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of its assoc1ated drawbackv are av01ded. A relatlonshlp between the;

. 1n the iteratlon method 1s dlscussed
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~ ABSTRACT -+

An iteration method is'formulated for'thevdeterminatibn of the
{ fpart1al~wave scatterlng amplltude on the ba31s of analyt1c1ty and
»unltarlty pootulates. The analytic pr0perties in the phy51cal and

':unphy51cal sheets are considered 31multaneously in a study of the

Y
o
1
i

::i:total number of comp051te particles and the phase change of . S (s)
i along the left hand .cut is derlved this may be regarded as a .

e generalization‘of-LeV1nson s theorem. The use of this relatlonship :

: AN ITERATION METHOD IN THE S- MATRIX THEORY ‘:fp pf”; n_?:]-' |
Rudo]ph C Hwa _:' '-.-.él - : f;ff S
,q.fvi?_ ;' Lawrence Radlatlon Laboratory_
7 7 University of California ¢

7 1ogar1thmlc S function S ( ). The usual N/D approach and some ;
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I. INTRODUCTION

So far in the development of the analytic Sematrix theory, |

calculations of the partial-wave scattering amplitudes have been based

" almost exclusively on the N/D méthod.l Its advanﬁage lies in the

fact that the nonlinear integral equation of a scattering amplitude

- satisfying analyticity and unitarity postulates can be reduced by this

method to a set of two coupled*iihear iﬁtegral edpations. However, it
'is marred by the disadvanﬁages associated inherently with the aefinition
of a function-as a qﬁotient of two functions. Given a particular left-
hand cut representing thé_dynamical forée 0pérating in a channel, it

is not impossible that the D' function has zeroes in the complex enéfgy

"plaﬁe. Since causality forbidé the amplitude to have poles in the

complex plane of the physical sheet, this implies either that the N
function must have zeroés there also or thaﬁ the inpdt force is
unrealistic. In either case some remedy seems necessary, which is

to be imposed so as to meet an extra condition not already contained

~ in the postulates of analyticity and unitarity, contrary to the

philosophy of the S-matrix theory. It is therefore desirable to have

a method which is free of this shortcoming, that is, a method in which

ranalyticity and unitariﬁy'automatically guarantee that all the complex

poles of the amplitude are in the unphysical sheet,

Another drawback of the N/D method is that the analytic

.property which is to Ee assigned to- D 1is not unambiguous. It can

have the entire right<hand unitarity cut or'just the elastic section



_;drawbacks of the TN/D procedure.» In our, approach the phy51cal and ,fp'fg.

"7ffunphysica13 sheets are explicitly put on the same footlng. ThlS 1s

n,-,

'?{'accomplished by utlllzlng the fact that the S functlon on the unphys— :_5
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Co unltarlty correctlon, whlch for potentials not too singular; never ml\
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'l4'tuthe function”’tn'S(s)” 1s singular at all the positlons in the complex o

E plane where elther S(s) or S ( ) is 51ngular.a Our pr1nc1pal

£ dynamlcal equatlon is a dispersmon relatlon of thls~logar1thmlc functlon;-f’*”

-4

’\?{It is supplemented by a number of sub51dlary equatlons._ Thls system o

of equatlons 1s then to be solved by an iteratlon prOcedure.

We shall derive a: generalized form of the Lev1nson s theorem, ‘

-whlch relates the phase change of S(s) along the left~hand cut to o

”'e:_in the channel under conslderatlon. The 1teratlon-method shows how

" the pole positions of these'composite states move as a result of the

i
3

"frlincreases the number of ‘such states. Thus, even before & calculatlon

*

vdynamlcal force whether a certaln number of composite states in a'

