 2). There is a

single path from µ to λ in the Bratteli diagram (first remove the last box from µ and then

add one in the second row). By the fusion rule given by Eq. 3.24 for SO(2n) − O(K)

categories, λ appears in µ ⊗ [12]. Therefore ck+1 acts by −q−1 on this 1-dimensional

space. On the other hand, by Prop. 7.1.4, Jk−1 and Jk have eigenvalues r−2q2(K−1) and

q−2 respectively. Then the AB2 relation implies r−2q2(K−1) = q−2(−q−1)2 so r = ±q−(K−1).

We combine this with r = q2n−1 to find

q2n+K−2 = ±1.

If K is even and this is equal to +1 then q2 would be a n+K/2−1-th root of unity which

contradicts the previous restriction on q, Prop. 7.1.4 part (2). Hence r = −q−(K−1) in

the K even case and the equation above shows that the order of q2 divides 2n + K − 2;

however the order of q2 must be greater than half that by Prop. 7.1.4 so the order of q2

must equal 2n+K − 2.

If K is odd and r = q−(K−1) then the equation above shows that the order of q

must divide 2n+K− 2 and as before this implies its order must in fact equal 2n+K− 2.

In the case r = −q−(K−1) the order of q2 must similarly be 2n + K − 2, and then the

equation above implies q has order 2(2n+K − 2).

Now the restriction on q is enough for us to compute all of the eigenvalues of the

full twist. The following expression was derived for the quantum group categories by

Wenzl ( [Wen93], Sec. 3.2), where the full-twist eigenvalue is called the framing anomaly.

Note in particular that the formula only depends on the shape of λ as a Young diagram.
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Hence if λ+ and λ− are SO(2n) shapes just differing by the sign in their nth entry, we

have αk,λ+ = αk,λ− .

Theorem 7.1.10. Suppose C is of SO(2n)− type and is not a fusion category. Suppose

λ ∈ B(k) is an SO(2n)-shape of size |λ| ≤ k. Then ∆2
k acts on V λ by

αk,λ = r|λ|−kq2
∑
b∈λ cn(b).

Proof. Again by Lemma 7.1.3 it suffices to consider λ with |λ| = k. If it is possible to

remove two boxes from the same row or same column of λ then the exact same argument

as used in the previous proposition for hook shapes works to compute αk,λ. The only

time this procedure cannot be used to compute αk,λ is when λ is a staircase partition, i.e.

k =
(
d+1

2

)
for some d ≥ 2 and λ = [d, d− 1, . . . , 1] (possibly with a plus/minus if d = n).

In this case λ has exactly d outside boxes b1, b2, . . . , bd with contents d−1, d−3, . . . , 1−d

respectively. Let νi denote the shape obtained by removing bi from λ and µi,j the shape

of size k−2 obtained by removing both i and j boxes. By induction, the matrix Jk−1 acts

on the 2-dimensional path-module W λ
µi,j

with basis indexed by paths (µi,j → νj → λ) and

(µi,j → νi → λ) by the matrix

Jk−1 7→



q2cn(bj) 0

0 q2cn(bi)




Let xi denote the eigenvalue of Jk on a path ending with νi 7→ λ. Then Jk has the

matrix

Jk 7→



xi 0

0 xj


 .
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Since ∆2
k = Jk−1Jk must act as a scalar on W λ

µi,j
we have

q2cn(bj)xi = xjq
2cn(bi)

for every 1 ≤ i < j ≤ d. These homogeneous equations are satisfied iff (x1, . . . , xd) =

γ(q2cn(b1), . . . , q2cn(bd)) for some γ ∈ C and it suffices to prove γ = 1. To that end, let

i = bd/2c and j = i + 1. Then cn(bi) = cn(bj) + 2 ∈ {1, 2}. Consider W λ
µi,j

. If Wµi,j is

indecomposable then by Prop. 6.4.5 γ = 1. The other possibility is Wµi,j splits as a sum

of 1-dimensional irreps. This leaves two possibilities: either γq−2 = q4 and γq2 = 1 or

γq−2 = 1 and γq2 = 1. Neither case is possible since q2 is either not a root of unity, or it

is a root with order 2n+K − 2 > 3 (by the assumption n,K ≥ 3).

Since Jk = ∆2
k∆
−2
k−1, we obtain the following formula for the diagonal entries of the

Jucys-Murphy elements, valid in any path basis:

Corollary 7.1.11.

(Jk)S,S =





q2cn(b) if S(k − 1)→ S(k) involves adding a box b

r−2q−2cn(b) if S(k − 1)→ S(k) involves removing the box b.

(7.2)

We can now identify the path modules W λ
µ for which µ 6= λ.

Proposition 7.1.12. Suppose λ and µ are distinct SO(2n)-shapes with λ ∈ B(k), µ ∈

B(k − 2) and λ ⊂ µ⊗X⊗2. Then W λ
µ is irreducible as an AB2-module.