: particular partlal wave is pOSSlble.,

The movements of the poles in the complex s plane can alsoebe“

3‘ studied as a functlon of the 1nteractlon strenvth or the angular

momentum. The pole pos1tions can ‘be complex only in the unphy31cal L

sheetj any one emerglng 1nto'the phys1cal ‘sheet through the elastlc L

cut must stay on the real'anis below the'elastic threshold '.An'fv
'inversion of ‘the dependence of the pole positions on angular momentum

glves, of course, the Regge trajectorles.'f‘ﬁ"

In the 1teratlon method there are no 1ntegral equatlons to be

vsolved. One simply evaluates 1ntegrals over known 1ntegrands at each

?5ﬂd the total number of composite partlcles--resonances and bound states~- T

s attempted one can predlct on the basis of the nature of the 1nput o

U
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a- procedure is that iﬁ the initial.stage of the 1te:atlon the results

-so that 1t 1s a meromorphic function 1n the cut s-plane.. The branch

H 3
3

gcuts -are on the real'axis runnlng from §‘% =00 to O 'end from }”,5?

between s

l _' a_nd__ ‘S




:V"loéﬁrithmic function

‘ '1 Poles'of s(s) and S (s)"bothvappear as logarithmic singularities of

' without subtraction.,,w?U’
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cut, the scattering amplitude can be continuedh across the elastic

unitarity cut into the nnphysical sheet u', and one obtains

s() = sHe) . - (2.3)

’ . . '

- Here and in the following the partial-wave index &” will be suppressed

_ until Section IV, where the problem for noninteger & will be considered. '

It is clear from (2.3) that the elastic cut connects only two

sheets. The zeroes of -S(s) correspond to the poles of Su(s). Thus
. . . >

. the singularities of the S function on both sheets are present in the

e = owms(ey. . R CN

i
s

. K(s), differing only in the sign factor. B

‘We assume in this worx that S(s) tends to unity as s = 00.-

’-This has been shown by Omnes to be: true5 if the asymptotic behavior is ;
dominated by one Regge pole in the cross channel, which has the properties_;;
‘: that its trajectory in the complex angular momentum plane satisfieS‘the a
B ”,Vroissart limit and that it loops back to the left of Re: & =1 at large

r:momentum transfer._ The same result holds if a finite number of Regge
'{jiipoles of such character contributes tO'the asymptotic behavior, but it o

’ is not yet known whether the conclusion is to be altered when an infinite
number of poles or’ a cut in the L plane governs the asymptotic behavior.,j!?{f
A”:~ijith S(s) tending to uni ty at infinity, K(s) vanishes asymptotically,a;‘;‘“

‘l-and the dispersion relation for K(s) which we shall consider exists

e e



1, o
: and s ' havmg opposite smgns on the two 51des of the

L K(snast

' Im K(s )ds'

RSICIEY )f%
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‘From (2.1) and (2.4) we have o
In k(s) = scos'l{e,‘*‘e K(S)(1 - 2p(s) In A(s)) } o (28)

In solving the present problem the inelasticity function n(s), s> S5 s
and the left-hand discontinuity 2i Im A(s), 's < O , are the input
- information that is assumedvknown. Thus (2.7) and (2.8) constitute a

‘1pfclosed set of equations.whieh'oan be solved'by-suceessiVe.iteration.‘

n‘~'Let>ZAB(s) denote the Born term that gives rise to the left-hand cut |
and the rightehandvinelastie cut, and. KB(s) = n(1l + QioAB); Then.
‘Jp.the;iteration proceoure involves first.putting lm KB and tn 1 inv
;;~the rirst and.seCOnd integrals of (2.7), evaluating the two lntegralsﬂ;.
' ;:.and obtaining the once-iterated K(s) for any value of s in the
entire cut plane. The real part of this result along the negatlve real
" axis is used in (2.8) to glve ‘an 1mproved Im K(s) s and the iteration
: is repeated._ The solution is expected to converge rapidly 1f the 1nput 3
‘l force is weak and is such that S(s) has no zeroes or poles in the cut‘ .
s plane. | » ' " " 1
Consider now the 31tuat10n that S(s) can haue zeroes or poles.hs
We shall- sbow in the next section how- thetotal number of poles in the
'itwo-sheeted Riemann surface is related to the phase change of S( ) along |
" the boundary of'thls surface. It sufflces to remark'here that 1f'when
- q.:the interaction strength is initlally weak S(s) has no zeroes or poles,~
“f then as the 1nteractlon is strengthened, zeroes of - S(s) may emerge p'v