Proof. The path module W λ
µ is either 1 or 2 dimensional, and there is nothing to prove

in the first case. Suppose it is 2 dimensional. By Lemma 7.1.2, we know ck−1 acts by the

scalars q,−q−1 and these eigenvalues are not equal. If W λ
µ is indecomposable then it’s

automatically irreducible by Prop. 6.4.5. Hence it suffices to rule out the possbility that

W λ
µ splits into two 1-dimensional irreps.
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First suppose µ is obtained from λ by adding boxes b1, b2. We may assume these

boxes are not in the same row or column, as otherwise W λ
µ is 1-dimensional. Then by

Theorem 7.1.10 the JM element Jk−1 has eigenvalues (q2cn(b1), q2cn(b2)) on the path basis of

W λ
µ . Also Jk has the same eigenvalues (q2cn(b2), q2cn(b1)) while bk−1 has eigenvalues q,−q−1.

If the representation splits then we have a relation q2cn(b2) = q±2q2cn(b1), equivalently

q2(cn(b1)−cn(b2)±1) = 1. Since b1 and b2 are not in the same row or column, we have that

cn(b1) − cn(b2) 6= ±1. Hence the relation above implies q2 is a root of unity with order

at most |cn(b1) − cn(b2) ± 1|. This is in contradiction with the fact that q2 has order

2n + K − 2 (by Prop. 7.1.8) since |cn(b1) − cn(b2)| + 1 is at most the maximum hook

length of λ which is bounded by n+K − 1.

The case in which µ is obtained by removing 2 boxes is quite similar and we omit it.

We will discuss the case that µ is obtained from λ by adding a box (say b1) and removing

a different box (say b2). Using Prop. 7.1.4 we compute the eigenvalues of Jk−1 to be

(q2cn(b1), r−2q−2cn(b2)) and the eigenvalues of Jk to be (r−2q−2cn(b2), q2cn(b1)). Suppose for

contradiction that W λ
µ splits into 1-dimensional irreps. Then we would obtain a relation

r−2q−2cn(b2) = q2(cn(b1)±1). Using r = q2n−1 this implies

q2(cn(b1)+cn(b2)+2n−1±1) = 1. (7.3)

However since any SO(2n)-shape has at most n rows and K columns the content of any

box is at least −(n−1) and at most K−1. Furthermore, since b1 and b2 must not belong

to the same row or same column, their contents differ by at least two, which implies

cn(b1) + cn(b2) ≥ −(n− 1)− (n− 3) = −2n+ 4

and similarly

cn(b1) + cn(b2) ≤ 2K − 4.
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Therefore

3± 1 ≤ cn(b1) + cn(b2) + 2n− 1± 1 ≤ 2K + 2n− 5± 1.

This shows that Eq. (7.3) contradicts that q2 is a primitive root of order 2n+K − 2.

7.2 Uniqueness of dimensions

In the next section we will identify W λ
λ as AB2-modules. The matrix representa-

tions will be expressed in terms of the (categorical) dimensions in C, so next we show that

the dimensions are determined by the parameter q and the fusion rules. Important for

the proof are the following quantities:

sk := Trq(Jk+1(pS ⊗ 1))

where pS is a path idempotent of length k ending at [1k] and k = 1, . . . , n−1. In addition

we define

s0 = dimC X.

In the language of ribbon categories, these numbers are the coefficients of the S-matrix

in the column corresponding to the object X, for instance sk is often denoted s[1k],X . We

have the following relation:

Lemma 7.2.1. Suppose C is an SO(2n) or SO(2n) − O(K) type category and c1 has

eigenvalues (q,−q−1, q2n−1). Then the coefficients sk satisfy the following recursion:

sk = dimC[1
k]

(
sk−1

dimC[1k−1]
+ (q − q−1)q2n−1(Jk)S,S − (q − q−1)q−(2n−1)(Jk)

−1
S,S

)
.

Proof. We use the BMW skein relation in conjunction with the AB2-relation. Let S be
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the unique path of length k ending at [1k]. Note that S ′ ends at [1k−1]. We have

sk = Trq(Jk+1(pS ⊗ 1))

= Trq(ckJkck(pS ⊗ 1))

= Trq(ckJk(c
−1
k + (q − q−1)(1− ek))(pS ⊗ 1))

= Trq(ckJkc
−1
k (pS ⊗ 1)) + (q − q−1)Trq(ckJk(pS ⊗ 1))− (q − q−1)Trq(ckJkek(pS ⊗ 1)).

Now examine each term separately. Using the diagrammatic calculus we check that

Trq(ckJkc
−1
k (pS ⊗ 1)) =

dimC[1
k]

dimC[1k − 1]
sk−1

Trq(ckJk(pS ⊗ 1)) = q2n−1(Jk)S,S dimC[1
k]

Trq(ckJkek(pS ⊗ 1)) = q−(2n−1)(Jk)S,S dimC[1
k].

This gives us the desired equation.

Recall that for an integer n, [n]q denotes the quantum number given by

[n]q :=
qn − q−n
q − q−1

= qn−1 + qn−3 + · · ·+ q−(n−1).

Clearly [n]q is a rational expression in q.

Proposition 7.2.2. Suppose C is an SO(2n) or SO(2n) − O(K) type ribbon category

and c1 has eigenvalues (q,−q−1, q2n−1). Then the q-dims of simple objects are uniquely

determined and can be expressed as a rational function of q.

Proof. First we show that we can compute dimC[1
k] and dimC[2, 1

k−2] for k = 1, . . . , n− 1

by induction. For k = 1 we can compute x := dimC[1] = dimC X by attaching caps to the

Dubrovnik relation to obtain dim[1] = 1 + [2n− 1]q. Now suppose we have a formula for
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dimC[1
i] and dimC[2, 1

i−2] for i = 1, . . . , k − 1. By the SO(2n) fusion rules we have

dimC[1] dimC[1
k−1]− dimC[1

k−2] = dimC[2, 1
k−2] + dimC[1

k]. (7.4)

We can use the Jucys-Murphy elements to obtain another linear equation for the unknowns

dimC[2, 1
k−2] and dimC[1

k]. Let pS ∈ End(X⊗k−1) denote a path idempotent of type [1k−1].

We will compute sk−1 = Trq(Jk(pS ⊗ 1)) in two ways. Define the paths

Q = S → [1k−2]

R = S → [1k]

T = S → [2, 1k−2]

Then pS ⊗ 1 = pQ + pR + pT . Hence

sk−1 = Trq(Jk(pQ + pR + pT ))

= Trq((Jk)QQpQ + (Jk)RRpR + (Jk)TTpT )

= (Jk)QQ dimC[1
k−2] + (Jk)RR dimC[1

k] + (Jk)TT dimC[2, 1
k−2]. (7.5)

On the other hand repeatedly applying the previous lemma shows that sk−1 can be ex-

pressed solely in terms of dimC[1], dimC[1
2], . . . dimC[1

k−1], which are themselves known

to be rational functions in q by induction. Hence Eqs. (7.4) and (7.5) give linear equa-

tions in the unknowns dimC[1
k] and dimC[2, 1

k−2]. Furthermore, (Jk)RR = q−2(k−1) and

(Jk)TT = q2 so (Jk)RR 6= (Jk)TT since q2 is not a root of unity in the non-fusion case, and

in the fusion case by Prop. 7.1.8 the order of q2 is 2n + K − 2 which is greater than k.

Hence the system of equations admits a unique solution for dimC[1
k] and dimC[2, 1

k−2],

and both are expressible as rational functions of q.
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Next we consider dimC[1
n]±. Now the fusion rules give an equation

dimC[1] dimC[1
n−1] = dimC[1

n−2] + dimC[2, 1
n−2] + dimC[1

n]+ + dimC[1
n]−. (7.6)

We again get another linear equation by computing sn−1 in the two different ways. On

one hand the previous lemma again shows sn−1 can be written as a rational expression of

q. Now pS ⊗ 1 decomposes as a sum of 4 minimal idempotents corresponding to paths

Q = S → [1n−2]

R+ = R→ [1n]+

R− = R→ [1n]−

T = S → [2, 1k−2].

Using that (Jk)R+,R+ = (Jk)R−,R− we arrive at an equation

sn−1 = (Jk)QQ dimC[1
n−2]+(Jk)R+,R+(dimC[1

n]++dimC[1
n]−)+(Jk)TT dimC[2, 1

n−2]. (7.7)

As before, the equations (7.6) and (7.7) uniquely determine dimC[2, 1
n−2] and dimC[1

n]+ +

dimC[1
n]−.

Recall the Dynkin automorphism σ of the fusion ring which interchanges + and

− labelled shapes. By Lemmas 3.3.7 and 3.2.1, the fixed subring Gr(C)σ is generated

algebraically by [1], [12], . . . , [1n−1], [1n]+ + [1n]−. Hence the character dimC : Gr(C)σ → C

is fully determined by its value on these elements, which we’ve seen to depend only on q.

In particular [1n]+⊗ [1n]− belongs to the fixed subring so dimC ([1n]+ ⊗ [1n]−) is uniquely

determined by q. Thus we know that the sum and the product of dimC[1
n]+ and dimC[1

n]−

are given as certain rational expressions in q, say f1 and f2 respectively. In general there
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are two solutions to the system of equations

dimC[1
n]+ + dimC[1

n]− = f1

dimC[1
n]− dimC[1

n]− = f2.

However in the quantum group case the q-dims are equal (see Remark 3.6.3) and satisfy

the same equations. Hence the system admits a unique solution,

dimC[1
n]+ = dimC[1

n]− =
1

2
(dimC[1

n]+ + dimC[1
n]−).

We have proved that dimC[1], dimC[1
2], . . . , dimC[1

n]± can all be written as a rational

expression in q, depending only on the fusion rules of C. Since these objects algebraically

generate the fusion ring of C, the remaining q-dims are also determined uniquely.

Corollary 7.2.3. Suppose C is an SO(2n) category and λ+, λ− are shapes with n rows.

Then

dimC λ
+ = dimC λ

−.

Proof. The q-dims are independent of the category C, so it suffices to note this is true

when C is a quantum group category.

Remark 7.2.4. The proof above marks the only time we use additional information about

the existing quantum group categories. Everything else has just been a consequence of

the fusion rules and ribbon axioms.

7.3 Uniqueness of braid representations

So far we have computed the Jucys-Murphy elements in any path basis as well

as the diagonal entries of the braid matrices. However the off-diagonal elements of the
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braid representations depend on a particular choice of path basis. We now describe such

a choice and then prove that in this basis the braid matrices are uniquely determined.

Since the arguments here use heavily the combinatorics of the Bratteli diagram,

we review the situation. The SO(2n)-shapes are all Young diagrams with fewer than n

rows, and two shapes λ+ and λ− for every Young diagram with exactly n rows. The

SO(2n)−O(K) shapes are those SO(2n) shapes which additionally satisfy λ1 + λ2 ≤ K.