I into the complex plane of the phys1cal sheet from the left-hand cut or

the.rlght-hend,1nelastic;cut._ So long as none oftthese,zeroesvcrosses_

=



. contour °f CL under the mapping S S( ) 1s as shown in Flg. 2 by14.

L%

the solid 1ine. As the 1nteract10n strength is’ increased, the 1mage

4

°f the 1ﬁtegrand. If we place “the logarlthmlc branch cut ofA K( )'3

s

ff the rlght-hand 1nelast1c;cut.f ThlS occurs when the coupllng to other ;"

.y
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Consider the modlflcatlon neededvfor the dlspersion relatloo for

K(s) bwhen the left-hand cut is oUCh as- to provide a pair of zeroes of

: S( ) “in the complex s plane._ The‘Capchy;lntegral along‘ CL5 ‘may be

;’ separated into several terms: -

o

DU (= CO: SRR i () —
R o . T = —Y
AR R U O RS Y

!- | | +[f +f ](S.KSS;;?::-S )% +'..t.’
T | « | (s ¢

" - where the dots symbollze 51m11ar terms correspondlng to 1ntegratlon along '

- the lower half of C The limits of integratlon, ¢ and -o'~, are.'H

L .

'7:;‘ deflned by S(o) O and Im s(a! ) ,» Re S(o ) < Q . :iheu

discontinulty XK across the complex logarithmlc cut is Just eni ,
1A51nce Sés) is assumed to have only a 31mple zero at 8= 0. Thus o
,‘ the Tirst- term on the rlght of - (2 9) glves

=ole= el o T (220)

(s - »slrfjf; (o - si}z + (s ’-f.sp%i

'; The'logarithm term'in the éqﬁare.brackef cancels a'similar“term.in (2;9):

uifcom1ng from 1ntegrations ending at 6'5— €. and o‘ % eg,5,Héncej£heov

:vf*‘dlspers1on relatlon for K( ) has the form8§m‘fﬂ“

r"

PR N



ﬁi runnlng from  —00 to O JUst above the

_f;,to p051t10ns connectlng o ; and the S

4

sy , as is ev1denced by the logarlthm terms 1n (2 12;.3

.

We note that each term in (2 12) has the propertles that the B

oo

aspole]r%

fbe¢omes'




* "conjugate pOSitlon remains
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I
'o a bound state;‘-fhe companion poie in the pair origihail&-in the eomolex»>
9 in the unphysicel sheet and gives rise to |
the v1rtual state. ‘Because of symmetry in reflectlon across the real
axis these poles must be on the real axis below sl.,

Since f( ) depends onLy on the p051t10ns of the poles of the
.S function on the two sheeus, (2.11) provides a formula ideally suited

Eivfor the parameterization of tne phase shift, which is K(s )/éi s >‘Si '

The last integral ean be evaluated, since n(s') is determlned by experi- 2

ment, while‘the integral over the left-hand cut can be approx1mated by
some poles. -

To proceed with the formulation of the 1teratlon method when 3
S(s) has zeroes, we note that (2. 8) can be used to improve the first
1ntegrand of (2. ll) at success1ve stages of ‘the 1terat:on, but we need o d
? another eqpation.to 1mprove also the yaloes of 9 lest the iteration
not converge. This eqpaﬁion is supplied by the‘dispersion’relation for
S(e) Ltself. " Since JRe S(s) 1~ 2p(s) Im A(s) is a known function-

for ’s real and negatlve, we apply the Cauchy theorem to S(s)/'s2 and‘

- ) %" . ¢
- obtain ‘ ’ ,
: o o T o
s(s) = .52 j Re S(s’ Jis'_ , sZ j In S(s' )ds' L
R (S' - S)(S')'2 - (s* - S)(S')2