The kth level B(k) of the Bratteli diagram consists of all SO(2n)-shapes (or SO(2n) −

O(K) shapes) for which the size of the Young diagram is congruent to k mod 2. There is

an edge connecting any two shapes which can be obtained by adding or removing a box,

with the additional rules that adding a box to a + (resp. −) labeled diagram results in a

+ (resp. −) labeled diagram. We write µ ≺ λ to mean λ is one level after µ and they are

connected.

Let < be any total ordering of the set of SO(2n)-shapes which refines size, meaning

µ < λ if |µ| < |λ|. We use this and the last-letter convention to define a total ordering

<LL on paths of equal length, defined by S <LL T if S(i) < T (i) as SO(2n)-shapes, where

i is the last-letter of disagreement for S and T , meaning S(j) = T (j) for all j > i.

Proposition 7.3.1. Let C be an SO(2n)-type ribbon category generated by X, with n ≥

3. Then for each λ appearing in Xk there exists a path basis for V λ such that for all

j = 1, . . . , k − 1

(a) If |λ| = k and S 6= T are paths ending at λ which only differ in the j-th position

such that S < T then (cj)S,T = 1.

(b) If |λ| < k and S, T are paths ending at λ which only differ in the jth position and

S(j + 1) = S(j − 1) = T (j + 1) = T (j − 1) then

(ej)S,T =
dimC T (j − 1)

dimC S(j)
.
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Up to an overall rescaling this basis is unique.

Proof. The proof is by induction on k. First suppose |λ| = k. That there exists a path

basis for V λ which satisfies (a) follows from the existence of seminormal representations

for irreps of the Hecke algebra (see, e.g. [Wen88] or [KT08], Ch. 5). We give an argument

here for the reader’s convenience. Using the restriction rules we have

V λ ∼=
⊕

µ≺λ

V µ

as End(Xk−1)-modules, with the sum going over all µ obtained by removing a box from

λ. By induction we may fix bases for each V µ satisfying (a) for c1, . . . , ck−2, and the

basis for V µ is unique up to an overall rescaling on V µ. We will show how to pick these

scalings so that ck−1 satisfies (a). Let T0 denote the least path (w.r.t <) ending at λ and

let µ0 = T0(k − 1). Let vT0 ∈ V µ0 be chosen arbitrarily (this choice determines every

other path basis vector in V µ0). For each µ ≺ λ distinct from µ0 there is a unique shape

ν ∈ B(k − 2) such that ν ≺ µ0 and ν ≺ µ. Let P be a path of length k − 2 ending at ν

and consider the paths Q,R ending at λ which agree with P up to level k− 2 and satisfy

Q(k − 1) = µ0, R(k − 1) = µ. Now define

vR := pRck−1vQ.

This fixes the overall scaling on V µ, and the scaling doesn’t depend on the path P . Hence

this procedure uniquely defines a path basis in V λ. It remains to check that (a) holds

for all paths S, T which differ only at the (k − 1)-th position and satisfy S < T . If

S(k− 1) = µ0 then (ck)S,T = 1 by the definition of vT . It is not possible for T (k− 1) = µ0

because this would contradict S < T . On the other hand, if both S(k − 1) = µ1 and

T (k − 1) = µ2 are distinct from µ0 with µ0 < µ1 < µ2 then we can find unique shapes

121



τ ∈ B(k − 3) and ν0 < ν1 < ν2 ∈ B(k − 2) such that

τ ≺ ν1, ν2, ν3

ν0 ≺ µ0, µ1, ν1 ≺ µ0, µ2, ν2 ≺ µ1, µ2.

Also fix an arbitrary path Q of length k− 3 ending at τ . For simplicity we refer to paths

Q→ νi → µj → λ by (i, j). This gives us 6 paths ordered by

(0, 0) < (1, 0) < (0, 1) < (2, 1) < (1, 2) < (2, 2).

To prove (a) for S, T it suffices to show (ck)(2,1),(2,2) = 1. We consider the braid relation

ck−1ck−2ck−1 = ck−2ck−1ck−2 evaluated at the matrix entry ((0, 0), (2, 2)). Recall that

(cj)S,T is only non-zero when S = T or S, T differ only at position j. Using this we have

(ckck−1ck)(0,0),(2,2) = (ck)(0,0),(0,1)(ck−1)(0,1),(2,1)(ck)(2,1),(2,2)

(ck−1ckck−1)(0,0),(2,2) = (ck−1)(0,0),(1,0)(ck)(1,0),(1,2)(ck−1)(1,2),(2,2).

On the other hand

(ck)(0,0),(0,1) = 1 (by the definition of v(0,1))

(ck−1)(0,1),2,1) = (ck−1)(0,0),(1,0) = (ck−1)(1,2),(2,2) = 1 (by the inductive hypothesis.)

Hence the braid relation gives (ck)(2,1),(2,2) = 1 as well.

Now suppose |λ| < k. Again we restrict to End(Xk−1) to get the decomposition

V λ ∼=
⊕

µ≺λ

V µ

where now the sum is over all µ obtained by adding or removing a box from λ. We
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may assume by induction that each V µ is equipped with a basis (unique up to a global

rescaling of V µ) satisfying (a) and (b) for c1, . . . , ck−2 and e1, . . . , ek−2. We’ve seen that

Ek−1 = (1/x)ek−1 is a rank-1 idempotent on the path module W λ
λ and has diagonal entries

(Ek−1)S,S =
dimC S(k − 1)

x dimC λ

for each length 2 path S = λ → S(k − 1) → λ. Hence up to a global factor there is a

unique choice of path basis for W λ
λ for which (Ek−1)S1,S2 = dimC T (k−1)

xdimC λ
(we are choosing

a normalization so that the rank 1-idempotent E has identical entries in every column).

In turn this determines the scaling of V λ, as follows: let T0 be the least path with

T0(k − 2) = T (k) = λ and arbitrarily choose the path basis vector vT0 . The above

comments concerning W λ
λ imply that for all length 2 paths S from λ to λ there is a

unique choice for the vector vT ′′0→S such that ek−1 has the desired matrix representation

on

span{vT′′0→S | S = λ→ S(k− 1)→ λ} ∼= Wλ
λ.

Since S(k − 1) ranges over all the µ in the decomposition for V λ, we have fixed a scaling

for at least one path basis vector in each V µ, which determines the scaling for every path

basis vector by induction. By construction, (b) holds for this choice of scaling.

We can restate this proposition in terms of matrix units for End(Xk):

Theorem 7.3.2. Suppose C is an SO(2n) or SO(2n) − O(K) type ribbon category gen-

erated by X, with n ≥ 3 and K ≥ 3. Then there exists a unique choice of matrix units

{FR,S | R, S paths of length k ending at the same shape}

for End(Xk) corresponding to path bases (i.e. satisfying FR,R = pR) and satisfying (a)
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and (b) above. Furthermore, if R, S are paths of length k − 1 ending at µ then

FR,S ⊗ 1 =
∑

µ→λ

FR→λ,S→λ. (7.8)

Proof. If we fix path basis vectors vS for V λ then we can define matrix units via the

conditions

FR,S ∈ pR End(Xk)pS

FR,SvS = vR.

These matrix units do not change if we modify the overall rescaling of the path basis,

which proves uniqueness. It only remains to check Eq. (7.8). For this, suppose µ ≺ λ. If

R and S are of length k−1 ending at µ then in End(X⊗k) we have the elements FR→λ,S→λ.

Letting R and S vary, this gives a full set of matrix units acting on the simple End(Xk−1)-

invariant subspace V µ of V λ. They satisfy (a) and (b), so by uniqueness (applied to the

matrix units in End(X⊗k−1)), they must agree with the action of FR,S on V µ.

Hence on the path module V λ, FR,S ⊗ 1 and FR→λ,S→λ act the same, from which

Eq. (7.8) follows.

Remark 7.3.3. We can explicitly write down matrices for the braid generators in the

“new stuff”, i.e. on path modules V λ with |λ| = k. Since the ei vanish on these modules

they afford representations of the Hecke algebra. In fact they are the well known semi-

normal representations. Explicitly, if S is a path ending at λ such that λ is obtained from

S(k − 2) by adding two boxes in the same row or same column then ck−1 = q or −q−1,

respectively. If S, T are two paths differing only in the (k− 1)-th position and S < T (i.e.
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S(k − 1) < T (k − 1) in the ordering of SO(2n)-shapes) then we can define

d = cn(b2)− cn(b1)

where b1 is the box added to S(k − 2) to get S(k − 1) and b2 the box added to S(k − 1)

to get λ. According to the normalization chosen in the above proposition, ck−1 acts on

span{vS, vT} by

ck−1 7→




qd

[d]q
1− 1

[d]2q

1 q−d

[−d]q


 . (7.9)

If we put q = 1 in these formulae we reduce to Young’s seminormal representations of

the symmetric group. Note that if λ is a Young diagram with n rows then V λ+ and V λ−

afford the same representations for the braid matrices.

The main result of the section is to show that all the matrix entries for the braid

elements are determined by q (and otherwise independent of the category C).

Theorem 7.3.4. In the basis described by the previous proposition, all the matrix entries

(ck−1)R,S of the braid elements are uniquely determined by q (and in fact can be written

as certain rational functions of q with coefficients in Q).

Proof. We will inductively construct rational functions fR,S ∈ Q(v) for every pair of paths

R, S of length k, such that (ck)R,S = fR,S(q). For k = 2 the matrix of c1 in the (ordered)

path basis must be diag(q2n−1,−q−1, q). Now suppose the matrix entries of ck−1 can all

be written as rational functions of q. Consider an entry (ck)R,S with R, S paths of length

k + 1. We may assume R and S are equal, or differ only in the k-th position, since oth-

erwise (ck)R,S = 0. Let λ = R(k + 1) = S(k + 1) and µ = S(k − 1) = R(k − 1).

Case 1. |λ| = k + 1.
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In this case (ck−1)R,S is given by Eq. (7.9) and hence can be written as a rational

function of q, for instance (ck−1)R,R = fR,R(q) where fR,R(v) = vd

[d]v
.

Case 2. |λ| < k + 1 and µ = λ.

The following argument has previously been used by Leduc-Ram [LR97] (in the

generic q case). Use the BMW relation

ck − c−1
k = (q − q−1)(1− ek).

and examine the action of ck on

span{vT : T differs from S only in position k} ∼= W λ
λ .