"1 (2.13)

t

" In the second integral Im S(s') is provided by the output of (2 11)
‘at each stage of the 1teratlon, so (2.13) can be used to de+erm1ne ther

values of oi where S(s) -vanishes. The numerical procedure 1nvolves

o



'i,_particles, elementary or compos1te.vfr

‘“?4[1 e, when- g

1mply the determlnation of the directlon, at each point, in whlch
i vdls(s)]/d] |- is greatest and the successive progressxon along the
?f;path of. steepest descent toward the polnt where [S(s)l , When

"

”Qci' are found they are then substituted in (2 12) for the next o

'f741teration«- Thus Eqs. (2 ll) and (2. 12), supplemented by (2 8) and (2 15)

o

;{:form a closed system of equatlons from whlch a unlque so]ution cen be

‘:'fbfsought, prov1ded that the 1nteract10n 1s such that there can* be no stable

'IZZF.:,;Q&},v_:‘ R
]

To elimlnate thls last restrlctlon We must have a flnal equatlon

'to determlne the p051tions of the poles of S(s) When there are poles

e '\a 1
L in (2. 12) moves to a dlfferent branch of (oi - 5. )2 },

:'.(2 13) must flrst be augmented by a’ termlm.<ff:"r'e'.

2

Dot e
L\ R ) G Pl g e e

f on the right-hand 31de.i The pole p051t10n and res1due are determlned by

'.d/; Im s (s’ )ds R
’ . "Aﬂ

‘where o, . and xio are obtained from (2 15) plus (2 13') For every:, R

1

S s L PR P AS W PR Wl e

o N O AT
f Re § "(s')as', 7
« J e e




GE‘K&) m‘(s-s)uﬁ as s = 8
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- set of discontinuities along the rlght— and left-hand cuts, these two

eqpations are iterated to give the best cip and oio , which are

 used.in (2.12) for the next iteration of (2.11).

The nuﬁerical work involved in this iteration proeedﬁre should

“'vnot be complicated, since all integrals are straightforward evaluations.

_'There are no difficulties regarding the possibility of any artificial

singularity at s = S, and there are no integral equations to be

eolved, The stability of the iterated solution can be controlled by

o édiabatic variation of the coupling strength.

As a final remark of this section, we note that, for ¢ 321,

(2. 7) and (2.11) do not guarantee the threshold behavior R

1 ThlS can be corrected 1f e cons1der :

" the dlsper51on relation for K(s [(s - s )&*2 » The only changes that '

are entailed in (2. 7) and (2. 11) are that all the 1ntegrands should be

SR . { :
© multiplied by the'factor '[(s - sl)/Ts' - 51)13 and‘that f(s) should !

~ be replaced by the function'

A B asa ' . .L ;; ' e . B

(s - 8)(s"

QAlI_other considerations pfoceed as before without'alteration;

III. NUMBER OF COMPOSITE STATES

In the precedlng sectlon, we have antlcipated the emergence of"h

a,zero of S(s) into the‘cgmplex;plane from the left-hand cut of the

L physical sheet, thus changing the phase of S(s) along CL . We now .