If this space is just 1-dimensional then ck must act by the scalar r=q−(2n−1) so its (single)

matrix entry is certainly determined by q. Hence we may assume the space is at least 2

dimensional. On this subspace JkJk+1 acts by the scalar q−2(2n−1). Also Jk+1 = ckJkck,

so c−1
k = q2(2n−1)JkckJk and the BMW relation reads

ck − q2(2n−1)JkckJk = (q − q−1)(1− ek).

Taking the (R, S) matrix entry of this equation we obtain

(ck)R,S(1− q2(2n−1)(Jk)R,R(Jk)S,S) = (q − q−1)(δR,S − (ek)R,S).

By the choice of normalization (ek)R,S = dimC S(k)
dimC λ

(which is a rational function of q) and

(Jk)R,R and (Jk)S,S are known integral powers of q2. If R 6= S then the right hand side
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above is non-zero, so we have

(ck)R,S = −(q − q−1)
(ek)R,S

1− q2(2n−1)(Jk)R,R(Jk)S,S)
. (7.10)

If R = S then we use the following fact then we have the following equation:

(ck)R,R(1− q2(2n−1)(Jk)
2
R,R) = −(q − q−1)(1− (ek)R,R). (7.11)

If 1− q2(2n−1)(Jk)
2
R,R is non-zero then we may again write

(ck)R,R = (q − q−1)
1− (ek)R,R

1− q2(2n−1)(Jk)2
R,R

. (7.12)

which shows (ck)R,R is uniquely determined by q. When q2 is not a root of unity, it is easy

to check that q2(2n−1)(Jk)
2
R,R 6= 1 (one just checks that the exponent of q2 is non-zero) so

this is a valid formula for (ck)R,R.

However, if q is a root of unity it may happen that both sides of Eq. 7.11 are 0 so we

need a different formula. Since (ek)R,R = dimC R(k)
dimC λ

, this happens exactly when dimC R(k) =

dimC λ. Nevertheless, there must always exist some other isotype µ0 appearing in X ⊗ λ

with

dimC µ0 6= dimC λ. (7.13)

Indeed, if this wasn’t the case, then every isotype appearing in λ⊗X would have dimension

equal to dimλ, which would imply dimC(X ⊗ λ) = e dimC λ, where e ≥ 2 is an integer

equal to the number of successors of λ, i.e. the dimension of W λ
λ . But this implies

dimC(X) = e, a contradiction since dimC(X) = 1 + [2n − 1]q and q2 is a root of unity of

order 2n+K − 2 > 2n− 1.

Therefore, let R0 denote the path λ→ µ0 → λ. since µ = R0(k) satisfies Eq. 7.13,

the diagonal entry (ck)R0,R0 is known from Eq. 7.12, as well as all the off-diagonal entries
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in the R0-labeled column of the matrix from Eq. 7.10. Now we look at the (R,R0) entry

of the matrix equation Jk+1 = ckJkck:

0 =
∑

T∈Pλλ

(ck)R,T (Jk)T,T (ck)T,R0 .

In this sum, all of the terms except (ck)R,R are known, and its coefficient is the non-zero

quantity (Jk)R,R(ck)R,R0). Hence we can write

(ck)R,R =

∑
T∈Pλλ

(ck)R,T (Jk)T,T (ck)T,R0

(Jk)R,R(ck)R,R0

. (7.14)

The equations (7.10), (7.12) and (7.14) tell us how to define the rational functions fR,S

and fR,R.

Case 3. |λ| < k + 1 and µ 6= λ.

Suppose first there is only one path R of length 2 between µ and λ. Then λ is

contained in µ⊗ x for a unique shape x ∈ B(2), and

(ck)R,R =





q if x = [2]

−q−1 if x = [12]

q−2(2n−1) if x = 1.

(7.15)

Hence the expression for (ck)R,R depends only on the fusion rules. Now we may assume

there are exactly two paths of length 2 between µ and λ, say R and S with intervening

shapes ν1, ν2 respectively. Then W λ
µ is an irreducible AB2-module with D1 having eigen-

values (q2e1 , q2e2) on the paths R, S respectively (for some integers e1, e2 depending only

on R, S, computed in Theorem 7.1.10). By the results on irreducible AB2-modules, we
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have

(ck)R,R =
qe

[e]q
(7.16)

(ck)S,S =
q−e

[−e]q
(7.17)

(ck)R,S(ck)S,R = 1− 1

[e]2q
(7.18)

This provides rational expressions for the diagonal entries. The third equation indicates

that it suffices to find an expression for one of the off-diagonal entries, which we do now.

Upon examining the Bratteli diagram we see that at least one of ν1, ν2 must have

no greater than k− 2 boxes, so in particular ν1 ∈ B(k− 2). We consider the path module

W λ
ν1

spanned by paths of length 3 from ν1 to λ. We consider the following paths (which

don’t generally span W λ
ν1

):

R = ν1 → µ→ ν1 → λ

S = ν1 → µ→ ν2 → λ

Q = ν1 → λ→ ν1 → λ

T = ν1 → λ→ ν2 → λ.

Then we must show that the coefficient (ck)R,S can be written as a rational function of q

(depending only on R, S). We use the relation

ckck−1ek = ek−1ek (7.19)

evaluated at the matrix entry (S,Q). Since S(k − 2) 6= S(k), we have pSek−1 = 0 so

(ek−1ek)SQ = 0. (7.20)
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On the other hand,

(ckck−1ek)SQ = (ck)SS(ck−1ek)SQ + (ck)SR(ck−1ek)RQ. (7.21)

Note that T is the unique path which only differs from Q in the kth position (or not at

all) and only possibly differs from S in the (k − 1)-st position. Hence

(ck−1ek)SQ = (ck−1)ST (ek)TQ. (7.22)

In a similar way

(ck−1ek)RQ = (ck−1)RQ(ek)QQ. (7.23)

Putting together the last five equations we have

(ck)SR = −(ck)SS(ck−1)ST (ek)TQ
(ck−1)RQ(ek)QQ.

Note that (ek)TQ = (ek)QQ by our choice of matrix units, and we have already found

expressions for all of the other terms appearing on the right hand side, via induction and

Eq. (7.17). More precisely we may define

(fk)SR = −(fk)SS(fk−1)S′T ′

(fk−1)R′Q′
.

The other off-diagonal entry is given by the expression

(fk)RS = (1− 1/[e]2v)/(fk)SR.

This completes the proof.
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8

Classification of SO(2n) type categories

Finally we can use the uniqueness of the braid representations to prove the classifi-

cation theorem for non-symmetric SO(2n)-type ribbon categories. Recall that any SO(2n)

or SO(2n)−O(K) type category may be normalized with a cocycle construction so that

the fundamental object X is symmetrically self-dual and the braids satisfy the Dubrovnik

relation. In this situation the braid operator cX,X has eigenvalues (q,−q−1, q−(2n−1)) for

some q ∈ C× by Prop. 7.1.7.

Theorem 8.0.1. 1. Suppose C is a non-symmetric ribbon category with the fusion

rules of SO(2n), with n ≥ 3, normalized in the usual way to satisfy the Dubrovnik

relation, with braid eigenvalues (q,−q−1, q−(2n−1)). Then q is not a root of unity

and q determines the category. More precisely, if two such categories have braid

eigenvalues q1, q2 then the categories are monoidally equivalent if and only if q1 =

±q±1
2 . They are ribbon equivalent if and only if q1 = q2.

2. Suppose C is a non-symmetric ribbon category of SO(2n)−O(K) type with n ≥ 3 and

K ≥ 3, normalized to be Dubrovnik and with braid eigenvalues (q,−q−1, q−(2n−1)).

Then q2 is a primitive 2n + K − 2-th root of unity, and q determines the category.

More precisely, if two such categories have braid eigenvalues q1, q2 then the categories

are monoidally equivalent if and only if q1 = ±q±1
2 . They are ribbon equivalent if

and only if q1 = q2.
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Remark 8.0.2. As for the SO(2n+ 1) result, here “equivalence” refers to an equivalence

of categories which is the identity on the level of Grothendieck rings.

Proof. We have already proved the statements regarding the restrictions on q and the

other braid eigenvalues in Cor. 7.1.5, Prop. 7.1.7 and Prop. 7.1.8.

The only if statements are identical to the argument of Tuba and Wenzl ( [TW05],

Thm. 9.3). The argument for the direction works for both the fusion and non-fusion

case. Suppose C1 and C2 are categories with fundamental objects X1 and X2 and braid

eigenvalues q1, q2. Suppose q1 = ±q±1
2 . By replacing the braiding on C1 by its negative

and/or its mirror we may assume q1 = q2. By Thm. 7.3.2 we can define matrix units

(F1)R,S and (F2)R,S in End(Xk
1 ) and End(Xk

2 ) in C1 and C2, respectively. This gives us

algebra isomorphisms

ψk : End(Xk
1 )→ End(Xk

2 )

ψk((F1)RS) := (F2)RS

and by Thm. 7.3.2 these ψk satisfy

ψk(a⊗ 1) = ψk−1(a)⊗ 1 (8.1)

for all a ∈ End(Xk−1
1 ). Furthermore, by the uniqueness of braid matrices theorem (Thm.

7.3.4) these maps satisfy

ψk(c
1
k−1) = c2

k−1

where cik−1 is a simple crossing in Ci. Hence ψk preserves all braids. In turn this implies ψk

defines an isomorphism of diagonals. Indeed, it suffices to check that for all f ∈ End(Xk)

and g ∈ End(X l) we have

ψk+l(f ⊗ g) = ψk(f)⊗ ψl(g).
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If we let cik,l denote the braiding Xk
i ⊗X l

i → X l
i ⊗Xk

i then

ψk+l(f ⊗ g) = ψk+l((c
1
k,l)
−1(g ⊗ 1k)c1

k,l(f ⊗ 1l))

= (c2
k,l)
−1(ψl(g)⊗ 1k)c2

k,l(ψk(f)⊗ 1)

= ψk(f)⊗ ψl(g).

Hence ψ is an isomorphism of diagonals, and by Thm. 5.1.10, C1 and C2 differ at most

by a cocycle twist. However, we assumed both are Dubrovnik categories so they do not

differ by a twist, and hence are monoidally equivalent.

We can rephrase the classification result in terms of quantum groups.

Corollary 8.0.3. Let C be an SO(2n) or SO(2n)−O(K) type category (not necessarily

Dubrovnik). Then C is ribbon equivalent to a cocycle twist of Rep SO(2n)q for some q.