1s the total number of stable partlcles [and therefore poles[ 7”~e

o

'3; of S(s)] and n “is. the number of elementary partlcles._'Combining.-HC-;;r




»

BRI ;g(s).|<c,.,

'Wof%this number denoted by n i. We thus have :J]L

; *“'The left-hand s1de of thls equation is JUSt the change in phase Of

: :f:fs(s) as ‘p is taken along the contour C Since the phase

g;i,muSt be modlfled and (3 6) is therefore not valld in. general.. However;“_

',;but in such a case the W1sdon of restrlctlng ones con51derations to the X

-fﬂr?study of a single channel 1s questionable. Eﬁ‘f”;“i

| | UCRL-11545 °

cx e . ' o R . ) - -
B . . s . a P e i-
s 3 T P AT TR &
' Cow T . . et N . . . L ) : o B

W

L uygﬁi(?di+:ppthi2ne)l'rL?i'1{9W".'1;fj"".it ’(B-S)f

N

't"For every pole correspondlng to an elementary partlcle added to a.
ﬂz~?"ﬁdynamical system, there is generated a zero of S(s) somewhere in the

P -1 plane. Hence, e see that ‘n + np*-.zn - 1s the total number of

0.

~";.poles of S(s) and S (s) correspondlng to composite particles, let:

.v".dlfference may be dlfferent if some other path is followed, adherence

L

. to fC is to be noted expllcltly. Thls formallzes our earllervﬁ '
o fvsurmise that’ all the resonance, V1rtual and bound-state poles are .
lefed into the two-sheeted Rlemann surface through the left-hand cut of —eﬁ‘“}’a_;:

”??”the unph&sical sheet in: the case of no inelast1c1ty.

If there is coupllng to other channels through unltarlty, (3;&)

';‘jlf the coupled channels do not contrlbute to any resonance poles 1n,xt‘
hs(s) ;. 88 is assumed 1n the, ﬁﬂ problem 1n the‘strlp approximatlon,‘]:'-l

N.&fsfthen (3. 6) can of course stlll be used to determlne ‘the total number of.
ﬁ-trcomPOSLte states. We have not succeeded in generallzlng (5 6) +0 . the

. _case 1n which 1nelastlc unltarlty 1s the source of some resonance poles,”




S

In the remainder of this section we 1llustrate how n can be?fi

¥

f estimated from an examination of the Born term A (s), Whlch gives rlse
“ito the 1eft-hand cut. We have already observed from (3 6) that ' “visf

:fthe number of times S goes around the orlgin, where S is the 1mage

L

ifofi.cv under the mapplng .S S(s) Since S is unity at ‘s e”-oo, -f{v’

'E”in;: is therefore the number of times S crosses the negative real ax1s _
Lt withe negative d(Im S)/ﬁs minus the times it crosses With positive .

}1id(Im S)/ﬁs ;' where. s has the sense of CL . In order that S(s)

?vreal along the negative real s ax1s,v Re A(s) must vanish there. fThéf”f"“
"3 ERETIE icontribution to A( ) from the unitarity integral (and bound-state pole fﬁ-V*”f

531 if any) for negative s’ is always real and positive, let us postpone‘_Qdaijgl'gy;.

lsllfor the moment the dlscuss1on of its effects. What remeins 1s Just

fi the potential"_ term A (s) ¥ which 1s presumed known., r” i;;ithl;
T B R

_<;5€< Ignoring any particles exchanged 1n the u channel for the-fffﬁ“"“

T 12
: convenience of the present dlscussion, we have

b 2dt '.-‘."et‘*
o ee—— A ( t) Qz(l s
o ?“;._Sl T CoTes sy

;}'3'fwhere 21 A (s t) 1s the dlscontlnu1ty of A(s t) across its tf'cut};.if‘f:-vi;

: -,‘fj';’}vf;'Consider the force arlsing from the exchange of a Single particle of "
”’3{”fmass m and spin j in the t channel.' Then At(s t) has the form vaf'”

B r:'(._ 51 ", ,,.':.J,. r" . ' - ‘_ . S ) . t

A_b‘l(s,t)iv__:_::( x P o+ 25/ m - t ) a(t w m ) s (3, __)' L

-JQ'Whére““X-z 1s a real constant proportional to the strength of 1nteraction, S

;and-:t" 1s the elastic threshold of the t channel Equation (3 8) is,




z

,f< and of Re Q, (z) for -1 < z < +1 , where ' 1 + 2m /Ks -8

‘.ykbound on 'lle if use 1s made of the property e

- UCRL~-11545

__;‘;17—v;.ev

:fv.of course,”ineorrect in’ﬁhe asymptotic'regiop of 5, where a preper_“i
; Regge formula should be used to ensure that A (s) is damped out
fi'lcgarithmically 5 For our purpose here we assume that in the finite

: "_ij_‘_part of the left-hand s cut A, ( ) is de'termlned by (3.7) and (5 8), o
fiji and that -some damping factor 1s 1ntroduced in the asymptotic region to- |

"reduce -AL (s) _to;zero; Thus except in the asymptotic region we have

| v v T .>, | ‘. 2 | ) ‘ | . | i ..
g oA Rl 2s/(n” - t,)) R
A, (s) = . Q1 + —=—) . -
L . w(s - sl) A ;B '.51 , .
TR e
Now, ¢ (s) is real along the negatlve real s axis 1f

‘Q‘ﬂf‘Re A, (s) vanlshes, thls occurs at the zeroes of P. (l + 2s/(m -t 5)

1)_"
In view of the relatlonshlp

.Q-’

'_Qe(;z" ;Ai.e')v_ : :‘(_i)‘&u‘ »QL(Z,; fa“ji?) . (3.10)]

' for. 1nteéral L and z. in the 1nterval [ l +l] ; we see that

" Re Q (z). is symmetric (antlsymmetrié if ¢ 1s 0dd (even); in facpp
" Re Q (z) hae§ g + 1 -zeroes 1n thls 1nterval. AmqngJell.thevéereesi
'”the ones correspondlng to ‘S (s) belng negative satisfy:the;reqpirejfL'f”

"; ment Im A, (s + 16) > l/ﬁp(s + ie) : L/élp(s)[ ; this puts a lowerxiug

” :-, im- ‘Qlf(vz ':t_‘ ie) v, i3 5 P&(z) ) K3 € ( -1, +1)

oo Take, for example, the case of j l and m2 > tl l , and

[ rcon51der only the p-wave amplltude. It can be establlshed that, if

WY




Kl

éand negatiVe ere where Re Ql(z

> O , then the only

At these values of ‘”--1 e., (s ,-.em /b‘17) ie };;thé:dérivaiive?;e

oy d(Im S)/as along C is negatlve.v Thus, 1f the 1nteract10n is‘ﬁﬂ
. : o

;attractive and strong enough that (5 ll) 1s satisfied S (s) for p

RPN »

;s é C turns counterclockwise around the orlgin tW1ce, so it has

o ,ﬂ-
..

ZF:We therefore see from this kind of con31deratlon that it 1s p0551b1e EH

L

'.n the nﬂ system to the force

- real ax1s." T '~ v - Lo : :
) ! . ‘l-;;"" G : 'v . . o .
7;ﬁ@“.~; Thus far,the con81derations are based only on the potential term AR
R [ .,»' . e e

»

.W1thout unltarlty correction.. The contrlbution of the unltarity integral ': fk€‘

‘to (3 9) for B < O -is an addltlve quantlty always real and positlve,'so Ce T

t ,A - -
I
. Da & : -
* . . g I .
. b A w
L . oL T Lo
RS " N "- B .
o K P H 4 * .
N . - R ) ..
E o ,
. ' . ' .
- W«
. .
. - .
. 4
-
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B

it generally does not introduce additional zeroes to Re Az(s)v; only,«f“

| shifts'the:positions of the zeroes of Re AzB(s) , thus resulting in .

moving the positions of the zeroes.of S (s) away:from the originel'

- pos1tions associated with S, (s) = 0 . That no addltional zeroes of
B Re. A (s) can be introduced by the unitarity correetion is true only i
' if ‘Re A (s) does not have more than one extremum between two o