Proof. Indeed, the quantum group categories exhaust all possibilities for q (see Sec. 3.6.1).
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9

Conclusion

In this thesis we classified ribbon categories with fusion rules coming from SO(N).

The main ideas were along the same lines as Tuba and Wenzl’s classification program. In

conclusion we review some outstanding problems.

9.1 Other classification problems

Our results do not apply to categories with a symmetric braiding. One can define

analogues of the JM-elements and full-twist, but now the ribbon axioms do not guarantee

a priori the centrality of the full-twist. This is a stumbling block to directly applying our

techniques to symmetric categories. In the case of orthogonal and symplectic categories,

Tuba and Wenzl find there is essentially a unique symmetric category with generic fusion

rules, and no symmetric tensor category with a finite fusion ring. We expect the same to

hold here.

There are many interesting categories excluded by our assumptions n ≥ 3 and

K ≥ 3. These families are fundamentally different from the familiar ones studied here

in that X⊗2 generally does not split into 3 simples. For instance, categories connected

to SO(4) (i.e. n = 2) are generated by X whose tensor square splits into 4 simples.

However, SO(4) tensor product rules arise as the adjoint subring for SL(2)× SL(2) type

fusion rules (this comes from the fact that the Dynkin diagram D2 is A1 × A1). Using
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Kazhdan and Wenzl’s result on SL(N) type categories we can classify the SL(2)×SL(2)

type fusion rules. From there one could classify SO(4) categories by relating the adjoint

subcategory to the full category. Due to the close relationship of the diagonal and adjoint

subcategories, we expect similar reconstruction theorems to work for the adjoint. Possibly

the general extension theory of Etingof, Nikshych and Ostrik [ENO10] would provide such

a result for fusion categories. We expect results concerning reconstruction from the adjoint

subcategory may be useful in Wenzl’s program to classify soN rules (i.e. what we did in

this thesis but including spin representations).

The categories with K = 2 provide a wealth of interesting examples. This level

seems to present an exceptional situation. For instance, the classification of tensor sub-

categories of quantum group categories at level 2 has many differences from higher lev-

els [Saw06]. If including spin representations, these are called metaplectic categories and

have been the target of active research, e.g. [ACRW16], [HNW14]. I don’t know if the

K = 2 categories with integer weights (as in this thesis) have been addressed but they are

a good target for classification. Finally, we expect that categories with n = 1 or K = 1

should be relatively easy to classify. In particular, since SO(2) is abelian, all of its simple

objects are invertible and form a group. Now one could apply known classification results

for so-called pointed categories [EGNO15].

There is yet another family of fusion rings associated to SO(N). These arise

from deequivariantizing SO(N) − O(K) fusion rules [BB01], and it would make sense

to call them SO(N) − SO(K) fusion rules. When K is odd we expect to leverage the

SO(N)−O(K) classification here to achieve such a result for SO(N)−SO(K) categories,

just as we did for the N odd case. The K even case is much trickier and seems to require

some more insight. In particular, one encounters path modules W λ
µ for µ 6= λ which

can be 4-dimensional, a situation never encountered in this thesis. We achieved some

partial results in the study of these categories, including resolving a question of [BB01]

regarding the parametrization of simple objects, which agrees with other unpublished
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work by Rowell and Deaton [Row19].

A more lofty goal is to carry out the classification program for fusion rules of

exceptional type. Wenzl [Wen03] has done computations of braid matrices for EN type

quantum groups which are relevant for the Jucys-Murphy approach to classification.

9.2 Applications of SO(N) classification

A useful application of the SO(N) classification results would be to describe the

endomorphism algebras End(X⊗k) via generators and relations. This would enable an

elementary construction of the SO(N) categories without the use of quantum groups

in the same vein as the Turaev-Wenzl construction for the orthogonal type categories.

This already exists for SO(2n + 1) since the endomorphism algebras agree with those of

O(2n + 1). For SO(2n), it was already known to Brauer in the classical case [Bra37]

that the centralizer algebras are generated by the braid elements and an additional path

idempotent in the nth tensor power of X. This is the first fundamental theorem of

invariant theory for SO(2n). With our results on braid matrices, one can prove that the

same is true for any SO(2n) type ribbon category. The next step is to write down enough

relations to give a presentation for End(X⊗k) using this new element.

This is closely related to the task of writing down the associated planar algebra

[Jon99] by generators and relations. Actually, fewer relations are needed to describe the

planar algebra since the axioms of a planar algebra imply more consequences for the

algebras End(X⊗k) than a usual algebra presentation. The results in this thesis imply

that every SO(2n) category is a deequivariantization of a certain O(2n) category [BB01].

Since the O(2n) category has a planar algebra presentation (namely the BMW relations),

it should be possible to describe the planar algebra for SO(2n) by adding an extra “2n-

box” generator. An entirely analogous procedure was carried out by Morrison, Peters and

Snyder for a different class of categories [MPS10]. We hope to figure this out in future
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work.

Such a presentation would be very useful. For instance, Edie-Michell recently used

planar algebra presentations to compute braided auto-equivalences of ribbon categories of

types A,B,C and G [EM20a]. This gives critical information about the category in the

form of the Brauer-Picard group, a fundamental but hard to compute invariant, which is

the central ingredient for the extension theory of [ENO10].
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