',o;adjacent zeroes; i.e.,‘for ~00 <8 <0, Re A£ (e) _should osciliafef:,f
*¢, around zero, not around some value such that two edjaceht maximum andvf“':
;minimum values both have the same sign;' This property is generally

5; satisfled by forces due to particles exchanged in crossed channels. |

i
I

Hence, in'these problems the number of composite states determined by ‘

" a consideration of the Born term alone is the'meximum number possible o

 when the unitarity condition is fully taken into account. It is taken x

as understood thatcthese statements here apply only to the problems'

inrwhich the 1nelastic.hnitarity does not introduce any resonance poles.

i v o _ .
. Although the unitarity correction does not generally introduce

“any resonancew?oles, it can make some zeroes of SaB(s) ‘retreat to

the left-~ hand cut. That occﬁfs when the minimum reqﬁfrement on the

interaction strength, such as (3 ll) or (3 12), is no longer satisfled

vas the value of s , where Re A (s) =0 , is shifted. The 0dd zero of
'S&(s)- on‘the real axis, whlchvwe have encountered in the above example "

- for k“'< O QIWill alwéys remain in the interval between s =0 and -: 

l

8.= 8y , 50 1ong as the interaction strength~is nonzerc. _Tuis-is;,_-'

because in those cases in whlch an odd 2ero occurs, S£(+é) 'is_large »




3

<

'Qbound state) in the same interval., This pole may‘be regarded as

'having moved into the physical sheet from the unphysical one. lWhich-

?

:“S function is S& (s), 'so that a pole 1n thls sheet results in,n

singularity of K (s) ; However, such a relationshjp between the'f
physical and unphysical sheets has been shown to be true only forf 
N ) a R ,
».1ntegral values of & An invalldation of thls relationship for

- ?




' he(-f,,'s) . as.

" has the form -

/
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- The j-parity amplitude is then defined in terms of 'hl(e,s)v and

ko
P

L) = K () £ mye,e)] . e (R

52 _

T,

_ In the following we omit the signature symbol #* for the sake of .

convenience.

Now, the unitarity cbndition, when generalized to complex ¢ ’

1l
CF(4,s4) - FF(4F,s4) = 21 F(4,s4) F(L5,84) , o (B.5) -

obtain from (4.5)

. ' : #, 0% ® L ' 1 o
B I i O b
F(Z,S'*') - . ( -;.S y) *- ° (l"‘6)

N . 'A--:,l_" QiF(LC)S “‘) v ' .

Among th? infinite number of sheets comnected by the cut between )

and sé when ¢ islnot an integer, let the first unphysical sheet

| be the one reached directly from the physical sheet by:a clockwise

continuation around s,

"Coﬂtinuing the right-hand side of (4.6) to the complex _é*‘ plane

simultanequsly.as‘;Fu(&,s~) is continued to the complex s plane,

we obtain . .

F (4,8) = e - o (4.7)
B N -+ ol € e I N

. . , ) . r" ““ v . . ) . _" .‘l v
where s+ implies s + ie . Writing F*(2%,s+) as F*(L*,s*f) N we%{

. ‘Thus, by definition F_(2,5-) = K Ly84) e



x o '=-2nu,
1 + 21 F(& s)e’ :

e e Aed gL

Yu

To elimlna‘ce the elastlc cut for nonln’cegral !; ‘11; 1s the

dispersion rela‘clon for _‘K( &,s)/(s | “f_.: whlch we must cons1der.

S
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BESR o . FIGURE CAPTIONS

,Hj;,w Fig. 1. Contours: CL and CR in the s plaﬁe; '

s T Pig. 2. Example of the images of the upper half of C; under the
v:mapping S ='S(s) . V

| o

L
. Fig. L. 'éontour C in the s plane.

-Qf .__'; - Fig. 3. Distorted contour C (a) and its image in the S plane (b).
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, '"person acting on behalf of the
Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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